This invention relates to hydraulic pump assemblies.
A zero turn drive apparatus comprising dual tandem pumps with a hydraulic power take off is disclosed herein. The details of this invention are set forth below in connection with the detailed description of the embodiments.
As will be described further below, power take off 69 is attached to cover 23 that is mounted on housing 12. Power take off 69 may be used to drive a device such as a mowing vehicle deck 54 as shown in
Pump apparatus 10 is powered by connection to a prime mover, such as a vehicle engine 47. Such connection may be directly to an output of vehicle engine 47, or, as shown, it may be by way of pulley 51 driven by belt 52 coupled to the output of vehicle engine 47. Pulley 51 is connected to input shaft 14 that extends through housing 12 and cover 23 into power take off 69. A bevel gear 36 is located on shaft 14 and is drivingly mated to bevel gears 35A and 35B, all of which are located within gear chamber 30. Bevel gear 35A is non-rotatably mounted on pump shaft 27A, which is supported within housing 12 by bearing 44A and within end cap 16A. Similarly, bevel gear 35B is non-rotatably mounted on pump shaft 27B, which is supported in housing 12 by bearing 44B and within end cap 16B. Gear chamber 30 is formed internal to housing 12 and is closed by securing cover 23 with fasteners 25 to housing 12.
Pump chambers 29A and 29B are formed by openings in housing 12 that are closed by fastening end caps 16A and 16B, respectively, to housing 12 with fasteners 22. Only the operation of hydraulic pump 11A will be described in detail, as it will be understood that the operation and configuration of hydraulic pump 11B will preferably be identical. Pump shaft 27A extends into pump chamber 29A and drives pump cylinder block 31A in which are mounted pistons 38A. Pump cylinder block 31A may rotate directly on a surface of end cap 16A, or, as depicted, may rotate on valve plate 37A, located between pump cylinder block 31A and end cap 16A. Pump pistons 38A bear against thrust bearing 33A, which is positioned within swash plate 32A. Swash plate 32A controls the displacement of fluid by pistons 38A. When swash plate 32A is generally perpendicular to pump shaft 27A, pump pistons 38A displace little or no fluid as they rotate about shaft 27A, and pump 11A is thus in neutral. As trunnion arm 21A, through its interface block 45A, moves swash plate 32A from this position, pump pistons 38A displace fluid as they rotate about shaft 27A, providing hydraulic fluid to separate hydraulic motor 56A.
As shown in
As shown in
Power take off mechanisms, such as power take off mechanism 69, are well known in the art. Moreover, it will be appreciated by those in the art that any number of power take off mechanisms will be covered by the scope of the present invention. As such, the elements of power take off mechanism 69 will only be generally described. In the depicted embodiment, power take off mechanism 69 is positioned within power take off housing 118. Power take off input coupler 104 is splined with, and rotates at the same rate as, input shaft 14. Power take off output coupler 105 is splined with, and rotates at the same rate as, output shaft 78. Power take off clutch assembly 76 selectively couples input coupler 104 with output coupler 105. Power take off clutch assembly 76 may be any one of various well known clutches. In the depicted embodiment, power take off clutch 76 comprises various, alternating clutch rotors 121, which are coupled with input coupler 104, and clutch stators 120, which are coupled with output coupler 105. Spring washers 119 are located between each clutch stator 120 and clutch rotor 121, and bias power take off clutch assembly 76 in the unclutched position. Clutch piston 101 is positioned between clutch assembly 76 and power take off housing 118.
At the end opposite power take off clutch assembly 76, power take off output coupler 105 is selectively braked by power take off brake assembly 74. While there are a number a known braking methods, the depicted embodiment employs a method similar to power take off clutch assembly 76. Namely, power take off brake assembly 74 includes alternating brake stators 130, which are coupled with power take off housing 118, and brake rotors 131, which are coupled with output coupler 105. Brake piston 103 is positioned adjacent to brake assembly 74 and between brake assembly 74 and power take off housing 118. Brake return spring 84, in turn, is positioned between brake piston 103 and power take off housing 118. Initially, return spring 84 biases brake piston 103 toward brake assembly 74, compressing brake stators 130 and brake rotors 131 and braking output shaft 78 through output coupler 105.
Power take off output shaft 78 extends from power take off housing 118 and may either directly drive an output mechanism (not shown) or have a pulley 80 mounted thereon for the purpose of connecting output shaft 78 by means of a belt to a driven device, such as an auxiliary pump (not shown) or mowing deck 54 as shown in
In use, the depicted embodiment of power take off mechanism 69 operates as follows. When control 86 opens valve 68, pressurized hydraulic fluid flows through passage 70, which is formed in power take off housing 118, to annular brake de-actuation passage 77, which is formed between brake piston 103 and power take off housing 118. Pressurized hydraulic fluid in passage 77 will cause brake piston 103 to compress brake return spring 84, which will decompress brake stators 130 and brake rotors 131, unbraking output shaft 78. Concurrently, pressurized hydraulic fluid will flow into cross passage 71, which is formed at the interface between housing 118 of power take off 69 and cover 23, through passage 72 and into annular power take off actuation passage 75, which is formed between clutch piston 101 and power take off housing 118. The pressurized fluid in passage 75 will move clutch piston 101, which in turn compresses clutch stators 120 and clutch rotors 121, engaging power take off clutch assembly 76 and coupling input shaft 14 with output shaft 78 through input coupler 104 and output coupler 105, respectively.
When valve 68 is closed by actuator 86, pressurized fluid is blocked from passage 70. Valve 68 also provides a pathway to pressure relief passage 82 to release pressure from the passageways associated with brake 74 and power take off clutch 76. As pressure is released in power take off clutch 76, spring washers 119 return clutch stators 120 and clutch rotors 121 to an uncompressed position, which uncouples input shaft 14 from output shaft 78. Concurrently, return spring 84 biases brake piston 103 toward brake assembly 74, compressing brake stators 130 and brake rotors 131, thus braking output shaft 78.
While specific embodiments of the invention have been described in detail, it will be appreciated by those skilled in the art that various modifications and alternatives to those details could be developed in light of the overall teachings of the disclosure. Accordingly, the particular arrangements of the power take off, power take off brake, fluid passages, etc., disclosed are meant to be illustrative only and not limiting as to the scope of the invention which is to be given the full breadth of the appended claims and any equivalents thereof.
This application is a continuation of U.S. patent application Ser. No. 11/068,702 filed on Feb. 28, 2005, which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/551,611, both of which are incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
2875701 | Ebert | Mar 1959 | A |
2914219 | Chlantelassa | Nov 1959 | A |
3367105 | Dowty | Feb 1968 | A |
3486335 | Kern et al. | Dec 1969 | A |
4252508 | Forster | Feb 1981 | A |
4270408 | Wagner | Jun 1981 | A |
4819508 | Yamaoka et al. | Apr 1989 | A |
4893524 | Ohashi et al. | Jan 1990 | A |
4971535 | Okada et al. | Nov 1990 | A |
5040429 | Del Castillo | Aug 1991 | A |
5078222 | Hauser et al. | Jan 1992 | A |
5207060 | Sheets | May 1993 | A |
5304043 | Shilling | Apr 1994 | A |
5501578 | Skirde | Mar 1996 | A |
5542307 | Hasegawa et al. | Aug 1996 | A |
5800134 | Hasegawa et al. | Sep 1998 | A |
6199380 | Ishii | Mar 2001 | B1 |
6301885 | Johnson et al. | Oct 2001 | B1 |
6332393 | Trimble | Dec 2001 | B1 |
6361282 | Wanschura | Mar 2002 | B1 |
6363815 | Ishimaru et al. | Apr 2002 | B1 |
6382339 | Nemoto | May 2002 | B1 |
6425244 | Ohashi et al. | Jul 2002 | B1 |
6457560 | Evans et al. | Oct 2002 | B1 |
6487856 | Ohashi et al. | Dec 2002 | B1 |
6494686 | Ward | Dec 2002 | B1 |
6672058 | Langenfeld et al. | Jan 2004 | B1 |
6672843 | Holder et al. | Jan 2004 | B1 |
6705840 | Hauser et al. | Mar 2004 | B1 |
6736605 | Ohashi et al. | May 2004 | B2 |
6877302 | Samejima et al. | Apr 2005 | B2 |
6953327 | Hauser et al. | Oct 2005 | B1 |
6960069 | Maruta et al. | Nov 2005 | B2 |
6971233 | Holder | Dec 2005 | B1 |
6973783 | Hauser et al. | Dec 2005 | B1 |
6988580 | Ohashi et al. | Jan 2006 | B2 |
7028472 | Ohashi et al. | Apr 2006 | B2 |
20040200657 | Stoll et al. | Oct 2004 | A1 |
20040237490 | Yasuda et al. | Dec 2004 | A1 |
20050016304 | Ishii et al. | Jan 2005 | A1 |
Number | Date | Country |
---|---|---|
1473183 | Mar 2004 | EP |
2000009023 | Nov 2000 | JP |
2001-146951 | May 2001 | JP |
2001-263259 | Sep 2001 | JP |
WO9967532 | Dec 1999 | WO |
Number | Date | Country | |
---|---|---|---|
60551611 | Mar 2004 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11068702 | Feb 2005 | US |
Child | 11561217 | US |