The invention pertains to the field of variable cam timing phasers. More particularly, the invention pertains to a zero pressure unlocking system for a variable cam timing phaser.
Internal combustion engines have employed various mechanisms to vary the relative timing between the camshaft and the crankshaft for improved engine performance or reduced emissions. The majority of these variable camshaft timing (VCT) mechanisms use one or more “vane phasers” on the engine camshaft, (or camshafts, in a multiple-camshaft engine). Vane phasers have a rotor with one or more vanes, mounted to the end of the camshaft, surrounded by a housing assembly with the vane chambers into which the vanes fit. It is possible to have the vanes mounted to the housing assembly, and the chambers in the rotor assembly, as well. The housing's outer circumference forms the sprocket, pulley or gear accepting drive force through a chain, belt, or gears, usually from the crankshaft, or possibly from another camshaft in a multiple-cam engine.
In cam torque actuated (CTA) variable camshaft timing (VCT) systems, cam torques from the engine are used to move the one or more vanes and fluid is recirculated between the working chambers without exhausting the fluid to sump. A lock pin for locking and unlocking the movement between the housing assembly and the rotor assembly can be controlled by a control valve. During engine shutdown, the control valve is moved to a position such that fluid is maintained within the chambers via recirculation, and any fluid feeding to the lock pin is vented from the circuit through the control valve.
During engine cranking or shortly thereafter, there may not be sufficient oil pressure to release the lock pin because the engine's oil passages, including those leading to the phaser may have drained. Time is required for the oil pump, which is driven by the rotation of the engine, to re-till and build pressure in the engine's oil circuit.
Apart from the camshaft torque actuated (CTA) variable camshaft timing (VCT) systems, the majority of hydraulic VCT systems operate under two principles, oil pressure actuation (OPA) or torsional assist (TA). In the oil pressure actuated. VCT systems, an oil control valve (OCV) directs engine oil pressure to one working chamber in the VCT phaser while simultaneously venting the opposing working chamber defined by the housing assembly, the rotor assembly, and the vane. This creates a pressure differential across one or more of the vanes to hydraulically push the VCT phaser in one direction or the other. Neutralizing or moving the oil control valve to a null position puts equal pressure on opposite sides of the vane and holds the phaser in any intermediate position. If the phaser is moving in a direction such that valves will open or close sooner, the phaser is said to be advancing and if the phaser is moving in a direction such that valves will open or close later, the phaser is said to be retarding.
The torsional assist (TA) systems operate under a similar principle with the exception that they have one or more check valves to prevent the VCT phaser from moving in a direction opposite than being commanded, should it incur an opposing force such as a torque impulse caused by cam operation.
The problem with OPA or TA systems in executing the operations discussed above is that the oil control valve defaults to a position that exhausts all the oil from either the advance or retard working chambers and fills the opposing chamber. In this mode, the phaser defaults to moving in one direction to an extreme stop where the lock pin engages. A bias spring may be used to preferentially guide the phaser to a desired position. The OPA or TA systems are unable to direct the VCT phaser to any other position during the engine start cycle when the engine is not developing any oil pressure and cannot unlock the lock pin.
Some vehicles can use a “stop-start mode” which automatically stops and automatically restarts the internal combustion engine to reduce the amount of time the engine spends idling when the vehicle is stopped, for example at a stop light or while sitting in traffic. This mode reduces emissions and increases fuel efficiency. This stopping of the engine is different than a “key-off” position or manual stop via deactivation of the ignition switch in which the user of the vehicle shuts the engine down or puts the car in park and shuts the vehicle off. In “stop-start mode,” the engine stops as the vehicle is stopped, then automatically restarts in a manner that is nearly undetectable to the user of the vehicle. During “stop-start,” it has been determined that the full retard phaser position reduces the energy required to start the engine and reduces the engine Noise Vibration and Harshness (NVH) during a hot engine restart. Other strategies may be developed that require a different lock position than described.
The problem with an intake camshaft phaser design that has an extended range of authority and the ability to lock at the full retard stop is that if the engine is shut down with the intake camshaft phaser locked at or near the retard stop and the engine is allowed to cool down, then the engine may not be able to accomplish a successful cold start with the phaser locked near the retard stop. During engine cranking there may not be sufficient engine oil pressure to release the lock pin.
Using an existing phaser control valve and a solenoid to create a pumping chamber which provides enough oil pressure to disengage a locking pin at all conditions.
Referring to
The inner face plate 100a of the housing, assembly 100 may include an end plate pocket 155 connected to a vent 128 leading to sump. The rotor assembly 105 has a corresponding rotor pocket 157, which when aligned with the end plate pocket 155, allows the venting of a control valve 109, preventing lock up. The vent 128 is shown in
A lock pin 125 is slidably housed in a bore 122 in the rotor assembly 105 and has an end portion 125a that is biased towards and fits into a recess 127 in the inner plate 100b of the housing assembly 100 by a spring 124, for example as shown in
The lock pin 125 has a first, unlocked position in which the end portion 125a of the lock pin 125 does not engage the recess 127 and a second, locked position in which the end portion 125a of the lock pin 125 engages the recess 127, locking the relative movement of the rotor assembly 105 relative to the housing assembly 100. The recess 127 is in fluid communication with the phase control valve 109 via a pilot valve 130. The pressurization of the lock pin 125 is controlled by the switching/movement of the phase control valve 109 and the pilot valve 130.
Referring to
The position of the phase control valve 109 is controlled by an engine control unit (ECU) 106 which controls the duty cycle of the variable force solenoid 107. The ECU 106 preferably includes a central processing unit (CPU) which runs various computational processes for controlling the engine, memory, and input and output; ports used to exchange data with external devices and sensors.
The position of the spool 111 is influenced by spring 115 and the solenoid 107 controlled by the ECU 106. Further detail regarding control of the phaser is discussed in detail below. The position of the spool 111 controls the motion (e.g. to move towards the advance position, holding position, or the retard position) of the phaser as well as what fluid is used to lock or unlock the lock pin.
A pilot valve 130, preferably a spool valve, includes a spool 131 with cylindrical lands 131a, 131b, 131c, 131d slidably received in a sleeve 132 within a bore in the rotor assembly 105. A through passage 134 is present between lands 131a and 131b. The pilot valve 130 may be located remotely from the phaser, or within a bore in the rotor assembly 105 which pilots in the camshaft (not shown). One end of the spool 131 contacts spring 133 and the opposite end of the spool 131 is in fluid communication with supply S through line 118. The supply line 118 may contain an inlet check valve 119 allowing for the flow of fluid into supply line 118 and preventing the flow of fluid out of supply line 118. The pilot valve 130 is in fluid communication with the phase control valve 109 through lines 141 and 142 as well as with the recess 127 of the housing assembly 100 through line 140. The pilot valve 130 additionally is in fluid communication with a supply line 144. Supply line 144 is preferably in fluid communication with supply S. Supply 144 could be in fluid communication directly with line 118 or in communication selectively through the spool valve 109. Alternatively, supply 144 could be controlled by the advance chamber 102 or the retard chamber 103. A vent port 145 is also present within the sleeve 132.
The position of the spool 131 is influenced by spring 115 and the variable force solenoid 107. The position of the spool 111 controls what fluid is used to unlock or lock the lock pin 125 and whether supply oil is provided to a pump chamber 150 present between the spool 111 and the sleeve 116. The pilot valve 130 has two positions. In a first position of the pilot valve 130, spool land 131d blocks the flow of supply line 144 and in a second position in which supply line 144 is open to supply S and line 141 is blocked by spool land 131a.
A spool controlled lock pin circuit is comprised of a supply line 144 in fluid communication with the pilot valve 130, the pilot valve 130, line 140 in fluid communication with the recess 127 of the housing assembly 100 and the lock pin 125. When the engine is oft the lock pin 125 is in the locked position.
A pump chamber circuit is comprised of a supply line 118 in fluid communication with the pilot valve 130, the pilot valve 130, line 141 in fluid communication with the pilot valve 130 and the pump chamber 150, line 142 in fluid communication with pump chamber 150 and the pilot valve 130. The pump chamber 150 fills by decaying oil pressure and fluid venting from the lock pin 125 until either the pressure is no longer sufficient to force fluid into the pump chamber 150 or the pump chamber 150 is full. Therefore, the pump chamber 150 is filled as engine oil pressure drops.
The pump chamber circuit is filled during engine off. All fluid present in the phaser itself, with the exceptions of the advance and retard chambers of a CTA phaser, drain back into the pump chamber 150. Residual pressure from the oil system fills the pump chamber circuit until either the pressure is no longer sufficient to force fluid into the pump chamber 150 or the pump chamber 150 is full.
Typically, during engine cranking, after an engine shutdown, there is no oil pressure present to unlock the lock pin 125 and no phasing can begin until after the lock pin 125 has been pressure biased to an unlocked position. In the present invention, during engine cranking and/or start-up, after engine shutdown, the lock pin 125 is moved to an unlocked position when the pump chamber circuit is in fluid communication with the spool controlled lock pin circuit. In other words, when fluid moves from the pump chamber 150, through line 142, between spool lands 131c and 131d of the pilot valve 130 to the recess 127 through line 140, the lock pin 125 is moved against the force of the spring 124, such that the end 125a of the lock pin 125 no longer engages the recess 127.
Once the end 125a of the lock pin 125 has disengaged from the recess 127, the rotor assembly 105 can be moved relative to the housing assembly 100 and the phaser can be phased, for example to a retard position, an intermediate position, an advance position and in some phasers a detent position. Fluid is supplied to the recess 127 of the lock pin 125 to maintain the lock pin 125 in the unlocked position from supply line 144 when supply pressure is present and the phaser is phasing. At this point, no fluid is being maintained in the pump chamber 150. Should the pump circuit not be used to unlock the phaser the spool 111 can perform its normal function of unlocking the phaser after oil pressure reaches an operating level because the pilot valve 130 will have moved up to vent the pump chamber 150 and connect passage 144 to passage 140.
Based on the duty cycle of the pulse width modulated variable force solenoid 107, the spool 111 moves to a corresponding position along its stroke. When the duty cycle of the variable force solenoid 107 is approximately 40%, 60% or 80%, the spool 111 will be moved to positions that correspond with the retard mode, the null mode, and the advance mode, respectively and the pilot valve 130 will be pressurized and move to the second position, and the lock pin 125 will be pressurized and released.
Referring to
During engine cranking, the spool 111 of the phase control valve 109 is moved to a position by the VFS 107, against the force of the spring 115, such that the spool 111 blocks the flow of fluid to the pump chamber 150 via line 141. During engine cranking, in order to pump the fluid from the pump chamber 150, the duty cycle starts at 0% and moves to 100%, to force the phase control valve 109 to expel the fluid present in the pump chamber 150 and exhaust from the pump chamber 150 into line 142, since line 141 is blocked. The movement of the spool by the VFS 107 against the force of the spring 115 creates pressure in the pump chamber 150, pumping or forcing the fluid into line 142 at a high pressure. From line 142, fluid flows between lands 131c and 131d of the pilot valve 130 to line 140 in fluid communication with the recess 127 in the housing assembly 100, biasing the lock pin 125 against the spring 124 toward an unlocked position. The rotor pocket 157 is not aligned with the end plate pocket 155 and vent 128 is blocked.
During engine cranking on restart, the spool 111 is moved by the VFS 107, such that the volume of oil in the pump chamber 150 is pressurized to greater than 0.8 bar and expelled to activate and pressurize the spool controlled lock pin circuit, as shown in
While the embodiments described above contain a single pilot valve 130 of a length, the pilot valve 130 can be split into at least two pilot valves of a length that is less than the length of the single pilot valve 130, reducing the axial package space required for the phaser.
Referring to
The position of the phase control valve 109 is controlled by an engine control unit (ECU) 106 which controls the duty cycle of the variable force solenoid 107. The ECU 106 preferably includes a central processing unit (CPU) which runs various computational processes for controlling the engine, memory, and input and output ports used to exchange data with external devices and sensors.
The position of the spool 111 is influenced by spring 115 and the solenoid 107 controlled by the ECU 106. Further detail regarding control of the phaser is discussed in detail below. The position of the spool 111 controls the motion (e.g. to move towards the advance position, holding position, or the retard position) of the phaser.
A first pilot valve 230, preferably a spool valve, includes a spool 231 with cylindrical lands 231a, 231b slidably received in a sleeve 232 within a bore in the rotor assembly 105. The first pilot valve 230 may be located remotely from the phaser, or within a bore in the rotor assembly 105, which pilots in the camshaft (not shown). One end of the spool 231 contacts spring 233 and the opposite end of the spool 231 is in fluid communication with supply S through line 118. The supply line 11 may contain an inlet check valve 119 allowing for the flow of fluid into supply line 118 and preventing the flow of fluid out of supply line 118. The first pilot valve 230 is in fluid communication with the phase control valve 109 through lines 236 and 142 as well as with the recess 127 of the housing assembly 100 through line 140. The first pilot valve 230 additionally is in fluid communication with a supply line 234. Supply line 234 is preferably in fluid communication with supply S. Supply 234 could also be in fluid communication directly with line 118 or in communication selectively through the spool valve 109, such as a spool controlled lock pin circuit described in further detail below. Alternatively, supply 234 could be controlled by the advance chamber 102 or the retard chamber 103. A vent port 235 is also present within the sleeve 232 of the first pilot valve 230. The position of the first pilot valve 230 determines which circuit is connected to the lock pin: spool controlled lock pin circuit or the pump chamber circuit. In other words, the first pilot valve 230 determines which of the two lock pin control circuits is connected to the lock pin.
A second pilot valve 240, preferably a spool valve, includes a spool 241 with cylindrical lands 241a, 241b slidably received in a sleeve 242 within a bore in the rotor assembly 105. The second pilot valve 240 may be located remotely from the phaser, or within a bore in the rotor assembly 105, which pilots in the camshaft (not shown). One end of the spool 241 contacts spring 243 and the opposite end of the spool 241 is in fluid communication with supply S through line 118. The second pilot valve 240 is in fluid communication with the phase control valve 109 through lines 246 and 142. The second pilot valve 240 additionally is in fluid communication with a vent 244. Supply line 118 is preferably in fluid communication with line 245 of the second pilot valve 240 and directly with line 118. A vent port 247 is also present within the sleeve 242 of the second pilot valve 240. The second pilot valve is not in direct fluid communication with the lock pin 125.
The position of the spool 111 is influenced by spring 115 and the variable force solenoid 107. The position of the spool 111 controls the spool controlled lock pin circuit and whether supply oil is provided to a pump chamber 150 present between the spool and the sleeve 116 with the second pilot valve 240. The first pilot valve 230 and the second pilot valve 240 each have two positions.
In a first position of the first pilot valve 230, spool land 231b blocks the flow of fluid from supply line 234 and in a second position, supply line 234 is open to receiving fluid from a supply, preferably from the spool controlled lock pin circuit and line 236 is blocked by spool land 231a. In the first position of the second pilot valve 240, spool land 241b blocks vent 244. In a second position of the second pilot valve 240, vent 244 is open and spool land 241a blocks supply line 245.
A spool controlled lock pin circuit is comprised of a supply line 234 in fluid communication with the first pilot valve 230, the first pilot valve 230, line 140 in fluid communication with the recess 127 of the housing assembly 100 and the lock pin 125. When the engine is off the lock pin 125 is in the locked position.
A pump chamber circuit is comprised of a supply line 118 in fluid communication with the first pilot valve 230 and the second pilot valve 240, the first pilot valve 230 and the second pilot valve 240, line 246 in fluid communication with, line 142 and the second pilot valve 240, line 236 in fluid communication with line 142 and the first pilot valve 230, the pump chamber 150, and line 142 in fluid communication with pump chamber 150 and the first and second pilot valves 230, 240. The pump chamber 150 fills by decaying oil pressure and fluid venting from the lock pin 125 and the first and second pilot valves 230, 240 until either the pressure is no longer sufficient to force fluid into the pump chamber 150 or the pump chamber 150 is full. Therefore, the pump chamber 150 is filled as engine oil pressure drops.
The pump chamber circuit is filled during engine off. Some of the fluid present in the phaser itself, with the exceptions of the advance and retard chambers of a CTA phaser, may drain back into the pump chamber 150. The primary method for filling of the pump chamber is the residual oil pressure Residual pressure from the oil system fills the pump chamber circuit until either the pressure is no longer sufficient to force fluid into the pump chamber 150 or the pump chamber 150 is full.
Typically, during engine cranking, after an engine shutdown, there is no oil pressure present to unlock the lock pin 125 and no phasing can begin until after the lock pin 125 has been pressure biased to an unlocked position. In the present invention, during engine cranking and/or start-up, after engine shutdown, the lock pin 125 is moved to an unlocked position when the pump chamber is in fluid communication with the lock pin 125 and the spool 111 is stroked. In other words, when fluid moves from the pump chamber 150, through line 142, between spool lands 231a and 231b of the first pilot valve 230 to the recess 127 through line 140, the lock pin 125 is moved against the force of the spring 124, such that the end 125a of the lock pin 125 no longer engages the recess 127.
Once the end 125a of the lock pin 125 has disengaged from the recess 127, the rotor assembly 105 can be moved relative to the housing assembly 100 and the phaser can be phased, for example to a retard position, an intermediate position, an advance position and in some phasers, a detent position. Fluid is supplied to the recess 127 of the lock pin 125 to maintain the lock pin 125 in the unlocked position from supply line 234 of the first pilot valve 230 when supply pressure is present and the phaser is phasing. At this point, no fluid is being, maintained in the pump chamber 150. Should the pump chamber circuit not be used to unlock the phaser the spool 111 can perform its normal function of unlocking the phaser after oil pressure reaches an operating level because the first pilot valve 230 will have moved up to vent the pump chamber 150 and connect passage 234 to passage 140. The second pilot valve 240 controls when supply oil S is connected to the pump chamber 150 to fill and when the pump chamber 150 is vented to allow the spool valve 109 to move freely.
Based on the duty cycle of the pulse width modulated variable force solenoid 107, the spool 111 moves to a corresponding position along its stroke. When the duty cycle of the variable force solenoid 107 is approximately 40%, 60% or 80%, the spool 111 will be moved to positions that correspond with the retard mode, the null mode, and the advance mode, respectively. The first and second pilot valves 230, 240 are pressurized and move to the second position when supply pressure is adequate, and the lock pin 125 will be pressurized and released.
Referring to
During engine cranking, the spool 111 of the phase control valve 109 is moved to a position, by the VFS 107, against the force of the spring 115. During engine cranking, in order to pump the fluid from the pump chamber 150, the duty cycle starts at 0% and moves to 100%, to force the phase control valve 109 to expel the fluid present in the pump chamber 150 and exhaust from the pump chamber 150 into line 142. The movement of the spool by the VFS 107 against the three of the spring 115 creates pressure in the pump chamber 150, pumping or forcing the fluid into line 142 at a high pressure. From line 142, fluid flows between lands 231a and 231b of the first pilot valve 230 to line 140 in fluid communication with the recess 127 in the housing assembly 100, biasing the lock pin 125 against the spring 124 toward an unlocked position. The rotor pocket 157 is not aligned with the end plate pocket 155 and vent 128 is blocked.
Accordingly, it is to be understood that the embodiments of the invention herein described are merely illustrative of the application of the principles of the invention. Reference herein to details of the illustrated embodiments is not intended to limit the scope of the claims, which themselves recite those features regarded as essential to the invention.
This application claims the benefit of U.S. Patent Application No. 62/639,688 filed on Mar. 7, 2018, the disclosure of which is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
6883479 | Simpson | Apr 2005 | B2 |
9127575 | Fischer et al. | Sep 2015 | B2 |
20070056538 | Simpson et al. | Mar 2007 | A1 |
20090056656 | Strauss | Mar 2009 | A1 |
Number | Date | Country | |
---|---|---|---|
20190277167 A1 | Sep 2019 | US |
Number | Date | Country | |
---|---|---|---|
62639688 | Mar 2018 | US |