The present disclosure relates to a pilot operated valve design which limits leakage from inlet to outlet in a hydraulic system.
Many hydraulic systems can not afford any leakage to outlet ports when the valve is closed. In addition, pilot operated valves may be desirable in certain types of systems.
Conventional pilot operated valve designs have leakage to the outlet port, for example, from the inlet port to the outlet port, when the valve is closed. Conventional solutions to this problem include replacing the pilot operated valves with direct acting designs, which undesirably increases the size and weight of a device.
Accordingly, there is a need for a pilot operated valve design that has no leakage to the outlet port when the valve is closed, hence improving packaging and keeping the size smaller than direct acting check or relief valves.
The embodiments of this invention eliminate hydraulic leakage to an output port in pilot operated valves, while still keeping the advantages of a pilot operated valve. The embodiments of the present invention may be applied to, for example, pilot operated check valves and pilot operated relief valves.
A valve, according to an embodiment of the present invention, comprises an inlet and an outlet, a body including a first seat and a second seat, wherein the first seat and second seat are spaced apart from each other at a predetermined distance, a cavity in the body, a piston positioned in the cavity, wherein the piston rests against the first seat and the second seat when in the closed position, and a pilot ball or poppet adjacent or in the piston.
The inlet may be positioned in a first side of the body and the outlet may be positioned in a second side of the body, the second side being substantially perpendicular to the first side.
The first seat may be positioned on a first side with respect to the outlet and the second seat may be positioned on a second side with respect to the outlet, the first side being closer to the inlet than the second side.
A spring may bear against the piston to maintain the piston in the closed position.
A spring may bear against the pilot ball or poppet to maintain the pilot ball or poppet in the closed position.
A method for preventing leakage in a pilot-operated valve, according to an embodiment of the present invention, comprises positioning a piston in a cavity of a valve body, resting the piston against a first seat and a second seat of the body when in the closed position, wherein the first seat and second seat are spaced apart from each other at a predetermined distance, and positioning a pilot ball or poppet adjacent or in the piston.
The valve may include an inlet positioned in a first side of the body and an outlet positioned in a second side of the body, the second side being substantially perpendicular to the first side.
The method may further comprise positioning the first seat on a first side with respect to the outlet, and positioning the second seat on a second side with respect to the outlet, the first side being closer to the inlet than the second side.
Exemplary embodiments of the present invention will be described below in more detail, with reference to the accompanying drawings, of which:
Exemplary embodiments of the present invention now will be described more fully hereinafter with reference to the accompanying drawings. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein.
Referring to
As can be seen in
The pilot operated valve may be, for example, a relief valve, a check valve or a solenoid valve. In other words, the valve general function is: 1) to regulate the pressure in a hydraulic system by alternately opening and closing to release excess fluid to limit the maximum system pressure (relief valve); 2) to allow flow in only one direction in a hydraulic system (check valve); or 3) to allow flow in one direction in a hydraulic system when a signal command is applied (solenoid valve). The use of the pilot ball or poppet allows the check, relief or solenoid valves to be in a smaller package than a direct acting valve.
Referring to
Incorporating the two seats 12, 14 for the piston 6 to rest against prevents leakage, and, therefore, allows the use of a pilot operated valve 100 for zero leak applications, while minimizing the valve size. However, in conventional designs, there are no such seats in the body of a pilot operated valve, and just a retaining ring to hold the piston inside the valve.
Although exemplary embodiments of the present invention have been described hereinabove, it should be understood that the present invention is not limited to these embodiments, but may be modified by those skilled in the an without departing from the spirit and scope of the present invention.
This application is a continuation of U.S. application Ser. No. 12/399,695, filed on Mar. 6, 2009 in the U.S. Patent and Trademark Office, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/034,384, filed on Mar. 6, 2008, the contents of both of which are herein incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3215236 | Pensa | Nov 1965 | A |
3294111 | Abercrombie et al. | Dec 1966 | A |
3341210 | Vick | Sep 1967 | A |
3414006 | Feroy | Dec 1968 | A |
4742846 | DiBartolo | May 1988 | A |
5050636 | Sagawa | Sep 1991 | A |
5381823 | DiBartolo | Jan 1995 | A |
5875815 | Ungerecht et al. | Mar 1999 | A |
6039070 | Zaehe | Mar 2000 | A |
6119722 | Zaehe | Sep 2000 | A |
7069945 | Slawinski et al. | Jul 2006 | B2 |
20130306166 | Erb | Nov 2013 | A1 |
Entry |
---|
https://www.wordnik.com/words/valve-seat, Nov. 24, 2014, Wordnik. |
Number | Date | Country | |
---|---|---|---|
20210251152 A1 | Aug 2021 | US |
Number | Date | Country | |
---|---|---|---|
61034384 | Mar 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12399695 | Mar 2009 | US |
Child | 17080734 | US |