Embodiments of the disclosure relate to the field of data security. More specifically, one embodiment of the disclosure relates to a system, apparatus and method that enhances detection of zero-day attacks.
Over the last decade, malicious software (malware) attacks have become a pervasive problem for Internet users and enterprise network administrators. In most situations, malware is a program or file that is embedded within downloadable content and designed to adversely influence, undermine, disrupt, alter or otherwise attack normal operations of an electronic device (e.g. computer, tablet, smartphone, server, router, wearable technology, or other types of products with data processing capability). Examples of different types of malware may include bots, computer viruses, worms, Trojan horses, spyware, adware, or any other programming that operates within an electronic device without permission by the user or a system administrator.
For instance, content may be embedded with objects associated with a web page hosted by a malicious web site. By downloading this content, malware may be received as imbedded objects. For example, malware may caused another web page to be requested from a malicious web site may be unknowingly installed on the computer. Similarly, malware may also be installed on a computer upon receipt or opening of an electronic mail (email) message. As an example, an email message may contain an attachment, such as a Portable Document Format (PDF) document, with embedded executable malware. Also, malware may exist in files infected through any of a variety of attack vectors, which are uploaded from an infected computer onto a networked storage device such as a file share.
Over the past few years, various types of security appliances have been deployed within an enterprise network in order to detect behaviors that signal the presence of malware. Often, conventional security appliances are not capable of detecting zero-day attacks. A “zero-day” attack typically poses the greatest threat to an enterprise network as these types of attacks are designed to exploit a previously unknown vulnerability within software executing on one or more targeted electronic devices, and often constitutes a previously unseen type of malware.
As a result, due to difficulties in detecting zero-day attacks by conventional security appliances, customers, software developers and the public at large do not receive warnings regarding detected zero-day threats in an expeditious manner.
Embodiments of the invention are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings, in which like references indicate similar elements and in which:
Various embodiments of the disclosure relate to a system and an optimized method for detecting zero-day attacks. One embodiment of the disclosure is directed to provisioning one or more virtual machines (VM(s)), which are based on one or more software profiles and configured for zero-day attack detection. This configuration may be accomplished by the software profile(s) identifying “fortified” software for execution within the VM(s). “Fortified software” includes software, such as an operating system and/or an application for example, which has been updated (e.g. fully patched, newest version, etc.) to address known exploits. These VM(s) are used to check for the presence of zero-day exploits. The assumption employed herein is that, if the exploit was previously known, software vendors would patch or revise their software against the attack.
Another embodiment of the disclosure is directed to provisioning a first set of VMs that is based on software profile(s) associated with vulnerable software (e.g. OS, application, driver, etc.). The “vulnerable software” includes software without the most recent patches or older susceptible versions (i.e. no software upgrade to address known issues involving security or system stability). The first set of VMs is adapted to detect one or more exploits caused by malware. Thereafter, information associated with the detected exploit(s) is provided as input into a second set of VMs that is based on the software profile(s) that is associated with the fortified software. Hence, the OS and/or application(s) identified in this software profile may be the same as those identified in the software profile utilized to instantiate the first set of VMs but with a later revision, version or service pack. The second set of VMs is adapted to check whether the detected exploit(s) are associated with a zero-day attack.
In the following description, certain terminology is used to describe features of the invention. For example, in certain situations, both terms “logic” and “engine” are representative of hardware, firmware and/or software that is configured to perform one or more functions. As hardware, logic (or engine) may include circuitry having data processing or storage functionality. Examples of such circuitry may include, but are not limited or restricted to a microprocessor; one or more processor cores; a programmable gate array; a microcontroller; an application specific integrated circuit; receiver, transmitter and/or transceiver circuitry; semiconductor memory; combinatorial circuitry; or the like. It is contemplated that all logic components, typically represented by boxes in
Logic (or engine) also may be in the form of one or more software modules, such as executable code in the form of an executable application, an application programming interface (API), a subroutine, a function, a procedure, an applet, a servlet, a routine, source code, object code, a shared library/dynamic load library, or one or more instructions. These software modules may be stored in any type of a suitable non-transitory storage medium, or transitory storage medium (e.g., electrical, optical, acoustical or other form of propagated signals such as carrier waves, infrared signals, or digital signals). Examples of non-transitory storage medium may include, but are not limited or restricted to a programmable circuit; a semiconductor memory; non-persistent storage such as volatile memory (e.g., any type of random access memory “RAM”); persistent storage such as non-volatile memory (e.g., read-only memory “ROM”, power-backed RAM, flash memory, phase-change memory, etc.), a solid-state drive, hard disk drive, an optical disc drive, or a portable memory device. As firmware, the executable code is stored in persistent storage.
The term “content” generally refers to information, such text, software, images, audio, metadata and/or other digital data for example, that is transmitted as one or more messages. Each message(s) may be in the form of a packet, a frame, an Asynchronous Transfer Mode “ATM” cell, or any other series of bits having a prescribed format. The content may be received as a data flow, namely a group of related messages, being part of ingress data traffic.
One example of content may include web content, namely data traffic that may be transmitted using a Hypertext Transfer Protocol (HTTP), Hypertext Markup Language (HTML) protocol, or any other manner suitable for display on a Web browser software application. Another example of content includes electronic mail (email), which may be transmitted using an email protocol such as Simple Mail Transfer Protocol (SMTP), Post Office Protocol version 3 (POPS), or Internet Message Access Protocol (IMAP4). Yet another example of content includes an Instant Message, which may be transmitted using Session Initiation Protocol (SIP) or Extensible Messaging and Presence Protocol (XMPP) for example. A final example of content includes one or more files that are transferred using a data transfer protocol such as File Transfer Protocol (FTP) for subsequent storage on a file share.
The term “malware” is software or data that includes at least one exploit, namely software or data that takes advantage of one or more vulnerabilities within system software and produces an undesired behavior. The behavior is deemed to be “undesired” based on customer-specific rules, manufacturer-based rules, or any other type of rules formulated by public opinion or a particular governmental or commercial entity. Examples of an undesired behavior may include a communication-based anomaly or an execution-based anomaly that (i) alters the functionality of an electronic device and/or (ii) provides an unwanted functionality which may be generally acceptable in other context.
The term “transmission medium” is a communication path between two or more systems (e.g. any electronic devices with data processing functionality such as, for example, a security appliance, server, mainframe, computer, netbook, tablet, smart phone, router, switch, bridge or brouter). The communication path may include wired and/or wireless segments. Examples of wired and/or wireless segments include electrical wiring, optical fiber, cable, bus trace, or a wireless channel using infrared, radio frequency (RF), or any other wired/wireless signaling mechanism.
In general, a “virtual machine” (VM) is a simulation of an electronic device (abstract or real) that is usually different from the electronic device conducting the simulation. VMs may be based on specifications of a hypothetical electronic device or emulate the architecture and functions of a real world computer. A VM can be one of many different types such as, for example, hardware emulation, full virtualization, para-virtualization, and/or operating system-level virtualization virtual machines.
A “software profile” is information that is used for virtualization of an operating environment (e.g. configuration of a VM forming part of a VM environment) to receive content for malware analysis. The software profile may identify a guest operating system “OS” type; a particular version of the guest OS; one or more different application types; particular version(s) of the application type(s); virtual device(s); or the like.
Lastly, the terms “or” and “and/or” as used herein are to be interpreted as inclusive or meaning any one or any combination. Therefore, “A, B or C” or “A, B and/or C” mean “any of the following: A; B; C; A and B; A and C; B and C; A, B and C.” An exception to this definition will occur only when a combination of elements, functions, steps or acts are in some way inherently mutually exclusive.
As this invention is susceptible to embodiments of many different forms, it is intended that the present disclosure is to be considered as an example of the principles of the invention and not intended to limit the invention to the specific embodiments shown and described.
Referring to
According to this disclosure, the received objects 110 are virtually executed within the first VM environment 120 that comprises at least one VM that is based on one or more software profiles (software profile(s)) directed to vulnerable software. For instance, where an object is a Hypertext Transfer Protocol (HTTP) message, the software profile for a first VM may include Windows® OS 7 and Internet Explorer® (version 9), where both of these software modules have no installed patches. The first VM environment 120 may feature a second VM, which includes Windows® OS 8 and Internet Explorer® (version 10), where both of these software modules have no installed patches.
If no exploits are determined by the first VM environment 120, no further analysis is needed with respect to the presence of a zero-day attack. However, upon detecting “B” exploits 130 (B≥1), these exploit(s) 130 are input into a second VM environment 140. The number of “B” exploits may be equal to or lesser in number than “A” objects.
According to an embodiment of the invention, the second VM environment 140 is adapted to determine whether any of the exploit(s) 130 (C≥1) have not been previously detected. One technique for such determination is whether any undesired behavior is still detected within the second VM environment 140, which comprises at least one VM that is based on fortified software (e.g., OS and/or applications installed with all software security patches and/or newest version). If so, the particular exploit 150 that caused the undesired behavior is identified to be part of a zero-day attack. Otherwise, if no further undesired behaviors are detected, the exploit(s) 130 are not associated with zero-day attacks.
Of course, although not shown, it is contemplated that some or all of the operations conducted by the first VM environment 120 and the second VM environment 140 may be conducted concurrently in lieu of sequentially. This may require objects 110 as input for both environments 120 and 140 and a determination made if an exploit caused by an undesired behavior occurs in both environments.
Referring to
Herein, according to this embodiment of the invention, first MCD system 2101 is an electronic device that is adapted to (i) intercept data traffic routed over a communication network 230 between at least one server device 240 and at least one client device 250 and (ii) monitor, in real-time, content within the data traffic. More specifically, first MCD system 2101 may be configured to inspect content received via communication network 230 and identify “suspicious” content. The incoming content is identified as “suspicious” when it is assessed, with a certain level of likelihood, that at least one characteristic identified during inspection of the content indicates the presence of an exploit.
As shown in
Referring back to
The communication network 230 may include a public computer network such as the Internet, in which case an optional firewall 255 (represented by dashed lines) may be interposed between communication network 230 and client device(s) 250. Alternatively, the communication network 230 may be a private computer network such as a wireless telecommunication network, wide area network, or local area network, or a combination of networks.
The first MCD system 2101 is shown as being coupled with the communication network 230 (behind the firewall 255) via a network interface 260. The network interface 260 operates as a data capturing device (referred to as a “tap” or “network tap”) that is configured to receive data traffic propagating to/from the client device 250 and provide content (objects) from the data traffic to the first MCD system 2101.
In general, the network interface 260 receives and copies the content that is received from and provided to client device 250. Alternatively, the network interface 260 may copy only a portion of the content, for example, a particular number of objects associated with the content. For instance, in some embodiments, the network interface 260 may capture metadata from data traffic intended for client device 250, where the metadata is used to determine (i) whether content within the data traffic includes any exploits and/or (ii) the software profile associated with such content. In other embodiments, a heuristic module (described below) may determine the particular software profile used for instantiating the VM(s) for exploit detection.
It is contemplated that, for any embodiments where the first MCD system 2101 is implemented as an dedicated appliance or a dedicated computer system, the network interface 260 may include an assembly integrated into the appliance or computer system that includes network ports, network interface card and related logic (not shown) for connecting to the communication network 230 to non-disruptively “tap” data traffic propagating through firewall 255 and provide a copy of the data traffic to the heuristic engine 310 of
Referring to
According to one embodiment of the disclosure, the first VM environment 120 may be deployed as one or more VMs with predetermined software profiles. Hence, no determination of a particular software profile that is compatible for suspicious content under analysis is needed. Alternatively, the first VM environment 120 may be deployed as one or more VMs where logic within the first MCD system 2101 operates in concert to determine the software profile for analysis of the suspicious content. The later deployment is described below.
In general, the heuristic engine 310 serves as a filter to permit subsequent malware analysis on portion(s) of incoming content 300 that may have at least one exploit. As an ancillary benefit, by analyzing only the portion of the incoming content 300 that may have an “exploit” (i.e. portions of content that may be exploited by malware), various system resources may be conserved and a faster response time may be provided in determining the presence of malware within analyzed content 300.
As illustrated in
For example, the heuristic engine 310 may examine the metadata or attributes of the captured content and/or the code image (e.g., a binary image of an executable) to determine whether a certain portion of the captured content matches or has a high correlation with a predetermined pattern of attributes that is associated with a malicious attack. According to one embodiment of the disclosure, the heuristic engine 310 flags content from one or more data flows as suspicious after applying this heuristic analysis.
Thereafter, according to one embodiment of the invention, the heuristic engine 310 may be adapted to transmit at least a portion of the metadata or attributes of the suspicious content 305, which may identify attributes of the client device 250, to a control unit 320. Control unit 320 is adapted to control formation of one or more exploit analysis environments 3601-360M. Such metadata or attributes are used to identify at least one VM needed for subsequent malware analysis and formulate software profile information used to formulate that VM. In another embodiment of the disclosure, the control unit 320 may be adapted to receive one or more messages (e.g. data packets) from the heuristic engine 310 and analyze the message(s) to identify the software profile information associated with the needed VM.
For instance, as an illustrative example, the suspicious content under analysis may include an email message that was generated, under control of Windows® 7 Operating System, using a Windows® Outlook 2007, version 12. The email message further includes a Portable Document Format (PDF) attachment in accordance with Adobe® Acrobat®, version 9.0. Upon determining that the email message includes suspicious content, heuristic engine 310 and/or control unit 320 may be adapted to provide software profile information to scheduler 340 in order to identify a particular type of VM needed to conduct dynamic analysis of the suspicious content. According to this illustrative example, the software profile information would include vulnerable software for (1) Windows® 7 Operating System (OS); (2) Windows® Outlook 2007, version 12; and (3) Adobe® Acrobat®, version 9.0, all without the latest security patches.
The control unit 320 supplies the software profile information to the scheduler 340, which conducts a search of information within storage device 350 to determine if a VM image 355 identified by the software profile information resides within storage device 350. The VM image 355 supports the above-identified OS and one or more applications, which may have known vulnerabilities unlike the upgraded software deployed within client device 250. If so, the scheduler 340 uses the VM image 355 to instantiate a VM within exploit analysis environment 3601 in order to analyze the suspicious content to determine if such content includes any exploits.
Of course, it is contemplated that if the storage device 350 does not feature a software profile supporting the above-identified OS/application(s), the scheduler 340 may simply ignore the VM request from control unit 320 or may obtain an VM image directed to similar software. For example, the scheduler 340 may be adapted to obtain a VM image based on the same OS but a different non-patched version of a targeted application. Alternatively, the scheduler 340 may be adapted to obtain the same OS (e.g. Windows® OS 7) along with an application different from the targeted application but having similar functionality and a similar lack of security patches (e.g. different type of email software such as Mozilla® Thunderbird™; different browser such as Chrome® in lieu of Internet Explorer®, etc.). As another alternative, the scheduler 340 may receive a different non-patched OS image that supports similar functionality (e.g., Windows® OS 8 or Windows® Vista® in lieu of Windows® OS 7; LINUX® in lieu of Windows® OS 7; etc.).
In yet another embodiment of the disclosure, the heuristic engine 310 may determine the software profile information from the data traffic by receiving and analyzing the content from the network interface 260. For instance, according to one embodiment of the disclosure, it is contemplated that the heuristic engine 310 may be adapted to transmit the metadata identifying the client device 250 to the analysis engine 330, where such metadata is used to identify a desired software profile. The heuristic engine 310 may then transmit the software profile information to the scheduler 340 in lieu of such information being provided from control unit 320 within the analysis engine 330.
Alternatively, the control unit 320 may be adapted to receive one or more data packets of a data flow from the heuristic engine 310 and analyze the one or more data packets to identify the software profile. In yet other embodiment of the disclosure, the scheduler 340 may be adapted to receive software profile information, in the form of metadata or data packets, from the network interface 260 or from the heuristic engine 310 directly.
The storage device 350 may be configured to store one or more VM disk files forming a VM profile database, where each VM disk file is directed to a different software profile for a VM. In one example, the VM profile database may store a plurality of VM disk files having VM images for multiple software profiles in order to provide the collective capability for simulating the performance of a wide variety of client devices 250.
The analysis engine 330 is adapted to execute multiple VMs concurrently to support different VM operating environments that simulate the receipt and/or execution of different data flows of “suspicious” content by different network devices. As used herein, “execution” may be broadly construed as processing information, where such information may include instructions. Furthermore, the analysis engine 330 analyzes the effects of such content upon execution. The analysis engine 330 may identify exploits by detecting undesired behavior caused by simulated execution of the suspicious content as carried out by the VM. This undesired behavior may include unusual network transmissions, unusual changes in performance, and the like.
The analysis engine 330 may flag the suspicious content as malware according to observed undesired behavior of the VM. Different types of behaviors may be weighted based on the likelihood of system compromise, where suspicious content is determined when the weighted value exceeds a certain threshold. The reporting module 370 may issue alert messages indicating the presence of one or more exploits to the zero-day discovery system 270 of
Referring to
According to one embodiment of the disclosure, the second VM environment 140 of
In general, one or more objects associated with exploits 380 are received by zero-day analysis engine 400, which may be adapted to provide the VM environment 140 to analyze whether the exploit(s) are associated with a zero-day attack. More specifically, control unit 410 of analysis engine 400 receives the object(s) associated with one or more exploits and identifies one or more software profiles corresponding to the exploit(s).
For instance, as an illustrative example, the attributes of the exploit may be uncovered to formulate the software profile information. Alternatively, the software profile information associated with detected exploit(s) 380 may be uploaded to zero-day discovery system 270 from reporting module 370 of
The analysis engine 400 supplies the software profile information to the scheduler 420, which conducts a search as to whether any VM images 440 with corresponding fortified software resides within storage device 430. If so, the scheduler 420 uses that VM image to instantiate the VM, which operates within the analysis engine 400 for analysis of the exploit to determine if such exploit is associated with a zero-day attack. If not, the zero-day attack analysis is not performed and a report may be generated to a user/administrator regarding the need to ensure deployment of a particular fortified version of software represented by the fortified software profile.
The analysis engine 400 is adapted to execute multiple VMs to determine whether the exploit causes any undesired behaviors, where the multiple VMs may be based on (i) the same software profiles in order to provide higher reliability that the exploit is a zero-day attack or (ii) different software profiles to see if the exploit may be directed to a particular type of OS and/or application. If the analysis engine 400 determines that the exploit has caused one or more undesired behaviors, the exploit is considered to be associated with a zero-day attack. Alternatively, different types of behaviors may be weighted based on the likelihood of system compromise, where an exploit is determined to be a zero-day when the weighted value exceeds a threshold value.
Thereafter, the zero-day discovery system 270 may be adapted to generate (1) an advisory message directed to a particular entity or the public at large regarding the particulars of the uncovered zero-day attack, and/or (2) a report message (referred to as an “Indicator of Compromise ‘IOC’”) provided to an administrator of the enterprise network 225. The IOC warns of the zero-day attack and provides information for use in forensic analysis of network devices within the enterprise network 225. This information may include, but is not limited or restricted to an executable binary associated with the exploit, a pointer to (or identifier of) information associated with the exploit, and/or its monitored behaviors such as registry key changes, network connectivity events, processes, or the like.
Of course, it is contemplated that a security signature may be produced from the contents of the IOC, where the security signature may be used reliably to detect the presence of malware associated with the zero-day attack in subsequent communications to network devices deployed within enterprise network 225.
As mentioned previously, in lieu of instantiating VMs in accordance with a software profile to which the exploit is directed, a number of VMs based on predetermined software profiles may be preloaded and used for zero-day attack analysis. The predetermined software profiles may be a combination of different fortified OSes and/or applications as well as different versions of these fortified OS or application. The software associated with the fortified software profiles (e.g., updated OS, and/or updated applications, etc.) may be continuously updated with the latest upgraded (and patched) version, where an object associated with an exploit is run on each of the VMs to determine if an undesired behavior is experienced. If so, the undesired behavior and corresponding attributes are provided to analysis module 470, which determines whether, based on the undesired behavior, the network device is compromised through evaluation of the severity of the behavior. If so, the exploit is determined to be associated with a zero-day attack.
Referring now to
More specifically, a user interface 510 allows the user or network administrator (hereinafter referred to as “user/administrator”) to introduce objects 500 of the suspicious content in accordance with one or more prescribed software profiles 520. The prescribed software profile(s) 520 may be preloaded or selected by the user/administrator in order to instantiate one or more VMs based on operations of the scheduler 340 and storage device 350 as described above. The VMs perform dynamic analysis of the objects 500 to monitor for undesired behavior during virtual execution of these objects 500 within the VMs. The exploit(s) associated with detected undesired behavior are uploaded into the zero-day discovery system 270 of
Referring to
Referring now to
Processor 700 is further coupled to persistent storage 730 via transmission medium 725. According to one embodiment of the disclosure, persistent storage 730 may include content processing logic 740, VM behavior monitoring logic 750, exploit extraction logic 760, zero-day behavior monitoring logic 770 and a data store 780.
Content processing logic 740 is configured to analyze incoming content in order to determine (i) if any segment of the content is “suspicious” requiring further analysis and (ii) one or more software profiles for VMs on which the content may run. The suspicious content along with software profile information representative of these software profiles are provided to the VM behavior monitoring logic 750.
Upon receiving software profile information, the VM behavior monitoring logic 750 is configured to obtain images of “vulnerable” software from data store 780. These images are used to instantiate VMs for testing whether the suspicious content includes exploits if any of these VMs performing operations on the suspicious content detect one or more undesired behaviors. The exploit(s) are identified and portions of the suspicious content including the object(s) associated with the exploit(s) are extracted by exploit extraction logic 760. Exploit extraction logic 760 provides the suspicious content directed to the exploit(s) as input into the zero-day behavior monitoring logic 770.
Upon receiving the information associated with the exploits and configuring one or more VMs with fortified software, whether these VMs are preconfigured or formulated based on the “fortified” software profile information, the zero-day behavior monitoring logic 770 is configured to conduct testing whether the exploits cause any undesired behaviors to the VMs. If so, the particulars associated with the exploit are stored within the data store 780 and subsequently reported as an IOC or other advisory. If no undesired behaviors are detected, the exploit is not considered part of a zero-day attack.
Referring to
Thereafter, the VM(s) perform operations on the suspicious content and analyzes the results of these operations to determine if any exploits are present (block 830). If no exploits are detected, no further zero-day analysis is needed (block 840). However, if one or more exploits are detected, the exploits are provided as input to a zero-day analysis environment.
In the zero-day analysis environment, a determination is made as to which fortified software profiles are used the VMs (block 850). This determination may be based on information provided by the exploit or information provided along with the exploit. After one or more VMs are instantiated based on the fortified software profiles, these VM are run with fortified software to determine if any zero-day exploits exist (block 860). If anomalous behavior is detected during VM analysis of the exploit, this exploit is determined to be a zero-day exploit and information gathered during analysis of the exploit (e.g., register key changes, etc.) is stored and reported (blocks 870 and 880). Otherwise, the analyzed exploit is considered to be associated with a known type of malware (block 890).
Referring to
In the foregoing description, the invention is described with reference to specific exemplary embodiments thereof. It will, however, be evident that various modifications and changes may be made thereto without departing from the broader spirit and scope of the invention as set forth in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4292580 | Ott et al. | Sep 1981 | A |
5175732 | Hendel et al. | Dec 1992 | A |
5440723 | Arnold et al. | Aug 1995 | A |
5490249 | Miller | Feb 1996 | A |
5657473 | Killean et al. | Aug 1997 | A |
5842002 | Schnurer et al. | Nov 1998 | A |
5978917 | Chi | Nov 1999 | A |
6088803 | Tso et al. | Jul 2000 | A |
6094677 | Capek et al. | Jul 2000 | A |
6108799 | Boulay et al. | Aug 2000 | A |
6118382 | Hibbs et al. | Sep 2000 | A |
6269330 | Cidon et al. | Jul 2001 | B1 |
6272641 | Ji | Aug 2001 | B1 |
6279113 | Vaidya | Aug 2001 | B1 |
6298445 | Shostack | Oct 2001 | B1 |
6357008 | Nachenberg | Mar 2002 | B1 |
6417774 | Hibbs et al. | Jul 2002 | B1 |
6424627 | Sorhaug et al. | Jul 2002 | B1 |
6442696 | Wray et al. | Aug 2002 | B1 |
6484315 | Ziese | Nov 2002 | B1 |
6487666 | Shanklin et al. | Nov 2002 | B1 |
6493756 | O'Brien et al. | Dec 2002 | B1 |
6550012 | Villa et al. | Apr 2003 | B1 |
6700497 | Hibbs et al. | Mar 2004 | B2 |
6775657 | Baker | Aug 2004 | B1 |
6831893 | Ben Nun et al. | Dec 2004 | B1 |
6832367 | Choi et al. | Dec 2004 | B1 |
6895550 | Kanchirayappa et al. | May 2005 | B2 |
6898632 | Gordy et al. | May 2005 | B2 |
6907396 | Muttik et al. | Jun 2005 | B1 |
6941348 | Petry et al. | Sep 2005 | B2 |
6971097 | Wallman | Nov 2005 | B1 |
6981279 | Arnold et al. | Dec 2005 | B1 |
6995665 | Appelt et al. | Feb 2006 | B2 |
7007107 | Ivchenko et al. | Feb 2006 | B1 |
7028179 | Anderson et al. | Apr 2006 | B2 |
7043757 | Hoefelmeyer et al. | May 2006 | B2 |
7069316 | Gryaznov | Jun 2006 | B1 |
7080407 | Zhao et al. | Jul 2006 | B1 |
7080408 | Pak et al. | Jul 2006 | B1 |
7093002 | Wolff et al. | Aug 2006 | B2 |
7093239 | van der Made | Aug 2006 | B1 |
7096498 | Judge | Aug 2006 | B2 |
7100201 | Izatt | Aug 2006 | B2 |
7107617 | Hursey et al. | Sep 2006 | B2 |
7159149 | Spiegel et al. | Jan 2007 | B2 |
7213260 | Judge | May 2007 | B2 |
7231667 | Jordan | Jun 2007 | B2 |
7240364 | Branscomb et al. | Jul 2007 | B1 |
7240368 | Roesch et al. | Jul 2007 | B1 |
7243371 | Kasper et al. | Jul 2007 | B1 |
7249175 | Donaldson | Jul 2007 | B1 |
7287278 | Liang | Oct 2007 | B2 |
7308716 | Danford et al. | Dec 2007 | B2 |
7328453 | Merkle, Jr. et al. | Feb 2008 | B2 |
7346486 | Ivancic et al. | Mar 2008 | B2 |
7356736 | Natvig | Apr 2008 | B2 |
7386888 | Liang et al. | Jun 2008 | B2 |
7392542 | Bucher | Jun 2008 | B2 |
7418729 | Szor | Aug 2008 | B2 |
7428300 | Drew et al. | Sep 2008 | B1 |
7441272 | Durham et al. | Oct 2008 | B2 |
7448084 | Apap et al. | Nov 2008 | B1 |
7458098 | Judge et al. | Nov 2008 | B2 |
7464404 | Carpenter et al. | Dec 2008 | B2 |
7464407 | Nakae et al. | Dec 2008 | B2 |
7467408 | O'Toole, Jr. | Dec 2008 | B1 |
7478428 | Thomlinson | Jan 2009 | B1 |
7480773 | Reed | Jan 2009 | B1 |
7487543 | Arnold et al. | Feb 2009 | B2 |
7496960 | Chen et al. | Feb 2009 | B1 |
7496961 | Zimmer et al. | Feb 2009 | B2 |
7519990 | Xie | Apr 2009 | B1 |
7523493 | Liang et al. | Apr 2009 | B2 |
7530104 | Thrower et al. | May 2009 | B1 |
7540025 | Tzadikario | May 2009 | B2 |
7565550 | Liang et al. | Jul 2009 | B2 |
7568233 | Szor et al. | Jul 2009 | B1 |
7584455 | Ball | Sep 2009 | B2 |
7603715 | Costa et al. | Oct 2009 | B2 |
7607171 | Marsden et al. | Oct 2009 | B1 |
7639714 | Stolfo et al. | Dec 2009 | B2 |
7644441 | Schmid et al. | Jan 2010 | B2 |
7657419 | van der Made | Feb 2010 | B2 |
7676841 | Sobchuk et al. | Mar 2010 | B2 |
7698548 | Shelest et al. | Apr 2010 | B2 |
7707633 | Danford et al. | Apr 2010 | B2 |
7712136 | Sprosts et al. | May 2010 | B2 |
7730011 | Deninger et al. | Jun 2010 | B1 |
7739740 | Nachenberg et al. | Jun 2010 | B1 |
7779463 | Stolfo et al. | Aug 2010 | B2 |
7784097 | Stolfo et al. | Aug 2010 | B1 |
7832008 | Kraemer | Nov 2010 | B1 |
7836502 | Zhao et al. | Nov 2010 | B1 |
7849506 | Dansey et al. | Dec 2010 | B1 |
7854007 | Sprosts et al. | Dec 2010 | B2 |
7869073 | Oshima | Jan 2011 | B2 |
7877803 | Enstone et al. | Jan 2011 | B2 |
7904959 | Sidiroglou et al. | Mar 2011 | B2 |
7908660 | Bahl | Mar 2011 | B2 |
7930738 | Petersen | Apr 2011 | B1 |
7937761 | Benett | May 2011 | B1 |
7949849 | Lowe et al. | May 2011 | B2 |
7996556 | Raghavan et al. | Aug 2011 | B2 |
7996836 | McCorkendale et al. | Aug 2011 | B1 |
7996904 | Chiueh et al. | Aug 2011 | B1 |
7996905 | Arnold et al. | Aug 2011 | B2 |
8006305 | Aziz | Aug 2011 | B2 |
8010667 | Zhang et al. | Aug 2011 | B2 |
8020206 | Hubbard et al. | Sep 2011 | B2 |
8028338 | Schneider et al. | Sep 2011 | B1 |
8042184 | Batenin | Oct 2011 | B1 |
8045094 | Teragawa | Oct 2011 | B2 |
8045458 | Alperovitch et al. | Oct 2011 | B2 |
8069484 | McMillan et al. | Nov 2011 | B2 |
8087086 | Lai et al. | Dec 2011 | B1 |
8171553 | Aziz et al. | May 2012 | B2 |
8176049 | Deninger et al. | May 2012 | B2 |
8176480 | Spertus | May 2012 | B1 |
8201246 | Wu et al. | Jun 2012 | B1 |
8204984 | Aziz et al. | Jun 2012 | B1 |
8214905 | Doukhvalov et al. | Jul 2012 | B1 |
8220055 | Kennedy | Jul 2012 | B1 |
8225288 | Miller et al. | Jul 2012 | B2 |
8225373 | Kraemer | Jul 2012 | B2 |
8233882 | Rogel | Jul 2012 | B2 |
8234640 | Fitzgerald et al. | Jul 2012 | B1 |
8234709 | Viljoen et al. | Jul 2012 | B2 |
8239944 | Nachenberg et al. | Aug 2012 | B1 |
8260914 | Ranjan | Sep 2012 | B1 |
8266091 | Gubin et al. | Sep 2012 | B1 |
8286251 | Eker et al. | Oct 2012 | B2 |
8291499 | Aziz et al. | Oct 2012 | B2 |
8307435 | Mann et al. | Nov 2012 | B1 |
8307443 | Wang et al. | Nov 2012 | B2 |
8312545 | Tuvell et al. | Nov 2012 | B2 |
8321936 | Green et al. | Nov 2012 | B1 |
8321941 | Tuvell et al. | Nov 2012 | B2 |
8332571 | Edwards, Sr. | Dec 2012 | B1 |
8365286 | Poston | Jan 2013 | B2 |
8365297 | Parshin et al. | Jan 2013 | B1 |
8370938 | Daswani et al. | Feb 2013 | B1 |
8370939 | Zaitsev et al. | Feb 2013 | B2 |
8375444 | Aziz et al. | Feb 2013 | B2 |
8381299 | Stolfo et al. | Feb 2013 | B2 |
8402529 | Green et al. | Mar 2013 | B1 |
8464340 | Ahn et al. | Jun 2013 | B2 |
8479174 | Chiriac | Jul 2013 | B2 |
8479276 | Vaystikh et al. | Jul 2013 | B1 |
8479291 | Bodke | Jul 2013 | B1 |
8510827 | Leake et al. | Aug 2013 | B1 |
8510828 | Guo et al. | Aug 2013 | B1 |
8510842 | Amit et al. | Aug 2013 | B2 |
8516478 | Edwards et al. | Aug 2013 | B1 |
8516590 | Ranadive et al. | Aug 2013 | B1 |
8516593 | Aziz | Aug 2013 | B2 |
8522348 | Chen et al. | Aug 2013 | B2 |
8528086 | Aziz | Sep 2013 | B1 |
8533824 | Hutton et al. | Sep 2013 | B2 |
8539582 | Aziz et al. | Sep 2013 | B1 |
8549638 | Aziz | Oct 2013 | B2 |
8555391 | Demir et al. | Oct 2013 | B1 |
8561177 | Aziz et al. | Oct 2013 | B1 |
8566946 | Aziz et al. | Oct 2013 | B1 |
8584094 | Dahdia et al. | Nov 2013 | B2 |
8584234 | Sobel et al. | Nov 2013 | B1 |
8584239 | Aziz et al. | Nov 2013 | B2 |
8595834 | Xie et al. | Nov 2013 | B2 |
8627476 | Satish et al. | Jan 2014 | B1 |
8635696 | Aziz | Jan 2014 | B1 |
8682054 | Xue et al. | Mar 2014 | B2 |
8682812 | Ranjan | Mar 2014 | B1 |
8689333 | Aziz | Apr 2014 | B2 |
8695096 | Zhang | Apr 2014 | B1 |
8713631 | Pavlyushchik | Apr 2014 | B1 |
8713681 | Silberman et al. | Apr 2014 | B2 |
8726392 | McCorkendale et al. | May 2014 | B1 |
8739280 | Chess et al. | May 2014 | B2 |
8776229 | Aziz | Jul 2014 | B1 |
8782792 | Bodke | Jul 2014 | B1 |
8789172 | Stolfo et al. | Jul 2014 | B2 |
8789178 | Kejriwal et al. | Jul 2014 | B2 |
8793787 | Ismael et al. | Jul 2014 | B2 |
8805947 | Kuzkin et al. | Aug 2014 | B1 |
8806647 | Daswani et al. | Aug 2014 | B1 |
8832829 | Manni et al. | Sep 2014 | B2 |
8850570 | Ramzan | Sep 2014 | B1 |
8850571 | Staniford et al. | Sep 2014 | B2 |
8881234 | Narasimhan et al. | Nov 2014 | B2 |
8881282 | Aziz et al. | Nov 2014 | B1 |
8898788 | Aziz et al. | Nov 2014 | B1 |
8935779 | Manni et al. | Jan 2015 | B2 |
8984638 | Aziz et al. | Mar 2015 | B1 |
8990939 | Staniford et al. | Mar 2015 | B2 |
8990944 | Singh et al. | Mar 2015 | B1 |
8997219 | Staniford et al. | Mar 2015 | B2 |
9009822 | Ismael et al. | Apr 2015 | B1 |
9009823 | Ismael et al. | Apr 2015 | B1 |
9027135 | Aziz | May 2015 | B1 |
9071638 | Aziz et al. | Jun 2015 | B1 |
9104867 | Thioux et al. | Aug 2015 | B1 |
9106694 | Aziz et al. | Aug 2015 | B2 |
9118715 | Staniford et al. | Aug 2015 | B2 |
9159035 | Ismael et al. | Oct 2015 | B1 |
9171160 | Vincent et al. | Oct 2015 | B2 |
9176843 | Ismael et al. | Nov 2015 | B1 |
9189627 | Islam | Nov 2015 | B1 |
9195829 | Goradia et al. | Nov 2015 | B1 |
9225740 | Ismael et al. | Dec 2015 | B1 |
9233972 | Itov et al. | Jan 2016 | B2 |
9241010 | Bennett et al. | Jan 2016 | B1 |
9251343 | Vincent et al. | Feb 2016 | B1 |
9262635 | Paithane et al. | Feb 2016 | B2 |
9282109 | Aziz et al. | Mar 2016 | B1 |
9292686 | Ismael et al. | Mar 2016 | B2 |
9294501 | Mesdaq et al. | Mar 2016 | B2 |
9300686 | Pidathala et al. | Mar 2016 | B2 |
9306960 | Aziz | Apr 2016 | B1 |
9306974 | Aziz et al. | Apr 2016 | B1 |
9311479 | Manni et al. | Apr 2016 | B1 |
9355247 | Thioux et al. | May 2016 | B1 |
9356944 | Aziz | May 2016 | B1 |
9363280 | Rivlin et al. | Jun 2016 | B1 |
9367681 | Ismael et al. | Jun 2016 | B1 |
9398028 | Karandikar et al. | Jul 2016 | B1 |
20010005889 | Albrecht | Jun 2001 | A1 |
20010047326 | Broadbent et al. | Nov 2001 | A1 |
20020018903 | Kokubo et al. | Feb 2002 | A1 |
20020038430 | Edwards et al. | Mar 2002 | A1 |
20020091819 | Melchione et al. | Jul 2002 | A1 |
20020095607 | Lin-Hendel | Jul 2002 | A1 |
20020116627 | Tarbotton et al. | Aug 2002 | A1 |
20020144156 | Copeland, III | Oct 2002 | A1 |
20020162015 | Tang | Oct 2002 | A1 |
20020166063 | Lachman et al. | Nov 2002 | A1 |
20020169952 | DiSanto et al. | Nov 2002 | A1 |
20020184528 | Shevenell et al. | Dec 2002 | A1 |
20020188887 | Largman et al. | Dec 2002 | A1 |
20020194490 | Halperin et al. | Dec 2002 | A1 |
20030074578 | Ford et al. | Apr 2003 | A1 |
20030084318 | Schertz | May 2003 | A1 |
20030101381 | Mateev et al. | May 2003 | A1 |
20030115483 | Liang | Jun 2003 | A1 |
20030188190 | Aaron et al. | Oct 2003 | A1 |
20030191957 | Hypponen et al. | Oct 2003 | A1 |
20030200460 | Morota et al. | Oct 2003 | A1 |
20030212902 | Van Der Made | Nov 2003 | A1 |
20030229801 | Kouznetsov et al. | Dec 2003 | A1 |
20030237000 | Denton et al. | Dec 2003 | A1 |
20040003323 | Bennett et al. | Jan 2004 | A1 |
20040015712 | Szor | Jan 2004 | A1 |
20040019832 | Arnold et al. | Jan 2004 | A1 |
20040047356 | Bauer | Mar 2004 | A1 |
20040083408 | Spiegel et al. | Apr 2004 | A1 |
20040088581 | Brawn et al. | May 2004 | A1 |
20040093513 | Cantrell et al. | May 2004 | A1 |
20040111531 | Staniford et al. | Jun 2004 | A1 |
20040117478 | Triulzi et al. | Jun 2004 | A1 |
20040117624 | Brandt et al. | Jun 2004 | A1 |
20040128355 | Chao et al. | Jul 2004 | A1 |
20040165588 | Pandya | Aug 2004 | A1 |
20040236963 | Danford et al. | Nov 2004 | A1 |
20040243349 | Greifeneder et al. | Dec 2004 | A1 |
20040249911 | Alkhatib et al. | Dec 2004 | A1 |
20040255161 | Cavanaugh | Dec 2004 | A1 |
20040268147 | Wiederin et al. | Dec 2004 | A1 |
20050005159 | Oliphant | Jan 2005 | A1 |
20050021740 | Bar et al. | Jan 2005 | A1 |
20050033960 | Vialen et al. | Feb 2005 | A1 |
20050033989 | Poletto et al. | Feb 2005 | A1 |
20050050148 | Mohammadioun et al. | Mar 2005 | A1 |
20050086523 | Zimmer et al. | Apr 2005 | A1 |
20050091513 | Mitomo et al. | Apr 2005 | A1 |
20050091533 | Omote et al. | Apr 2005 | A1 |
20050091652 | Ross et al. | Apr 2005 | A1 |
20050108562 | Khazan et al. | May 2005 | A1 |
20050114663 | Cornell et al. | May 2005 | A1 |
20050125195 | Brendel | Jun 2005 | A1 |
20050157662 | Bingham et al. | Jun 2005 | A1 |
20050149726 | Joshi et al. | Jul 2005 | A1 |
20050183143 | Anderholm et al. | Aug 2005 | A1 |
20050201297 | Peikari | Sep 2005 | A1 |
20050210533 | Copeland et al. | Sep 2005 | A1 |
20050238005 | Chen et al. | Oct 2005 | A1 |
20050240781 | Gassoway | Oct 2005 | A1 |
20050262562 | Gassoway | Nov 2005 | A1 |
20050265331 | Stolfo | Dec 2005 | A1 |
20050283839 | Cowburn | Dec 2005 | A1 |
20060010495 | Cohen et al. | Jan 2006 | A1 |
20060015416 | Hoffman et al. | Jan 2006 | A1 |
20060015715 | Anderson | Jan 2006 | A1 |
20060015747 | Van de Ven | Jan 2006 | A1 |
20060021029 | Brickell et al. | Jan 2006 | A1 |
20060021054 | Costa et al. | Jan 2006 | A1 |
20060031476 | Mathes et al. | Feb 2006 | A1 |
20060047665 | Neil | Mar 2006 | A1 |
20060070130 | Costea et al. | Mar 2006 | A1 |
20060075496 | Carpenter et al. | Apr 2006 | A1 |
20060095968 | Portolani et al. | May 2006 | A1 |
20060101516 | Sudaharan et al. | May 2006 | A1 |
20060101517 | Banzhof et al. | May 2006 | A1 |
20060117385 | Mester et al. | Jun 2006 | A1 |
20060123477 | Raghavan et al. | Jun 2006 | A1 |
20060143709 | Brooks et al. | Jun 2006 | A1 |
20060150249 | Gassen et al. | Jul 2006 | A1 |
20060161983 | Cothrell et al. | Jul 2006 | A1 |
20060161987 | Levy-Yurista | Jul 2006 | A1 |
20060161989 | Reshef et al. | Jul 2006 | A1 |
20060164199 | Gilde et al. | Jul 2006 | A1 |
20060173992 | Weber et al. | Aug 2006 | A1 |
20060179147 | Tran et al. | Aug 2006 | A1 |
20060184632 | Marino et al. | Aug 2006 | A1 |
20060191010 | Benjamin | Aug 2006 | A1 |
20060221956 | Narayan et al. | Oct 2006 | A1 |
20060236393 | Kramer et al. | Oct 2006 | A1 |
20060242709 | Seinfeld et al. | Oct 2006 | A1 |
20060248519 | Jaeger et al. | Nov 2006 | A1 |
20060248582 | Panjwani et al. | Nov 2006 | A1 |
20060251104 | Koga | Nov 2006 | A1 |
20060288417 | Bookbinder et al. | Dec 2006 | A1 |
20070006288 | Mayfield et al. | Jan 2007 | A1 |
20070006313 | Porras et al. | Jan 2007 | A1 |
20070011174 | Takaragi et al. | Jan 2007 | A1 |
20070016951 | Piccard et al. | Jan 2007 | A1 |
20070033645 | Jones | Feb 2007 | A1 |
20070038943 | FitzGerald et al. | Feb 2007 | A1 |
20070064689 | Shin et al. | Mar 2007 | A1 |
20070074169 | Chess et al. | Mar 2007 | A1 |
20070094730 | Bhikkaji et al. | Apr 2007 | A1 |
20070101435 | Konanka et al. | May 2007 | A1 |
20070128855 | Cho et al. | Jun 2007 | A1 |
20070142030 | Sinha et al. | Jun 2007 | A1 |
20070143827 | Nicodemus et al. | Jun 2007 | A1 |
20070156895 | Vuong | Jul 2007 | A1 |
20070157180 | Tillmann et al. | Jul 2007 | A1 |
20070157306 | Elrod et al. | Jul 2007 | A1 |
20070168988 | Eisner et al. | Jul 2007 | A1 |
20070171824 | Ruello et al. | Jul 2007 | A1 |
20070174915 | Gribble et al. | Jul 2007 | A1 |
20070192500 | Lum | Aug 2007 | A1 |
20070192858 | Lum | Aug 2007 | A1 |
20070198275 | Malden et al. | Aug 2007 | A1 |
20070208822 | Wang et al. | Sep 2007 | A1 |
20070220607 | Sprosts et al. | Sep 2007 | A1 |
20070240218 | Tuvell et al. | Oct 2007 | A1 |
20070240219 | Tuvell et al. | Oct 2007 | A1 |
20070240220 | Tuvell et al. | Oct 2007 | A1 |
20070240222 | Tuvell et al. | Oct 2007 | A1 |
20070250930 | Aziz et al. | Oct 2007 | A1 |
20070256132 | Oliphant | Nov 2007 | A2 |
20070271446 | Nakamura | Nov 2007 | A1 |
20080005782 | Aziz | Jan 2008 | A1 |
20080028463 | Dagon et al. | Jan 2008 | A1 |
20080032556 | Schreier | Feb 2008 | A1 |
20080040710 | Chiriac | Feb 2008 | A1 |
20080046781 | Childs et al. | Feb 2008 | A1 |
20080066179 | Liu | Mar 2008 | A1 |
20080072326 | Danford et al. | Mar 2008 | A1 |
20080077793 | Tan et al. | Mar 2008 | A1 |
20080080518 | Hoeflin et al. | Apr 2008 | A1 |
20080086720 | Lekel | Apr 2008 | A1 |
20080098476 | Syversen | Apr 2008 | A1 |
20080120722 | Sima et al. | May 2008 | A1 |
20080134178 | Fitzgerald et al. | Jun 2008 | A1 |
20080134334 | Kim et al. | Jun 2008 | A1 |
20080141376 | Clausen et al. | Jun 2008 | A1 |
20080181227 | Todd | Jul 2008 | A1 |
20080184373 | Traut et al. | Jul 2008 | A1 |
20080189787 | Arnold et al. | Aug 2008 | A1 |
20080201778 | Guo et al. | Aug 2008 | A1 |
20080209557 | Herley et al. | Aug 2008 | A1 |
20080215742 | German et al. | Sep 2008 | A1 |
20080222729 | Chen et al. | Sep 2008 | A1 |
20080263665 | Ma et al. | Oct 2008 | A1 |
20080295172 | Bohacek | Nov 2008 | A1 |
20080301810 | Lehane et al. | Dec 2008 | A1 |
20080307524 | Singh et al. | Dec 2008 | A1 |
20080313738 | Enderby | Dec 2008 | A1 |
20080320594 | Jiang | Dec 2008 | A1 |
20090003317 | Kasralikar et al. | Jan 2009 | A1 |
20090007100 | Field et al. | Jan 2009 | A1 |
20090013408 | Schipka | Jan 2009 | A1 |
20090031423 | Liu et al. | Jan 2009 | A1 |
20090036111 | Danford et al. | Feb 2009 | A1 |
20090037835 | Goldman | Feb 2009 | A1 |
20090044024 | Oberheide et al. | Feb 2009 | A1 |
20090044274 | Budko et al. | Feb 2009 | A1 |
20090064332 | Porras et al. | Mar 2009 | A1 |
20090077666 | Chen et al. | Mar 2009 | A1 |
20090083369 | Marmor | Mar 2009 | A1 |
20090083855 | Apap et al. | Mar 2009 | A1 |
20090089879 | Wang et al. | Apr 2009 | A1 |
20090094697 | Provos et al. | Apr 2009 | A1 |
20090113425 | Ports et al. | Apr 2009 | A1 |
20090125976 | Wassermann et al. | May 2009 | A1 |
20090126015 | Monastyrsky et al. | May 2009 | A1 |
20090126016 | Sobko et al. | May 2009 | A1 |
20090133125 | Choi et al. | May 2009 | A1 |
20090144823 | Lamastra et al. | Jun 2009 | A1 |
20090158430 | Borders | Jun 2009 | A1 |
20090172815 | Gu et al. | Jul 2009 | A1 |
20090187992 | Poston | Jul 2009 | A1 |
20090193293 | Stolfo et al. | Jul 2009 | A1 |
20090199296 | Xie et al. | Aug 2009 | A1 |
20090228233 | Anderson et al. | Sep 2009 | A1 |
20090241187 | Troyansky | Sep 2009 | A1 |
20090241190 | Todd et al. | Sep 2009 | A1 |
20090265692 | Godefroid et al. | Oct 2009 | A1 |
20090271867 | Zhang | Oct 2009 | A1 |
20090300415 | Zhang et al. | Dec 2009 | A1 |
20090300761 | Park et al. | Dec 2009 | A1 |
20090328185 | Berg et al. | Dec 2009 | A1 |
20090328221 | Blumfield et al. | Dec 2009 | A1 |
20100005146 | Drako et al. | Jan 2010 | A1 |
20100011205 | McKenna | Jan 2010 | A1 |
20100017546 | Poo et al. | Jan 2010 | A1 |
20100031353 | Thomas et al. | Feb 2010 | A1 |
20100037314 | Perdisci et al. | Feb 2010 | A1 |
20100043073 | Shin'ya | Feb 2010 | A1 |
20100054278 | Stolfo et al. | Mar 2010 | A1 |
20100058474 | Hicks | Mar 2010 | A1 |
20100064044 | Nonoyama | Mar 2010 | A1 |
20100077481 | Polyakov et al. | Mar 2010 | A1 |
20100083376 | Pereira et al. | Apr 2010 | A1 |
20100115621 | Staniford et al. | May 2010 | A1 |
20100132038 | Zaitsev | May 2010 | A1 |
20100154056 | Smith et al. | Jun 2010 | A1 |
20100180344 | Malyshev et al. | Jul 2010 | A1 |
20100192223 | Ismael et al. | Jul 2010 | A1 |
20100220863 | Dupaquis et al. | Sep 2010 | A1 |
20100235831 | Dittmer | Sep 2010 | A1 |
20100251104 | Massand | Sep 2010 | A1 |
20100281102 | Chinta et al. | Nov 2010 | A1 |
20100281541 | Stolfo et al. | Nov 2010 | A1 |
20100281542 | Stolfo et al. | Nov 2010 | A1 |
20100287260 | Peterson et al. | Nov 2010 | A1 |
20100299754 | Amit et al. | Nov 2010 | A1 |
20100306173 | Frank | Dec 2010 | A1 |
20110004737 | Greenebaum | Jan 2011 | A1 |
20110025504 | Lyon et al. | Feb 2011 | A1 |
20110041179 | Stahlberg | Feb 2011 | A1 |
20110047594 | Mahaffey et al. | Feb 2011 | A1 |
20110047620 | Mahaffey et al. | Feb 2011 | A1 |
20110055907 | Narasimhan et al. | Mar 2011 | A1 |
20110078794 | Manni et al. | Mar 2011 | A1 |
20110093951 | Aziz | Apr 2011 | A1 |
20110099620 | Stavrou et al. | Apr 2011 | A1 |
20110099633 | Aziz | Apr 2011 | A1 |
20110113231 | Kaminsky | May 2011 | A1 |
20110145918 | Jung et al. | Jun 2011 | A1 |
20110145920 | Mahaffey et al. | Jun 2011 | A1 |
20110145934 | Abramovici et al. | Jun 2011 | A1 |
20110167493 | Song et al. | Jul 2011 | A1 |
20110167494 | Bowen et al. | Jul 2011 | A1 |
20110173460 | Ito et al. | Jul 2011 | A1 |
20110219449 | St. Neitzel et al. | Sep 2011 | A1 |
20110219450 | McDougal et al. | Sep 2011 | A1 |
20110225624 | Sawhney et al. | Sep 2011 | A1 |
20110225655 | Niemela et al. | Sep 2011 | A1 |
20110247072 | Staniford et al. | Oct 2011 | A1 |
20110265182 | Peinado et al. | Oct 2011 | A1 |
20110289582 | Kejriwal et al. | Nov 2011 | A1 |
20110302587 | Nishikawa et al. | Dec 2011 | A1 |
20110307954 | Melnik et al. | Dec 2011 | A1 |
20110307955 | Kaplan et al. | Dec 2011 | A1 |
20110307956 | Yermakov et al. | Dec 2011 | A1 |
20110314546 | Aziz et al. | Dec 2011 | A1 |
20120023593 | Puder et al. | Jan 2012 | A1 |
20120054869 | Yen et al. | Mar 2012 | A1 |
20120066698 | Yanoo | Mar 2012 | A1 |
20120079596 | Thomas et al. | Mar 2012 | A1 |
20120084859 | Radinsky et al. | Apr 2012 | A1 |
20120110667 | Zubrilin et al. | May 2012 | A1 |
20120117652 | Manni et al. | May 2012 | A1 |
20120121154 | Xue et al. | May 2012 | A1 |
20120124426 | Maybee et al. | May 2012 | A1 |
20120174186 | Aziz et al. | Jul 2012 | A1 |
20120174196 | Bhogavilli et al. | Jul 2012 | A1 |
20120174218 | McCoy et al. | Jul 2012 | A1 |
20120198279 | Schroeder | Aug 2012 | A1 |
20120210423 | Friedrichs et al. | Aug 2012 | A1 |
20120222121 | Staniford et al. | Aug 2012 | A1 |
20120255015 | Sahita et al. | Oct 2012 | A1 |
20120255017 | Sallam | Oct 2012 | A1 |
20120260342 | Dube et al. | Oct 2012 | A1 |
20120266244 | Green et al. | Oct 2012 | A1 |
20120278886 | Luna | Nov 2012 | A1 |
20120297489 | Dequevy | Nov 2012 | A1 |
20120330801 | McDougal et al. | Dec 2012 | A1 |
20130014259 | Gribble et al. | Jan 2013 | A1 |
20130036472 | Aziz | Feb 2013 | A1 |
20130047257 | Aziz | Feb 2013 | A1 |
20130074185 | McDougal et al. | Mar 2013 | A1 |
20130086684 | Mohler | Apr 2013 | A1 |
20130097699 | Balupari et al. | Apr 2013 | A1 |
20130097706 | Titonis et al. | Apr 2013 | A1 |
20130111587 | Goel et al. | May 2013 | A1 |
20130117852 | Stute | May 2013 | A1 |
20130117855 | Kim et al. | May 2013 | A1 |
20130139264 | Brinkley et al. | May 2013 | A1 |
20130160125 | Likhachev et al. | Jun 2013 | A1 |
20130160127 | Jeong et al. | Jun 2013 | A1 |
20130160130 | Mendelev et al. | Jun 2013 | A1 |
20130160131 | Madou et al. | Jun 2013 | A1 |
20130167236 | Sick | Jun 2013 | A1 |
20130174214 | Duncan | Jul 2013 | A1 |
20130185789 | Hagiwara et al. | Jul 2013 | A1 |
20130185795 | Winn et al. | Jul 2013 | A1 |
20130185798 | Saunders et al. | Jul 2013 | A1 |
20130191915 | Antonakakis et al. | Jul 2013 | A1 |
20130196649 | Paddon et al. | Aug 2013 | A1 |
20130227691 | Aziz et al. | Aug 2013 | A1 |
20130246370 | Bartram et al. | Sep 2013 | A1 |
20130263260 | Mahaffey et al. | Oct 2013 | A1 |
20130291109 | Staniford et al. | Oct 2013 | A1 |
20130298243 | Kumar et al. | Nov 2013 | A1 |
20140053260 | Gupta et al. | Feb 2014 | A1 |
20140053261 | Gupta et al. | Feb 2014 | A1 |
20140130158 | Wang et al. | May 2014 | A1 |
20140137180 | Lukacs et al. | May 2014 | A1 |
20140169762 | Ryu | Jun 2014 | A1 |
20140179360 | Jackson et al. | Jun 2014 | A1 |
20140181975 | Spernow | Jun 2014 | A1 |
20140328204 | Klotsche et al. | Nov 2014 | A1 |
20140337836 | Ismael | Nov 2014 | A1 |
20140351935 | Shao et al. | Nov 2014 | A1 |
20150096025 | Ismael | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
2439806 | Jan 2008 | GB |
2490431 | Oct 2012 | GB |
WO-0206928 | Jan 2002 | WO |
WO-0223805 | Mar 2002 | WO |
WO-2007-117636 | Oct 2007 | WO |
WO-2008041950 | Apr 2008 | WO |
WO-2011084431 | Jul 2011 | WO |
2011112348 | Sep 2011 | WO |
2012075336 | Jun 2012 | WO |
WO-2012145066 | Oct 2012 | WO |
2013067505 | May 2013 | WO |
Entry |
---|
Gregg Keizer, Microsoft's HoneyMonkeys Show Patching Windows Works, Aug. 8, 2005. |
IEEE Xplore Digital Library Sear Results for “detection of unknown computer worms”. Http//ieeexplore.ieee.org/searchresult.jsp?SortField=Score&SortOrder=desc&ResultC . . . , (Accessed on Aug. 28, 2009). |
AltaVista Advanced Search Results. “Event Orchestrator”. Http://www.altavista.com/web/results?Itag=ody&pg=aq&aqmode=aqa=Event+Orchesrator . . . , (Accessed on Sep. 3, 2009). |
AltaVista Advanced Search Results. “attack vector identifier”. Http://www.altavista.com/web/results?Itag=ody&pg=aq&aqmode=aqa=Event+Orchestrator . . . , (Accessed on Sep. 15, 2009). |
Cisco, Configuring the Catalyst Switched Port Analyzer (SPAN) (“Cisco”),(1992-2003). |
Reiner Sailer, Enriquillo Valdez, Trent Jaeger, Roonald Perez, Leendert van Doorn, John Linwood Griffin, Stefan Berger., sHype: Secure Hypervisor Appraoch to Trusted Virtualized Systems (Feb. 2, 2005) (“Sailer”). |
Excerpt regarding First Printing Date for Merike Kaeo, Designing Network Security (“Kaeo”), (2005). |
The Sniffers's Guide to Raw Traffic available at: yuba.stanford.edu/˜casado/pcap/section1.html, (Jan. 6, 2014). |
“Network Security: NetDetector—Network Intrusion Forensic System (NIFS) Whitepaper”, (“NetDetector Whitepaper”), (2003). |
“Packet”, Microsoft Computer Dictionary, Microsoft Press, (Mar. 2002), 1 page. |
“When Virtual is Better Than Real”, IEEEXplore Digital Library, available at, http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=990073, (Dec. 7, 2013). |
Abdullah, et al., Visualizing Network Data for Intrusion Detection, 2005 IEEE Workshop on Information Assurance and Security, pp. 100-108. |
Adetoye, Adedayo , et al., “Network Intrusion Detection & Response System”, (“Adetoye”), (Sep. 2003). |
Aura, Tuomas, “Scanning electronic documents for personally identifiable information”, Proceedings of the 5th ACM workshop on Privacy in electronic society. ACM, 2006. |
Baecher, “The Nepenthes Platform: An Efficient Approach to collect Malware”, Springer-verlag Berlin Heidelberg, (2006), pp. 165-184. |
Bayer, et al., “Dynamic Analysis of Malicious Code”, J Comput Virol, Springer-Verlag, France., (2006), pp. 67-77. |
Boubalos, Chris , “Extracting syslog data out of raw pcap dumps, seclists.org, Honeypots mailing list archives”, available at http://seclists.org/honeypots/2003/q2/319 (“Boubalos”), (Jun. 5, 2003). |
Chaudet, C. , et al., “Optimal Positioning of Active and Passive Monitoring Devices”, International Conference on Emerging Networking Experiments and Technologies, Proceedings of the 2005 ACM Conference on Emerging Network Experiment and Technology, CoNEXT '05, Toulousse, France, (Oct. 2005), pp. 71-82. |
Cohen, M.I. , “PyFlag—An advanced network forensic framework”, Digital investigation 5, Elsevier, (2008), pp. S112-S120. |
Costa, M. , et al., “Vigilante: End-to-End Containment of Internet Worms”, SOSP '05, Association for Computing Machinery, Inc., Brighton U.K., (Oct. 23-26, 2005). |
Crandall, J.R. , et al., “Minos:Control Data Attack Prevention Orthogonal to Memory Model”, 37th International Symposium on Microarchitecture, Portland, Oregon, (Dec. 2004). |
Deutsch, P. , “Zlib compressed data format specification version 3.3” RFC 1950, (1996). |
Distler, “Malware Analysis: An Introduction”, SANS Institute InfoSec Reading Room, SANS Institute, (2007). |
Dunlap, George W. , et al., “ReVirt: Enabling Intrusion Analysis through Virtual-Machine Logging and Replay”, Proceeding of the 5th Symposium on Operating Systems Design and Implementation, USENIX Association, (“Dunlap”), (Dec. 9, 2002). |
Filiol, Eric , et al., “Combinatorial Optimisation of Worm Propagation on an Unknown Network”, International Journal of Computer Science 2.2 (2007). |
Goel, et al., Reconstructing System State for Intrusion Analysis, Apr. 2008 SIGOPS Operating Systems Review, vol. 42 Issue 3, pp. 21-28. |
Hjelmvik, Erik , “Passive Network Security Analysis with NetworkMiner”, (In)Secure, Issue 18, (Oct. 2008), pp. 1-100. |
Kaeo, Merike , “Designing Network Security”, (“Kaeo”), (Nov. 2003). |
Kim, H. , et al., “Autograph: Toward Automated, Distributed Worm Signature Detection”, Proceedings of the 13th Usenix Security Symposium (Security 2004), San Diego, (Aug. 2004), pp. 271-286. |
Krasnyansky, Max , et al., Universal TUN/TAP driver, available at https://www.kernel.org/doc/Documentation/networking/tuntap.txt (2002) (“Krasnyansky”). |
Kreibich, C. , et al., “Honeycomb-Creating Intrusion Detection Signatures Using Honeypots”, 2nd Workshop on Hot Topics in Networks (HotNets-11), Boston, USA, (2003). |
Kristoff, J. , “Botnets, Detection and Mitigation: DNS-Based Techniques”, NU Security Day, (2005), 23 pages. |
Liljenstam, Michael , et al., “Simulating Realistic Network Traffic for Worm Warning System Design and Testing”, Institute for Security Technology studies, Dartmouth College, (“Liljenstam”), (Oct. 27, 2003). |
Marchette, David J., “Computer Intrusion Detection and Network Monitoring: A Statistical Viewpoint”, “Marchette”, (2001). |
Margolis, P.E. , “Random House Webster's ‘Computer & Internet Dictionary 3rd Edition’”, ISBN 0375703519, (Dec. 1998). |
Moore, D. , et al., “Internet Quarantine: Requirements for Containing Self-Propagating Code”, INFOCOM, vol. 3, (Mar. 30-Apr. 3, 2003), pp. 1901-1910. |
Morales, Jose A., et al., ““Analyzing and exploiting network behaviors of malware.””, Security and Privacy in Communication Networks. Springer Berlin Heidelberg, 2010. 20-34. |
Natvig, Kurt , “SandboxII: Internet”, Virus Bulletin Conference, (“Natvig”), (Sep. 2002). |
NetBIOS Working Group. Protocol Standard for a NetBIOS Service on a TCP/UDP transport: Concepts and Methods. STD 19, RFC 1001, Mar. 1987. |
Newsome, J. , et al., “Dynamic Taint Analysis for Automatic Detection, Analysis, and Signature Generation of Exploits on Commodity Software”, In Proceedings of the 12th Annual Network and Distributed System Security, Symposium (NDSS '05), (Feb. 2005). |
Newsome, J. , et al., “Polygraph: Automatically Generating Signatures for Polymorphic Worms”, In Proceedings of the IEEE Symposium on Security and Privacy, (May 2005). |
Nojiri, D. , et al., “Cooperation Response Strategies for Large Scale Attack Mitigation”, DARPA Information Survivability Conference and Exposition, vol. 1, (Apr. 22-24, 2003), pp. 293-302. |
Silicon Defense, “Worm Containment in the Internal Network”, (Mar. 2003), pp. 1-25. |
Singh, S. , et al., “Automated Worm Fingerprinting”, Proceedings of the ACM/USENIX Symposium on Operating System Design and Implementation, San Francisco, California, (Dec. 2004). |
Spitzner, Lance , “Honeypots: Tracking Hackers”, (“Spizner”), (Sep. 17, 2002). |
Thomas H. Ptacek, and Timothy N. Newsham “Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection”, Secure Networks, (“Ptacek”), (Jan. 1998). |
Venezia, Paul , “NetDetector Captures Intrusions”, InfoWorld Issue 27, (“Venezia”), (Jul. 14, 2003). |
Whyte, et al., “DNS-Based Detection of Scanning Works in an Enterprise Network”, Proceedings of the 12th Annual Network and Distributed System Security Symposium, (Feb. 2005), 15 pages. |
Williamson, Matthew M., “Throttling Viruses: Restricting Propagation to Defeat Malicious Mobile Code”, ACSAC Conference, Las Vegas, NV, USA, (Dec. 2002), pp. 1-9. |
PCT/US2014/043726 filed Jun. 23, 2014 International Search Report and Written Opinion dated Oct. 9, 2014. |
Adobe Systems Incorporated, “PDF 32000-1:2008, Document management—Portable document format—Part1:PDF 1.7”, First Edition, Jul. 1, 2008, 756 pages. |
Apostolopoulos, George; hassapis, Constantinos; “V-eM: A cluster of Virtual Machines for Robust, Detailed, and High-Performance Network Emulation”, 14th IEEE International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, Sep. 11-14, 2006, pp. 117-126. |
Baldi, Mario; Risso, Fulvio; “A Framework for Rapid Development and Portable Execution of Packet-Handling Applications”, 5th IEEE International Symposium Processing and Information Technology, Dec. 21, 2005, pp. 233-238. |
Cisco “Intrusion Prevention for the Cisco ASA 5500-x Series” Data Sheet (2012). |
Clark, John, Sylvian Leblanc,and Scott Knight. “Risks associated with usb hardware trojan devices used by insiders.” Systems Conference (SysCon), 2011 IEEE International. IEEE, 2011. |
FireEye Malware Analysis & Exchange Network, Malware Protection System, FireEye Inc., 2010. |
FireEye Malware Analysis, Modern Malware Forensics, FireEye Inc., 2010. |
FireEye v.6.0 Security Target, pp. 1-35, Version 1.1, FireEye Inc., May 2011. |
Gibler, Clint, et al. AndroidLeaks: automatically detecting potential privacy leaks in android applications on a large scale. Springer Berlin Heidelberg, 2012. |
Heng Yin et al, Panorama: Capturing System-Wide Information Flow for Malware Detection and Analysis, Research Showcase @ CMU, Carnegie Mellon University, 2007. |
Idika et al., A-Survey-of-Malware-Detection-Techniques, Feb. 2, 2007, Department of Computer Science, Purdue University. |
Isohara, Takamasa, Keisuke Takemori, and Ayumu Kubota. “Kernel-based behavior analysis for android malware detection.” Computational intelligence and Security (CIS), 2011 Seventh International Conference on. IEEE, 2011. |
Kevin A Roundy et al: “Hybrid Analysis and Control of Malware”, Sep. 15, 2010, Recent Advances in Intrusion Detection, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 317-338, XP019150454 ISBN:978-3-642-15511-6. |
Leading Colleges Select FireEye to Stop Malware-Related Data Breaches, FireEye Inc., 2009. |
Li et al., A VMM-Based System Call Interposition Framework for Program Monitoring, Dec. 2010, IEEE 16th International Conference on Parallel and Distributed Systems, pp. 706-711. |
Lindorfer, Martina, Clemens Kolbitsch, and Paolo Milani Comparetti. “Detecting environment-sensitive malware.” Recent Advances in Intrusion Detection. Springer Berlin Heidelberg, 2011. |
Lok Kwong et al: “DroidScope: Seamlessly Reconstructing the OS and Dalvik Semantic Views for Dynamic Android Malware Analysis”, Aug. 10, 2012, XP055158513, Retrieved from the Internet: URL:https://www.usenix.org/system/files/conference/usenixsecurity12/sec12- -final107.pdf [retrieved on Dec. 15, 2014]. |
Mori, Detecting Unknown Computer Viruses, 2004, Springer-Verlag Berlin Heidelberg. |
Oberheide et al., CloudAV.sub.--N-Version Antivirus in the Network Cloud, 17th USENIX Security Symposium USENIX Security '08 Jul. 28-Aug. 1, 2008 San Jose, CA. |
U.S. Pat. No. 8,171,553 filed Apr. 20, 2006, Inter Parties Review Decision dated Jul. 10, 2015. |
U.S. Pat. No. 8,291,499 filed Mar. 16, 2012, Inter Parties Review Decision dated Jul. 10, 2015. |
Wahid et al., Characterising the Evolution in Scanning Activity of Suspicious Hosts, Oct. 2009, Third International Conference on Network and System Security, pp. 344-350. |
Yuhei Kawakoya et al: “Memory behavior-based automatic malware unpacking in stealth debugging environment”, Malicious and Unwanted Software (Malware), 2010 5th International Conference on, IEEE, Piscataway, NJ, USA, Oct. 19, 2010, pp. 39-46, XP031833827, ISBN:978-1-4244-8-9353-1. |
Zhang et al., The Effects of Threading, Infection Time, and Multiple-Attacker Collaboration on Malware Propagation, Sep. 2009, IEEE 28th International Symposium on Reliable Distributed Systems, pp. 73-82. |
Chen, P. M. and Noble, B. D., “When Virtual is Better Than Real, Department of Electrical Engineering and Computer Science”, University of Michigan (“Chen”) (2001). |
King, Samuel T., et al., “Operating System Support for Virtual Machines”, (“King”) (2003). |
Number | Date | Country | |
---|---|---|---|
20140380473 A1 | Dec 2014 | US |