None.
None.
The present invention relates broadly to motion upholstery furniture designed to support a user's body in an essentially seated disposition. Motion upholstery furniture includes recliners, incliners, sofas, love seats, sectionals, theater seating, traditional chairs, and chairs with a moveable seat portion, such furniture pieces being referred to herein generally as “seating units.” More particularly, the present invention relates to an improved linkage mechanism developed to accommodate a wide variety of styling for a seating unit, which is otherwise limited by the configurations of linkage mechanisms in the field. Additionally, the improved linkage mechanism of the present invention provides for reclining a seating unit that is positioned against a wall or placed within close proximity of other fixed objects.
Reclining seating units exist that allow a user to forwardly extend a footrest and to recline a backrest rearward relative to a seat. These existing seating units typically provide three basic positions (e.g., a standard, non-reclined closed position; an extended position; and a reclined position). In the closed position, the seat resides in a generally horizontal orientation and the backrest is disposed substantially upright. Additionally, if the seating unit includes one or more ottomans attached with a mechanical arrangement, the mechanical arrangement is collapsed such that the ottoman(s) are not extended. In the extended position, often referred to as a television (“TV”) position, the ottoman(s) are extended forward of the seat, and the backrest remains sufficiently upright to permit comfortable television viewing by an occupant of the seating unit. In the reclined position the backrest is pivoted rearward from the extended position into an obtuse relationship with the seat for lounging or sleeping.
Several modern seating units in the industry are adapted to provide the adjustment capability described above. However, these seating units require relatively complex linkage mechanisms to afford this capability. The complex linkage assemblies limit certain design aspects when incorporating automation. In particular, these linkage assemblies impose constraints on incorporating a single motor for automating adjustment between the positions mentioned above, and require two or more motors to accomplish automation of each adjustment. For instance, achieving a full range of motion when automatically adjusting between positions conventionally requires a plurality of large motors each with a substantial stroke. (The geometry of the linkage assembly prohibits mounting a single large motor thereto without interfering with crossbeams, the underlying surface, or moving parts attached to the linkage assembly.) As such, a more refined linkage mechanism that achieves full movement when being automatically adjusted between the closed, extended, and reclined positions would fill a void in the current field of motion-upholstery technology.
In addition, the lack of lateral adjustment offered by the conventional complex linkage mechanisms disadvantageously requires the entire seating unit to be moved outwardly away from an adjacent wall. Thus, the conventional complex linkage mechanisms require the seating unit to occupy a larger area of a room. Otherwise, without providing substantial clearance between the backrest and the adjacent wall, the backrest in the reclined position will contact the adjacent wall.
Further, when employing motorized adjustment to the conventional complex linkage mechanisms, the seating unit housing these mechanisms is susceptible to tipping forward when adjusted to the reclined position. Tipping is generally caused by an occupant of the seating unit leaning forward while a motor, or other automated mechanism, disallows the collapse of a footrest assembly, which hold the ottoman(s) outward from the seating unit. Accordingly, the occupant is generally obligated to invoke the motorized adjustment when leaning forward in the seating unit to avoid upsetting the seating unit.
Even further, motorized adjustment of the conventional complex linkage mechanisms often causes the ottoman(s) and the backrest of the seating unit to move out of sequence. For example, when adjusting from the closed position to the extended position, a pressure generated by the occupant's legs on the ottoman(s) may cause resistance in extending the footrest assembly. As a result of the resistance, the motorized adjustment may commence reclining the backrest out of sequence until full travel of a predefined stroke is attained.
Accordingly, embodiments of the present invention pertain to a novel linkage mechanism that allows a seating unit to provide a space-saving utility that overcomes the need for considerable wall clearance. Further, the linkage mechanism of the invention is constructed in a simple and refined arrangement in order to provide suitable function while overcoming the above-described, undesirable features inherent within the conventional complex linkage mechanisms.
Embodiments of the present invention seek to provide a simplified linkage mechanism that can be assembled to a compact motor and that can be adapted to essentially any type of seating unit. In an exemplary embodiment, the compact motor in concert with the linkage mechanism can achieve full movement and sequenced adjustment of the seating unit between the closed, extended, and reclined positions. The compact motor may be employed in a proficient and cost-effective manner to adjust the linkage mechanism without creating interference or other disadvantages appearing in the conventional designs that are inherent with automation. The linkage mechanism may be configured with features that assist in preventing tipping of the seating unit, sequencing the seating-unit adjustment between positions, locking a footrest assembly in an extended position, and curing other disadvantages appearing in the conventional designs.
Generally, the novel seating unit includes the following components: first and second foot-support ottomans; a pair of base plates in substantially parallel-spaced relation; a pair of seat-mounting plates in substantially parallel-spaced relation, a seating support surface extending between the seat-mounting plates; and a pair of the generally minor-image linkage mechanisms that interconnect the base plates to the seat-mounting plates. Additionally, the seat-mounting plates are disposed in an inclined orientation in relation to a surface underlying the seating unit. In operation, the linkage mechanisms are adapted to move between a closed position, an extended position, and a reclined position.
Typically, the linkage mechanisms include a pair of footrest assemblies that movably interconnect the first and second foot-support ottomans to the seat-mounting plates. In instances, the linkage mechanisms each include a seat-adjustment assembly with a rear bellcrank that is adapted to translate the respective seat-mounting plates over the base plates during adjustment between the closed position, the extended position, and the reclined position. In embodiments, the rear bellcrank translates a respective seat-mounting plate while maintaining the seat-mounting plate's inclined orientation relationship to the base plates. As such, the seating support surface may be biased at a particular inclination angle throughout adjustment.
In another embodiment, each of the linkage mechanisms include a sequence plate and a sequence element. The sequence plate includes a guide slot that is configured with a first region, a second region, and an intermediate region that interconnects the first region and the second region. The sequence element generally extends into the guide slot. In operation, the sequence element resides within the first region when the seating unit is adjusted to the reclined position, within the intermediate region when the seating unit is adjusted to the extended position, and within the second region when the seating unit is adjusted to the closed position. As such, when moving from the closed position to the extended position, the backrest is restrained from inadvertently reclining. Also, when moving from the reclined position to the extended position, the footrest assembly is restrained from inadvertently extending.
In the accompanying drawings which form a part of the specification and which are to be read in conjunction therewith, and in which like reference numerals are used to indicate like parts in the various views:
Opposed arms 55 are laterally spaced and have an arm-support surface 57 that is substantially horizontal. In one embodiment, the pair of opposed arms 55 are attached to the stationary base via intervening members, as illustrated in
As shown in
Turning to
Further, the linkage mechanism 100 comprises a plurality of other linkages that are arranged to actuate and control movement of the seating unit during movement between the closed, the extended, and the reclined positions. These linkages may be pivotably interconnected. It is understood and appreciated that the pivotable couplings (illustrated as pivot points in the figures) between these linkages can take a variety of configurations, such as pivot pins, bearings, traditional mounting hardware, rivets, bolt and nut combinations, or any other suitable fasteners which are well-known in the furniture-manufacturing industry. Further, the shapes of the linkages and the brackets may vary, as may the locations of certain pivot points. It will be understood that when a linkage is referred to as being pivotably “coupled” to, “interconnected” with, “attached” on, etc., another element (e.g., linkage, bracket, frame, and the like), it is contemplated that the linkage and elements may be in direct contact with each other, or other elements, such as intervening elements, may also be present.
Generally, the linkage mechanism 100 guides the rotational movement of the backrest, the seat, and the ottoman(s). In an exemplary configuration, these movements are controlled by a pair of essentially minor-image linkage mechanisms (one of which is shown herein and indicated by reference numeral 100), which comprise an arrangement of pivotably interconnected linkages. The linkage mechanisms are disposed in opposing-facing relation about a longitudinally-extending plane that bisects the recliner between the pair of opposed arms. As such, the ensuing discussion will focus on only one of the linkage mechanisms 100, with the content being equally applied to the other complimentary linkage assembly.
With continued reference to
With reference to
The front ottoman link 110 is also pivotably coupled to a footrest lock link 370 at pivot 111. Footrest lock link 370 is indirectly coupled with the activator bar 350 via an activator bracket 360, where the activator bar 350 is manually or automatically rotated to control the extension or the collapse of the footrest assembly 200. As illustrated in
Rear ottoman link 120 is rotatably coupled to the seat-mounting plate 400 at pivot 121 and pivotably coupled to the inner ottoman link 130 at pivot 133. Further, the rear ottoman link 120 is pivotably coupled to a footrest drive link 590, of the seat-adjustment assembly 500, at pivot 127. During adjustment between the closed and extended positions, a forward directional force transferred by the footrest drive link 590 to the pivot 125 causes the footrest assembly 200 to push out to the extended position.
Outer ottoman link 130 is pivotably coupled on one end to the rear ottoman link 120 at the pivot 133 and the front ottoman link 110 at the pivot 113. At an opposite end, the outer ottoman link 130 is pivotably coupled to the footrest bracket 170 at pivot 172. Between the ends of the outer ottoman link 130, the mid-ottoman bracket 140 is pivotably coupled thereto at pivot 135. Mid-ottoman bracket 140 is also pivotably coupled to the inner ottoman link 150 at pivot 141. Inner ottoman link 150 is further pivotably coupled to the front ottoman link 110 at the pivot 117 and to the footrest bracket 170 at pivot 175.
Seat-adjustment assembly 500 includes the activator bracket 360, the footrest lock link 370, a front lift link 440, a front pivot link 450, a carrier link 460, the motor swing bracket 470, a motor drive link 480, a front bellcrank 485, a raise link 490, a front guide link 495, a back-mounting link 510, a rear control link 520, the rear bellcrank 530, a bridge link 535, a rear pivot link 540, the sequence plate 550 that has a guide slot 555 formed therein, a sequence element 560 that travels within the guide slot 555, a front sequence link 570, and the footrest drive link 590. As discussed above, with reference to
Typically, the activator bar 350 is adapted to receive an occupant's actuation of adjustment between the closed position and the extended position. In particular embodiments, the activator bar 350 may be manually controlled (e.g., occupant may exert a manual rearward force on a hand-lever or may exert a force on a release lever of a cable actuator) or automatically controlled (e.g., occupant may trigger a control signal transmitted to a linear actuator 300), as more fully discussed below with reference to
With reference to a manual-operated embodiment of the present invention, the inter-coupling of activator bracket 360 and the footrest lock link 370 converts a torque exerted by the occupant (rotational force) applied to the activator bar 350, into a forward and upward push (directional force) that acts on the pivot 111 of the footrest assembly 200. That is, a counterclockwise moment applied to the activator bar 350, with reference to
As discussed above, the pivot 111 couples a forward portion 371 of the footrest lock link 370 to the front ottoman link 110 of the footrest assembly 200. Unlike traditional 4-bar extension mechanisms, the upward and forward push is directed to the front ottoman link 110, as opposed to a rear ottoman link. Thus, the configuration of
In operation, upon applying the forward and upward push (via the footrest lock link 370) that acts on the pivot 111, the front ottoman link 110 is rotated forward about the pivot 115 causing the footrest assembly 200 to extend. The forward rotation of the front ottoman link 110 affects forward rotation of the rear ottoman link 120 about the pivot 121. Generally, as a result of the configuration of the pivots 133 and 113, the front ottoman link 110 and the rear ottoman link 120 rotate in substantial parallel-spaced relation. The rotation of the front ottoman link 110 and the rear ottoman link 120 generate upward movement of the inner ottoman link 150 and the outer ottoman link 130, respectively. During their upward movements, the inner and outer ottoman links 150 and 130, respectively, operate in conjunction to raise and rotate the mid-ottoman bracket 140 and the footrest bracket 170 to generally horizontal orientations. Accordingly, the first foot-support ottoman 45 (see
Turning to
Rear bellcrank 530 includes an upper portion 536, a lower portion 537, and a forward portion 538. Rear bellcrank 530 is rotatably coupled at the lower portion 537 thereof to a mid portion 409 (see
Rear bellcrank 530 includes a rear stop element 420 to prevent additional inclination of the back-mounting link 510 when the rear pivot link 540 makes contact therewith, as depicted in
In embodiments, the front lift link 440 includes a rearward portion 446, a forward portion 445, and the mid portion 447. As discussed above, the mid portion 447 of the front lift link 440 is pivotably coupled to the forward portion 531 of the front lift link 440 at pivot 436. Front lift link 440 is rotatably coupled at the rearward portion 446 to a forward portion 901 (see
In instances of the present invention, the front pivot link 450 includes a mid portion 458 that is pivotably coupled to a lower portion 463 of the carrier link 460 at pivot 451. The carrier link 460 is pivotably coupled at an upper portion 464 to the front bellcrank 485 at pivot 461. Typically, the front bellcrank 485 includes an upper portion 481, a lower portion 483, and a mid portion 482, as illustrated at
With continued reference to
Once the occupant overcomes the balance threshold by counteracting his/her weight in the seat by exerting sufficient rearward force, or leaning backward on the backrest, rearward rotation of the back-mounting link 510 (clockwise rotation from the perspective of
This rotation enables the seat-mounting plate 400 to be translated forward and upward in relation to the base plate 410 during adjustment from the extended position to the reclined position. In embodiments, the links 510, 520, and 540, as well as the rear bellcrank 530, are designed to translate the seat-mounting plate 400 such that the seat remains biased in a substantially consistent inclination angle with respect to the base plate 410 throughout adjustment. Further, the links 510, 520, and 540, as well as the rear bellcrank 530, are designed to translate the seat-mounting plate 400 forward at a greater rate than the rearward rotation of the back-mounting link 510, thus, achieving zero-wall clearance.
The forward translation of the seat-mounting plate 400 is additionally affected by the links 535, 440, and 450. In a particular embodiment, the clockwise torque (imposed by the occupant) on the rear bellcrank 530 about the pivot 536 generates a laterally-directed force on the bridge link 535 that acts to pull the front lift link 440 rearward. This rearward pull creates a counterclockwise rotation of the front lift link 440 about the pivot 441, which rotatably couples the front lift link 440 to the seat-mounting-plate 400. This counterclockwise rotation is eventually impeded by an interior mid stop element 421. When the front lift link 440 contacts the interior mid stop element 421, full adjustment to the reclined position is achieved. The counterclockwise rotation of the front lift link 440 also creates a laterally-directed force through the front pivot link 450 onto the front end 415 of the base plate 410. The laterally-directed force causes the front pivot link 450 to swing forward about pivot 453, thereby enabling forward translation of the seat-mounting plate 400 with respect to the base plate 410.
Upon relieving the rearward occupant force on the backrest below the balance threshold (e.g., by the occupant leaning forward), the back-mounting link 510 is allowed to forwardly bias. In particular, the downward occupant weight allows the rear pivot link 540 to push upward on the rear bellcrank 530 creating counterclockwise rotation thereof. The counterclockwise rotation transfers a laterally-directed force through the rear control link 520 that acts to rotate the back-mounting link 510 in a counterclockwise manner. That is, the laterally-directed force applied by the rear control link 520 enables moving the back-mounting link 510 forward to a substantially upright orientation. In one instance, a stop element (not shown) extending from the rear bellcrank 530 resists continued rotation thereof, upon contacting the seat-mounting plate 400; thus, further forward inclination of the backrest when in the closed or the extended position is contained.
Referring to
In particular, the support assembly 600 may serve to accommodate the linear actuator 300. The support assembly 600 depicted in
In embodiments, the lateral members 610 and 620 function as crossbeams that span between the base plate 410 of the linkage mechanism 100 and a complimentary base plate incorporated within a minor-image linkage mechanism that is disposed in substantial parallel-spaced relation to the linkage mechanism 100. Further, the lateral members 610 and 620 may be formed from metal stock. Similarly, the seat-mounting plate 400, base plate 410, and the plurality of links that comprise the linkage mechanism 100 are typically formed from metal stock, such as stamped, formed steel. However, it should be understood and appreciated that any suitable rigid or sturdy material known in the furniture-manufacturing industry may be used in place of the materials described above.
In embodiments of the linear actuator 300, the motor mechanism 320 is protected by a housing that is coupled, or fixedly attached, to the front lateral member 610. The motor mechanism 320 is operably coupled to a forward end of the track 330. A rearward end of the track 330 is coupled, or fixedly attached, to the rear lateral member 620. The track 330 includes a first travel section 331 and a second travel section 332. The motor activator block 340 is configured to translate longitudinally, or slidably engaged, along the track 330 under automated control of the motor mechanism 320. Right motor link 380 and the left motor link 390 are pivotably coupled to the motor activator block 340, and are pivotably coupled to protrusions extending from the angle bracket 315.
As discussed above, the linkage mechanism 100 is coupled to the linear actuator 300, which provides powered adjustment of the linkage mechanism 100 between the reclined, the extended, and the closed positions. In an exemplary embodiment, the motor activator block 340 travels towards or away from the motor mechanism 320 along the track 330 during automated adjustment of the linkage mechanism 100. In a particular embodiment, the motor mechanism 320 controls movement of the motor activator block 340 along the travel sections 331 and 332 of the track 330.
In operation, a control signal from the occupant of the seating unit, or elsewhere, may trigger the motor mechanism 320 to invoke longitudinal translation of the motor activator block 340, which, in turn, generates movement of the linkage mechanism 100. As more fully discussed below, the sliding action is sequenced into a first phase and a second phase. During the first phase, the motor mechanism 320 moves the motor activator block 340 forward with respect to the motor mechanism 320, while the motor mechanism 320 remains generally fixed in space, thereby adjusting the seat-adjustment assembly 500 from the closed position (
Adjustment within the first phase involves causing the motor activator block 340 to longitudinally traverse, or slide, along the first travel section 331 of the track 330. This traverse of the motor activator block 340 within the first travel section 331 generates a forward and upward thrust at the motor links 380 and 390 that pushes on the angle bracket 315, thereby rotatably adjusting the activator bar 350. As discussed above, the rotatable adjustment of the activator bar 350 controls adjustment of the seating unit between the closed position and the extended position (i.e., retracting and collapsing the footrest assembly 200).
Once a stroke of the first phase is substantially complete, the second phase occurs. During the second phase, the motor activator block 340 moves forward again with respect to the motor mechanism 320, while the motor mechanism 320 remains generally fixed in space. In embodiments, adjustment within the second phase involves causing the motor activator block 340 to longitudinally traverse along the second travel section 332 of the track 330. This traverse of the motor activator block 340 within the second travel section 332 generates a forward and upward thrust at the motor links 380 and 390 that pushes on the angle bracket 315, thereby translating the activator bar 350 forward and upward with respected to the base plate 410. This translation of the activator bar 350 controls adjustment of the seating unit between the extended position and the reclined position (i.e., initiating adjustment of the seat-adjustment assembly 500 without the assistance of an occupant's rearward force on the backrest).
In one instance, the combination of the motor mechanism 320, the track 330, and the motor activator block 340 is embodied as the “electrically powered” linear actuator 300. In this instance, the linear actuator 300 is controlled by a hand-operated controller that provides instructions thereto. These instructions may be provided upon detecting a user-initiated actuation of the hand-operated controller. Further, these instructions may cause the linear actuator 300 to carry out a compete first phase and/or second phase of movement (discussed below). Or, the instructions may cause the linear actuator 300 to partially complete the first phase or the second phase of movement. As such, the linear actuator 300 may be capable of being moved to and maintained at various positions within a stroke of the first phase or the second phase, in an independent manner.
Although a particular configuration of the combination of the motor mechanism 320, the track 330, and the motor activator block 340 has been described, it should be understood and appreciated that other types of suitable devices that provide sequenced adjustment may be used, and that embodiments of the present invention are not limited to the linear actuator 300 as described herein. For instance, the combination of the motor mechanism 320, the track 330, and the motor activator block 340 may be embodied as a telescoping apparatus that extends and retracts in a sequenced manner.
Referring to
In an exemplary embodiment, the seat-mounting plate 400 and the complimentary seat-mounting plate each include a one-piece seat guard 905 fixedly attached thereto. Generally, the seat guard 905 spans a length of the seating support surface described above. As illustrated in
Referring to
Generally, the anti-tipping mechanism 800 includes a contact element 810, a rearward member 830 that has an upper end 831 and a lower end 832, and a forward member 820 that has an upper end 823, a lower end 821, and a mid section 822. The lower end 832 of the rearward member 830 is rotatably coupled to a mid portion 417 of the base plate 410 at pivot 801. The upper end 831 of the rearward member 830 is pivotably coupled to the upper end 823 of the forward member 820 at pivot 802. The mid section 822 of the of the forward member 820 is pivotably coupled to the mid portion 458 of the front pivot link 450 at pivot 803. The lower end 821 of the forward member 820 is coupled to the contact element 810 at pivot 804. As used herein, the phrase “contact element” 810 may generally refer to any component capable of withstanding repeated contact with the underlying surface and configured with sufficient rigidity to promote stability of the seating unit (e.g., plastic roller, rubber pad, and the like).
In operation, the anti-tipping mechanism 300 extends the contact element 810 forward and downward towards the underlying surface (not shown) when the linkage mechanism 100 is adjusted to the reclined position (see
Turning to
As illustrated in
The sequence plate 550 is rotatably coupled to an exterior side of the seat-mounting plate 400. In one instance, the rotatable coupling occurs at the pivot 551, which is located at the mid portion 409 (see
Typically, the sequence element 560 is configured as a bushing or cylindrically shaped element that can effortlessly ride or travel within the guide slot 555. The sequence element 560 is fixedly attached to the mid portion 409 of the seat-mounting plate 400 on the exterior side, which is the side opposed to the rear bellcrank 530. Generally, the sequence element 560, at least partially, extends into the guide slot 555. In a particular embodiment, the sequence element 560 fully extends through the guide slot 555 and includes a cap (not shown) that retains the sequence plate 550 onto the sequence element 560.
The interaction between the components 550, 560, and 570 will now be discussed. Initially, the sequence element 560 resides within the second region 730 when the seating unit is adjusted to the closed position (see
The seating unit may then be adjusted from the extended position to the reclined position (see
Referring to
Further, the raised section 970 may compensate for a height of the support bushings 411 and 412, thereby allowing a majority of the bend 980 of the base plate 410 to reside at a level below a top of the support bushings 411 and 412. In this way, the links of the linkage mechanism 100 may be designed to be longer and cover a wider throw (greater swing-range) when pivoting. These features of longer length and wider throw are beneficial in accomplishing more movement of the seat-mounting plate 400 and gaining more wall clearance during recline of the backrest. Also, the formed step 960 provides structural support and reinforcement to the ends 415 and 416 of the base plate 410, thus, allowing the base plate 410 to be fabricated from a thinner plate. In practice, the reinforced ends 415 and 416 of the base plate 410 resist bending, deformation, or other damage that results from dropping during transport or caused by other common abuse when handling.
It should be understood that the construction of the linkage mechanism 100 lends itself to enable the various links and brackets to be easily assembled and disassembled from the remaining components of the seating unit. Specifically the nature of the pivots and/or mounting locations, allows for use of quick-disconnect hardware, such as a knock-down fastener. Accordingly, rapid disconnection of components prior to shipping, or rapid connection in receipt, is facilitated.
The present invention has been described in relation to particular embodiments, which are intended in all respects to be illustrative rather than restrictive. Alternative embodiments will become apparent to those skilled in the art to which the present invention pertains without departing from its scope.
It will be seen from the foregoing that this invention is one well adapted to attain the ends and objects set forth above, and to attain other advantages, which are obvious and inherent in the device. It will be understood that certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations. This is contemplated by and within the scope of the claims. It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, all matter herein set forth or shown in the accompanying drawings is to be interpreted as illustrative and not limiting.
Number | Name | Date | Kind |
---|---|---|---|
4108491 | Rogers, Jr. | Aug 1978 | A |
4418957 | Rogers, Jr. | Dec 1983 | A |
6729686 | May | May 2004 | B2 |
7396074 | Wiecek | Jul 2008 | B2 |
7850232 | Casteel | Dec 2010 | B2 |
20030015893 | Hoffman et al. | Jan 2003 | A1 |
Number | Date | Country | |
---|---|---|---|
20120049606 A1 | Mar 2012 | US |