The present subject matter relates to an antenna with zig-zag structures separated by conductive disks to yield a compact antenna with high sensitivity and broad areal coverage that is capable of receiving and transmitting linear, horizontal, and circularly polarized signals, and other arrangements of the zig-zag structures with control circuitry and techniques for achieving beam directionality through a switching function.
Radio antennas are critical components of all radio equipment, and are used in radio broadcasting, broadcast television, two-way radio, communication receivers, radar, cell phones, satellite communications, and other devices. A radio antenna is an array of conductors electrically connected to a receiver or transmitter, which provides an interface between radio frequency (RF) waves propagating through space and electrical currents moving in the conductors to the transmitter or receiver. In transmission mode, the radio transmitter supplies an electric current to antenna terminals, and the antenna radiates the energy from the current as electromagnetic waves (radio waves). In reception mode, the antenna intercepts some of the power of an electromagnetic wave in order to produce an electric current at the antenna terminals, which is applied to a receiver for amplification.
One type of radio antenna is a phased array line feed antenna. U.S. Patent Publication No. 2018/0212334, titled “Phased Array Line Feed for Reflector Antenna,” corresponding to U.S. patent application Ser. No. 15/744,625, filed on Jan. 12, 2018, and incorporated by reference herein, discloses the phased array line feed antenna. The phased array lined feed antenna is typically optimized for continuous, electronic beam steering in association with or without a spherical reflector (e.g., spherical balloon reflector). U.S. Pat. No. 10,199,711 B2, titled “Deployable Reflector Antenna,” corresponding to U.S. patent application Ser. No. 15/154,760, filed on May 13, 2016, and incorporated by reference herein, discloses the spherical balloon reflector.
An example suitable application for the phased array line feed antenna is space applications. For applications that require electronic RF beam steering, driving electronics are needed to control the phased array line feed antenna. For example, phase shifters can be utilized to electronically steer the RF beam.
Being sensitive to one linear polarization makes the phased array line feed antenna susceptible to signal fading if the orientation of the other antenna to which the phased array line feed is communicating changes. This is a potential problem for users with handheld devices, mobile devices, or for satellite communication systems where polarization changes can potentially occur due to spacecraft motion or via Faraday rotation as a signal propagates through the Earth's magnetic field. In addition, modern communication systems (e.g., fifth generation of cellular network technology known as 5G) often increase data volume or the number of supported users by transmitting and receiving signals on orthogonal polarizations. Accordingly, a need exists for a compact antenna structure that is sensitive to and can switch between vertical, horizontal, right hand circular, and left hand circular polarizations.
In an example, an antenna system includes a zig-zag antenna array. The zig-zag antenna array includes a conductive disk stack of conductive disks and at least one crossed zig-zag antenna extending transversely through the conductive disk stack of conductive disks. The at least one crossed zig-zag antenna includes an element pair that includes a plurality of crossed zig-zag antenna segment pairs between the conductive disk stack of conductive disks. A respective crossed zig-zag antenna segment pair extends between a respective lower conductive disk and a respective upper conductive disk. The example antenna system further includes a control circuit coupled to the element pair to switch the crossed zig-zag antenna segment pairs to drive the crossed zig-zag antenna segment pairs to transmit or receive radio frequency (RF) waves with polarization states that include vertical, horizontal, elliptical, or circular polarization. Addition of phase compensation electronics allows flexibility in the spacing of the conductive disks to meet size and performance constraints while maintaining the desired phasing between RF waves.
Additional objects, advantages and novel features of the examples will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following and the accompanying drawings or may be learned by production or operation of the examples. The objects and advantages of the present subject matter may be realized and attained by means of the methodologies, instrumentalities and combinations particularly pointed out in the appended claims.
The drawing figures depict one or more implementations, by way of example only, not by way of limitations. In the figures, like reference numerals refer to the same or similar elements.
In the following detailed description, numerous specific details are set forth by way of examples in order to provide a thorough understanding of the relevant teachings. However, it should be apparent to those skilled in the art that the present teachings may be practiced without such details. In other instances, well known methods, procedures, components, and/or circuitry have been described at a relatively high-level, without detail, in order to avoid unnecessarily obscuring aspects of the present teachings.
The term “coupled” as used herein refers to any logical, physical, electrical, or optical connection, link or the like by which signals or light produced or supplied by one system element are imparted to another coupled element. Unless described otherwise, coupled elements or devices are not necessarily directly connected to one another and may be separated by intermediate components, elements or communication media that may modify, manipulate or carry the electromagnetic (EM) radiation, such as RF waves, light waves, or other EM signals.
Unless otherwise stated, any and all measurements, values, ratings, positions, magnitudes, sizes, angles, and other specifications that are set forth in this specification, including in the claims that follow, are approximate, not exact. Such amounts are intended to have a reasonable range that is consistent with the functions to which they relate and with what is customary in the art to which they pertain. For example, unless expressly stated otherwise, a parameter value or the like may vary by as much as ±5% or as much as ±10% from the stated amount. The terms “substantially” and “approximately” mean that the parameter value or the like varies up to ±10% from the stated amount. For example, when used in connection with a point of reference, “substantially orthogonal” means 81-99° to the point of reference, “substantially longitudinally” means 81-99° to the point of reference, “substantially parallel” means 162-198° to the point of reference, and “substantially laterally” means 162-198° to the point of reference. Implementations of the antenna system and related components can be utilized at an “approximate design frequency,” which means more than one RF frequency.
The orientations of the zig-zag antenna arrays, associated components and/or any complete devices incorporating a zig-zag antenna array such as shown in any of the drawings, are given by way of example only, for illustration and discussion purposes. In operation for a particular RF processing application, a zig-zag antenna array may be oriented in any other direction suitable to the particular application of the zig-zag antenna array, for example upright, sideways, or any other orientation. Also, to the extent used herein, any directional term, such as lateral, longitudinal, up, down, upper, lower, top, bottom and side, are used by way of example only, and are not limiting as to direction or orientation of any zig-zag antenna array or component of a zig-zag antenna array constructed as otherwise described herein. Reference now is made in detail to the examples illustrated in the accompanying drawings and discussed below.
As will be further explained below, various conductive disk interconnects 123A-F, 133A-F extend longitudinally (e.g., vertically) across each of the conductive disks 103A-F or a subset of the conductive disks 103A-F. However, the conductive disk interconnects 123A-F, 133A-F can also extend laterally (e.g., horizontally) across each of the conductive disks 103A-F or a subset of the conductive disks 103A-F. Conductive disk stack 102 includes a bottom conductive disk 103A and a top conductive disk 103F with four conductive disks 103B-E sandwiched between the bottom conductive disk 103A and the top conductive disk 103F. As shown in the example, the conductive disks 103A-F are conductive plates with respective lateral axes (e.g., respective horizontal axes) that are substantially parallel and the conductive disks 103A-F are aligned to center around a common longitudinal axis (e.g., vertical axis) to form the conductive disk stack 102. Each of the conductive disks 103A-F has a respective disk lateral surface area 151A-F or a respective disk perimeter 152A-F that is shaped as a circle. Alternatively, the disk lateral surface area 151A-F or the respective disk perimeter 152A-F can be shaped as an oval, polygon (e.g., irregular or regular), or a portion thereof.
Generally, the antenna system 100 includes the zig-zag antenna array 101 and the zig-zag antenna array 101 has at least one crossed zig-zag antenna 104A extending transversely through the conductive disk stack 102 of conductive disks 103A-F. The at least one crossed zig-zag antenna 104A includes an element pair 105A. The element pair 105A includes a plurality of crossed zig-zag antenna segment pairs 106A-E between the conductive disk stack 102 of conductive disks 103A-F. With the crossed zig-zag antenna segment pairs 106A-E, when respective first antenna segments 111A-E and respective second antenna segments 112A-E physically crossed, a 90 degree shift is created, which allows for polarization control unlike a linear phased array.
Three crossed zig-zag antennas 104A-C are shown in
As shown, a respective crossed zig-zag antenna segment pair 106A-E extends between a respective lower conductive disk and a respective upper conductive disk. More specifically, a respective crossed zig-zag antenna segment pair 106A extends between a respective lower conductive disk 103A and a respective upper conductive disk 103B. A respective crossed zig-zag antenna segment pair 106B extends between a respective lower conductive disk 103B and a respective upper conductive disk 103C. A respective crossed zig-zag antenna segment pair 106C extends between a respective lower conductive disk 103C and a respective upper conductive disk 103D. A respective crossed zig-zag antenna segment pair 106D extends between a respective lower conductive disk 103D and a respective upper conductive disk 103E. A respective crossed zig-zag antenna segment pair 106E extends between a respective lower conductive disk 103E and a respective upper conductive disk 103F.
Although not shown in
The various zig-zag antenna array 101 constructs disclosed herein can be manufactured using a variety of techniques, including casting, layering, injection molding, machining, plating, milling, depositing one or more conductive coatings, or a combination thereof. For example, the conductive disks 103A-F and element pairs 105A-C can be casted and molded separately and then mechanically fastened together. Alternatively, the conductive disks 103A-F of conductive disk stack 102 and element pairs 105A-C can be formed using casting or injection molding to form a single integral piece. Secondary machining operations, including laser ablation, can be used, for example, to create the shape of the conductive disks of 103A-F and element pairs 105A-C, by burning away or otherwise removing undesired portions, for example, to taper the conductive disks 103A-F; form element holes 141A-B, 142A-B, and 143A-B (see
Conductive layers or films can be deposited as the first conductive disk interconnects 123A-F and second conductive disk interconnects 133A-F or conductive disks can be utilized, for example, by plating that plane before stacking more layers on top of it. Conductive disks 103A-F, element pairs 105A-C, lateral conductors 136x of first and second shielded transmission lines 124x, 134x longitudinal conductors 526x of first and second feedthrough lines 171x, 172x may be formed of any suitable conductor or metallization layer, such as copper, aluminum, silver, etc., or a combination thereof. Hence, the same or different conductive materials may be used to form the first conductive disk interconnects 123A-F and second conductive disk interconnects 133A-F with additional insulating material or shielding materials (e.g., coaxial cable). In some examples, blind vias or through hole types of vias and various other types of electrical interconnects, such as surface interconnects, internal or external conductive traces, and planar electrodes can be utilized for electrical connection for example in the zig-zag antenna array 101 or for electrical connection to the control circuit 550.
A respective first antenna segment 111A-E extends diagonally from the respective lower conductive disk to the respective upper conductive disk. More specifically, a respective first antenna segment 111A extends diagonally from the respective lower conductive disk 103A to the respective upper conductive disk 103B. A respective first antenna segment 111B extends diagonally from the respective lower conductive disk 103B to the respective upper conductive disk 103C. A respective first antenna segment 111C extends diagonally from the respective lower conductive disk 103C to the respective upper conductive disk 103D. A respective first antenna segment 111D extends diagonally from the respective lower conductive disk 103D to the respective upper conductive disk 103E. A respective first antenna segment 111E extends diagonally from the respective lower conductive disk 103E to the respective upper conductive disk 103F.
A respective second antenna segment 112A-E extends diagonally from the respective lower conductive disk to the respective upper conductive disk. More specifically, a respective second antenna segment 112A extends diagonally from the respective lower conductive disk 103A to the respective upper conductive disk 103B. A respective second antenna segment 112B extends diagonally from the respective lower conductive disk 103B to the respective upper conductive disk 103C. A respective second antenna segment 112C extends diagonally from the respective lower conductive disk 103C to the respective upper conductive disk 103D. A respective second antenna segment 112D extends diagonally from the respective lower conductive disk 103D to the respective upper conductive disk 103E. A respective second antenna segment 112E extends diagonally from the respective lower conductive disk 103E to the respective upper conductive disk 103F. In some examples, the zig-zag antenna 104A may be only one layer, that is, a single zig-zag antenna segment pair 106A-E.
RF signals in the respective first antenna segment 111A-E and the respective second antenna segment 112A-E that are crossed to form a respective zig-zag antenna segment pairs 106A-E are combined to achieve polarization independent operation to create the zig-zag antenna 104A, enabling radial dual polarization control during transmission and reception of RF waves. The respective first antenna segment 111A and the respective second antenna segment 112A are orthogonal to each other enabling two linearly polarized signals that are out of phase or can be fed with different polarization states to enable circular polarization of RF waves. Each monopole (e.g., the respective first antenna segment 111A-E and the respective second antenna segment 112A-E) typically radiates both RF polarization states, even with one of the elements of the monopole pair turned off. With phase shifting and amplitude control and more than two monopole pairs, RF beam steering is achieved.
In the substantially parallel orientation of monopoles (e.g., first antenna segments 111A-E of first zig-zag element 107A) of
As shown in
Three crossed zig-zag antennas 104A-C with three respective element pairs 105A-C are shown. More generally, the zig-zag antenna array 101 includes a plurality of crossed zig-zag antenna 104A-C. Each crossed zig-zag antenna 104A-C extends transversely through the conductive disk stack 102 of conductive disks 103A-F. Each crossed zig-zag antenna 104A-C includes a respective element pair 105A-C including a respective first zig-zag element 107A, 108A, 109A and a respective second zig-zag element 107B, 108B, 109B.
Generally, the respective lower conductive disk and the respective upper conductive disk each include a respective first element hole 141A for the respective first antenna segment 111A-E to extend between, and a respective second element hole 141B for the respective second antenna segment 112A-E to extend between. Hence, as shown, upper conductive disk 103F (and the lower conductive disk 103E), each include a first element hole 141A for first antenna segment 111E and a second element hole 141B for second antenna segment 112E of the crossed zig-antenna segment pair 106E of element pair 105A of the crossed zig-zag antenna 104A.
When zig-zag antenna array 101 includes three crossed zig-zag antennas 104A-C with three respective element pairs 105A-C like that shown, then three sets of respective element holes 141A-B, 142A-B, and 143A-B are formed—one set per element pair 105A-C. More specifically, the respective first zig-zag element 107A and the respective second zig-zag element 107B form a respective set of respective crossed zig-zag antenna segment pairs 106A-E between the conductive disk stack 102 of conductive disks 103A-F. Each conductive disk 103A-F or a subset 103A-E includes a respective set of element holes 141A-B, 142A-B, and 143A-B for each respective element pair 105A-C. The respective set of element holes 141A-B, 142A-B, and 143A-B include a first element hole 141A, 142A, and 143A for a respective first antenna segment 111A-E of the respective first zig-zag element 107A, 108A, and 109A. The respective set of element holes 141A-B, 142A-B, and 143A-B further include a second element hole 141B, 142B, and 143B for a respective second antenna segment 112A-E of the respective second zig-zag element 107B, 108B, and 109B.
As shown in
Each of the conductive disks 103A-F or a subset 103B-F are aligned to have substantially overlapping profiles 122B-F of the respective disk lateral surface area 151B-F or the respective disk perimeter 152B-F along the height 121 of the zig-zag antenna array 101. “Substantially overlapping profiles” means from a side view the lateral surface areas 151B-F of the conductive disks 103B-F are longitudinally aligned to overlap between 90-100 percent. Hence, as shown five conductive disks 103B-F, including the top conductive disk 103F have substantially overlapping profiles 122B-F with each other. But the bottom conductive disk 103A is not substantially overlapping with any of the other conductive disks 103B-F.
As shown in
The first antenna segments 111A-E of the first zig-zag element 107A are oriented substantially parallel with respect to each other (e.g., same orientation) and are excited to obtain full polarization control along the entire height 121 of the crossed zig-zag antenna 104A. The substantially parallel orientation can be utilized to achieve crossed polarization. As shown, first antenna segments 111A-E are positioned approximately 45 degrees to first feedthrough line 171A and respective first shielded transmission lines 124B-E, which creates zig-zag structures of the first zig-zag element 107A. In the example of
The second antenna segments 112A-E of the second zig-zag element 107B are oriented substantially parallel with respect to each other. As shown, respective second antenna segments 112A-E are positioned approximately 45 degrees to second feedthrough line 172A and respective second shielded transmission lines 134B-E, which creates zig-zag structures of the second zig-zag element 107B. In the example of
In the implementation of
As shown, first antenna segments 111A-C are approximately 45 degrees to a lateral axis (e.g., horizontal axis) of the conductive disks 103A-F. As shown in
Shielded transmission lines 124A-E and 134A-E can be non-radiating elements (waveguides) that are of a sufficient length and geometry to adjust phase of the RF signal. The shielded transmission lines 124A-E and 134A-E allows RF waves to continue with the same as previous layer (e.g., first antenna segments 111A-C) of first zig-zag element 107A, shown in
In
As further shown in
When the zig-zag antenna array 101 is incorporated with a spherical reflector, the tapered 415 pattern improves RF wave reception and transmission by improving coupling to the signal of the spherical reflector. With the spherical reflector positioned above the top conductive disk 103F, the incoming RF waves typically come in from below the bottom conducting disk and go up past the zig-zag antenna array 101 and strike the spherical reflector and come back down to the focal line feed. Tapering can be used to optimize the illumination of the line feed on the spherical reflector. Typically, the greater the length 120 of the zig-zag antenna array 101, the more tapering is needed. Forming the bottom conductive disk 103A with a greater disk lateral surface area 151A and top conductive disk 103F with a smaller disk lateral surface area 151F and then gradually decreasing the disk lateral surface areas 151B-E between the bottom conductive disk 103A and the top conductive disk 103F, can help ensure that RF signals optimally illuminate the spherical reflector. However, if the zig-zag antenna array 101 is deployed in a standalone configuration, tapering typically will not improve performance.
The bottom conductive disk 103F can be larger than the others and serve as a ground plane. The two conductive paths of each of the first antenna segments 111A-E and the second antenna segments 112A-E are continuous and can pass through the conductive disks 103A-F by way of conductive disk interconnects 123A-E, 133A-E (e.g., the depicted feedthrough lines 171A-E, 172A-E in
The continuous, periodic nature of the first antenna segments 111A-E and the second antenna segments 112A-E cause any signals with a wavelength, λ, intercepted along its length, L, to constructively interfere and appear as a sum at antenna terminals of each zig-zag antenna 104A-C. Therefore, the power received by each zig-zag antenna 104A-C, PR, increases with L until such point where the losses associated with traveling the distance L+ΔL are greater than the energy intercepted over ΔL. Each zig-zag antenna 104A-C can be composed of two or more pairs of first antenna segments 111A-E and the second antenna segments 112A-E to form the crossed zig-zag antenna segment pairs 106A-E, which when properly phased relative to one another, can be used to generate and steer a wide variety of beam patterns. If desired, the diameters of the conductive disks 103A-F can be tapered as shown in along a length (e.g., height 121) of each zig-zag antenna 104A-C to provide focusing of the beam pattern upward from the base (i.e., at the bottom conductive disk 103A), for example, when used in conjunction with a spherical balloon reflector.
The geometric layout of the zig-zag antenna array 101, including the crossed zig-zag antenna 104A, shows a longitudinal disk spacing 515 between each of the conductive disks 103A-F that is approximately a wavelength (λ or lambda) of the RF waves multiplied by 0.354 (λ*0.354), which is derived from a wavelength of the RF waves divided by 2 times square root of two (λ/2√{square root over (2)}). Normally, one would expect the longitudinal disk spacing 515 to be half a wavelength. But because the first antenna segments 111A-E and second antenna pairs 112A-E that formed crossed zig-zag antenna pairs 106A-E are crossed, the longitudinal disk spacing 515 is optimized based on computer simulations to arrive at λ*0.354. This is a theoretical estimate and, in other practical examples, the longitudinal disk spacing 515 ranges between 0.25 to 0.75 multiplied by the wavelength (λ) of the RF waves. When the zig-zag antenna array 101 is utilized with a spherical balloon reflector, the longitudinal disk spacing 515 will affect the illumination pattern on the spherical balloon reflector. In such a spherical balloon reflector deployment, half a wavelength is just a starting point for the longitudinal disk spacing 515, which is further adjusted based on a size of the spherical balloon reflector. Moreover, when operating in a particular RF band, the longitudinal disk spacing 515 may be refined depending on the illumination pattern, frequency of operation, and bandwidth.
The overall geometric layout of the zig-zag antenna array 101 thus depicts a segment thickness of each of the first antenna segments 111A-E and the second antenna segments 112A-E is approximately the wavelength of the RF waves divided by ten (λ/10) or less. A segment length of each of the first antenna segments 111A-E and the second antenna segments 112A-E is approximately the wavelength of the RF waves divided by two (λ/2). A lateral element hole spacing 510 between the respective first element 141A hole and the respective second element hole 141B (shown in
For the substantially parallel orientation of monopoles (e.g., first antenna segments 111A-E of first zig-zag element 107A) like that shown in
It should be understood that each of the second feedthrough lines 172A-D are formed like the second feedthrough line 172E shown in
With a construction like that shown in
As further shown in
When the first and second conductive interconnects 123x, 133x are formed of either: (i) a first and second shielded transmission line 124x, 134x, respectively, or (ii) a first and second feedthrough line 171x, 172x, respectively, then each crossed zig-zag antenna 104A-C is independently controllable as a separate channel (e.g., with a different single polarization) by the control circuit 550 through the respective element pair 105A-C to transmit or receive the RF waves as a respective independent RF output beam with a different respective polarization state. However, in the example shown in
Control circuit 500 further includes a power combiner 565 for coupling RF waves to radio I/O lines 661A-C (see
The control circuit 500 also includes a phase and amplitude control block 570 to handle to implement phase and amplitude control for the combined and divided RF wave signals. The phase and amplitude control 570 block individually controls amplitude and phasing of each crossed zig-zag antenna 104A-C and is controlled to switch between linear and circular polarization control, as well as implement control in the aggregate. Phase and amplitude control block 570 can include three adjustable phase shifters and attenuators, one for each element pair 105A-C. Since there are three crossed zig-zag antennas 104A-C in the zig-zag antenna array 101, resulting in three element pairs 105A-C, each element pair 105A-C has a respective phase shifter and attenuator to control that element pair 105A-C. For example, by adjusting phase of the first zig-zag element 107A to the second zig-zag element 107B, the polarization control of the RF waves (signals) can be changed from right to left polarization or from up to down polarization to excite different polarization states. Phase control is utilized to both excite a target polarization state and steer the RF beam. Amplitude control is utilized to reduce side lobe levels and provide greater control of the RF waves.
As further shown, control circuit 550 includes a MIMO coding block 610 and a transmission (TX) and reception (RX) block 615. MIMO coding block 610 can be based on 802.11 techniques. The MIMO coding block 610 can be programming that is controlled by the TX/RX block 615. MIMO is a technique for multiplying the capacity of one or more radio 560A-C links using multiple transmit and receive crossed zig-zag antennas 104A-C of the crossed zig-zag antenna 101 to exploit multipath propagation. For example, crossed zig-zag antennas 104A-C may transmit or receive in a range from 100 megahertz (MHz) to 40 gigahertz (GHz). The control circuit 550 includes the depicted circuit board 600 to allow the user (via the MIMO coding block 610) to set which radios 860A-C, modulation schemes, and crossed zig-zag antennas 104A-C should be activated to transmit and receive for this purpose. Microcontroller 555 can include a memory with programming instructions to control RF polarization states and power.
In the example of
The independently controlled outputs 571A-F can be switches, relays, multiplexers, demultiplexers, or transistors, which can activate or deactivate the respective crossed zig-zag antenna 104A-C during transmission or reception of RF waves. In the example of
The control circuit 550 further includes a plurality of electrical contacts 475A-F, such as antenna pins that plug in from the back. Each respective electrical contact 475A-F (six) is electrically connected to respective zig-zag elements 107A-B, 108A-B, 109A-B (six) and a respective independently controlled output 571A-F (six). For example, electrical contact 475A is electrically connected to the first zig-zag element 107A and independently controlled output 571A, electrical contact 475B is electrically connected to the second zig-zag element 107B and independently controlled output 571B, electrical contact 475C is electrically connected to the first zig-zag element 108A and independently controlled output 571C, electrical contact 475D is electrically connected to the second zig-zag element 108B and independently controlled output 571D, electrical contact 475E is electrically connected to the first zig-zag element 109A and independently controlled output 571E, and electrical contact 475F is electrically connected to the second zig-zag element 109B and independently controlled output 571F.
Microcontroller 555 is configured to turn on the respective independently controlled output 575A-F with the respective control signal, such as switching control signal 615A-F, which activates and closes the respective portion of the control circuit 550. Turning on of the respective independently controlled output 571A-F, electrically connects the RF input/output strip 420 to a respective element pair 105A-C which transmits RF radiation of different polarization states via the selected element pairs 105A-C by adjusting a phase difference between respective first and second zig-zag elements 107A-B, 108A-B, and 109A-B (e.g., transmission mode) and/or receives RF radiation via the selected element pair 105A-C (e.g., reception mode). Microcontroller 555 is configured turn off the respective independently controlled output 575A-F with the respective switching control signal 615A-F to electrically disconnect the RF input/output strip 420 from the respective element pair 105A-C, which deactivates and opens the respective portion of the control circuit 550.
As further shown, control circuit 550 further includes multiple (three) radios 560A-C configured to input an RF input signal to the RF input/output strip 420 during transmission mode. A respective radio input/output line is 661A-C is connected to each respective radio 560A-C. The circuit board 600 includes an RF input/output 420 strip connected to the radio input/output lines 661A-C to convey the RF waves to and from each respective radio 560A-C.
Radios 560A-C are configured to receive an RF output signal from the RF input/output strip 420 during reception mode. Microcontroller 555 is also coupled to RF beam polarization control programming 675. The RF beam polarization control programming 675 can be stored in a memory 672, which is accessible to the microcontroller 556. Programming instructions of the RF beam polarization control programming 675 are executable by the microcontroller 555. Microcontroller 556 can also be coupled to an input/output (I/O) interface 672, such as a Universal Serial Bus (USB) port in the example. Alternatively or additionally, the RF beam polarization control programming 675 can be received via the input/output interface 672. The RF beam polarization control programming 675 can select the location and number of crossed zig-zag antennas 104A-C and phase differences of respective first and second zig-zag elements 107A-B, 108A-B, and 109A-B of a respective element pair 105A-C to change the polarization states of the emitted and received RF beams. In order for the RF beam polarization control programming 675 to control polarization state, microcontroller 555 may receive and utilize data transmitted via the I/O interface 672. This data may be generated by the radios 560A-C, sensors included in the antenna system 100 or by independent separate standalone sensors. Additionally, the data can be received by the crossed zig-zag antennas 104A-C, processed by the radios 560A-C, and stored in the memory accessible to the microcontroller 555 for decision-making by the executed RF beam polarization control programming 675. RF waves emanating or received by respective zig-zag antennas 104A-C associated with respective radios 560A-C are with different polarizations by the RF beam polarization control programming 675 and received RF waves are decoded into different polarization states by the RF beam polarization control programming 675.
Although control circuit 550 includes six independently controlled outputs 571A-F and three element pairs 105A-C in the example, the number may vary depending on the number of crossed zig-zag antennas 104A-C. Each additional crossed zig-zag antenna 104x results in two additional independently controlled outputs 571x and each less crossed zig-zag antenna 104x results in two fewer independently controlled outputs 571x. The number of crossed zig-zag antennas 104A-C and corresponding element pairs 105A-C varies depending on how many different polarization states of an RF beam is desired. Typically, a total number of first and second zig-zag elements 107A-B, 108A-B, and 109A-B matches a total number of independently controlled outputs 571A-F. But in some examples, there may be fewer (e.g., half as many) independently controlled outputs 571A-C than first and second zig-zag elements 107A-B, 108A-B, and 109A-B in the shared channel implementation depicted in
In the V board antenna system 700, one vertical monopole board 712A includes a first zig-zag element 107A on the outwards facing (e.g., front) side of the monopole board 712A and a second zig-zag element 107B (not shown) on the inwards facing (e.g. back) side of the monopole board 712A. Looking at
V board antenna system 700 further includes a top plate 411, eight connectors 419A-H, divided into a respective connector set (e.g. pair) 419A-B per monopole board 712A-D. V board antenna system 700 includes four middle plate sections 714A-D, a supplemental plate 715, a plastic ring clamp 716, and a base plate 418. Although not visible in
As shown, the first shielded transmission line 124A of the first monopole board 712A includes a phase synchronizing circuit 719A and a phase synchronizing circuit shield 717A. Phase synchronizing circuit 719A can be part of the monopole board 712A and located in between the middle plate section 714A and is shielded by phase synchronization circuit shield 717A (not visible in
Monopoles (e.g., first antenna segments 111A-B) of first zig-zag element 107A can include traces on the monopole board 712A, wires inserted in a groove on the monopole board 712A, or a combination thereof. Eight connectors 419A-H are disposed on a lower longitudinal portion of the first monopole board 712A for connection to control circuit board 600. Monopoles of first zig-zag element 107A and second zig-zag element 107B are coupled to the control circuit board 600 via a respective connector pair 419A-B. Instead of the connector set 419A-H, the monopoles can be soldered directly to a board/base plate.
The thickness of the monopole boards 712A-D can be in the millimeter (mm) range, which defines the distance between crossed monopoles. The material forming the monopole boards 712A-D is adequate for transmission at the approximate design frequency (which can include more than one frequency). The number of layers (e.g., longitudinal levels 120A-B) of the monopole boards 712A-D is two in
The top plate 411 and base plate 418 can be one piece and optionally, the base plate 418 can be the control circuit board 600 itself. The middle plate sections 714A-D are put together in parts as shown in the exploded view of
In the VH board antenna system 800, one vertical carved monopole board 812A includes a first zig-zag element 107A on the outwards facing (e.g., front) side of the monopole board 812A and a second zig-zag element 107B (not shown) on the inwards facing side (e.g. back) of the carved monopole board 812A. Looking at
Carved monopole board 812A includes a first zig-zag element 107A and a second zig-zag antenna element 107B. Carved monopole boards 812B-D include respective first and second zig-zag elements 107A-B on different sides of the respective carved monopole board 812B-D. Hence, zig-zag elements 107A, 107B are positioned on opposing sides of the carved monopole board 812A. Although the drawings do not depict all of the support components or a radome, the other components described herein, such as reflectors, can be included in the VH board antenna system 800 or related feed.
VH board antenna system 800 further includes a top plate 411; eight crossed polarization pairs 802A-D, 807A-D; a base plate 418; a lower middle plate 413; and an upper middle plate 416. VH board antenna system 800 further includes four phase synchronizing boards 815A-D, one per respective carved monopole board 812A-D. Lower middle plate 413 and upper middle plate 416 divide the VH board antenna system 800 into first layer crossed polarization pairs 802A-D on a first lower longitudinal level 120A and a second layer crossed polarization pair 807A-D on a second upper longitudinal level 120B (one per respective carved monopole board 812A-D). Hence, the first carved monopole 812A includes a first layer crossed polarization pair 802A and a second layer crossed polarization pair 807A.
The monopoles (e.g., first antenna segments 111A-B) of first zig-zag element 107A can include conductive traces on the carved monopole board 812A, wires inserted in a groove on the carved monopole board 812A, or a combination thereof with wires being at the end of the traces to solder to the substantially horizontal phase synchronizing board 815A or small edge connectors with mates on the substantially horizontal phase synchronizing board 815A (e.g., G4PO). If the ends are traces, the traces do not stick out of the carved monopole board 812A as shown in
The thickness of the carved monopole boards 812A-D can be in the millimeter (mm) range, which defines the distance between crossed monopoles (e.g., crossed polarization pairs 802A, 807B). The material forming the carved monopole boards 812A-D is adequate for transmission at the approximate design frequency (which can include more than one frequency). The number of layers (e.g., longitudinal levels 120A-B) of the carved monopole boards 812A-D is two in
Phase synchronizing board 815A synchronizes the phase between the monopoles in the first and second layers, e.g., first layer crossed polarization pair 802A and second layer crossed polarization pair 807A. Phase synchronizing board 815 can be one board similar in size to the plates 411, 418, 413, and 416. Alternatively, phase synchronizing board 815 can be four separate phase synchronizing boards 815A-D like that shown, one for each crossed polarization pair 802A, 807A. The connections to the monopoles (4 per carved monopole circuit board 812A-D or per crossed polarization pair 802A, 807A) can be soldered or surface mount connectors. Material forming the phase synchronizing board 815A can be different from the material forming the monopole board 812A (e.g., more adequate for the phase control function).
The top plate 411, base plate 418, lower middle plate 413, and upper middle 416 plate can be made in one piece with the necessary openings for tabs or connectors to couple to the carved monopole boards 812A-D and phase synchronizing boards 815A-D. The base plate 418 can be a board with one side metal and the other opposing side with circuits. One of the middle plates 413, 416 can include a circuit board with metal on one side and the phase adjusting circuits can be on the other one of the middle plates 413, 416.
Like V board antenna system 700, VH board antenna system 800 can include eight optional connectors 419A-H that are disposed on a lower longitudinal portion of the first carved monopole boards 812A-D for connection to control circuit board 600. The monopoles of first zig-zag element 107A and second zig-zag element 107B are coupled to the control circuit board 600 via a respective connector pair 419A-B. Instead of the connector set 419A-H, the monopoles can be soldered directly to a board/base plate.
Any of the microprocessor and RF beam polarization control programming 675 can be embodied in on one or more methods as method steps or in one more programs. According to some embodiments, program(s) execute functions defined in the program, such as logic embodied in software or hardware instructions. Various programming languages can be employed to create one or more of the applications, structured in a variety of manners, such firmware, procedural programming languages (e.g., C or assembly language), or object-oriented programming languages (e.g., Objective-C, Java, or C++). The program(s) can invoke API calls provided by the operating system to facilitate functionality described herein. The programs can be stored in any type of computer readable medium or computer storage device and be executed by one or more general-purpose computers. In addition, the methods and processes disclosed herein can alternatively be embodied in specialized computer hardware or an application specific integrated circuit (ASIC), field programmable gate array (FPGA) or a complex programmable logic device (CPLD).
Hence, a machine-readable medium may take many forms of tangible storage medium. Non-volatile storage media include, for example, optical or magnetic disks, such as any of the storage devices in any computer(s) or the like, such as may be used to implement the client device, media gateway, transcoder, etc. shown in the drawings. Volatile storage media include dynamic memory, such as main memory of such a computer platform. Tangible transmission media include coaxial cables; copper wire and fiber optics, including the wires that comprise a bus within a computer system. Carrier-wave transmission media may take the form of electric or electromagnetic signals, or acoustic or light waves such as those generated during radio frequency (RF) and infrared (IR) data communications. Common forms of computer-readable media therefore include for example: a floppy disk, a flexible disk, hard disk, magnetic tape, any other magnetic medium, a CD-ROM, DVD or DVD-ROM, any other optical medium, punch cards paper tape, any other physical storage medium with patterns of holes, a RAM, a PROM and EPROM, a FLASH-EPROM, any other memory chip or cartridge, a carrier wave transporting data or instructions, cables or links transporting such a carrier wave, or any other medium from which a computer may read programming code and/or data. Many of these forms of computer readable media may be involved in carrying one or more sequences of one or more instructions to a processor for execution.
The scope of protection is limited solely by the claims that now follow. That scope is intended and should be interpreted to be as broad as is consistent with the ordinary meaning of the language that is used in the claims when interpreted in light of this specification and the prosecution history that follows and to encompass all structural and functional equivalents. Notwithstanding, none of the claims are intended to embrace subject matter that fails to satisfy the requirement of Sections 101, 102, or 103 of the Patent Act, nor should they be interpreted in such a way. Any unintended embracement of such subject matter is hereby disclaimed.
Except as stated immediately above, nothing that has been stated or illustrated is intended or should be interpreted to cause a dedication of any component, step, feature, object, benefit, advantage, or equivalent to the public, regardless of whether it is or is not recited in the claims.
It will be understood that the terms and expressions used herein have the ordinary meaning as is accorded to such terms and expressions with respect to their corresponding respective areas of inquiry and study except where specific meanings have otherwise been set forth herein. Relational terms such as first and second and the like may be used solely to distinguish one entity or action from another without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” “includes,” “including,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises or includes a list of elements or steps does not include only those elements or steps but may include other elements or steps not expressly listed or inherent to such process, method, article, or apparatus. An element preceded by “a” or “an” does not, without further constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises the element.
In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in various examples for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed examples require more features than are expressly recited in each claim. Rather, as the following claims reflect, the subject matter to be protected lies in less than all features of any single disclosed example. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.
While the foregoing has described what are considered to be the best mode and/or other examples, it is understood that various modifications may be made therein and that the subject matter disclosed herein may be implemented in various forms and examples, and that they may be applied in numerous applications, only some of which have been described herein. It is intended by the following claims to claim any and all modifications and variations that fall within the true scope of the present concepts.
This application claims priority to U.S. Provisional Patent Application No. 62/875,594, filed on Jul. 18, 2019, titled “Zig-Zag Antenna Array and System for Polarization Control,” the entire disclosure of which is incorporated by reference herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2020/042279 | 7/16/2020 | WO |
Number | Date | Country | |
---|---|---|---|
62875594 | Jul 2019 | US |