ZERO-PRESSURE TIRE

Abstract
A pneumatic radial tire includes a carcass structure having a pair of sidewalls and a crown, a pair of beads, a tread block, a belt structure, and a plurality of reinforcing hoops. The plurality of spaced apart reinforcing hoops are disposed intermediate the crown of the carcass structure and the tread block, and are formed of a rigid material coated in an elastomeric material. The plurality of reinforcing hoops includes a pair of outer reinforcing hoops disposed adjacent the sidewalls of the carcass, and an at least one inner reinforcing hoop disposed between the outer reinforcing hoops.
Description
FIELD

The present disclosure relates to pneumatic tires and, more particularly, to reinforced zero-pressure pneumatic radial tires.


BACKGROUND

Various methods have been developed to enable the safe, continued operation of under-inflated or deflated tires, allowing an operator to safely drive a vehicle until repair or replacement of the tire can be accomplished. These tires, commonly referred to as “zero-pressure” or “run flat” tires, are used in a variety of applications ranging from passenger cars to military vehicles.


The majority of zero-pressure tires are constructed with reinforcing layers inserted into the sidewalls to increase stiffness. Zero-pressure tires having stiffened sidewalls function via sidewall compression, and upon deflation of the tire the weight of the vehicle is supported by the portion of the sidewall that is beneath the axle. However, the use of sidewall reinforcing layers becomes undesirable for higher profile tires, as the stiffness of the sidewall must be increased to accommodate greater bending stresses. This results in sacrificed ride quality.


To allow for reduced sidewall stiffness in higher profile tires, it has been discovered that increasing the circumferential rigidity of a tire allows a deflated tire to support the weight of a vehicle via sidewall tension, not compression. By increasing circumferential rigidity, the tire retains a substantially round circumference when deflated, and the sidewalls of the tire remain in tension. Because the sidewalls rely only on tension to support the weight of the vehicle, the stiffness of the sidewalls does not need to be increased to the extent of zero-pressure tires that rely only on sidewall compression to support vehicle weight. This allows for improved ride quality.


To provide increased circumferential rigidity, some tires have been constructed having a thin annular bands placed beneath the tread of the tire. The annular bands are approximately the width of the tread of the tire. However, this construction is unreliable, as the wide annular bands are subject to high interlaminar shear that is generated within the primary neutral bending axis, which can result in tire failure over time.


There is a continuing need for a pneumatic radial tire that allows for increased circumferential rigidity, while reducing interlaminar shear and related failures.


SUMMARY

In concordance with the instant disclosure, a pneumatic radial tire that allows for increased circumferential rigidity and reduces interlaminar shear is surprisingly discovered.


The pneumatic radial tire comprises a carcass structure, a pair of beads, a tread block, a belt structure, and a plurality of reinforcing hoops. The carcass structure includes at least one body ply forming a crown and a pair of sidewalls. The pair of sidewalls extend radially inwardly from the crown. The tread block is disposed radially outwardly of the crown of the carcass. The belt structure and a plurality of spaced apart reinforcing hoops are disposed intermediate the crown in the tread block.


The plurality of reinforcing hoops may have any one of a rectangular cross-sectional shape, a tapered cross-sectional shape, and a curved cross-sectional shape. A radial thickness each of the plurality of reinforcing hoops is less than 40% of a radial thickness of the tread block, and ideally between 20% and 25% of the radial thickness of the tread block. An axial width of the reinforcing hoops is greater than 5% of an axial width of the tread block, and ideally between 5% and 25% of the width of the tread block.


The plurality of reinforcing hoops includes a pair of outer hoops and at least one inner hoop, wherein the outer hoops are disposed adjacent the sidewalls of the carcass, and the at least one inner hoop is intermediate the outer hoops. The plurality of reinforcing hoops may be of a congruent diameter, wherein each of the plurality of reinforcing hoops is axially aligned. Alternatively, the plurality of reinforcing hoops may be of different diameters, wherein the hoops are aligned along an arc. Furthermore, the plurality of reinforcing hoops may be axially spaced symmetrically or asymmetrically with respect to an equatorial plane of the tire.


The reinforcing hoops are constructed of a rigid material and coated in an elastomeric material. The elastomeric coating increases bond strength between the reinforcing hoops and the adjacent tire structure, and allows each of the reinforcing hoops to float within the tire structure. By floating within the tire, the hoops are more forgiving, and less prone to interlaminar shear. The rigid material may be any one of a composite fiber, a carbon fiber, an ultra-high-molecular-weight polyethylene, and an epoxy resin composite filled with reinforcement fibers.





BRIEF DESCRIPTION OF THE DRAWINGS

The above, as well as other advantages of the present disclosure, will become readily apparent to those skilled in the art from the following detailed description, particularly when considered in the light of the drawings described herein.



FIG. 1 is a cross-sectional view of a pneumatic radial tire having a plurality of reinforcing hoops, wherein the reinforcing hoops are of a congruent diameter;



FIG. 2 is a cross-sectional view of a pneumatic radial tire having a plurality of reinforcing hoops, wherein the reinforcing hoops are aligned along an arc of the tire;



FIG. 3 is a cross-sectional view of a pneumatic radial tire having a plurality of hoops, wherein the reinforcing hoops have different radial thicknesses and are asymmetrically spaced from an equatorial plane of the tire;



FIG. 4 is a cross-sectional view of a pneumatic radial tire having a plurality of reinforcing hoops, wherein the reinforcing hoops are aligned along an outer surface; and



FIG. 5 is a cross-sectional view of a pneumatic radial tire having a plurality of reinforcing hoops, wherein the reinforcing hoops include a plurality of layers.





DETAILED DESCRIPTION

The following detailed description and appended drawings describe and illustrate various embodiments of the invention. The description and drawings serve to enable one skilled in the art to make and use the invention, and are not intended to limit the scope of the invention in any manner. In respect of the methods disclosed, the steps presented are exemplary in nature, and thus, the order of the steps is not necessary or critical unless otherwise disclosed.


In FIGS. 1-5, a cross-section of a pneumatic radial tire 2 capable of operating in a zero-pressure condition is shown. The tire 2 is substantially constructed using conventional methods, and includes a carcass 4, a pair of annular beads 6, a belt structure 8, and a tread block 10, as they are generally known in the art.


The carcass 4 is formed of at least one reinforced elastomeric radial body ply 12 and includes an outer peripheral crown 14, and a pair of sidewalls 16 including a first sidewall and a second sidewall. The first sidewall and second sidewall extend radially inwardly from respective first and second ends of the crown 14. A portion of the body ply 12 that forms each respective sidewall 16 is turned up over the respective annular beads 6. One of the annular beads 6 is encompassed by one of the respective sidewalls 16. The annular beads 6 may be constructed of any one of a variety of conventional means known in the art, such as a spiral wound wire or a braided cable, as nonlimiting examples.


Each of the respective sidewalls 16 may further include at least one reinforcing insert 18 to increase the stiffness of the sidewall 16. In one embodiment, the reinforcing inserts 18 may be integrally molded with the sidewalls 16, axially outwardly of the body ply 12, as shown in FIGS. 1-5. In alternative embodiments, the reinforcing inserts 18 may be encompassed by the at least one body ply 12. Particularly, where a plurality of body plies 12 form the sidewalls 16, the reinforcing inserts 18 may be disposed intermediate a first body ply 12 and a second body ply 12, for example. Other configurations for the reinforcing inserts 18 are also within the scope of the present disclosure.


The reinforcing inserts 18 may be formed of any material having a high modulus. Inserts 18 formed of a fiber reinforced rubber or polymer have been found particularly effective. The reinforcing fibers may be formed of any one of glass, carbon, nylon, aramid, rayon, or polyester, for example.


The belt structure 8 includes an at least one metallic belt formed in an elastomeric material, and stacked radially outwardly of the crown 14 of the carcass 4, wherein the belt structure 8 circumscribes the crown 14. In the embodiment of FIG. 1, the belt structure 8 includes a first belt 20, and a second belt 20 stacked adjacent to the first belt 20. However, it should be understood that any number of belts 20 may be consecutively layered in order to increase the strength and resilience of the tire 2, as desired.


The tread block 10 is disposed radially outwardly of the belt structure 8, and is formed of an elastomeric material. The tread block 10 may include a tread rubber compound that provides a sufficient degree of wear and traction, with a thin underlying layer of base rubber compound that provides a sufficient adhesion of the tread block 10 to the underlying belt structure 8, for example.


A thickness of the tread block 10 (dimension A) is defined by a radial distance between an inner surface 22 and an outer surface 24. A width of the tread block 10 (dimension B) is defined by an axial distance between shoulders 26. A tread pattern 28 may be formed in the outer surface 24 of the tread block 10.


As shown in FIGS. 1-5, a plurality of reinforcing hoops 30 are disposed within the tire 2, and are configured to permit for operation of the tire 2 in a zero-pressure condition. The reinforcing hoops 30 are disposed radially intermediate the belt structure 8 and the tread block 10, and more particularly are embedded within the tread block 10 radially outwardly from the belt structure 8. At least a portion of each of the reinforcing hoops 30 is integrally formed in the tread block 10. However, in alternate embodiments, the reinforcing hoops 30 may be disposed radially intermediate the belt structure 8 and the crown 14. In yet another embodiment, the reinforcing hoops 30 may be disposed both radially intermediate the belt structure 8 and the crown 14, and the belt structure 8 and the tread block 10.


A width (dimension C) of each of the plurality of reinforcing hoops 30 is defined by an axial distance between opposing first and second sides 32 of each of the reinforcing hoops 30. A thickness (dimension D) of each of the plurality of hoops 30 is defined as a radial distance between an inner surface 34 and an outer surface 36 of each of the reinforcing hoops 30.


In the illustrated embodiments, the thickness of each of the plurality of reinforcing hoops 30 is less than 40% of the thickness of the tread block 10, and particularly between 20% and 25% of the thickness of the tread block 10. Optimally, the width of each of the hoops 30 is at least 5% of the width of the tread block 10, and particularly between 5% and 25% of the width of the tread block 10. Other shapes and dimensions for the reinforcing hoops 30 are also contemplated and considered within the scope of the present disclosure.


In a first embodiment, at least one of the plurality of reinforcing hoops 30 may have a substantially rectangular cross sectional shape wherein each of the sides 32, the inner surface 34, and the outer surface 36 is substantially planar, as shown in FIGS. 1-5. In an alternate embodiment, at least one of the plurality of reinforcing hoops 30 may be tapered, wherein the thickness of the reinforcing hoop 30 decreases along the width of the reinforcing hoop 30. In yet another embodiment, at least one of the plurality of reinforcing hoops 30 may include at least one of a convex outer surface 36 and a concave inner surface 34, wherein the cross sectional shape of the reinforcing hoop 30 is curved.


The reinforcing hoops 30 are constructed of a sufficiently rigid material. In a first embodiment, as shown in FIGS. 1-4, the rigid material is solidly formed, wherein the cross section of the reinforcing hoop 30 is homogenous. In another embodiment, as shown in FIG. 5, the rigid material is circumferentially wound until to obtain a desired radial thickness and axial width, wherein the cross section of the reinforcing hoop 30 includes a plurality of layers 38.


The rigid material may be a fiber reinforced material, such as a carbon fiber material, a composite fiber material, an ultra-high molecular-weight polyethylene material, or an epoxy-resin impregnated with reinforcing fibers, for example. The reinforcing fibers are formed of a high modulus material, glass, nylon, rayon, polyester, aramid, or glass, for example.


It is also contemplated that the rigid material of the hoops 30 may include metal. For example, the hoops 30 may be formed from brass coated steel wire. Similar to the annular beads 6, the hoops 30 may be constructed of any one of a variety of conventional means known in the art, such as a spiral wound wire or a braided cable, as nonlimiting examples. Other suitable types of metal wire and windings may also be used for the hoops 30, as desired.


The metal hoops 30 may also be coated with a skim rubber compound that provides for enhanced adhesion between the metal wire of the hoops 30 and the tread block 10. As nonlimiting examples, the skim rubber compound may include a methylene donor/methylene acceptor resin system such as HMMM as the donor and a novolac resin as the acceptor. Cobalt may also be used in addition to these resin systems, or added by itself to the skim rubber compound with a high level of sulfur to improve adhesion. Other materials and formulations for the skim rubber compound may be selected by a skilled artisan within the scope of the present disclosure.


The plurality of reinforcing hoops 30 includes at least a pair of outer reinforcing hoops 30, each of which are disposed adjacent the respective sidewalls 16 of the tire 2. The plurality of reinforcing hoops 30 further includes at least one inner reinforcing hoop 30, disposed intermediate the outer reinforcing hoops 30. As illustrated in FIGS. 1-5, the plurality of reinforcing hoops 30 includes a plurality, and more specifically, a pair of inner reinforcing hoops 30, disposed intermediate the pair of outer reinforcing hoops 30.


As shown in FIGS. 1, 2, and 5, each of the plurality of reinforcing hoops 30 may have a substantially similar cross sectional shape, with the thickness and width of each of the reinforcing hoops 30 being substantially similar. Alternatively, at least one of the plurality of reinforcing hoops 30 may have a thickness or width different than the radial thickness of at least one other reinforcing hoop 30. For example, as shown in FIGS. 3 and 4, the outer reinforcing hoops 30 are of a lesser thickness than the inner reinforcing hoops 30.


As shown in FIGS. 1, 2, 4, and 5, the plurality of reinforcing hoops 30 may be axially spaced symmetrically about an equatorial plane (CL) of the tire 2. While an even number of reinforcing hoops 30 is illustrated, the plurality of reinforcing hoops 30 may include an odd number of reinforcing hoops 30, wherein a single reinforcing hoop 30 is centered on the equatorial plane of the tire 2. In an alternative embodiment, as shown in FIG. 3, the axial spacing of the plurality of reinforcing hoops 30 may be asymmetric with respect to the equatorial plane of the tire 2.


In the embodiment shown in FIG. 1, each of the plurality hoops is of a congruent diameter, wherein each one of the reinforcing hoops 30 is in axial alignment with each other, wherein the plurality of hoops 30 is flat. In alternate embodiments, as shown in FIGS. 2-5, the outer reinforcing hoops 30 are of a lesser diameter than the inner reinforcing hoops 30, wherein the plurality of reinforcing hoops 30 forms an arc.


In the embodiment shown in FIGS. 2, 3, and 5, the thickness of each of the reinforcing hoops 30 is centrally aligned along the arc, wherein the inner surface 34 and the outer surface 36 of each reinforcing hoop 30 is an equidistance from the arc. Alternatively, the plurality of reinforcing hoops 30 may be radially offset, wherein one of the inner surfaces 34 or the outer surfaces 36 of each of the reinforcing hoops 30 are tangentially aligned with the arc.


In manufacture of the tire 2 according to the present disclosure, it should be appreciated that the tread rubber forming the tread block 10 may overlay the reinforcing hoops 30, which are in turn disposed over the carcass adjacent the belt structure 8, prior to curing. In other embodiments, the reinforcing hoops 30 are disposed within grooves formed in the tread rubber forming the tread block 10 prior to curing. During the curing process, and under pressure from the molds, the reinforcing hoops 30 are subsequently embedded within the tread block 10. Other means for disposing the reinforcing hoops 30 within the tire 2 are also within the scope of the present disclosure.


Advantageously, the employment of spaced apart reinforcing hoops 30 between the crown 14 and the tread block 10, and more particularly embedded within the tread block 10 radially outwardly from the belt structure 8, allows for increased circumferential rigidity and reduces interlaminar shear.


From the foregoing description, one ordinarily skilled in the art can easily ascertain the essential characteristics of this invention and, without departing from the spirit and scope thereof, can make various changes and modifications to the invention to adapt it to various usages and conditions.

Claims
  • 1. A pneumatic radial tire comprising: a carcass structure formed of at least one body ply, the carcass including a crown and a pair of sidewalls extending radially inwardly from the crown;a tread block disposed radially outwardly of the crown;a belt structure disposed radially intermediate the crown and the tread block; anda plurality of spaced apart reinforcing hoops disposed radially intermediate the crown and the tread block.
  • 2. The pneumatic radial tire of claim 1, wherein the plurality of reinforcing hoops is embedded in the tread block radially outwardly from the belt structure.
  • 3. The pneumatic radial tire of claim 1, wherein the plurality of reinforcing hoops is disposed radially intermediate the belt structure and the tread block.
  • 4. The pneumatic radial tire of claim 1, wherein each of the plurality of reinforcing hoops is of a congruent diameter, the plurality of reinforcing hoops being axially aligned.
  • 5. The pneumatic radial tire of claim 1, wherein the plurality of reinforcing hoops includes a pair of outer reinforcing hoops disposed adjacent to the sidewalls, and at least one inner reinforcing hoop disposed axially intermediate the pair of outer reinforcing hoops.
  • 6. The pneumatic radial tire of claim 1, wherein the outer reinforcing hoops are of a lesser diameter than the at least one inner reinforcing hoop, the plurality of reinforcing hoops being aligned along an arc.
  • 7. A pneumatic radial tire comprising: a carcass structure formed of at least one body ply, the carcass including a crown and a pair of sidewalls extending radially inwardly from the crown, each of the sidewalls having an annular bead formed therein;a tread block disposed radially outwardly of the crown;a belt structure disposed radially intermediate the crown and the tread block; anda plurality of spaced apart reinforcing hoops embedded in the tread block radially outwardly from the belt structure, the plurality of hoops including a pair of outer hoops and at least one inner hoop.
  • 8. The pneumatic tire of claim 7, wherein a radial thickness of the outer hoops is less than a radial thickness of the at least one inner hoop.
  • 9. The pneumatic tire of claim 7, wherein each of the plurality of reinforcing hoops has a radial thickness that is less than 40% of a radial thickness of the tread block.
  • 10. The pneumatic tire of claim 7, wherein each of the plurality of reinforcing hoops has an axial width that is greater than 5% of an axial width of the tread block.
  • 11. The pneumatic tire of claim 7, wherein at least one of the plurality of reinforcing hoops has a substantially rectangular cross sectional shape.
  • 12. The pneumatic tire of claim 7, wherein at least one of the plurality of reinforcing hoops is tapered.
  • 13. The pneumatic tire of claim 7, wherein at least one of an inner surface of one of the reinforcing hoops and an outer surface of one of the reinforcing hoops is curved.
  • 14. The pneumatic tire of claim 7, wherein at least one of the plurality of reinforcing hoops is formed of a solid material.
  • 15. The pneumatic tire of claim 7, wherein at least one of the plurality of reinforcing hoops is formed of a continuously wound material, and includes a plurality of layers.
  • 16. A pneumatic radial tire comprising: a carcass structure formed of at least one radial body ply, the carcass including a crown and a pair of sidewalls extending radially inwardly from the crown, each of the sidewalls having an annular bead formed therein;a tread block disposed radially outwardly of the crown;a belt structure disposed intermediate the belt structure and the tread block; anda plurality of spaced apart reinforcing hoop structures embedded in the tread block radially outwardly from the belt structure, the plurality of reinforcing hoops being formed of a rigid material.
  • 17. The pneumatic tire of claim 16, wherein at least one of the plurality of reinforcing hoops is formed of a solid ring having reinforcing fibers.
  • 18. The pneumatic radial tire of claim 16, wherein the rigid material is at least one of a composite fiber, a carbon fiber, an ultra-high-molecular-weight polyethylene, and an epoxy resin composite filled with reinforcement fibers.
  • 19. The pneumatic tire of claim 18, wherein the reinforcement fibers are formed from at least one of glass, nylon, rayon, polyester, aramid, and carbon fibers.
  • 20. The pneumatic tire of claim 16, wherein each of the plurality of reinforcing hoops includes metal wire coated in an skim rubber material.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 61/970,624 filed on Mar. 26, 2014. The entire disclosure of the above application is hereby incorporated herein by reference.

Provisional Applications (1)
Number Date Country
61970624 Mar 2014 US