The present application relates to lighting systems, and more specifically to an LED device configured with integrated driver circuitry so as to provide a monolithic lighting system.
Light emitting diodes (LEDs) and driving circuits are manufactured separately and electrically connected afterwards to provide a given lighting system. Simple and cheap drivers for series connection of LEDs are known that consist of a bridge rectifier and a filtering capacitor in parallel to the LED string. Optionally, a linear resistance controller in series to the LED string may be added.
a schematically illustrates a zero energy storage (ZES) LED driver that can be used in accordance with an embodiment of the present invention.
b illustrates a block diagram of an example control circuit that can be used in the ZES LED driver, in accordance with an embodiment of the present invention.
a illustrates some example pixel shapes and
a illustrates a cross-section side view of an LED device configured with an integrated ZES-driver, in accordance with an embodiment of the present invention.
b illustrates a cross-sectional side view of an LED device configured with an integrated ZES-driver, in accordance with another embodiment of the present invention.
LED devices are provided that include LED chips on LED chip carriers. The LED device can in turn be housed in a package, such as a small-outline transistor (SOT) package or a radial LED device package. A single LED device or a serial connection of a plurality of such LED devices can be operated directly from an AC (line) voltage or a rectified version thereof. In some example embodiments, switching circuitry is integrated into the LED chip carrier for controlling current flow through the LED(s) in response to, for example, a brightness regulating control signal. Numerous example embodiments of the monolithic LED devices are provided, including manufacturing processes as well as various example packages for such LED devices.
General Overview
As previously noted, LEDs and driving circuits are manufactured separately and electrically connected afterwards. The functionality of the rectifier can be integrated to the LED chip by an intra-chip anti-parallel connection of several semiconductor segments or the connection of such segments like a bridge rectifier. However, such configurations have the disadvantage that the resulting light source flickers strongly (half-wave rectifier; 50 or 60 Hz light modulation) and/or exhibits strong effects of strobing (sometimes also misleadingly called flickering) because light emission takes place in a short period of the half wave solely. The input current waveform appears disadvantageous as well, as the current drawn from the line basically looks like a repetitive sequence of spikes; each half-cycle a spike occurs around the crest of the line voltage. Apart from that, the LEDs are driven under unfavorable conditions for most of the time.
A driving circuit for LED strings that can be used to overcome these issues in accordance with an embodiment of the present invention is illustrated in
There are a number of ways in which a monolithic approach as described herein can be carried out. For instance, in one example embodiment some or all of the ZES driver circuit componentry is integrated into an LED device by, for example, fabricating the switches (that are in parallel with the light emitting diodes) and passive components around the switches in the same structuring process that is used to create the LEDs. In such an example embodiment, all the integrated components of the circuit would be made out of the same semiconductor material. For example, for blue, green, phosphor-converted white LEDs, the LEDs and ZES driver circuit componentry can be implemented with indium gallium nitride (InGaN). Alternatively, for red, yellow, amber LEDs, the LEDs and ZES driver circuit componentry can be implemented with indium gallium aluminum phosphide (InGaAlP).
Numerous other suitable semiconductor materials may be used, depending on the desired LED colors and target application(s) of the lighting circuit. For instance, while some embodiments provided herein can be implemented with inorganic semiconductor materials as described above, organic materials may be used as well to provide so-called organic LED (OLED) lighting devices having driving circuit integrated into the OLED device. Here the light emitting material as well the transistors and other electronic components of the circuit would be made out of organic material (e.g., conductive and insulating polymers, etc). As will be appreciated in light of this disclosure, the claimed invention is not intended to be limited to any particular materials systems.
In some embodiments, the control circuit can be implemented with a microcontroller programmed or otherwise configured to control the switches as explained herein or as otherwise desired. In one specific example embodiment, the control circuit can be implemented as shown in
The output of the current monitor circuit (e.g., Rsense, or some other suitable sense circuit), which monitors current flow through LEDs in the plurality of groups of LEDs, is coupled through the frequency stabilization circuit to the inverting input of the operational amplifier circuit. The operational amplifier circuit is configured to maintain a balance between the monitored LED current flow and the input voltage from the voltage source by adjusting the control signal that it provides to the switches (sw1 through swN) shown in
One specific example embodiment provides an LED device, the LED device including an LED chip on an LED chip carrier housed in an LED package, wherein the LED chip carrier contains the electronic components of the ZES driver circuitry. The LED chip can be, for instance, a thin-film chip wherein epitaxial layers are transferred from a growth substrate to a chip carrier. Subsequently, the growth substrate can be removed or, alternatively, can also remain on the chip carrier (e.g., sapphire flip-chip). The epitaxial layer can be laterally divided into two or more pixels (multi-pixel thin-film LED chip) that are electrically connected in series by suitable conductors provided by additional process steps. A pixel is generally the smallest light emitting unit within the packaged device that can be considered an LED from an electrical point of view. In one specific example embodiment, the chip carrier is implemented with silicon and includes the electronic components of the ZES driver circuitry, such as the switches shown in
A number of advantages of the techniques provided herein will be apparent in light of this disclosure. For instance, in some embodiments, no additional devices or chips around the LEDs are necessary, which saves cost and space for the LED application and allows very compact line powered light engines, with desirable optical properties. Etendue would be less of an issue in case of, for example, LED spot lights as all pixels of the light source can be densely packed into a small area. In addition, an increase of robustness and lifetime may be realized as there are fewer discrete components and fewer interconnects (e.g., solder joints). This also reduces assembly time and cost.
Circuit Architecture
The epitaxial LEDs can be implemented using typical semiconductor processing and materials. In the example embodiment shown, an ohmic contact and mirror layer is provided between the epi-LED multilayer structure and substrate to provide mechanical, thermal, and electrical connection to the chip carrier (substrate). Each LED includes an active layer sandwiched between a p-type layer and an n-type layer as shown. Other embodiments may include other layers, such as an adhesion layer and diffusion layers, depending on factors such as materials used and desired performance. The tri-layer of epi material shown may be formed on the substrate in a blanket fashion, and then etched into distinct LEDs; alternatively, the LEDs can be selectively formed on the substrate. In other embodiments, the epi-LEDs are formed on a growth substrate and then transferred to the substrate (chip carrier). While forming the epi-LEDs on the substrate eliminates the need to transfer, it presumes that the LED formation process will not damage or otherwise adversely impact any previously formed componentry on and/or within the substrate (chip carrier). Alternatively, the ZES componentry can be formed after the growth of the epitaxial LED layers on the substrate, in some embodiments.
In one specific example embodiment, the first layer (p-side) is implemented with p-type gallium nitride, the second (active) layer is implemented with undoped indium gallium nitride, and the third layer (n-side) is implemented with n-type gallium nitride. Other example embodiments may include any suitable combinations of column V and/or III-V materials suitable to implement epi-LEDs (e.g., indium aluminum gallium phosphide based LEDs). The claimed invention is not intended to be limited to any particular material system; rather, the monolithic approach provided herein can be implemented with any number of suitable epi-LED materials, depending on factors such as desired device performance, as will be appreciated in light of this disclosure.
As will be further appreciated, the epitaxial layers can be transferred to the ZES chip carrier in waferscale or chip-by-chip. For bonding of the epitaxial layers to the ZES chip carrier in such transfer based embodiments, methods like carrier eutectic soldering, direct bonding or bumping can be used. The ZES componentry can be located, for example, close to the bonding interface or on the opposite side of the chip carrier, electrically connected by vias. Note that the complete ZES circuitry can be integrated into the LED chip carrier, including the bridge rectifier and control circuit (like in the example case of
The number of LED pixels can range from two to VLine/VfPixel. VLine/VfPixel generally refers to the maximum ever expected line voltage (which might be higher than just the amplitude of the voltage in case of surges on the line, for instance) divided by the minimal forward voltage of a single pixel at nominal current (consider, for example, production spread, temperature and aging over life). The number of groups can vary between two and VLine/VfPixel. The number of pixels in each group may be chosen to be the same for all groups within a particular circuit realization for simplicity reasons, but this is not mandated by the operating principle of the ZES topology provided herein. Other embodiments may have a different number of pixels in one or more of the groups. As can be further seen, there is a mechanical and electrical separation provided between pixels, and a mechanical and electrical connection to the chip carrier. As can be seen with further reference to
The form of the pixels can be, for example, square, rectangular, triangular, and hexagonal as shown in
Packaging
The controllable switch SW in this example embodiment is made of a transistor Q, a diode D and a resistor R. As the voltage across the transistor is limited by the maximum forward voltage across all the pixels of the group to which the corresponding switch is connected, a low-voltage (e.g., 5 volts or less) will be sufficient in most applications. In line voltage applications, the diodes however will need to be able to block the high voltages and therefore typically high-voltage diodes can be used in such cases.
The optional device Di can be used to limit the drain-gate-voltage of the transistor Q in case of a failure where, for example, one of the pixels or one of its interconnects fails open. Without this optional diac D1, a high voltage across the group GRP may cause the transistor Q to fail due to the high voltage or a significant dissipation of power which eventually may lead to an open circuit and the complete light engine would fail to emit any light. Thus, by including the diac, the transistor can be turned on in such a failure and basically shunt the defective group, leading to a still operating light engine. The feature of increased fault tolerance is particularly favorable, for instance, in line power applications where hundreds or even more pixels are connected in series.
In other embodiments, instead of a diac Di, a thyristor-based circuitry or even a resistor may be integrated instead to achieve similar benefits. Circuits comprising latching devices, like diacs or thyristors may be generally favored over a simple resistor or other non-latching circuits, because latching circuits and devices typically have a low drop voltage across them after they have been latched which greatly reduces the amount of power that would otherwise be dissipated in the transistor Q. As will be appreciated in light of this disclosure, numerous switching schemes other than the example shown in
In another embodiment of the present invention, each single chip is packaged to a device, such as a surface-mount device (SMD). Such a device can have at least 3 pins, as depicted in the example embodiment of
Numerous other suitable configurations and materials will be apparent in light of this disclosure, and the claimed invention is not intended to be limited to any particular set of configurations or materials.
b illustrates a cross-sectional side view of another SMD package based embodiment which is very similar to the example embodiment shown in
Some implementations of ZES circuit topology show significant brightness difference between the pixels at the beginning of the LED string (close to Str+ in
Numerous variations of the example embodiments depicted will be apparent in light of this disclosure. For example, the type of LEDs can be different from chip to chip, especially the emission color of the chip can vary (e.g., R/G/B or greenish-white/red). If the final emission color of the chips is given by a wavelength conversion element, there can be different conversion elements (e.g., different emission colors) from chip to chip and/or from pixel group to pixel group and/or from pixel to pixel. Further note that ESD protection functionality that normally has to be added as a discrete device may already be included in the integrated chip just by the ZES driver circuitry. For instance, in the example embodiment shown in
Numerous variations and embodiments will be apparent in light of this disclosure. For example, one embodiment of the present invention provides a semiconductor device that includes a chip carrier, a light emitting diode (LED) formed on or bonded to the chip carrier, and a switch formed on or in the chip carrier and operatively coupled across the LED, and configured to regulate current through the LED in response to a control signal. In some cases, the device further includes a control circuit for providing the control signal for controlling the switch. In one such case, the control circuit includes a sense circuit for sensing current flowing through the LED. In some cases, the device further includes a rectifier circuit configured to receive a voltage source and to provide a rectified voltage across the LED. In some cases, the LED is included in a serially connected string of LEDs, and the switch is connected across multiple LEDs in the string. In some such cases, the device further includes a number of additional switches, each additional switch connected across a different set of multiple LEDs in the string. In some cases, the LED comprises a thin-film LED chip. In some cases, the LED comprises a sapphire flip-chip. In some cases, the LED includes an active layer sandwiched between a p-type layer and an n-type layer, and a contact via configured to allow both n-side and p-side contacts to be located on one side of the active layer. In some cases, the device further includes a mirror layer between the chip carrier and the LED. In some cases, the device further includes an integrated circuit package that contains the chip carrier including the LED and switch. In some such cases, the integrated circuit package has three or more leads and is one of a small-outline transistor (SOT) package, a surface mount package (SMP), or a radial LED device package. In other such cases, the integrated circuit package houses multiple chip carriers, each chip carrier carrying one or more LEDs and configured with one or more switches for controlling LED current flow. In other such cases, the chip carrier is the only chip carrier in the integrated circuit package, the chip carrier including a plurality of switchable LED circuits. In one such case, each of the switchable LED circuits is associated with p-contact lead, an n-contact lead, and a control lead. Another example embodiment includes a system comprising two or more of the semiconductor devices as various defined in this paragraph and operatively coupled to provide a serially connected string of LEDs. In one such system, the two or more devices are populated on a printed circuit board. Another example embodiment provides a light engine that includes the system.
Another embodiment of the present invention provides a semiconductor device that includes a chip carrier, and a plurality of light emitting diodes (LEDs) formed on or bonded to the chip carrier and serially connected, wherein the LEDs comprise an active layer sandwiched between a p-type layer and an n-type layer, said layers being laterally structured into mechanically and electrically separated semiconductor pixels that are connected in series. The device further includes a plurality of switches formed on or in the chip carrier, each switch operatively coupled across a different subset of the LEDs and configured to regulate current through that subset in response to a control signal. The device further includes an integrated circuit package that contains the chip carrier including the LEDs and switches. In some cases, the device further includes at least one of: a mirror layer between the chip carrier and each of the LEDs; a control circuit for providing control signals for controlling the switches, wherein the control circuit includes a sense circuit for sensing current flowing through the LEDs; and/or a rectifier circuit configured to receive a voltage source and to provide a rectified voltage across the LEDs. In some cases, at least one of the LEDs comprises a thin-film LED chip. In some cases, at least one of the LEDs includes an active layer sandwiched between a p-type layer and an n-type layer, and a contact via configured to allow both n-side and p-side contacts to be located on one side of the active layer. In some cases, the integrated circuit package houses multiple chip carriers, each chip carrier carrying one or more LEDs and configured with one or more switches for controlling LED current flow. In some cases, the chip carrier is the only chip carrier in the integrated circuit package, the chip carrier including a plurality of switchable LED circuits, and each of the switchable LED circuits is associated with p-contact lead, an n-contact lead, and a control lead.
Another embodiment of the present invention provides a lighting system configured with an integrated circuit including one or more light emitting diodes (LEDs) and switching circuitry for controlling current flow through the LEDs in response to one or more brightness regulating control signals, the system further configured for coupling directly to a rectified voltage source. In some cases, the one or more LEDs comprise thin-film LED chips formed on a carrier chip housed in an integrated circuit package.
The foregoing description of the embodiments of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of this disclosure. It is intended that the scope of the invention be limited not by this detailed description, but rather by the claims appended hereto.
This application claims priority to U.S. Provisional Application No. 61/588,838, filed Jan. 20, 2012. In addition, this application is a continuation-in-part of U.S. application Ser. No. 13/229,611, filed Sep. 9, 2011. Each of these applications is herein incorporated by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US13/22390 | 1/21/2013 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61588838 | Jan 2012 | US |