ZIKA RNA VACCINES

Abstract
Aspects of the disclosure relate to nucleic acid vaccines. The vaccines include one or more RNA polynucleotides having an open reading frame encoding one or more Chikungunya antigen(s), one or more Zika virus antigens, and one or more Dengue antigens. Methods for preparing and using such vaccines are also described.
Description
BACKGROUND OF INVENTION

Chikungunya virus (CHIKV) is a mosquito-borne virus belonging to the Alphavirus genus of the Togaviridae family that was first isolated in 1953 in Tanzania, where the virus was endemic. Outbreaks occur repeatedly in west, central, and southern Africa and have caused several human epidemics in those areas since that time. The virus is passed to humans by two species of mosquito of the genus Aedes: A. albopictus and A. aegypti. There are several Chikungunya genotypes: Indian Ocean, East/Central/South African (ECSA), Asian, West African, and Brazilian.


Presently, CHIKV is a re-emerging human pathogen that has now established itself in Southeast Asia and has more recently spread to Europe. The Chikungunya virus (CHIKV) was introduced into Asia around 1958, and sites of endemic transmission within Southeastern Asia, including the Indian Ocean, were observed through 1996. The CHIKV epidemic moved throughout Asia, reaching Europe and Africa in the early 2000s, and was imported via travelers to North America and South America from 2005 to 2007. Sporadic outbreaks are still occurring in several countries, such as Italy, inflicting naive populations. Singapore, for instance, experienced two successive waves of Chikungunya virus outbreaks in January and August 2008. Of the two strain lineages of CHIKV, the African strain remains enzootic by cycling between mosquitoes and monkeys, but the Asian strain is transmitted directly between mosquitoes and humans. This cycle of transmission may have allowed the virus to become more pathogenic as the reservoir host was eliminated.


In humans, CHIKV causes a debilitating disease characterized by fever, headache, nausea, vomiting, fatigue, rash, muscle pain and joint pain. Following the acute phase of the illness, patients develop severe chronic symptoms lasting from several weeks to months, including fatigue, incapacitating joint pain and polyarthritis.


The re-emergence of CHIKV has caused millions of cases throughout countries around the Indian Ocean and in Southeast Asia. Specifically, India, Indonesia, Maldives, Myanmar and Thailand have reported over 1.9 million cases since 2005. Globally, human CHIKV epidemics from 2004-2011 have resulted in 1.4-6.5 million reported cases, including a number of deaths. Thus, CHIKV remains a public threat that constitutes a major public health problem with severe social and economic impact.


Despite significant morbidity and some cases of mortality associated with CHIKV infection and its growing prevalence and geographic distribution, there is currently no licensed CHIKV vaccine or antiviral approved for human use. Several potential CHIKV vaccine candidates have been tested in humans and animals with varying success.


Dengue virus (DENV) is a mosquito-borne (Aedes aegypti/Aedes albopictus) member of the family Flaviviridae (positive-sense, single-stranded RNA virus). Dengue virus is a positive-sense RNA virus of the Flavivirus genus of the Flaviviridae family, which also includes West Nile virus, Yellow Fever Virus, and Japanese Encephalitis virus. It is transmitted to humans through Stegomyia aegypti (formerly Aedes) mosquito vectors and is mainly found in the tropical and semitropical areas of the world, where it is endemic in Asia, the Pacific region, Africa, Latin America, and the Caribbean. The incidence of infections has increased 30-fold over the last 50 years (WHO, Dengue: Guidelines for diagnosis, treatment, prevention, and control (2009)) and Dengue virus is the second most common tropical infectious disease worldwide after malaria.


There is no specific treatment for DENV infection, and control of DENV by vaccination has proved elusive, in part, because the pathogenesis of DHF/DSS is not completely understood. While infection with one serotype confers lifelong homotypic immunity, it confers only short term (approximately three to six months) cross protection against heterotypic serotypes. Also, there is evidence that prior infection with one type can produce an antibody response that can intensify, or enhance, the course of disease during a subsequent infection with a different serotype. The possibility that vaccine components could elicit enhancing antibody responses, as opposed to protective responses, has been a major concern in designing and testing vaccines to protect against dengue infections.


In late 2015 and early 2016, the first dengue vaccine, Dengvaxia (CYD-TDV) by Sanofi Pasteur, was registered in several countries for use in individuals 9-45 years of age living in endemic areas. Issues with the vaccine include (1) weak protection against DENV1 and DENV2 (<60% efficacy); (2) relative risk of dengue hospitalization among children <9 years old (7.5× higher than placebo); (3) immunogenicity not sustained after 1-2 years (implying the need for a 4th dose booster); and (4) lowest efficacy against DENV2, which often causes more severe conditions. This latter point is a major weakness with the Dengvaxia vaccine, signaling the need of a new, more effective vaccine effective against DENV2. Other tetravalent live-attenuated vaccines are under development in phase II and phase III clinical trials, and other vaccine candidates (based on subunit, DNA and purified inactivated virus platforms) are at earlier stages of clinical development, although the ability of these vaccine candidates to provide broad serotype protection has not been demonstrated.


Zika virus (ZIKV) is a member of the Flaviviridae virus family and the flavivirus genus. In humans, it causes a disease known as Zika fever. It is related to dengue, yellow fever, West Nile and Japanese encephalitis, viruses that are also members of the virus family Flaviviridae. ZIKV is spread to people through mosquito bites. The most common symptoms of ZIKV disease (Zika) are fever, rash, joint pain, and red eye. The illness is usually mild with symptoms lasting from several days to a week. There is no vaccine to prevent, or medicine to treat, Zika virus.


Deoxyribonucleic acid (DNA) vaccination is one technique used to stimulate humoral and cellular immune responses to foreign antigens, such as ZIKV antigens. The direct injection of genetically engineered DNA (e.g., naked plasmid DNA) into a living host results in a small number of its cells directly producing an antigen, resulting in a protective immunological response. With this technique, however, comes potential problems, including the possibility of insertional mutagenesis, which could lead to the activation of oncogenes or the inhibition of tumor suppressor genes.


SUMMARY OF INVENTION

Provided herein is a ribonucleic acid (RNA) vaccine (e.g., messenger RNA (mRNA)) that can safely direct the body's cellular machinery to produce nearly any protein of interest, from native proteins to antibodies and other entirely novel protein constructs that can have therapeutic activity inside and outside of cells. The RNA vaccines of the present disclosure may be used to induce a balanced immune response against a single virus or multiple viruses, including Chikungunya virus (CHIKV), Zika Virus (ZIKV) and Dengue virus (DENV), comprising both cellular and humoral immunity, without the associated safety concerns, e.g., risking the possibility of insertional mutagenesis.


Some embodiments of the present disclosure provide vaccines and/or combination vaccines comprising one or more RNA polynucleotides, e.g., mRNA. In some embodiments, the RNA polynucleotide(s) encode a CHIKV antigen, a ZIKV antigen, a DENV antigen, or any combination of two or three of the foregoing (e.g., CHIKV antigen/ZIKV antigen, CHIKV antigen/DENV antigen, ZIKV antigen/DENV antigen, or CHIKV/DENV/ZIKV) on either the same polynucleotide or different polynucleotides. In some embodiments, the RNA polynucleotide(s) encode a ZIKV antigen and a DENV antigen, on either the same polynucleotide or different polynucleotides.


Thus, it should be understood the phrase “a CHIKV, DENV and/or ZIKV” is intended to encompass each individual virus in the alternative (CHIKV or DENV or ZIKV) as well as the individual combinations of CHIKV and DENV (CHIKV/DENV), CHIKV and ZIKV (CHIKV/ZIKV), ZIKV and DENV (ZIKV/DENV), and CHIKV, DENV and ZIKV (CHIKV/DENV/ZIKV).


In some aspects, the present disclosure provides a vaccine or a combination vaccine of at least one RNA polynucleotide encoding at least one CHIKV antigenic polypeptide, at least one ZIKV antigenic polypeptide, at least one DENV antigenic polypeptide, or a combination of any two or three of the foregoing, and a pharmaceutically acceptable carrier or excipient. In some embodiments, the RNA polynucleotides encoding the DENV antigenic polypeptide, the ZIKV antigenic polypeptide and/or the CHIKV antigenic polypeptide are mono-cistronic RNA polynucleotides. In other embodiments, the RNA polynucleotide encoding the DENV antigenic polypeptide, the ZIKV antigenic polypeptide and/or the CHIKV antigenic polypeptide is a poly-cistronic. In other embodiments, the RNA polynucleotides include combinations of mono-cistronic and poly-cistronic RNA.


In some aspects, the present disclosure provides a vaccine or a combination vaccine of at least one RNA polynucleotide encoding at least one ZIKV antigenic polypeptide and at least one DENV antigenic polypeptide and a pharmaceutically acceptable carrier or excipient. In some embodiments, the RNA polynucleotides encoding the ZIKV antigenic polypeptide and the DENV antigenic polypeptide are mono-cistronic RNA polynucleotides. In other embodiments, the RNA polynucleotide encoding the ZIKV antigenic polypeptide and the DENV antigenic polypeptide is a poly-cistronic RNA polynucleotide. In other embodiments, the RNA polynucleotides include combinations of mono-cistronic and poly-cistronic RNA.


In some aspects, the present disclosure provides a vaccine or a combination vaccine of at least one RNA polynucleotide encoding at least one ZIKV antigenic polypeptide and at least one CHIKV antigenic polypeptide and a pharmaceutically acceptable carrier or excipient. In some embodiments, the RNA polynucleotides encoding the ZIKV antigenic polypeptide and the CHIKV antigenic polypeptide are mono-cistronic RNA polynucleotides. In other embodiments, the RNA polynucleotide encoding the ZIKV antigenic polypeptide and the CHIKV antigenic polypeptide is a poly-cistronic RNA polynucleotide. In other embodiments, the RNA polynucleotides include combinations of mono-cistronic and poly-cistronic RNA.


In some aspects, the present disclosure provides a vaccine or a combination vaccine of at least one RNA polynucleotide encoding at least one DENV antigenic polypeptide and at least one CHIKV antigenic polypeptide and a pharmaceutically acceptable carrier or excipient. In some embodiments, the RNA polynucleotides encoding the DENV antigenic polypeptide and the CHIKV antigenic polypeptide are mono-cistronic RNA polynucleotides. In other embodiments, the RNA polynucleotide encoding the DENV antigenic polypeptide and the CHIKV antigenic polypeptide is a poly-cistronic RNA polynucleotide. In other embodiments, the RNA polynucleotides include combinations of mono-cistronic and poly-cistronic RNA.


The at least one RNA polynucleotide, e.g., mRNA, in some embodiments, encodes two or more CHIKV antigenic polypeptides, two or more ZIKV antigenic polypeptides or two or more DENV antigenic polypeptides. The at least one RNA polynucleotide, e.g., mRNA, in some embodiments, encodes two or more CHIKV antigenic polypeptides, two or more ZIKV antigenic polypeptides and two or more DENV antigenic polypeptides. In some embodiments, the at least one RNA polynucleotide, e.g., mRNA, encodes two or more ZIKV antigenic polypeptides and two or more DENV antigenic polypeptides. In some embodiments, the at least one RNA polynucleotide, e.g., mRNA, encodes two or more ZIKV antigenic polypeptides and two or more CHIKV antigenic polypeptides. In some embodiments, the at least one RNA polynucleotide, e.g., mRNA, encodes two or more CHIKV antigenic polypeptides and two or more DENV antigenic polypeptides.


The CHIKV antigenic polypeptide may be a Chikungunya structural protein or an antigenic fragment or epitope thereof. The DENV antigenic polypeptide may be a Dengue virus (DENV) structural protein or an antigenic fragment or epitope thereof. The ZIKV antigenic polypeptide may be a Zika virus (ZIKV) structural protein (e.g., polyprotein) or an antigenic fragment or epitope thereof.


In some embodiments, the antigenic polypeptide is a CHIKV structural protein or an antigenic fragment thereof. For example, a CHIKV structural protein may be an envelope protein (E), a 6K protein, or a capsid (C) protein. In some embodiments, the CHIKV structural protein is an envelope protein selected from E1, E2, and E3. In some embodiments, the CHIKV structural protein is E1 or E2. In some embodiments, the CHIKV structural protein is a capsid protein. In some embodiments, the antigenic polypeptide is a fragment or epitope of a CHIKV structural protein.


In some embodiments, at least one antigenic polypeptide is a ZIKV polyprotein. In some embodiments, at least one antigenic polypeptide is a ZIKV structural polyprotein. In some embodiments, at least one antigenic polypeptide is a ZIKV nonstructural polyprotein.


In some embodiments, at least one antigenic polypeptide is a ZIKV capsid protein, a ZIKV premembrane/membrane protein, a ZIKV envelope protein, a ZIKV non-structural protein 1, a ZIKV non-structural protein 2A, a ZIKV non-structural protein 2B, a ZIKV non-structural protein 3, a ZIKV non-structural protein 4A, a ZIKV non-structural protein 4B, or a ZIKV non-structural protein 5.


In some embodiments, at least one antigenic polypeptide is a ZIKV capsid protein, a ZIKV premembrane/membrane protein, a ZIKV envelope protein, a ZIKV non-structural protein 1, a ZIKV non-structural protein 2A, a ZIKV non-structural protein 2B, a ZIKV non-structural protein 3, a ZIKV non-structural protein 4A, a ZIKV non-structural protein 4B, or a ZIKV non-structural protein 5.


In some embodiments, the vaccine comprises a RNA polynucleotide having an open reading frame encoding a ZIKV capsid protein, a RNA polynucleotide having an open reading frame encoding a ZIKV premembrane/membrane protein, and a RNA polynucleotide having an open reading frame encoding a ZIKV envelope protein.


In some embodiments, the vaccine comprises a RNA polynucleotide having an open reading frame encoding a ZIKV capsid protein and a RNA polynucleotide having an open reading frame encoding a ZIKV premembrane/membrane protein.


In some embodiments, the vaccine comprises a RNA polynucleotide having an open reading frame encoding a ZIKV capsid protein and a RNA polynucleotide having an open reading frame encoding a ZIKV envelope protein.


In some embodiments, the vaccine comprises a RNA polynucleotide having an open reading frame encoding a ZIKV premembrane/membrane protein and a RNA polynucleotide having an open reading frame encoding a ZIKV envelope protein.


In some embodiments, the vaccine comprises a RNA polynucleotide having an open reading frame encoding a ZIKV capsid protein and at least one RNA polynucleotide having an open reading frame encoding any one or more of a ZIKV non-structural protein 1, 2A, 2B, 3, 4A, 4B or 5.


In some embodiments, the vaccine comprises a RNA polynucleotide having an open reading frame encoding a ZIKV premembrane/membrane protein and at least one RNA polynucleotide having an open reading frame encoding any one or more of a ZIKV non-structural protein 1, 2A, 2B, 3, 4A, 4B or 5.


In some embodiments, the vaccine comprises a RNA polynucleotide having an open reading frame encoding a ZIKV envelope protein and at least one RNA polynucleotide having an open reading frame encoding any one or more of a ZIKV non-structural protein 1, 2A, 2B, 3, 4A, 4B or 5.


In some embodiments, the at least one antigenic polypeptide comprises a combination of any two or more of a ZIKV capsid protein, a ZIKV premembrane/membrane protein, a ZIKV envelope protein, a ZIKV non-structural protein 1, a ZIKV non-structural protein 2A, a ZIKV non-structural protein 2B, a ZIKV non-structural protein 3, a ZIKV non-structural protein 4A, a ZIKV non-structural protein 4B, or a ZIKV non-structural protein 5.


In some embodiments, the at least one ZIKV antigenic polypeptide is fused to signal peptide having a sequence set forth as SEQ ID NO: 125, 126, 128 or 131. In some embodiments, the signal peptide is fused to the N-terminus of the at least one ZIKV antigenic polypeptide.


In some embodiments, the antigenic polypeptide comprises two or more CHIKV structural proteins. In some embodiments, the two or more CHIKV structural proteins are envelope proteins. In some embodiments, the two or more CHIKV structural proteins are E1 and E2. In some embodiments, the two or more CHIKV structural proteins are E1 and E3. In some embodiments, the two or more CHIKV structural proteins are E2 and E3. In some embodiments, the two or more CHIKV structural proteins are E1, E2, and E3. In some embodiments, the two or more CHIKV structural proteins are envelope and capsid proteins. In some embodiments, the two or more CHIKV structural proteins are E1 and C. In some embodiments, the two or more CHIKV structural proteins are E2 and C. In some embodiments, the two or more CHIKV structural proteins are E3 and C. In some embodiments, the two or more CHIKV structural proteins are E1, E2, and C. In some embodiments, the two or more CHIKV structural proteins are E1, E3, and C. In some embodiments, the two or more CHIKV structural proteins are E2, E3, and C. In some embodiments, the two or more CHIKV structural proteins are E1, E2, E3, and C. In some embodiments, the two or more CHIKV structural proteins are E1, 6K, and E2. In some embodiments, the two or more CHIKV structural proteins are E2, 6K, and E3. In some embodiments, the two or more CHIKV structural proteins are E1, 6K, and E3. In some embodiments, the two or more CHIKV structural proteins are E1, E2, E3, 6K, and C. In some embodiments, the antigenic polypeptide comprises the CHIKV structural polyprotein comprising C, E3, E2, 6K, and E1. In some embodiments, the antigenic polypeptide is a fragment or epitope of two or more CHIKV structural proteins or a fragment or epitope of the polyprotein.


In some embodiments the at least one antigenic polypeptide has greater than 90% identity to an amino acid sequence of any one of Tables 13, 15, 18-27, 32 or 34-37, or any one of SEQ ID NO: 14 or 37-47 (CHIKV), 15, 17, 19, 21, 23, 26, 29, 32, 162-298 (DENV), or 67-134 (ZIKV) and has membrane fusion activity. In some embodiments the at least one CHIKV antigenic polypeptide has greater than 90% identity to an amino acid sequence of any one of SEQ ID NO: 14 or 37-47 and has membrane fusion activity. In some embodiments the at least one DENV antigenic polypeptide has greater than 90% identity to an amino acid sequence of any one of SEQ ID NO: 15, 17, 19, 21, 23, 26, 29, 32, 162-298 and has membrane fusion activity. In some embodiments the at least one ZIKV antigenic polypeptide has greater than 90% identity to an amino acid sequence of any one of SEQ ID NO: 67-134 and has membrane fusion activity.


In some embodiments the at least one antigenic polypeptide has greater than 95% identity to an amino acid sequence of any one of Tables 13, 15, 18-27, 32 or 34-37, or any one of SEQ ID NO: 14 or 37-47 (CHIKV), 15, 17, 19, 21, 23, 26, 29, 32, 162-298 (DENV), or 67-134 (ZIKV) and has membrane fusion activity. In some embodiments the at least one CHIKV antigenic polypeptide has greater than 95% identity to an amino acid sequence of any one of SEQ ID NO: 14 or 37-47 and has membrane fusion activity. In some embodiments the at least one DENV antigenic polypeptide has greater than 95% identity to an amino acid sequence of any one of SEQ ID NO: 15, 17, 19, 21, 23, 26, 29, 32, or 162-298 and has membrane fusion activity. In some embodiments the at least one ZIKV antigenic polypeptide has greater than 95% identity to an amino acid sequence of any one of SEQ ID NO: 67-134 and has membrane fusion activity.


In some embodiments the at least one antigenic polypeptide has greater than 96% identity to an amino acid sequence of any one of Tables 13, 15, 18-27, 32 or 34-37, or any one of SEQ ID NO: 14 or 37-47 (CHIKV), 15, 17, 19, 21, 23, 26, 29, 32, 162-298 (DENV), or 67-134 (ZIKV) and has membrane fusion activity. In some embodiments the at least one CHIKV antigenic polypeptide has greater than 96% identity to an amino acid sequence of any one of SEQ ID NO: 14 or 37-47 and has membrane fusion activity. In some embodiments the at least one DENV antigenic polypeptide has greater than 96% identity to an amino acid sequence of any one of SEQ ID NO: 15, 17, 19, 21, 23, 26, 29, 32, or 162-298 and has membrane fusion activity. In some embodiments the at least one ZIKV antigenic polypeptide has greater than 96% identity to an amino acid sequence of any one of SEQ ID NO: 67-134 and has membrane fusion activity.


In some embodiments the at least one antigenic polypeptide has greater than 97% identity to an amino acid sequence of any one of Tables 13, 15, 18-27, 32 or 34-37, or any one of SEQ ID NO: 14 or 37-47 (CHIKV), 15, 17, 19, 21, 23, 26, 29, 32, 162-298 (DENV), or 67-134 (ZIKV) and has membrane fusion activity. In some embodiments the at least one CHIKV antigenic polypeptide has greater than 97% identity to an amino acid sequence of any one of SEQ ID NO: 14 or 37-47 and has membrane fusion activity. In some embodiments the at least one DENV antigenic polypeptide has greater than 97% identity to an amino acid sequence of any one of SEQ ID NO: 15, 17, 19, 21, 23, 26, 29, 32, or 162-298 and has membrane fusion activity. In some embodiments the at least one ZIKV antigenic polypeptide has greater than 97% identity to an amino acid sequence of any one of SEQ ID NO: 67-134 and has membrane fusion activity.


In some embodiments the at least one antigenic polypeptide has greater than 98% identity to an amino acid sequence of any one of Tables 13, 15, 18-27, 32 or 34-37, or any one of SEQ ID NO: 14 or 37-47 (CHIKV), 15, 17, 19, 21, 23, 26, 29, 32, 162-298 (DENV), or 67-134 (ZIKV) and has membrane fusion activity. In some embodiments the at least one CHIKV antigenic polypeptide has greater than 98% identity to an amino acid sequence of any one of SEQ ID NO: 14 or 37-47 and has membrane fusion activity. In some embodiments the at least one DENV antigenic polypeptide has greater than 98% identity to an amino acid sequence of any one of SEQ ID NO: 15, 17, 19, 21, 23, 26, 29, 32, or 162-298 and has membrane fusion activity. In some embodiments the at least one ZIKV antigenic polypeptide has greater than 98% identity to an amino acid sequence of any one of SEQ ID NO: 67-134 and has membrane fusion activity.


In some embodiments the at least one antigenic polypeptide has greater than 99% identity to an amino acid sequence of any one of Tables 13, 15, 18-27, 32 or 34-37, or any one of SEQ ID NO: 14 or 37-47 (CHIKV), 15, 17, 19, 21, 23, 26, 29, 32, 162-298 (DENV), or 67-134 (ZIKV) and has membrane fusion activity. In some embodiments the at least one CHIKV antigenic polypeptide has greater than 99% identity to an amino acid sequence of any one of SEQ ID NO: 14 or 37-47 and has membrane fusion activity. In some embodiments the at least one DENV antigenic polypeptide has greater than 99% identity to an amino acid sequence of any one of SEQ ID NO: 15, 17, 19, 21, 23, 26, 29, 32, or 162-298 and has membrane fusion activity. In some embodiments the at least one ZIKV antigenic polypeptide has greater than 99% identity to an amino acid sequence of any one of SEQ ID NO: 67-134 and has membrane fusion activity.


In some embodiments the at least one antigenic polypeptide has greater than 95-99% identity to an amino acid sequence of any one of Tables 13, 15, 18-27, 32 or 34-37, or any one of SEQ ID NO: 14 or 37-47 (CHIKV), 15, 17, 19, 21, 23, 26, 29, 32, 162-298 (DENV), or 67-134 (ZIKV) and has membrane fusion activity. In some embodiments the at least one CHIKV antigenic polypeptide has greater than 95-99% identity to an amino acid sequence of any one of SEQ ID NO: 14 or 37-47 and has membrane fusion activity. In some embodiments the at least one DENV antigenic polypeptide has greater than 95-99% identity to an amino acid sequence of any one of SEQ ID NO: 15, 17, 19, 21, 23, 26, 29, 32, or 162-298 and has membrane fusion activity. In some embodiments the at least one ZIKV antigenic polypeptide has greater than 95-99% identity to an amino acid sequence of any one of SEQ ID NO: 67-134 and has membrane fusion activity.


In other embodiments the at least one antigenic polypeptides encode an antigenic polypeptide having an amino acid sequence of Tables 13, 15, 18-27, 32 or 34-37, or any one of SEQ ID NO: 14 or 37-47 (CHIKV), 15, 17, 19, 21, 23, 26, 29, 32, 162-298 (DENV), or 67-134 (ZIKV) and wherein the RNA polynucleotide is codon optimized mRNA. In yet other embodiments the at least one antigenic polypeptide has an amino acid sequence of Tables 13, 15, 18-27, 32 or 34-37, or any one of SEQ ID NO: 14 or 37-47 (CHIKV), 15, 17, 19, 21, 23, 26, 29, 32, 162-298 (DENV), or 67-134 (ZIKV) and wherein the RNA polynucleotide has less than 80% identity to wild-type mRNA sequence. According to some embodiments the at least one antigenic polypeptide has an amino acid sequence of Tables 13, 15, 18-27, 32 or 34-37, or any one of SEQ ID NO: 14 or 37-47 (CHIKV), 15, 17, 19, 21, 23, 26, 29, 32, 162-298 (DENV), or 67-134 (ZIKV) and wherein the RNA polynucleotide has greater than 80% identity to wild-type mRNA sequence, but does not include wild-type mRNA sequence.


In some embodiments, the DENV antigen is a concatemeric DENV antigen. In some embodiments, the DENV concatemeric antigen comprises between 2-100 DENV peptide epitopes connected directly to one another or interspersed by linkers. In some embodiments, the DENV vaccine's peptide epitopes are T cell epitopes and/or B cell epitopes. In other embodiments, the DENV vaccine's peptide epitopes comprise a combination of T cell epitopes and B cell epitopes. In some embodiments, at least one of the peptide epitopes of the DENV vaccine is a T cell epitope. In some embodiments, at least one of the peptide epitopes of the DENV vaccine is a B cell epitope. In some embodiments, the T cell epitope of the DENV vaccine comprises between 8-11 amino acids. In some embodiments, the B cell epitope of the DENV vaccine comprises between 13-17 amino acids.


In some embodiments, the RNA polynucleotide, e.g., mRNA, of a vaccine is encoded by at least one polynucleotide comprising a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98% or 99% identity to any of the nucleotide sequences of Tables 1-4, 13, 15, 31, 34 or 38, or any one of SEQ ID NO: 1-13 (CHIKV), 16, 18, 20, 22, 24, 25, 27, 28, 30, 31, 33, 34, 144-152 or 199-212 (DENV), or 48-66 (ZIKV). In some embodiments, the RNA polynucleotide, e.g., mRNA, of a vaccine is encoded by at least one polynucleotide comprising a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98% or 99% identity to any of the CHIKV nucleotide sequences of SEQ ID NO: 1-13. In some embodiments, the RNA polynucleotide, e.g., mRNA, of a vaccine is encoded by at least one polynucleotide comprising a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98% or 99% identity to any of the DENV nucleotide sequences of SEQ ID NO: 16, 18, 20, 22, 24, 25, 27, 28, 30, 31, 33, 34, 144-152 or 199-212. In some embodiments, the RNA polynucleotide, e.g., mRNA, of a vaccine is encoded by at least one polynucleotide comprising a nucleotide sequence having at least 80%, 85%, 90%, 95%, 98% or 99% identity to any of the ZIKV nucleotide sequences of SEQ ID NO: 67-134.


In other embodiments, the RNA polynucleotide comprises a polynucleotide sequence derived from an Asian strain, Brazilian strain, West African strain, ECSA strain, and Indian Ocean strain of Chikungunya.


In some embodiments, at least one antigenic polypeptide is a ZIKV envelope protein.


In some embodiments, at least one antigenic polypeptide is a Spondweni virus Polyprotein.


In some embodiments, at least one antigenic polypeptide is a polyprotein obtained from ZIKV strain MR 766, ACD75819 or SPH2015.


In some embodiments, at least one antigenic polypeptide has an amino acid sequence of any one of the sequences listed in Table 32.


In some embodiments, at least one antigenic polypeptide has at least 95% identity to an antigenic polypeptide having an amino acid sequence of any one of the sequences listed in Table 32.


In some embodiments, the at least one RNA polynucleotide encodes at least one antigenic polypeptide having a sequence of listed in Table 31.


In some embodiments, the at least one RNA polynucleotide encodes at least one protein variant having at least 95% identity to an antigenic polypeptide having a sequence of listed in Table 31.


Tables herein provide National Center for Biotechnology Information (NCBI) accession numbers of interest. It should be understood that the phrase “an amino acid sequence of Table X” (e.g., Table 33 or Table 35) refers to an amino acid sequence identified by one or more NCBI accession numbers listed in Table X. Each of the amino acid sequences, and variants having greater than 95% identity to each of the amino acid sequences encompassed by the accession numbers of Table X (e.g., Table 33 or Table 35) are included within the constructs of the present disclosure.


In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having at least 90% identity to an amino acid sequence of Table 32 or 33 Table 32 or 33 and having membrane fusion activity. In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having at least 95% identity to an amino acid sequence of Table 32 or 33 and having membrane fusion activity. In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having at least 96% identity to an amino acid sequence of Table 32 or 33 and having membrane fusion activity. In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having at least 97% identity to an amino acid sequence of Table 32 or 33 and having membrane fusion activity. In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having at least 98% identity to an amino acid sequence of Table 32 or 33 and having membrane fusion activity. In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having at least 99% identity to an amino acid sequence of Table 32 or 33 and having membrane fusion activity. In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having 95-99% identity to an amino acid sequence of Table 32 or 33 and having membrane fusion activity.


In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having an amino acid sequence of Table 32 or 33 and is codon optimized mRNA.


In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having an amino acid sequence of Table 32 or 33 and has less than 80% identity to wild-type mRNA sequence. In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having an amino acid sequence of Table 32 or 33 and has less than 75%, 85% or 95% identity to wild-type mRNA sequence. In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having an amino acid sequence of Table 32 or 33 and has 50-80%, 60-80%, 40-80%, 30-80%, 70-80%, 75-80% or 78-80% identity to wild-type mRNA sequence. In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having an amino acid sequence of Table 32 or 33 and has 40-85%, 50-85%, 60-85%, 30-85%, 70-85%, 75-85%, or 80-85% identity to wild-type mRNA sequence. In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having an amino acid sequence of Table 32 or 33 and has 40-90%, 50-90%, 60-90%, 30-90%, 70-90%, 75-90%, 80-90%, or 85-90% identity to wild-type mRNA sequence.


In some embodiments, at least one RNA polynucleotide is encoded by a nucleic acid having at least 90% identity to a nucleic acid sequence of Table 31. In some embodiments, at least one RNA polynucleotide is encoded by a nucleic acid having at least 95% identity to a nucleic acid sequence of Table 31. In some embodiments, at least one RNA polynucleotide is encoded by a nucleic acid having at least 96% identity to a nucleic acid sequence of Table 31. In some embodiments, at least one RNA polynucleotide is encoded by a nucleic acid having at least 97% identity to a nucleic acid sequence of Table 31. In some embodiments, at least one RNA polynucleotide is encoded by a nucleic acid having at least 98% identity to a nucleic acid sequence of Table 31. In some embodiments, at least one RNA polynucleotide is encoded by a nucleic acid having at least 99% identity to a nucleic acid sequence of Table 31. In some embodiments, at least one RNA polynucleotide is encoded by a nucleic acid having 95-99% identity to a nucleic acid sequence of Table 31.


In some embodiments, at least one mRNA polynucleotide is encoded by a nucleic acid having a sequence of Table 31 and has less than 80% identity to wild-type mRNA sequence. In some embodiments, at least one mRNA polynucleotide is encoded by a nucleic acid having a sequence of Table 31 and has less than 75%, 85% or 95% identity to a wild-type mRNA sequence. In some embodiments, at least one mRNA polynucleotide is encoded by a nucleic acid having a sequence of Table 31 and has less than 50-80%, 60-80%, 40-80%, 30-80%, 70-80%, 75-80% or 78-80% identity to wild-type mRNA sequence. In some embodiments, at least one mRNA polynucleotide is encoded by a nucleic acid having a sequence of Table 31 and has less than 40-85%, 50-85%, 60-85%, 30-85%, 70-85%, 75-85% or 80-85% identity to wild-type mRNA sequence. In some embodiments, at least one mRNA polynucleotide is encoded by a nucleic acid having a sequence of Table 31 and has less than 40-90%, 50-90%, 60-90%, 30-90%, 70-90%, 75-90%, 80-90%, or 85-90% identity to wild-type mRNA sequence.


In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide having an amino acid sequence of Table 32 or 33 and having at least 80% identity to wild-type mRNA sequence, but does not include wild-type mRNA sequence.


In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide that attaches to cell receptors.


In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide that causes fusion of viral and cellular membranes.


In some embodiments, at least one RNA polynucleotide encodes an antigenic polypeptide that is responsible for binding of the ZIKV to a cell being infected.


Some embodiments of the present disclosure provide a CHIKV vaccine that includes at least one RNA polynucleotide having an open reading frame encoding a CHIKV antigenic polypeptides, in which the RNA polynucleotide of the CHIKV vaccine includes a 5′ terminal cap. Some embodiments of the present disclosure provide a DENV vaccine that includes at least one RNA polynucleotide having an open reading frame encoding a DENV antigenic polypeptides, in which the RNA polynucleotide of the DENV vaccine includes a 5′ terminal cap. Some embodiments of the present disclosure provide a ZIKV vaccine that includes at least one RNA polynucleotide having an open reading frame encoding a ZIKV antigenic polypeptides, in which the RNA polynucleotide of the ZIKV vaccine includes a 5′ terminal cap.


Some embodiments of the present disclosure provide a CHIKV/DENV/ZIKV combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one each of CHIKV, DENV, and ZIKV antigenic polypeptides, in which the RNA polynucleotide of the CHIKV, DENV, and ZIKV RNA vaccine includes a 5′ terminal cap. Some embodiments of the present disclosure provide a DENV/ZIKV combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one each of DENV and ZIKV antigenic polypeptides, in which the RNA polynucleotide of the DENV, and ZIKV RNA vaccine includes a 5′ terminal cap. Some embodiments of the present disclosure provide a CHIKV/ZIKV combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one each of CHIKV and ZIKV antigenic polypeptides, in which the RNA polynucleotide of the CHIKV and ZIKV RNA vaccine includes a 5′ terminal cap. Some embodiments of the present disclosure provide a CHIKV/DENV combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one each of CHIKV and DENV antigenic polypeptides, in which the RNA polynucleotide of the CHIKV and DENV RNA vaccine includes a 5′ terminal cap. In some embodiments, the 5′ terminal cap is 7mG(5′)ppp(5′)NlmpNp.


Some embodiments of the present disclosure provide a vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide in which the RNA polynucleotide of the CHIKV RNA vaccine includes at least one chemical modification. Some embodiments of the present disclosure provide a vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one DENV antigenic polypeptide in which the RNA polynucleotide of the DENV RNA vaccine includes at least one chemical modification. Some embodiments of the present disclosure provide a vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one ZIKV antigenic polypeptide in which the RNA polynucleotide of the ZIKV RNA vaccine includes at least one chemical modification.


Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide, at least one DENV antigenic polypeptide, and at least one ZIKV antigenic polypeptide in which the RNA polynucleotide of the CHIKV/DENV/ZIKV combination RNA vaccine includes at least one chemical modification. Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide and at least one DENV antigenic polypeptide in which the RNA polynucleotide of the CHIKV/DENV combination RNA vaccine includes at least one chemical modification. Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide and at least one ZIKV antigenic polypeptide in which the RNA polynucleotide of the CHIKV/ZIKV combination RNA vaccine includes at least one chemical modification. Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one DENV antigenic polypeptide and at least one ZIKV antigenic polypeptide in which the RNA polynucleotide of the DENV/ZIKV combination RNA vaccine includes at least one chemical modification.


In some embodiments, the chemical modification is selected from pseudouridine, N1-methylpseudouridine, 2-thiouridine, 4′-thiouridine, 5-methylcytosine, 2-thio-1-methyl-1-deaza-pseudouridine, 2-thio-1-methyl-pseudouridine, 2-thio-5-aza-uridine, 2-thio-dihydropseudouridine, 2-thio-dihydrouridine, 2-thio-pseudouridine, 4-methoxy-2-thio-pseudouridine, 4-methoxy-pseudouridine, 4-thio-1-methyl-pseudouridine, 4-thio-pseudouridine, 5-aza-uridine, dihydropseudouridine, 5-methoxyuridine, 5-methyluridine, and 2′-O-methyl uridine.


In some embodiments, the RNA polynucleotide, e.g., mRNA including at least one chemical modification further includes a 5′ terminal cap. In some embodiments, the 5′ terminal cap is 7mG(5′)ppp(5′)NlmpNp.


Some embodiments of the present disclosure provide a vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide, wherein at least 80% of the uracil in the open reading frame have a chemical modification. Some embodiments of the present disclosure provide a vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one DENV antigenic polypeptide, wherein at least 80% of the uracil in the open reading frame have a chemical modification. Some embodiments of the present disclosure provide a vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one ZIKV antigenic polypeptide, wherein at least 80% of the uracil in the open reading frame have a chemical modification.


Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide and at least one DENV antigenic polypeptide, wherein at least 80% of the uracil in the open reading frame have a chemical modification. Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide and at least one ZIKV antigenic polypeptide, wherein at least 80% of the uracil in the open reading frame have a chemical modification. Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one DENV antigenic polypeptide and at least one ZIKV antigenic polypeptide, wherein at least 80% of the uracil in the open reading frame have a chemical modification. Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide, at least one DENV antigenic polypeptide, and at least one ZIKV antigenic polypeptide, wherein at least 80% of the uracil in the open reading frame have a chemical modification. In some embodiments, 100% of the uracil in the open reading frame have a chemical modification. In some embodiments, the chemical modification is in the 5-position of the uracil. In some embodiments, the chemical modification is a N1-methyl pseudouridine.


In some embodiments of any of the combination RNA vaccines described herein, the RNA polynucleotide of the RNA vaccine is formulated in a lipid nanoparticle (LNP) carrier. In some embodiments, the lipid nanoparticle comprises a cationic lipid, a PEG-modified lipid, a sterol and a non-cationic lipid. In some embodiments, the lipid nanoparticle carrier comprising a molar ratio of about 20-60% cationic lipid: 5-25% non-cationic lipid: 25-55% sterol; and 0.5-15% PEG-modified lipid. In some embodiments, the cationic lipid is an ionizable cationic lipid. In some embodiments, the non-cationic lipid is a neutral lipid. In some embodiments, the sterol is a cholesterol. In some embodiments, the cationic lipid is selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319). In some embodiments, the lipid nanoparticle has a polydispersity value of less than 0.4. In some embodiments, the lipid nanoparticle has a net neutral charge at a neutral pH. In some embodiments, the lipid nanoparticle has a mean diameter of 50-200 nm.


Some embodiments of the present disclosure provide a vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide, at least one 5′ terminal cap and at least one chemical modification, formulated within a lipid nanoparticle. Some embodiments of the present disclosure provide a vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one DENV antigenic polypeptide, at least one 5′ terminal cap and at least one chemical modification, formulated within a lipid nanoparticle. Some embodiments of the present disclosure provide a vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one ZIKV antigenic polypeptide, at least one 5′ terminal cap and at least one chemical modification, formulated within a lipid nanoparticle.


Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide and at least one DENV antigenic polypeptide, at least one 5′ terminal cap and at least one chemical modification, formulated within a lipid nanoparticle. Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide and at least one ZIKV antigenic polypeptide, at least one 5′ terminal cap and at least one chemical modification, formulated within a lipid nanoparticle. Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one ZIKV antigenic polypeptide and at least one DENV antigenic polypeptide, at least one 5′ terminal cap and at least one chemical modification, formulated within a lipid nanoparticle. Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide, at least one DENV antigenic polypeptide, at least one ZIKV antigenic polypeptide, at least one 5′ terminal cap and at least one chemical modification, formulated within a lipid nanoparticle.


Some embodiments of the present disclosure provide a vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide, wherein the open reading frame of the RNA polynucleotide is codon-optimized. Some embodiments of the present disclosure provide a vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one DENV antigenic polypeptide, wherein the open reading frame of the RNA polynucleotide is codon-optimized. Some embodiments of the present disclosure provide a vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one ZIKV antigenic polypeptide, wherein the open reading frame of the RNA polynucleotide is codon-optimized.


Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide and at least one DENV antigenic polypeptide, wherein the open reading frame of the RNA polynucleotide is codon-optimized. Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide and at least one ZIKV antigenic polypeptide, wherein the open reading frame of the RNA polynucleotide is codon-optimized. Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one ZIKV antigenic polypeptide and at least one DENV antigenic polypeptide, wherein the open reading frame of the RNA polynucleotide is codon-optimized. Some embodiments of the present disclosure provide a combination vaccine that includes at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide, at least one DENV antigenic polypeptide, and at least one ZIKV antigenic polypeptide, wherein the open reading frame of the RNA polynucleotide is codon-optimized.


Some embodiments of the present disclosure provide methods of inducing an antigen specific immune response in a subject, comprising administering to the subject a combination RNA vaccine in an amount effective to produce an antigen specific immune response against CHIKV, against DENV, against ZIKV, against CHIKV and DENV, against CHIKV and ZIKV, against DENV and ZIKV, or against CHIKV, DENV and ZIKV. In some embodiments, an antigen specific immune response comprises a T cell response. In some embodiments, an antigen specific immune response comprises a B cell response. In some embodiments, an antigen specific immune response comprises both a T cell response and a B cell response. In some embodiments, a method of producing an antigen specific immune response involves a single administration of the vaccine. In other embodiments, the method further comprises administering to the subject a second dose or a booster dose of the vaccine. In other embodiments the method comprises administering more than one dose of the vaccine, for example, 2, 3, 4 or more doses of the vaccine. In some embodiments, the vaccine is administered to the subject by intradermal or intramuscular injection.


Further provided herein are vaccines, such as any of the vaccines described herein, for use in a method of inducing an antigen specific immune response in a subject, the method comprising administering the vaccine to the subject in an effective amount to produce an antigen specific immune response.


Further provided herein are uses of CHIKV, DENV or ZIKV RNA vaccines and CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV or CHIKV/DENV/ZIKV combination RNA vaccines in the manufacture of a medicament for use in a method of inducing an antigen specific immune response in a subject, the method comprising administering the vaccine to the subject in an amount effective to produce an antigen specific immune response.


In other aspects of the invention is a method of preventing or treating a CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV infection comprising administering to a subject any of the vaccines described herein. In yet other aspects of the invention is a method of preventing or treating CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV


In some embodiments, a CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine, is formulated in an effective amount to produce an antigen specific immune response in a subject.


In some embodiments, an anti-CHIKV, an anti-DENV, an anti-ZIKV, an anti-CHIKV/anti-DENV, an anti-CHIKV/anti-ZIKV, an anti-DENV/anti-ZIKV, or an anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is increased by at least 1 log relative to a control. In some embodiments, the anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or an anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is increased by 1-3 log relative to a control. In some embodiments, the anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or an anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is increased at least 2 times relative to a control. In some embodiments, the anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or an anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is increased at least 5 times relative to a control. In some embodiments, the anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or an anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is increased at least 10 times relative to a control. In some embodiments, the anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or an anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is increased 2-10 times relative to a control.


In some embodiments, the control is an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or an anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a subject who has not been administered a combination (or any other) vaccine. In some embodiments, the control is an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or an anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a subject who has been administered a live attenuated or inactivated CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV, vaccine. In some embodiments, the control is an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a subject who has been administered a recombinant or purified CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine.


In some embodiments, the effective amount is a dose equivalent to an at least 2-fold reduction in the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine.


In some embodiments, the effective amount is a dose equivalent to an at least 4-fold reduction in the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine.


In some embodiments, the effective amount is a dose equivalent to an at least 10-fold reduction in the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine.


In some embodiments, the effective amount is a dose equivalent to an at least 100-fold reduction in the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine.


In some embodiments, the effective amount is a dose equivalent to an at least 1000-fold reduction in the standard of care dose of a recombinant CHIKV/DENV/ZIKV, or DENV/ZIKV, protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine.


In some embodiments, the effective amount is a dose equivalent to a 2-1000-fold reduction in the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine.


In some embodiments, the effective amount is a total dose of 50-1000 μg. In some embodiments, the effective amount is a total dose of 100 μg. In some embodiments, the effective amount is a dose of 25 μg administered to the subject a total of two times. In some embodiments, the effective amount is a dose of 100 μg administered to the subject a total of two times. In some embodiments, the effective amount is a dose of 400 μg administered to the subject a total of two times. In some embodiments, the effective amount is a dose of 500 μg administered to the subject a total of two times.


Further provided herein is a method of inducing an antigen specific immune response in a subject, the method including administering to a subject the CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine in an effective amount to produce an antigen specific immune response in a subject. In some embodiments, anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV, antigenic polypeptide antibody titer produced in the subject is increased by at least 1 log relative to a control. In some embodiments, an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV, antigenic polypeptide antibody titer produced in the subject is increased by 1-3 log relative to a control. In some embodiments, the anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV, antigenic polypeptide antibody titer produced in the subject is increased at least 2 times relative to a control. In some embodiments, the anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV, antigenic polypeptide antibody titer produced in the subject is increased at least 5 times relative to a control. In some embodiments, the anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is increased at least 10 times relative to a control. In some embodiments, the anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is increased 2-10 times relative to a control.


In some embodiments, the control is an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a subject who has not been administered CHIKV/DENV/ZIKV, or DENV/ZIKV, vaccine. In some embodiments, the control is an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a subject who has been administered a live attenuated or inactivated CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine. In some embodiments, the control is an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a subject who has been administered a recombinant or purified CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine.


In some embodiments, the effective amount is a dose equivalent to an at least 2-fold reduction in the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine or a live attenuated CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine.


In some embodiments, the effective amount is a dose equivalent to an at least 4-fold reduction in the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine.


In some embodiments, the effective amount is a dose equivalent to an at least 10-fold reduction in the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHI


KV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine.


In some embodiments, the effective amount is a dose equivalent to an at least 100-fold reduction in the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine.


In some embodiments, the effective amount is a dose equivalent to an at least 1000-fold reduction in the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine.


In some embodiments, wherein the effective amount is a dose equivalent to a 2-1000-fold reduction in the standard of care dose of a recombinant CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein vaccine, and wherein an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV, anti-ZIKV, anti-CHIKV/anti-DENV, anti-CHIKV/anti-ZIKV, anti-DENV/anti-ZIKV, or anti-CHIKV/anti-DENV/anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV, protein vaccine or a live attenuated or inactivated CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine.


In some embodiments, the effective amount is a total dose of 50-1000 μg. In some embodiments, the effective amount is a total dose of 100 μg. In some embodiments, the effective amount is a dose of 25 μg administered to the subject a total of two times. In some embodiments, the effective amount is a dose of 100 μg administered to the subject a total of two times. In some embodiments, the effective amount is a dose of 400 μg administered to the subject a total of two times. In some embodiments, the effective amount is a dose of 500 μg administered to the subject a total of two times.


Other aspects of the present disclosure provide a CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine, which includes a signal peptide linked to a CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV protein. In some embodiments, the signal peptide is a IgE signal peptide. In some embodiments, the signal peptide is an IgE HC (Ig heavy chain epsilon-1) signal peptide.


Further provided herein, is a nucleic acid encoding CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine.


Another aspect of the present disclosure provides a CHIKV, DENV, ZIKV, CHIKV/DENV, CHIKV/ZIKV, DENV/ZIKV, or CHIKV/DENV/ZIKV vaccine, which includes at least one ribonucleic acid (RNA) polynucleotide having an open reading frame encoding a signal peptide linked to a CHIKV, DENV, and/or ZIKV antigenic peptide. In some embodiments, the CHIKV, DENV, and/or ZIKV antigenic peptide is a CHIKV, DENV, and/or ZIKV envelope protein.


In some embodiments, the signal peptide is a IgE signal peptide. In some embodiments, the signal peptide is an IgE HC (Ig heavy chain epsilon-1) signal peptide. In some embodiments, the signal peptide has the sequence MDWTWILFLVAAATRVHS (SEQ ID NO: 126). In some embodiments, the signal peptide is an IgGκ signal peptide. In some embodiments, the signal peptide has the sequence METPAQLLFLLLLWLPDTTG (SEQ ID NO: 125).


In any of the aspects and embodiments described herein the combination vaccine is a CHIKV/DENV/ZIKV, CHIKV/DENV, CHIKV/ZIKV, and/or DENV/ZIKV vaccine.


Each of the limitations of the invention can encompass various embodiments of the invention. It is, therefore, anticipated that each of the limitations of the invention involving any one element or combinations of elements can be included in each aspect of the invention. This invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways.





BRIEF DESCRIPTION OF DRAWINGS

The accompanying drawings are not intended to be drawn to scale. In the drawings, each identical or nearly identical component that is illustrated in various figures is represented by a like numeral. For purposes of clarity, not every component may be labeled in every drawing. In the drawings:



FIG. 1A shows a schematic depiction of the post-translational process of CHIKV structural proteins. FIG. 1B shows a schematic depiction of the E1/E2 heterodimer that associates as a trimeric spike on the CHIKV viral surface.



FIG. 2 shows a phylogenetic tree of chikungunya virus strains derived from complete concatenated open reading frames for the nonstructural and structural polyproteins. E1 amino acid substitutions that facilitated (Indian Ocean lineage) or prevented (Asian lineage) adaptation to Aedes albopictus are shown on the right. CAR: Central African republic; ECSA: East/Central/South Africa.



FIG. 3 shows CHIKV envelope protein detection of lysate in HeLa cells 16 hours post-transfection.



FIG. 4A is a graph showing the survival rates of AG129 mice vaccinated with a single 2 μg dose or two 2 μg doses of Chikungunya E1 antigen administered either intramuscularly or intradermally. FIG. 4B is a graph showing the percent weight loss of AG129 mice vaccinated with a single 2 μg dose or two 2 μg doses of Chikungunya E1 antigen administered either intramuscularly or intradermally. FIG. 4C is a graph showing the health scores of AG129 mice vaccinated with a single 2 μg dose or two 2 μg doses of Chikungunya E1 antigen administered either intramuscularly or intradermally.



FIG. 5A is a graph showing the survival rates of AG129 mice vaccinated with a single 2 μg dose or two 2 μg doses of Chikungunya E2 antigen administered either intramuscularly or intradermally. FIG. 5B is a graph showing the percent weight loss of AG129 mice vaccinated with a single 2 μg dose or two 2 μg doses of Chikungunya E2 antigen administered either intramuscularly or intradermally. FIG. 5C is a graph showing the health scores of AG129 mice vaccinated with a single 2 μg dose or two 2 μg doses of Chikungunya E2 antigen administered either intramuscularly or intradermally.



FIG. 6A is a graph showing the survival rates of AG129 mice vaccinated with a single 2 μg dose or two 2 μg doses of Chikungunya C-E3-E2-6K-E1 antigen administered either intramuscularly or intradermally. FIG. 6B is a graph showing the percent weight loss of AG129 mice vaccinated with a single 2 μg dose or two 2 μg doses of Chikungunya C-E3-E2-6K-E1 antigen administered either intramuscularly or intradermally. FIG. 6C is a graph showing the health scores of AG129 mice vaccinated with a single 2 μg dose or two 2 μg doses of Chikungunya C-E3-E2-6K-E1 antigen administered either intramuscularly or intradermally.



FIG. 7 shows the study design, schedule of injection/bleeding, readout, and survival data for the 2 μg dose study of the CHIKV E1, CHIKV E2, and CHIKV E1/E2/E3/6K/C vaccines.



FIG. 8A is a graph showing the survival rates of AG129 mice vaccinated with a single 10 μg dose or two 10 μg doses of Chikungunya E1 antigen administered either intramuscularly or intradermally. FIG. 8B is a graph showing the percent weight loss of AG129 mice vaccinated with a single 10 μg dose or two 10 μg doses of Chikungunya E1 antigen administered either intramuscularly or intradermally. FIG. 8C is a graph showing the health scores of AG129 mice vaccinated with a single 10 μg dose or two 10 μg doses of Chikungunya E1 antigen administered either intramuscularly or intradermally.



FIG. 9A is a graph showing the survival rates of AG129 mice vaccinated with a single 10 μg dose or two 10 μg doses of Chikungunya E2 antigen administered either intramuscularly or intradermally. FIG. 9B is a graph showing the percent weight loss of AG129 mice vaccinated with a single 10 μg dose or two 10 μg doses of Chikungunya E2 antigen administered either intramuscularly or intradermally. FIG. 9C is a graph showing the health scores of AG129 mice vaccinated with a single 10 μg dose or two 10 μg doses of Chikungunya E2 antigen administered either intramuscularly or intradermally.



FIG. 10A is a graph showing the survival rates of AG129 mice vaccinated with a single 10 μg dose or two 10 μg doses of Chikungunya C-E3-E2-6K-E1 antigen administered either intramuscularly or intradermally. FIG. 10B is a graph showing the percent weight loss of AG129 mice vaccinated with a single 10 μg dose or two 10 μg doses of Chikungunya C-E3-E2-6K-E1 antigen administered either intramuscularly or intradermally. FIG. 10C is a graph showing the health scores of AG129 mice vaccinated with a single 10 μg dose or two 10 μg doses of Chikungunya C-E3-E2-6K-E1 antigen administered either intramuscularly or intradermally.



FIG. 11 shows the study design, schedule of injection/bleeding, readout, and survival data for the 10 μg dose study of the CHIKV E1, CHIKV E2, and CHIKV C-E3-E2-6K-E1 vaccines.



FIG. 12 shows the results of an in vitro transfection of mRNA encoded CHIKV structural proteins. Protein detection in HeLa cell lysate 16 h post transfection is detected.



FIGS. 13A and 13B are schematics of an exemplary DENV peptide epitope. The polypeptide of FIG. 13A includes two or more epitopes. The epitopes can be of the same sequence or different sequence and can be all T-cell epitopes, all B-cell epitopes or a combination of both. The schematic of FIG. 13B shows the peptide epitope with various end units for enhancing MHC processing of the peptides.



FIG. 14 is a schematic of a dengue viral genome including structural and nonstructural components.



FIG. 15 shows exemplary dengue peptide epitopes identified using a database screen.



FIGS. 16A-16C show Dengue Virus MHC I T cell epitopes.



FIGS. 17A-17C show Dengue Virus MHC II T cell epitopes.



FIG. 18 is a graph depicting the results of an ELISPOT assay of dengue-specific peptides.



FIG. 19 is a graph depicting the results of an ELISPOT assay of dengue-specific peptides.



FIG. 20 is a schematic of a bone marrow/liver/thymus (BLT) mouse and data on human CD8 T cells stimulated with Dengue peptide epitope.



FIG. 21 shows DENV MHC-1_V5 concatemer transfection in HeLa cells. Triple immunofluorescence using Mitotracker Red (mitochondria), anti-V5, and anti-MHC-1 antibodies plus DAPI was performed. The arrows indicate V5-MHC1 colocalization (bottom right).



FIG. 22 shows DENV MHC-1_V5 concatemer transfection in HeLa cells. Triple immunofluorescence using Mitotracker Red (mitochondria), anti-V5, and anti-MHC-1 antibodies plus DAPI was performed. The arrows indicate regions where V5 preferentially colocalizes with MHC1 and not with Mitotracker.



FIG. 23 shows DENV MHC-1_V5 concatemer transfection in HeLa cells. Triple immunofluorescence using Mitotracker Red (mitochondria), anti-V5, and anti-MHC-1 antibodies plus Dapi was performed. V5 has homogeneous cytoplasmic distribution preferentially colocalizes with MHC1 and not with Mitotracker.



FIGS. 24A and 24B shows the results of an Intracellular Cytokine Staining assay performed in PBMC cells.



FIG. 25 shows a schematic of a genomic polyprotein obtained from Zika virus, Flaviridiaie. The ZIKV genome encodes a polyprotein with three structural proteins (capsid (C), premembrane/membrane (prM), and envelope (E, a glycosylation motif previously associated with virulence)), and seven nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B and NS5). The polyprotein may be cleaved by several host peptidase or proteases to generate structural or functional proteins for the virus. The respective cleavage sites of the peptidases or proteases are indicated by arrows.



FIG. 26A shows a schematic of a ZIKV vaccine that comprises a RNA polynucleotide encoding a signal peptide fused to Zika prM protein fused to Zika E protein. FIG. 26B shows a schematic of a ZIKV vaccine that comprises a RNA polynucleotide encoding a signal peptide fused to Zika E protein. The cleavage junction is located between the signal peptide and the Zika prM protein and is conserved between Dengue and Zika.



FIG. 27 shows a sequence alignment of currently circulating Zika Virus strains.



FIG. 28 shows fluorescent staining of non-reduced mammalian cell lysates. Tube 1 contains lysed cell precipitate obtained from 293T cells transfected with ZIKV prME mRNA and stained with secondary antibody only (negative control). Tube 2 contains lysed cell precipitate obtained from untransfected 293T cells and stained with anti-ZIKV human serum (1:20) and goat anti-human Alexa Fluor 647 (negative control). Tube 3 contains lysed cell precipitate obtained from 293T cells transfected with ZIKV prME mRNA and stained with anti-ZIKV human serum (1:20) and goat anti-human Alexa Fluor 647. Tube 4 contains lysed cell precipitate obtained from 293T cells transfected with ZIKV prME mRNA and stained with anti-ZIKV human serum (1:200) and goat anti-human Alexa Fluor 647. The antibodies in anti-ZIKV human serum can detect non-reduced proteins expressed by prME mRNA constructs.



FIG. 29 shows a histogram indicating intracellular detection of ZIKA prME protein using human anti-ZIKV serum.



FIGS. 30A-30B show the results of detecting prME protein expression in mammalian cells with fluorescence-activated cell sorting (FACS) using a flow cytometer. Cells expressing prME showed higher fluorescence intensity when stained with anti-ZIKV human serum.



FIG. 31 shows a graph of neutralizing titers from Balb/c mice immunized with ZIKV mRNA vaccine encoding prME.



FIG. 32 shows negative stain images for Hela samples.



FIG. 33A shows a reducing SDS-PAGE gel of Zika VLP. FIG. 33B shows a graph of neutralizing titers obtained from Balb/c mice immunized with a ZIKV mRNA vaccine.



FIG. 34A shows FACS analyses of cells expressing DENV2 prMEs using different antibodies against Dengue envelope protein. Numbers in the upper right corner of each plot indicate mean fluorescent intensity. FIG. 34B shows a repeat of staining in triplicate and in two different cell lines (HeLa and 293T).



FIG. 35 shows an in vitro antigen presentation assays using OVA (peptide epitope of ovalbumin) multitopes to test different DENV mRNA vaccine construct configurations.



FIG. 36 is a graph showing the kinetics of OVA peptide presentation in Jawsii cells. All mRNAs tested are formulated in MC3 lipid nanoparticles.



FIG. 37 is a graph showing the Mean Fluorescent Intensity (MFI) of antibody binding to DENV-1, 2, 3, and 4 prME epitopes presented on the cell surface.



FIGS. 38A-38D are graphs showing the design and the results of a challenge study in AG129 mice. FIG. 38A shows the immunization, challenge, and serum collection schedules.



FIG. 38B shows the survival of the AG129 mice challenged with Dengue D2Y98P virus after being immunized with the indicated DENV mRNA vaccines. All immunized mice survived 11 days post infection, while the unimmunized (control) mice died. FIGS. 38C and 38D show the weight loss of the AG129 mice post infection. Vaccine 1, 7, 8, or 9 correspond to DENV vaccine construct 22, 21, 23, or 24 of the present disclosure, respectively.



FIG. 39 is a graph showing the results of an in vitro neutralization assay using serum from mice immunized with the DENV mRNA vaccines in FIGS. 39A-39D.



FIGS. 40A-40I are graphs showing the results of a challenge study in AG129 mice. The challenge study design is shown in Table 40. FIGS. 40A-40F show the survival, weight loss, and heath score of the AG129 mice challenged with D2Y98P virus after being immunized with the DENV mRNA vaccine groups 1-12 in Table 40. FIGS. 40G-40I show the survival, weight loss, and heath score of the AG129 mice challenged with D2Y98P virus after being immunized with the DENV mRNA vaccine groups 13-19 in Table 40.



FIG. 41 is a negative-stain electron microscopy image of the virus-like particles (VLPs) assembled from the antigens (prME) encoded by the DENV mRNA vaccines. DENV mRNA vaccine constructs 21-24 in Table 38 were tested. Construct 23 is the vaccine construct used by Sanofi in its DENV vaccines. Constructs 21, 22, and 24 produced more uniform VLPs, suggesting that these VLPs may be more superior in their immunogenicity than the VLPs produced from construct 23.



FIGS. 42A-42B are graphs showing the survival curves from a CHIKV challenge study in AG129 mice immunized with CHIKV mRNA vaccines in 10 μg, 2 μg, or 0.04 μg doses. Mice were divided into 14 groups (1-4 and 7-16, n=5). FIG. 42A shows the survival curve of mice groups 1-4 and 7-9 challenged on day 56 post immunization. FIG. 42B shows the survival curve of mice groups 10-16 challenged on day 112 post immunization. Survival curves were plotted as “percent survival” versus “days post infection.” See also Table 45 for survival percentage.



FIGS. 43A-43B are graphs showing the weight changes post challenge in AG129 mice immunized with CHIKV mRNA vaccines. FIG. 43A shows the weight change of mice groups 1-4 and 7-9 challenged on day 56 post immunization. FIG. 43B shows the weight changes of mice groups 10-16 challenged on day 112 post immunization. Initial weights were assessed on individual mice on study Day 0 and daily thereafter. The mean percent weights for each group compared to their percent weight on Day 0 (baseline) were plotted against “days post-infection”. Error bars represent the standard deviation (SD).



FIGS. 44A-44B are graphs showing the post challenge heath scores of AG129 mice immunized with CHIKV mRNA vaccines. FIG. 44A shows the health scores of mice groups 1-4 and 7-9 challenged on day 56 post immunization. FIG. 44B shows the health score of mice groups 10-16 challenged on day 112 post immunization. The mean health scores for each group were plotted against “days post infection” and error bars represent the SD. Mean health scores were calculated based on observations described in Table 5.



FIGS. 45A-45C are graphs showing the antibody titers measured by ELISA assays in the serum of AG129 mice (groups 1-4 and 7-9) 28 days post immunization with CHIKV mRNA vaccines. FIG. 45A shows the serum antibody titers against CHIKV E1 protein. FIG. 45B shows the serum antibody titers against CHIKV E2 protein. FIG. 45C shows the serum antibody titers against CHIKV lysate.



FIGS. 46A-46C are graphs showing the antibody titers measured by ELISA assays in the serum of AG129 mice (groups 10-16) 28 days post immunization with CHIKV mRNA vaccine. FIG. 45A shows the serum antibody titers against CHIKV E1 protein. FIG. 46B shows the serum antibody titers against CHIKV E2 protein. FIG. 46C shows the serum antibody titers against CHIKV lysate.



FIGS. 47A-47C are graphs showing the antibody titers measured by ELISA assays in the serum of AG129 mice (groups 10-16) 56 days post immunization with CHIKV mRNA vaccine. FIG. 47A shows the serum antibody titers against CHIKV E1 protein. FIG. 47B shows the serum antibody titers against CHIKV E2 protein. FIG. 47C shows the serum antibody titers against CHIKV lysate.



FIGS. 48A-48C are graphs showing the antibody titers measured by ELISA assays in the serum of AG129 mice (groups 10-16) 112 days post immunization with CHIKV mRNA vaccine. FIG. 48A shows the serum antibody titers against CHIKV E1 protein. FIG. 48B shows the serum antibody titers against CHIKV E2 protein. FIG. 48C shows the serum antibody titers against CHIKV lysate.



FIG. 49 shows different antigens based on the Chikungunya structural protein from three different genotypes.



FIG. 50 shows a set of graphs depicting results of an ELISA assay to identify the amount of antibodies produced in AG129 mice in response to vaccination with mRNA encoding secreted CHIKV E1 structural protein, secreted CHIKV E2 structural protein, or CHIKV full structural polyprotein C-E3-E2-6k-E1 at a dose of 10 μg or 2 μg at 28 days post immunization.



FIG. 51 shows a set of graphs depicting results of an ELISA assay to identify the amount of antibodies produced in AG129 mice in response to vaccination with mRNA encoding secreted CHIKV E1 structural protein, secreted CHIKV E2 structural protein, or CHIKV full structural polyprotein C-E3-E2-6k-E1 at a dose of 10 μg or 2 μg at 28 days post immunization. The two panels depict different studies.



FIG. 52 is a graph depicting comparison of ELISA titers from the data of FIG. 50 to survival in the data of FIG. 51 left panel.



FIG. 53 shows a set of graphs depicting efficacy results in mice in response to vaccination with mRNA encoding CHIKV full structural polyprotein C-E3-E2-6k-E1 at a dose of 10 μg (left panels), 2 μg (middle panels) or 0.4 μg (right panels) at 56 days (top panels) or 112 days (bottom panels) post immunization.



FIG. 54 shows a set of graphs depicting amount of neutralizing antibody produced in mice in response to vaccination with mRNA encoding CHIKV full structural polyprotein C-E3-E2-6k-E1 at a dose of 10 μg, 2 μg, or 0.4 μg at 56 days post immunization.



FIG. 55 shows a set of graphs depicting binding antibody produced in mice in response to vaccination with mRNA encoding CHIKV full structural polyprotein C-E3-E2-6k-E1 at a dose of 10 μg, 2 μg, or 0.4 μg at 56 days post immunization (top panels) and the corresponding correlation between binding and neutralizing antibodies (bottom panels).



FIG. 56 shows a set of graphs depicting amount of neutralizing antibody produced in A129 mice in response to vaccination with mRNA encoding CHIKV full structural polyprotein C-E3-E2-6k-E1 at a dose of 10 μg, 2 μg, or 0.4 μg at 56 days post immunization against three different strains of CHIKV, African-Senegal (left panel), La Reunion (middle panel) and CDC CAR (right panel).



FIG. 57 shows a graph depicting neutralizing antibodies against CHIKV S27 strain.



FIG. 58 is a graph depicting antibody titer against CHIKV lysate post 3rd vaccination 10 with the mRNA vaccine in Sprague Dawley rats.



FIG. 59 shows a set of graphs depicting antibody titers following vaccination of mice with mRNA encoded CHIKV polyprotein (C-E3-E2-6K-E1).



FIG. 60 shows a set of plots depicting cytokine secretion and T-cell activation following vaccination of mice with mRNA encoded CHIKV polyprotein (C-E3-E2-6K-E1) (SEQ ID NO: 13).



FIGS. 61A-61B show a set of graphs depicting CD8+ T cell activation following vaccination of mice with mRNA encoded CHIKV polyprotein (C-E3-E2-6K-E1) (SEQ ID NO: 13).





DETAILED DESCRIPTION

Embodiments of the present disclosure provide RNA (e.g., mRNA) vaccines that are useful for vaccinating against one or multiple viruses. The vaccines, including combination vaccines, of the invention encode antigens from chikungunya virus (CHIKV), Zika virus (ZIKV), Dengue virus (DENV), or any combination of two or three of the foregoing viruses. A balanced immune response, comprising both cellular and humoral immunity, can be generated against CHIKV, against DENV, against ZIKV, against CHIKV and DENV, against CHIKV and ZIKV, against DENV and ZIKV, or against CHIKV, DENV and ZIKV, using the constructs of the invention without many of the risks associated with DNA vaccines and live attenuated vaccines. The various RNA vaccines disclosed herein produced surprising efficacy in animal models of Chikungunya infection, and Dengue infection, the results of which are discussed in detail in the Examples section. Specifically, RNA polynucleotide vaccines having an open reading frame encoding for a variety of Chikungunya antigens produced significant immunity, whereas traditional Chikungunya vaccines have not (e.g. attenuated chikungunya viruses). The CHIKV RNA polynucleotide vaccines disclosed herein encoding either CHIKV-E1, CHIKV-E2 or CHIKV-C-E3-E2-6K-E1 demonstrated a survival rate of 60%-100% after two administrations. Specifically, two injections of CHIKV E1 mRNA vaccine provided nearly full protection against infection when administered intramuscularly (IM) (60% survival) or intradermally (ID) (80% survival). Two injections of CHIKV E2 mRNA vaccine or CHIKV C-E3-E2-6K-E1 vaccine provided full protection (100% survival) against infection when administered via IM or ID. Importantly, a single injection (no booster dose) of CHIKV C-E3-E2-6K-E1 vaccine provided full protection (100% survival) against infection when administered via IM or ID.


DENV RNA vaccines and ZIKV vaccines are also disclosed herein as well as combination DENV and CHIKV, CHIKV and ZIKV, and DENV and ZIKV vaccines. The combination vaccines of CHIKV, DENV and ZIKV, DENV and ZIKV, CHIKV and ZIKV, or CHIKV and DENV can provide a means for protecting against two or more viral infections in a single vaccine.


Chikungunya virus is a small (about 60-70 nm-diameter), spherical, enveloped, positive-strand RNA virus having a capsid with icosahedral symmetry. The virion consists of an envelope and a nucleocapsid. The virion RNA is infectious and serves as both genome and viral messenger RNA. The genome is a linear, ssRNA(+) genome of 11,805 nucleotides which encodes for two polyproteins that are processed by host and viral proteases into non-structural proteins (nsP1, nsP2, nsP3, and RdRpnsP4) necessary for RNA synthesis (replication and transcription) and structural proteins (capsid and envelope proteins C, E3, E2, 6K, and E1) which attach to host receptors and mediate endocytosis of virus into the host cell. (FIG. 1). The E1 and E2 glycoproteins form heterodimers that associate as 80 trimeric spikes on the viral surface covering the surface evenly. The envelope glycoproteins play a role in attachment to cells. The capsid protein possesses a protease activity that results in its self-cleavage from the nascent structural protein. Following its cleavage, the capsid protein binds to viral RNA and rapidly assembles into icosahedric core particles. The resulting nucleocapsid eventually associates with the cytoplasmic domain of E2 at the cell membrane, leading to budding and formation of mature virions.


E2 is an envelope glycoprotein responsible for viral attachment to target host cell, by binding to the cell receptor. E2 is synthesized as a p62 precursor which is processed at the cell membrane prior to virion budding, giving rise to an E2-E1 heterodimer. The C-terminus of E2 is involved in budding by interacting with capsid proteins.


E1 is an envelope glycoprotein with fusion activity, which fusion activity is inactive as long as E1 is bound to E2 in the mature virion. Following virus attachment to target cell and endocytosis, acidification of the endosome induces dissociation of the E1/E2 heterodimer and concomitant trimerization of the E1 subunits. The E1 trimer is fusion active and promotes the release of the viral nucleocapsid in the cytoplasm after endosome and viral membrane fusion.


E3 is an accessory protein that functions as a membrane translocation/transport signal for E1 and E2.


6K is another accessory protein involved in virus glycoprotein processing, cell permeabilization, and the budding of viral particles Like E3, it functions as a membrane transport signal for E1 and E2.


The CHIKV structural proteins have been shown to be antigenic, which proteins, fragments, and epitopes thereof are encompassed within the invention. A phylogenetic tree of Chikungunya virus strains derived from complete concatenated open reading frames for the nonstructural and structural polyproteins shows key envelope glycoprotein E1 amino acid substitutions that facilitated (Indian Ocean lineage) or prevented (Asian lineage) adaptation to Aedes albopictus. There are membrane-bound and secreted forms of E1 and E2, as well as the full length polyprotein antigen (C-E3-E2-6K-E1), which retains the protein's native conformation. Additionally, the different Chikungunya genotypes, strains and isolates can also yield different antigens, which are functional in the constructs of the invention. For example, there are several different Chikungunya genotypes: Indian Ocean, East/Central/South African (ECSA), Asian, West African, and the Brazilian isolates (ECSA/Asian). There are three main Chikungunya genotype. These are ESCA (East-South-Central Africa); Asia; and West Africa. While sometimes names differ in publications all belong to these three geographical strains.


Dengue virus is a mosquito-borne (Aedes aegypti/Aedes albopictus) member of the family Flaviviridae (positive-sense, single-stranded RNA virus). The dengue virus genome encodes ten genes and is translated as a single polypeptide which is cut into ten proteins: the capsid, envelope, membrane, and nonstructural proteins (NS1, NS2A, NS2B, NS3, SN4A, NS4B, and NS5 proteins). The virus' main antigen is DENe, which is a component of the viral surface and is thought to facilitate the binding of the virus to cellular receptors (Heinz et al., Virology. 1983, 126:525). There are four similar but distinct serotypes of dengue virus (DEN-1, DEN-2, DEN-3, and DEN-4), which result annually in an estimated 50-100 million cases of dengue fever and 500,000 cases of the more severe dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS) (Gubler et al., Adv Virus Res. 1999, 53:35-70). The four serotypes show immunological cross-reactivity, but are distinguishable in plaque reduction neutralization tests and by their respective monoclonal antibodies. The dengue virus E protein includes a serotype-specific antigenic determinant and determinants necessary for virus neutralization (Mason et al., J Gen Virol. 1990, 71:2107-2114).


After inoculation, the dendritic cells become infected and travel to lymph nodes. Monocytes and macrophages are also targeted shortly thereafter. Generally, the infected individual will be protected against homotypic reinfection for life; however, the individual will only be protected against other serotypes for a few weeks or months (Sabin, Am J Trop Med Hyg. 1952, 1:30-50). In fact, DHF/DSS is generally found in children and adults infected with a dengue virus serotype differing from their respective primary infection. Thus, it is necessary to develop a vaccine that provides immunity to all four serotypes.


Along with other viruses in the Flaviviridae family, Zika virus is enveloped and icosahedral with a non-segmented, single-stranded, positive sense RNA genome. It is most closely related to the Spondweni virus and is one of the two viruses in the Spondweni virus Glade. The virus was first isolated in 1947 from a rhesus monkey in the Zika Forest of Uganda, Africa and was isolated for the first time from humans in 1968 in Nigeria. From 1951 through 1981, evidence of human infection was reported from other African countries such as Uganda, Tanzania, Egypt, Central African Republic, Sierra Leone and Gabon, as well as in parts of Asia including India, Malaysia, the Philippines, Thailand, Vietnam and Indonesia. It is transmitted by mosquitoes and has been isolated from a number of species in the genus Aedes—Aedes aegypti, Aedes africanus, Aedes apicoargenteus, Aedes furcifer, Aedes luteocephalus and Aedes vitattus. Studies show that the extrinsic incubation period in mosquitoes is about 10 days. The vertebrate hosts of the virus include monkeys and humans.


As of early 2016, the most widespread outbreak of Zika fever, caused by the Zika virus, is ongoing primarily in the Americas. The outbreak began in April 2015 in Brazil, and subsequently spread to other countries in South America, Central America, and the Caribbean.


The Zika virus was first linked with newborn microcephaly during the Brazil Zika virus outbreak. In 2015, there were 2,782 cases of microcephaly compared with 147 in 2014 and 167 in 2013. The Brazilian Health Ministry has reported 4783 cases of suspected microcephaly as of January 30, an increase of more than 1000 cases from a week earlier. Confirmation of many of the recent cases is pending, and it is difficult to estimate how many cases went unreported before the recent awareness of the risk of virus infections.


What is important is not only the number of cases but also the clinical manifestation of the cases. Brazil is seeing severe cases of microcephaly, which are more likely to be paired with greater developmental delays. Most of what is being reported out of Brazil is microcephaly with other associated abnormalities. The potential consequence of this is the fact that there are likely to be subclinical cases where the neurological sequelae will only become evident as the children grow.


Zika virus has also been associated with an increase in a rare condition known as Guillain-Barré, where the infected individual becomes essentially paralyzed. During the Zika virus outbreak in French Polynesia, 74 patients which had had Zika symptoms—out of them, 42 were diagnosed as Guillain-Barré syndrome. In Brazil, 121 cases of neurological manifestations and Guillain-Barré syndrome (GBS) were reported, all cases with a history of Zika-like symptoms.


In some embodiments, ZIKV vaccines comprise RNA (e.g., mRNA) encoding a ZIKV antigenic polypeptide having at least 95%, at least 96%, at least 97%, at least 98% or at least 99% identity with ZIKV polyprotein and having ZIKV polyprotein activity, respectively. The ZIKV polyprotein is cleaved into capsid, precursor membrane, envelope, and non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, NS5).


A protein is considered to have ZIKV polyprotein activity if, for example, it facilitates the attachment of the viral envelope to host receptors, mediates internalization into the host cell, and aids in fusion of the virus membrane with the host's endosomal membrane.


The RNA vaccines may be utilized in various settings depending on the prevalence of the infection or the degree or level of unmet medical need. The RNA vaccines may be utilized to treat and/or prevent a CHIKV, DENV and/or ZIKV infection of various genotypes, strains, and isolates. The RNA vaccines have superior properties in that they produce much larger antibody titers and produce responses early than commercially available anti-viral therapeutic treatments. While not wishing to be bound by theory, it is believed that the RNA vaccines, as mRNA polynucleotides, are better designed to produce the appropriate protein conformation upon translation as the RNA vaccines co-opt natural cellular machinery. Unlike traditional vaccines which are manufactured ex vivo and may trigger unwanted cellular responses, the RNA vaccines are presented to the cellular system in a more native fashion.


The entire contents of International Application No. PCT/US2015/02740 is incorporated herein by reference.


Nucleic Acids/Polynucleotides

Vaccines, including combination vaccines, as provided herein, comprise at least one (one or more) ribonucleic acid (RNA) polynucleotide having an open reading frame encoding at least one CHIKV antigenic polypeptide, at least one ZIKV antigenic polypeptide, at least one DENV antigenic polypeptide, at least one CHIKV antigenic polypeptide and at least one DENV antigenic polypeptide, at least one CHIKV antigenic polypeptide and at least one ZIKV antigenic polypeptide, at least one ZIKV antigenic polypeptide and at least one DENV antigenic polypeptide, or at least one CHIKV antigenic polypeptide, at least one DENV antigenic polypeptide and at least one ZIKV antigenic polypeptide. In some embodiments, the vaccine, including combination vaccines, comprise at least one RNA polynucleotide, e.g., mRNA, having an open reading frame encoding two or more different CHIKV antigenic polypeptides, ZIKV antigenic polypeptides, and/or DENV antigenic polypeptides (e.g., two, three, four, five or more different antigenic polypeptides). In some embodiments, the combination vaccine comprises at least one RNA polynucleotide having an open reading frame encoding a CHIKV antigenic polypeptide or epitope, a ZIKV antigenic polypeptide or epitope, a DENV antigenic polypeptide or epitope, or a combination of any two or three of the forgoing. The term “nucleic acid,” in its broadest sense, includes any compound and/or substance that comprises a polymer of nucleotides. These polymers are referred to as polynucleotides. As used herein the term polypeptide refers to full-length proteins, protein fragments, variants, and epitopes.


In some embodiments, an RNA polynucleotide, e.g., mRNA, of a combination vaccine encodes at least 2, 3, 4, 5, 6, 7, 8, 9 or 10 antigenic polypeptides. In some embodiments, an RNA polynucleotide comprises 30 to 12,000 or more nucleotides. For example, a polynucleotide may include 30 to 100, 101 to 200, 200 to 500, 200 to 1000, 200 to 1500, 200 to 2000, 200 to 3000, 500 to 1000, 500 to 1500, 500 to 2000, 500 to 3000, 1000 to 1500, 1000 to 2000, 1000 to 3000, 1500 to 3000, 1500 to 4000, 1500 to 5000, 2000 to 3000, 2000 to 4000, 2000 to 5000, 5000 to 7500, 7500 to 10,000, or 10,000 to 12,000 nucleotides.


In some embodiments, the combination vaccine comprises at least one RNA polynucleotide having an open reading frame encoding a Chikungunya structural protein or an antigenic fragment or an antigenic epitope thereof. In some embodiments, the RNA polynucleotide has an open reading frame encoding a Chikungunya envelope and/or capsid antigenic polypeptide selected from a CHIKV E1, E2, E3, 6K, and capsid (C) antigenic polypeptide. In some embodiments, the RNA polynucleotide has an open reading frame encoding any combination of CHIKV E1, E2, E3, 6K, and capsid (C) antigenic polypeptides, for example, a combination selected from CHIKV E1 and E2 antigens, CHIKV E1 and E3 antigens, CHIKV E2 and E3 antigens, CHIKV E1, E2, and E3 antigens, CHIKV E1, E2, E3, and C antigens, CHIKV E1, E2, and 6K antigens, CHIKV E2, E3 and 6K antigens, CHIKV E1, E3, and 6K antigens, and CHIKV E1, E2, E3, 6K, and C antigens.


Some embodiments of the present disclosure provide DENV vaccines that include at least one ribonucleic acid (RNA) polynucleotide having an open reading frame encoding at least one DENV antigenic polypeptide or an immunogenic fragment or epitope thereof. Some embodiments of the present disclosure provide DENV vaccines that include at least one RNA polynucleotide having an open reading frame encoding two or more DENV antigenic polypeptides or an immunogenic fragment or epitope thereof. Some embodiments of the present disclosure provide DENV vaccines that include two or more RNA polynucleotides having an open reading frame encoding two or more DENV antigenic polypeptides or immunogenic fragments or epitopes thereof. The one or more DENV antigenic polypeptides may be encoded on a single RNA polynucleotide or may be encoded individually on multiple (e.g., two or more) RNA polynucleotides.


In some embodiments, the at least one RNA polynucleotide may encode at least one DENV antigenic polypeptide. In some instances the dengue viral antigenic polypeptide is an intact dengue virus peptide or other large antigen (i.e. greater than 25 amino acids in length). In some embodiments, the at least one RNA polynucleotide encodes a DENV capsid protein or immunogenic fragment or epitope thereof. In some embodiments, the at least one RNA polynucleotide encodes a DENV envelope protein or immunogenic fragment or epitope thereof. In some embodiments, the at least one RNA polynucleotide encodes a DENV membrane protein or immunogenic fragment or epitope thereof. In some embodiments, the at least one RNA polynucleotide encodes a DENV nonstructural protein or immunogenic fragment or epitope thereof. Large gene segments in non-structural genes, in particular may be used for antigens. In some embodiments, the DENV non-structural protein is selected from NS1, NS2A, NS2B, NS3, SN4A, NS4B, and NS5 proteins, or immunogenic fragments or epitopes thereof. In some embodiments, the DENV non-structural protein is NS3. In some embodiments, the at least one RNA polynucleotide encodes DENe, which is a component of the viral surface and is thought to facilitate the binding of the virus to cellular receptors. In any of these embodiments, the at least one RNA polynucleotide encodes a DENV polypeptide from a DENV serotype selected from DENV-1, DENV-2, DENV-3, and DENV-4. For example, the DENV polypeptide may be one or more polypeptides encoded by SEQ ID NO: 15 (DENV1), SEQ ID NO: 17 (DENV2), SEQ ID NO: 19 (DENV3), and SEQ ID NO: 21 (DENV4), In some embodiments, the DENV polypeptide is a polypeptide found in SEQ ID NO: 14 (DENV1), SEQ ID NO: 16 (DENV2), SEQ ID NO: 18 DENV3), and/or SEQ ID NO: 20 (DENV4). In some embodiments, the Dengue virus (DENV) vaccine comprises at least one (one or more) ribonucleic acid (RNA) polynucleotide having an open reading frame encoding SEQ ID NO: 23 or an immunogenic fragment or epitope thereof. In some embodiments, the Dengue virus (DENV) vaccine comprises at least one (one or more) ribonucleic acid (RNA) polynucleotide having an open reading frame encoding SEQ ID NO: 26 or an immunogenic fragment or epitope thereof. In some embodiments, the Dengue virus (DENV) vaccine comprises at least one (one or more) ribonucleic acid (RNA) polynucleotide having an open reading frame encoding SEQ ID NO: 29 or an immunogenic fragment or epitope thereof. In some embodiments, the Dengue virus (DENV) vaccine comprises at least one (one or more) ribonucleic acid (RNA) polynucleotide having an open reading frame encoding SEQ ID NO: 32 or an immunogenic fragment or epitope thereof. In some embodiments, the DENV RNA polynucleotide comprises SEQ ID NO: 25 (or is encoded by SEQ ID NO: 24) or a fragment thereof. In some embodiments, the DENV RNA polynucleotide comprises SEQ ID NO: 28 (or is encoded by SEQ ID NO: 27) or a fragment thereof. In some embodiments, the DENV RNA polynucleotide comprises SEQ ID NO: 31 (or is encoded by SEQ ID NO: 30) or a fragment thereof. In some embodiments, the DENV RNA polynucleotide comprises SEQ ID NO: 34 (or is encoded by SEQ ID NO: 33) or a fragment thereof. In some embodiments, the DENV RNA polynucleotide encodes a polypeptide comprising SEQ ID NO:23 or an immunogenic fragment or epitope thereof. In some embodiments, the DENV RNA polynucleotide encodes a polypeptide comprising SEQ ID NO: 26 or an immunogenic fragment or epitope thereof. In some embodiments, the DENV RNA polynucleotide encodes a polypeptide comprising SEQ ID NO: 29 or an immunogenic fragment or epitope thereof. In some embodiments, the DENV RNA polynucleotide encodes a polypeptide comprising SEQ ID NO: 32 or an immunogenic fragment or epitope thereof.


Dengue virus (DENV) vaccine antigens, as provided herein, comprise at least one (one or more) ribonucleic acid (RNA) polynucleotide having an open reading frame encoding at least one DENV antigenic polypeptide. In some embodiments, the DENV antigenic polypeptide is longer than 25 amino acids and shorter than 50 amino acids. Thus, polypeptides include gene products, naturally occurring polypeptides, synthetic polypeptides, homologs, orthologs, paralogs, fragments and other equivalents, variants, and analogs of the foregoing. A polypeptide may be a single molecule or may be a multi-molecular complex such as a dimer, trimer or tetramer. Polypeptides may also comprise single chain or multichain polypeptides such as antibodies or insulin and may be associated or linked. Most commonly, disulfide linkages are found in multichain polypeptides. The term polypeptide may also apply to amino acid polymers in which at least one amino acid residue is an artificial chemical analogue of a corresponding naturally-occurring amino acid.


In other embodiments the antigen is a concatemeric peptide antigen composed of multiple peptide epitopes. In some embodiments, a RNA polynucleotide of a DENV vaccine encodes 2-10, 2-9, 2-8, 2-7, 2-6, 2-5, 2-4, 2-3, 3-10, 3-9, 3-8, 3-7, 3-6, 3-5, 3-4, 4-10, 4-9, 4-8, 4-7, 4-6, 4-5, 5-10, 5-9, 5-8, 5-7, 5-6, 6-10, 6-9, 6-8, 6-7, 7-10, 7-9, 7-8, 8-10, 8-9 or 9-10 antigenic polypeptides. In some embodiments, a RNA polynucleotide of a DENV vaccine encodes at least 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 antigenic polypeptides. In some embodiments, a RNA polynucleotide of a DENV vaccine encodes at least 100 or at least 200 antigenic polypeptides. In some embodiments, a RNA polynucleotide of a DENV vaccine encodes 1-10, 5-15, 10-20, 15-25, 20-30, 25-35, 30-40, 35-45, 40-50, 1-50, 1-100, 2-50 or 2-100 antigenic polypeptides.


In order to design useful epitopes, publically available databases, such as the Immune Epitope Database (IEDB), may be used to predict immunogenic Dengue T cell epitopes showing strong homology across all 4 Dengue serotypes. For instance, the IEDB is a free database offering searching of experimental data characterizing antibody and T cell epitopes and assisting in the prediction and analysis of B cell and T cell epitopes. The Dengue peptides identified by database may be confirmed using peptides in MHC allele binding assays (such as those described in the Examples provided herein) and/or restimulation assays during the acute phase of Dengue infection (i.e. Day 7). Some examples of epitopes are shown in FIG. 15. These epitopes may be evaluated in test mice and using an assay such as that shown in FIG. 18.


Some embodiments of the present disclosure provide ZIKV vaccines, including combination vaccines, that include at least one ribonucleic acid (RNA) polynucleotide having an open reading frame encoding at least one ZIKV antigenic polypeptide or an immunogenic fragment or epitope thereof. Some embodiments of the present disclosure provide ZIKV combination vaccines that include at least one RNA polynucleotide having an open reading frame encoding two or more ZIKV antigenic polypeptides or an immunogenic fragment or epitope thereof. Some embodiments of the present disclosure provide ZIKV vaccines that include two or more RNA polynucleotides having an open reading frame encoding two or more ZIKV antigenic polypeptides or immunogenic fragments or epitopes thereof. The one or more ZIKV antigenic polypeptides may be encoded on a single RNA polynucleotide or may be encoded individually on multiple (e.g., two or more) RNA polynucleotides.


In some embodiments, the at least one RNA polynucleotide may encode at least one ZIKV antigenic polypeptide. In some instances the ZIKV antigenic polypeptide is an intact ZIKV peptide or other large antigen (i.e. greater than 25 amino acids in length). In any of these embodiments, the at least one RNA polynucleotide encodes a ZIKV polypeptide from a ZIKV serotype selected from MR 766, SPH2015 or ACD75819. For example, the ZIKV polypeptide may be one or more polypeptides encoded by SEQ ID NO: 67-134 or an immunogenic fragment or epitope thereof.


Zika virus (ZIKV) vaccines, including combination vaccines, as provided herein, comprise at least one (one or more) ribonucleic acid (RNA) polynucleotide having an open reading frame encoding at least one ZIKV antigenic polypeptide. In some embodiments, the ZIKV antigenic polypeptide is longer than 25 amino acids and shorter than 50 amino acids. Thus, polypeptides include gene products, naturally occurring polypeptides, synthetic polypeptides, homologs, orthologs, paralogs, fragments and other equivalents, variants, and analogs of the foregoing. A polypeptide may be a single molecule or may be a multi-molecular complex such as a dimer, trimer or tetramer. Polypeptides may also comprise single chain or multichain polypeptides such as antibodies or insulin and may be associated or linked. Most commonly, disulfide linkages are found in multichain polypeptides. The term polypeptide may also apply to amino acid polymers in which at least one amino acid residue is an artificial chemical analogue of a corresponding naturally-occurring amino acid.


The generation of antigens that elicit a desired immune response (e.g. B and/or T-cell responses) against targeted polypeptide sequences in vaccine development remains a challenging task. The invention involves technology that overcome hurdles associated with vaccine development. Through the use of the technology of the invention, it is possible to tailor the desired immune response by selecting appropriate T or B cell epitopes which, by virtue of the fact that they are processed intra-cellularly, are able to be presented more effectively on MHC-1 or MHC-2 molecules (depending on whether they are T or B-cell epitope, respectively). In particular, the invention involves the generation of DENV concatemers of epitopes (particularly T cell epitopes) preferably interspersed with cleavage sites by proteases that are abundant in Antigen Presenting Cells (APCs). These methods mimic antigen processing and may lead to a more effective antigen presentation than can be achieved with peptide antigens.


The fact that the peptide epitopes of the invention are expressed from RNA as intracellular peptides provides advantages over prior art peptides that are delivered as exogenous peptides or as DNA. The RNA is delivered intra-cellularly and expresses the epitopes in proximity to the appropriate cellular machinery for processing the epitopes such that they will be recognized by the appropriate immune cells. Additionally, a targeting sequence will allow more specificity in the delivery of the peptide epitopes.


In some embodiments the DENV mRNA vaccine of the invention is a poly-epitopic RNA. Poly-epitopes consist of strings of epitopes on the same mRNA. The RNA sequences that code for the peptide epitopes may be interspersed by sequences that code for amino acid sequences recognized by proteolytic enzymes, by other linkers or linked directly.


A concatemeric peptide as used herein is a series of at least two peptide epitopes linked together to form the propeptide. In some embodiments a concatemeric peptide is composed of 3 or more, 4 or more, 5 or more 6 or more 7 or more, 8 or more, 9 or more peptide epitopes. In other embodiments the concatemeric peptide is composed of 1000 or less, 900 or less, 500 or less, 100 or less, 75 or less, 50 or less, 40 or less, 30 or less, 20 or less or 100 or less peptide epitopes. In yet other embodiments a concatemeric peptide has 3-100, 5-100, 10-100, 15-100, 20-100, 25-100, 30-100, 35-100, 40-100, 45-100, 50-100, 55-100, 60-100, 65-100, 70-100, 75-100, 80-100, 90-100, 5-50, 10-50, 15-50, 20-50, 25-50, 30-50, 35-50, 40-50, 45-50, 100-150, 100-200, 100-300, 100-400, 100-500, 50-500, 50-800, 50-1,000, or 100-1,000 peptide epitopes.


An epitope, also known as an antigenic determinant, as used herein is a portion of an antigen that is recognized by the immune system in the appropriate context, specifically by antibodies, B cells, or T cells. Epitopes include B cell epitopes and T cell epitopes. B-cell epitopes are peptide sequences which are required for recognition by specific antibody producing B-cells. B cell epitopes refer to a specific region of the antigen that is recognized by an antibody. The portion of an antibody that binds to the epitope is called a paratope. An epitope may be a conformational epitope or a linear epitope, based on the structure and interaction with the paratope. A linear, or continuous, epitope is defined by the primary amino acid sequence of a particular region of a protein. The sequences that interact with the antibody are situated next to each other sequentially on the protein, and the epitope can usually be mimicked by a single peptide. Conformational epitopes are epitopes that are defined by the conformational structure of the native protein. These epitopes may be continuous or discontinuous, i.e. components of the epitope can be situated on disparate parts of the protein, which are brought close to each other in the folded native protein structure.


T-cell epitopes are peptide sequences which, in association with proteins on APC, are required for recognition by specific T-cells. T cell epitopes are processed intracellularly and presented on the surface of APCs, where they are bound to MHC molecules including MHC class II and MHC class I.


The present disclosure, in some aspects, relates to a process of developing T or B cell concatemeric epitopes or concatemeric epitopes composed of both B and T cell epitopes. Several tools exist for identifying various peptide epitopes. For instance, epitopes can be identified using a free or commercial database (Lonza Epibase, antitope for example). Such tools are useful for predicting the most immunogenic epitopes within a target antigen protein. The selected peptides may then be synthesized and screened in human HLA panels, and the most immunogenic sequences are used to construct the mRNA polynucleotides encoding the concatemeric antigens. One strategy for mapping epitopes of Cytotoxic T-Cells based on generating equimolar mixtures of the four C-terminal peptides for each nominal 11-mer across your an protein. This strategy would produce a library antigen containing all the possible active CTL epitopes.


The peptide epitope may be any length that is reasonable for an epitope. In some embodiments the peptide epitope is 9-30 amino acids. In other embodiments the length is 9-22, 9-29, 9-28, 9-27, 9-26, 9-25, 9-24, 9-23, 9-21, 9-20, 9-19, 9-18, 10-22, 10-21, 10-20, 11-22, 22-21, 11-20, 12-22, 12-21, 12-20, 13-22, 13-21, 13-20, 14-19, 15-18, or 16-17 amino acids. In some embodiments, the optimal length of a peptide epitope may be obtained through the following procedure: synthesizing a V5 tag concatemer-test protease site, introducing it into DC cells (for example, using an RNA Squeeze procedure, lysing the cells, and then running an anti-V5 Western blot to assess the cleavage at protease sites.


In some embodiments, the RNA polynucleotide of the combination vaccine is encoded by at least one nucleic acid sequence selected from SEQ ID NO: 1-13 (CHIKV), 16, 18, 20, 22, 24, 25, 27, 28, 30, 31, 33, 34, 144-152 or 199-212 (DENV), and 48-66 (ZIKV). In some embodiments, the RNA polynucleotide of the combination vaccine is encoded by at least one fragment of a nucleic acid sequence selected from SEQ ID NO: 1-13 (CHIKV), 16, 18, 20, 22, 24, 25, 27, 28, 30, 31, 33, 34, 144-152 or 199-212 (DENV), and 48-66 (ZIKV). In some embodiments, the RNA polynucleotide of the combination vaccine is encoded by at least one epitope sequence of a nucleic acid sequence selected from SEQ ID NO: 1-13 (CHIKV), 16, 18, 20, 22, 24, 25, 27, 28, 30, 31, 33, 34, 144-152 or 199-212 (DENV), or 48-66 (ZIKV).


In particular embodiments, the RNA polynucleotide is encoded by any of SEQ ID NO: 1, 5, 10, and 12. In particular embodiments, the RNA polynucleotide is encoded by any of SEQ ID NO: 2, 4, 6 and 11. In particular embodiments, the RNA polynucleotide is encoded by any of SEQ ID NO: 7-9. In a particular embodiment, the RNA polynucleotide is encoded by SEQ ID NO: 3. In a particular embodiment, the RNA polynucleotide is encoded by SEQ ID NO: 13.


Nucleic acids (also referred to as polynucleotides) may be or may include, for example, ribonucleic acids (RNAs), deoxyribonucleic acids (DNAs), threose nucleic acids (TNAs), glycol nucleic acids (GNAs), peptide nucleic acids (PNAs), locked nucleic acids (LNAs, including LNA having a β-D-ribo configuration, α-LNA having an α-L-ribo configuration (a diastereomer of LNA), 2′-amino-LNA having a 2′-amino functionalization, and 2′-amino-α-LNA having a 2′-amino functionalization), ethylene nucleic acids (ENA), cyclohexenyl nucleic acids (CeNA) or chimeras or combinations thereof.


In some embodiments, polynucleotides of the present disclosure is or functions as a messenger RNA (mRNA). As used herein the term “messenger RNA” (mRNA) refers to any polynucleotide that encodes at least one polypeptide (a naturally-occurring, non-naturally-occurring, or modified polymer of amino acids) and can be translated to produce the encoded polypeptide in vitro, in vivo, in situ or ex vivo.


Traditionally, the basic components of an mRNA molecule include at least one coding region, a 5′ untranslated region (UTR), and a 3′ UTR. In some embodiments, the mRNA molecules further includes a 5′ cap. In some embodiments, the mRNA further includes a polyA tail. Polynucleotides of the present disclosure may function as mRNA but are distinguished from wild-type mRNA in their functional and/or structural design features which serve to overcome existing problems of effective polypeptide production using nucleic-acid based therapeutics. Antigenic polypeptides (antigens) of the present disclosure may be encoded by polynucleotides translated in vitro, referred to as “in vitro translated” (IVT) polynucleotides.


The RNA polynucleotides of the present disclosure may be or comprise variant or mutant sequence. The term “polynucleotide variant” refers to a nucleotide molecule which differs in its nucleotide sequence from a native, wildtype, or reference sequence. The nucleotide sequence variants may possess substitutions, deletions, and/or insertions at certain positions within the nucleotide sequence, as compared to the corresponding native, wildtype or reference sequence. In some embodiments, the nucleotide variants possess at least 80% identity (homology) to a native, wildtype or reference sequence, for example, at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% identity (homology) to a native, wildtype or reference sequence.


In some embodiments, the RNA polynucleotide is encoded by a nucleic acid sequence having at least 80%-85% sequence identity to any of SEQ ID NO: 1-14 (CHIKV), 16, 18, 20, 22, 24, 25, 27, 28, 30, 31, 33, 34, 144-152 or 199-212 (DENV), or 48-66 (ZIKV). In some embodiments, the RNA polynucleotide is encoded by a nucleic acid sequence having at least 86%-90% sequence identity to any of SEQ ID NO: 1-13 (CHIKV), 16, 18, 20, 22, 24, 25, 27, 28, 30, 31, 33, 34, 144-152 or 199-212 (DENV), or 48-66 (ZIKV). In some embodiments, the RNA polynucleotide is encoded by a nucleic acid sequence having at least 91%-95% sequence identity to any of SEQ ID NO: 1-13 (CHIKV), 16, 18, 20, 22, 24, 25, 27, 28, 30, 31, 33, 34, 144-152 or 199-212 (DENV), or 48-66 (ZIKV). In some embodiments, the RNA polynucleotide is encoded by a nucleic acid sequence having at least 96%-98% sequence identity to any of SEQ ID NO: 1-13 (CHIKV), 16, 18, 20, 22, 24, 25, 27, 28, 30, 31, 33, 34, 144-152 or 199-212 (DENV), or 48-66 (ZIKV). In some embodiments, the RNA polynucleotide is encoded by a nucleic acid sequence having at least 99% sequence identity to any of SEQ ID NO: 1-13 (CHIKV), 16, 18, 20, 22, 24, 25, 27, 28, 30, 31, 33, 34, 144-152 or 199-212 (DENV), or 48-66 (ZIKV).


In some embodiments, a polynucleotide of the present disclosure, e.g., polynucleotide variants, have less than 80% identity (homology) to a native, wildtype or reference sequence, for example, less than 80%, 79%, 78%, 77%, 76%, 75%, 74%, 73%, 72%, 71%, 70%, 69%, 68%, 67%, 66%, 65%, 64%, 63%, 62%, 61%, 60% or less identity (homology) to a native, wildtype or reference sequence. In some embodiments, polynucleotide of the invention, e.g., polynucleotide variants, have about 65% to about 85% identity to a native, wildtype or reference sequence, e.g., 65%-82%, 67%-81%, or 66%-80% identity to a native, wildtype or reference sequence.


Polynucleotides of the present disclosure, in some embodiments, are codon optimized. Codon optimization methods are known in the art and may be used as provided herein. Codon optimization, in some embodiments, may be used to match codon frequencies in target and host organisms to ensure proper folding; bias GC content to increase mRNA stability or reduce secondary structures; minimize tandem repeat codons or base runs that may impair gene construction or expression; customize transcriptional and translational control regions; insert or remove protein trafficking sequences; remove/add post translation modification sites in encoded protein (e.g. glycosylation sites); add, remove or shuffle protein domains; insert or delete restriction sites; modify ribosome binding sites and mRNA degradation sites; adjust translational rates to allow the various domains of the protein to fold properly; or to reduce or eliminate problem secondary structures within the polynucleotide. Codon optimization tools, algorithms and services are known in the art. Non-limiting examples include services from GeneArt (Life Technologies), DNA2.0 (Menlo Park Calif.) and/or proprietary methods. In some embodiments, the open reading frame (ORF) sequence is optimized using optimization algorithms.


In some embodiments, a codon optimized sequence shares less than 95% sequence identity to a naturally-occurring or wild-type sequence (e.g., a naturally-occurring or wild-type mRNA sequence encoding a polypeptide or protein of interest (e.g., an antigenic protein or polypeptide. In some embodiments, a codon optimized sequence shares less than 90% sequence identity to a naturally-occurring or wild-type sequence (e.g., a naturally-occurring or wild-type mRNA sequence encoding a polypeptide or protein of interest (e.g., an antigenic protein or polypeptide. In some embodiments, a codon optimized sequence shares less than 85% sequence identity to a naturally-occurring or wild-type sequence (e.g., a naturally-occurring or wild-type mRNA sequence encoding a polypeptide or protein of interest (e.g., an antigenic protein or polypeptide. In some embodiments, a codon optimized sequence shares less than 80% sequence identity to a naturally-occurring or wild-type sequence (e.g., a naturally-occurring or wild-type mRNA sequence encoding a polypeptide or protein of interest (e.g., an antigenic protein or polypeptide. In some embodiments, a codon optimized sequence shares less than 75% sequence identity to a naturally-occurring or wild-type sequence (e.g., a naturally-occurring or wild-type mRNA sequence encoding a polypeptide or protein of interest (e.g., an antigenic protein or polypeptide.


In some embodiments, a codon optimized sequence shares between 65% and 85% (e.g., between about 67% and about 85% or between about 67% and about 80%) sequence identity to a naturally-occurring or wild-type sequence (e.g., a naturally-occurring or wild-type mRNA sequence encoding a polypeptide or protein of interest (e.g., an antigenic protein or polypeptide. In some embodiments, a codon optimized sequence shares between 65% and 75 or about 80% sequence identity to a naturally-occurring or wild-type sequence (e.g., a naturally-occurring or wild-type mRNA sequence encoding a polypeptide or protein of interest (e.g., an antigenic protein or polypeptide.


In some embodiments, the RNA polynucleotides of the present disclosure may further comprise sequence comprising or encoding additional sequence, for example, one or more functional domain(s), one or more further regulatory sequence(s), an engineered 5′ cap.


Thus, in some embodiments, the RNA vaccines comprise a 5′UTR element, an optionally codon optimized open reading frame, and a 3′UTR element, a poly(A) sequence and/or a polyadenylation signal wherein the RNA is not chemically modified.


In Vitro Transcription of RNA (e.g., mRNA)


The combination vaccine of the present disclosure comprise at least one RNA polynucleotide, such as a mRNA (e.g., modified mRNA). mRNA, for example, is transcribed in vitro from template DNA, referred to as an “in vitro transcription template.” In some embodiments, an in vitro transcription template encodes a 5′ untranslated (UTR) region, contains an open reading frame, and encodes a 3′ UTR and a polyA tail. The particular nucleotide sequence composition and length of an in vitro transcription template will depend on the mRNA encoded by the template.


A “5′ untranslated region” (UTR) refers to a region of an mRNA that is directly upstream (i.e., 5′) from the start codon (i.e., the first codon of an mRNA transcript translated by a ribosome) that does not encode a polypeptide.


A “3′ untranslated region” (UTR) refers to a region of an mRNA that is directly downstream (i.e., 3′) from the stop codon (i.e., the codon of an mRNA transcript that signals a termination of translation) that does not encode a polypeptide.


An “open reading frame” is a continuous stretch of codons beginning with a start codon (e.g., methionine (ATG)), and ending with a stop codon (e.g., TAA, TAG or TGA) that encodes a polypeptide.


A “polyA tail” is a region of mRNA that is downstream, e.g., directly downstream (i.e., 3′), from the 3′ UTR that contains multiple, consecutive adenosine monophosphates. A polyA tail may contain 10 to 300 adenosine monophosphates. For example, a polyA tail may contain 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290 or 300 adenosine monophosphates. In some embodiments, a polyA tail contains 50 to 250 adenosine monophosphates. In a relevant biological setting (e.g., in cells, in vivo) the poly(A) tail functions to protect mRNA from enzymatic degradation, e.g., in the cytoplasm, and aids in transcription termination, export of the mRNA from the nucleus and translation.


In some embodiments a codon optimized RNA may, for instance, be one in which the levels of G/C are enhanced. The G/C-content of nucleic acid molecules may influence the stability of the RNA. RNA having an increased amount of guanine (G) and/or cytosine (C) residues may be functionally more stable than nucleic acids containing a large amount of adenine (A) and thymine (T) or uracil (U) nucleotides. WO02/098443 discloses a pharmaceutical composition containing an mRNA stabilized by sequence modifications in the translated region. Due to the degeneracy of the genetic code, the modifications work by substituting existing codons for those that promote greater RNA stability without changing the resulting amino acid. The approach is limited to coding regions of the RNA.


Antigens/Antigenic Polypeptides

In some embodiments, the Chikungunya antigenic polypeptide is a Chikungunya structural protein. The Chikungunya structural protein can be a CHIKV envelope (E) protein or a CHIKV capsid (C) protein. In some embodiments, the Chikungunya structural protein can be a CHIKV E1, E2, E3, 6K, or capsid (C) protein. In one embodiment, the Chikungunya structural protein is CHIKV E1. In another embodiment, the Chikungunya structural protein is CHIKV E2. In another embodiment, the Chikungunya structural protein is CHIKV E3. In another embodiment, the Chikungunya structural protein is CHIKV C. In another embodiment, the Chikungunya structural protein is CHIKV 6K.


In some embodiments, the Chikungunya antigenic polypeptide comprises the sequence of two or more Chikungunya structural proteins selected from E1, E2, E3, 6K, and C. The antigenic polypeptide can comprise the sequence of any combination of CHIKV structural proteins, including, for example, CHIKV E1 and E2; CHIKV E2 and E3; CHIKV E1 and E3; CHIKV E1, E2, and E3; CHIKV E1, E2, E3, and C; CHIKV E1, E2, E3, 6K, and C; CHIKV E1, 6K, E2; CHIKV E2, 6K, E3; CHIKV E1, 6K, E3; and CHIKV E1, E2, E3, and 6K proteins. In one particular embodiment, the Chikungunya antigenic polypeptide comprises the sequence of the Chikungunya structural polyprotein: C-E3-E2-6K-E1.


In some embodiments, the Chikungunya antigenic polypeptide is a fragment of a Chikungunya structural protein. The Chikungunya structural protein fragment can be a CHIKV envelope (E) protein fragment or a CHIKV capsid (C) protein fragment. In some embodiments, the Chikungunya structural protein fragment can be a CHIKV E1, E2, E3, 6K, or capsid (C) protein fragment. In one embodiment, the Chikungunya structural protein fragment is CHIKV E1 fragment. In another embodiment, the Chikungunya structural protein fragment is CHIKV E2 fragment. In another embodiment, the Chikungunya structural protein fragment is CHIKV E3 fragment. In another embodiment, the Chikungunya structural protein fragment is a CHIKV C fragment. In another embodiment, the Chikungunya structural protein fragment is a CHIKV 6K fragment.


In some embodiments, the Chikungunya antigenic polypeptide comprises the sequence of two or more Chikungunya structural protein fragments selected from E1, E2, E3, 6K, and C protein fragments. The antigenic polypeptide can comprise the sequence of any combination of CHIKV structural protein fragments, including, for example, CHIKV E1 and E2 protein fragments; CHIKV E2 and E3 protein fragments; CHIKV E1 and E3 protein fragments; CHIKV E1, E2, and E3 protein fragments; CHIKV E1, E2, E3, and C protein fragments; CHIKV E1, E2, E3, 6K, and C protein fragments; CHIKV E1, 6K, and E2 protein fragments; CHIKV E2, 6K, and E3 protein fragments; CHIKV E1, 6K, and E3 protein fragments; and CHIKV E1, E2, E3, and 6K protein fragments. In one particular embodiment, the Chikungunya antigenic polypeptide comprises the sequence of a fragment of the Chikungunya structural polyprotein: C-E3-E2-6K-E1.


In some embodiments, the Chikungunya antigenic polypeptide comprises the sequence of two or more Chikungunya structural proteins in which the proteins are a combination of full-length protein(s) and fragment(s) selected from E1, E2, E3, 6K, and C full-length protein(s) and fragment(s). The Chikungunya antigenic polypeptide may comprise the sequence of any combination of full-length protein(s) and fragment(s) including, for example, CHIKV E1 and E2 full-length protein(s) and fragment(s); CHIKV E2 and E3 full-length protein(s) and fragment(s); CHIKV E1 and E3 full-length protein(s) and fragment(s); CHIKV E1, E2, and E3 full-length protein(s) and fragment(s); CHIKV E1, E2, E3, and C full-length protein(s) and fragments; CHIKV E1, E2, E3, and 6K full-length protein(s) and fragment(s); CHIKV E1, E2, E3, 6K, and C full-length protein(s) and fragment(s); CHIKV E1, 6K, and E2 full-length protein(s) and fragment(s); CHIKV E2, 6K, and E3 full-length protein(s) and fragment(s); and CHIKV E1, 6K, and E3 full-length protein(s) and fragment(s). In one particular embodiment, the Chikungunya antigenic polypeptide comprises the sequence of the Chikungunya structural polyprotein: C-E3-E2-6K-E1 in which the proteins are a combination of full-length protein(s) and fragment(s).


The polypeptide antigens of the present disclosure can be one or more full-length CHIKV protein antigens, one or more fragment antigens, one or more epitope antigens or any combination of sequences thereof. In some embodiments, the CHIKV antigenic polypeptide comprises 10-25 amino acids. In some embodiments, the CHIKV antigenic polypeptide comprises 26-50 amino acids. In some embodiments, the CHIKV antigenic polypeptide comprises 51-100 amino acids. In some embodiments, the CHIKV antigenic polypeptide comprises 101-200 amino acids. In some embodiments, the CHIKV antigenic polypeptide comprises 201-400 amino acids. In some embodiments, the CHIKV antigenic polypeptide comprises 401-500 amino acids. In some embodiments, the CHIKV antigenic polypeptide comprises 501-750 amino acids. In some embodiments, the CHIKV antigenic polypeptide comprises 751-1000 amino acids. In some embodiments, the CHIKV antigenic polypeptide comprises 1001-1500 amino acids. In some embodiments, the CHIKV antigenic polypeptide comprises 1501-2000 amino acids. In some embodiments, the CHIKV antigenic polypeptide comprises 2001-4000 amino acids.


The polypeptide antigens of the present disclosure can be one or more full-length DENV protein antigens, one or more fragment antigens, one or more epitope antigens or any combination of sequences thereof. In some embodiments, the DENV antigenic polypeptide comprises 10-25 amino acids. In some embodiments, the DENV antigenic polypeptide comprises 26-50 amino acids. In some embodiments, the DENV antigenic polypeptide comprises 51-100 amino acids. In some embodiments, the DENV antigenic polypeptide comprises 101-200 amino acids. In some embodiments, the DENV antigenic polypeptide comprises 201-400 amino acids. In some embodiments, the DENV antigenic polypeptide comprises 401-500 amino acids. In some embodiments, the DENV antigenic polypeptide comprises 501-750 amino acids. In some embodiments, the DENV antigenic polypeptide comprises 751-1000 amino acids. In some embodiments, the DENV antigenic polypeptide comprises 1001-1500 amino acids. In some embodiments, the DENV antigenic polypeptide comprises 1501-2000 amino acids. In some embodiments, the DENV antigenic polypeptide comprises 2001-4000 amino acids.


The polypeptide antigens of the present disclosure can be one or more full-length ZIKV protein antigens, one or more fragment antigens, one or more epitope antigens or any combination of sequences thereof. In some embodiments, the ZIKV antigenic polypeptide comprises 10-25 amino acids. In some embodiments, the ZIKV antigenic polypeptide comprises 26-50 amino acids. In some embodiments, the ZIKV antigenic polypeptide comprises 51-100 amino acids. In some embodiments, the ZIKV antigenic polypeptide comprises 101-200 amino acids. In some embodiments, the ZIKV antigenic polypeptide comprises 201-400 amino acids. In some embodiments, the ZIKV antigenic polypeptide comprises 401-500 amino acids. In some embodiments, the ZIKV antigenic polypeptide comprises 501-750 amino acids. In some embodiments, the ZIKV antigenic polypeptide comprises 751-1000 amino acids. In some embodiments, the ZIKV antigenic polypeptide comprises 1001-1500 amino acids. In some embodiments, the ZIKV antigenic polypeptide comprises 1501-2000 amino acids. In some embodiments, the ZIKV antigenic polypeptide comprises 2001-4000 amino acids.


The antigenic polypeptides include gene products, naturally occurring polypeptides, synthetic or engineered polypeptides, mutant polypeptides, homologs, orthologs, paralogs, fragments and other equivalents, variants, and analogs of the foregoing. A polypeptide may be a single molecule or may be a multi-molecular complex such as a dimer, trimer or tetramer. Polypeptides may also comprise single chain or multichain polypeptides such as antibodies or insulin and may be associated or linked. Most commonly, disulfide linkages are found in multichain polypeptides. The term polypeptide may also apply to amino acid polymers in which at least one amino acid residue is an artificial chemical analogue of a corresponding naturally-occurring amino acid.


The term “polypeptide variant” refers to molecules which differ in their amino acid sequence from a native, wildtype, or reference sequence. The amino acid sequence variants may possess substitutions, deletions, and/or insertions at certain positions within the amino acid sequence, as compared to a native, wildtype, or reference sequence. Ordinarily, variants possess at least 50% identity (homology) to a native, wildtype, or reference sequence. In some embodiments, variants possess at least 80%, or at least 90% identical (homologous) to a native, wildtype, or reference sequence.


Examples of natural variants that are encompassed by the present disclosure include CHIKV, DENV, and ZIKV structural polypeptides from different CHIKV genotypes, lineages, strains, and isolates. A phylogenetic tree of Chikungunya virus strains derived from complete concatenated open reading frames for the nonstructural and structural polyproteins shows key envelope glycoprotein E1 amino acid substitutions that facilitated (Indian Ocean lineage) or prevented (Asian lineage) adaptation to Aedes albopictus. There are membrane-bound and secreted forms of E1 and E2, as well as the full length polyprotein antigen, which retains the protein's native conformation. Additionally, the different Chikungunya genotypes can also yield different antigens, which are functional in the constructs of the invention. There are several Chikungunya genotypes: Indian Ocean, East/Central/South African (ECSA), Asian, West African, and the Brazilian isolates (ECSA/Asian). Thus, for example, natural variants that are encompassed by the present disclosure include, but is not limited to, CHIKV structural polypeptides from the following strains and isolates: TA53, SA76, UG82, 37997, IND-06, Ross, S27, M-713424, E1-A226V, E1-T98, IND-63-WB1, Gibbs 63-263, TH35, 1-634029, AF15561, IND-73-MH5, 653496, CO392-95, PO731460, MY0211MR/06/BP, SV0444-95, K0146-95, TSI-GSD-218-VR1, TSI-GSD-218, M127, M125, 6441-88, MY003IMR/06/BP, MY002IMR/06/BP, TR206/H804187, MY/06/37348, MY/06/37350, NC/2011-568, 1455-75, RSU1, 0706aTw, InDRE51CHIK, PR-S4, AMA2798/H804298, Hu/85/NR/001, PhH15483, 0706aTw, 0802aTw, MY019IMR/06/BP, PR-S6, PER160/H803609, 99659, JKT23574, 0811aTw, CHIK/SBY6/10, 2001908323-BDG E1, 2001907981-BDG E1, 2004904899-BDG E1, 2004904879-BDG E1, 2003902452-BDG E1, DH130003, 0804aTw, 2002918310-BDG E1, JC2012, chik-sy, 3807, 3462, Yap 13-2148, PR-S5, 0802aTw, MY019IMR/06/Bp, 0706aTw, PhH15483, Hu/85/NR/001, CHIKV-13-112A, InDRE4CHIK, 0806aTw, 0712aTw, 3412-78, Yap 13-2039, LEIV-CHIKV/Moscow/1, DH130003, and 20039.


In some embodiments “variant mimics” are provided. As used herein, the term “variant mimic” is one which contains at least one amino acid that would mimic an activated sequence. For example, glutamate may serve as a mimic for phosphoro-threonine and/or phosphoro-serine. Alternatively, variant mimics may result in deactivation or in an inactivated product containing the mimic, for example, phenylalanine may act as an inactivating substitution for tyrosine; or alanine may act as an inactivating substitution for serine.


“Homology” as it applies to amino acid sequences is defined as the percentage of residues in the candidate amino acid sequence that are identical with the residues in the amino acid sequence of a second sequence after aligning the sequences and introducing gaps, if necessary, to achieve the maximum percent homology. Methods and computer programs for the alignment are well known in the art. It is understood that homology depends on a calculation of percent identity but may differ in value due to gaps and penalties introduced in the calculation. By “homologs” as it applies to polypeptide sequences means the corresponding sequence of other species having substantial identity to a second sequence of a second species.


“Analogs” is meant to include polypeptide variants which differ by one or more amino acid alterations, for example, substitutions, additions or deletions of amino acid residues that still maintain one or more of the properties of the parent or starting polypeptide.


The present disclosure provides several types of compositions that are polypeptide based, including variants and derivatives. These include, for example, substitutional, insertional, deletion and covalent variants and derivatives. The term “derivative” is used synonymously with the term “variant” but generally refers to a molecule that has been modified and/or changed in any way relative to a reference molecule or starting molecule.


As such, polynucleotides encoding peptides or polypeptides containing substitutions, insertions and/or additions, deletions and covalent modifications with respect to reference sequences, in particular the polypeptide sequences disclosed herein, are included within the scope of this disclosure. “Substitutional variants” when referring to polypeptides are those that have at least one amino acid residue in a native or starting sequence removed and a different amino acid inserted in its place at the same position. Substitutions may be single, where only one amino acid in the molecule has been substituted, or they may be multiple, where two or more amino acids have been substituted in the same molecule.


As used herein the term “conservative amino acid substitution” refers to the substitution of an amino acid that is normally present in the sequence with a different amino acid of similar size, charge, or polarity. Examples of conservative substitutions include the substitution of a non-polar (hydrophobic) residue such as isoleucine, valine and leucine for another non-polar residue. Likewise, examples of conservative substitutions include the substitution of one polar (hydrophilic) residue for another such as between arginine and lysine, between glutamine and asparagine, and between glycine and serine. Additionally, the substitution of a basic residue such as lysine, arginine or histidine for another, or the substitution of one acidic residue such as aspartic acid or glutamic acid for another acidic residue are additional examples of conservative substitutions. Examples of non-conservative substitutions include the substitution of a non-polar (hydrophobic) amino acid residue such as isoleucine, valine, leucine, alanine, methionine for a polar (hydrophilic) residue such as cysteine, glutamine, glutamic acid or lysine and/or a polar residue for a non-polar residue.


“Features” when referring to polypeptide or polynucleotide are defined as distinct amino acid sequence-based or nucleotide-based components of a molecule respectively. Features of the polypeptides encoded by the polynucleotides include surface manifestations, local conformational shape, folds, loops, half-loops, domains, half-domains, sites, termini or any combination thereof.


As used herein when referring to polypeptides the term “domain” refers to a motif of a polypeptide having one or more identifiable structural or functional characteristics or properties (e.g., binding capacity, serving as a site for protein-protein interactions).


As used herein when referring to polypeptides the terms “site” as it pertains to amino acid based embodiments is used synonymously with “amino acid residue” and “amino acid side chain.” As used herein when referring to polynucleotides the terms “site” as it pertains to nucleotide based embodiments is used synonymously with “nucleotide.” A site represents a position within a peptide or polypeptide or polynucleotide that may be modified, manipulated, altered, derivatized or varied within the polypeptide or polynucleotide based molecules.


As used herein the terms “termini” or “terminus” when referring to polypeptides or polynucleotides refers to an extremity of a polypeptide or polynucleotide respectively. Such extremity is not limited only to the first or final site of the polypeptide or polynucleotide but may include additional amino acids or nucleotides in the terminal regions. Polypeptide-based molecules may be characterized as having both an N-terminus (terminated by an amino acid with a free amino group (NH2)) and a C-terminus (terminated by an amino acid with a free carboxyl group (COOH)). Proteins are in some cases made up of multiple polypeptide chains brought together by disulfide bonds or by non-covalent forces (multimers, oligomers). These proteins have multiple N- and C-termini. Alternatively, the termini of the polypeptides may be modified such that they begin or end, as the case may be, with a non-polypeptide based moiety such as an organic conjugate.


As recognized by those skilled in the art, protein fragments, functional protein domains, and homologous proteins are also considered to be within the scope of polypeptides of interest. For example, provided herein is any protein fragment (meaning a polypeptide sequence at least one amino acid residue shorter than a reference polypeptide sequence but otherwise identical) of a reference protein 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 or greater than 100 amino acids in length. In another example, any protein that includes a stretch of 20, 30, 40, 50, or 100 amino acids which are 40%, 50%, 60%, 70%, 80%, 90%, 95%, or 100% identical to any of the sequences described herein can be utilized in accordance with the disclosure. In some embodiments, a polypeptide includes 2, 3, 4, 5, 6, 7, 8, 9, 10, or more mutations as shown in any of the sequences provided or referenced herein.


Reference molecules (polypeptides or polynucleotides) may share a certain identity with the designed molecules (polypeptides or polynucleotides). The term “identity” as known in the art, refers to a relationship between the sequences of two or more peptides, polypeptides or polynucleotides, as determined by comparing the sequences. In the art, identity also means the degree of sequence relatedness between them as determined by the number of matches between strings of two or more amino acid residues or nucleosides. Identity measures the percent of identical matches between the smaller of two or more sequences with gap alignments (if any) addressed by a particular mathematical model or computer program (e.g., “algorithms”). Identity of related peptides can be readily calculated by known methods. Generally, variants of a particular polynucleotide or polypeptide have at least 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% but less than 100% sequence identity to that particular reference polynucleotide or polypeptide as determined by sequence alignment programs and parameters described herein and known to those skilled in the art. Such tools for alignment include those of the BLAST suite (Stephen F. Altschul, et al (1997), “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs”, Nucleic Acids Res. 25:3389-3402). A general global alignment technique based on dynamic programming is the Needleman-Wunsch algorithm. More recently a Fast Optimal Global Sequence Alignment Algorithm (FOGSAA) has been developed that purportedly produces global alignment of nucleotide and protein sequences faster than other optimal global alignment methods, including the Needleman-Wunsch algorithm. Other tools are described herein, specifically in the definition of “identity” below.


As used herein, the term “homology” refers to the overall relatedness between polymeric molecules, e.g. between nucleic acid molecules (e.g. DNA molecules and/or RNA molecules) and/or between polypeptide molecules. In some embodiments, polymeric molecules are considered to be “homologous” to one another if their sequences are at least 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or 99% identical or similar. The term “homologous” necessarily refers to a comparison between at least two sequences (polynucleotide or polypeptide sequences). Two polynucleotide sequences are considered homologous if the polypeptides they encode are at least 50%, 60%, 70%, 80%, 90%, 95%, or even 99% for at least one stretch of at least 20 amino acids. In some embodiments, homologous polynucleotide sequences are characterized by the ability to encode a stretch of at least 4-5 uniquely specified amino acids. For polynucleotide sequences less than 60 nucleotides in length, homology is determined by the ability to encode a stretch of at least 4-5 uniquely specified amino acids. Two protein sequences are considered homologous if the proteins are at least 50%, 60%, 70%, 80%, or 90% identical for at least one stretch of at least 20 amino acids.


The term “identity” refers to the overall relatedness between polymeric molecules, for example, between polynucleotide molecules (e.g. DNA molecules and/or RNA molecules) and/or between polypeptide molecules. Calculation of the percent identity of two polynucleotide sequences, for example, can be performed by aligning the two sequences for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second nucleic acid sequences for optimal alignment and non-identical sequences can be disregarded for comparison purposes). In certain embodiments, the length of a sequence aligned for comparison purposes is at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 95%, or 100% of the length of the reference sequence. The nucleotides at corresponding nucleotide positions are then compared. When a position in the first sequence is occupied by the same nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which needs to be introduced for optimal alignment of the two sequences. The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. For example, the percent identity between two nucleotide sequences can be determined using methods such as those described in Computational Molecular Biology, Lesk, A. M., ed., Oxford University Press, New York, 1988; Biocomputing: Informatics and Genome Projects, Smith, D. W., ed., Academic Press, New York, 1993; Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press, 1987; Computer Analysis of Sequence Data, Part I, Griffin, A. M., and Griffin, H. G., eds., Humana Press, New Jersey, 1994; and Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M Stockton Press, New York, 1991; each of which is incorporated herein by reference. For example, the percent identity between two nucleotide sequences can be determined using the algorithm of Meyers and Miller (CABIOS, 1989, 4:11-17), which has been incorporated into the ALIGN program (version 2.0) using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4. The percent identity between two nucleotide sequences can, alternatively, be determined using the GAP program in the GCG software package using an NWSgapdna.CMP matrix. Methods commonly employed to determine percent identity between sequences include, but are not limited to those disclosed in Carillo, H., and Lipman, D., SIAM J Applied Math., 48:1073 (1988); incorporated herein by reference. Techniques for determining identity are codified in publicly available computer programs. Exemplary computer software to determine homology between two sequences include, but are not limited to, GCG program package, Devereux, J., et al., Nucleic Acids Research, 12(1), 387 (1984)), BLASTP, BLASTN, and FASTA Altschul, S. F. et al., J. Molec. Biol., 215, 403 (1990)).


In some embodiments, the polypeptides further comprise additional sequences or functional domains. For example, the CHIKV polypeptides of the present disclosure may comprise one or more linker sequences. In some embodiments, the CHIKV of the present invention may comprise a polypeptide tag, such as an affinity tag (chitin binding protein (CBP), maltose binding protein (MBP), glutathione-S-transferase (GST), SBP-tag, Strep-tag, AviTag, Calmodulin-tag); solubilization tag; chromatography tag (polyanionic amino acid tag, such as FLAG-tag); epitope tag (short peptide sequences that bind to high-affinity antibodies, such as V5-tag, Myc-tag, VSV-tag, Xpress tag, E-tag, S-tag, and HA-tag); fluorescence tag (e.g., GFP). In some embodiments, the CHIKV of the present invention may comprise an amino acid tag, such as one or more lysines, histidines, or glutamates, which can be added to the polypeptide sequences (e.g., at the N-terminal or C-terminal ends). Lysines can be used to increase peptide solubility or to allow for biotinylation. Protein and amino acid tags are peptide sequences genetically grafted onto a recombinant protein. Sequence tags are attached to proteins for various purposes, such as peptide purification, identification, or localization, for use in various applications including, for example, affinity purification, protein array, western blotting, immunofluorescence, and immunoprecipitation. Such tags are subsequently removable by chemical agents or by enzymatic means, such as by specific proteolysis or intein splicing.


Alternatively, amino acid residues located at the carboxy and amino terminal regions of the amino acid sequence of a peptide or protein may optionally be deleted providing for truncated sequences. Certain amino acids (e.g., C-terminal or N-terminal residues) may alternatively be deleted depending on the use of the sequence, as for example, expression of the sequence as part of a larger sequence which is soluble, or linked to a solid support.


Multiprotein and Multicomponent Vaccines

The present disclosure encompasses CHIKV vaccines, DENV vaccines, ZIKV vaccines, CHIKV/DENV vaccines, CHIKV/ZIKV vaccines, ZIKV/DENV vaccines, and CHIKV/DENV/ZIKV vaccines comprising one or multiple RNA (e.g., mRNA) polynucleotides, each encoding a single antigenic polypeptide, as well as vaccines comprising a single RNA polynucleotide encoding more than one antigenic polypeptide (e.g., as a fusion polypeptide). Thus, it should be understood that a vaccine composition comprising a RNA polynucleotide having an open reading frame encoding a first antigenic polypeptide and a RNA polynucleotide having an open reading frame encoding a second antigenic polypeptide encompasses (a) vaccines that comprise a first RNA polynucleotide encoding a first antigenic polypeptide and a second RNA polynucleotide encoding a second antigenic polypeptide, and (b) vaccines that comprise a single RNA polynucleotide encoding a first and second antigenic polypeptide (e.g., as a fusion polypeptide). RNA vaccines of the present disclosure, in some embodiments, comprise 2-10 (e.g., 2, 3, 4, 5, 6, 7, 8, 9 or 10), or more, RNA polynucleotides having an open reading frame, each of which encodes a different antigenic polypeptide (or a single RNA polynucleotide encoding 2-10, or more, different antigenic polypeptides). In some embodiments, a RNA vaccine comprises a RNA polynucleotide having an open reading frame encoding a capsid protein, a RNA polynucleotide having an open reading frame encoding a premembrane/membrane protein, and a RNA polynucleotide having an open reading frame encoding a envelope protein. In some embodiments, a RNA vaccine comprises a RNA polynucleotide having an open reading frame encoding a capsid protein and a RNA polynucleotide having an open reading frame encoding a premembrane/membrane protein. In some embodiments, a RNA vaccine comprises a RNA polynucleotide having an open reading frame encoding a capsid protein and a RNA polynucleotide having an open reading frame encoding a envelope protein. In some embodiments, a RNA vaccine comprises a RNA polynucleotide having an open reading frame encoding a premembrane/membrane protein and a RNA polynucleotide having an open reading frame encoding a envelope protein.


Signal Peptides

In some embodiments, a RNA polynucleotide encodes an antigenic polypeptide fused to a signal peptide (e.g., SEQ ID NO: 125, 126, 128 or 131). The signal peptide may be fused at the N-terminus or the C-terminus of the antigenic polypeptide. In some embodiments, antigenic polypeptides encoded by CHIKV, DENV and/or ZIKV nucleic acids comprise a signal peptide. Signal peptides, comprising the N-terminal 15-60 amino acids of proteins, are typically needed for the translocation across the membrane on the secretory pathway and thus universally control the entry of most proteins both in eukaryotes and prokaryotes to the secretory pathway. Signal peptides generally include of three regions: an N-terminal region of differing length, which usually comprises positively charged amino acids; a hydrophobic region; and a short carboxy-terminal peptide region. In eukaryotes, the signal peptide of a nascent precursor protein (pre-protein) directs the ribosome to the rough endoplasmic reticulum (ER) membrane and initiates the transport of the growing peptide chain across it. The signal peptide is not responsible for the final destination of the mature protein, however. Secretory proteins devoid of further address tags in their sequence are by default secreted to the external environment. Signal peptides are cleaved from precursor proteins by an endoplasmic reticulum (ER)-resident signal peptidase or they remain uncleaved and function as a membrane anchor. During recent years, a more advanced view of signal peptides has evolved, showing that the functions and immunodominance of certain signal peptides are much more versatile than previously anticipated.


Proteins encoded by the ZIKV genome, e.g., the ZIKV Envelope protein, contain a signal peptide at the N-terminus to facilitate protein targeting to the ER for processing. ER processing produces a mature Envelope protein, wherein the signal peptide is cleaved, typically by a signal peptidase of the host cell. A signal peptide may also facilitate the targeting of the protein to the cell membrane.


CHIKV vaccines, DENV vaccines, ZIKV vaccines, CHIKV/DENV vaccines, CHIKV/ZIKV vaccines, ZIKV/DENV vaccines, and CHIKV/DENV/ZIKV vaccines of the present disclosure may comprise, for example, RNA polynucleotides encoding an artificial signal peptide, wherein the signal peptide coding sequence is operably linked to and is in frame with the coding sequence of the CHIKV, DENV and/or ZIKV antigenic polypeptide. Thus, CHIKV vaccines, DENV vaccines, ZIKV vaccines, CHIKV/DENV vaccines, CHIKV/ZIKV vaccines, ZIKV/DENV vaccines, and CHIKV/DENV/ZIKV vaccines of the present disclosure, in some embodiments, produce an antigenic polypeptide comprising a CHIKV, DENV and/or ZIKV antigenic polypeptide fused to a signal peptide. In some embodiments, a signal peptide is fused to the N-terminus of the CHIKV, DENV and/or ZIKV antigenic polypeptide. In some embodiments, a signal peptide is fused to the C-terminus of the CHIKV, DENV and/or ZIKV antigenic polypeptide.


In some embodiments, the signal peptide fused to an antigenic polypeptide is an artificial signal peptide. In some embodiments, an artificial signal peptide fused to an antigenic polypeptide encoded by a RNA vaccine is obtained from an immunoglobulin protein, e.g., an IgE signal peptide or an IgG signal peptide. In some embodiments, a signal peptide fused to an antigenic polypeptide encoded by a RNA vaccine is an Ig heavy chain epsilon-1 signal peptide (IgE HC SP) having the sequence of: MDWTWILFLVAAATRVHS (SEQ ID NO: 126). In some embodiments, a signal peptide fused to a ZIKV antigenic polypeptide encoded by the ZIKV RNA vaccine is an IgGk chain V-III region HAH signal peptide (IgGk SP) having the sequence of METPAQLLFLLLLWLPDTTG (SEQ ID NO: 125). In some embodiments, a signal peptide fused to an antigenic polypeptide encoded by a RNA vaccine has an amino acid sequence set forth in SEQ ID NO: 125, 126, 128 or 131. The examples disclosed herein are not meant to be limiting and any signal peptide that is known in the art to facilitate targeting of a protein to ER for processing and/or targeting of a protein to the cell membrane may be used in accordance with the present disclosure.


A signal peptide may have a length of 15-60 amino acids. For example, a signal peptide may have a length of 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, or 60 amino acids. In some embodiments, a signal peptide may have a length of 20-60, 25-60, 30-60, 35-60, 40-60, 45-60, 50-60, 55-60, 15-55, 20-55, 25-55, 30-55, 35-55, 40-55, 45-55, 50-55, 15-50, 20-50, 25-50, 30-50, 35-50, 40-50, 45-50, 15-45, 20-45, 25-45, 30-45, 35-45, 40-45, 15-40, 20-40, 25-40, 30-40, 35-40, 15-35, 20-35, 25-35, 30-35, 15-30, 20-30, 25-30, 15-25, 20-25, or 15-20 amino acids.


Non-limiting examples of antigenic polypeptides fused to signal peptides, which are encoded by a ZIKV RNA vaccine of the present disclosure, may be found in Table 31, SEQ ID NO: 48-59.


A signal peptide is typically cleaved from the nascent polypeptide at the cleavage junction during ER processing, as illustrated in FIG. 26. The mature ZIKV antigenic polypeptide produce by a ZIKV RNA vaccine, for example, typically does not comprise a signal peptide.


Chemical Modifications

In some embodiments, the RNA vaccines of the present disclosure, in some embodiments, comprise at least one ribonucleic acid (RNA) polynucleotide having an open reading frame encoding at least one CHIKV, DENV and/or ZIKV antigenic polypeptide that comprises at least one chemical modification.


The terms “chemical modification” and “chemically modified” refer to modification with respect to adenosine (A), guanosine (G), uridine (U), thymidine (T) or cytidine (C) ribonucleosides or deoxyribnucleosides in at least one of their position, pattern, percent or population. Generally, these terms do not refer to the ribonucleotide modifications in naturally occurring 5′-terminal mRNA cap moieties. With respect to a polypeptide, the term “modification” refers to a modification relative to the canonical set 20 amino acids. RNA polynucleotides, as provided herein, are also considered “modified” of they contain amino acid substitutions, insertions or a combination of substitutions and insertions.


Polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides), in some embodiments, comprise various (more than one) different modifications. In some embodiments, a particular region of a polynucleotide contains one, two or more (optionally different) nucleoside or nucleotide modifications. In some embodiments, a modified RNA polynucleotide (e.g., a modified mRNA polynucleotide), introduced to a cell or organism, exhibits reduced degradation in the cell or organism, respectively, relative to an unmodified polynucleotide. In some embodiments, a modified RNA polynucleotide (e.g., a modified mRNA polynucleotide), introduced into a cell or organism, may exhibit reduced immunogenicity in the cell or organism, respectively (e.g., a reduced innate response).


Modifications of polynucleotides include, without limitation, those described herein. Polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) may comprise modifications that are naturally-occurring, non-naturally-occurring or the polynucleotide may comprise a combination of naturally-occurring and non-naturally-occurring modifications. Polynucleotides may include any useful modification, for example, of a sugar, a nucleobase, or an internucleoside linkage (e.g., to a linking phosphate, to a phosphodiester linkage or to the phosphodiester backbone).


Polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides), in some embodiments, comprise non-natural modified nucleotides that are introduced during synthesis or post-synthesis of the polynucleotides to achieve desired functions or properties. The modifications may be present on an internucleotide linkages, purine or pyrimidine bases, or sugars. The modification may be introduced with chemical synthesis or with a polymerase enzyme at the terminal of a chain or anywhere else in the chain. Any of the regions of a polynucleotide may be chemically modified.


The present disclosure provides for modified nucleosides and nucleotides of a polynucleotide (e.g., RNA polynucleotides, such as mRNA polynucleotides). A “nucleoside” refers to a compound containing a sugar molecule (e.g., a pentose or ribose) or a derivative thereof in combination with an organic base (e.g., a purine or pyrimidine) or a derivative thereof (also referred to herein as “nucleobase”). A nucleotide” refers to a nucleoside, including a phosphate group. Modified nucleotides may by synthesized by any useful method, such as, for example, chemically, enzymatically, or recombinantly, to include one or more modified or non-natural nucleosides. Polynucleotides may comprise a region or regions of linked nucleosides. Such regions may have variable backbone linkages. The linkages may be standard phosphodiester linkages, in which case the polynucleotides would comprise regions of nucleotides.


Modified nucleotide base pairing encompasses not only the standard adenosine-thymine, adenosine-uracil, or guanosine-cytosine base pairs, but also base pairs formed between nucleotides and/or modified nucleotides comprising non-standard or modified bases, wherein the arrangement of hydrogen bond donors and hydrogen bond acceptors permits hydrogen bonding between a non-standard base and a standard base or between two complementary non-standard base structures. One example of such non-standard base pairing is the base pairing between the modified nucleotide inosine and adenine, cytosine or uracil. Any combination of base/sugar or linker may be incorporated into polynucleotides of the present disclosure.


The skilled artisan will appreciate that, except where otherwise noted, polynucleotide sequences set forth in the instant application will recite “T”s in a representative DNA sequence but where the sequence represents RNA, the “T”s would be substituted for “U”s.


Modifications of polynucleotides (e.g., RNA polynucleotides, such as mRNA polynucleotides) that are useful in the vaccines of the present disclosure include, but are not limited to the following: 2-methylthio-N6-(cis-hydroxyisopentenyl)adenosine; 2-methylthio-N6-methyladenosine; 2-methylthio-N6-threonyl carbamoyladenosine; N6-glycinylcarbamoyladenosine; N6-isopentenyladenosine; N6-methyladenosine; N6-threonylcarbamoyladeno sine; 1,2′-O-dimethyladenosine; 1-methyladenosine; 2′-O-methyladenosine; 2′-O-ribosyladenosine (phosphate); 2-methyladenosine; 2-methylthio-N6 isopentenyladenosine; 2-methylthio-N6-hydroxynorvalyl carbamoyladenosine; 2′-O-methyladenosine; 2′-O-ribosyladenosine (phosphate); Isopentenyladenosine; N6-(cis-hydroxyisopentenyl)adenosine; N6,2′-O-dimethyladenosine; N6,2′-O-dimethyladenosine; N6,N6,2′-O-trimethyladenosine; N6,N6-dimethyladenosine; N6-acetyladenosine; N6-hydroxynorvalylcarbamoyladenosine; N6-methyl-N6-threonylcarbamoyladenosine; 2-methyladenosine; 2-methylthio-N6-isopentenyladenosine; 7-deaza-adenosine; N1-methyl-adenosine; N6,N6 (dimethyl)adenine; N6-cis-hydroxy-isopentenyl-adenosine; α-thio-adenosine; 2 (amino)adenine; 2 (aminopropyl)adenine; 2 (methylthio) N6 (isopentenyl)adenine; 2-(alkyl)adenine; 2-(aminoalkyl)adenine; 2-(aminopropyl)adenine; 2-(halo)adenine; 2-(halo)adenine; 2-(propyl)adenine; 2′-Amino-2′-deoxy-ATP; 2′-Azido-2′-deoxy-ATP; 2′-Deoxy-2′-a-aminoadenosine TP; 2′-Deoxy-2′-a-azidoadenosine TP; 6 (alkyl)adenine; 6 (methyl)adenine; 6-(alkyl)adenine; 6-(methyl)adenine; 7 (deaza)adenine; 8 (alkenyl)adenine; 8 (alkynyl)adenine; 8 (amino)adenine; 8 (thioalkyl)adenine; 8-(alkenyl)adenine; 8-(alkyl)adenine; 8-(alkynyl)adenine; 8-(amino)adenine; 8-(halo)adenine; 8-(hydroxyl)adenine; 8-(thioalkyl)adenine; 8-(thiol)adenine; 8-azido-adenosine; aza adenine; deaza adenine; N6 (methyl)adenine; N6-(isopentyl)adenine; 7-deaza-8-aza-adenosine; 7-methyladenine; 1-Deazaadenosine TP; 2′Fluoro-N6-Bz-deoxyadenosine TP; 2′-OMe-2-Amino-ATP; 2′O-methyl-N6-Bz-deoxyadenosine TP; 2′-a-Ethynyladenosine TP; 2-aminoadenine; 2-Aminoadenosine TP; 2-Amino-ATP; 2′-a-Trifluoromethyladenosine TP; 2-Azidoadenosine TP; 2′-b-Ethynyladenosine TP; 2-Bromoadenosine TP; 2′-b-Trifluoromethyladenosine TP; 2-Chloroadenosine TP; 2′-Deoxy-2′,2′-difluoroadenosine TP; 2′-Deoxy-2′-a-mercaptoadenosine TP; 2′-Deoxy-2′-a-thiomethoxyadenosine TP; 2′-Deoxy-2′-b-aminoadenosine TP; 2′-Deoxy-2′-b-azidoadenosine TP; 2′-Deoxy-2′-b-bromoadenosine TP; 2′-Deoxy-2′-b-chloroadenosine TP; 2′-Deoxy-2′-b-fluoroadenosine TP; 2′-Deoxy-2′-b-iodoadenosine TP; 2′-Deoxy-2′-b-mercaptoadenosine TP; 2′-Deoxy-2′-b-thiomethoxyadenosine TP; 2-Fluoroadenosine TP; 2-Iodoadenosine TP; 2-Mercaptoadenosine TP; 2-methoxy-adenine; 2-methylthio-adenine; 2-Trifluoromethyladenosine TP; 3-Deaza-3-bromoadenosine TP; 3-Deaza-3-chloroadenosine TP; 3-Deaza-3-fluoroadenosine TP; 3-Deaza-3-iodoadenosine TP; 3-Deazaadenosine TP; 4′-Azidoadenosine TP; 4′-Carbocyclic adenosine TP; 4′-Ethynyladenosine TP; 5′-Homo-adenosine TP; 8-Aza-ATP; 8-bromo-adenosine TP; 8-Trifluoromethyladenosine TP; 9-Deazaadenosine TP; 2-aminopurine; 7-deaza-2,6-diaminopurine; 7-deaza-8-aza-2,6-diaminopurine; 7-deaza-8-aza-2-aminopurine; 2,6-diaminopurine; 7-deaza-8-aza-adenine, 7-deaza-2-aminopurine; 2-thiocytidine; 3-methylcytidine; 5-formylcytidine; 5-hydroxymethylcytidine; 5-methylcytidine; N4-acetylcytidine; 2′-O-methylcytidine; 2′-O-methylcytidine; 5,2′-O-dimethylcytidine; 5-formyl-2′-O-methylcytidine; Lysidine; N4,2′-O-dimethylcytidine; N4-acetyl-2′-O-methylcytidine; N4-methylcytidine; N4,N4-Dimethyl-2′-OMe-Cytidine TP; 4-methylcytidine; 5-aza-cytidine; Pseudo-iso-cytidine; pyrrolo-cytidine; α-thio-cytidine; 2-(thio)cytosine; 2′-Amino-2′-deoxy-CTP; 2′-Azido-2′-deoxy-CTP; 2′-Deoxy-2′-a-aminocytidine TP; 2′-Deoxy-2′-a-azidocytidine TP; 3 (deaza) 5 (aza)cytosine; 3 (methyl)cytosine; 3-(alkyl)cytosine; 3-(deaza) 5 (aza)cytosine; 3-(methyl)cytidine; 4,2′-O-dimethylcytidine; 5 (halo)cytosine; 5 (methyl)cytosine; 5 (propynyl)cytosine; 5 (trifluoromethyl)cytosine; 5-(alkyl)cytosine; 5-(alkynyl)cytosine; 5-(halo)cytosine; 5-(propynyl)cytosine; 5-(trifluoromethyl)cytosine; 5-bromo-cytidine; 5-iodo-cytidine; 5-propynyl cytosine; 6-(azo)cytosine; 6-aza-cytidine; aza cytosine; deaza cytosine; N4 (acetyl)cytosine; 1-methyl-1-deaza-pseudoisocytidine; 1-methyl-pseudoisocytidine; 2-methoxy-5-methyl-cytidine; 2-methoxy-cytidine; 2-thio-5-methyl-cytidine; 4-methoxy-1-methyl-pseudoisocytidine; 4-methoxy-pseudoisocytidine; 4-thio-1-methyl-1-deaza-pseudoisocytidine; 4-thio-1-methyl-pseudoisocytidine; 4-thio-pseudoisocytidine; 5-aza-zebularine; 5-methyl-zebularine; pyrrolo-pseudoisocytidine; Zebularine; (E)-5-(2-Bromo-vinyl)cytidine TP; 2,2′-anhydro-cytidine TP hydrochloride; 2′Fluor-N4-Bz-cytidine TP; 2′Fluoro-N4-Acetyl-cytidine TP; 2′-O-Methyl-N4-Acetyl-cytidine TP; 2′O-methyl-N4-Bz-cytidine TP; 2′-a-Ethynylcytidine TP; 2′-a-Trifluoromethylcytidine TP; 2′-b-Ethynylcytidine TP; 2′-b-Trifluoromethylcytidine TP; 2′-Deoxy-2′,2′-difluorocytidine TP; 2′-Deoxy-2′-a-mercaptocytidine TP; 2′-Deoxy-2′-a-thiomethoxycytidine TP; 2′-Deoxy-2′-b-aminocytidine TP; 2′-Deoxy-2′-b-azidocytidine TP; 2′-Deoxy-2′-b-bromocytidine TP; 2′-Deoxy-2′-b-chlorocytidine TP; 2′-Deoxy-2′-b-fluorocytidine TP; 2′-Deoxy-2′-b-iodocytidine TP; 2′-Deoxy-2′-b-mercaptocytidine TP; 2′-Deoxy-2′-b-thiomethoxycytidine TP; 2′-O-Methyl-5-(1-propynyl)cytidine TP; 3′-Ethynylcytidine TP; 4′-Azidocytidine TP; 4′-Carbocyclic cytidine TP; 4′-Ethynylcytidine TP; 5-(1-Propynyl)ara-cytidine TP; 5-(2-Chloro-phenyl)-2-thiocytidine TP; 5-(4-Amino-phenyl)-2-thiocytidine TP; 5-Aminoallyl-CTP; 5-Cyanocytidine TP; 5-Ethynylara-cytidine TP; 5-Ethynylcytidine TP; 5′-Homo-cytidine TP; 5-Methoxycytidine TP; 5-Trifluoromethyl-Cytidine TP; N4-Amino-cytidine TP; N4-Benzoyl-cytidine TP; Pseudoisocytidine; 7-methylguanosine; N2,2′-O-dimethylguanosine; N2-methylguanosine; Wyosine; 1,2′-O-dimethylguanosine; 1-methylguanosine; 2′-O-methylguanosine; 2′-O-ribosylguanosine (phosphate); 2′-O-methylguanosine; 2′-O-ribosylguanosine (phosphate); 7-aminomethyl-7-deazaguanosine; 7-cyano-7-deazaguanosine; Archaeosine; Methylwyosine; N2,7-dimethylguanosine; N2,N2,2′-O-trimethylguanosine; N2,N2,7-trimethylguanosine; N2,N2-dimethylguanosine; N2,7,2′-O-trimethylguanosine; 6-thio-guanosine; 7-deaza-guanosine; 8-oxo-guanosine; N1-methyl-guanosine; α-thio-guanosine; 2 (propyl)guanine; 2-(alkyl)guanine; 2′-Amino-2′-deoxy-GTP; 2′-Azido-2′-deoxy-GTP; 2′-Deoxy-2′-a-aminoguanosine TP; 2′-Deoxy-2′-a-azidoguanosine TP; 6 (methyl)guanine; 6-(alkyl)guanine; 6-(methyl)guanine; 6-methyl-guanosine; 7 (alkyl)guanine; 7 (deaza)guanine; 7 (methyl)guanine; 7-(alkyl)guanine; 7-(deaza)guanine; 7-(methyl)guanine; 8 (alkyl)guanine; 8 (alkynyl)guanine; 8 (halo)guanine; 8 (thioalkyl)guanine; 8-(alkenyl)guanine; 8-(alkyl)guanine; 8-(alkynyl)guanine; 8-(amino)guanine; 8-(halo)guanine; 8-(hydroxyl)guanine; 8-(thioalkyl)guanine; 8-(thiol)guanine; aza guanine; deaza guanine; N (methyl)guanine; N-(methyl)guanine; 1-methyl-6-thio-guanosine; 6-methoxy-guanosine; 6-thio-7-deaza-8-aza-guanosine; 6-thio-7-deaza-guanosine; 6-thio-7-methyl-guanosine; 7-deaza-8-aza-guanosine; 7-methyl-8-oxo-guanosine; N2,N2-dimethyl-6-thio-guanosine; N2-methyl-6-thio-guanosine; 1-Me-GTP; 2′Fluoro-N2-isobutyl-guanosine TP; 2′O-methyl-N2-isobutyl-guanosine TP; 2′-a-Ethynylguanosine TP; 2′-a-Trifluoromethylguanosine TP; 2′-b-Ethynylguanosine TP; 2′-b-Trifluoromethylguanosine TP; 2′-Deoxy-2′,2′-difluoroguanosine TP; 2′-Deoxy-2′-a-mercaptoguanosine TP; 2′-Deoxy-2′-a-thiomethoxyguanosine TP; 2′-Deoxy-2′-b-aminoguanosine TP; 2′-Deoxy-2′-b-azidoguanosine TP; 2′-Deoxy-2′-b-bromoguanosine TP; 2′-Deoxy-2′-b-chloroguanosine TP; 2′-Deoxy-2′-b-fluoroguanosine TP; 2′-Deoxy-2′-b-iodoguanosine TP; 2′-Deoxy-2′-b-mercaptoguanosine TP; 2′-Deoxy-2′-b-thiomethoxyguanosine TP; 4′-Azidoguanosine TP; 4′-Carbocyclic guanosine TP; 4′-Ethynylguanosine TP; 5′-Homo-guanosine TP; 8-bromo-guanosine TP; 9-Deazaguanosine TP; N2-isobutyl-guanosine TP; 1-methylinosine; Inosine; 1,2′-O-dimethylinosine; 2′-O-methylinosine; 7-methylinosine; 2′-O-methylinosine; Epoxyqueuosine; galactosyl-queuosine; Mannosylqueuosine; Queuosine; allyamino-thymidine; aza thymidine; deaza thymidine; deoxy-thymidine; 2′-O-methyluridine; 2-thiouridine; 3-methyluridine; 5-carboxymethyluridine; 5-hydroxyuridine; 5-methyluridine; 5-taurinomethyl-2-thiouridine; 5-taurinomethyluridine; Dihydrouridine; Pseudouridine; (3-(3-amino-3-carboxypropyl)uridine; 1-methyl-3-(3-amino-5-carboxypropyl)pseudouridine; 1-methylpseduouridine; 1-methyl-pseudouridine; 2′-O-methyluridine; 2′-O-methylpseudouridine; 2′-O-methyluridine; 2-thio-2′-O-methyluridine; 3-(3-amino-3-carboxypropyl)uridine; 3,2′-O-dimethyluridine; 3-Methyl-pseudo-Uridine TP; 4-thiouridine; 5-(carboxyhydroxymethyl)uridine; 5-(carboxyhydroxymethyl)uridine methyl ester; 5,2′-O-dimethyluridine; 5,6-dihydro-uridine; 5-aminomethyl-2-thiouridine; 5-carbamoylmethyl-2′-O-methyluridine; 5-carbamoylmethyluridine; 5-carboxyhydroxymethyluridine; 5-carboxyhydroxymethyluridine methyl ester; 5-carboxymethylaminomethyl-2′-O-methyluridine; 5-carboxymethylaminomethyl-2-thiouridine; 5-carboxymethylaminomethyl-2-thiouridine; 5-carboxymethylaminomethyluridine; 5-carboxymethylaminomethyluridine; 5-Carbamoylmethyluridine TP; 5-methoxycarbonylmethyl-2′-O-methyluridine; 5-methoxycarbonylmethyl-2-thiouridine; 5-methoxycarbonylmethyluridine; 5-methoxyuridine; 5-methyluridine, 5-methyl-2-thiouridine; 5-methylaminomethyl-2-selenouridine; 5-methylaminomethyl-2-thiouridine; 5-methylaminomethyluridine; 5-Methyldihydrouridine; 5-Oxyacetic acid-Uridine TP; 5-Oxyacetic acid-methyl ester-Uridine TP; N1-methyl-pseudo-uridine; uridine 5-oxyacetic acid; uridine 5-oxyacetic acid methyl ester; 3-(3-Amino-3-carboxypropyl)-Uridine TP; 5-(iso-Pentenylaminomethyl)-2-thiouridine TP; 5-(iso-Pentenylaminomethyl)-2′-O-methyluridine TP; 5-(iso-Pentenylaminomethyl)uridine TP; 5-propynyl uracil; α-thio-uridine; 1 (aminoalkylamino-carbonylethylenyl)-2(thio)-pseudouracil; 1 (aminoalkylaminocarbonylethylenyl)-2,4-(dithio)pseudouracil; 1 (aminoalkylaminocarbonylethylenyl)-4 (thio)pseudouracil; 1 (aminoalkylaminocarbonylethylenyl)-pseudouracil; 1 (aminocarbonylethylenyl)-2(thio)-pseudouracil; 1 (aminocarbonylethylenyl)-2,4-(dithio)pseudouracil; 1 (aminocarbonylethylenyl)-4 (thio)pseudouracil; 1 (aminocarbonylethylenyl)-pseudouracil; 1 substituted 2(thio)-pseudouracil; 1 substituted 2,4-(dithio)pseudouracil; 1 substituted 4 (thio)pseudouracil; 1 substituted pseudouracil; 1-(aminoalkylamino-carbonylethylenyl)-2-(thio)-pseudouracil; 1-Methyl-3-(3-amino-3-carboxypropyl) pseudouridine TP; 1-Methyl-3-(3-amino-3-carboxypropyl)pseudo-UTP; 1-Methyl-pseudo-UTP; 2 (thio)pseudouracil; 2′ deoxy uridine; 2′ fluorouridine; 2-(thio)uracil; 2,4-(dithio)psuedouracil; 2′ methyl, 2′amino, 2′azido, 2′fluro-guanosine; 2′-Amino-2′-deoxy-UTP; 2′-Azido-2′-deoxy-UTP; 2′-Azido-deoxyuridine TP; 2′-O-methylpseudouridine; 2′ deoxy uridine; 2′ fluorouridine; 2′-Deoxy-2′-a-aminouridine TP; 2′-Deoxy-2′-a-azidouridine TP; 2-methylpseudouridine; 3 (3 amino-3 carboxypropyl)uracil; 4 (thio)pseudouracil; 4-(thio)pseudouracil; 4-(thio)uracil; 4-thiouracil; 5 (1,3-diazole-1-alkyl)uracil; 5 (2-aminopropyl)uracil; 5 (aminoalkyl)uracil; 5 (dimethylaminoalkyl)uracil; 5 (guanidiniumalkyl)uracil; 5 (methoxycarbonylmethyl)-2-(thio)uracil; 5 (methoxycarbonyl-methyl)uracil; 5 (methyl) 2 (thio)uracil; 5 (methyl) 2,4 (dithio)uracil; 5 (methyl) 4 (thio)uracil; 5 (methylaminomethyl)-2 (thio)uracil; 5 (methylaminomethyl)-2,4 (dithio)uracil; 5 (methylaminomethyl)-4 (thio)uracil; 5 (propynyl)uracil; 5 (trifluoromethyl)uracil; 5-(2-aminopropyl)uracil; 5-(alkyl)-2-(thio)pseudouracil; 5-(alkyl)-2,4 (dithio)pseudouracil; 5-(alkyl)-4 (thio)pseudouracil; 5-(alkyl)pseudouracil; 5-(alkyl)uracil; 5-(alkynyl)uracil; 5-(allylamino)uracil; 5-(cyanoalkyl)uracil; 5-(dialkylaminoalkyl)uracil; 5-(dimethylaminoalkyl)uracil; 5-(guanidiniumalkyl)uracil; 5-(halo)uracil; 5-(1,3-diazole-1-alkyl)uracil; 5-(methoxy)uracil; 5-(methoxycarbonylmethyl)-2-(thio)uracil; 5-(methoxycarbonyl-methyl)uracil; 5-(methyl) 2(thio)uracil; 5-(methyl) 2,4 (dithio)uracil; 5-(methyl) 4 (thio)uracil; 5-(methyl)-2-(thio)pseudouracil; 5-(methyl)-2,4 (dithio)pseudouracil; 5-(methyl)-4 (thio)pseudouracil; 5-(methyl)pseudouracil; 5-(methylaminomethyl)-2 (thio)uracil; 5-(methylaminomethyl)-2,4(dithio)uracil; 5-(methylaminomethyl)-4-(thio)uracil; 5-(propynyl)uracil; 5-(trifluoromethyl)uracil; 5-aminoallyl-uridine; 5-bromo-uridine; 5-iodo-uridine; 5-uracil; 6 (azo)uracil; 6-(azo)uracil; 6-aza-uridine; allyamino-uracil; aza uracil; deaza uracil; N3 (methyl)uracil; Pseudo-UTP-1-2-ethanoic acid; Pseudouracil; 4-Thio-pseudo-UTP; 1-carboxymethyl-pseudouridine; 1-methyl-1-deaza-pseudouridine; 1-propynyl-uridine; 1-taurinomethyl-1-methyl-uridine; 1-taurinomethyl-4-thio-uridine; 1-taurinomethyl-pseudouridine; 2-methoxy-4-thio-pseudouridine; 2-thio-1-methyl-1-deaza-pseudouridine; 2-thio-1-methyl-pseudouridine; 2-thio-5-aza-uridine; 2-thio-dihydropseudouridine; 2-thio-dihydrouridine; 2-thio-pseudouridine; 4-methoxy-2-thio-pseudouridine; 4-methoxy-pseudouridine; 4-thio-1-methyl-pseudouridine; 4-thio-pseudouridine; 5-aza-uridine; Dihydropseudouridine; (±)1-(2-Hydroxypropyl)pseudouridine TP; (2R)-1-(2-Hydroxypropyl)pseudouridine TP; (2S)-1-(2-Hydroxypropyl)pseudouridine TP; (E)-5-(2-Bromo-vinyl)ara-uridine TP; (E)-5-(2-Bromo-vinyl)uridine TP; (Z)-5-(2-Bromo-vinyl)ara-uridine TP; (Z)-5-(2-Bromo-vinyl)uridine TP; 1-(2,2,2-Trifluoroethyl)-pseudo-UTP; 1-(2,2,3,3,3-Pentafluoropropyl)pseudouridine TP; 1-(2,2-Diethoxyethyl)pseudouridine TP; 1-(2,4,6-Trimethylbenzyl)pseudouridine TP; 1-(2,4,6-Trimethyl-benzyl)pseudo-UTP; 1-(2,4,6-Trimethyl-phenyl)pseudo-UTP; 1-(2-Amino-2-carboxyethyl)pseudo-UTP; 1-(2-Amino-ethyl)pseudo-UTP; 1-(2-Hydroxyethyl)pseudouridine TP; 1-(2-Methoxyethyl)pseudouridine TP; 1-(3,4-Bis-trifluoromethoxybenzyl)pseudouridine TP; 1-(3,4-Dimethoxybenzyl)pseudouridine TP; 1-(3-Amino-3-carboxypropyl)pseudo-UTP; 1-(3-Amino-propyl)pseudo-UTP; 1-(3-Cyclopropyl-prop-2-ynyl)pseudouridine TP; 1-(4-Amino-4-carboxybutyl)pseudo-UTP; 1-(4-Amino-benzyl)pseudo-UTP; 1-(4-Amino-butyl)pseudo-UTP; 1-(4-Amino-phenyl)pseudo-UTP; 1-(4-Azidobenzyl)pseudouridine TP; 1-(4-Bromobenzyl)pseudouridine TP; 1-(4-Chlorobenzyl)pseudouridine TP; 1-(4-Fluorobenzyl)pseudouridine TP; 1-(4-Iodobenzyl)pseudouridine TP; 1-(4-Methanesulfonylbenzyl)pseudouridine TP; 1-(4-Methoxybenzyl)pseudouridine TP; 1-(4-Methoxy-benzyl)pseudo-UTP; 1-(4-Methoxy-phenyl)pseudo-UTP; 1-(4-Methylbenzyl)pseudouridine TP; 1-(4-Methyl-benzyl)pseudo-UTP; 1-(4-Nitrobenzyl)pseudouridine TP; 1-(4-Nitro-benzyl)pseudo-UTP; 1(4-Nitro-phenyl)pseudo-UTP; 1-(4-Thiomethoxybenzyl)pseudouridine TP; 1-(4-Trifluoromethoxybenzyl)pseudouridine TP; 1-(4-Trifluoromethylbenzyl)pseudouridine TP; 1-(5-Amino-pentyl)pseudo-UTP; 1-(6-Amino-hexyl)pseudo-UTP; 1,6-Dimethyl-pseudo-UTP; 1-[3-(2-{2-[2-(2-Aminoethoxy)-ethoxy]-ethoxy}-ethoxy)-propionyl]pseudouridine TP; 1-{3-[2-(2-Aminoethoxy)-ethoxy]-propionyl}pseudouridine TP; 1-Acetylpseudouridine TP; 1-Alkyl-6-(1-propynyl)-pseudo-UTP; 1-Alkyl-6-(2-propynyl)-pseudo-UTP; 1-Alkyl-6-allyl-pseudo-UTP; 1-Alkyl-6-ethynyl-pseudo-UTP; 1-Alkyl-6-homoallyl-pseudo-UTP; 1-Alkyl-6-vinyl-pseudo-UTP; 1-Allylpseudouridine TP; 1-Aminomethyl-pseudo-UTP; 1-Benzoylpseudouridine TP; 1-Benzyloxymethylpseudouridine TP; 1-Benzyl-pseudo-UTP; 1-Biotinyl-PEG2-pseudouridine TP; 1-Biotinylpseudouridine TP; 1-Butyl-pseudo-UTP; 1-Cyanomethylpseudouridine TP; 1-Cyclobutylmethyl-pseudo-UTP; 1-Cyclobutyl-pseudo-UTP; 1-Cycloheptylmethyl-pseudo-UTP; 1-Cycloheptyl-pseudo-UTP; 1-Cyclohexylmethyl-pseudo-UTP; 1-Cyclohexyl-pseudo-UTP; 1-Cyclooctylmethyl-pseudo-UTP; 1-Cyclooctyl-pseudo-UTP; 1-Cyclopentylmethyl-pseudo-UTP; 1-Cyclopentyl-pseudo-UTP; 1-Cyclopropylmethyl-pseudo-UTP; 1-Cyclopropyl-pseudo-UTP; 1-Ethyl-pseudo-UTP; 1-Hexyl-pseudo-UTP; 1-Homoallylpseudouridine TP; 1-Hydroxymethylpseudouridine TP; 1-iso-propyl-pseudo-UTP; 1-Me-2-thio-pseudo-UTP; 1-Me-4-thio-pseudo-UTP; 1-Me-alpha-thio-pseudo-UTP; 1-Methanesulfonylmethylpseudouridine TP; 1-Methoxymethylpseudouridine TP; 1-Methyl-6-(2,2,2-Trifluoroethyl)pseudo-UTP; 1-Methyl-6-(4-morpholino)-pseudo-UTP; 1-Methyl-6-(4-thiomorpholino)-pseudo-UTP; 1-Methyl-6-(substituted phenyl)pseudo-UTP; 1-Methyl-6-amino-pseudo-UTP; 1-Methyl-6-azido-pseudo-UTP; 1-Methyl-6-bromo-pseudo-UTP; 1-Methyl-6-butyl-pseudo-UTP; 1-Methyl-6-chloro-pseudo-UTP; 1-Methyl-6-cyano-pseudo-UTP; 1-Methyl-6-dimethylamino-pseudo-UTP; 1-Methyl-6-ethoxy-pseudo-UTP; 1-Methyl-6-ethylcarboxylate-pseudo-UTP; 1-Methyl-6-ethyl-pseudo-UTP; 1-Methyl-6-fluoro-pseudo-UTP; 1-Methyl-6-formyl-pseudo-UTP; 1-Methyl-6-hydroxyamino-pseudo-UTP; 1-Methyl-6-hydroxy-pseudo-UTP; 1-Methyl-6-iodo-pseudo-UTP; 1-Methyl-6-iso-propyl-pseudo-UTP; 1-Methyl-6-methoxy-pseudo-UTP; 1-Methyl-6-methylamino-pseudo-UTP; 1-Methyl-6-phenyl-pseudo-UTP; 1-Methyl-6-propyl-pseudo-UTP; 1-Methyl-6-tert-butyl-pseudo-UTP; 1-Methyl-6-trifluoromethoxy-pseudo-UTP; 1-Methyl-6-trifluoromethyl-pseudo-UTP; 1-Morpholinomethylpseudouridine TP; 1-Pentyl-pseudo-UTP; 1-Phenyl-pseudo-UTP; 1-Pivaloylpseudouridine TP; 1-Propargylpseudouridine TP; 1-Propyl-pseudo-UTP; 1-propynyl-pseudouridine; 1-p-tolyl-pseudo-UTP; 1-tert-Butyl-pseudo-UTP; 1-Thiomethoxymethylpseudouridine TP; 1-Thiomorpholinomethylpseudouridine TP; 1-Trifluoroacetylpseudouridine TP; 1-Trifluoromethyl-pseudo-UTP; 1-Vinylpseudouridine TP; 2,2′-anhydro-uridine TP; 2′-bromo-deoxyuridine TP; 2′-F-5-Methyl-2′-deoxy-UTP; 2′-OMe-5-Me-UTP; 2′-OMe-pseudo-UTP; 2′-a-Ethynyluridine TP; 2′-a-Trifluoromethyluridine TP; 2′-b-Ethynyluridine TP; 2′-b-Trifluoromethyluridine TP; 2′-Deoxy-2′,2′-difluorouridine TP; 2′-Deoxy-2′-a-mercaptouridine TP; 2′-Deoxy-2′-a-thiomethoxyuridine TP; 2′-Deoxy-2′-b-aminouridine TP; 2′-Deoxy-2′-b-azidouridine TP; 2′-Deoxy-2′-b-bromouridine TP; 2′-Deoxy-2′-b-chlorouridine TP; 2′-Deoxy-2′-b-fluorouridine TP; 2′-Deoxy-2′-b-iodouridine TP; 2′-Deoxy-2′-b-mercaptouridine TP; 2′-Deoxy-2′-b-thiomethoxyuridine TP; 2-methoxy-4-thio-uridine; 2-methoxyuridine; 2′-O-Methyl-5-(1-propynyl)uridine TP; 3-Alkyl-pseudo-UTP; 4′-Azidouridine TP; 4′-Carbocyclic uridine TP; 4′-Ethynyluridine TP; 5-(1-Propynyl)ara-uridine TP; 5-(2-Furanyl)uridine TP; 5-Cyanouridine TP; 5-Dimethylaminouridine TP; 5′-Homo-uridine TP; 5-iodo-2′-fluoro-deoxyuridine TP; 5-Phenylethynyluridine TP; 5-Trideuteromethyl-6-deuterouridine TP; 5-Trifluoromethyl-Uridine TP; 5-Vinylarauridine TP; 6-(2,2,2-Trifluoroethyl)-pseudo-UTP; 6-(4-Morpholino)-pseudo-UTP; 6-(4-Thiomorpholino)-pseudo-UTP; 6-(Substituted-Phenyl)-pseudo-UTP; 6-Amino-pseudo-UTP; 6-Azido-pseudo-UTP; 6-Bromo-pseudo-UTP; 6-Butyl-pseudo-UTP; 6-Chloro-pseudo-UTP; 6-Cyano-pseudo-UTP; 6-Dimethylamino-pseudo-UTP; 6-Ethoxy-pseudo-UTP; 6-Ethylcarboxylate-pseudo-UTP; 6-Ethyl-pseudo-UTP; 6-Fluoro-pseudo-UTP; 6-Formyl-pseudo-UTP; 6-Hydroxyamino-pseudo-UTP; 6-Hydroxy-pseudo-UTP; 6-Iodo-pseudo-UTP; 6-iso-Propyl-pseudo-UTP; 6-Methoxy-pseudo-UTP; 6-Methylamino-pseudo-UTP; 6-Methyl-pseudo-UTP; 6-Phenyl-pseudo-UTP; 6-Phenyl-pseudo-UTP; 6-Propyl-pseudo-UTP; 6-tert-Butyl-pseudo-UTP; 6-Trifluoromethoxy-pseudo-UTP; 6-Trifluoromethyl-pseudo-UTP; Alpha-thio-pseudo-UTP; Pseudouridine 1-(4-methylbenzenesulfonic acid) TP; Pseudouridine 1-(4-methylbenzoic acid) TP; Pseudouridine TP 1-[3-(2-ethoxy)]propionic acid; Pseudouridine TP 1-[3-{2-(2-[2-(2-ethoxy)-ethoxy]-ethoxy)-ethoxy}]propionic acid; Pseudouridine TP 1-[3-{2-(2-[2-{2(2-ethoxy)-ethoxy}-ethoxy]-ethoxy)-ethoxy}]propionic acid; Pseudouridine TP 1-[3-{2-(2-[2-ethoxy]-ethoxy)-ethoxy}]propionic acid; Pseudouridine TP 1-[3-{2-(2-ethoxy)-ethoxy}] propionic acid; Pseudouridine TP 1-methylphosphonic acid; Pseudouridine TP 1-methylphosphonic acid diethyl ester; Pseudo-UTP-N1-3-propionic acid; Pseudo-UTP-N1-4-butanoic acid; Pseudo-UTP-N1-5-pentanoic acid; Pseudo-UTP-N1-6-hexanoic acid; Pseudo-UTP-N1-7-heptanoic acid; Pseudo-UTP-N1-methyl-p-benzoic acid; Pseudo-UTP-N1-p-benzoic acid; Wybutosine; Hydroxywybutosine; Isowyosine; Peroxywybutosine; undermodified hydroxywybutosine; 4-demethylwyosine; 2,6-(diamino)purine; 1-(aza)-2-(thio)-3-(aza)-phenoxazin-1-yl: 1,3-(diaza)-2-(oxo)-phenthiazin-1-yl; 1,3-(diaza)-2-(oxo)-phenoxazin-1-yl; 1,3,5-(triaza)-2,6-(dioxa)-naphthalene; 2 (amino)purine; 2,4,5-(trimethyl)phenyl; 2′ methyl, 2′amino, 2′azido, 2′fluro-cytidine; 2′ methyl, 2′amino, 2′azido, 2′fluro-adenine; 2′methyl, 2′amino, 2′azido, 2′fluro-uridine; 2′-amino-2′-deoxyribose; 2-amino-6-Chloro-purine; 2-aza-inosinyl; 2′-azido-2′-deoxyribose; 2′fluoro-2′-deoxyribose; 2′-fluoro-modified bases; 2′-O-methyl-ribose; 2-oxo-7-aminopyridopyrimidin-3-yl; 2-oxo-pyridopyrimidine-3-yl; 2-pyridinone; 3 nitropyrrole; 3-(methyl)-7-(propynyl)isocarbostyrilyl; 3-(methyl)isocarbostyrilyl; 4-(fluoro)-6-(methyl)benzimidazole; 4-(methyl)benzimidazole; 4-(methyl)indolyl; 4,6-(dimethyl)indolyl; 5 nitroindole; 5 substituted pyrimidines; 5-(methyl)isocarbostyrilyl; 5-nitroindole; 6-(aza)pyrimidine; 6-(azo)thymine; 6-(methyl)-7-(aza)indolyl; 6-chloro-purine; 6-phenyl-pyrrolo-pyrimidin-2-on-3-yl; 7-(aminoalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phenthiazin-1-yl; 7-(aminoalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phenoxazin-1-yl; 7-(aminoalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenoxazin-1-yl; 7-(aminoalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenthiazin-1-yl; 7-(aminoalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenoxazin-1-yl; 7-(aza)indolyl; 7-(guanidiniumalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phenoxazinl-yl; 7-(guanidiniumalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phenthiazin-1-yl; 7-(guanidiniumalkylhydroxy)-1-(aza)-2-(thio)-3-(aza)-phenoxazin-1-yl; 7-(guanidiniumalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenoxazin-1-yl; 7-(guanidiniumalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenthiazin-1-yl; 7-(guanidiniumalkylhydroxy)-1,3-(diaza)-2-(oxo)-phenoxazin-1-yl; 7-(propynyl)isocarbostyrilyl; 7-(propynyl)isocarbostyrilyl, propynyl-7-(aza)indolyl; 7-deaza-inosinyl; 7-substituted 1-(aza)-2-(thio)-3-(aza)-phenoxazin-1-yl; 7-substituted 1,3-(diaza)-2-(oxo)-phenoxazin-1-yl; 9-(methyl)-imidizopyridinyl; Aminoindolyl; Anthracenyl; bis-ortho-(aminoalkylhydroxy)-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl; bis-ortho-substituted-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl; Difluorotolyl; Hypoxanthine; Imidizopyridinyl; Inosinyl; Isocarbostyrilyl; Isoguanisine; N2-substituted purines; N6-methyl-2-amino-purine; N6-substituted purines; N-alkylated derivative; Napthalenyl; Nitrobenzimidazolyl; Nitroimidazolyl; Nitroindazolyl; Nitropyrazolyl; Nubularine; 06-substituted purines; O-alkylated derivative; ortho-(aminoalkylhydroxy)-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl; ortho-substituted-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl; Oxoformycin TP; para-(aminoalkylhydroxy)-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl; para-substituted-6-phenyl-pyrrolo-pyrimidin-2-on-3-yl; Pentacenyl; Phenanthracenyl; Phenyl; propynyl-7-(aza)indolyl; Pyrenyl; pyridopyrimidin-3-yl; pyridopyrimidin-3-yl, 2-oxo-7-aminopyridopyrimidin-3-yl; pyrrolo-pyrimidin-2-on-3-yl; Pyrrolopyrimidinyl; Pyrrolopyrizinyl; Stilbenzyl; substituted 1,2,4-triazoles; Tetracenyl; Tubercidine; Xanthine; Xanthosine-5′-TP; 2-thio-zebularine; 5-aza-2-thio-zebularine; 7-deaza-2-amino-purine; pyridin-4-one ribonucleoside; 2-Amino-riboside-TP; Formycin A TP; Formycin B TP; Pyrrolosine TP; 2′-OH-ara-adenosine TP; 2′-OH-ara-cytidine TP; 2′-OH-ara-uridine TP; 2′-OH-ara-guanosine TP; 5-(2-carbomethoxyvinyl)uridine TP; and N6-(19-Amino-pentaoxanonadecyl)adenosine TP.


In some embodiments, the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) includes a combination of at least two (e.g., 2, 3, 4 or more) of the aforementioned modified nucleobases.


In some embodiments, modified nucleobases in the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) are selected from the group consisting of pseudouridine (ψ), N1-methylpseudouridine (m1ψ), 2-thiouridine, 4′-thiouridine, 5-methylcytosine, 2-thio-1-methyl-1-deaza-pseudouridine, 2-thio-1-methyl-pseudouridine, 2-thio-5-aza-uridine, 2-thio-dihydropseudouridine, 2-thio-dihydrouridine, 2-thio-pseudouridine, 4-methoxy-2-thio-pseudouridine, 4-methoxy-pseudouridine, 4-thio-1-methyl-pseudouridine, 4-thio-pseudouridine, 5-aza-uridine, dihydropseudouridine, 5-methoxyuridine5-methyluridine, and 2′-O-methyl uridine. In some embodiments, the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) includes a combination of at least two (e.g., 2, 3, 4 or more) of the aforementioned modified nucleobases.


In some embodiments, modified nucleobases in the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) are selected from the group consisting of 1-methyl-pseudouridine (m1ψ), 5-methoxy-uridine (mo5U), 5-methyl-cytidine (m5C), pseudouridine (ψ), α-thio-guanosine and α-thio-adenosine. In some embodiments, the polynucleotide includes a combination of at least two (e.g., 2, 3, 4 or more) of the aforementioned modified nucleobases.


In some embodiments, the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) comprises pseudouridine (ψ) and 5-methyl-cytidine (m5C). In some embodiments, the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) comprises 1-methyl-pseudouridine (m1ψ). In some embodiments, the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) comprises 1-methyl-pseudouridine (m1ψ) and 5-methyl-cytidine (m5C). In some embodiments, the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) comprises 2-thiouridine (s2U). In some embodiments, the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) comprises 2-thiouridine and 5-methyl-cytidine (m5C). In some embodiments, the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) comprises methoxy-uridine (mo5U). In some embodiments, the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) comprises 5-methoxy-uridine (mo5U) and 5-methyl-cytidine (m5C). In some embodiments, the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) comprises 2′-O-methyl uridine. In some embodiments, the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) comprises 2′-O-methyl uridine and 5-methyl-cytidine (m5C). In some embodiments, the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) comprises N6-methyl-adenosine (m6A). In some embodiments, the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) comprises N6-methyl-adenosine (m6A) and 5-methyl-cytidine (m5C).


In some embodiments, the polynucleotide (e.g., RNA polynucleotide, such as mRNA polynucleotide) is uniformly modified (e.g., fully modified, modified throughout the entire sequence) for a particular modification. For example, a polynucleotide can be uniformly modified with 5-methyl-cytidine (m5C), meaning that all cytosine residues in the mRNA sequence are replaced with 5-methyl-cytidine (m5C). Similarly, a polynucleotide can be uniformly modified for any type of nucleoside residue present in the sequence by replacement with a modified residue such as any of those set forth above.


In some embodiments, the modified nucleobase is a modified cytosine. Examples of nucleobases and nucleosides having a modified cytosine include N4-acetyl-cytidine (ac4C), 5-methyl-cytidine (m5C), 5-halo-cytidine (e.g., 5-iodo-cytidine), 5-hydroxymethyl-cytidine (hm5C), 1-methyl-pseudoisocytidine, 2-thio-cytidine (s2C), 2-thio-5-methyl-cytidine.


In some embodiments, a modified nucleobase is a modified uridine. Example nucleobases and nucleosides having a modified uridine include 5-cyano uridine or 4′-thio uridine.


In some embodiments, a modified nucleobase is a modified adenine. Example nucleobases and nucleosides having a modified adenine include 7-deaza-adenine, 1-methyl-adenosine (m1A), 2-methyl-adenine (m2A), N6-methyl-adenosine (m6A), and 2,6-Diaminopurine.


In some embodiments, a modified nucleobase is a modified guanine. Example nucleobases and nucleosides having a modified guanine include inosine (I), 1-methyl-inosine (m1I), wyosine (imG), methylwyosine (mimG), 7-deaza-guanosine, 7-cyano-7-deaza-guanosine (preQ0), 7-aminomethyl-7-deaza-guanosine (preQ1), 7-methyl-guanosine (m7G), 1-methyl-guanosine (m1G), 8-oxo-guanosine, 7-methyl-8-oxo-guanosine.


In some embodiments, the modified nucleobase is a modified uracil. Exemplary nucleobases and nucleosides having a modified uracil include pseudouridine (ψ), pyridin-4-one ribonucleoside, 5-aza-uridine, 6-aza-uridine, 2-thio-5-aza-uridine, 2-thio-uridine (s2U), 4-thio-uridine (s4U), 4-thio-pseudouridine, 2-thio-pseudouridine, 5-hydroxy-uridine (ho5U), 5-aminoallyl-uridine, 5-halo-uridine (e.g., 5-iodo-uridineor 5-bromo-uridine), 3-methyl-uridine (m3U), 5-methoxy-uridine (mo5U), uridine 5-oxyacetic acid (cmo5U), uridine 5-oxyacetic acid methyl ester (mcmo5U), 5-carboxymethyl-uridine (cm5U), 1-carboxymethyl-pseudouridine, 5-carboxyhydroxymethyl-uridine (chm5U), 5-carboxyhydroxymethyl-uridine methyl ester (mchm5U), 5-methoxycarbonylmethyl-uridine (mcm5U), 5-methoxycarbonylmethyl-2-thio-uridine (mcm5s2U), 5-aminomethyl-2-thio-uridine (nm5s2U), 5-methylaminomethyl-uridine (mnm5U), 5-methylaminomethyl-2-thio-uridine (mnm5s2U), 5-methylaminomethyl-2-seleno-uridine (mnm5se2U), 5-carbamoylmethyl-uridine (ncm5U), 5-carboxymethylaminomethyl-uridine (cmnm5U), 5-carboxymethylaminomethyl-2-thio-uridine (cmnm5s2U), 5-propynyl-uridine, 1-propynyl-pseudouridine, 5-taurinomethyl-uridine (τm5U), 1-taurinomethyl-pseudouridine, 5-taurinomethyl-2-thio-uridine(τm5s2U), 1-taurinomethyl-4-thio-pseudouridine, 5-methyl-uridine (m5U, i.e., having the nucleobase deoxythymine), 1-methyl-pseudouridine (m1ψ), 5-methyl-2-thio-uridine (m5s2U), 1-methyl-4-thio-pseudouridine(m1s4ψ), 4-thio-1-methyl-pseudouridine, 3-methyl-pseudouridine (m3ψ), 2-thio-1-methyl-pseudouridine, 1-methyl-1-deaza-pseudouridine, 2-thio-1-methyl-1-deaza-pseudouridine, dihydrouridine (D), dihydropseudouridine, 5,6-dihydrouridine, 5-methyldihydrouridine (m5D), 2-thio-dihydrouridine, 2-thio-dihydropseudouridine, 2-methoxy-uridine, 2-methoxy-4-thio-uridine, 4-methoxy-pseudouridine, 4-methoxy-2-thio-pseudouridine, N1-methyl-pseudouridine, 3-(3-amino-3-carboxypropyl)uridine (acp3U), 1-methyl-3-(3-amino-3-carboxypropyl)pseudouridine (acp3ψ), 5-(isopentenylaminomethyl)uridine (inm5U), 5-(isopentenylaminomethyl)-2-thio-uridine (inm5s2U), α-thio-uridine, 2′-O-methyl-uridine (Um), 5,2′-O-dimethyl-uridine (m5Um), 2′-O-methyl-pseudouridine (ψm), 2-thio-2′-O-methyl-uridine (s2Um), 5-methoxycarbonylmethyl-2′-O-methyl-uridine (mcm5Um), 5-carbamoylmethyl-2′-O-methyl-uridine (ncm5Um), 5-carboxymethylaminomethyl-2′-O-methyl-uridine (cmnm5Um), 3,2′-O-dimethyl-uridine (m3Um), and 5-(isopentenylaminomethyl)-2′-O-methyl-uridine (inm5Um), 1-thio-uridine, deoxythymidine, 2′-F-ara-uridine, 2′-F-uridine, 2′-OH-ara-uridine, 5-(2-carbomethoxyvinyl) uridine, and 5-[3-(1-E-propenylamino)]uridine.


In some embodiments, the modified nucleobase is a modified cytosine. Exemplary nucleobases and nucleosides having a modified cytosine include 5-aza-cytidine, 6-aza-cytidine, pseudoisocytidine, 3-methyl-cytidine (m3C), N4-acetyl-cytidine (ac4C), 5-formylcytidine (f5C), N4-methyl-cytidine (m4C), 5-methyl-cytidine (m5C), 5-halo-cytidine (e.g., 5-iodo-cytidine), 5-hydroxymethyl-cytidine (hm5C), 1-methyl-pseudoisocytidine, pyrrolo-cytidine, pyrrolo-pseudoisocytidine, 2-thio-cytidine (s2C), 2-thio-5-methyl-cytidine, 4-thio-pseudoisocytidine, 4-thio-1-methyl-pseudoisocytidine, 4-thio-1-methyl-1-deaza-pseudoisocytidine, 1-methyl-1-deaza-pseudoisocytidine, zebularine, 5-aza-zebularine, 5-methyl-zebularine, 5-aza-2-thio-zebularine, 2-thio-zebularine, 2-methoxy-cytidine, 2-methoxy-5-methyl-cytidine, 4-methoxy-pseudoisocytidine, 4-methoxy-1-methyl-pseudoisocytidine, lysidine (k2C), α-thio-cytidine, 2′-O-methyl-cytidine (Cm), 5,2′-O-dimethyl-cytidine (m5Cm), N4-acetyl-2′-O-methyl-cytidine (ac4Cm), N4,2′-O-dimethyl-cytidine (m4Cm), 5-formyl-2′-O-methyl-cytidine (f5Cm), N4,N4,2′-O-trimethyl-cytidine (m42Cm), 1-thio-cytidine, 2′-F-ara-cytidine, 2′-F-cytidine, and 2′-OH-ara-cytidine.


In some embodiments, the modified nucleobase is a modified adenine. Exemplary nucleobases and nucleosides having a modified adenine include 2-amino-purine, 2,6-diaminopurine, 2-amino-6-halo-purine (e.g., 2-amino-6-chloro-purine), 6-halo-purine (e.g., 6-chloro-purine), 2-amino-6-methyl-purine, 8-azido-adenosine, 7-deaza-adenine, 7-deaza-8-aza-adenine, 7-deaza-2-amino-purine, 7-deaza-8-aza-2-amino-purine, 7-deaza-2,6-diaminopurine, 7-deaza-8-aza-2,6-diaminopurine, 1-methyl-adenosine (m1A), 2-methyl-adenine (m2A), N6-methyl-adenosine (m6A), 2-methylthio-N6-methyl-adenosine (ms2 m6A), N6-isopentenyl-adenosine (i6A), 2-methylthio-N6-isopentenyl-adenosine (ms2i6A), N6-(cis-hydroxyisopentenyl)adenosine (io6A), 2-methylthio-N6-(cis-hydroxyisopentenyl)adenosine (ms2io6A), N6-glycinylcarbamoyl-adenosine (g6A), N6-threonylcarbamoyl-adenosine (t6A), N6-methyl-N6-threonylcarbamoyl-adenosine (m6t6A) 2-methylthio-N6-threonylcarbamoyl-adenosine (ms2g6A), N6,N6-dimethyl-adenosine (m62A), N6-hydroxynorvalylcarbamoyl-adenosine (hn6A), 2-methylthio-N6-hydroxynorvalylcarbamoyl-adenosine (ms2hn6A), N6-acetyl-adenosine (ac6A), 7-methyl-adenine, 2-methylthio-adenine, 2-methoxy-adenine, α-thio-adenosine, 2′-O-methyl-adenosine (Am), N6,2′-O-dimethyl-adenosine (m6Am), N6,N6,2′-O-trimethyl-adenosine (m62Am), 1,2′-O-dimethyl-adenosine (m1Am), 2′-O-ribosyladenosine (phosphate) (Ar(p)), 2-amino-N6-methyl-purine, 1-thio-adenosine, 8-azido-adenosine, 2′-F-ara-adenosine, 2′-F-adenosine, 2′-OH-ara-adenosine, and N6-(19-amino-pentaoxanonadecyl)-adenosine.


In some embodiments, the modified nucleobase is a modified guanine. Exemplary nucleobases and nucleosides having a modified guanine include inosine (I), 1-methyl-inosine (m1I), wyosine (imG), methylwyosine (mimG), 4-demethyl-wyosine (imG-14), isowyosine (imG2), wybutosine (yW), peroxywybutosine (o2yW), hydroxywybutosine (OhyW), undermodified hydroxywybutosine (OhyW*), 7-deaza-guanosine, queuosine (Q), epoxyqueuosine (oQ), galactosyl-queuosine (galQ), mannosyl-queuosine (manQ), 7-cyano-7-deaza-guanosine (preQ0), 7-aminomethyl-7-deaza-guanosine (preQ1), archaeosine (G+), 7-deaza-8-aza-guanosine, 6-thio-guanosine, 6-thio-7-deaza-guanosine, 6-thio-7-deaza-8-aza-guanosine, 7-methyl-guanosine (m7G), 6-thio-7-methyl-guanosine, 7-methyl-inosine, 6-methoxy-guanosine, 1-methyl-guanosine (m1G), N2-methyl-guanosine (m2G), N2,N2-dimethyl-guanosine (m22G), N2,7-dimethyl-guanosine (m2,7G), N2,N2,7-dimethyl-guanosine (m2,2,7G) 8-oxo-guanosine, 7-methyl-8-oxo-guanosine, 1-methyl-6-thio-guanosine, N2-methyl-6-thio-guanosine, N2,N2-dimethyl-6-thio-guanosine, α-thio-guanosine, 2′-O-methyl-guanosine (Gm), N2-methyl-2′-O-methyl-guanosine (m2Gm), N2,N2-dimethyl-2′-O-methyl-guanosine (m22Gm), 1-methyl-2′-O-methyl-guanosine (m1Gm), N2,7-dimethyl-2′-O-methyl-guanosine (m2,7Gm), 2′-O-methyl-inosine (Im), 1,2′-O-dimethyl-inosine (m1Im), 2′-O-ribosylguanosine (phosphate) (Gr(p)), 1-thio-guanosine, 06-methyl-guanosine, 2′-F-ara-guanosine, and 2′-F-guanosine.


Methods of Treatment

Provided herein are compositions (e.g., pharmaceutical compositions), methods, kits and reagents for prevention and/or treatment of CHIKV, DENV, ZIKV, CHIKV/DENV (the combination of CHIKV and DENV, CHIKV/ZIKV (the combination of CHIKV and ZIKV), ZIKV and DENV (the combination of ZIKV and DENV), and CHIKV/DENV/ZIKV (the combination of CHIKV, DENV and ZIKV) in humans and other mammals. CHIKV RNA (e.g. mRNA) vaccines, DENV RNA (e.g. mRNA) vaccines, ZIKV RNA (e.g. mRNA) vaccines, CHIKV/DENV RNA (e.g. mRNA) vaccines, CHIKV/ZIKV RNA (e.g. mRNA) vaccines, ZIKV/DENV RNA (e.g. mRNA) vaccines, and CHIKV/DENV/ZIKV RNA (e.g. mRNA) vaccines can be used as therapeutic or prophylactic agents. They may be used in medicine to prevent and/or treat infectious disease. In exemplary aspects, the vaccines, of the present disclosure are used to provide prophylactic protection from CHIKV, DENV, ZIKV or any combination of two or three of the foregoing viruses. Prophylactic protection from CHIKV, DENV and/or ZIKV can be achieved following administration of a CHIKV, DENV and/or ZIKV vaccine or combination vaccine, of the present disclosure. Vaccines (including combination vaccines) can be administered once, twice, three times, four times or more but it is likely sufficient to administer the vaccine once (optionally followed by a single booster). It is possible, although less desirable, to administer the vaccine to an infected individual to achieve a therapeutic response. Dosing may need to be adjusted accordingly.


Broad Spectrum Vaccines

It is envisioned that there may be situations where persons are at risk for infection with more than one strain of CHIKV, DENV and/or ZIKV (e.g., more than one strain of CHIKV, more than one strain of DENV, and/or more than one strain of ZIKV). RNA (e.g., mRNA) therapeutic vaccines are particularly amenable to combination vaccination approaches due to a number of factors including, but not limited to, speed of manufacture, ability to rapidly tailor vaccines to accommodate perceived geographical threat, and the like. Moreover, because the vaccines utilize the human body to produce the antigenic protein, the vaccines are amenable to the production of larger, more complex antigenic proteins, allowing for proper folding, surface expression, antigen presentation, etc. in the human subject. To protect against more than one strain of CHIKV, DENV and/or ZIKV, a vaccine (including a combination vaccine) can be administered that includes RNA encoding at least one antigenic polypeptide protein (or antigenic portion thereof) of a first CHIKV, DENV and/or ZIKV and further includes RNA encoding at least one antigenic polypeptide protein (or antigenic portion thereof) of a second CHIKV, DENV and/or ZIKV. RNAs (mRNAs) can be coformulated, for example, in a single lipid nanoparticle (LNP) or can be formulated in separate LNPs destined for co-administration.


A method of eliciting an immune response in a subject against a CHIKV, DENV and/or ZIKV is provided in aspects of the invention. The method involves administering to the subject a CHIKV, DENV and/or ZIKV RNA vaccine comprising at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV, DENV and/or ZIKV antigenic polypeptide or an immunogenic fragment thereof, thereby inducing in the subject an immune response specific to CHIKV, DENV and/or ZIKV antigenic polypeptide or an immunogenic fragment thereof, wherein anti-antigenic polypeptide antibody titer in the subject is increased following vaccination relative to anti-antigenic polypeptide antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against the CHIKV, DENV and/or ZIKV. An “anti-antigenic polypeptide antibody” is a serum antibody the binds specifically to the antigenic polypeptide.


A prophylactically effective dose is a therapeutically effective dose that prevents infection with the virus at a clinically acceptable level. In some embodiments the therapeutically effective dose is a dose listed in a package insert for the vaccine. A traditional vaccine, as used herein, refers to a vaccine other than the mRNA vaccines of the invention. For instance, a traditional vaccine includes but is not limited to live microorganism vaccines, killed microorganism vaccines, subunit vaccines, protein antigen vaccines, DNA vaccines, etc.


In some embodiments the anti-antigenic polypeptide antibody titer in the subject is increased 1 log to 10 log following vaccination relative to anti-antigenic polypeptide antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against the CHIKV, DENV and/or ZIKV.


In some embodiments the anti-antigenic polypeptide antibody titer in the subject is increased 1 log following vaccination relative to anti-antigenic polypeptide antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against the CHIKV, DENV and/or ZIKV.


In some embodiments the anti-antigenic polypeptide antibody titer in the subject is increased 2 log following vaccination relative to anti-antigenic polypeptide antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against the CHIKV, DENV and/or ZIKV.


In some embodiments the anti-antigenic polypeptide antibody titer in the subject is increased 3 log following vaccination relative to anti-antigenic polypeptide antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against the CHIKV, DENV and/or ZIKV.


In some embodiments the anti-antigenic polypeptide antibody titer in the subject is increased 5 log following vaccination relative to anti-antigenic polypeptide antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against the CHIKV, DENV and/or ZIKV.


In some embodiments the anti-antigenic polypeptide antibody titer in the subject is increased 10 log following vaccination relative to anti-antigenic polypeptide antibody titer in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against the CHIKV, DENV and/or ZIKV.


A method of eliciting an immune response in a subject against a CHIKV, DENV and/or ZIKV is provided in other aspects of the invention. The method involves administering to the subject a CHIKV, DENV and/or ZIKV RNA vaccine comprising at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV, DENV and/or ZIKV antigenic polypeptide or an immunogenic fragment thereof, thereby inducing in the subject an immune response specific to CHIKV, DENV and/or ZIKV antigenic polypeptide or an immunogenic fragment thereof, wherein the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine against the CHIKV, DENV and/or ZIKV at 2 times to 100 times the dosage level relative to the RNA vaccine.


In some embodiments the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at twice the dosage level relative to the CHIKV, DENV and/or ZIKV RNA vaccine.


In some embodiments the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at three times the dosage level relative to the CHIKV, DENV and/or ZIKV RNA vaccine.


In some embodiments the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at 4 times the dosage level relative to the CHIKV, DENV and/or ZIKV vaccine.


In some embodiments the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at 5 times the dosage level relative to the CHIKV, DENV and/or ZIKV RNA vaccine.


In some embodiments the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at 10 times the dosage level relative to the CHIKV, DENV and/or ZIKV RNA vaccine.


In some embodiments the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at 50 times the dosage level relative to the CHIKV, DENV and/or ZIKV RNA vaccine.


In some embodiments the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at 100 times the dosage level relative to the CHIKV, DENV and/or ZIKV RNA vaccine.


In some embodiments the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at 10 times to 1000 times the dosage level relative to the CHIKV, DENV and/or ZIKV RNA vaccine.


In some embodiments the immune response in the subject is equivalent to an immune response in a subject vaccinated with a traditional vaccine at 100 times to 1000 times the dosage level relative to the CHIKV, DENV and/or ZIKV RNA vaccine


In other embodiments the immune response is assessed by determining [protein] antibody titer in the subject.


In other aspects the present disclosure is a method of eliciting an immune response in a subject against a CHIKV, DENV and/or ZIKV by administering to the subject a CHIKV, DENV and/or ZIKV RNA vaccine comprising at least one RNA polynucleotide having an open reading frame encoding at least one CHIKV, DENV and/or ZIKV antigenic polypeptide or an immunogenic fragment thereof, thereby inducing in the subject an immune response specific to CHIKV, DENV and/or ZIKV antigenic polypeptide or an immunogenic fragment thereof, wherein the immune response in the subject is induced 2 days to 10 weeks earlier relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine against the CHIKV, DENV and/or ZIKV. In some embodiments the immune response in the subject is induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine at 2 times to 100 times the dosage level relative to the RNA vaccine.


In some embodiments the immune response in the subject is induced 2 days earlier relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine.


In some embodiments the immune response in the subject is induced 3 days earlier relative to an immune response induced in a subject vaccinated a prophylactically effective dose of a traditional vaccine.


In some embodiments the immune response in the subject is induced 1 week earlier relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine.


In some embodiments the immune response in the subject is induced 2 weeks earlier relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine.


In some embodiments the immune response in the subject is induced 3 weeks earlier relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine.


In some embodiments the immune response in the subject is induced 5 weeks earlier relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine.


In some embodiments the immune response in the subject is induced 10 weeks earlier relative to an immune response induced in a subject vaccinated with a prophylactically effective dose of a traditional vaccine.


Also provided herein are methods of eliciting an immune response in a subject against a CHIKV, DENV and/or ZIKV by administering to the subject a CHIKV, DENV and/or ZIKV RNA vaccine having an open reading frame encoding a first antigenic polypeptide, wherein the RNA polynucleotide does not include a stabilization element, and wherein an adjuvant is not coformulated or co-administered with the vaccine.


Therapeutic and Prophylactic Compositions

Provided herein are compositions, methods, kits and reagents for the prevention, treatment or diagnosis of Chikungunya virus in humans and other mammals, for example. The active therapeutic agents of the present disclosure include the CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines), cells containing CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines), and antigenic polypeptides translated from the polynucleotides comprising the RNA vaccines. CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines) can be used as therapeutic or prophylactic agents. They may be used in medicine and/or for the priming of immune effector cells, for example, to activate peripheral blood mononuclear cells (PBMCs) ex vivo, which are then infused (re-infused) into a subject.


In some embodiments, a vaccines, including a combination vaccine, containing RNA polynucleotides, e.g., mRNA, as described herein can be administered to a subject (e.g., a mammalian subject, such as a human subject), and the RNA polynucleotides are translated in vivo to produce an antigenic polypeptide.


The CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, may be induced for translation of a polypeptide (e.g., antigen or immunogen) in a cell, tissue or organism. Such translation can be in vivo, ex vivo, in culture or in vitro. The cell, tissue or organism is contacted with an effective amount of a composition containing a CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, that contains a polynucleotide that has at least one a translatable region encoding an antigenic polypeptide.


An “effective amount” of the CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, is provided based, at least in part, on the target tissue, target cell type, means of administration, physical characteristics of the polynucleotide (e.g., size, and extent of modified nucleosides) and other components of the CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, and other determinants. In general, CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, provides an induced or boosted immune response as a function of antigen production in the cell, preferably more efficient than a composition containing a corresponding unmodified polynucleotide encoding the same antigen or a peptide antigen. Increased antigen production may be demonstrated by increased cell transfection (the percentage of cells transfected with the RNA vaccine), increased protein translation from the polynucleotide, decreased nucleic acid degradation (as demonstrated, for example, by increased duration of protein translation from a modified polynucleotide), or altered antigen specific immune response of the host cell.


In some embodiments, RNA vaccines (including polynucleotides and their encoded polypeptides) and cells comprising the RNA vaccines in accordance with the present disclosure may be used for the treatment of Chikungunya virus, Dengue virus, Zika virus, or any combination of two or three of the foregoing viruses.


CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, may be administered prophylactically or therapeutically as part of an active immunization scheme to healthy individuals or early in infection during the incubation phase or during active infection after onset of symptoms. In some embodiments, the amount of RNA vaccine of the present disclosure provided to a cell, a tissue or a subject may be an amount effective for immune prophylaxis.


CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, may be administered with other prophylactic or therapeutic compounds. As a non-limiting example, a prophylactic or therapeutic compound may be an adjuvant or a booster. As used herein, when referring to a prophylactic composition, such as a vaccine, the term “booster” refers to an extra administration of the prophylactic (vaccine) composition. A booster (or booster vaccine) may be given after an earlier administration of the prophylactic composition. The time of administration between the initial administration of the prophylactic composition and the booster may be, but is not limited to, 1 minute, 2 minutes, 3 minutes, 4 minutes, 5 minutes, 6 minutes, 7 minutes, 8 minutes, 9 minutes, 10 minutes, 15 minutes, 20 minutes 35 minutes, 40 minutes, 45 minutes, 50 minutes, 55 minutes, 1 hour, 2 hours, 3 hours, 4 hours, 5 hours, 6 hours, 7 hours, 8 hours, 9 hours, 10 hours, 11 hours, 12 hours, 13 hours, 14 hours, 15 hours, 16 hours, 17 hours, 18 hours, 19 hours, 20 hours, 21 hours, 22 hours, 23 hours, 1 day, 36 hours, 2 days, 3 days, 4 days, 5 days, 6 days, 1 week, 10 days, 2 weeks, 3 weeks, 1 month, 2 months, 3 months, 4 months, 5 months, 6 months, 7 months, 8 months, 9 months, 10 months, 11 months, 1 year, 15 months, 18 months, 21 months, 2 years, 3 years, 4 years, 5 years, 6 years, 7 years, 8 years, 9 years, 10 years, 11 years, 12 years, 13 years, 14 years, 15 years, 16 years, 17 years, 18 years, 19 years, 20 years, 25 years, 30 years, 35 years, 40 years, 45 years, 50 years, 55 years, 60 years, 65 years, 70 years, 75 years, 80 years, 85 years, 90 years, 95 years or more than 99 years, and any time period in-between.


In some embodiments, CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, may be administered intramuscularly or intradermally, similarly to the administration of inactivated vaccines known in the art.


The CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, may be utilized in various settings depending on the prevalence of the infection or the degree or level of unmet medical need. As a non-limiting example, the RNA vaccines may be utilized to treat and/or prevent infectious disease caused by Chikungunya virus. RNA vaccines have superior properties in that they produce much larger antibody titers and produce responses early than commercially available anti-virals.


Provided herein are pharmaceutical compositions including CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines and RNA vaccine compositions and/or complexes optionally in combination with one or more pharmaceutically acceptable excipients.


CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, may be formulated or administered alone or in conjunction with one or more other components. For instance, CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines (vaccine compositions) may comprise other components including, but not limited to, adjuvants. In some embodiments, CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, do not include an adjuvant (they are adjuvant free).


CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, may be formulated or administered in combination with one or more pharmaceutically-acceptable excipients. In some embodiments, vaccine compositions comprise at least one additional active substance, such as, for example, a therapeutically-active substance, a prophylactically-active substance, or a combination of both. Vaccine compositions may be sterile, pyrogen-free or both sterile and pyrogen-free. General considerations in the formulation and/or manufacture of pharmaceutical agents, such as vaccine compositions, may be found, for example, in Remington: The Science and Practice of Pharmacy 21st ed., Lippincott Williams & Wilkins, 2005 (incorporated herein by reference in its entirety).


In some embodiments, CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, are administered to humans, human patients or subjects. For the purposes of the present disclosure, the phrase “active ingredient” generally refers to the RNA vaccines or the polynucleotides contained therein, for example, RNA polynucleotides (e.g., mRNA polynucleotides) encoding CHIKV, DENV and/or ZIKV antigenic polypeptides.


Formulations of the vaccine compositions described herein may be prepared by any method known or hereafter developed in the art of pharmacology. In general, such preparatory methods include the step of bringing the active ingredient (e.g., mRNA polynucleotide) into association with an excipient and/or one or more other accessory ingredients, and then, if necessary and/or desirable, dividing, shaping and/or packaging the product into a desired single- or multi-dose unit.


Relative amounts of the active ingredient, the pharmaceutically acceptable excipient, and/or any additional ingredients in a pharmaceutical composition in accordance with the disclosure will vary, depending upon the identity, size, and/or condition of the subject treated and further depending upon the route by which the composition is to be administered. By way of example, the composition may comprise between 0.1% and 100%, e.g., between 0.5 and 50%, between 1-30%, between 5-80%, at least 80% (w/w) active ingredient.


CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, can be formulated using one or more excipients to: (1) increase stability; (2) increase cell transfection; (3) permit the sustained or delayed release (e.g., from a depot formulation); (4) alter the biodistribution (e.g., target to specific tissues or cell types); (5) increase the translation of encoded protein in vivo; and/or (6) alter the release profile of encoded protein (antigen) in vivo. In addition to traditional excipients such as any and all solvents, dispersion media, diluents, or other liquid vehicles, dispersion or suspension aids, surface active agents, isotonic agents, thickening or emulsifying agents, preservatives, excipients can include, without limitation, lipidoids, liposomes, lipid nanoparticles, polymers, lipoplexes, core-shell nanoparticles, peptides, proteins, cells transfected with CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, (e.g., for transplantation into a subject), hyaluronidase, nanoparticle mimics and combinations thereof.


Stabilizing Elements

Naturally-occurring eukaryotic mRNA molecules have been found to contain stabilizing elements, including, but not limited to untranslated regions (UTR) at their 5′-end (5′UTR) and/or at their 3′-end (3′UTR), in addition to other structural features, such as a 5′-cap structure or a 3′-poly(A) tail. Both the 5′UTR and the 3′UTR are typically transcribed from the genomic DNA and are elements of the premature mRNA. Characteristic structural features of mature mRNA, such as the 5′-cap and the 3′-poly(A) tail are usually added to the transcribed (premature) mRNA during mRNA processing. The 3′-poly(A) tail is typically a stretch of adenine nucleotides added to the 3′-end of the transcribed mRNA. It can comprise up to about 400 adenine nucleotides. In some embodiments the length of the 3′-poly(A) tail may be an essential element with respect to the stability of the individual mRNA.


In some embodiments the RNA vaccine may include one or more stabilizing elements. Stabilizing elements may include for instance a histone stem-loop. A stem-loop binding protein (SLBP), a 32 kDa protein has been identified. It is associated with the histone stem-loop at the 3′-end of the histone messages in both the nucleus and the cytoplasm. Its expression level is regulated by the cell cycle; it is peaks during the S-phase, when histone mRNA levels are also elevated. The protein has been shown to be essential for efficient 3′-end processing of histone pre-mRNA by the U7 snRNP. SLBP continues to be associated with the stem-loop after processing, and then stimulates the translation of mature histone mRNAs into histone proteins in the cytoplasm. The RNA binding domain of SLBP is conserved through metazoa and protozoa; its binding to the histone stem-loop depends on the structure of the loop. The minimum binding site includes at least three nucleotides 5′ and two nucleotides 3′ relative to the stem-loop.


In some embodiments, the RNA vaccines include a coding region, at least one histone stem-loop, and optionally, a poly(A) sequence or polyadenylation signal. The poly(A) sequence or polyadenylation signal generally should enhance the expression level of the encoded protein. The encoded protein, in some embodiments, is not a histone protein, a reporter protein (e.g. Luciferase, GFP, EGFP, β-Galactosidase, EGFP), or a marker or selection protein (e.g. alpha-Globin, Galactokinase and Xanthine:guanine phosphoribosyl transferase (GPT)).


In some embodiments, the combination of a poly(A) sequence or polyadenylation signal and at least one histone stem-loop, even though both represent alternative mechanisms in nature, acts synergistically to increase the protein expression beyond the level observed with either of the individual elements. It has been found that the synergistic effect of the combination of poly(A) and at least one histone stem-loop does not depend on the order of the elements or the length of the poly(A) sequence.


In some embodiments, the RNA vaccine does not comprise a histone downstream element (HDE). “Histone downstream element” (HDE) includes a purine-rich polynucleotide stretch of approximately 15 to 20 nucleotides 3′ of naturally occurring stem-loops, representing the binding site for the U7 snRNA, which is involved in processing of histone pre-mRNA into mature histone mRNA. Ideally, the inventive nucleic acid does not include an intron.


In some embodiments, the RNA vaccine may or may not contain a enhancer and/or promoter sequence, which may be modified or unmodified or which may be activated or inactivated. In some embodiments, the histone stem-loop is generally derived from histone genes, and includes an intramolecular base pairing of two neighbored partially or entirely reverse complementary sequences separated by a spacer, consisting of a short sequence, which forms the loop of the structure. The unpaired loop region is typically unable to base pair with either of the stem loop elements. It occurs more often in RNA, as is a key component of many RNA secondary structures, but may be present in single-stranded DNA as well. Stability of the stem-loop structure generally depends on the length, number of mismatches or bulges, and base composition of the paired region. In some embodiments, wobble base pairing (non-Watson-Crick base pairing) may result. In some embodiments, the at least one histone stem-loop sequence comprises a length of 15 to 45 nucleotides.


In other embodiments the RNA vaccine may have one or more AU-rich sequences removed. These sequences, sometimes referred to as AURES are destabilizing sequences found in the 3′UTR. The AURES may be removed from the RNA vaccines. Alternatively the AURES may remain in the RNA vaccine.


Nanoparticle Formulations

In some embodiments, CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, are formulated in a nanoparticle. In some embodiments, CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, are formulated in a lipid nanoparticle. In some embodiments, CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, are formulated in a lipid-polycation complex, referred to as a cationic lipid nanoparticle. The formation of the lipid nanoparticle may be accomplished by methods known in the art and/or as described in U.S. Pub. No. 20120178702, herein incorporated by reference in its entirety. As a non-limiting example, the cationic lipid nanoparticle may include a cationic peptide or a polypeptide such as, but not limited to, polylysine, polyornithine and/or polyarginine and the cationic peptides described in International Pub. No. WO2012013326 or US Patent Pub. No. US20130142818; each of which is herein incorporated by reference in its entirety. In some embodiments, CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, are formulated in a lipid nanoparticle that includes a non-cationic lipid such as, but not limited to, cholesterol or dioleoyl phosphatidylethanolamine (DOPE).


A lipid nanoparticle formulation may be influenced by, but not limited to, the selection of the cationic lipid component, the degree of cationic lipid saturation, the nature of the PEGylation, ratio of all components and biophysical parameters such as size. For example, the lipid nanoparticle formulation may be composed of 57.1% cationic lipid, 7.1% dipalmitoylphosphatidylcholine, 34.3% cholesterol, and 1.4% PEG-c-DMA. (Semple et al., Nature Biotech. 2010 28:172-176; herein incorporated by reference in its entirety). Altering the composition of the cationic lipid can more effectively deliver RNA to various antigen presenting cells (Basha et al. Mol Ther. 2011 19:2186-2200; herein incorporated by reference in its entirety).


In some embodiments, lipid nanoparticle formulations may comprise 35 to 45% cationic lipid, 40% to 50% cationic lipid, 50% to 60% cationic lipid and/or 55% to 65% cationic lipid. In some embodiments, the ratio of lipid to RNA (e.g., mRNA) in lipid nanoparticles may be 5:1 to 20:1, 10:1 to 25:1, 15:1 to 30:1 and/or at least 30:1.


In some embodiments, the ratio of PEG in the lipid nanoparticle formulations may be increased or decreased and/or the carbon chain length of the PEG lipid may be modified from C14 to C18 to alter the pharmacokinetics and/or biodistribution of the lipid nanoparticle formulations. As a non-limiting example, lipid nanoparticle formulations may contain 0.5% to 3.0%, 1.0% to 3.5%, 1.5% to 4.0%, 2.0% to 4.5%, 2.5% to 5.0% and/or 3.0% to 6.0% of the lipid molar ratio of PEG-c-DOMG (R-3-[(ω-methoxy-poly(ethyleneglycol)2000)carbamoyl)]-1,2-dimyristyloxypropyl-3-amine) (also referred to herein as PEG-DOMG) as compared to the cationic lipid, DSPC and cholesterol. In some embodiments, the PEG-c-DOMG may be replaced with a PEG lipid such as, but not limited to, PEG-DSG (1,2-Distearoyl-sn-glycerol, methoxypolyethylene glycol), PEG-DMG (1,2-Dimyristoyl-sn-glycerol) and/or PEG-DPG (1,2-Dipalmitoyl-sn-glycerol, methoxypolyethylene glycol). The cationic lipid may be selected from any lipid known in the art such as, but not limited to, DLin-MC3-DMA, DLin-DMA, C12-200 and DLin-KC2-DMA.


In some embodiments, the CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccine formulation is a nanoparticle that comprises at least one lipid. The lipid may be selected from, but is not limited to, DLin-DMA, Dlin-K-DMA, 98N12-5, C12-200, Dlin-MC3-DMA, Dlin-KC2-DMA, DODMA, PLGA, PEG, PEG-DMG, PEGylated lipids and amino alcohol lipids. In some embodiments, the lipid may be a cationic lipid such as, but not limited to, Dlin-DMA, Dlin-D-DMA, Dlin-MC3-DMA, Dlin-KC2-DMA, DODMA and amino alcohol lipids. The amino alcohol cationic lipid may be the lipids described in and/or made by the methods described in US Patent Publication No. US20130150625, herein incorporated by reference in its entirety. As a non-limiting example, the cationic lipid may be 2-amino-3-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]-2-{[(9Z,2Z)-octadeca-9,12-dien-1-yloxy]methyl}propan-1-ol (Compound 1 in US20130150625); 2-amino-3-[(9Z)-octadec-9-en-1-yloxy]-2-{[(9Z)-octadec-9-en-1-yloxy]methyl}propan-1-ol (Compound 2 in US20130150625); 2-amino-3-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]-2-[(octyloxy)methyl]propan-1-ol (Compound 3 in US20130150625); and 2-(dimethylamino)-3-[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]-2-{[(9Z,12Z)-octadeca-9,12-dien-1-yloxy]methyl}propan-1-ol (Compound 4 in US20130150625); or any pharmaceutically acceptable salt or stereoisomer thereof.


Lipid nanoparticle formulations typically comprise a lipid, in particular, an ionizable cationic lipid, for example, 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (Dlin-MC3-DMA), or di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), and further comprise a neutral lipid, a sterol and a molecule capable of reducing particle aggregation, for example a PEG or PEG-modified lipid.


In some embodiments, a lipid nanoparticle formulation consists essentially of (i) at least one lipid selected from the group consisting of 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (Dlin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319); (ii) a neutral lipid selected from DSPC, DPPC, POPC, DOPE and SM; (iii) a sterol, e.g., cholesterol; and (iv) a PEG-lipid, e.g., PEG-DMG or PEG-cDMA, in a molar ratio of 20-60% cationic lipid: 5-25% neutral lipid: 25-55% sterol; 0.5-15% PEG-lipid.


In some embodiments, a lipid nanoparticle formulation includes 25% to 75% on a molar basis of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (Dlin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), e.g., 35 to 65%, 45 to 65%, 60%, 57.5%, 50% or 40% on a molar basis.


In some embodiments, a lipid nanoparticle formulation includes 0.5% to 15% on a molar basis of the neutral lipid, e.g., 3 to 12%, 5 to 10% or 15%, 10%, or 7.5% on a molar basis. Examples of neutral lipids include, without limitation, DSPC, POPC, DPPC, DOPE and SM. In some embodiments, the formulation includes 5% to 50% on a molar basis of the sterol (e.g., 15 to 45%, 20 to 40%, 40%, 38.5%, 35%, or 31% on a molar basis. A non-limiting example of a sterol is cholesterol. In some embodiments, a lipid nanoparticle formulation includes 0.5% to 20% on a molar basis of the PEG or PEG-modified lipid (e.g., 0.5 to 10%, 0.5 to 5%, 1.5%, 0.5%, 1.5%, 3.5%, or 5% on a molar basis. In some embodiments, a PEG or PEG modified lipid comprises a PEG molecule of an average molecular weight of 2,000 Da. In some embodiments, a PEG or PEG modified lipid comprises a PEG molecule of an average molecular weight of less than 2,000, for example around 1,500 Da, around 1,000 Da, or around 500 Da. Non-limiting examples of PEG-modified lipids include PEG-distearoyl glycerol (PEG-DMG) (also referred herein as PEG-C14 or C14-PEG), PEG-cDMA (further discussed in Reyes et al. J. Controlled Release, 107, 276-287 (2005) the contents of which are herein incorporated by reference in its entirety).


In some embodiments, lipid nanoparticle formulations include 25-75% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (Dlin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 0.5-15% of the neutral lipid, 5-50% of the sterol, and 0.5-20% of the PEG or PEG-modified lipid on a molar basis.


In some embodiments, lipid nanoparticle formulations include 35-65% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (Dlin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 3-12% of the neutral lipid, 15-45% of the sterol, and 0.5-10% of the PEG or PEG-modified lipid on a molar basis.


In some embodiments, lipid nanoparticle formulations include 45-65% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (Dlin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 5-10% of the neutral lipid, 25-40% of the sterol, and 0.5-10% of the PEG or PEG-modified lipid on a molar basis.


In some embodiments, lipid nanoparticle formulations include 60% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (Dlin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 7.5% of the neutral lipid, 31% of the sterol, and 1.5% of the PEG or PEG-modified lipid on a molar basis.


In some embodiments, lipid nanoparticle formulations include 50% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (Dlin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 10% of the neutral lipid, 38.5% of the sterol, and 1.5% of the PEG or PEG-modified lipid on a molar basis.


In some embodiments, lipid nanoparticle formulations include 50% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (Dlin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 10% of the neutral lipid, 35% of the sterol, 4.5% or 5% of the PEG or PEG-modified lipid, and 0.5% of the targeting lipid on a molar basis.


In some embodiments, lipid nanoparticle formulations include 40% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (Dlin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 15% of the neutral lipid, 40% of the sterol, and 5% of the PEG or PEG-modified lipid on a molar basis.


In some embodiments, lipid nanoparticle formulations include 57.2% of a cationic lipid selected from 2,2-dilinoleyl-4-dimethylaminoethyl[1,3]-dioxolane (Dlin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (Dlin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319), 7.1% of the neutral lipid, 34.3% of the sterol, and 1.4% of the PEG or PEG-modified lipid on a molar basis.


In some embodiments, lipid nanoparticle formulations include 57.5% of a cationic lipid selected from the PEG lipid is PEG-cDMA (PEG-cDMA is further discussed in Reyes et al. (J. Controlled Release, 107, 276-287 (2005), the contents of which are herein incorporated by reference in its entirety), 7.5% of the neutral lipid, 31.5% of the sterol, and 3.5% of the PEG or PEG-modified lipid on a molar basis.


In some embodiments, lipid nanoparticle formulations consists essentially of a lipid mixture in molar ratios of 20-70% cationic lipid: 5-45% neutral lipid: 20-55% cholesterol: 0.5-15% PEG-modified lipid. In some embodiments, lipid nanoparticle formulations consists essentially of a lipid mixture in a molar ratio of 20-60% cationic lipid: 5-25% neutral lipid: 25-55% cholesterol: 0.5-15% PEG-modified lipid.


In some embodiments, the molar lipid ratio is 50/10/38.5/1.5 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG, PEG-DSG or PEG-DPG), 57.2/7.1134.3/1.4 (mol % cationic lipid/neutral lipid, e.g., DPPC/Chol/PEG-modified lipid, e.g., PEG-cDMA), 40/15/40/5 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG), 50/10/35/4.5/0.5 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DSG), 50/10/35/5 (cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG), 40/10/40/10 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG or PEG-cDMA), 35/15/40/10 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG or PEG-cDMA) or 52/13/30/5 (mol % cationic lipid/neutral lipid, e.g., DSPC/Chol/PEG-modified lipid, e.g., PEG-DMG or PEG-cDMA).


Non-limiting examples of lipid nanoparticle compositions and methods of making them are described, for example, in Semple et al. (2010) Nat. Biotechnol. 28:172-176; Jayarama et al. (2012), Angew. Chem. Int. Ed., 51: 8529-8533; and Maier et al. (2013) Molecular Therapy 21, 1570-1578 (the contents of each of which are incorporated herein by reference in their entirety).


In some embodiments, lipid nanoparticle formulations may comprise a cationic lipid, a PEG lipid and a structural lipid and optionally comprise a non-cationic lipid. As a non-limiting example, a lipid nanoparticle may comprise 40-60% of cationic lipid, 5-15% of a non-cationic lipid, 1-2% of a PEG lipid and 30-50% of a structural lipid. As another non-limiting example, the lipid nanoparticle may comprise 50% cationic lipid, 10% non-cationic lipid, 1.5% PEG lipid and 38.5% structural lipid. As yet another non-limiting example, a lipid nanoparticle may comprise 55% cationic lipid, 10% non-cationic lipid, 2.5% PEG lipid and 32.5% structural lipid. In some embodiments, the cationic lipid may be any cationic lipid described herein such as, but not limited to, Dlin-KC2-DMA, Dlin-MC3-DMA and L319.


In some embodiments, the lipid nanoparticle formulations described herein may be 4 component lipid nanoparticles. The lipid nanoparticle may comprise a cationic lipid, a non-cationic lipid, a PEG lipid and a structural lipid. As a non-limiting example, the lipid nanoparticle may comprise 40-60% of cationic lipid, 5-15% of a non-cationic lipid, 1-2% of a PEG lipid and 30-50% of a structural lipid. As another non-limiting example, the lipid nanoparticle may comprise 50% cationic lipid, 10% non-cationic lipid, 1.5% PEG lipid and 38.5% structural lipid. As yet another non-limiting example, the lipid nanoparticle may comprise 55% cationic lipid, 10% non-cationic lipid, 2.5% PEG lipid and 32.5% structural lipid. In some embodiments, the cationic lipid may be any cationic lipid described herein such as, but not limited to, Dlin-KC2-DMA, Dlin-MC3-DMA and L319.


In some embodiments, the lipid nanoparticle formulations described herein may comprise a cationic lipid, a non-cationic lipid, a PEG lipid and a structural lipid. As a non-limiting example, the lipid nanoparticle comprise 50% of the cationic lipid Dlin-KC2-DMA, 10% of the non-cationic lipid DSPC, 1.5% of the PEG lipid PEG-DOMG and 38.5% of the structural lipid cholesterol. As a non-limiting example, the lipid nanoparticle comprise 50% of the cationic lipid Dlin-MC3-DMA, 10% of the non-cationic lipid DSPC, 1.5% of the PEG lipid PEG-DOMG and 38.5% of the structural lipid cholesterol. As a non-limiting example, the lipid nanoparticle comprise 50% of the cationic lipid Dlin-MC3-DMA, 10% of the non-cationic lipid DSPC, 1.5% of the PEG lipid PEG-DMG and 38.5% of the structural lipid cholesterol. As yet another non-limiting example, the lipid nanoparticle comprise 55% of the cationic lipid L319, 10% of the non-cationic lipid DSPC, 2.5% of the PEG lipid PEG-DMG and 32.5% of the structural lipid cholesterol.


Relative amounts of the active ingredient, the pharmaceutically acceptable excipient, and/or any additional ingredients in a vaccine composition may vary, depending upon the identity, size, and/or condition of the subject being treated and further depending upon the route by which the composition is to be administered. For example, the composition may comprise between 0.1% and 99% (w/w) of the active ingredient. By way of example, the composition may comprise between 0.1% and 100%, e.g., between 0.5 and 50%, between 1-30%, between 5-80%, at least 80% (w/w) active ingredient.


In some embodiments, the RNA vaccine composition may comprise the polynucleotide described herein, formulated in a lipid nanoparticle comprising MC3, Cholesterol, DSPC and PEG2000-DMG, the buffer trisodium citrate, sucrose and water for injection. As a non-limiting example, the composition comprises: 2.0 mg/mL of drug substance (e.g., polynucleotides encoding H10N8 influenza virus), 21.8 mg/mL of MC3, 10.1 mg/mL of cholesterol, 5.4 mg/mL of DSPC, 2.7 mg/mL of PEG2000-DMG, 5.16 mg/mL of trisodium citrate, 71 mg/mL of sucrose and 1.0 mL of water for injection.


In some embodiments, a nanoparticle (e.g., a lipid nanoparticle) has a mean diameter of 10-500 nm, 20-400 nm, 30-300 nm, 40-200 nm. In some embodiments, a nanoparticle (e.g., a lipid nanoparticle) has a mean diameter of 50-150 nm, 50-200 nm, 80-100 nm or 80-200 nm.


In one embodiment, the RNA vaccines of the invention may be formulated in lipid nanoparticles having a diameter from about 10 to about 100 nm such as, but not limited to, about 10 to about 20 nm, about 10 to about 30 nm, about 10 to about 40 nm, about 10 to about 50 nm, about 10 to about 60 nm, about 10 to about 70 nm, about 10 to about 80 nm, about 10 to about 90 nm, about 20 to about 30 nm, about 20 to about 40 nm, about 20 to about 50 nm, about 20 to about 60 nm, about 20 to about 70 nm, about 20 to about 80 nm, about 20 to about 90 nm, about 20 to about 100 nm, about 30 to about 40 nm, about 30 to about 50 nm, about 30 to about 60 nm, about 30 to about 70 nm, about 30 to about 80 nm, about 30 to about 90 nm, about 30 to about 100 nm, about 40 to about 50 nm, about 40 to about 60 nm, about 40 to about 70 nm, about 40 to about 80 nm, about 40 to about 90 nm, about 40 to about 100 nm, about 50 to about 60 nm, about 50 to about 70 nm about 50 to about 80 nm, about 50 to about 90 nm, about 50 to about 100 nm, about 60 to about 70 nm, about 60 to about 80 nm, about 60 to about 90 nm, about 60 to about 100 nm, about 70 to about 80 nm, about 70 to about 90 nm, about 70 to about 100 nm, about 80 to about 90 nm, about 80 to about 100 nm and/or about 90 to about 100 nm.


In one embodiment, the lipid nanoparticles may have a diameter from about 10 to 500 nm.


In one embodiment, the lipid nanoparticle may have a diameter greater than 100 nm, greater than 150 nm, greater than 200 nm, greater than 250 nm, greater than 300 nm, greater than 350 nm, greater than 400 nm, greater than 450 nm, greater than 500 nm, greater than 550 nm, greater than 600 nm, greater than 650 nm, greater than 700 nm, greater than 750 nm, greater than 800 nm, greater than 850 nm, greater than 900 nm, greater than 950 nm or greater than 1000 nm.


Modes of Vaccine Administration

CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, may be administered by any route which results in a therapeutically effective outcome. These include, but are not limited, to intradermal, intramuscular, and/or subcutaneous administration. The present disclosure provides methods comprising administering RNA vaccines to a subject in need thereof. The exact amount required will vary from subject to subject, depending on the species, age, and general condition of the subject, the severity of the disease, the particular composition, its mode of administration, its mode of activity, and the like. CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, compositions are typically formulated in dosage unit form for ease of administration and uniformity of dosage. It will be understood, however, that the total daily usage of CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, compositions may be decided by the attending physician within the scope of sound medical judgment. The specific therapeutically effective, prophylactically effective, or appropriate imaging dose level for any particular patient will depend upon a variety of factors including the disorder being treated and the severity of the disorder; the activity of the specific compound employed; the specific composition employed; the age, body weight, general health, sex and diet of the patient; the time of administration, route of administration, and rate of excretion of the specific compound employed; the duration of the treatment; drugs used in combination or coincidental with the specific compound employed; and like factors well known in the medical arts.


In certain embodiments, CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, may be administered at dosage levels sufficient to deliver 0.0001 mg/kg to 100 mg/kg, 0.001 mg/kg to 0.05 mg/kg, 0.005 mg/kg to 0.05 mg/kg, 0.001 mg/kg to 0.005 mg/kg, 0.05 mg/kg to 0.5 mg/kg, 0.01 mg/kg to 50 mg/kg, 0.1 mg/kg to 40 mg/kg, 0.5 mg/kg to 30 mg/kg, 0.01 mg/kg to 10 mg/kg, 0.1 mg/kg to 10 mg/kg, or 1 mg/kg to 25 mg/kg, of subject body weight per day, one or more times a day, to obtain the desired therapeutic, diagnostic, prophylactic, or imaging effect (see e.g., the range of unit doses described in International Publication No WO2013078199, herein incorporated by reference in its entirety). The desired dosage may be delivered three times a day, two times a day, once a day, every other day, every third day, every week, every two weeks, every three weeks, or every four weeks. In certain embodiments, the desired dosage may be delivered using multiple administrations (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, or more administrations). When multiple administrations are employed, split dosing regimens such as those described herein may be used.


In some embodiments, CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, may be administered at dosage levels sufficient to deliver 0.0001 mg/kg to 100 mg/kg, 0.001 mg/kg to 0.05 mg/kg, 0.005 mg/kg to 0.05 mg/kg, 0.001 mg/kg to 0.005 mg/kg, 0.05 mg/kg to 0.5 mg/kg, 0.01 mg/kg to 50 mg/kg, 0.1 mg/kg to 40 mg/kg, 0.5 mg/kg to 30 mg/kg, 0.01 mg/kg to 10 mg/kg, 0.1 mg/kg to 10 mg/kg, or 1 mg/kg to 25 mg/kg, of subject body weight per day, one or more times a day, per week, per month, etc. to obtain the desired therapeutic, diagnostic, prophylactic, or imaging effect (see e.g., the range of unit doses described in International Publication No WO2013078199, herein incorporated by reference in its entirety). The desired dosage may be delivered three times a day, two times a day, once a day, every other day, every third day, every week, every two weeks, every three weeks, every four weeks, every 2 months, every three months, every 6 months, etc. In certain embodiments, the desired dosage may be delivered using multiple administrations (e.g., two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, or more administrations). When multiple administrations are employed, split dosing regimens such as those described herein may be used. In exemplary embodiments, CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, may be administered at dosage levels sufficient to deliver 0.0005 mg/kg to 0.01 mg/kg, e.g., about 0.0005 mg/kg to about 0.0075 mg/kg, e.g., about 0.0005 mg/kg, about 0.001 mg/kg, about 0.002 mg/kg, about 0.003 mg/kg, about 0.004 mg/kg or about 0.005 mg/kg.


In some embodiments, CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, may be administered once or twice (or more) at dosage levels sufficient to deliver 0.025 mg/kg to 0.250 mg/kg, 0.025 mg/kg to 0.500 mg/kg, 0.025 mg/kg to 0.750 mg/kg, or 0.025 mg/kg to 1.0 mg/kg.


In some embodiments, CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, may be administered twice (e.g., Day 0 and Day 7, Day 0 and Day 14, Day 0 and Day 21, Day 0 and Day 28, Day 0 and Day 60, Day 0 and Day 90, Day 0 and Day 120, Day 0 and Day 150, Day 0 and Day 180, Day 0 and 3 months later, Day 0 and 6 months later, Day 0 and 9 months later, Day 0 and 12 months later, Day 0 and 18 months later, Day 0 and 2 years later, Day 0 and 5 years later, or Day 0 and 10 years later) at a total dose of or at dosage levels sufficient to deliver a total dose of 0.0100 mg, 0.025 mg, 0.050 mg, 0.075 mg, 0.100 mg, 0.125 mg, 0.150 mg, 0.175 mg, 0.200 mg, 0.225 mg, 0.250 mg, 0.275 mg, 0.300 mg, 0.325 mg, 0.350 mg, 0.375 mg, 0.400 mg, 0.425 mg, 0.450 mg, 0.475 mg, 0.500 mg, 0.525 mg, 0.550 mg, 0.575 mg, 0.600 mg, 0.625 mg, 0.650 mg, 0.675 mg, 0.700 mg, 0.725 mg, 0.750 mg, 0.775 mg, 0.800 mg, 0.825 mg, 0.850 mg, 0.875 mg, 0.900 mg, 0.925 mg, 0.950 mg, 0.975 mg, or 1.0 mg. Higher and lower dosages and frequency of administration are encompassed by the present disclosure. For example, a CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, may be administered three or four times.


In some embodiments, CHIKV, DENV and/or ZIKV RNA vaccines, including combination RNA vaccines, may be administered twice (e.g., Day 0 and Day 7, Day 0 and Day 14, Day 0 and Day 21, Day 0 and Day 28, Day 0 and Day 60, Day 0 and Day 90, Day 0 and Day 120, Day 0 and Day 150, Day 0 and Day 180, Day 0 and 3 months later, Day 0 and 6 months later, Day 0 and 9 months later, Day 0 and 12 months later, Day 0 and 18 months later, Day 0 and 2 years later, Day 0 and 5 years later, or Day 0 and 10 years later) at a total dose of or at dosage levels sufficient to deliver a total dose of 0.010 mg, 0.025 mg, 0.100 mg or 0.400 mg.


In some embodiments the RNA vaccine for use in a method of vaccinating a subject is administered the subject a single dosage of between 10 μg/kg and 400 μg/kg of the nucleic acid vaccine in an effective amount to vaccinate the subject. In some embodiments the RNA vaccine for use in a method of vaccinating a subject is administered the subject a single dosage of between 10 μg and 400 μg of the nucleic acid vaccine in an effective amount to vaccinate the subject.


A RNA vaccine pharmaceutical composition described herein can be formulated into a dosage form described herein, such as an intranasal, intratracheal, or injectable (e.g., intravenous, intraocular, intravitreal, intramuscular, intradermal, intracardiac, intraperitoneal, and subcutaneous).


In some embodiments, a RNA (e.g., mRNA) vaccine for use in a method of vaccinating a subject is administered the subject a single dosage of 10 μg of the nucleic acid vaccine in an effective amount to vaccinate the subject. In some embodiments, a RNA vaccine for use in a method of vaccinating a subject is administered the subject a single dosage of 2 μg of the nucleic acid vaccine in an effective amount to vaccinate the subject. In some embodiments, a vaccine for use in a method of vaccinating a subject is administered the subject two dosages of 10 μg of the nucleic acid vaccine in an effective amount to vaccinate the subject. In some embodiments, a RNA vaccine for use in a method of vaccinating a subject is administered the subject two dosages of 2 μg of the nucleic acid vaccine in an effective amount to vaccinate the subject.


A RNA (e.g. mRNA) vaccine pharmaceutical composition described herein can be formulated into a dosage form described herein, such as an intranasal, intratracheal, or injectable (e.g., intravenous, intraocular, intravitreal, intramuscular, intradermal, intracardiac, intraperitoneal, and subcutaneous).


RNA Vaccine Formulations and Methods of Use

Some aspects of the present disclosure provide formulations of a RNA (e.g., mRNA) vaccine, wherein the RNA vaccine is formulated in an effective amount to produce an antigen specific immune response in a subject (e.g., production of antibodies specific to a CHIKV, DENV and/or ZIKV antigenic polypeptide). “An effective amount” is a dose of an RNA (e.g., mRNA) vaccine effective to produce an antigen-specific immune response. Also provided herein are methods of inducing an antigen-specific immune response in a subject.


In some embodiments, the antigen-specific immune response is characterized by measuring an anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in a subject administered a RNA (e.g., mRNA) vaccine as provided herein. An antibody titer is a measurement of the amount of antibodies within a subject, for example, antibodies that are specific to a particular antigen or epitope of an antigen. Antibody titer is typically expressed as the inverse of the greatest dilution that provides a positive result. Enzyme-linked immunosorbent assay (ELISA) is a common assay for determining antibody titers, for example.


In some embodiments, an antibody titer is used to assess whether a subject has had an infection or to determine whether immunizations are required. In some embodiments, an antibody titer is used to determine the strength of an autoimmune response, to determine whether a booster immunization is needed, to determine whether a previous vaccine was effective, and to identify any recent or prior infections. In accordance with the present disclosure, an antibody titer may be used to determine the strength of an immune response induced in a subject by the RNA vaccine.


In some embodiments, an anti-ZIKV antigenic polypeptide antibody titer produced in a subject is increased by at least 1 log relative to a control. For example, antibody titer produced in a subject may be increased by at least 1.5, at least 2, at least 2.5, or at least 3 log relative to a control. In some embodiments, the antibody titer produced in the subject is increased by 1, 1.5, 2, 2.5 or 3 log relative to a control. In some embodiments, the antibody titer produced in the subject is increased by 1-3 log relative to a control. For example, the antibody titer produced in a subject may be increased by 1-1.5, 1-2, 1-2.5, 1-3, 1.5-2, 1.5-2.5, 1.5-3, 2-2.5, 2-3, or 2.5-3 log relative to a control.


In some embodiments, the antibody titer produced in a subject is increased at least 2 times relative to a control. For example, the antibody titer produced in a subject may be increased at least 3 times, at least 4 times, at least 5 times, at least 6 times, at least 7 times, at least 8 times, at least 9 times, or at least 10 times relative to a control. In some embodiments, the antibody titer produced in the subject is increased 2, 3, 4, 5, 6, 7, 8, 9, or 10 times relative to a control. In some embodiments, the anti antibody titer produced in a subject is increased 2-10 times relative to a control. For example, the antibody titer produced in a subject may be increased 2-10, 2-9, 2-8, 2-7, 2-6, 2-5, 2-4, 2-3, 3-10, 3-9, 3-8, 3-7, 3-6, 3-5, 3-4, 4-10, 4-9, 4-8, 4-7, 4-6, 4-5, 5-10, 5-9, 5-8, 5-7, 5-6, 6-10, 6-9, 6-8, 6-7, 7-10, 7-9, 7-8, 8-10, 8-9, or 9-10 times relative to a control.


A control, in some embodiments, is an anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in a subject who has not been administered a RNA (e.g., mRNA) vaccine. In some embodiments, a control is an anti-CHIKV, anti-DENV and/or anti-ZIKV antibody titer produced in a subject who has been administered a live attenuated CHIKV, DENV and/or ZIKV vaccine. An attenuated vaccine is a vaccine produced by reducing the virulence of a viable (live). An attenuated virus is altered in a manner that renders it harmless or less virulent relative to live, unmodified virus. In some embodiments, a control is an anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in a subject administered inactivated CHIKV, DENV and/or ZIKV vaccine. In some embodiments, a control is an anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in a subject administered a recombinant or purified CHIKV, DENV and/or ZIKV protein vaccine. Recombinant protein vaccines typically include protein antigens that either have been produced in a heterologous expression system (e.g., bacteria or yeast) or purified from large amounts of the pathogenic organism.


In some embodiments, an effective amount of a RNA (e.g., mRNA) vaccine is a dose that is reduced compared to the standard of care dose of a recombinant CHIKV, DENV and/or ZIKV protein vaccine. A “standard of care,” as provided herein, refers to a medical or psychological treatment guideline and can be general or specific. “Standard of care” specifies appropriate treatment based on scientific evidence and collaboration between medical professionals involved in the treatment of a given condition. It is the diagnostic and treatment process that a physician/clinician should follow for a certain type of patient, illness or clinical circumstance. A “standard of care dose,” as provided herein, refers to the dose of a recombinant or purified CHIKV, DENV and/or ZIKV protein vaccine, or a live attenuated or inactivated CHIKV, DENV and/or ZIKV vaccine, that a physician/clinician or other medical professional would administer to a subject to treat or prevent CHIKV, DENV and/or ZIKV or a related condition, while following the standard of care guideline for treating or preventing CHIKV, DENV and/or ZIKV, or a related condition.


In some embodiments, the anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in a subject administered an effective amount of a ZIKV RNA vaccine is equivalent to an anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered a standard of care dose of a recombinant or purified CHIKV, DENV and/or ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV and/or ZIKV vaccine.


In some embodiments, an effective amount of a RNA (e.g., mRNA) vaccine is a dose equivalent to an at least 2-fold reduction in a standard of care dose of a recombinant or purified CHIKV, DENV and/or ZIKV protein vaccine. For example, an effective amount of a CHIKV, DENV and/or ZIKV RNA vaccine may be a dose equivalent to an at least 3-fold, at least 4-fold, at least 5-fold, at least 6-fold, at least 7-fold, at least 8-fold, at least 9-fold, or at least 10-fold reduction in a standard of care dose of a recombinant or purified CHIKV, DENV and/or ZIKV protein vaccine. In some embodiments, an effective amount of a CHIKV, DENV and/or ZIKV RNA vaccine is a dose equivalent to an at least at least 100-fold, at least 500-fold, or at least 1000-fold reduction in a standard of care dose of a recombinant or purified CHIKV, DENV and/or ZIKV protein vaccine. In some embodiments, an effective amount of a CHIKV, DENV and/or ZIKV RNA vaccine is a dose equivalent to a 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 20-, 50-, 100-, 250-, 500-, or 1000-fold reduction in a standard of care dose of a recombinant or purified CHIKV, DENV and/or ZIKV protein vaccine. In some embodiments, the anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in a subject administered an effective amount of a CHIKV, DENV and/or ZIKV RNA vaccine is equivalent to an anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or protein CHIKV, DENV and/or ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV and/or ZIKV vaccine. In some embodiments, an effective amount of a RNA (e.g., mRNA) vaccine is a dose equivalent to a 2-fold to 1000-fold (e.g., 2-fold to 100-fold, 10-fold to 1000-fold) reduction in the standard of care dose of a recombinant or purified CHIKV, DENV and/or ZIKV protein vaccine, wherein the anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified CHIKV, DENV and/or ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV and/or ZIKV vaccine.


In some embodiments, the effective amount of a RNA (e.g., mRNA) vaccine is a dose equivalent to a 2 to 1000-, 2 to 900-, 2 to 800-, 2 to 700-, 2 to 600-, 2 to 500-, 2 to 400-, 2 to 300-, 2 to 200-, 2 to 100-, 2 to 90-, 2 to 80-, 2 to 70-, 2 to 60-, 2 to 50-, 2 to 40-, 2 to 30-, 2 to 20-, 2 to 10-, 2 to 9-, 2 to 8-, 2 to 7-, 2 to 6-, 2 to 5-, 2 to 4-, 2 to 3-, 3 to 1000-, 3 to 900-, 3 to 800-, 3 to 700-, 3 to 600-, 3 to 500-, 3 to 400-, 3 to 3 to 00-, 3 to 200-, 3 to 100-, 3 to 90-, 3 to 80-, 3 to 70-, 3 to 60-, 3 to 50-, 3 to 40-, 3 to 30-, 3 to 20-, 3 to 10-, 3 to 9-, 3 to 8-, 3 to 7-, 3 to 6-, 3 to 5-, 3 to 4-, 4 to 1000-, 4 to 900-, 4 to 800-, 4 to 700-, 4 to 600-, 4 to 500-, 4 to 400-, 4 to 4 to 00-, 4 to 200-, 4 to 100-, 4 to 90-, 4 to 80-, 4 to 70-, 4 to 60-, 4 to 50-, 4 to 40-, 4 to 30-, 4 to 20-, 4 to 10-, 4 to 9-, 4 to 8-, 4 to 7-, 4 to 6-, 4 to 5-, 4 to 4-, 5 to 1000-, 5 to 900-, 5 to 800-, 5 to 700-, 5 to 600-, 5 to 500-, 5 to 400-, 5 to 300-, 5 to 200-, 5 to 100-, 5 to 90-, 5 to 80-, 5 to 70-, 5 to 60-, 5 to 50-, 5 to 40-, 5 to 30-, 5 to 20-, 5 to 10-, 5 to 9-, 5 to 8-, 5 to 7-, 5 to 6-, 6 to 1000-, 6 to 900-, 6 to 800-, 6 to 700-, 6 to 600-, 6 to 500-, 6 to 400-, 6 to 300-, 6 to 200-, 6 to 100-, 6 to 90-, 6 to 80-, 6 to 70-, 6 to 60-, 6 to 50-, 6 to 40-, 6 to 30-, 6 to 20-, 6 to 10-, 6 to 9-, 6 to 8-, 6 to 7-, 7 to 1000-, 7 to 900-, 7 to 800-, 7 to 700-, 7 to 600-, 7 to 500-, 7 to 400-, 7 to 300-, 7 to 200-, 7 to 100-, 7 to 90-, 7 to 80-, 7 to 70-, 7 to 60-, 7 to 50-, 7 to 40-, 7 to 30-, 7 to 20-, 7 to 10-, 7 to 9-, 7 to 8-, 8 to 1000-, 8 to 900-, 8 to 800-, 8 to 700-, 8 to 600, 8 to 500-, 8 to 400-, 8 to 300-, 8 to 200-, 8 to 100-, 8 to 90-, 8 to 80-, 8 to 70-, 8 to 60-, 8 to 50-, 8 to 40-, 8 to 30-, 8 to 20-, 8 to 10-, 8 to 9-, 9 to 1000-, 9 to 900-, 9 to 800-, 9 to 700-, 9 to 600-, 9 to 500-, 9 to 400-, 9 to 300-, 9 to 200-, 9 to 100-, 9 to 90-, 9 to 80-, 9 to 70-, 9 to 60-, 9 to 50-, 9 to 40-, 9 to 30-, 9 to 20-, 9 to 10-, 10 to 1000-, 10 to 900-, 10 to 800-, 10 to 700-, 10 to 600-, 10 to 500-, 10 to 400-, 10 to 300-, 10 to 200-, 10 to 100-, 10 to 90-, 10 to 80-, 10 to 70-, 10 to 60-, 10 to 50-, 10 to 40-, 10 to 30-, 10 to 20-, 20 to 1000-, 20 to 900-, 20 to 800-, 20 to 700-, 20 to 600-, 20 to 500-, 20 to 400-, 20 to 300-, 20 to 200-, 20 to 100-, 20 to 90-, 20 to 80-, 20 to 70-, 20 to 60-, 20 to 50-, 20 to 40-, 20 to 30-, 30 to 1000-, 30 to 900-, 30 to 800-, 30 to 700-, 30 to 600-, 30 to 500-, 30 to 400-, 30 to 300-, 30 to 200-, 30 to 100-, 30 to 90-, 30 to 80-, 30 to 70-, 30 to 60-, 30 to 50-, 30 to 40-, 40 to 1000-, 40 to 900-, 40 to 800-, 40 to 700-, 40 to 600-, 40 to 500-, 40 to 400-, 40 to 300-, 40 to 200-, 40 to 100-, 40 to 90-, 40 to 80-, 40 to 70-, 40 to 60-, 40 to 50-, 50 to 1000-, 50 to 900-, 50 to 800-, 50 to 700-, 50 to 600-, 50 to 500-, 50 to 400-, 50 to 300-, 50 to 200-, 50 to 100-, 50 to 90-, 50 to 80-, 50 to 70-, 50 to 60-, 60 to 1000-, 60 to 900-, 60 to 800-, 60 to 700-, 60 to 600-, 60 to 500-, 60 to 400-, 60 to 300-, 60 to 200-, 60 to 100-, 60 to 90-, 60 to 80-, 60 to 70-, 70 to 1000-, 70 to 900-, 70 to 800-, 70 to 700-, 70 to 600-, 70 to 500-, 70 to 400-, 70 to 300-, 70 to 200-, 70 to 100-, 70 to 90-, 70 to 80-, 80 to 1000-, 80 to 900-, 80 to 800-, 80 to 700-, 80 to 600-, 80 to 500-, 80 to 400-, 80 to 300-, 80 to 200-, 80 to 100-, 80 to 90-, 90 to 1000-, 90 to 900-, 90 to 800-, 90 to 700-, 90 to 600-, 90 to 500-, 90 to 400-, 90 to 300-, 90 to 200-, 90 to 100-, 100 to 1000-, 100 to 900-, 100 to 800-, 100 to 700-, 100 to 600-, 100 to 500-, 100 to 400-, 100 to 300-, 100 to 200-, 200 to 1000-, 200 to 900-, 200 to 800-, 200 to 700-, 200 to 600-, 200 to 500-, 200 to 400-, 200 to 300-, 300 to 1000-, 300 to 900-, 300 to 800-, 300 to 700-, 300 to 600-, 300 to 500-, 300 to 400-, 400 to 1000-, 400 to 900-, 400 to 800-, 400 to 700-, 400 to 600-, 400 to 500-, 500 to 1000-, 500 to 900-, 500 to 800-, 500 to 700-, 500 to 600-, 600 to 1000-, 600 to 900-, 600 to 800-, 600 to 700-, 700 to 1000-, 700 to 900-, 700 to 800-, 800 to 1000-, 800 to 900-, or 900 to 1000-fold reduction in the standard of care dose of a recombinant CHIKV, DENV and/or ZIKV protein vaccine. In some embodiments, such as the foregoing, the anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified CHIKV, DENV and/or ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV and/or ZIKV vaccine. In some embodiments, the effective amount is a dose equivalent to (or equivalent to an at least) 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, 10-, 20-, 30-, 40-, 50-, 60-, 70-, 80-, 90-, 100-, 110-, 120-, 130-, 140-, 150-, 160-, 170-, 1280-, 190-, 200-, 210-, 220-, 230-, 240-, 250-, 260-, 270-, 280-, 290-, 300-, 310-, 320-, 330-, 340-, 350-, 360-, 370-, 380-, 390-, 400-, 410-, 420-, 430-, 440-, 450-, 4360-, 470-, 480-, 490-, 500-, 510-, 520-, 530-, 540-, 550-, 560-, 5760-, 580-, 590-, 600-, 610-, 620-, 630-, 640-, 650-, 660-, 670-, 680-, 690-, 700-, 710-, 720-, 730-, 740-, 750-, 760-, 770-, 780-, 790-, 800-, 810-, 820-, 830-, 840-, 850-, 860-, 870-, 880-, 890-, 900-, 910-, 920-, 930-, 940-, 950-, 960-, 970-, 980-, 990-, or 1000-fold reduction in the standard of care dose of a recombinant CHIKV, DENV and/or ZIKV protein vaccine. In some embodiments, such as the foregoing, an anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in the subject is equivalent to an anti-CHIKV, anti-DENV and/or anti-ZIKV antigenic polypeptide antibody titer produced in a control subject administered the standard of care dose of a recombinant or purified CHIKV, DENV and/or ZIKV protein vaccine or a live attenuated or inactivated CHIKV, DENV and/or ZIKV vaccine.


In some embodiments, the effective amount of a RNA (e.g., mRNA) vaccine is a total dose of 50-1000 μg. In some embodiments, the effective amount of a RNA (e.g., mRNA) vaccine is a total dose of 50-1000, 50-900, 50-800, 50-700, 50-600, 50-500, 50-400, 50-300, 50-200, 50-100, 50-90, 50-80, 50-70, 50-60, 60-1000, 60-900, 60-800, 60-700, 60-600, 60-500, 60-400, 60-300, 60-200, 60-100, 60-90, 60-80, 60-70, 70-1000, 70-900, 70-800, 70-700, 70-600, 70-500, 70-400, 70-300, 70-200, 70-100, 70-90, 70-80, 80-1000, 80-900, 80-800, 80-700, 80-600, 80-500, 80-400, 80-300, 80-200, 80-100, 80-90, 90-1000, 90-900, 90-800, 90-700, 90-600, 90-500, 90-400, 90-300, 90-200, 90-100, 100-1000, 100-900, 100-800, 100-700, 100-600, 100-500, 100-400, 100-300, 100-200, 200-1000, 200-900, 200-800, 200-700, 200-600, 200-500, 200-400, 200-300, 300-1000, 300-900, 300-800, 300-700, 300-600, 300-500, 300-400, 400-1000, 400-900, 400-800, 400-700, 400-600, 400-500, 500-1000, 500-900, 500-800, 500-700, 500-600, 600-1000, 600-900, 600-900, 600-700, 700-1000, 700-900, 700-800, 800-1000, 800-900, or 900-1000 μg. In some embodiments, the effective amount of a RNA (e.g., mRNA) vaccine is a total dose of 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950 or 1000 μg. In some embodiments, the effective amount is a dose of 25-500 μg administered to the subject a total of two times. In some embodiments, the effective amount of a RNA (e.g., mRNA) vaccine is a dose of 25-500, 25-400, 25-300, 25-200, 25-100, 25-50, 50-500, 50-400, 50-300, 50-200, 50-100, 100-500, 100-400, 100-300, 100-200, 150-500, 150-400, 150-300, 150-200, 200-500, 200-400, 200-300, 250-500, 250-400, 250-300, 300-500, 300-400, 350-500, 350-400, 400-500 or 450-500 μg administered to the subject a total of two times. In some embodiments, the effective amount of a RNA (e.g., mRNA) vaccine is a total dose of 25, 50, 100, 150, 200, 250, 300, 350, 400, 450, or 500 μg administered to the subject a total of two times.


This invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having,” “containing,” “involving,” and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.


Examples
Example 1: Manufacture of Polynucleotides

According to the present disclosure, the manufacture of polynucleotides and or parts or regions thereof may be accomplished utilizing the methods taught in International Application WO2014/152027 entitled “Manufacturing Methods for Production of RNA Transcripts”, the contents of which is incorporated herein by reference in its entirety.


Purification methods may include those taught in International Application WO2014/152030 and WO2014/152031, each of which is incorporated herein by reference in its entirety.


Detection and characterization methods of the polynucleotides may be performed as taught in WO2014/144039, which is incorporated herein by reference in its entirety.


Characterization of the polynucleotides of the disclosure may be accomplished using a procedure selected from the group consisting of polynucleotide mapping, reverse transcriptase sequencing, charge distribution analysis, and detection of RNA impurities, wherein characterizing comprises determining the RNA transcript sequence, determining the purity of the RNA transcript, or determining the charge heterogeneity of the RNA transcript. Such methods are taught in, for example, WO2014/144711 and WO2014/144767, the contents of each of which is incorporated herein by reference in its entirety.


Example 2: Chimeric Polynucleotide Synthesis
Introduction

According to the present disclosure, two regions or parts of a chimeric polynucleotide may be joined or ligated using triphosphate chemistry.


According to this method, a first region or part of 100 nucleotides or less is chemically synthesized with a 5′ monophosphate and terminal 3′desOH or blocked OH. If the region is longer than 80 nucleotides, it may be synthesized as two strands for ligation.


If the first region or part is synthesized as a non-positionally modified region or part using in vitro transcription (IVT), conversion the 5′monophosphate with subsequent capping of the 3′ terminus may follow.


Monophosphate protecting groups may be selected from any of those known in the art.


The second region or part of the chimeric polynucleotide may be synthesized using either chemical synthesis or IVT methods. IVT methods may include an RNA polymerase that can utilize a primer with a modified cap. Alternatively, a cap of up to 130 nucleotides may be chemically synthesized and coupled to the IVT region or part.


It is noted that for ligation methods, ligation with DNA T4 ligase, followed by treatment with DNAse should readily avoid concatenation.


The entire chimeric polynucleotide need not be manufactured with a phosphate-sugar backbone. If one of the regions or parts encodes a polypeptide, then it is preferable that such region or part comprise a phosphate-sugar backbone.


Ligation is then performed using any known click chemistry, orthoclick chemistry, solulink, or other bioconjugate chemistries known to those in the art.


Synthetic Route

The chimeric polynucleotide is made using a series of starting segments. Such segments include:


(a) Capped and protected 5′ segment comprising a normal 3′OH (SEG. 1)


(b) 5′ triphosphate segment which may include the coding region of a polypeptide and comprising a normal 3′OH (SEG. 2)


(c) 5′ monophosphate segment for the 3′ end of the chimeric polynucleotide (e.g., the tail) comprising cordycepin or no 3′OH (SEG. 3)


After synthesis (chemical or IVT), segment 3 (SEG. 3) is treated with cordycepin and then with pyrophosphatase to create the 5′monophosphate.


Segment 2 (SEG. 2) is then ligated to SEG. 3 using RNA ligase. The ligated polynucleotide is then purified and treated with pyrophosphatase to cleave the diphosphate. The treated SEG.2-SEG. 3 construct is then purified and SEG. 1 is ligated to the 5′ terminus. A further purification step of the chimeric polynucleotide may be performed.


Where the chimeric polynucleotide encodes a polypeptide, the ligated or joined segments may be represented as: 5′UTR (SEG. 1), open reading frame or ORF (SEG. 2) and 3′UTR+PolyA (SEG. 3).


The yields of each step may be as much as 90-95%.


Example 3: PCR for cDNA Production

PCR procedures for the preparation of cDNA are performed using 2×KAPA HIFI™ HotStart ReadyMix by Kapa Biosystems (Woburn, Mass.). This system includes 2×KAPA ReadyMix12.5 μl; Forward Primer (10 μM) 0.75 μl; Reverse Primer (10 μM) 0.75 μl; Template cDNA −100 ng; and dH20 diluted to 25.0 μl. The reaction conditions are at 95° C. for 5 min. and 25 cycles of 98° C. for 20 sec, then 58° C. for 15 sec, then 72° C. for 45 sec, then 72° C. for 5 min. then 4° C. to termination.


The reaction is cleaned up using Invitrogen's PURELINK™ PCR Micro Kit (Carlsbad, Calif.) per manufacturer's instructions (up to 5 μg). Larger reactions will require a cleanup using a product with a larger capacity. Following the cleanup, the cDNA is quantified using the NANODROP™ and analyzed by agarose gel electrophoresis to confirm the cDNA is the expected size. The cDNA is then submitted for sequencing analysis before proceeding to the in vitro transcription reaction.


Example 4: In Vitro Transcription (IVT)

The in vitro transcription reaction generates polynucleotides containing uniformly modified polynucleotides. Such uniformly modified polynucleotides may comprise a region or part of the polynucleotides of the disclosure. The input nucleotide triphosphate (NTP) mix is made in-house using natural and un-natural NTPs.


A typical in vitro transcription reaction includes the following:




















1
Template cDNA
1.0
μg



2
10x transcription buffer (400 mM
2.0
μl




Tris-HCl pH 8.0, 190 mM MgCl2,




50 mM DTT, 10 mM Spermidine)



3
Custom NTPs (25 mM each)
7.2
μl



4
RNase Inhibitor
20
U



5
T7 RNA polymerase
3000
U











6
dH20
Up to 20.0 μl. and



7
Incubation at 37° C. for 3 hr-5 hrs.










The crude IVT mix may be stored at 4° C. overnight for cleanup the next day. 1 U of RNase-free DNase is then used to digest the original template. After 15 minutes of incubation at 37° C., the mRNA is purified using Ambion's MEGACLEAR™ Kit (Austin, Tex.) following the manufacturer's instructions. This kit can purify up to 500 μg of RNA. Following the cleanup, the RNA is quantified using the NanoDrop and analyzed by agarose gel electrophoresis to confirm the RNA is the proper size and that no degradation of the RNA has occurred.


Example 5: Exemplary Nucleic Acids Encoding CHIKV E1 RNA Polynucleotides for Use in a RNA Vaccine

The following sequences are exemplary sequences that can be used to encode CHIKV E1 RNA polynucleotides for use in the CHIKV RNA vaccine:









TABLE 1







CHIKV E1 RNA polynucleotides











SEQ ID


Name
Sequence
NO





ChiK.secE1
TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAA
1


HS3UPCRfree
ATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGGAGAC


(CHIKV
ACCTGCACAGCTGTTGTTTCTGCTGCTGCTTTGGTTGCCCGATACCACCG


secreted E1
GTGACTACAAAGACGACGACGATAAATACGAGCACGTGACGGTAATACCA


antigen)
AACACTGTGGGGGTGCCATACAAGACCCTGGTAAATCGCCCAGGCTACTC



TCCCATGGTGCTGGAGATGGAGCTCCAGTCTGTGACCTTAGAGCCAACCC



TCTCACTCGACTATATCACCTGTGAATACAAAACAGTGATCCCATCCCCC



TACGTGAAATGTTGCGGAACTGCAGAGTGTAAGGATAAGAGTCTGCCCGA



TTACAGCTGCAAGGTGTTTACAGGCGTGTATCCATTTATGTGGGGAGGAG



CCTACTGTTTTTGCGATGCCGAAAATACTCAGCTGTCTGAAGCCCATGTG



GAGAAGAGTGAAAGTTGCAAGACCGAATTTGCTAGTGCCTACAGGGCACA



CACCGCTTCTGCCTCCGCTAAACTCCGAGTCCTTTACCAGGGCAATAATA



TTACGGTCGCTGCCTACGCTAACGGGGACCACGCTGTGACAGTCAAGGAC



GCCAAATTCGTAGTGGGCCCAATGAGCTCCGCCTGGACTCCCTTCGACAA



CAAAATCGTCGTGTATAAAGGCGACGTGTACAATATGGACTACCCACCCT



TCGGGGCTGGAAGACCGGGCCAGTTTGGAGATATCCAATCAAGGACACCC



GAGTCAAAGGACGTGTACGCCAATACGCAGCTGGTGCTGCAGAGACCCGC



CGCTGGTACCGTGCATGTGCCTTATTCCCAAGCTCCATCTGGCTTCAAGT



ACTGGTTGAAAGAGCGCGGTGCTTCGCTGCAGCATACAGCACCGTTCGGA



TGTCAGATAGCAACCAACCCTGTACGGGCTGTCAACTGTGCCGTGGGAAA



TATACCTATTTCCATCGACATTCCGGACGCAGCTTTCACACGTGTCGTTG



ATGCCCCCTCAGTGACTGACATGTCATGTGAGGTGCCTGCTTGCACCCAC



AGCAGCGATTTTGGCGGAGTGGCCATAATCAAGTACACCGCCTCCAAAAA



AGGAAAGTGTGCCGTACACTCTATGACCAACGCCGTCACAATCAGAGAAG



CCGACGTTGAAGTAGAGGGAAATTCACAGCTGCAAATCAGCTTCAGCACC



GCTCTTGCCTCTGCTGAGTTTAGGGTTCAGGTTTGCAGTACTCAGGTGCA



CTGTGCAGCCGCTTGCCATCCCCCCAAGGATCATATCGTGAATTATCCTG



CATCCCACACCACACTGGGAGTCCAGGATATCTCAACAACTGCAATGTCT



TGGGTGCAGAAGATCACCTGATAATAGGCTGGAGCCTCGGTGGCCATGCT



TCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGT



ACCCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGC





Chik-
TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAA
2


Strain37997-
ATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGTACGA


E1 (CHIKV
ACACGTAACAGTGATCCCGAACACGGTGGGAGTACCGTATAAGACTCTAG


E1 antigen-
TCAACAGACCGGGCTACAGCCCCATGGTATTGGAGATGGAGCTTCTGTCT


Strain
GTCACCTTGGAACCAACGCTATCGCTTGATTACATCACGTGCGAGTATAA


37997):
AACCGTTATCCCGTCTCCGTACGTGAAATGCTGCGGTACAGCAGAGTGTA



AGGACAAGAGCCTACCTGATTACAGCTGTAAGGTCTTCACCGGCGTCTAC



CCATTCATGTGGGGCGGCGCCTACTGCTTCTGCGACACCGAAAATACGCA



ATTGAGCGAAGCACATGTGGAGAAGTCCGAATCATGCAAAACAGAATTTG



CATCAGCATACAGGGCTCATACCGCATCCGCATCAGCTAAGCTCCGCGTC



CTTTACCAAGGAAATAATATCACTGTGGCTGCTTATGCAAACGGCGACCA



TGCCGTCACAGTTAAGGACGCTAAATTCATAGTGGGGCCAATGTCTTCAG



CCTGGACACCTTTCGACAATAAAATCGTGGTGTACAAAGGCGACGTCTAC



AACATGGACTACCCGCCCTTCGGCGCAGGAAGACCAGGACAATTTGGCGA



CATCCAAAGTCGCACGCCTGAGAGCGAAGACGTCTATGCTAATACACAAC



TGGTACTGCAGAGACCGTCCGCGGGTACGGTGCACGTGCCGTACTCTCAG



GCACCATCTGGCTTCAAGTATTGGCTAAAAGAACGAGGGGCGTCGCTGCA



GCACACAGCACCATTTGGCTGTCAAATAGCAACAAACCCGGTAAGAGCGA



TGAACTGCGCCGTAGGGAACATGCCTATCTCCATCGACATACCGGACGCG



GCCTTTACCAGGGTCGTCGACGCGCCATCTTTAACGGACATGTCGTGTGA



GGTATCAGCCTGCACCCATTCCTCAGACTTTGGGGGCGTAGCCATCATTA



AATATGCAGCCAGTAAGAAAGGCAAGTGTGCAGTGCACTCGATGACTAAC



GCCGTCACTATTCGGGAAGCTGAAATAGAAGTAGAAGGGAACTCTCAGTT



GCAAATCTCTTTTTCGACGGCCCTAGCCAGCGCCGAATTTCGCGTACAAG



TCTGTTCTACACAAGTACACTGTGCAGCCGAGTGCCATCCACCGAAAGAC



CATATAGTCAATTACCCGGCGTCACACACCACCCTCGGGGTCCAAGACAT



TTCCGCTACGGCGATGTCATGGGTGCAGAAGATCACGGGAGGTGTGGGAC



TGGTTGTCGCTGTTGCAGCACTGATCCTAATCGTGGTGCTATGCGTGTCG



TTTAGCAGGCACTGATAATAGGCTGGAGCCTCGGTGGCCATGCTTCTTGC



CCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCCCC



GTGGTCTTTGAATAAAGTCTGAGTGGGCGGC





Chik-
TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAA
3


Strain37997-
ATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGCTATG


E1 (CHIKV
GAACGAACAGCAGCCCCTGTTCTGGTTGCAGGCTCTTATCCCGCTGGCCG


E1 antigen-
CCTTGATCGTCCTGTGCAACTGTCTGAAACTCTTGCCATGCTGCTGTAAG


Strain
ACCCTGGCTTTTTTAGCCGTAATGAGCATCGGTGCCCACACTGTGAGCGC


37997):
GTACGAACACGTAACAGTGATCCCGAACACGGTGGGAGTACCGTATAAGA



CTCTTGTCAACAGACCGGGTTACAGCCCCATGGTGTTGGAGATGGAGCTA



CAATCAGTCACCTTGGAACCAACACTGTCACTTGACTACATCACGTGCGA



GTACAAAACTGTCATCCCCTCCCCGTACGTGAAGTGCTGTGGTACAGCAG



AGTGCAAGGACAAGAGCCTACCAGACTACAGCTGCAAGGTCTTTACTGGA



GTCTACCCATTTATGTGGGGCGGCGCCTACTGCTTTTGCGACGCCGAAAA



TACGCAATTGAGCGAGGCACATGTAGAGAAATCTGAATCTTGCAAAACAG



AGTTTGCATCGGCCTACAGAGCCCACACCGCATCGGCGTCGGCGAAGCTC



CGCGTCCTTTACCAAGGAAACAACATTACCGTAGCTGCCTACGCTAACGG



TGACCATGCCGTCACAGTAAAGGACGCCAAGTTTGTCGTGGGCCCAATGT



CCTCCGCCTGGACACCTTTTGACAACAAAATCGTGGTGTACAAAGGCGAC



GTCTACAACATGGACTACCCACCTTTTGGCGCAGGAAGACCAGGACAATT



TGGTGACATTCAAAGTCGTACACCGGAAAGTAAAGACGTTTATGCCAACA



CTCAGTTGGTACTACAGAGGCCAGCAGCAGGCACGGTACATGTACCATAC



TCTCAGGCACCATCTGGCTTCAAGTATTGGCTGAAGGAACGAGGAGCATC



GCTACAGCACACGGCACCGTTCGGTTGCCAGATTGCGACAAACCCGGTAA



GAGCTGTAAATTGCGCTGTGGGGAACATACCAATTTCCATCGACATACCG



GATGCGGCCTTTACTAGGGTTGTCGATGCACCCTCTGTAACGGACATGTC



ATGCGAAGTACCAGCCTGCACTCACTCCTCCGACTTTGGGGGCGTCGCCA



TCATCAAATACACAGCTAGCAAGAAAGGTAAATGTGCAGTACATTCGATG



ACCAACGCCGTTACCATTCGAGAAGCCGACGTAGAAGTAGAGGGGAACTC



CCAGCTGCAAATATCCTTCTCAACAGCCCTGGCAAGCGCCGAGTTTCGCG



TGCAAGTGTGCTCCACACAAGTACACTGCGCAGCCGCATGCCACCCTCCA



AAGGACCACATAGTCAATTACCCAGCATCACACACCACCCTTGGGGTCCA



GGATATATCCACAACGGCAATGTCTTGGGTGCAGAAGATTACGGGAGGAG



TAGGATTAATTGTTGCTGTTGCTGCCTTAATTTTAATTGTGGTGCTATGC



GTGTCGTTTAGCAGGCACTAATGATAATAGGCTGGAGCCTCGGTGGCCAT



GCTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACC



CGTACCCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGC





chikv-
TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAA
4


Brazillian-
ATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGTACGA


E1 (CHIKV
ACACGTAACAGTGATCCCGAACACGGTGGGAGTACCGTATAAGACTCTAG


E1 antigen-
TCAATAGACCGGGCTACAGTCCCATGGTATTGGAGATGGAACTACTGTCA


Brazilian
GTCACTTTGGAGCCAACGCTATCGCTTGATTACATCACGTGCGAGTACAA


strain)
AACCGTTATCCCGTCTCCGTACGTGAAATGCTGCGGTACAGCAGAGTGCA



AGGACAAAAACCTACCTGACTACAGCTGTAAGGTCTTCACCGGCGTCTAC



CCATTTATGTGGGGCGGAGCCTACTGCTTCTGCGACGCTGAAAACACGCA



ATTGAGCGAAGCACACGTGGAGAAGTCCGAATCATGCAAAACAGAATTTG



CATCAGCATACAGGGCTCATACCGCATCCGCATCAGCTAAGCTCCGCGTC



CTTTACCAAGGAAATAACATCACTGTAACTGCCTATGCTAACGGCGACCA



TGCCGTCACAGTTAAGGACGCCAAATTCATTGTGGGGCCAATGTCTTCAG



CCTGGACACCTTTCGACAACAAAATTGTGGTGTACAAAGGTGACGTCTAT



AACATGGACTACCCGCCCTTTGGCGCAGGAAGACCAGGACAATTTGGCGA



TATCCAAAGTCGCACACCTGAGAGTAAAGACGTCTATGCTAATACACAAC



TGGTACTGCAGAGACCGGCTGCGGGTACGGTACATGTGCCATACTCTCAG



GCACCATCTGGCTTTAAGTATTGGCTAAAAGAACGAGGGGCGTCGCTGCA



GCACACAGCACCATTTGGCTGCCAAATAGCAACAAACCCGGTAAGAGCGG



TGAATTGCGCCGTAGGGAACATGCCCATCTCCATCGACATACCGGATGCG



GCCTTCATTAGGGTCGTCGACGCGCCCTCTTTAACGGACATGTCGTGCGA



GGTACCAGCCTGCACCCATTCCTCAGATTTCGGGGGCGTCGCCATTATTA



AATATGCAGCCAGCAAGAAAGGCAAGTGTGCGGTGCATTCGATGACCAAC



GCCGTCACAATTCGGGAAGCTGAGATAGAAGTTGAAGGGAATTCTCAGCT



GCAAATCTCTTTCTCGACGGCCTTGGCCAGCGCCGAATTCCGCGTACAAG



TCTGTTCTACACAAGTACACTGTGTAGCCGAGTGCCACCCTCCGAAGGAC



CACATAGTCAATTACCCGGCGTCACATACCACCCTCGGGGTCCAGGACAT



TTCCGCTACGGCGCTGTCATGGGTGCAGAAGATCACGGGAGGCGTGGGAC



TGGTTGTCGCTGTTGCAGCACTGATTCTAATCGTGGTGCTATGCGTGTCG



TTCAGCAGGCACTGATAATAGGCTGGAGCCTCGGTGGCCATGCTTCTTGC



CCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCCCC



GTGGTCTTTGAATAAAGTCTGAGTGGGCGGC









Example 6: Exemplary Nucleic Acids Encoding CHIKV E2 RNA Polynucleotides for Use in a RNA Vaccine

The following sequences are exemplary sequences that can be used to encode CHIKV E2 RNA polynucleotides for use in a RNA vaccine:









TABLE 2







CHIKV E2 RNA polynucleotides











SEQ ID


Name
Sequence
NO





ChiK.secE2
ATGGAGACCCCAGCTCAGCTTCTGTTTCTTCTCCTTCTATGGCTGCCTGA
5


HS3UPCRfree
CACGACTGGACATCACCACCATCATCATAGTACAAAAGACAATTTCAATG


(CHIKV
TGTACAAGGCCACCCGCCCTTATTTAGCACACTGTCCAGATTGCGGTGAG


secreted E2
GGGCACTCCTGTCACTCTCCTATCGCCTTGGAGCGGATCCGGAATGAGGC


antigen):
GACCGATGGAACACTGAAAATCCAGGTAAGCTTGCAGATTGGCATCAAGA



CTGACGATAGCCATGATTGGACCAAACTACGGTATATGGATAGCCATACA



CCTGCCGATGCTGAACGGGCCGGTCTGCTTGTGAGAACTAGCGCTCCATG



CACCATCACGGGGACAATGGGACATTTTATCCTGGCTAGATGCCCAAAGG



GCGAAACCCTCACCGTCGGATTCACCGACTCAAGGAAAATTTCTCACACA



TGTACCCATCCCTTCCACCATGAGCCACCGGTGATCGGGCGCGAACGCTT



CCACAGCAGGCCTCAGCATGGAAAAGAACTGCCATGCTCGACCTATGTAC



AGTCCACCGCCGCTACCGCCGAAGAGATCGAAGTGCATATGCCTCCCGAC



ACACCCGACCGAACCCTAATGACACAACAATCTGGGAATGTGAAGATTAC



AGTCAATGGACAGACTGTGAGGTATAAGTGTAACTGCGGTGGCTCAAATG



AGGGCCTCACCACAACGGATAAGGTGATCAATAACTGCAAAATTGACCAG



TGTCACGCGGCCGTGACCAACCATAAGAACTGGCAGTACAACTCACCCTT



AGTGCCTAGGAACGCTGAGCTGGGAGATCGCAAGGGGAAGATACACATTC



CCTTCCCGTTGGCGAATGTGACCTGCCGTGTGCCAAAAGCGAGAAATCCT



ACCGTAACATATGGCAAAAATCAGGTGACCATGTTGCTCTACCCGGATCA



CCCAACTCTGCTGAGCTATCGGAATATGGGACAAGAACCCAATTACCACG



AGGAATGGGTTACGCACAAGAAAGAGGTGACCCTTACAGTCCCTACTGAA



GGTCTGGAAGTGACCTGGGGCAATAACGAGCCTTATAAGTACTGGCCCCA



GATGAGTACAAACGGCACCGCCCATGGACATCCACACGAGATCATTCTGT



ATTACTACGAACTATATCCCACAATGACTGGCAAGCCTATACCAAACCCA



CTTCTCGGCCTTGATAGCACATGATAATAGGCTGGAGCCTCGGTGGCCAT



GCTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACC



CGTACCCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGC





chikv-
TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAA
6


Brazillian-
ATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGAGTAC


E2 (CHIKV
CAAGGACAACTTCAATGTCTATAAAGCCACAAGACCGTACTTAGCTCACT


E2 antigen-
GTCCCGACTGTGGAGAAGGGCACTCGTGCCATAGTCCCGTAGCATTAGAA


Brazilian
CGCATCAGAAATGAAGCGACAGACGGGACGCTGAAAATCCAGGTCTCCTT


strain):
GCAAATCGGAATAAAGACGGATGATAGCCACGATTGGACCAAGCTGCGTT



ACATGGACAACCACACGCCAGCGGACGCAGAGAGGGCGGGGCTATTTGTA



AGAACATCAGCACCGTGCACGATTACTGGAACAATGGGACACTTCATCCT



GACCCGATGTCCGAAAGGGGAAACTCTGACGGTGGGATTCACTGACAGTA



GGAAGATCAGTCACTCATGTACGCACCCATTTCACCACGACCCTCCTGTG



ATAGGCCGGGAGAAATTCCATTCCCGACCGCAGCACGGTAAAGAGCTGCC



TTGCAGCACGTACGTGCAGAGCACCGCCGCAACTACCGAGGAGATAGAGG



TACACATGCCCCCAGACACCCCTGATCGCACATTGATGTCACAACAGTCC



GGCAACGTAAAGATCACAGTTAATGGCCAGACGGTGCGGTACAAGTGTAA



TTGCGGTGGCTCAAATGAAGGACTAATAACTACAGACAAAGTGATTAATA



ACTGCAAAGTTGATCAATGTCATGCCGCGGTCACCAATCACAAAAAGTGG



CAGTACAACTCCCCTCTGGTCCCGCGTAATGCTGAACTTGGGGACCGAAA



AGGAAAAATCCACATCCCGTTTCCGCTGGCAAATGTAACATGCAGGGTGC



CTAAAGCAAGGAACCCCACCGTGACGTACGGGAAAAACCAAGTCATCATG



CTACTGTATCCCGACCACCCAACACTCCTGTCCTACCGGAACATGGGAGA



AGAACCAAACTACCAAGAAGAGTGGGTGACGCATAAGAAGGAAGTCGTGC



TAACCGTGCCGACTGAAGGGCTCGAGGTCACGTGGGGTAACAACGAGCCG



TATAAGTATTGGCCGCAGTTATCTACAAACGGTACAGCCCATGGCCACCC



GCATGAGATAATTCTGTATTATTATGAGCTGTACCCTACTATGACTGTAG



TAGTTGTGTCAGTGGCCTCGTTCGTACTCCTGTCGATGGTGGGTGTGGCA



GTGGGGATGTGCATGTGTGCACGACGCAGATGCATCACACCGTACGAACT



GACACCAGGAGCTACCGTCCCTTTCCTGCTTAGCCTAATATGCTGCATCA



GAACAGCTAAAGCGTGATAATAGGCTGGAGCCTCGGTGGCCATGCTTCTT



GCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCC



CCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGC





chikv-
TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAA
7


Brazillian-
ATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGAGTAT


E2 (CHIKV
TAAGGACCACTTCAATGTCTATAAAGCCACAAGACCGTACCTAGCTCACT


E2 antigen-
GTCCCGACTGTGGAGAAGGGCACTCGTGCCATAGTCCCGTAGCGCTAGAA


Brazilian
CGCATCAGAAACGAAGCGACAGACGGGACGTTGAAAATCCAGGTTTCCTT


strain):
GCAAATCGGAATAAAGACGGATGATAGCCATGATTGGACCAAGCTGCGTT



ATATGGACAATCACATGCCAGCAGACGCAGAGCGGGCCGGGCTATTTGTA



AGAACGTCAGCACCGTGCACGATTACTGGAACAATGGGACACTTCATTCT



GGCCCGATGTCCGAAAGGAGAAACTCTGACGGTGGGGTTCACTGACGGTA



GGAAGATCAGTCACTCATGTACGCACCCATTTCACCATGACCCTCCTGTG



ATAGGCCGGGAAAAATTCCATTCCCGACCGCAGCACGGTAGGGAACTACC



TTGCAGCACGTACGCGCAGAGCACCGCTGCAACTGCCGAGGAGATAGAGG



TACACATGCCCCCAGACACCCCAGATCGCACATTAATGTCACAACAGTCC



GGCAATGTAAAGATCACAGTCAATAGTCAGACGGTGCGGTACAAGTGCAA



TTGTGGTGACTCAAGTGAAGGATTAACCACTACAGATAAAGTGATTAATA



ACTGCAAGGTCGATCAATGCCATGCCGCGGTCACCAATCACAAAAAATGG



CAGTATAACTCCCCTCTGGTCCCGCGTAATGCTGAATTCGGGGACCGGAA



AGGAAAAGTTCACATTCCATTTCCTCTGGCAAATGTGACATGCAGGGTGC



CTAAAGCAAGAAACCCCACCGTGACGTACGGAAAAAACCAAGTCATCATG



TTGCTGTATCCTGACCACCCAACGCTCCTGTCCTACAGGAATATGGGAGA



AGAACCAAACTATCAAGAAGAGTGGGTGACGCATAAGAAGGAGATCAGGT



TAACCGTGCCGACTGAGGGGCTCGAGGTCACGTGGGGTAACAATGAGCCG



TACAAGTATTGGCCGCAGTTATCCACAAACGGTACAGCCCACGGCCACCC



GCATGAGATAATTCTGTATTATTATGAGCTGTACCCAACTATGACTGCGG



TAGTTTTGTCAGTGGCCTCGTTCATACTCCTGTCGATGGTGGGTGTGGCA



GTGGGGATGTGCATGTGTGCACGACGCAGATGCATTACACCGTACGAACT



GACACCAGGAGCTACCGTCCCTTTCCTGCTTAGCCTAATATGCTGCATTA



GAACAGCTAAAGCGTGATAATAGGCTGGAGCCTCGGTGGCCATGCTTCTT



GCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCC



CCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGC





Chik-Strain
TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAA
8


37997-E2
ATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGCCATA


(CHIKV E2
TCTAGCTCATTGTCCTGACTGCGGAGAAGGGCATTCGTGCCACAGCCCTA


Antigen-
TCGCATTGGAGCGCATCAGAAATGAAGCAACGGACGGAACGCTGAAAATC


Strain
CAGGTCTCTTTGCAGATCGGGATAAAGACAGATGACAGCCACGATTGGAC


37997)
CAAGCTGCGCTATATGGATAGCCATACGCCAGCGGACGCGGAGCGAGCCG



GATTGCTTGTAAGGACTTCAGCACCGTGCACGATCACCGGGACCATGGGA



CACTTTATTCTCGCCCGATGCCCGAAAGGAGAGACGCTGACAGTGGGATT



TACGGACAGCAGAAAGATCAGCCACACATGCACACACCCGTTCCATCATG



AACCACCTGTGATAGGTAGGGAGAGGTTCCACTCTCGACCACAACATGGT



AAAGAGTTACCTTGCAGCACGTACGTGCAGAGCACCGCTGCCACTGCTGA



GGAGATAGAGGTGCATATGCCCCCAGATACTCCTGACCGCACGCTGATGA



CGCAGCAGTCTGGCAACGTGAAGATCACAGTTAATGGGCAGACGGTGCGG



TACAAGTGCAACTGCGGTGGCTCAAACGAGGGACTGACAACCACAGACAA



AGTGATCAATAACTGCAAAATTGATCAGTGCCATGCTGCAGTCACTAATC



ACAAGAATTGGCAATACAACTCCCCTTTAGTCCCGCGCAACGCTGAACTC



GGGGACCGTAAAGGAAAGATCCACATCCCATTCCCATTGGCAAACGTGAC



TTGCAGAGTGCCAAAAGCAAGAAACCCTACAGTAACTTACGGAAAAAACC



AAGTCACCATGCTGCTGTATCCTGACCATCCGACACTCTTGTCTTACCGT



AACATGGGACAGGAACCAAATTACCACGAGGAGTGGGTGACACACAAGAA



GGAGGTTACCTTGACCGTGCCTACTGAGGGTCTGGAGGTCACTTGGGGCA



ACAACGAACCATACAAGTACTGGCCGCAGATGTCTACGAACGGTACTGCT



CATGGTCACCCACATGAGATAATCTTGTACTATTATGAGCTGTACCCCAC



TATGACTGTAGTCATTGTGTCGGTGGCCTCGTTCGTGCTTCTGTCGATGG



TGGGCACAGCAGTGGGAATGTGTGTGTGCGCACGGCGCAGATGCATTACA



CCATATGAATTAACACCAGGAGCCACTGTTCCCTTCCTGCTCAGCCTGCT



ATGCTGCTGATAATAGGCTGGAGCCTCGGTGGCCATGCTTCTTGCCCCTT



GGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCCCCGTGGT



CTTTGAATAAAGTCTGAGTGGGCGGC









Example 7: Exemplary Nucleic Acids Encoding CHIKV E1-E2 RNA Polynucleotides for Use in a RNA Vaccine

The following sequences are exemplary sequences that can be used to encode CHIKV E1-E2 RNA polynucleotides for use in a RNA vaccine:









TABLE 3







CHIKV E1-E2 RNA polynucleotides











SEQ ID


Name
Sequence
NO












chikv-
TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAA
9


Brazillian-
ATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGAGTAC


E2-E1
CAAGGACAACTTCAATGTCTATAAAGCCACAAGACCGTACTTAGCTCACT


(CHIKV E1-
GTCCCGACTGTGGAGAAGGGCACTCGTGCCATAGTCCCGTAGCATTAGAA


E2 Antigen-
CGCATCAGAAATGAAGCGACAGACGGGACGCTGAAAATCCAGGTCTCCTT


Brazilian
GCAAATCGGAATAAAGACGGATGATAGCCACGATTGGACCAAGCTGCGTT


strain):
ACATGGACAACCACACGCCAGCGGACGCAGAGAGGGCGGGGCTATTTGTA



AGAACATCAGCACCGTGCACGATTACTGGAACAATGGGACACTTCATCCT



GACCCGATGTCCGAAAGGGGAAACTCTGACGGTGGGATTCACTGACAGTA



GGAAGATCAGTCACTCATGTACGCACCCATTTCACCACGACCCTCCTGTG



ATAGGCCGGGAGAAATTCCATTCCCGACCGCAGCACGGTAAAGAGCTGCC



TTGCAGCACGTACGTGCAGAGCACCGCCGCAACTACCGAGGAGATAGAGG



TACACATGCCCCCAGACACCCCTGATCGCACATTGATGTCACAACAGTCC



GGCAACGTAAAGATCACAGTTAATGGCCAGACGGTGCGGTACAAGTGTAA



TTGCGGTGGCTCAAATGAAGGACTAATAACTACAGACAAAGTGATTAATA



ACTGCAAAGTTGATCAATGTCATGCCGCGGTCACCAATCACAAAAAGTGG



CAGTACAACTCCCCTCTGGTCCCGCGTAATGCTGAACTTGGGGACCGAAA



AGGAAAAATCCACATCCCGTTTCCGCTGGCAAATGTAACATGCAGGGTGC



CTAAAGCAAGGAACCCCACCGTGACGTACGGGAAAAACCAAGTCATCATG



CTACTGTATCCCGACCACCCAACACTCCTGTCCTACCGGAACATGGGAGA



AGAACCAAACTACCAAGAAGAGTGGGTGACGCATAAGAAGGAAGTCGTGC



TAACCGTGCCGACTGAAGGGCTCGAGGTCACGTGGGGTAACAACGAGCCG



TATAAGTATTGGCCGCAGTTATCTACAAACGGTACAGCCCATGGCCACCC



GCATGAGATAATTCTGTATTATTATGAGCTGTACCCTACTATGACTGTAG



TAGTTGTGTCAGTGGCCTCGTTCGTACTCCTGTCGATGGTGGGTGTGGCA



GTGGGGATGTGCATGTGTGCACGACGCAGATGCATCACACCGTACGAACT



GACACCAGGAGCTACCGTCCCTTTCCTGCTTAGCCTAATATGCTGCATCA



GAACAGCTAAAGCGTACGAACACGTAACAGTGATCCCGAACACGGTGGGA



GTACCGTATAAGACTCTAGTCAATAGACCGGGCTACAGTCCCATGGTATT



GGAGATGGAACTACTGTCAGTCACTTTGGAGCCAACGCTATCGCTTGATT



ACATCACGTGCGAGTACAAAACCGTTATCCCGTCTCCGTACGTGAAATGC



TGCGGTACAGCAGAGTGCAAGGACAAAAACCTACCTGACTACAGCTGTAA



GGTCTTCACCGGCGTCTACCCATTTATGTGGGGCGGAGCCTACTGCTTCT



GCGACGCTGAAAACACGCAATTGAGCGAAGCACACGTGGAGAAGTCCGAA



TCATGCAAAACAGAATTTGCATCAGCATACAGGGCTCATACCGCATCCGC



ATCAGCTAAGCTCCGCGTCCTTTACCAAGGAAATAACATCACTGTAACTG



CCTATGCTAACGGCGACCATGCCGTCACAGTTAAGGACGCCAAATTCATT



GTGGGGCCAATGTCTTCAGCCTGGACACCTTTCGACAACAAAATTGTGGT



GTACAAAGGTGACGTCTATAACATGGACTACCCGCCCTTTGGCGCAGGAA



GACCAGGACAATTTGGCGATATCCAAAGTCGCACACCTGAGAGTAAAGAC



GTCTATGCTAATACACAACTGGTACTGCAGAGACCGGCTGCGGGTACGGT



ACATGTGCCATACTCTCAGGCACCATCTGGCTTTAAGTATTGGCTAAAAG



AACGAGGGGCGTCGCTGCAGCACACAGCACCATTTGGCTGCCAAATAGCA



ACAAACCCGGTAAGAGCGGTGAATTGCGCCGTAGGGAACATGCCCATCTC



CATCGACATACCGGATGCGGCCTTCATTAGGGTCGTCGACGCGCCCTCTT



TAACGGACATGTCGTGCGAGGTACCAGCCTGCACCCATTCCTCAGATTTC



GGGGGCGTCGCCATTATTAAATATGCAGCCAGCAAGAAAGGCAAGTGTGC



GGTGCATTCGATGACCAACGCCGTCACAATTCGGGAAGCTGAGATAGAAG



TTGAAGGGAATTCTCAGCTGCAAATCTCTTTCTCGACGGCCTTGGCCAGC



GCCGAATTCCGCGTACAAGTCTGTTCTACACAAGTACACTGTGTAGCCGA



GTGCCACCCTCCGAAGGACCACATAGTCAATTACCCGGCGTCACATACCA



CCCTCGGGGTCCAGGACATTTCCGCTACGGCGCTGTCATGGGTGCAGAAG



ATCACGGGAGGCGTGGGACTGGTTGTCGCTGTTGCAGCACTGATTCTAAT



CGTGGTGCTATGCGTGTCGTTCAGCAGGCACTGATAATAGGCTGGAGCCT



CGGTGGCCATGCTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCC



TTCCTGCACCCGTACCCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGC





chikv-
TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAA
10


Brazillian-
ATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGAGTAT


E2-E1
TAAGGACCACTTCAATGTCTATAAAGCCACAAGACCGTACCTAGCTCACT


(CHIKV E1-
GTCCCGACTGTGGAGAAGGGCACTCGTGCCATAGTCCCGTAGCGCTAGAA


E2 Antigen-
CGCATCAGAAACGAAGCGACAGACGGGACGTTGAAAATCCAGGTTTCCTT


Brazilian
GCAAATCGGAATAAAGACGGATGATAGCCATGATTGGACCAAGCTGCGTT


strain):
ATATGGACAATCACATGCCAGCAGACGCAGAGCGGGCCGGGCTATTTGTA



AGAACGTCAGCACCGTGCACGATTACTGGAACAATGGGACACTTCATTCT



GGCCCGATGTCCGAAAGGAGAAACTCTGACGGTGGGGTTCACTGACGGTA



GGAAGATCAGTCACTCATGTACGCACCCATTTCACCATGACCCTCCTGTG



ATAGGCCGGGAAAAATTCCATTCCCGACCGCAGCACGGTAGGGAACTACC



TTGCAGCACGTACGCGCAGAGCACCGCTGCAACTGCCGAGGAGATAGAGG



TACACATGCCCCCAGACACCCCAGATCGCACATTAATGTCACAACAGTCC



GGCAATGTAAAGATCACAGTCAATAGTCAGACGGTGCGGTACAAGTGCAA



TTGTGGTGACTCAAGTGAAGGATTAACCACTACAGATAAAGTGATTAATA



ACTGCAAGGTCGATCAATGCCATGCCGCGGTCACCAATCACAAAAAATGG



CAGTATAACTCCCCTCTGGTCCCGCGTAATGCTGAATTCGGGGACCGGAA



AGGAAAAGTTCACATTCCATTTCCTCTGGCAAATGTGACATGCAGGGTGC



CTAAAGCAAGAAACCCCACCGTGACGTACGGAAAAAACCAAGTCATCATG



TTGCTGTATCCTGACCACCCAACGCTCCTGTCCTACAGGAATATGGGAGA



AGAACCAAACTATCAAGAAGAGTGGGTGACGCATAAGAAGGAGATCAGGT



TAACCGTGCCGACTGAGGGGCTCGAGGTCACGTGGGGTAACAATGAGCCG



TACAAGTATTGGCCGCAGTTATCCACAAACGGTACAGCCCACGGCCACCC



GCATGAGATAATTCTGTATTATTATGAGCTGTACCCAACTATGACTGCGG



TAGTTTTGTCAGTGGCCTCGTTCATACTCCTGTCGATGGTGGGTGTGGCA



GTGGGGATGTGCATGTGTGCACGACGCAGATGCATTACACCGTACGAACT



GACACCAGGAGCTACCGTCCCTTTCCTGCTTAGCCTAATATGCTGCATTA



GAACAGCTAAAGCGTACGAACACGTAACAGTGATCCCGAACACGGTGGGA



GTACCGTATAAGACTCTAGTCAACAGACCGGGCTACAGCCCCATGGTATT



GGAGATGGAGCTTCTGTCTGTCACCTTGGAACCAACGCTATCGCTTGATT



ACATCACGTGCGAGTATAAAACCGTTATCCCGTCTCCGTACGTGAAATGC



TGCGGTACAGCAGAGTGTAAGGACAAGAGCCTACCTGATTACAGCTGTAA



GGTCTTCACCGGCGTCTACCCATTCATGTGGGGCGGCGCCTACTGCTTCT



GCGACACCGAAAATACGCAATTGAGCGAAGCACATGTGGAGAAGTCCGAA



TCATGCAAAACAGAATTTGCATCAGCATACAGGGCTCATACCGCATCCGC



ATCAGCTAAGCTCCGCGTCCTTTACCAAGGAAATAATATCACTGTGGCTG



CTTATGCAAACGGCGACCATGCCGTCACAGTTAAGGACGCTAAATTCATA



GTGGGGCCAATGTCTTCAGCCTGGACACCTTTCGACAATAAAATCGTGGT



GTACAAAGGCGACGTCTACAACATGGACTACCCGCCCTTCGGCGCAGGAA



GACCAGGACAATTTGGCGACATCCAAAGTCGCACGCCTGAGAGCGAAGAC



GTCTATGCTAATACACAACTGGTACTGCAGAGACCGTCCGCGGGTACGGT



GCACGTGCCGTACTCTCAGGCACCATCTGGCTTCAAGTATTGGCTAAAAG



AACGAGGGGCGTCGCTGCAGCACACAGCACCATTTGGCTGTCAAATAGCA



ACAAACCCGGTAAGAGCGATGAACTGCGCCGTAGGGAACATGCCTATCTC



CATCGACATACCGGACGCGGCCTTTACCAGGGTCGTCGACGCGCCATCTT



TAACGGACATGTCGTGTGAGGTATCAGCCTGCACCCATTCCTCAGACTTT



GGGGGCGTAGCCATCATTAAATATGCAGCCAGTAAGAAAGGCAAGTGTGC



AGTGCACTCGATGACTAACGCCGTCACTATTCGGGAAGCTGAAATAGAAG



TAGAAGGGAACTCTCAGTTGCAAATCTCTTTTTCGACGGCCCTAGCCAGC



GCCGAATTTCGCGTACAAGTCTGTTCTACACAAGTACACTGTGCAGCCGA



GTGCCATCCACCGAAAGACCATATAGTCAATTACCCGGCGTCACACACCA



CCCTCGGGGTCCAAGACATTTCCGCTACGGCGATGTCATGGGTGCAGAAG



ATCACGGGAGGTGTGGGACTGGTTGTCGCTGTTGCAGCACTGATCCTAAT



CGTGGTGCTATGCGTGTCGTTTAGCAGGCACATGAGTATTAAGGACCACT



TCAATGTCTATAAAGCCACAAGACCGTACCTAGCTCACTGTCCCGACTGT



GGAGAAGGGCACTCGTGCCATAGTCCCGTAGCGCTAGAACGCATCAGAAA



CGAAGCGACAGACGGGACGTTGAAAATCCAGGTTTCCTTGCAAATCGGAA



TAAAGACGGATGATAGCCATGATTGGACCAAGCTGCGTTATATGGACAAT



CACATGCCAGCAGACGCAGAGCGGGCCGGGCTATTTGTAAGAACGTCAGC



ACCGTGCACGATTACTGGAACAATGGGACACTTCATTCTGGCCCGATGTC



CGAAAGGAGAAACTCTGACGGTGGGGTTCACTGACGGTAGGAAGATCAGT



CACTCATGTACGCACCCATTTCACCATGACCCTCCTGTGATAGGCCGGGA



AAAATTCCATTCCCGACCGCAGCACGGTAGGGAACTACCTTGCAGCACGT



ACGCGCAGAGCACCGCTGCAACTGCCGAGGAGATAGAGGTACACATGCCC



CCAGACACCCCAGATCGCACATTAATGTCACAACAGTCCGGCAATGTAAA



GATCACAGTCAATAGTCAGACGGTGCGGTACAAGTGCAATTGTGGTGACT



CAAGTGAAGGATTAACCACTACAGATAAAGTGATTAATAACTGCAAGGTC



GATCAATGCCATGCCGCGGTCACCAATCACAAAAAATGGCAGTATAACTC



CCCTCTGGTCCCGCGTAATGCTGAATTCGGGGACCGGAAAGGAAAAGTTC



ACATTCCATTTCCTCTGGCAAATGTGACATGCAGGGTGCCTAAAGCAAGA



AACCCCACCGTGACGTACGGAAAAAACCAAGTCATCATGTTGCTGTATCC



TGACCACCCAACGCTCCTGTCCTACAGGAATATGGGAGAAGAACCAAACT



ATCAAGAAGAGTGGGTGACGCATAAGAAGGAGATCAGGTTAACCGTGCCG



ACTGAGGGGCTCGAGGTCACGTGGGGTAACAATGAGCCGTACAAGTATTG



GCCGCAGTTATCCACAAACGGTACAGCCCACGGCCACCCGCATGAGATAA



TTCTGTATTATTATGAGCTGTACCCAACTATGACTGCGGTAGTTTTGTCA



GTGGCCTCGTTCATACTCCTGTCGATGGTGGGTGTGGCAGTGGGGATGTG



CATGTGTGCACGACGCAGATGCATTACACCGTACGAACTGACACCAGGAG



CTACCGTCCCTTTCCTGCTTAGCCTAATATGCTGCATTAGAACAGCTAAA



GCGTACGAACACGTAACAGTGATCCCGAACACGGTGGGAGTACCGTATAA



GACTCTAGTCAACAGACCGGGCTACAGCCCCATGGTATTGGAGATGGAGC



TTCTGTCTGTCACCTTGGAACCAACGCTATCGCTTGATTACATCACGTGC



GAGTATAAAACCGTTATCCCGTCTCCGTACGTGAAATGCTGCGGTACAGC



AGAGTGTAAGGACAAGAGCCTACCTGATTACAGCTGTAAGGTCTTCACCG



GCGTCTACCCATTCATGTGGGGCGGCGCCTACTGCTTCTGCGACACCGAA



AATACGCAATTGAGCGAAGCACATGTGGAGAAGTCCGAATCATGCAAAAC



AGAATTTGCATCAGCATACAGGGCTCATACCGCATCCGCATCAGCTAAGC



TCCGCGTCCTTTACCAAGGAAATAATATCACTGTGGCTGCTTATGCAAAC



GGCGACCATGCCGTCACAGTTAAGGACGCTAAATTCATAGTGGGGCCAAT



GTCTTCAGCCTGGACACCTTTCGACAATAAAATCGTGGTGTACAAAGGCG



ACGTCTACAACATGGACTACCCGCCCTTCGGCGCAGGAAGACCAGGACAA



TTTGGCGACATCCAAAGTCGCACGCCTGAGAGCGAAGACGTCTATGCTAA



TACACAACTGGTACTGCAGAGACCGTCCGCGGGTACGGTGCACGTGCCGT



ACTCTCAGGCACCATCTGGCTTCAAGTATTGGCTAAAAGAACGAGGGGCG



TCGCTGCAGCACACAGCACCATTTGGCTGTCAAATAGCAACAAACCCGGT



AAGAGCGATGAACTGCGCCGTAGGGAACATGCCTATCTCCATCGACATAC



CGGACGCGGCCTTTACCAGGGTCGTCGACGCGCCATCTTTAACGGACATG



TCGTGTGAGGTATCAGCCTGCACCCATTCCTCAGACTTTGGGGGCGTAGC



CATCATTAAATATGCAGCCAGTAAGAAAGGCAAGTGTGCAGTGCACTCGA



TGACTAACGCCGTCACTATTCGGGAAGCTGAAATAGAAGTAGAAGGGAAC



TCTCAGTTGCAAATCTCTTTTTCGACGGCCCTAGCCAGCGCCGAATTTCG



CGTACAAGTCTGTTCTACACAAGTACACTGTGCAGCCGAGTGCCATCCAC



CGAAAGACCATATAGTCAATTACCCGGCGTCACACACCACCCTCGGGGTC



CAAGACATTTCCGCTACGGCGATGTCATGGGTGCAGAAGATCACGGGAGG



TGTGGGACTGGTTGTCGCTGTTGCAGCACTGATCCTAATCGTGGTGCTAT



GCGTGTCGTTTAGCAGGCACTGATAATAGGCTGGAGCCTCGGTGGCCATG



CTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCC



GTACCCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGC





Chik-Strain
TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAA
11


37997-E2-E1
ATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGCCATA


(CHIKV E1-
TCTAGCTCATTGTCCTGACTGCGGAGAAGGGCATTCGTGCCACAGCCCTA


E2 Antigen-
TCGCATTGGAGCGCATCAGAAATGAAGCAACGGACGGAACGCTGAAAATC


Strain
CAGGTCTCTTTGCAGATCGGGATAAAGACAGATGACAGCCACGATTGGAC


37997):
CAAGCTGCGCTATATGGATAGCCATACGCCAGCGGACGCGGAGCGAGCCG



GATTGCTTGTAAGGACTTCAGCACCGTGCACGATCACCGGGACCATGGGA



CACTTTATTCTCGCCCGATGCCCGAAAGGAGAGACGCTGACAGTGGGATT



TACGGACAGCAGAAAGATCAGCCACACATGCACACACCCGTTCCATCATG



AACCACCTGTGATAGGTAGGGAGAGGTTCCACTCTCGACCACAACATGGT



AAAGAGTTACCTTGCAGCACGTACGTGCAGAGCACCGCTGCCACTGCTGA



GGAGATAGAGGTGCATATGCCCCCAGATACTCCTGACCGCACGCTGATGA



CGCAGCAGTCTGGCAACGTGAAGATCACAGTTAATGGGCAGACGGTGCGG



TACAAGTGCAACTGCGGTGGCTCAAACGAGGGACTGACAACCACAGACAA



AGTGATCAATAACTGCAAAATTGATCAGTGCCATGCTGCAGTCACTAATC



ACAAGAATTGGCAATACAACTCCCCTTTAGTCCCGCGCAACGCTGAACTC



GGGGACCGTAAAGGAAAGATCCACATCCCATTCCCATTGGCAAACGTGAC



TTGCAGAGTGCCAAAAGCAAGAAACCCTACAGTAACTTACGGAAAAAACC



AAGTCACCATGCTGCTGTATCCTGACCATCCGACACTCTTGTCTTACCGT



AACATGGGACAGGAACCAAATTACCACGAGGAGTGGGTGACACACAAGAA



GGAGGTTACCTTGACCGTGCCTACTGAGGGTCTGGAGGTCACTTGGGGCA



ACAACGAACCATACAAGTACTGGCCGCAGATGTCTACGAACGGTACTGCT



CATGGTCACCCACATGAGATAATCTTGTACTATTATGAGCTGTACCCCAC



TATGACTGTAGTCATTGTGTCGGTGGCCTCGTTCGTGCTTCTGTCGATGG



TGGGCACAGCAGTGGGAATGTGTGTGTGCGCACGGCGCAGATGCATTACA



CCATATGAATTAACACCAGGAGCCACTGTTCCCTTCCTGCTCAGCCTGCT



ATGCTGCCTATGGAACGAACAGCAGCCCCTGTTCTGGTTGCAGGCTCTTA



TCCCGCTGGCCGCCTTGATCGTCCTGTGCAACTGTCTGAAACTCTTGCCA



TGCTGCTGTAAGACCCTGGCTTTTTTAGCCGTAATGAGCATCGGTGCCCA



CACTGTGAGCGCGTACGAACACGTAACAGTGATCCCGAACACGGTGGGAG



TACCGTATAAGACTCTTGTCAACAGACCGGGTTACAGCCCCATGGTGTTG



GAGATGGAGCTACAATCAGTCACCTTGGAACCAACACTGTCACTTGACTA



CATCACGTGCGAGTACAAAACTGTCATCCCCTCCCCGTACGTGAAGTGCT



GTGGTACAGCAGAGTGCAAGGACAAGAGCCTACCAGACTACAGCTGCAAG



GTCTTTACTGGAGTCTACCCATTTATGTGGGGCGGCGCCTACTGCTTTTG



CGACGCCGAAAATACGCAATTGAGCGAGGCACATGTAGAGAAATCTGAAT



CTTGCAAAACAGAGTTTGCATCGGCCTACAGAGCCCACACCGCATCGGCG



TCGGCGAAGCTCCGCGTCCTTTACCAAGGAAACAACATTACCGTAGCTGC



CTACGCTAACGGTGACCATGCCGTCACAGTAAAGGACGCCAAGTTTGTCG



TGGGCCCAATGTCCTCCGCCTGGACACCTTTTGACAACAAAATCGTGGTG



TACAAAGGCGACGTCTACAACATGGACTACCCACCTTTTGGCGCAGGAAG



ACCAGGACAATTTGGTGACATTCAAAGTCGTACACCGGAAAGTAAAGACG



TTTATGCCAACACTCAGTTGGTACTACAGAGGCCAGCAGCAGGCACGGTA



CATGTACCATACTCTCAGGCACCATCTGGCTTCAAGTATTGGCTGAAGGA



ACGAGGAGCATCGCTACAGCACACGGCACCGTTCGGTTGCCAGATTGCGA



CAAACCCGGTAAGAGCTGTAAATTGCGCTGTGGGGAACATACCAATTTCC



ATCGACATACCGGATGCGGCCTTTACTAGGGTTGTCGATGCACCCTCTGT



AACGGACATGTCATGCGAAGTACCAGCCTGCACTCACTCCTCCGACTTTG



GGGGCGTCGCCATCATCAAATACACAGCTAGCAAGAAAGGTAAATGTGCA



GTACATTCGATGACCAACGCCGTTACCATTCGAGAAGCCGACGTAGAAGT



AGAGGGGAACTCCCAGCTGCAAATATCCTTCTCAACAGCCCTGGCAAGCG



CCGAGTTTCGCGTGCAAGTGTGCTCCACACAAGTACACTGCGCAGCCGCA



TGCCACCCTCCAAAGGACCACATAGTCAATTACCCAGCATCACACACCAC



CCTTGGGGTCCAGGATATATCCACAACGGCAATGTCTTGGGTGCAGAAGA



TTACGGGAGGAGTAGGATTAATTGTTGCTGTTGCTGCCTTAATTTTAATT



GTGGTGCTATGCGTGTCGTTTAGCAGGCACTAATGATAATAGGCTGGAGC



CTCGGTGGCCATGCTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCC



CCTTCCTGCACCCGTACCCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCG



GC









Example 8: Exemplary Nucleic Acids Encoding CHIKV C-E3-E2-6K-E1 RNA Polynucleotides for Use in a RNA Vaccine

The following sequence is an exemplary sequence that can be used to encode an CHIKV, DENV and/or ZIKV RNA polynucleotide C-E3-E2-6K-E1 for use in a RNA vaccine:









TABLE 4







CHIKV RNA polynucleotide C-E3-E2-6K-E1











SEQ ID


Name
Sequence
NO





Chik.C-E3-
TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAA
12


E2-6K-
ATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGGAGTT


E1_HS3UPCRfree
TATCCCTACGCAGACGTTCTATAATCGGAGGTACCAGCCCAGGCCTTGGG


(C-E3-
CCCCCCGCCCTACAATCCAAGTGATAAGACCACGTCCCAGGCCGCAGAGA


E2-6K-E1
CAAGCCGGCCAATTGGCGCAACTCATCAGCGCAGTTAACAAGTTGACCAT


Antigen)
GCGAGCGGTTCCTCAGCAGAAGCCGAGGCGGAACCGGAAGAATAAGAAAC



AACGCCAAAAGAAACAGGCGCCGCAGAACGACCCTAAACAGAAGAAACAA



CCTCCCCAGAAAAAGCCAGCTCAGAAGAAGAAGAAGCCTGGACGCCGTGA



AAGAATGTGCATGAAAATCGAAAATGATTGCATCTTTGAGGTGAAGCACG



AGGGCAAAGTGATGGGGTACGCATGCCTGGTGGGCGATAAGGTCATGAAG



CCAGCACATGTGAAGGGGACAATCGATAATGCTGATCTGGCCAAGCTAGC



TTTTAAACGTAGCTCCAAATACGATCTTGAGTGTGCCCAGATACCTGTGC



ACATGAAATCTGATGCAAGCAAGTTCACACACGAGAAGCCTGAGGGCTAT



TATAACTGGCATCATGGTGCGGTTCAGTACTCCGGCGGCCGATTTACCAT



TCCTACAGGGGCAGGAAAGCCGGGCGATTCGGGGAGACCCATTTTCGACA



ACAAAGGCCGCGTGGTAGCTATCGTGCTCGGTGGGGCTAATGAGGGTGCA



CGTACTGCACTTAGCGTGGTTACCTGGAATAAGGACATTGTCACAAAGAT



TACACCGGAGGGAGCAGAGGAATGGAGCCTGGCACTGCCCGTTCTGTGCC



TGCTGGCCAACACCACTTTCCCATGTAGTCAACCCCCTTGCACTCCCTGC



TGCTATGAGAAAGAGCCTGAGAGCACGTTACGTATGCTGGAAGATAATGT



CATGAGGCCCGGGTACTATCAACTGCTCAAGGCTAGTCTGACATGCTCGC



CCCACAGGCAGCGCAGGTCCACGAAAGATAACTTCAACGTTTACAAGGCT



ACTAGGCCTTATTTGGCCCACTGTCCCGATTGCGGAGAGGGACATTCTTG



TCATAGTCCTATTGCCTTGGAGCGAATCCGCAACGAGGCCACTGATGGAA



CCCTTAAGATTCAAGTATCTTTGCAGATTGGCATTAAGACAGATGATTCC



CATGACTGGACAAAGCTTCGGTACATGGACTCACACACGCCTGCAGATGC



TGAAAGGGCAGGGCTCTTGGTCAGGACCTCGGCCCCTTGTACAATTACCG



GGACCATGGGCCACTTCATCCTTGCACGCTGCCCTAAGGGGGAGACGCTG



ACGGTGGGCTTTACTGACTCGCGTAAGATCTCACACACATGTACACACCC



TTTCCACCACGAACCTCCAGTCATAGGGAGAGAGAGATTTCACTCTCGCC



CACAGCATGGCAAAGAGCTGCCATGCTCCACATATGTCCAGAGCACTGCT



GCTACCGCTGAAGAAATTGAGGTTCACATGCCACCCGATACACCAGACCG



TACTCTGATGACCCAACAGAGCGGCAACGTGAAGATTACCGTAAATGGAC



AGACCGTGAGATATAAGTGCAACTGTGGTGGCTCCAATGAGGGCTTAACA



ACAACGGATAAGGTGATTAACAATTGCAAAATAGATCAGTGCCATGCCGC



AGTGACCAATCACAAGAATTGGCAATACAACTCACCCCTAGTGCCGAGGA



ACGCAGAACTAGGCGACAGGAAAGGGAAAATCCATATACCCTTCCCCCTA



GCAAATGTGACCTGCCGAGTGCCCAAGGCCAGAAACCCCACGGTTACTTA



CGGCAAGAACCAGGTGACGATGCTTTTGTACCCAGACCATCCCACCTTGC



TCTCTTATAGAAACATGGGACAGGAGCCTAACTATCATGAGGAGTGGGTG



ACACACAAGAAAGAAGTCACCCTTACCGTGCCTACCGAAGGGCTTGAAGT



CACCTGGGGCAACAACGAGCCTTACAAGTATTGGCCACAGATGTCCACAA



ACGGAACAGCCCACGGCCACCCGCACGAGATCATACTGTATTACTATGAG



CTTTATCCCACAATGACTGTCGTAATTGTGAGCGTTGCCAGCTTCGTGTT



GCTTTCAATGGTTGGCACTGCCGTGGGGATGTGCGTGTGTGCTAGGCGCC



GCTGTATAACTCCTTATGAACTAACTCCAGGCGCCACCGTTCCTTTCCTG



CTCTCACTACTGTGTTGTGTGCGCACAACAAAGGCTGCCACCTACTACGA



AGCCGCCGCCTACTTATGGAATGAACAGCAGCCTCTCTTTTGGTTACAGG



CGCTGATTCCTCTTGCTGCCCTGATCGTGCTATGCAACTGCCTCAAGCTG



CTGCCCTGTTGTTGCAAGACCCTAGCTTTTCTCGCCGTGATGAGCATCGG



GGCACATACAGTGTCCGCCTATGAGCACGTCACCGTTATCCCGAACACCG



TCGGTGTGCCATATAAGACGTTAGTCAATCGACCCGGCTACTCTCCAATG



GTGCTGGAAATGGAACTCCAGAGTGTGACACTGGAGCCAACCTTATCCCT



CGATTATATTACCTGCGAATACAAGACCGTCATCCCTTCACCCTATGTCA



AGTGCTGTGGGACCGCTGAATGCAAAGACAAGAGCTTGCCTGATTACAGT



TGCAAGGTCTTCACAGGTGTGTACCCCTTCATGTGGGGGGGAGCTTATTG



CTTTTGTGATGCTGAGAACACCCAACTGAGCGAGGCTCACGTCGAGAAAT



CTGAGTCTTGCAAGACCGAGTTTGCCTCAGCTTACAGGGCCCACACGGCC



AGCGCATCCGCCAAATTGAGGGTACTCTACCAGGGTAATAATATCACCGT



TGCCGCATATGCAAACGGCGATCACGCCGTGACTGTCAAGGATGCCAAGT



TCGTTGTGGGCCCCATGTCTAGCGCTTGGACACCGTTCGATAATAAGATC



GTCGTGTACAAAGGGGACGTGTATAATATGGACTACCCACCTTTCGGGGC



CGGCCGACCGGGACAGTTCGGGGATATTCAGAGCCGCACACCCGAATCTA



AAGATGTTTACGCCAATACTCAGCTCGTCCTGCAGAGGCCCGCCGCTGGT



ACAGTTCACGTTCCTTACTCACAGGCACCCTCTGGGTTTAAGTATTGGCT



GAAAGAACGAGGTGCCAGCTTGCAGCATACAGCGCCTTTCGGATGCCAGA



TTGCCACTAACCCCGTACGGGCTGTCAACTGCGCGGTCGGCAATATTCCC



ATTAGCATTGATATCCCGGACGCAGCTTTCACCAGGGTTGTGGACGCCCC



GAGCGTCACCGACATGAGTTGTGAGGTGCCAGCCTGCACGCATAGCAGTG



ATTTCGGCGGCGTCGCCATCATTAAATATACCGCAAGCAAGAAAGGCAAG



TGCGCCGTCCACTCGATGACTAACGCCGTCACAATTCGGGAAGCCGATGT



TGAGGTCGAAGGCAACTCCCAGCTGCAGATCAGCTTCTCTACTGCTCTTG



CAAGCGCCGAGTTTCGAGTCCAGGTCTGCAGTACGCAGGTGCATTGTGCA



GCTGCCTGCCATCCACCCAAAGATCATATTGTGAATTATCCGGCGTCACA



TACCACACTGGGGGTCCAGGATATTAGTACAACGGCGATGTCCTGGGTGC



AGAAAATTACGGGAGGAGTGGGCTTAATTGTTGCCGTGGCGGCCCTGATC



CTGATCGTTGTGCTGTGTGTTAGCTTCTCTAGGCATGACTATAAAGATGA



CGATGACAAATGATAATAGGCTGGAGCCTCGGTGGCCATGCTTCTTGCCC



CTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCCCCGT



GGTCTTTGAATAAAGTCTGAGTGGGCGGC





CHIKV C-E3-
TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAA
13


E2-6K-E1
ATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGGAGTT



TATCCCTACGCAGACGTTCTATAATCGGAGGTACCAGCCCAGGCCTTGGG



CCCCCCGCCCTACAATCCAAGTGATAAGACCACGTCCCAGGCCGCAGAGA



CAAGCCGGCCAATTGGCGCAACTCATCAGCGCAGTTAACAAGTTGACCAT



GCGAGCGGTTCCTCAGCAGAAGCCGAGGCGGAACCGGAAGAATAAGAAAC



AACGCCAAAAGAAACAGGCGCCGCAGAACGACCCTAAACAGAAGAAACAA



CCTCCCCAGAAAAAGCCAGCTCAGAAGAAGAAGAAGCCTGGACGCCGTGA



AAGAATGTGCATGAAAATCGAAAATGATTGCATCTTTGAGGTGAAGCACG



AGGGCAAAGTGATGGGGTACGCATGCCTGGTGGGCGATAAGGTCATGAAG



CCAGCACATGTGAAGGGGACAATCGATAATGCTGATCTGGCCAAGCTAGC



TTTTAAACGTAGCTCCAAATACGATCTTGAGTGTGCCCAGATACCTGTGC



ACATGAAATCTGATGCAAGCAAGTTCACACACGAGAAGCCTGAGGGCTAT



TATAACTGGCATCATGGTGCGGTTCAGTACTCCGGCGGCCGATTTACCAT



TCCTACAGGGGCAGGAAAGCCGGGCGATTCGGGGAGACCCATTTTCGACA



ACAAAGGCCGCGTGGTAGCTATCGTGCTCGGTGGGGCTAATGAGGGTGCA



CGTACTGCACTTAGCGTGGTTACCTGGAATAAGGACATTGTCACAAAGAT



TACACCGGAGGGAGCAGAGGAATGGAGCCTGGCACTGCCCGTTCTGTGCC



TGCTGGCCAACACCACTTTCCCATGTAGTCAACCCCCTTGCACTCCCTGC



TGCTATGAGAAAGAGCCTGAGAGCACGTTACGTATGCTGGAAGATAATGT



CATGAGGCCCGGGTACTATCAACTGCTCAAGGCTAGTCTGACATGCTCGC



CCCACAGGCAGCGCAGGTCCACGAAAGATAACTTCAACGTTTACAAGGCT



ACTAGGCCTTATTTGGCCCACTGTCCCGATTGCGGAGAGGGACATTCTTG



TCATAGTCCTATTGCCTTGGAGCGAATCCGCAACGAGGCCACTGATGGAA



CCCTTAAGATTCAAGTATCTTTGCAGATTGGCATTAAGACAGATGATTCC



CATGACTGGACAAAGCTTCGGTACATGGACTCACACACGCCTGCAGATGC



TGAAAGGGCAGGGCTCTTGGTCAGGACCTCGGCCCCTTGTACAATTACCG



GGACCATGGGCCACTTCATCCTTGCACGCTGCCCTAAGGGGGAGACGCTG



ACGGTGGGCTTTACTGACTCGCGTAAGATCTCACACACATGTACACACCC



TTTCCACCACGAACCTCCAGTCATAGGGAGAGAGAGATTTCACTCTCGCC



CACAGCATGGCAAAGAGCTGCCATGCTCCACATATGTCCAGAGCACTGCT



GCTACCGCTGAAGAAATTGAGGTTCACATGCCACCCGATACACCAGACCG



TACTCTGATGACCCAACAGAGCGGCAACGTGAAGATTACCGTAAATGGAC



AGACCGTGAGATATAAGTGCAACTGTGGTGGCTCCAATGAGGGCTTAACA



ACAACGGATAAGGTGATTAACAATTGCAAAATAGATCAGTGCCATGCCGC



AGTGACCAATCACAAGAATTGGCAATACAACTCACCCCTAGTGCCGAGGA



ACGCAGAACTAGGCGACAGGAAAGGGAAAATCCATATACCCTTCCCCCTA



GCAAATGTGACCTGCCGAGTGCCCAAGGCCAGAAACCCCACGGTTACTTA



CGGCAAGAACCAGGTGACGATGCTTTTGTACCCAGACCATCCCACCTTGC



TCTCTTATAGAAACATGGGACAGGAGCCTAACTATCATGAGGAGTGGGTG



ACACACAAGAAAGAAGTCACCCTTACCGTGCCTACCGAAGGGCTTGAAGT



CACCTGGGGCAACAACGAGCCTTACAAGTATTGGCCACAGATGTCCACAA



ACGGAACAGCCCACGGCCACCCGCACGAGATCATACTGTATTACTATGAG



CTTTATCCCACAATGACTGTCGTAATTGTGAGCGTTGCCAGCTTCGTGTT



GCTTTCAATGGTTGGCACTGCCGTGGGGATGTGCGTGTGTGCTAGGCGCC



GCTGTATAACTCCTTATGAACTAACTCCAGGCGCCACCGTTCCTTTCCTG



CTCTCACTACTGTGTTGTGTGCGCACAACAAAGGCTGCCACCTACTACGA



AGCCGCCGCCTACTTATGGAATGAACAGCAGCCTCTCTTTTGGTTACAGG



CGCTGATTCCTCTTGCTGCCCTGATCGTGCTATGCAACTGCCTCAAGCTG



CTGCCCTGTTGTTGCAAGACCCTAGCTTTTCTCGCCGTGATGAGCATCGG



GGCACATACAGTGTCCGCCTATGAGCACGTCACCGTTATCCCGAACACCG



TCGGTGTGCCATATAAGACGTTAGTCAATCGACCCGGCTACTCTCCAATG



GTGCTGGAAATGGAACTCCAGAGTGTGACACTGGAGCCAACCTTATCCCT



CGATTATATTACCTGCGAATACAAGACCGTCATCCCTTCACCCTATGTCA



AGTGCTGTGGGACCGCTGAATGCAAAGACAAGAGCTTGCCTGATTACAGT



TGCAAGGTCTTCACAGGTGTGTACCCCTTCATGTGGGGGGGAGCTTATTG



CTTTTGTGATGCTGAGAACACCCAACTGAGCGAGGCTCACGTCGAGAAAT



CTGAGTCTTGCAAGACCGAGTTTGCCTCAGCTTACAGGGCCCACACGGCC



AGCGCATCCGCCAAATTGAGGGTACTCTACCAGGGTAATAATATCACCGT



TGCCGCATATGCAAACGGCGATCACGCCGTGACTGTCAAGGATGCCAAGT



TCGTTGTGGGCCCCATGTCTAGCGCTTGGACACCGTTCGATAATAAGATC



GTCGTGTACAAAGGGGACGTGTATAATATGGACTACCCACCTTTCGGGGC



CGGCCGACCGGGACAGTTCGGGGATATTCAGAGCCGCACACCCGAATCTA



AAGATGTTTACGCCAATACTCAGCTCGTCCTGCAGAGGCCCGCCGCTGGT



ACAGTTCACGTTCCTTACTCACAGGCACCCTCTGGGTTTAAGTATTGGCT



GAAAGAACGAGGTGCCAGCTTGCAGCATACAGCGCCTTTCGGATGCCAGA



TTGCCACTAACCCCGTACGGGCTGTCAACTGCGCGGTCGGCAATATTCCC



ATTAGCATTGATATCCCGGACGCAGCTTTCACCAGGGTTGTGGACGCCCC



GAGCGTCACCGACATGAGTTGTGAGGTGCCAGCCTGCACGCATAGCAGTG



ATTTCGGCGGCGTCGCCATCATTAAATATACCGCAAGCAAGAAAGGCAAG



TGCGCCGTCCACTCGATGACTAACGCCGTCACAATTCGGGAAGCCGATGT



TGAGGTCGAAGGCAACTCCCAGCTGCAGATCAGCTTCTCTACTGCTCTTG



CAAGCGCCGAGTTTCGAGTCCAGGTCTGCAGTACGCAGGTGCATTGTGCA



GCTGCCTGCCATCCACCCAAAGATCATATTGTGAATTATCCGGCGTCACA



TACCACACTGGGGGTCCAGGATATTAGTACAACGGCGATGTCCTGGGTGC



AGAAAATTACGGGAGGAGTGGGCTTAATTGTTGCCGTGGCGGCCCTGATC



CTGATCGTTGTGCTGTGTGTTAGCTTCTCTAGGCATTGATAATAGGCTGG



AGCCTCGGTGGCCATGCTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCC



TCCCCTTCCTGCACCCGTACCCCCGTGGTCTTTGAATAAAGTCTGAGTGG



GCGGC





CHIKV C-E3-
SSFWTLVQKLIRLTIGKERKEEEEIEPPWSLSLRRRSIIGGTSPGLGPPA
14


E2-6K-E1
LQSKDHVPGRRDKPANWRNSSAQLTSPCERFLSRSRGGTGRIRNNAKRNR



RRRTTLNRRNNLPRKSQLRRRRSLDAVKECAKSKMIASLRSTRAKWGTHA



WWAIRSSQHMRGQSIMLIWPSLLNVAPNTILSVPRYLCTNLMQASSHTRS



LRAIITGIMVRFSTPAADLPFLQGQESRAIRGDPFSTTKAAWLSCSVGLM



RVHVLHLAWLPGIRTLSQRLHRREQRNGAWHCPFCACWPTPLSHVVNPLA



LPAAMRKSLRARYVCWKIMSGPGTINCSRLVHARPTGSAGPRKITSTFTR



LLGLIWPTVPIAERDILVIVLLPWSESATRPLMEPLRFKYLCRLALRQMI



PMTGQSFGTWTHTRLQMLKGQGSWSGPRPLVQLPGPWATSSLHAALRGRR



RWALLTRVRSHTHVHTLSTTNLQSGERDFTLAHSMAKSCHAPHMSRALLL



PLKKLRFTCHPIHQTVLPNRAATRLPMDRPDISATVVAPMRAQQRIRLTI



AKISAMPQPITRIGNTTHPCRGTQNATGKGKSIYPSPQMPAECPRPETPR



LLTARTRRCFCTQTIPPCSLIETWDRSLTIMRSGHTRKKSPLPCLPKGLK



SPGATTSLTSIGHRCPQTEQPTATRTRSYCITMSFIPQLSLALPASCCFQ



WLALPWGCACVLGAAVLLMNLQAPPFLSCSHYCVVCAQQRLPPTTKPPPT



YGMNSSLSFGYRRFLLLPSCYATASSCCPVVARPLFSPASGHIQCPPMST



SPLSRTPSVCHIRRSIDPATLQWCWKWNSRVHWSQPYPSIILPANTRPSS



LHPMSSAVGPLNAKTRACLITVARSSQVCTPSCGGELIAFVMLRTPNARL



TSRNLSLARPSLPQLTGPTRPAHPPNGYSTRVIISPLPHMQTAITPLSRM



PSSLWAPCLALGHRSIIRSSCTKGTCIIWTTHLSGPADRDSSGIFRAAHP



NLKMFTPILSSSCRGPPLVQFTFLTHRHPLGLSIGKNEVPACSIQRLSDA



RLPLTPYGLSTARSAIFPLALISRTQLSPGLWTPRASPTVVRCQPARIAV



ISAASPSLNIPQARKASAPSTRLTPSQFGKPMLRSKATPSCRSASLLLLQ



APSFESRSAVRRCIVQLPAIHPKIILIIRRHIPHWGSRILVQRRCPGCRK



LREEWALLPWRPSSLCCVLASLGIDNRLEPRWPCFLPLGPPPSPSSPSCT



RTPVVFESLSGR










FIG. 2 shows a phylogenetic tree of chikungunya virus strains derived from complete concatenated open reading frames for the nonstructural and structural polyproteins. E1 amino acid substitutions that facilitated (Indian Ocean lineage) or prevented (Asian lineage) adaptation to Aedes albopictus are shown on the right. CAR: Central African republic; ECSA: East/Central/South Africa


Example 9: Protocol to Determine Efficacy of mRNA-Encoded Chikungunya Antigen Candidates Against CHIKV

Chikungunya has a polycistronic genome and different antigens, based on the Chikungunya structural protein, are possible. There are membrane-bound and secreted forms of E1 and E2, as well as the full length polyprotein antigen, which retains the protein's native conformation. Additionally, the different CHIKV genotypes can also yield different antigens.


The efficacy of Chik candidate vaccines in AG129 mice against challenge with a lethal dose of CHIKV strain 181/25 was investigated. A129 mice, which lack IFN α/β receptor signaling, injected intradermally in the footpad with 104 PFU of CHIKV 181/25 virus have a 100% survival rate post-injection. In contrast, AG129 mice, which lack IFN α/β and γ receptor signaling, injected intradermally in the footpad with 104 PFU of CHIKV 181/25 virus do not survive past day 5 post-injection. The tested vaccines included: MC3-LNP formulated mRNA encoded CHIKV-E1, MC3-LNP formulated mRNA encoded CHIKV-E2, and MC3-LNP formulated mRNA encoded CHIKV-E1/E2/E3/C. Fifteen groups of five AG129 mice were vaccinated via intradermal (ID) or intramuscular (IM) injection with either 2 μg or 10 μg of the candidate vaccine. The vaccines were given to AG129 mice as single or two doses (second dose provided 28 days after the first dose). The positive control group was vaccinated via intranasal instillation (20 μL volume) with heat-inactivated CHIKV. Phosphate-buffered saline (PBS) was used as a negative control.


On day 56, mice were challenged with 1×104 PFU of CHIKV via ID injection in 50 μL volume and monitored for 10 days for weight loss, morbidity, and mortality. Mice that displayed severe illness, defined as >30% weight loss, a health score of 6 or above, extreme lethargy, and/or paralysis were euthanized. Notably, mice “vaccinated” with heat-inactivated CHIKV (positive control group) became morbid and were euthanized following the second dose of HI-CHIKV (they were not included in the challenge portion of the study).


In addition, individual samples were tested for reactivity in a semi-quantitative ELISA for mouse IgG against either Chikungunya-specific E1 (groups 1-4), Chikungunya-specific E2 (groups 5-8), or Chikungunya-specific E1 and E2 proteins (groups 9-15).


The health status is scored as indicated in the following Table 5:









TABLE 5







Health Status












SCORE
INITIALS
DESCRIPTION
APPEARANCE
MOBILITY
ATTITUDE





1
H
Healthy
Smooth Coat. Bright Eyes.
Active, Scurrying, Burrowing
Alert


2
SR
Slightly Ruffled
Slightly Ruffled coat (usually
Active, Scurrying, Burrowing
Alert





only around head and neck)


3
R
Ruffled
Ruffled Coat throughout
Active, Scurrying, Burrowing
Alert





body. A “wet” appearance.


4
S
Sick
Very Ruffled coat. Slightly
Walking, but no scurrying.
Mildly





closed, inset eyes.

Lethargic


5
VS
Very Sick
Very Ruffled Coat. Closed,
Slow to no movement. Will
Extremely




(Euthanize)
inset eyes.
return to upright position
Lethargic






if put on its side.


6
E
Euthanize
Very ruffled Coat. Closed,
No movement or
Completely





inset eyes. Moribund
Uncontrollable, spastic
Unaware or in





requiring humane
movements. Will NOT return to
Noticeable





euthanasia.
upright position if put on its
Distress






side.


7
D
Deceased












Example 10: Efficacy of Chikungunya E1 Antigen mRNA Vaccine Candidate

AG129 mice (n=5 per group) were vaccinated with 2 μg or 10 μg of MC-3-LNP formulated mRNA encoding CHIKV E1. The AG129 mice were vaccinated on either Day 0 or Days 0 and 28 via IM or ID delivery. On Day 56 following final vaccination all mice were challenged with a lethal dose of CHIKV. The survival curve, percent weight loss, and health status of the mice vaccinated with 2 μg CHIKV E1 mRNA are shown in FIGS. 4A-C. The survival results are tabulated in Table 6 below. The survival curve, percent weight loss, and health status of the mice vaccinated with 10 μg CHIKV E1 mRNA are shown in FIGS. 8A-C. The survival results are tabulated in Table 7 below.









TABLE 6







Survival of mice vaccinated with Chikungunya


E1 antigen mRNA - 2 μg dose













E1
E1
E1
E1



days post
IM LNP
IM LNP
ID LNP
ID LNP


infection
Day 0
Day 0, 28
Day 0
Day 0, 28
Vehicle















0.000
100.000
100.000
100.000
100.000
100.000


4.000
80.000
40.000
40.000
60.000


5.000
0.000
0.000
0.000
0.000
0.000
















TABLE 7







Survival of mice vaccinated with Chikungunya


E1 antigen mRNA - 10 μg dose













E1
E1
E1
E1



days post
IM LNP
IM LNP
ID LNP
ID LNP


infection
Day 0
Day 0, 28
Day 0
Day 0, 28
Vehicle















0.000
100.000
100.000
100.000
100.000
100.000


4.000
60.000

80.000


5.000
0.000
80.000
0.000

0.000


6.000

60.000

80.000


10.000

60.000

80.000









As shown in Table 6, the 2 μg dose of CHIKV E1 mRNA vaccine gave no protection post-CHIKV infection challenge when administered via IM or ID with either a single dose or two doses. Likewise, the single dose of 10 μg CHIKV E1 vaccine provided little to no protection when administered via IM or ID. However, as indicated in Table 7, the 10 μg dose of CHIKV E1 mRNA vaccine provided 60% protection post-CHIKV challenge when administered via IM using two doses and provided 80% protection post-CHIKV challenge when administered via ID using two doses.


In all experiments, the negative control mice had a ˜0% survival rate, as did the positive control mice (heat-inactivated CHIKV), which died before CHIKV challenge. Some mice died during the vaccination period.


Example 11: Efficacy of Chikungunya E2 Antigen mRNA Vaccine Candidate

AG129 mice (n=5 per group) were vaccinated with 2 μg or 10 μg of MC-3-LNP formulated mRNA encoding CHIKV E2. The mice were vaccinated on either Day 0 or Days 0 and 28 via IM or ID delivery. On Day 56 following final vaccination all mice were challenged with a lethal dose of CHIKV. The survival curve, percent weight loss, and health status of the mice vaccinated with 2 μg CHIKV E2 mRNA are shown in FIGS. 5A-C. The survival results are tabulated in Table 8 below. The survival curve, percent weight loss, and health status of the mice vaccinated with 10 μg CHIKV E2 mRNA are shown in FIGS. 9A-C. The survival results are tabulated in Table 9 below.









TABLE 8







Survival of mice vaccinated with Chikungunya


E2 antigen mRNA - 2 μg dose













E1
E1
E1
E1



days post
IM LNP
IM LNP
ID LNP
ID LNP


infection
Day 0
Day 0, 28
Day 0
Day 0, 28
Vehicle















0.000
100.000
100.000
100.000
100.000
100.000


3.000
60.000


4.000
20.000

80.000

0.000


5.000
0.000

0.000

0.000


6.000

80.000


10.000

80.000

100.000
















TABLE 9







Survival of mice vaccinated with Chikungunya


E2 antigen mRNA - 10 μg dose













E2
E2
E2
E2



days post
IM LNP
IM LNP
ID LNP
ID LNP


infection
Day 0
Day 0, 28
Day 0
Day 0, 28
Vehicle















0.000
100.000
100.000
100.000
100.000
100.000


5.000
40.000

0.000

0.000


6.000
0.000


10.000

100.000

100.000









As shown in Table 8, the 2 μg dose of CHIKV E2 mRNA vaccine gave no protection post-CHIKV infection challenge when administered via IM or ID in a single dose. However, when provided in two doses, the 2 μg dose of CHIKV E2 mRNA vaccine provided 80% protection when administered via IM and 100% protection when administered via ID post-CHIKV challenge. As indicated in Table 9, the 10 μg dose of CHIKV E2 mRNA mouse provided no protection post-CHIKV challenge when administered via IM or ID in a single dose. However, administration of CHIKV E2 mRNA via IM or ID using two doses provided 100% protection post-CHIKV challenge.


In all experiments, the negative control mice had a ˜0% survival rate, as did the positive control mice (heat-inactivated CHIKV) which died prior to CHIKV challenge. Some mice died during the vaccination period.


Example 12: Efficacy of Chikungunya C-E3-E2-6K-E1 Antigen mRNA Vaccine Candidate

AG129 mice (n=5 per group) were vaccinated with 2 μg or 10 μg of MC-3-LNP formulated mRNA encoding CHIKV C-E3-E2-6K-E1 mRNA (SEQ ID NO:3). The AG129 mice were vaccinated on either Day 0 or Days 0 and 28 via IM or ID delivery. On Day 56 following final vaccination all mice were challenged with a lethal dose of CHIKV. The survival curve, percent weight loss, and health status of the mice vaccinated with 2 μg CHIKV C-E3-E2-6K-E1 mRNA are shown in FIGS. 6A-C. The survival results are tabulated in Table 10 below. The survival curve, percent weight loss, and health status of the mice vaccinated with 10 μg CHIKV C-E3-E2-6K-E1/E2/E3/C mRNA are shown in FIGS. 10A-C. The survival results are tabulated in Table 11 below.









TABLE 10







Survival of mice vaccinated with Chikungunya


C-E3-E2-6K-E1 antigen mRNA - 2 μg













E1/E2/
E1/E2/
E1/E2/
E1/E2/




E3C
E3C
E3C
E3C


days post
IM LNP
IM LNP
ID LNP
ID LNP


infection
Day 0
Day 0, 28
Day 0
Day 0, 28
Vehicle















0.000
100.000
100.000
100.000
100.000
100.000


5.000


80.000

0.000


10.000
100.000
100.000
80.000
100.000
















TABLE 11







Survival of mice vaccinated with Chikungunya


C-E3-E2-6K-E1 antigen mRNA - 10 μg













E1/E2/
E1/E2/
E1/E2/
E1/E2/




E3C
E3C
E3C
E3C


days post
IM LNP
IM LNP
ID LNP
ID LNP


infection
Day 0
Day 0, 28
Day 0
Day 0, 28
Vehicle















0.000
100.000
100.000
100.000
100.000
100.000


5.000




0.000


10.000
100.000
100.000
100.000
100.000









As shown in Table 10, the 2 μg dose of C-E3-E2-6K-E1 mRNA vaccine provided 100% protection post-CHIKV challenge when administered via IM in a single dose and provided 80% protection post-CHIKV challenge when administered via ID in a single dose. The 2 μg dose of C-E3-E2-6K-E1 mRNA vaccine provided 100% protection post-CHIKV challenge when administered via IM or ID in two doses. As shown in Table 11, the 10 μg dose of C-E3-E2-6K-E1 mRNA vaccine provided 100% protection post-CHIKV infection challenge when administered via IM or ID in either a single dose or in two doses.


In all experiments, the negative control mice had a ˜0% survival rate, as did the positive control mice (heat-inactivated CHIKV) which died prior to CHIKV challenge. Some mice died during the vaccination period.


Example 13: Summary of Survival Data Using Chikungunya Antigen mRNA Vaccine Candidates CHIKV E1, CHIKV E2, and CHIKV C-E3-E2-6K-E1

Table 12 shows the survival data of the mice vaccinated with the CHIKV mRNA antigens used in the studies reported in Examples 10-12.









TABLE 12







Summary of Day 6 post-injection survival data












Dose 10
Dose 2




ug/mouse
ug/mouse


G#
Antigen/route/regime
(survival %)
(survival %)













1
Chik-E1-IM- single dose
0
0


2
Chik-E1-IM- two doses
60
0


3
Chik-E1-ID- single dose
0
0


4
Chik-E1-ID- two doses
80
0


5
Chik-E2-IM- single dose
0
0


6
Chik-E2-IM- two doses
100
80


7
Chik-E2-ID- single dose
0
0


8
Chik-E2-ID- two doses
100
100


9
Chik-E1-E2-E3-C-6KIM- single dose
100
100


10
Chik-E1-E2-E3-C-6KIM- two doses
100
100


11
Chik-E1-E2-E3-C-6KID- single dose
100
80


12
Chik-E1-E2-E3-C-6KID- two doses
100
100


13
HI CHIKV (+)
0
0


14
HI CHIKV (+)
0
0


15
Control (−)
0
0









Example 14: In Vitro Transfection of mRNA-Encoded Chikungunya Virus Envelope Protein

The in vitro transfection of mRNA encoding Notch and a PBS control were performed in 150 k HeLa cells/well transfected with 1 μg mRNA+2 μL LF2000/well in a 24 well plate. Lysate containing proteins expressed from the CHIKV envelope mRNAs transfected in HeLa cells were collected 16 hours post-transfection and then detected by Western blotting with a V5 tag-HRP antibody. The successful detection of a CHIKV envelope protein is shown in FIG. 3.


Example 15: Detection of Immunity (Mouse IgG) Against Either Chikungunya-Specific E1, Chikungunya-Specific E2, or Chikungunya-Specific E1 and E2 Proteins

Serum samples from mice vaccinated with the CHIKV E1, E2, or E1-E2-E3-C vaccine described in Examples 11-13 were tested using a semi-quantitative ELISA for the detection of mouse IgG against either Chikungunya-specific E1, Chikungunya-specific E2, or Chikungunya-specific E1 and E2 proteins.


Fifteen groups of five mice were vaccinated via intradermal (ID) or intramuscular (IM) injection with either 2 μg or 10 μg of the candidate vaccine. The vaccines were given to AG129 mice as single or two doses (second dose provided 28 days after the first dose). On day 56, mice were challenged with 1×104 PFU of CHIKV via ID injection in 50 μL volume and monitored for 10 days for weight loss, morbidity, and mortality. Mice were bled on day 7 and day 28 post-vaccination via the peri-orbital sinus (retro-orbital bleed). In addition, mice surviving the CHIKV challenge were bled 10 days post-challenge.


The individual samples were tested for reactivity in a semi-quantitative ELISA for mouse IgG against either Chikungunya-specific E1, Chikungunya-specific E2, or Chikungunya-specific E1 and E2 proteins. The results are shown in FIGS. 50-52.


The data depicting the results of the ELISA assay to identify the amount of antibodies produced in AG129 mice in response to vaccination with mRNA encoding secreted CHIKV E1 structural protein, secreted CHIKV E2 structural protein, or CHIKV full structural polyprotein C-E3-E2-6k-E1 at a dose of 10 μg or 2 μg at 28 days post immunization is shown in FIGS. 50-51. The 10 μg of mRNA encoding CHIKV polyprotein produced significant levels of antibody in both studies. The data depicting a comparison of ELISA titers from the data of FIG. 50 to survival in the data of FIG. 51 left panel is shown in FIG. 52. As shown in the survival results, the animals vaccinated with either dose (single or double administration) of mRNA encoding CHIKV polyprotein had 100% survival rates.


Example 16: Efficacy of Chikungunya Polyprotein (C-E3-E2-6K-E1) mRNA Vaccine Candidate

AG129 mice (n=5 per group) were vaccinated with either 10 μg, 2 μg or 0.4 μg of MC-3-LNP formulated mRNA encoded CHIKV polyprotein (C-E3-E2-6K-E1) (SEQ ID NO: 13). The mice were vaccinated on either Day 0 or Days 0 and 28 via IM delivery. In one study, all mice were challenged on day 56 with a lethal dose of CHIKV following final vaccination. In another study, all mice were challenged on day 84 with a lethal dose of CHIKV following final vaccination. The survival curve, percent weight loss, and health status of the mice vaccinated with 10 μg, 2 μg or 0.4 μg mRNA were determined as described previously in Examples 10-12. The survival rates, neutralizing antibodies and binding antibodies were assessed. Neutralizing antibodies were also identified against three different strains of CHIKV.


The survival rates of the mice vaccinated with mRNA encoding CHIKV C-E3-E2-6k-E1 is shown in FIG. 53. The data depicts vaccination at a dose of 10 μg (left panels), 2 μg (middle panels) or 0.4 μg (right panels) at 56 days (top panels) or 112 days (bottom panels) post immunization. These data demonstrate that a single 2 μg dose of the mRNA vaccine afforded 100% protection for at least 112 days (16 weeks.) Following 5 the study out further, the data demonstrated that a single 2 μg dose of the mRNA vaccine afforded 100% protection for at least 140 days (20 weeks.)


The neutralizing antibody and binding antibody produced in treated mice is shown in FIGS. 54 and 55 respectively. As can be seen in FIGS. 54 and 55, the levels of neutralizing Ab were dependent or dose and regimen with the highest titers evident with 10 μg dosed twice (days 0 and 28). Plaque reduction neutralization tests (PRNT50 and PRNT80) were used to quantify the titer of neutralizing antibody for the virus. Antigen binding Ab was determined by ELISA. The corresponding correlation between binding Ab and neutralizing antibodies is shown in the bottom panels of FIG. 55. Following the study out to 16 weeks showed that the highest E1 titers were achieved when 10 μg mRNA vaccine was dosed twice.


The data depicting neutralizing antibodies against three different strains of CHIKV is shown in FIG. 56. The neutralizing antibodies were tested against three different strains of CHIKV, African-Senegal (left panel), La Reunion (middle panel) and CDC CAR (right panel). FIG. 56 shows that the polyprotein-encoding mRNA vaccine elicited broadly neutralizing antibodies against the three strains tested. Sera were further tested against Chik S27 strain (Chikungunya virus (strain S27-African prototype). The data depicting neutralizing antibodies against CHIKV S27 strain is shown in FIG. 57. These data collectively show that the polyprotein encoding mRNA vaccine elicited broadly neutralizing antibodies against all four strains tested. The vaccine induced neutralizing antibodies against multiple strains of Chikungunya. The prime and boost with the 10 μg dose produced the most robust neutralizing antibody response followed by the single dose with 10 μg.


Example 17: Transfection of mRNA Encoded CHIKV Structural Proteins

In vitro transfection of mRNA encoding CHIKV structural proteins and PBS control were performed in 400 k HeLa cells transfected with 1.25 ug mRNA lipoplexed with 5 ul LF2000/well in 6 well plate. Protein detection in HeLa cell lysate 16 h post transfection was measured. Lysates which contain proteins expressed from the CHIKV mRNAs transfected in HeLa were collected 16 h post transfection. Proteins were detected by WB with anti Flag or and V5 antibody.



FIG. 12 show the results of the assay. mRNA encoded CHIKV structural proteins. Protein production in the HeLa cell lysate 16 h post transfection was detected.


Example 18: Exemplary Dengue Sequences

The following are nucleic acid (SEQ ID NO: 16, 18, 20, and 22) and amino acid (SEQ ID NO: 15, 17, 19, and 21) sequences for each of DEN-1, DEN-2, DEN-3, and DEN-4.









TABLE 13







DENV polynucleotide sequences and amino acid sequences











SEQ ID


Name
Sequence
NO





DEN-1
MNNQRKKTGRPSFNMLKRARNRVSTVSQLAKRFSKGLLSGQGPMKLVMAF
15


(NC_001477.1)
IAFLRFLAIPPTAGILARWGSFKKNGAIKVLRGFKKEISNMLNIMNRRKR



SVTMLLMLLPTALAFHLTTRGGEPHMIVSKQERGKSLLFKTSAGVNMCTL



IAMDLGELCEDTMTYKCPRITETEPDDVDCWCNATETWVTYGTCSQTGEH



RRDKRSVALAPHVGLGLE



TRTETWMSSEGAWKQIQKVETWALRHPGFTVIALFLAHAIGTSITQKGII



FILLMLVTPSMAMRCVGIGNRDFVEGLSGATWVDVVLEHGSCVTTMAKDK



PTLDIELLKTEVTNPAVLRKLCIEAKISNTTTDSRCPTQGEATLVEEQDT



NFVCRRTFVDRGWGNGCGLFGKGSLITCAKFKCVTKLEGKIVQYENLKYS



VIVTVHTGDQHQVGNETTEHGTTATITPQAPTSEIQLTDYGALTLDCSPR



TGLDFNEMVLLTMKKKSWLVHKQWFLDLPLPWTSGASTSQETWNRQDLLV



TFKTAHAKKQEVVVLGSQEGAMHTALTGATEIQTSGTTTIFAGHLKCRLK



MDKLILKGMSYVMCTGSFKLEKEVAETQHGTVLVQVKYEGTDAPCKIPFS



SQDEKGVTQNGRLITANPIVTDKEKPVNIEAEPPFGESYIVVGAGEKALK



LSWFKKGSSIGKMFEATARGARRMAILGDTAWDFGSIGGVFTSVGKLIHQ



IFGTAYGVLFSGVSWTMKIGIGILLTWLGLNSRSTSLSMTCIAVGMVTLY



LGVMVQADSGCVINWKGRELKCGSGIFVTNEVHTWTEQYKFQADSPKRLS



AAIGKAWEEGVCGIRSATRLENIMWKQISNELNHILLENDMKFTVVVGDV



SGILAQGKKMIRPQPMEHKYSWKSWGKAKIIGADVQNTTFIIDGPNTPEC



PDNQRAWNIWEVEDYGFGIFTTNIWLKLRDSYTQVCDHRLMSAAIKDSKA



VHADMGYWIESEKNETWKLARASFIEVKTCIWPKSHTLWSNGVLESEMII



PKIYGGPISQHNYRPGYFTQTAGPWHLGKLELDFDLCEGTTVVVDEHCGN



RGPSLRTTTVTGKTIHEWCCRSCTLPPLRFKGEDGCWYGMEIRPVKEKEE



NLVKSMVSAGSGEVDSFSLGLLCISIMIEEVMRSRWSRKMLMTGTLAVFL



LLTMGQLTWNDLIRLCIMVGANASDKMGMGTTYLALMATFRMRPMFAVGL



LFRRLTSREVLLLTVGLSLVASVELPNSLEELGDGLAMGIMMLKLLTDFQ



SHQLWATLLSLTFVKTTFSLHYAWKTMAMILSIVSLFPLCLSTTSQKTTW



LPVLLGSLGCKPLTMFLITENKIWGRKSWPLNEGIMAVGIVSILLSSLLK



NDVPLAGPLIAGGMLIACYVISGSSADLSLEKAAEVSWEEEAEHSGASHN



ILVEVQDDGTMKIKDEERDDTLTILLKATLLAISGVYPMSIPATLFVWYF



WQKKKQRSGVLWDTPSPPEVERAVLDDGIYRILQRGLLGRSQVGVGVFQE



GVFHTMWHVTRGAVLMYQGKRLEPSWASVKKDLISYGGGWRFQGSWNAGE



EVQVIAVEPGKNPKNVQTAPGTFKTPEGEVGAIALDFKPGTSGSPIVNRE



GKIVGLYGNGVVTTSGTYVSAIAQAKASQEGPLPEIEDEVFRKRNLTIMD



LHPGSGKTRRYLPAIVREAIKRKLRTLVLAPTRVVASEMAEALKGMPIRY



QTTAVKSEHTGKEIVDLMCHATFTMRLLSPVRVPNYNMIIMDEAHFTDPA



SIAARGYISTRVGMGEAAAIFMTATPPGSVEAFPQSIQDEERDIPERSWN



SGYDWITDFPGKTVWFVPSIKSGNDIANCLRKNGKRVVQLSRKTFDTEYQ



KTKNNDWDYVVTTDISEMGANFRADRVIDPRRCLKPVILKDGPERVILAG



PMPVTVASAAQRRGRIGRNQNKEGDQYIYMGQPLNNDEDHAHWTEAKMLL



DNINTPEGIIPALFEPEREKSAAIDGEYRLRGEARKTFVELMRRGDLPVW



LSYKVASEGFQYSDRRWCFDGERNNQVLEENMDVEIWTKEGERKKLRPRW



LDARTYSDPLALREFKEFAAGRRSVSGDLILEIGKLPQHLTQRAQNALDN



LVMLHNSEQGGKAYRHAMEELPDTIETLMLLALIAVLTGGVTLFFLSGRG



LGKTSIGLLCVIASSALLWMASVEPHWIAASIILEFFLMVLLIPEPDRQR



TPQDNQLAYVVIGLLFMILTVAANEMGLLETTKKDLGIGHAAAENHHHAA



MLDVDLHPASAWTLYAVATTIITPMMRHTIENTTANISLTAIANQAAILM



GLDKGWPISKMDIGVPLLALGCYSQVNPLTLTAAVLMLVAHYAIIGPGLQ



AKATREAQKRTAAGIMKNPTVDGIVAIDLDPVVYDAKFEKQLGQIMLLIL



CTSQILLMRTTWALCESITLATGPLTTLWEGSPGKFWNTTIAVSMANIFR



GSYLAGAGLAFSLMKSLGGGRRGTGAQGETLGEKWKRQLNQLSKSEFNTY



KRSGIIEVDRSEAKEGLKRGETTKHAVSRGTAKLRWFVERNLVKPEGKVI



DLGCGRGGWSYYCAGLKKVTEVKGYTKGGPGHEEPIPMATYGWNLVKLYS



GKDVFFTPPEKCDTLLCDIGESSPNPTIEEGRTLRVLKMVEPWLRGNQFC



IKILNPYMPSVVETLEQMQRKHGGMLVRNPLSRNSTHEMYWVSCGTGNIV



SAVNMTSRMLLNRFTMAHRKPTYERDVDLGAGTRHVAVEPEVANLDIIGQ



RIENIKNEHKSTWHYDEDNPYKTWAYHGSYEVKPSGSASSMVNGVVRLLT



KPWDVIPMVTQIAMTDTTPFGQQRVFKEKVDTRTPKAKRGTAQIMEVTAR



WLWGFLSRNKKPRICTREEFTRKVRSNAAIGAVFVDENQWNSAKEAVEDE



RFWDLVHRERELHKQGKCATCVYNMMGKREKKLGEFGKAKGSRAIWYMWL



GARFLEFEALGFMNEDHWFSRENSLSGVEGEGLHKLGYILRDISKIPGGN



MYADDTAGWDTRITEDDLQNEAKITDIMEPEHALLATSIFKLTYQNKVVR



VQRPAKNGTVMDVISRRDQRGSGQVGTYGLNTFTNMEAQLIRQMESEGIF



SPSELETPNLAERVLDWLKKHGTERLKRMAISGDDCVVKPIDDRFATALT



ALNDMGKVRKDIPQWEPSKGWNDWQQVPFCSHHFHQLIMKDGREIVVPCR



NQDELVGRARVSQGAGWSLRETACLGKSYAQMWQLMYFHRRDLRLAANAI



CSAVPVDWVPTSRTTWSIHAH



HQWMTTEDMLSVWNRVWIEENPWMEDKTHVSSWEDVPYLGKREDQWCGSL



IGLTARATWATNIQVAINQVRRLIGNENYLDFMTSMKRFKNESDPEGALW





DEN-1
agttgttagtctacgtggaccgacaagaacagtttcgaatcggaagcttg
16


(NC_001477.1)
cttaacgtagttctaacagttttttattagagagcagatctctgatgaac



aaccaacggaaaaagacgggtcgaccgtctttcaatatgctgaaacgcgc



gagaaaccgcgtgtcaactgtttcacagttggcgaagagattctcaaaag



gattgctttcaggccaaggacccatgaaattggtgatggcttttatagca



ttcctaagatttctagccatacctccaacagcaggaattttggctagatg



gggctcattcaagaagaatggagcgatcaaagtgttacggggtttcaaga



aagaaatctcaaacatgttgaacataatgaacaggaggaaaagatctgtg



accatgctcctcatgctgctgcccacagccctggcgttccatctgaccac



ccgagggggagagccgcacatgatagttagcaagcaggaaagaggaaaat



cacttttgtttaagacctctgcaggtgtcaacatgtgcacccttattgca



atggatttgggagagttatgtgaggacacaatgacctacaaatgcccccg



gatcactgagacggaaccagatgacgttgactgttggtgcaatgccacgg



agacatgggtgacctatggaacatgttctcaaactggtgaacaccgacga



gacaaacgttccgtcgcactggcaccacacgtagggcttggtctagaaac



aagaaccgaaacgtggatgtcctctgaaggcgcttggaaacaaatacaaa



aagtggagacctgggctctgagacacccaggattcacggtgatagccctt



tttctagcacatgccataggaacatccatcacccagaaagggatcatttt



tattttgctgatgctggtaactccatccatggccatgcggtgcgtgggaa



taggcaacagagacttcgtggaaggactgtcaggagctacgtgggtggat



gtggtactggagcatggaagttgcgtcactaccatggcaaaagacaaacc



aacactggacattgaactcttgaagacggaggtcacaaaccctgccgtcc



tgcgcaaactgtgcattgaagctaaaatatcaaacaccaccaccgattcg



agatgtccaacacaaggagaagccacgctggtggaagaacaggacacgaa



ctttgtgtgtcgacgaacgttcgtggacagaggctggggcaatggttgtg



ggctattcggaaaaggtagcttaataacgtgtgctaagtttaagtgtgtg



acaaaactggaaggaaagatagtccaatatgaaaacttaaaatattcagt



gatagtcaccgtacacactggagaccagcaccaagttggaaatgagacca



cagaacatggaacaactgcaaccataacacctcaagctcccacgtcggaa



atacagctgacagactacggagctctaacattggattgttcacctagaac



agggctagactttaatgagatggtgttgttgacaatgaaaaaaaaatcat



ggctcgtccacaaacaatggtttctagacttaccactgccttggacctcg



ggggcttcaacatcccaagagacttggaatagacaagacttgctggtcac



atttaagacagctcatgcaaaaaagcaggaagtagtcgtactaggatcac



aagaaggagcaatgcacactgcgttgactggagcgacagaaatccaaacg



tctggaacgacaacaatttttgcaggacacctgaaatgcagattaaaaat



ggataaactgattttaaaagggatgtcatatgtaatgtgcacagggtcat



tcaagttagagaaggaagtggctgagacccagcatggaactgttctagtg



caggttaaatacgaaggaacagatgcaccatgcaagatccccttctcgtc



ccaagatgagaagggagtaacccagaatgggagattgataacagccaacc



ccatagtcactgacaaagaaaaaccagtcaacattgaagcggagccacct



tttggtgagagctacattgtggtaggagcaggtgaaaaagctttgaaact



aagctggttcaagaagggaagcagtatagggaaaatgtttgaagcaactg



cccgtggagcacgaaggatggccatcctgggagacactgcatgggacttc



ggttctataggaggggtgttcacgtctgtgggaaaactgatacaccagat



ttttgggactgcgtatggagttttgttcagcggtgtttcttggaccatga



agataggaatagggattctgctgacatggctaggattaaactcaaggagc



acgtccctttcaatgacgtgtatcgcagttggcatggtcacactgtacct



aggagtcatggttcaggcggactcgggatgtgtaatcaactggaaaggca



gagaactcaaatgtggaagcggcatttttgtcaccaatgaagtccacacc



tggacagagcaatataaattccaggccgactcccctaagagactatcagc



ggccattgggaaggcatgggaggagggtgtgtgtggaattcgatcagcca



ctcgtctcgagaacatcatgtggaagcaaatatcaaatgaattaaaccac



atcttacttgaaaatgacatgaaatttacagtggtcgtaggagacgttag



tggaatcttggcccaaggaaagaaaatgattaggccacaacccatggaac



acaaatactcgtggaaaagctggggaaaagccaaaatcataggagcagat



gtacagaataccaccttcatcatcgacggcccaaacaccccagaatgccc



tgataaccaaagagcatggaacatttgggaagttgaagactatggatttg



gaattttcacgacaaacatatggttgaaattgcgtgactcctacactcaa



gtgtgtgaccaccggctaatgtcagctgccatcaaggatagcaaagcagt



ccatgctgacatggggtactggatagaaagtgaaaagaacgagacttgga



agttggcaagagcctccttcatagaagttaagacatgcatctggccaaaa



tcccacactctatggagcaatggagtcctggaaagtgagatgataatccc



aaagatatatggaggaccaatatctcagcacaactacagaccaggatatt



tcacacaaacagcagggccgtggcacttgggcaagttagaactagatttt



gatttatgtgaaggtaccactgttgttgtggatgaacattgtggaaatcg



aggaccatctcttagaaccacaacagtcacaggaaagacaatccatgaat



ggtgctgtagatcttgcacgttaccccccctacgtttcaaaggagaagac



gggtgctggtacggcatggaaatcagaccagtcaaggagaaggaagagaa



cctagttaagtcaatggtctctgcagggtcaggagaagtggacagttttt



cactaggactgctatgcatatcaataatgatcgaagaggtaatgagatcc



agatggagcagaaaaatgctgatgactggaacattggctgtgttcctcct



tctcacaatgggacaattgacatggaatgatctgatcaggctatgtatca



tggttggagccaacgcttcagacaagatggggatgggaacaacgtaccta



gctttgatggccactttcagaatgagaccaatgttcgcagtcgggctact



gtttcgcagattaacatctagagaagttcttcttcttacagttggattga



gtctggtggcatctgtagaactaccaaattccttagaggagctaggggat



ggacttgcaatgggcatcatgatgttgaaattactgactgattttcagtc



acatcagctatgggctaccttgctgtctttaacatttgtcaaaacaactt



tttcattgcactatgcatggaagacaatggctatgatactgtcaattgta



tctctcttccctttatgcctgtccacgacttctcaaaaaacaacatggct



tccggtgttgctgggatctcttggatgcaaaccactaaccatgtttctta



taacagaaaacaaaatctggggaaggaaaagctggcctctcaatgaagga



attatggctgttggaatagttagcattcttctaagttcacttctcaagaa



tgatgtgccactagctggcccactaatagctggaggcatgctaatagcat



gttatgtcatatctggaagctcggccgatttatcactggagaaagcggct



gaggtctcctgggaagaagaagcagaacactctggtgcctcacacaacat



actagtggaggtccaagatgatggaaccatgaagataaaggatgaagaga



gagatgacacactcaccattctcctcaaagcaactctgctagcaatctca



ggggtatacccaatgtcaataccggcgaccctctttgtgtggtatttttg



gcagaaaaagaaacagagatcaggagtgctatgggacacacccagccctc



cagaagtggaaagagcagtccttgatgatggcatttatagaattctccaa



agaggattgttgggcaggtctcaagtaggagtaggagtttttcaagaagg



cgtgttccacacaatgtggcacgtcaccaggggagctgtcctcatgtacc



aagggaagagactggaaccaagttgggccagtgtcaaaaaagacttgatc



tcatatggaggaggttggaggtttcaaggatcctggaacgcgggagaaga



agtgcaggtgattgctgttgaaccggggaagaaccccaaaaatgtacaga



cagcgccgggtaccttcaagacccctgaaggcgaagttggagccatagct



ctagactttaaacccggcacatctggatctcctatcgtgaacagagaggg



aaaaatagtaggtctttatggaaatggagtggtgacaacaagtggtacct



acgtcagtgccatagctcaagctaaagcatcacaagaagggcctctacca



gagattgaggacgaggtgtttaggaaaagaaacttaacaataatggacct



acatccaggatcgggaaaaacaagaagataccttccagccatagtccgtg



aggccataaaaagaaagctgcgcacgctagtcttagctcccacaagagtt



gtcgcttctgaaatggcagaggcgctcaagggaatgccaataaggtatca



gacaacagcagtgaagagtgaacacacgggaaaggagatagttgacctta



tgtgtcacgccactttcactatgcgtctcctgtctcctgtgagagttccc



aattataatatgattatcatggatgaagcacattttaccgatccagccag



catagcagccagagggtatatctcaacccgagtgggtatgggtgaagcag



ctgcgattttcatgacagccactccccccggatcggtggaggcctttcca



cagagcaatgcagttatccaagatgaggaaagagacattcctgaaagatc



atggaactcaggctatgactggatcactgatttcccaggtaaaacagtct



ggtttgttccaagcatcaaatcaggaaatgacattgccaactgtttaaga



aagaatgggaaacgggtggtccaattgagcagaaaaacttttgacactga



gtaccagaaaacaaaaaataacgactgggactatgttgtcacaacagaca



tatccgaaatgggagcaaacttccgagccgacagggtaatagacccgagg



cggtgcctgaaaccggtaatactaaaagatggcccagagcgtgtcattct



agccggaccgatgccagtgactgtggctagcgccgcccagaggagaggaa



gaattggaaggaaccaaaataaggaaggcgatcagtatatttacatggga



cagcctctaaacaatgatgaggaccacgcccattggacagaagcaaaaat



gctccttgacaacataaacacaccagaagggattatcccagccctctttg



agccggagagagaaaagagtgcagcaatagacggggaatacagactacgg



ggtgaagcgaggaaaacgttcgtggagctcatgagaagaggagatctacc



tgtctggctatcctacaaagttgcctcagaaggcttccagtactccgaca



gaaggtggtgctttgatggggaaaggaacaaccaggtgttggaggagaac



atggacgtggagatctggacaaaagaaggagaaagaaagaaactacgacc



ccgctggctggatgccagaacatactctgacccactggctctgcgcgaat



tcaaagagttcgcagcaggaagaagaagcgtctcaggtgacctaatatta



gaaatagggaaacttccacaacatttaacgcaaagggcccagaacgcctt



ggacaatctggttatgttgcacaactctgaacaaggaggaaaagcctata



gacacgccatggaagaactaccagacaccatagaaacgttaatgctccta



gctttgatagctgtgctgactggtggagtgacgttgttcttcctatcagg



aaggggtctaggaaaaacatccattggcctactctgcgtgattgcctcaa



gtgcactgttatggatggccagtgtggaaccccattggatagcggcctct



atcatactggagttctttctgatggtgttgcttattccagagccggacag



acagcgcactccacaagacaaccagctagcatacgtggtgataggtctgt



tattcatgatattgacagtggcagccaatgagatgggattactggaaacc



acaaagaaggacctggggattggtcatgcagctgctgaaaaccaccatca



tgctgcaatgctggacgtagacctacatccagcttcagcctggactctct



atgcagtggccacaacaattatcactcccatgatgagacacacaattgaa



aacacaacggcaaatatttccctgacagctattgcaaaccaggcagctat



attgatgggacttgacaagggatggccaatatcaaagatggacataggag



ttccacttctcgccttggggtgctattctcaggtgaacccgctgacgctg



acagcggcggtattgatgctagtggctcattatgccataattggacccgg



actgcaagcaaaagctactagagaagctcaaaaaaggacagcagccggaa



taatgaaaaacccaactgtcgacgggatcgttgcaatagatttggaccct



gtggtttacgatgcaaaatttgaaaaacagctaggccaaataatgttgtt



gatactttgcacatcacagatcctcctgatgcggaccacatgggccttgt



gtgaatccatcacactagccactggacctctgactacgctttgggaggga



tctccaggaaaattctggaacaccacgatagcggtgtccatggcaaacat



ttttaggggaagttatctagcaggagcaggtctggccttttcattaatga



aatctctaggaggaggtaggagaggcacgggagcccaaggggaaacactg



ggagaaaaatggaaaagacagctaaaccaattgagcaagtcagaattcaa



cacttacaaaaggagtgggattatagaggtggatagatctgaagccaaag



aggggttaaaaagaggagaaacgactaaacacgcagtgtcgagaggaacg



gccaaactgaggtggtttgtggagaggaaccttgtgaaaccagaagggaa



agtcatagacctcggttgtggaagaggtggctggtcatattattgcgctg



ggctgaagaaagtcacagaagtgaaaggatacacgaaaggaggacctgga



catgaggaaccaatcccaatggcaacctatggatggaacctagtaaagct



atactccgggaaagatgtattctttacaccacctgagaaatgtgacaccc



tcttgtgtgatattggtgagtcctctccgaacccaactatagaagaagga



agaacgttacgtgttctaaagatggtggaaccatggctcagaggaaacca



attttgcataaaaattctaaatccctatatgccgagtgtggtagaaactt



tggagcaaatgcaaagaaaacatggaggaatgctagtgcgaaatccactc



tcaagaaactccactcatgaaatgtactgggtttcatgtggaacaggaaa



cattgtgtcagcagtaaacatgacatctagaatgctgctaaatcgattca



caatggctcacaggaagccaacatatgaaagagacgtggacttaggcgct



ggaacaagacatgtggcagtagaaccagaggtggccaacctagatatcat



tggccagaggatagagaatataaaaaatgaacacaaatcaacatggcatt



atgatgaggacaatccatacaaaacatgggcctatcatggatcatatgag



gtcaagccatcaggatcagcctcatccatggtcaatggtgtggtgagact



gctaaccaaaccatgggatgtcattcccatggtcacacaaatagccatga



ctgacaccacaccctttggacaacagagggtgtttaaagagaaagttgac



acgcgtacaccaaaagcgaaacgaggcacagcacaaattatggaggtgac



agccaggtggttatggggttttctctctagaaacaaaaaacccagaatct



gcacaagagaggagttcacaagaaaagtcaggtcaaacgcagctattgga



gcagtgttcgttgatgaaaatcaatggaactcagcaaaagaggcagtgga



agatgaacggttctgggaccttgtgcacagagagagggagcttcataaac



aaggaaaatgtgccacgtgtgtctacaacatgatgggaaagagagagaaa



aaattaggagagttcggaaaggcaaaaggaagtcgcgcaatatggtacat



gtggttgggagcgcgctttttagagtttgaagcccttggtttcatgaatg



aagatcactggttcagcagagagaattcactcagtggagtggaaggagaa



ggactccacaaacttggatacatactcagagacatatcaaagattccagg



gggaaatatgtatgcagatgacacagccggatgggacacaagaataacag



aggatgatcttcagaatgaggccaaaatcactgacatcatggaacctgaa



catgccctattggccacgtcaatctttaagctaacctaccaaaacaaggt



agtaagggtgcagagaccagcgaaaaatggaaccgtgatggatgtcatat



ccagacgtgaccagagaggaagtggacaggttggaacctatggcttaaac



accttcaccaacatggaggcccaactaataagacaaatggagtctgaggg



aatcttttcacccagcgaattggaaaccccaaatctagccgaaagagtcc



tcgactggttgaaaaaacatggcaccgagaggctgaaaagaatggcaatc



agtggagatgactgtgtggtgaaaccaatcgatgacagatttgcaacagc



cttaacagctttgaatgacatgggaaaggtaagaaaagacataccgcaat



gggaaccttcaaaaggatggaatgattggcaacaagtgcctttctgttca



caccatttccaccagctgattatgaaggatgggagggagatagtggtgcc



atgccgcaaccaagatgaacttgtaggtagggccagagtatcacaaggcg



ccggatggagcttgagagaaactgcatgcctaggcaagtcatatgcacaa



atgtggcagctgatgtacttccacaggagagacttgagattagcggctaa



tgctatctgttcagccgttccagttgattgggtcccaaccagccgcacca



cctggtcgatccatgcccaccatcaatggatgacaacagaagacatgttg



tcagtgtggaatagggtttggatagaggaaaacccatggatggaggacaa



gactcatgtgtccagttgggaagacgttccatacctaggaaaaagggaag



atcaatggtgtggttccctaataggcttaacagcacgagccacctgggcc



accaacatacaagtggccataaaccaagtgagaaggctcattgggaatga



gaattatctagacttcatgacatcaatgaagagattcaaaaacgagagtg



atcccgaaggggcactctggtaagccaactcattcacaaaataaaggaaa



ataaaaaatcaaacaaggcaagaagtcaggccggattaagccatagcacg



gtaagagctatgctgcctgtgagccccgtccaaggacgtaaaatgaagtc



aggccgaaagccacggttcgagcaagccgtgctgcctgtagctccatcgt



ggggatgtaaaaacccgggaggctgcaaaccatggaagctgtacgcatgg



ggtagcagactagtggttagaggagacccctcccaagacacaacgcagca



gcggggcccaacaccaggggaagctgtaccctggtggtaaggactagagg



ttagaggagaccccccgcacaacaacaaacagcatattgacgctgggaga



gaccagagatcctgctgtctctacagcatcattccaggcacagaacgcca



aaaaatggaatggtgctgttgaatcaacaggttct





DEN-2
MNNQRKKAKNTPFNMLKRERNRVSTVQQLTKRFSLGMLQGRGPLKLFMAL
17


(NC_001474.2)
VAFLRFLTIPPTAGILKRWGTIKKSKAINVLRGFRKEIGRMLNILNRRRR



SAGMIIMLIPTVMAFHLTTRNGEPHMIVSRQEKGKSLLFKTEDGVNMCTL



MAMDLGELCEDTITYKCPLLRQNEPEDIDCWCNSTSTWVTYGTCTTMGEH



RREKRSVALVPHVGMGLETRTETWMSSEGAWKHVQRIETWILRHPGFTMM



AAILAYTIGTTHFQRALIFILLTAVTPSMTMRCIGMSNRDFVEGVSGGSW



VDIVLEHGSCVTTMAKNKPTLDFELIKTEAKQPATLRKYCIEAKLTNTTT



ESRCPTQGEPSLNEEQDKRFVCKHSMVDRGWGNGCGLFGKGGIVTCAMFR



CKKNMEGKVVQPENLEYTIVITPHSGEEHAVGNDTGKHGKEIKITPQSSI



TEAELTGYGTVTMECSPRTGLDFNEMVLLQMENKAWLVHRQWFLDLPLPW



LPGADTQGSNWIQKETLVTFKNPHAKKQDVVVLGSQEGAMHTALTGATEI



QMSSGNLLFTGHLKCRLRMDKLQLKGMSYSMCTGKFKVVKEIAETQHGTI



VIRVQYEGDGSPCKIPFEIMDLEKRHVLGRLITVNPIVTEKDSPVNIEAE



PPFGDSYIIIGVEPGQLKLNWFKKGSSIGQMFETTMRGAKRMAILGDTAW



DFGSLGGVFTSIGKALHQVFGAIYGAAFSGVSWTMKILIGVIITWIGMNS



RSTSLSVTLVLVGIVTLYLGVMVQADSGCVVSWKNKELKCGSGIFITDNV



HTWTEQYKFQPESPSKLASAIQKAHEEGICGIRSVTRLENLMWKQITPEL



NHILSENEVKLTIMTGDIKGIMQAGKRSLRPQPTELKYSWKTWGKAKMLS



TESHNQTFLIDGPETAECPNTNRAWNSLEVEDYGFGVFTTNIWLKLKEKQ



DVFCDSKLMSAAIKDNRAVHADMGYWIESALNDTWKIEKASFIEVKNCHW



PKSHTLWSNGVLESEMIIPKNLAGPVSQHNYRPGYHTQITGPWHLGKLEM



DFDFCDGTTVVVTEDCGNRGPSLRTTTASGKLITEWCCRSCTLPPLRYRG



EDGCWYGMEIRPLKEKEENLVNSLVTAGHGQVDNFSLGVLGMALFLEEML



RTRVGTKHAILLVAVSFVTLITGNMSFRDLGRVMVMVGATMTDDIGMGVT



YLALLAAFKVRPTFAAGLLLRKLTSKELMMTTIGIVLLSQSTIPETILEL



TDALALGMMVLKMVRNMEKYQLAVTIMAILCVPILQNAWKVSCTILAVVS



VSPLLLTSSQQKTDWIPLALTIKGLNPTAIFLTTLSRTSKKRSWPLNEAI



MAVGMVSILASSLLKNDIPMTGPLVAGGLLTVCYVLTGRSADLELERAAD



VKWEDQAEISGSSPILSITISEDGSMSIKNEEEEQTLTILIRTGLLVISG



LFPVSIPITAAAWYLWEVKKQRAGVLWDVPSPPPMGKAELEDGAYRIKQK



GILGYSQIGAGVYKEGTFHTMWHVTRGAVLMHKGKRIEPSWADVKKDLIS



YGGGWKLEGEWKEGEEVQVLALEPGKNPRAVQTKPGLFKTNAGTIGAVSL



DFSPGTSGSPIIDKKGKVVGLYGNGVVTRSGAYVSAIAQTEKSIEDNPEI



EDDIFRKRRLTIMDLHPGAGKTKRYLPAIVREAIKRGLRTLILAPTRVVA



AEMEEALRGLPIRYQTPAIRAEHTGREIVDLMCHATFTMRLLSPVRVPNY



NLIIMDEAHFTDPASIAARGYISTRVEMGEAAGIFMTATPPGSRDPFPQS



NAPIIDEEREIPERSWNSGHEWVTDFKGKTVWFVPSIKAGNDIAACLRKN



GKKVIQLSRKTFDSEYVKTRTNDWDFVVTTDISEMGANFKAERVIDPRRC



MKPVILTDGEERVILAGPMPVTHSSAAQRRGRIGRNPKNENDQYIYMGEP



LENDEDCAHWKEAKMLLDNINTPEGIIPSMFEPEREKVDAIDGEYRLRGE



ARKTFVDLMRRGDLPVWLAYRVAAEGINYADRRWCFDGVKNNQILEENVE



VEIWTKEGERKKLKPRWLDARIYSDPLALKEFKEFAAGRKSLTLNLITEM



GRLPTFMTQKARDALDNLAVLHTAEAGGRAYNHALSELPETLETLLLLTL



LATVTGGIFLFLMSGRGIGKMTLGMCCIITASILLWYAQIQPHWIAASII



LEFFLIVLLIPEPEKQRTPQDNQLTYVVIAILTVVAATMANEMGFLEKTK



KDLGLGSIATQQPESNILDIDLRPASAWTLYAVATTFVTPMLRHSIENSS



VNVSLTAIANQATVLMGLGKGWPLSKMDIGVPLLAIGCYSQVNPITLTAA



LFLLVAHYAIIGPGLQAKATREAQKRAAAGIMKNPTVDGITVIDLDPIPY



DPKFEKQLGQVMLLVLCVTQVLMMRTTWALCEALTLATGPISTLWEGNPG



RFWNTTIAVSMANIFRGSYLAGAGLLFSIMKNTTNTRRGTGNIGETLGEK



WKSRLNALGKSEFQIYKKSGIQEVDRTLAKEGIKR



GETDHHAVSRGSAKLRWFVERNMVTPEGKVVDLGCGRGGWSYYCGGLKNV



REVKGLTKGGPGHEEPIPMSTYGWNLVRLQSGVDVFFIPPEKCDTLLCDI



GESSPNPTVEAGRTLRVLNLVENWLNNNTQFCIKVLNPYMPSVIEKMEAL



QRKYGGALVRNPLSRNSTHEMYWVSNASGNIVSSVNMISRMLINRFTMRY



KKATYEPDVDLGSGTRNIGIESEIPNLDIIGKRIEKIKQEHETSWHYDQD



HPYKTWAYHGSYETKQTGSASSMVNGVVRLLTKPWDVVPMVTQMAMTDTT



PFGQQRVFKEKVDTRTQEPKEGTKKLMKITAEWLWKELGKKKTPRMCTRE



EFTRKVRSNAALGAIFTDENKWKSAREAVEDSRFWELVDKERNLHLEGKC



ETCVYNMMGKREKKLGEFGKAKGSRAIWYMWLGARFLEFEALGFLNEDHW



FSRENSLSGVEGEGLHKLGYILRDVSKKEGGAMYADDTAGWDTRITLEDL



KNEEMVTNHMEGEHKKLAEAIFKLTYQNKVVRVQRPTPRGTVMDIISRRD



QRGSGQVGTYGLNTFTNMEAQLIRQMEGEGVFKSIQHLTITEEIAVQNWL



ARVGRERLSRMAISGDDCVVKPLDDRFASALTALNDMGKIRKDIQQWEPS



RGWNDWTQVPFCSHHFHELIMKDGRVLVVPCRNQDELIGRARISQGAGWS



LRETACLGKSYAQMWSLMYFHRRDLRLAANAICSAVPSHWVPTSRTTWSI



HAKHEWMTTEDMLTVWNRVWIQENPWMEDKTPVESWEEIPYLGKREDQWC



GSLIGLTSRATWAKNIQAAINQVRSLIGNEEYTDYMPSMKRFRREEEEAG



VLW





DEN-2
agttgttagtctacgtggaccgacaaagacagattctttgagggagctaa
18


(NC_001474.2)
gctcaacgtagttctaacagttttttaattagagagcagatctctgatga



ataaccaacggaaaaaggcgaaaaacacgcctttcaatatgctgaaacgc



gagagaaaccgcgtgtcgactgtgcaacagctgacaaagagattctcact



tggaatgctgcagggacgaggaccattaaaactgttcatggccctggtgg



cgttccttcgtttcctaacaatcccaccaacagcagggatattgaagaga



tggggaacaattaaaaaatcaaaagctattaatgttttgagagggttcag



gaaagagattggaaggatgctgaacatcttgaataggagacgcagatctg



caggcatgatcattatgctgattccaacagtgatggcgttccatttaacc



acacgtaacggagaaccacacatgatcgtcagcagacaagagaaagggaa



aagtcttctgtttaaaacagaggatggcgtgaacatgtgtaccctcatgg



ccatggaccttggtgaattgtgtgaagacacaatcacgtacaagtgtccc



cttctcaggcagaatgagccagaagacatagactgttggtgcaactctac



gtccacgtgggtaacttatgggacgtgtaccaccatgggagaacatagaa



gagaaaaaagatcagtggcactcgttccacatgtgggaatgggactggag



acacgaactgaaacatggatgtcatcagaaggggcctggaaacatgtcca



gagaattgaaacttggatcttgagacatccaggcttcaccatgatggcag



caatcctggcatacaccataggaacgacacatttccaaagagccctgatt



ttcatcttactgacagctgtcactccttcaatgacaatgcgttgcatagg



aatgtcaaatagagactttgtggaaggggtttcaggaggaagctgggttg



acatagtcttagaacatggaagctgtgtgacgacgatggcaaaaaacaaa



ccaacattggattttgaactgataaaaacagaagccaaacagcctgccac



cctaaggaagtactgtatagaggcaaagctaaccaacacaacaacagaat



ctcgctgcccaacacaaggggaacccagcctaaatgaagagcaggacaaa



aggttcgtctgcaaacactccatggtagacagaggatggggaaatggatg



tggactatttggaaagggaggcattgtgacctgtgctatgttcagatgca



aaaagaacatggaaggaaaagttgtgcaaccagaaaacttggaatacacc



attgtgataacacctcactcaggggaagagcatgcagtcggaaatgacac



aggaaaacatggcaaggaaatcaaaataacaccacagagttccatcacag



aagcagaattgacaggttatggcactgtcacaatggagtgctctccaaga



acgggcctcgacttcaatgagatggtgttgctgcagatggaaaataaagc



ttggctggtgcacaggcaatggttcctagacctgccgttaccatggttgc



ccggagcggacacacaagggtcaaattggatacagaaagagacattggtc



actttcaaaaatccccatgcgaagaaacaggatgttgttgttttaggatc



ccaagaaggggccatgcacacagcacttacaggggccacagaaatccaaa



tgtcatcaggaaacttactcttcacaggacatctcaagtgcaggctgaga



atggacaagctacagctcaaaggaatgtcatactctatgtgcacaggaaa



gtttaaagttgtgaaggaaatagcagaaacacaacatggaacaatagtta



tcagagtgcaatatgaaggggacggctctccatgcaagatcccttttgag



ataatggatttggaaaaaagacatgtcttaggtcgcctgattacagtcaa



cccaattgtgacagaaaaagatagcccagtcaacatagaagcagaacctc



cattcggagacagctacatcatcataggagtagagccgggacaactgaag



ctcaactggtttaagaaaggaagttctatcggccaaatgtttgagacaac



aatgaggggggcgaagagaatggccattttaggtgacacagcctgggatt



ttggatccttgggaggagtgtttacatctataggaaaggctctccaccaa



gtctttggagcaatctatggagctgccttcagtggggtttcatggactat



gaaaatcctcataggagtcattatcacatggataggaatgaattcacgca



gcacctcactgtctgtgacactagtattggtgggaattgtgacactgtat



ttgggagtcatggtgcaggccgatagtggttgcgttgtgagctggaaaaa



caaagaactgaaatgtggcagtgggattttcatcacagacaacgtgcaca



catggacagaacaatacaagttccaaccagaatccccttcaaaactagct



tcagctatccagaaagcccatgaagagggcatttgtggaatccgctcagt



aacaagactggagaatctgatgtggaaacaaataacaccagaattgaatc



acattctatcagaaaatgaggtgaagttaactattatgacaggagacatc



aaaggaatcatgcaggcaggaaaacgatctctgcggcctcagcccactga



gctgaagtattcatggaaaacatggggcaaagcaaaaatgctctctacag



agtctcataaccagacctttctcattgatggccccgaaacagcagaatgc



cccaacacaaatagagcttggaattcgttggaagttgaagactatggctt



tggagtattcaccaccaatatatggctaaaattgaaagaaaaacaggatg



tattctgcgactcaaaactcatgtcagcggccataaaagacaacagagcc



gtccatgccgatatgggttattggatagaaagtgcactcaatgacacatg



gaagatagagaaagcctctttcattgaagttaaaaactgccactggccaa



aatcacacaccctctggagcaatggagtgctagaaagtgagatgataatt



ccaaagaatctcgctggaccagtgtctcaacacaactatagaccaggcta



ccatacacaaataacaggaccatggcatctaggtaagcttgagatggact



ttgatttctgtgatggaacaacagtggtagtgactgaggactgcggaaat



agaggaccctctttgagaacaaccactgcctctggaaaactcataacaga



atggtgctgccgatcttgcacattaccaccgctaagatacagaggtgagg



atgggtgctggtacgggatggaaatcagaccattgaaggagaaagaagag



aatttggtcaactccttggtcacagctggacatgggcaggtcgacaactt



ttcactaggagtcttgggaatggcattgttcctggaggaaatgcttagga



cccgagtaggaacgaaacatgcaatactactagttgcagtttcttttgtg



acattgatcacagggaacatgtcctttagagacctgggaagagtgatggt



tatggtaggcgccactatgacggatgacataggtatgggcgtgacttatc



ttgccctactagcagccttcaaagtcagaccaacttttgcagctggacta



ctcttgagaaagctgacctccaaggaattgatgatgactactataggaat



tgtactcctctcccagagcaccataccagagaccattcttgagttgactg



atgcgttagccttaggcatgatggtcctcaaaatggtgagaaatatggaa



aagtatcaattggcagtgactatcatggctatcttgtgcgtcccaaacgc



agtgatattacaaaacgcatggaaagtgagttgcacaatattggcagtgg



tgtccgtttccccactgctcttaacatcctcacagcaaaaaacagattgg



ataccattagcattgacgatcaaaggtctcaatccaacagctatttttct



aacaaccctctcaagaaccagcaagaaaaggagctggccattaaatgagg



ctatcatggcagtcgggatggtgagcattttagccagttctctcctaaaa



aatgatattcccatgacaggaccattagtggctggagggctcctcactgt



gtgctacgtgctcactggacgatcggccgatttggaactggagagagcag



ccgatgtcaaatgggaagaccaggcagagatatcaggaagcagtccaatc



ctgtcaataacaatatcagaagatggtagcatgtcgataaaaaatgaaga



ggaagaacaaacactgaccatactcattagaacaggattgctggtgatct



caggactttttcctgtatcaataccaatcacggcagcagcatggtacctg



tgggaagtgaagaaacaacgggccggagtattgtgggatgttccttcacc



cccacccatgggaaaggctgaactggaagatggagcctatagaattaagc



aaaaagggattcttggatattcccagatcggagccggagtttacaaagaa



ggaacattccatacaatgtggcatgtcacacgtggcgctgttctaatgca



taaaggaaagaggattgaaccatcatgggcggacgtcaagaaagacctaa



tatcatatggaggaggctggaagttagaaggagaatggaaggaaggagaa



gaagtccaggtattggcactggagcctggaaaaaatccaagagccgtcca



aacgaaacctggtcttttcaaaaccaacgccggaacaataggtgctgtat



ctctggacttttctcctggaacgtcaggatctccaattatcgacaaaaaa



ggaaaagttgtgggtctttatggtaatggtgttgttacaaggagtggagc



atatgtgagtgctatagcccagactgaaaaaagcattgaagacaacccag



agatcgaagatgacattttccgaaagagaagactgaccatcatggacctc



cacccaggagcgggaaagacgaagagataccttccggccatagtcagaga



agctataaaacggggtttgagaacattaatcttggcccccactagagttg



tggcagctgaaatggaggaagcccttagaggacttccaataagataccag



accccagccatcagagctgagcacaccgggcgggagattgtggacctaat



gtgtcatgccacatttaccatgaggctgctatcaccagttagagtgccaa



actacaacctgattatcatggacgaagcccatttcacagacccagcaagt



atagcagctagaggatacatctcaactcgagtggagatgggtgaggcagc



tgggatttttatgacagccactcccccgggaagcagagacccatttcctc



agagcaatgcaccaatcatagatgaagaaagagaaatccctgaacgttcg



tggaattccggacatgaatgggtcacggattttaaagggaagactgtttg



gttcgttccaagtataaaagcaggaaatgatatagcagcttgcctgagga



aaaatggaaagaaagtgatacaactcagtaggaagacctttgattctgag



tatgtcaagactagaaccaatgattgggacttcgtggttacaactgacat



ttcagaaatgggtgccaatttcaaggctgagagggttatagaccccagac



gctgcatgaaaccagtcatactaacagatggtgaagagcgggtgattctg



gcaggacctatgccagtgacccactctagtgcagcacaaagaagagggag



aataggaagaaatccaaaaaatgagaatgaccagtacatatacatggggg



aacctctggaaaatgatgaagactgtgcacactggaaagaagctaaaatg



ctcctagataacatcaacacgccagaaggaatcattcctagcatgttcga



accagagcgtgaaaaggtggatgccattgatggcgaataccgcttgagag



gagaagcaaggaaaacctttgtagacttaatgagaagaggagacctacca



gtctggttggcctacagagtggcagctgaaggcatcaactacgcagacag



aaggtggtgttttgatggagtcaagaacaaccaaatcctagaagaaaacg



tggaagttgaaatctggacaaaagaaggggaaaggaagaaattgaaaccc



agatggttggatgctaggatctattctgacccactggcgctaaaagaatt



taaggaatttgcagccggaagaaagtctctgaccctgaacctaatcacag



aaatgggtaggctcccaaccttcatgactcagaaggcaagagacgcactg



gacaacttagcagtgctgcacacggctgaggcaggtggaagggcgtacaa



ccatgctctcagtgaactgccggagaccctggagacattgcttttactga



cacttctggctacagtcacgggagggatctttttattcttgatgagcgga



aggggcatagggaagatgaccctgggaatgtgctgcataatcacggctag



catcctcctatggtacgcacaaatacagccacactggatagcagcttcaa



taatactggagttttttctcatagttttgcttattccagaacctgaaaaa



cagagaacaccccaagacaaccaactgacctacgttgtcatagccatcct



cacagtggtggccgcaaccatggcaaacgagatgggtttcctagaaaaaa



cgaagaaagatctcggattgggaagcattgcaacccagcaacccgagagc



aacatcctggacatagatctacgtcctgcatcagcatggacgctgtatgc



cgtggccacaacatttgttacaccaatgttgagacatagcattgaaaatt



cctcagtgaatgtgtccctaacagctatagccaaccaagccacagtgtta



atgggtctcgggaaaggatggccattgtcaaagatggacatcggagttcc



ccttctcgccattggatgctactcacaagtcaaccccataactctcacag



cagctcttttcttattggtagcacattatgccatcatagggccaggactc



caagcaaaagcaaccagagaagctcagaaaagagcagcggcgggcatcat



gaaaaacccaactgtcgatggaataacagtgattgacctagatccaatac



cttatgatccaaagtttgaaaagcagttgggacaagtaatgctcctagtc



ctctgcgtgactcaagtattgatgatgaggactacatgggctctgtgtga



ggctttaaccttagctaccgggcccatctccacattgtgggaaggaaatc



cagggaggttttggaacactaccattgcggtgtcaatggctaacattttt



agagggagttacttggccggagctggacttctcttttctattatgaagaa



cacaaccaacacaagaaggggaactggcaacataggagagacgcttggag



agaaatggaaaagccgattgaacgcattgggaaaaagtgaattccagatc



tacaagaaaagtggaatccaggaagtggatagaaccttagcaaaagaagg



cattaaaagaggagaaacggaccatcacgctgtgtcgcgaggctcagcaa



aactgagatggttcgttgagagaaacatggtcacaccagaagggaaagta



gtggacctcggttgtggcagaggaggctggtcatactattgtggaggact



aaagaatgtaagagaagtcaaaggcctaacaaaaggaggaccaggacacg



aagaacccatccccatgtcaacatatgggtggaatctagtgcgtcttcaa



agtggagttgacgttttcttcatcccgccagaaaagtgtgacacattatt



gtgtgacataggggagtcatcaccaaatcccacagtggaagcaggacgaa



cactcagagtccttaacttagtagaaaattggttgaacaacaacactcaa



ttttgcataaaggttctcaacccatatatgccctcagtcatagaaaaaat



ggaagcactacaaaggaaatatggaggagccttagtgaggaatccactct



cacgaaactccacacatgagatgtactgggtatccaatgcttccgggaac



atagtgtcatcagtgaacatgatttcaaggatgttgatcaacagatttac



aatgagatacaagaaagccacttacgagccggatgttgacctcggaagcg



gaacccgtaacatcgggattgaaagtgagataccaaacctagatataatt



gggaaaagaatagaaaaaataaagcaagagcatgaaacatcatggcacta



tgaccaagaccacccatacaaaacgtgggcataccatggtagctatgaaa



caaaacagactggatcagcatcatccatggtcaacggagtggtcaggctg



ctgacaaaaccttgggacgtcgtccccatggtgacacagatggcaatgac



agacacgactccatttggacaacagcgcgtttttaaagagaaagtggaca



cgagaacccaagaaccgaaagaaggcacgaagaaactaatgaaaataaca



gcagagtggctttggaaagaattagggaagaaaaagacacccaggatgtg



caccagagaagaattcacaagaaaggtgagaagcaatgcagccttggggg



ccatattcactgatgagaacaagtggaagtcggcacgtgaggctgttgaa



gatagtaggttttgggagctggttgacaaggaaaggaatctccatcttga



aggaaagtgtgaaacatgtgtgtacaacatgatgggaaaaagagagaaga



agctaggggaattcggcaaggcaaaaggcagcagagccatatggtacatg



tggcttggagcacgcttcttagagtttgaagccctaggattcttaaatga



agatcactggttctccagagagaactccctgagtggagtggaaggagaag



ggctgcacaagctaggttacattctaagagacgtgagcaagaaagaggga



ggagcaatgtatgccgatgacaccgcaggatgggatacaagaatcacact



agaagacctaaaaaatgaagaaatggtaacaaaccacatggaaggagaac



acaagaaactagccgaggccattttcaaactaacgtaccaaaacaaggtg



gtgcgtgtgcaaagaccaacaccaagaggcacagtaatggacatcatatc



gagaagagaccaaagaggtagtggacaagttggcacctatggactcaata



ctttcaccaatatggaagcccaactaatcagacagatggagggagaagga



gtctttaaaagcattcagcacctaacaatcacagaagaaatcgctgtgca



aaactggttagcaagagtggggcgcgaaaggttatcaagaatggccatca



gtggagatgattgtgttgtgaaacctttagatgacaggttcgcaagcgct



ttaacagctctaaatgacatgggaaagattaggaaagacatacaacaatg



ggaaccttcaagaggatggaatgattggacacaagtgcccttctgttcac



accatttccatgagttaatcatgaaagacggtcgcgtactcgttgttcca



tgtagaaaccaagatgaactgattggcagagcccgaatctcccaaggagc



agggtggtctttgcgggagacggcctgtttggggaagtcttacgcccaaa



tgtggagcttgatgtacttccacagacgcgacctcaggctggcggcaaat



gctatttgctcggcagtaccatcacattgggttccaacaagtcgaacaac



ctggtccatacatgctaaacatgaatggatgacaacggaagacatgctga



cagtctggaacagggtgtggattcaagaaaacccatggatggaagacaaa



actccagtggaatcatgggaggaaatcccatacttggggaaaagagaaga



ccaatggtgcggctcattgattgggttaacaagcagggccacctgggcaa



agaacatccaagcagcaataaatcaagttagatcccttataggcaatgaa



gaatacacagattacatgccatccatgaaaagattcagaagagaagagga



agaagcaggagttctgtggtagaaagcaaaactaacatgaaacaaggcta



gaagtcaggtcggattaagccatagtacggaaaaaactatgctacctgtg



agccccgtccaaggacgttaaaagaagtcaggccatcataaatgccatag



cttgagtaaactatgcagcctgtagctccacctgagaaggtgtaaaaaat



ccgggaggccacaaaccatggaagctgtacgcatggcgtagtggactagc



ggttagaggagacccctcccttacaaatcgcagcaacaatgggggcccaa



ggcgagatgaagctgtagtctcgctggaaggactagaggttagaggagac



ccccccgaaacaaaaaacagcatattgacgctgggaaagaccagagatcc



tgctgtctcctcagcatcattccaggcacagaacgccagaaaatggaatg



gtgctgttgaatcaacaggttct





DEN-3
MNNQRKKTGKPSINMLKRVRNRVSTGSQLAKRFSKGLLNGQGPMKLVMAF
19


(NC_001475.2)
IAFLRFLAIPPTAGVLARWGTFKKSGAIKVLKGFKKEISNMLSIINQRKK



TSLCLMMILPAALAFHLTSRDGEPRMIVGKNERGKSLLFKTASGINMCTL



IAMDLGEMCDDTVTYKCPHITEVEPEDIDCWCNLTSTWVTYGTCNQAGEH



RRDKRSVALAPHVGMGLDTRTQTWMSAEGAWRQVEKVETWALRHPGFTIL



ALFLAHYIGTSLTQKVVIFILLMLVTPSMTMRCVGVGNRDFVEGLSGATW



VDVVLEHGGCVTTMAKNKPTLDIELQKTEATQLATLRKLCIEGKITNITT



DSRCPTQGEAVLPEEQDQNYVCKHTYVDRGWGNGCGLFGKGSLVTCAKFQ



CLEPIEGKVVQYENLKYTVIITVHTGDQHQVGNETQGVTAEITPQASTTE



AILPEYGTLGLECSPRTGLDFNEMILLTMKNKAWMVHRQWFFDLPLPWAS



GATTETPTWNRKELLVTFKNAHAKKQEVVVLGSQEGAMHTALTGATEIQN



SGGTSIFAGHLKCRLKMDKLELKGMSYAMCTNTFVLKKEVSETQHGTILI



KVEYKGEDAPCKIPFSTEDGQGKAHNGRLITANPVVTKKEEPVNIEAEPP



FGESNIVIGIGDNALKINWYKKGSSIGKMFEATERGARRMAILGDTAWDF



GSVGGVLNSLGKMVHQIFGSAYTALFSGVSWVMKIGIGVLLTWIGLNSKN



TSMSFSCIAIGIITLYLGAVVQADMGCVINWKGKELKCGSGIFVTNEVHT



WTEQYKFQADSPKRLATAIAGAWENGVCGIRSTTRMENLLWKQIANELNY



ILWENNIKLTVVVGDTLGVLEQGKRTLTPQPMELKYSWKTWGKAKIVTAE



TQNSSFIIDGPNTPECPSASRAWNVWEVEDYGFGVFTTNIWLKLREVYTQ



LCDHRLMSAAVKDERAVHADMGYWIESQKNGSWKLEKASLIEVKTCTWPK



SHTLWTNGVLESDMIIPKSLAGPISQHNYRPGYHTQTAGPWHLGKLELDF



NYCEGTTVVITESCGTRGPSLRTTTVSGKLIHEWCCRSCTLPPLRYMGED



GCWYGMEIRPISEKEENMVKSLVSAGSGKVDNFTMGVLCLAILFEEVLRG



KFGKKHMIAGVFFTFVLLLSGQITWRDMAHTLIMIGSNASDRMGMGVTYL



ALIATFKIQPFLALGFFLRKLTSRENLLLGVGLAMATTLQLPEDIEQMAN



GVALGLMALKLITQFETYQLWTALVSLTCSNTIFTLTVAWRTATLILAGV



SLLPVCQSSSMRKTDWLPMTVAAMGVPPLPLFIFSLKDTLKRRSWPLNEG



VMAVGLVSILASSLLRNDVPMAGPLVAGGLLIACYVITGTSADLTVEKAP



DVTWEEEAEQTGVSHNLMITVDDDGTMRIKDDETENILTVLLKTALLIVS



GIFPYSIPATLLVWHTWQKQTQRSGVLWDVPSPPETQKAELEEGVYRIKQ



QGIFGKTQVGVGVQKEGVFHTMWHVTRGAVLTHNGKRLEPNWASVKKDLI



SYGGGWRLSAQWQKGEEVQVIAVEPGKNPKNFQTTPGTFQTTTGEIGAIA



LDFKPGTSGSPIINREGKVVGLYGNGVVTKNGGYVSGIAQTNAEPDGPTP



ELEEEMFKKRNLTIMDLHPGSGKTRKYLPAIVREAIKRRLRTLILAPTRV



VAAEMEEALKGLPIRYQTTATKSEHTGREIVDLMCHATFTMRLLSPVRVP



NYNLIIMDEAHFTDPASIAARGYISTRVGMGEAAAIFMTATPPGTADAFP



QSNAPIQDEERDIPERSWNSGNEWITDFAGKTVWFVPSIKAGNDIANCLR



KNGKKVIQLSRKTFDTEYQKTKLNDWDFVVTTDISEMGANFKADRVIDPR



RCLKPVILTDGPERVILAGPMPVTAASAAQRRGRVGRNPQKENDQYIFTG



QPLNNDEDHAHWTEAKMLLDNINTPEGIIPALFEPEREKSAAIDGEYRLK



GESRKTFVELMRRGDLPVWLAHKVASEGIKYTDRKWCFDGQRNNQILEEN



MDVEIWTKEGEKKKLRPRWLDARTYSDPLALKEFKDFAAGRKSIALDLVT



EIGRVPSHLAHRTRNALDNLVMLHTSEDGGRAYRHAVEELPETMETLLLL



GLMILLTGGAMLFLISGKGIGKTSIGLICVIASSGMLWMAEVPLQWIASA



IVLEFFMMVLLIPEPEKQRTPQDNQLAYVVIGILTLAATIAANEMGLLET



TKRDLGMSKEPGVVSPTSYLDVDLHPASAWTLYAVATTVITPMLRHTIEN



STANVSLAAIANQAVVLMGLDKGWPISKMDLGVPLLALGCYSQVNPLTLT



AAVLLLITHYAIIGPGLQAKATREAQKRTAAGIMKNPTVDGIMTIDLDSV



IFDSKFEKQLGQVMLLVLCAVQLLLMRTSWALCEALTLATGPITTLWEGS



PGKFWNTTIAVSMANIFRGSYLAGAGLAFSIMKSVGTGKRGTGSQGETLG



EKWKKKLNQLSRKEFDLYKKSGITEVDRTEAKEGLKRGETTHHAVSRGSA



KLQWFVERNMVVPEGRVIDLGCGRGGWSYYCAGLKKVTEVRGYTKGGPGH



EEPVPMSTYGWNIVKLMSGKDVFYLPPEKCDTLLCDIGESSPSPTVEESR



TIRVLKMVEPWLKNNQFCIKVLNPYMPTVIEHLERLQRKHGGMLVRNPLS



RNSTHEMYWISNGTGNIVSSVNMVSRLLLNRFTMTHRRPTIEKDVDLGAG



TRHVNAEPETPNMDVIGERIKRIKEEHNSTWHYDDENPYKTWAYHGSYEV



KATGSASSMINGVVKLLTKPWDVVPMVTQMAMTDTTPFGQQRVFKEKVDT



RTPRPMPGTRKAMEITAEWLWRTLGRNKRPRLCTREEFTKKVRTNAAMGA



VFTEENQWDSAKAAVEDEEFWKLVDRERELHKLGKCGSCVYNMMGKREKK



LGEFGKAKGSRAIWYMWLGARYLEFEALGFLNEDHWFSRENSYSGVEGEG



LH



KLGYILRDISKIPGGAMYADDTAGWDTRITEDDLHNEEKIIQQMDPEHRQ



LANAIFKLTYQNKVVKVQRPTPTGTVMDIISRKDQRGSGQLGTYGLNTFT



NMEAQLVRQMEGEGVLTKADLENPHLLEKKITQWLETKGVERLKRMAISG



DDCVVKPIDDRFANALLALNDMGKVRKDIPQWQPSKGWHDWQQVPFCSHH



FHELIMKDGRKLVVPCRPQDELIGRARISQGAGWSLRETACLGKAYAQMW



SLMYFHRRDLRLASNAICSAVPVHWVPTSRTTWSIHAHHQWMTTEDMLTV



WNRVWIEENPWMEDKTPVTTWENVPYLGKREDQWCGSLIGLTSRATWAQN



IPTAIQQVRSLIGNEEFLDYMPSMKRFRKEEESEGAIW





DEN-3
agttgttagtctacgtggaccgacaagaacagtttcgactcggaagcttg
20


(NC_001475.2)
cttaacgtagtgctgacagttttttattagagagcagatctctgatgaac



aaccaacggaagaagacgggaaaaccgtctatcaatatgctgaaacgcgt



gagaaaccgtgtgtcaactggatcacagttggcgaagagattctcaaaag



gactgctgaacggccagggaccaatgaaattggttatggcgttcatagct



ttcctcagatttctagccattccaccaacagcaggagtcttggctagatg



gggaaccttcaagaagtcgggggccattaaggtcctgaaaggcttcaaga



aggagatctcaaacatgctgagcataatcaaccaacggaaaaagacatcg



ctctgtctcatgatgatattgccagcagcacttgctttccacttgacttc



acgagatggagagccgcgcatgattgtggggaagaatgaaagaggtaaat



ccctactttttaagacagcctctggaatcaacatgtgcacactcatagcc



atggatttgggagagatgtgtgatgacacggtcacttacaaatgccccca



cattaccgaagtggaacctgaagacattgactgctggtgcaaccttacat



caacatgggtgacttatggaacgtgcaatcaagctggagagcatagacgc



gacaagagatcagtggcgttagctccccatgtcggcatgggactggacac



acgcacccaaacctggatgtcggctgaaggagcttggagacaagtcgaga



aggtagagacatgggcccttaggcacccagggttcaccatactagcccta



tttctcgcccattacataggcacttccctgacccagaaggtggttatttt



catattattaatgctggtcaccccatccatgacaatgagatgtgtgggag



taggaaacagagattttgtggaagggctatcaggagctacgtgggttgac



gtggtgctcgagcacggggggtgtgtgactaccatggctaagaacaagcc



cacgctggatatagagcttcagaagaccgaggccacccaactggcgaccc



taaggaagctatgcattgaggggaaaattaccaacataacaactgactca



agatgtcctacccaaggggaagcggttttgcctgaggagcaggaccagaa



ctacgtgtgtaagcatacatacgtagacagaggttgggggaacggttgtg



gtttgtttggcaaaggaagcttggtaacatgtgcgaaatttcaatgcctg



gaaccaatagagggaaaagtggtgcaatatgagaacctcaaatacaccgt



catcattacagtgcacacaggagaccaacaccaggtgggaaatgaaacgc



aaggagtcacggctgagataacacctcaggcatcaaccactgaagccatc



ttgcctgaatatggaacccttgggctagaatgctcaccacggacaggttt



ggatttcaatgaaatgatcttactaacaatgaagaacaaagcatggatgg



tacatagacaatggttctttgacctacctctaccatgggcatcaggagct



acaacagaaacaccaacctggaacaggaaggagcttcttgtgacattcaa



aaacgcacatgcgaaaaaacaagaagtagttgtccttggatcgcaagagg



gagcaatgcataccgcactgacaggagctacagaaatccaaaactcagga



ggcacaagcattttcgcggggcacttaaaatgtagacttaagatggacaa



attggaactcaaggggatgagctatgcaatgtgcacgaatacctttgtgt



tgaagaaagaagtctcagaaacgcagcacgggacaatactcattaaggtt



gagtacaaaggggaagatgcaccttgcaagattcccttttccacagagga



tggacaagggaaagctcataatggcagactgatcacagccaaccctgtgg



tgactaagaaggaggagcctgtcaatattgaggctgaacctccttttggg



gaaagcaatatagtaattggaattggagacaacgccttgaaaatcaactg



gtacaagaaggggagctcgattgggaagatgttcgaggccactgaaaggg



gtgcaaggcgcatggccatcttgggagacacagcttgggactttggatca



gtgggtggtgttctgaactcattaggcaaaatggtgcaccaaatatttgg



aagtgcttatacagccctgttcagtggagtctcttgggtgatgaaaattg



gaataggtgtcctcttgacttggatagggttgaattcaaaaaacacatcc



atgtcattttcatgcattgcgataggaatcattacactctatctgggagc



tgtggtacaagctgacatggggtgtgtcataaactggaagggcaaagaac



tcaaatgtggaagcggaattttcgtcaccaatgaggtccatacctggaca



gagcaatacaaattccaagcagactccccaaaaagattggcaacagccat



tgcaggcgcctgggagaatggagtgtgtggaattaggtcaacaaccagaa



tggagaatctcttgtggaagcaaatagccaatgaactgaactacatatta



tgggaaaacaatatcaaattaacggtagttgtgggcgatacacttggggt



cttagagcaagggaaaagaacactaacaccacaacccatggagctaaaat



actcatggaaaacgtggggaaaggcaaaaatagtgacagctgaaacacaa



aattcctctttcataatagacgggccaaacacaccggagtgtccaagtgc



ctcaagagcatggaatgtgtgggaggtggaagattacgggttcggagtct



tcacaaccaacatatggctgaaactccgagaggtctacacccaactatgt



gaccataggctaatgtcggcagctgtcaaggatgagagggccgtgcatgc



cgacatgggctactggatagaaagccaaaagaatggaagttggaagctag



aaaaagcatccctcatagaggtaaaaacctgcacatggccaaaatcacac



actctctggactaatggtgtgctagagagtgacatgatcatcccaaagag



tctagctggtcctatctcacaacacaactacaggcccgggtaccacaccc



aaacggcaggaccctggcacttaggaaaattggagctggacttcaactac



tgtgaaggaacaacagttgtcatcacagaaagctgtgggacaagaggccc



atcattgagaacaacaacagtgtcagggaagttgatacacgaatggtgtt



gccgctcgtgcacacttccccccctgcgatacatgggagaagacggctgc



tggtatggcatggaaatcagacccatcagtgagaaagaagagaacatggt



aaagtctttagtctcagcgggaagtggaaaggtggacaacttcacaatgg



gtgtcttgtgtttggcaatcctctttgaagaggtgttgagaggaaaattt



gggaagaaacacatgattgcaggggttttctttacgtttgtgctccttct



ctcagggcaaataacatggagagacatggcgcacacactaataatgatcg



ggtccaacgcctctgacaggatgggaatgggcgtcacctacctagctcta



attgcaacatttaaaatccagccattcttggctttgggatttttcctaag



aaagctgacatctagagaaaatttattgttaggagttgggttggccatgg



caacaacgttacaactgccagaggacattgaacaaatggcaaatggagtc



gctctggggctcatggctcttaaactgataacacaatttgaaacatacca



attgtggacggcattagtctccttaacgtgttcaaacacaatttttacgt



tgactgttgcctggagaacagccactctgattttggccggagtttcgctt



ttaccagtgtgccagtcttcaagcatgaggaaaacagattggctcccaat



gacagtggcagctatgggagttccaccccttccactttttatttttagct



tgaaagacacactcaaaaggagaagctggccactgaatgaaggggtgatg



gctgttgggcttgtgagcattctggccagttctctccttagaaatgatgt



gcccatggctggaccattagtggccgggggcttgctgatagcgtgctacg



tcataactggcacgtcagcggacctcactgtagaaaaagccccagatgta



acatgggaggaagaggctgagcagacaggagtgtcccacaacttaatgat



cacagttgatgatgatggaacaatgagaataaaagatgatgagactgaga



acatcctaacagtgcttttaaaaacagcattactaatagtatcaggcatt



tttccatactccatacccgcaacattgttggtctggcacacttggcaaaa



acaaacccaaagatccggcgttttatgggacgtacccagccccccagaga



cacagaaagcagaactggaagaaggggtttataggatcaaacagcaagga



atttttgggaaaacccaagtaggggttggagtacagaaagaaggagtctt



ccacaccatgtggcacgtcacaagaggggcagtgttgacacataatggga



aaagactggaaccaaactgggctagtgtgaaaaaagatctgatttcatat



ggaggaggatggagactgagcgcacaatggcaaaagggggaggaggtgca



ggttattgccgtagagccagggaagaacccaaagaactttcaaaccacgc



caggcactttccagactactacaggggaaataggagcaattgcactggat



ttcaagcctggaacttcaggatctcctatcataaatagagagggaaaggt



agtgggactgtatggcaatggagtggttacaaagaatggtggctatgtca



gcggaatagcgcaaacaaatgcagaaccagatggaccgacaccagagttg



gaagaagagatgttcaaaaagcgaaacctgaccataatggatcttcatcc



tgggtcaggaaagacacggaaataccttccagctattgtcagagaggcaa



tcaagagacgtttaagaaccttaattttggcaccgacaagggtggttgca



gctgagatggaagaagcattgaaagggctcccaataaggtaccaaacaac



agcaacaaaatctgaacacacaggaagagagattgttgatctaatgtgcc



acgcaacgttcacaatgcgtttgctgtcaccagttagggttccaaattac



aacttgataataatggatgaggcccatttcacagacccagccagtatagc



ggctagagggtacatatcaactcgtgttggaatgggagaggcagccgcaa



tcttcatgacagcaacaccccctggaacagctgatgcctttcctcagagc



aacgctccaattcaagatgaagaaagggacataccagaacgctcatggaa



ttcaggcaatgaatggattaccgacttcgctgggaaaacggtgtggtttg



tccctagcattaaagccggaaatgacatagcaaactgcttgcgaaaaaac



gggaaaaaagtcattcaacttagtaggaagacttttgacacagaatatca



gaagactaaactgaatgattgggactttgtggtgacaactgacatttcag



aaatgggggccaatttcaaagcagatagagtgatcgacccaagaagatgt



ctcaaaccagtgatcttgacagatggaccagagcgggtgatcctggccgg



accaatgccagtcaccgcggcgagtgctgcgcaaaggagagggagagttg



gcaggaacccacaaaaagagaatgaccagtacatattcacgggccagcct



ctcaacaatgatgaagaccatgctcactggacagaagcaaaaatgctgct



ggacaacatcaacacaccagaagggattataccagctctctttgaaccag



aaagggagaagtcagccgccatagacggtgagtatcgcctgaagggtgag



tccaggaagactttcgtggaactcatgaggaggggtgaccttccagtttg



gttagcccataaagtagcatcagaaggaatcaaatacacagatagaaaat



ggtgctttgatgggcaacgcaataatcaaattttagaggagaacatggat



gtggaaatttggacaaaggaaggagaaaagaaaaaattgagacctaggtg



gcttgatgcccgcacttattcagatccattggcactcaaggaattcaagg



actttgcggctggcagaaagtcaatcgcccttgatcttgtgacagaaata



ggaagagtgccttcacatctagcccacagaacaagaaacgctctggacaa



tctggtgatgctgcatacgtcagaagatggcggtagggcttacaggcatg



cggtggaggaactaccagaaacaatggaaacactcctactcttgggacta



atgatcttgttgacaggtggagcaatgcttttcttgatatcaggtaaagg



gattggaaagacttcaataggactcatttgtgtaatcgcttccagcggca



tgttgtggatggccgaagttccactccaatggatcgcgtcggctatagtc



ctggagttttttatgatggtgttgctcataccagaaccagaaaagcagag



aaccccccaagacaaccaactcgcatatgtcgtgataggcatacttacat



tggctgcaacaatagcagccaatgaaatgggactgctggaaaccacaaag



agagacttaggaatgtctaaggagccaggtgttgtttctccaaccagcta



tttggatgtggacttgcacccagcatcagcctggacattgtacgccgtgg



ccactacagtaataacaccaatgttaagacataccatagagaattctaca



gcaaatgtgtccctggcagctatagccaaccaggcagtggtcctgatggg



tttggacaaaggatggccaatatcaaaaatggacttaggcgtgccactac



tggcactgggttgctattcacaagtgaacccactgactctaactgcggca



gtacttttgctaatcacacattatgctatcataggtccaggattgcaagc



aaaagccacccgtgaagctcagaaaaggacagctgctggaataatgaaga



atccaacagtggatgggataatgacaatagacctagattctgtaatattt



gattcaaaatttgaaaaacaactgggacaggttatgctcctggttttgtg



cgcagtccaactcttgctaatgagaacatcatgggccttgtgtgaagctt



taactctagctacaggaccaataacaacactctgggaaggatcacctggt



aagttctggaacaccacgatagctgtttccatggcgaacatttttagagg



gagctatttagcaggagctgggcttgctttttctattatgaaatcagttg



gaacaggaaaaagaggaacaggctcacaaggtgaaactttaggagaaaaa



tggaaaaagaaattaaatcaattatcccggaaagagtttgacctttacaa



gaaatctggaatcactgaagtggatagaacagaagccaaagaagggttga



aaagaggagagacaacacatcatgccgtgtcccgaggtagcgcaaaactt



caatggtttgtggaaagaaacatggtcgttcccgaaggaagagtcataga



cttgggctgtggaagaggaggctggtcatattactgtgcaggactgaaaa



aagtcacagaagtgcgaggatacacaaaaggcggtccaggacacgaagaa



ccagtacctatgtctacatatggatggaacatagttaagttaatgagcgg



aaaggatgtgttctatctcccacctgaaaagtgtgataccctgttgtgtg



acattggagaatcttcaccaagcccaacagtggaagagagcagaactata



agagttttgaagatggttgaaccatggctaaaaaacaaccagttttgcat



taaagttttgaacccttacatgccaactgtgattgagcacctagaaagac



tacaaaggaaacatggaggaatgcttgtgagaaatccactttcacgaaac



tccacgcacgaaatgtactggatatctaatggcacaggtaacattgtctc



ttcagtcaacatggtgtctagattgctactgaacaggttcacgatgacac



acaggagacccaccatagagaaagatgtggatttaggagcaggaactcga



catgttaatgcggaaccagaaacacccaacatggatgtcattggggaaag



aataaaaaggatcaaggaggagcataattcaacatggcactatgatgacg



aaaacccctacaaaacgtgggcttaccatggatcctatgaagtcaaagcc



acaggctcagcctcctccatgataaatggagtcgtgaaactcctcaccaa



accatgggatgtggtgcccatggtgacacagatggcaatgacagacacaa



ctccatttggccagcagagagtctttaaagagaaagtggacaccaggacg



cccaggcccatgccagggacaagaaaggctatggagatcacagcggagtg



gctctggagaaccctgggaaggaacaaaagacccagattatgcacaaggg



aagagtttacaaaaaaggtcagaactaacgcagccatgggcgccgttttc



acagaggagaaccaatgggacagtgcgaaagctgctgttgaggatgaaga



attttggaaacttgtggacagagaacgtgaactccacaaattgggcaaat



gtggaagctgcgtttataacatgatgggcaagagagagaaaaaacttgga



gagtttggcaaagcaaaaggcagtagagctatatggtacatgtggttggg



agccaggtaccttgagttcgaagcccttggattcttaaatgaagaccact



ggttctcgcgtgaaaactcttacagtggagtagaaggagaaggactgcac



aagctaggctacatattaagggacatttccaagatacccggaggagccat



gtatgctgatgacacagctggttgggacacaagaataacagaagatgacc



tgcacaatgaggaaaagatcatacagcaaatggaccctgaacacaggcag



ttagcgaacgctatattcaagctcacataccaaaacaaagtggtcaaagt



tcaacgaccgactccaacgggcacggtaatggatattatatctaggaaag



accaaaggggcagtggacaactgggaacttatggcctgaatacattcacc



aacatggaagcccagttagtcagacaaatggaaggagaaggtgtgctgac



aaaggcagacctcgagaaccctcatctgctagagaagaaaatcacacaat



ggttggaaaccaaaggagtggagaggttaaaaagaatggccattagcggg



gatgattgcgtggtgaaaccaatcgatgacaggttcgctaatgccctgct



tgctttgaacgatatgggaaaggttcggaaagacatacctcaatggcagc



catcaaagggatggcatgattggcaacaggttcctttctgctcccaccac



tttcatgaattgatcatgaaagatggaagaaagttggtggttccctgcag



accccaggacgaactaataggaagagcaagaatctctcaaggagcgggat



ggagccttagagaaactgcatgtctggggaaagcctacgcccaaatgtgg



agtctcatgtattttcacagaagagatctcagattagcatccaacgccat



atgttcagcagtaccagtccactgggttcccacaagtagaacgacatggt



ctattcatgctcaccatcagtggatgactacagaagacatgcttactgtt



tggaacagggtgtggatagaggaaaatccatggatggaagacaaaactcc



agttacaacttgggaaaatgttccatatctaggaaagagagaagaccaat



ggtgtggatcacttattggtctcacttccagagcaacctgggcccagaac



atacccacagcaattcaacaggtgagaagccttataggcaatgaagagtt



cctggactacatgccttcaatgaagagattcaggaaggaagaggagtcgg



agggagccatttggtaaacgtaggaagtggaaaagaggctaactgtcagg



ccaccttaagccacagtacggaagaagctgtgctgcctgtgagccccgtc



caaggacgttaaaagaagaagtcaggccccaaagccacggtttgagcaaa



ccgtgctgcctgtagctccgtcgtggggacgtaaaacctgggaggctgca



aactgtggaagctgtacgcacggtgtagcagactagcggttagaggagac



ccctcccatgacacaacgcagcagcggggcccgagcactgagggaagctg



tacctccttgcaaaggactagaggttagaggagaccccccgcaaataaaa



acagcatattgacgctgggagagaccagagatcctgctgtctcctcagca



tcattccaggcacagaacgccagaaaatggaatggtgctgttgaatcaac



aggttct





DEN-4
MNQRKKVVRPPFNMLKRERNRVSTPQGLVKRFSTGLFSGKGPLRMVLAFI
21


(NC_002640.1)
TFLRVLSIPPTAGILKRWGQLKKNKAIKILIGFRKEIGRMLNILNGRKRS



TITLLCLIPTVMAFSLSTRDGEPLMIVAKHERGRPLLFKTTEGINKCTLI



AMDLGEMCEDTVTYKCPLLVNTEPEDIDCWCNLTSTWVMYGTCTQSGERR



REKRSVALTPHSGMGLETRAETWMSSEGAWKHAQRVESWILRNPGFALLA



GFMAYMIGQTGIQRTVFFVLMMLVAPSYGMRCVGVGNRDFVEGVSGGAWV



DLVLEHGGCVTTMAQGKPTLDFELTKTTAKEVALLRTYCIEASISNITTA



TRCPTQGEPYLKEEQDQQYICRRDVVDRGWGNGCGLFGKGGVVTCAKFSC



SGKITGNLVQIENLEYTVVVTVHNGDTHAVGNDTSNHGVTAMITPRSPSV



EVKLPDYGELTLDCEPRSGIDFNEMILMKMKKKTWLVHKQWFLDLPLPWT



AGADTSEVHWNYKERMVTFKVPHAKRQDVTVLGSQEGAMHSALAGATEVD



SGDGNHMFAGHLKCKVRMEKLRIKGMSYTMCSGKFSIDKEMAETQHGTTV



VKVKYEGAGAPCKVPIEIRDVNKEKVVGRIISSTPLAENTNSVTNIELEP



PFGDSYIVIGVGNSALTLHWFRKGSSIGKMFESTYRGAKRMAILGETAWD



FGSVGGLFTSLGKAVHQVFGSVYTTMFGGVSWMIRILIGFLVLWIGTNSR



NTSMAMTCIAVGGITLFLGFTVQADMGCVASWSGKELKCGSGIFVVDNVH



TWTEQYKFQPESPARLASAILNAHKDGVCGIRSTTRLENVMWKQITNELN



YVLWEGGHDLTVVAGDVKGVLTKGKRALTPPVSDLKYSWKTWGKAKIFTP



EARNSTFLIDGPDTSECPNERRAWNSLEVEDYGFGMFTTNIWMKFREGSS



EVCDHRLMSAAIKDQKAVHADMGYWIESSKNQTWQIEKASLIEVKTCLWP



KTHTLWSNGVLESQMLIPKSYAGPFSQHNYRQGYATQTVGPWHLGKLEID



FGECPGTTVTIQEDCDHRGPSLRTTTASGKLVTQWCCRSCTMPPLRFLGE



DGCWYGMEIRPLSEKEENMVKSQVTAGQGTSETFSMGLLCLTLFVEECLR



RRVTRKHMILVVVITLCAIILGGLTWMDLLRALIMLGDTMSGRIGGQIHL



AIMAVFKMSPGYVLGVFLRKLTSRETALMVIGMAMTTVLSIPHDLMELID



GISLGLILLKIVTQFDNTQVGTLALSLTFIRSTMPLVMAWRTIMAVLFVV



TLIPLCRTSCLQKQSHWVEITALILGAQALPVYLMTLMKGASRRSWPLNE



GIMAVGLVSLLGSALLKNDVPLAGPMVAGGLLLAAYVMSGSSADLSLEKA



ANVQWDEMADITGSSPIVEVKQDEDGSFSIRDVEETNMITLLVKLALITV



SGLYPLAIPVTMTLWYMWQVKTQRSGALWDVPSPAATKKAALSEGVYRIM



QRGLFGKTQVGVGIHMEGVFHTMWHVTRGSVICHETGRLEPSWADVRNDM



ISYGGGWRLGDKWDKEEDVQVLAIEPGKNPKHVQTKPGLFKTLTGEIGAV



TLDFKPGTSGSPIINRKGKVIGLYGNGVVTKSGDYVSAITQAERIGEPDY



EVDEDIFRKKRLTIMDLHPGAGKTKRILPSIVREALKRRLRTLILAPTRV



VAAEMEEALRGLPIRYQTPAVKSEHTGREIVDLMCHATFTTRLLSSTRVP



NYNLIVMDEAHFTDPSSVAARGYISTRVEMGEAAAIFMTATPPGATDPFP



QSNSPIEDIEREIPERSWNTGFDWITDYQGKTVWFVPSIKAGNDIANCLR



KSGKKVIQLSRKTFDTEYPKTKLTDWDFVVTTDISEMGANFRAGRVIDPR



RCLKPVILPDGPERVILAGPIPVTPASAAQRRGRIGRNPAQEDDQYVFSG



DPLKNDEDHAHWTEAKMLLDNIYTPEGIIPTLFGPEREKTQAIDGEFRLR



GEQRKTFVELMRRGDLPVWLSYKVASAGISYEDREWCFTGERNNQILEEN



MEVEIWTREGEKKKLRPRWLDARVYADPMALKDFKEFASGRKSITLDILT



EIASLPTYLSSRAKLALDNIVMLHTTERGGRAYQHALNELPESLETLMLV



ALLGAMTAGIFLFFMQGKGIGKLSMGLITIAVASGLLWVAEIQPQWIAAS



IILEFFLMVLLIPEPEKQRTPQDNQLIYVILTILTIIGLIAANEMGLIEK



TKTDFGFYQVKTETTILDVDLRPASAWTLYAVATTILTPMLRHTIENTSA



NLSLAAIANQAAVLMGLGKGWPLHRMDLGVPLLAMGCYSQVNPTTLTASL



VMLLVHYAIIGPGLQAKATREAQKRTAAGIMKNPTVDGITVIDLEPISYD



PKFEKQLGQVMLLVLCAGQLLLMRTTWAFCEVLTLATGPILTLWEGNPGR



FWNTTIAVSTANIFRGSYLAGAGLAFSLIKNAQTPRRGTGTTGETLGEKW



KRQLNSLDRKEFEEYKRSGILEVDRTEAKSALKDGSKIKHAVSRGSSKIR



WIVERGMVKPKGKVVDLGCGRGGWSYYMATLKNVTEVKGYTKGGPGHEEP



IPMATYGWNLVKLHSGVDVFYKPTEQVDTLLCDIGESSSNPTIEEGRTLR



VLKMVEPWLSSKPEFCIKVLNPYMPTVIEELEKLQRKHGGNLVRCPLSRN



STHEMYWVSGASGNIVSSVNTTSKMLLNRFTTRHRKPTYEKDVDLGAGTR



SVSTETEKPDMTIIGRRLQRLQEEHKETWHYDQENPYRTWAYHGSYEAPS



TGSASSMVNGVVKLLTKPWDVIPMVTQLAMTDTTPFGQQRVFKEKVDTRT



PQPKPGTRMVMTTTANWLWALLGKKKNPRLCTREEFISKVRSNAAIGAVF



QEEQGWTSASEAVNDSRFWELVDKERALHQEGKCESCVYNMMGKREKKLG



EFGRAKGSRAIWYMWLGARFLEFEALGFLNEDHWFGRENSWSGVEGEGLH



RLGYILEEIDKKDGDLMYADDTAGWDTRITEDDLQNEELITEQMAPHHKI



LAKAIFKLTYQNKVVKVLRPTPRGAVMDIISRKDQRGSGQVGTYGLNTFT



NMEVQLIRQMEAEGVITQDDMQNPKGLKERVEKWLKECGVDRLKRMAISG



DDCVVKPLDERFGTSLLFLNDMGKVRKDIPQWEPSKGWKNWQEVPFCSHH



FHKIFMKDGRSLVVPCRNQDELIGRARISQGAGW



SLRETACLGKAYAQMWSLMYFHRRDLRLASMAICSAVPTEWFPTSRTTWS



IHAHHQWMTTEDMLKVWNRVWIEDNPNMTDKTPVHSWEDIPYLGKREDLW



CGSLIGLSSRATWAKNIHTAITQVRNLIGKEEYVDYMPVMKRYSAPSESE



GVL





DEN-4
agttgttagtctgtgtggaccgacaaggacagttccaaatcggaagcttg
22


(NC_002640.1)
cttaacacagttctaacagtttgtttgaatagagagcagatctctggaaa



aatgaaccaacgaaaaaaggtggttagaccacctttcaatatgctgaaac



gcgagagaaaccgcgtatcaacccctcaagggttggtgaagagattctca



accggacttttttctgggaaaggacccttacggatggtgctagcattcat



cacgtttttgcgagtcctttccatcccaccaacagcagggattctgaaga



gatggggacagttgaagaaaaataaggccatcaagatactgattggattc



aggaaggagataggccgcatgctgaacatcttgaacgggagaaaaaggtc



aacgataacattgctgtgcttgattcccaccgtaatggcgttttccctca



gcacaagagatggcgaacccctcatgatagtggcaaaacatgaaaggggg



agacctctcttgtttaagacaacagaggggatcaacaaatgcactctcat



tgccatggacttgggtgaaatgtgtgaggacactgtcacgtataaatgcc



ccctactggtcaataccgaacctgaagacattgattgctggtgcaacctc



acgtctacctgggtcatgtatgggacatgcacccagagcggagaacggag



acgagagaagcgctcagtagctttaacaccacattcaggaatgggattgg



aaacaagagctgagacatggatgtcatcggaaggggcttggaagcatgct



cagagagtagagagctggatactcagaaacccaggattcgcgctcttggc



aggatttatggcttatatgattgggcaaacaggaatccagcgaactgtct



tctttgtcctaatgatgctggtcgccccatcctacggaatgcgatgcgta



ggagtaggaaacagagactttgtggaaggagtctcaggtggagcatgggt



cgacctggtgctagaacatggaggatgcgtcacaaccatggcccagggaa



aaccaaccttggattttgaactgactaagacaacagccaaggaagtggct



ctgttaagaacctattgcattgaagcctcaatatcaaacataactacggc



aacaagatgtccaacgcaaggagagccttatctgaaagaggaacaggacc



aacagtacatttgccggagagatgtggtagacagagggtggggcaatggc



tgtggcttgtttggaaaaggaggagttgtgacatgtgcgaagttttcatg



ttcggggaagataacaggcaatttggtccaaattgagaaccttgaataca



cagtggttgtaacagtccacaatggagacacccatgcagtaggaaatgac



acatccaatcatggagttacagccatgataactcccaggtcaccatcggt



ggaagtcaaattgccggactatggagaactaacactcgattgtgaaccca



ggtctggaattgactttaatgagatgattctgatgaaaatgaaaaagaaa



acatggctcgtgcataagcaatggtttttggatctgcctcttccatggac



agcaggagcagacacatcagaggttcactggaattacaaagagagaatgg



tgacatttaaggttcctcatgccaagagacaggatgtgacagtgctggga



tctcaggaaggagccatgcattctgccctcgctggagccacagaagtgga



ctccggtgatggaaatcacatgtttgcaggacatcttaagtgcaaagtcc



gtatggagaaattgagaatcaagggaatgtcatacacgatgtgttcagga



aagttttcaattgacaaagagatggcagaaacacagcatgggacaacagt



ggtgaaagtcaagtatgaaggtgctggagctccgtgtaaagtccccatag



agataagagatgtaaacaaggaaaaagtggttgggcgtatcatctcatcc



acccctttggctgagaataccaacagtgtaaccaacatagaattagaacc



cccctttggggacagctacatagtgataggtgttggaaacagcgcattaa



cactccattggttcaggaaagggagttccattggcaagatgtttgagtcc



acatacagaggtgcaaaacgaatggccattctaggtgaaacagcttggga



ttttggttccgttggtggactgttcacatcattgggaaaggctgtgcacc



aggtttttggaagtgtgtatacaaccatgtttggaggagtctcatggatg



attagaatcctaattgggttcttagtgttgtggattggcacgaactcgag



gaacacttcaatggctatgacgtgcatagctgttggaggaatcactctgt



ttctgggcttcacagttcaagcagacatgggttgtgtggcgtcatggagt



gggaaagaattgaagtgtggaagcggaatttttgtggttgacaacgtgca



cacttggacagaacagtacaaatttcaaccagagtccccagcgagactag



cgtctgcaatattaaatgcccacaaagatggggtctgtggaattagatca



accacgaggctggaaaatgtcatgtggaagcaaataaccaacgagctaaa



ctatgttctctgggaaggaggacatgacctcactgtagtggctggggatg



tgaagggggtgttgaccaaaggcaagagagcactcacacccccagtgagt



gatctgaaatattcatggaagacatggggaaaagcaaaaatcttcacccc



agaagcaagaaatagcacatttttaatagacggaccagacacctctgaat



gccccaatgaacgaagagcatggaactctcttgaggtggaagactatgga



tttggcatgttcacgaccaacatatggatgaaattccgagaaggaagttc



agaagtgtgtgaccacaggttaatgtcagctgcaattaaagatcagaaag



ctgtgcatgctgacatgggttattggatagagagctcaaaaaaccagacc



tggcagatagagaaagcatctcttattgaagtgaaaacatgtctgtggcc



caagacccacacactgtggagcaatggagtgctggaaagccagatgctca



ttccaaaatcatatgcgggccctttttcacagcacaattaccgccagggc



tatgccacgcaaaccgtgggcccatggcacttaggcaaattagagataga



ctttggagaatgccccggaacaacagtcacaattcaggaggattgtgacc



atagaggcccatctttgaggaccaccactgcatctggaaaactagtcacg



caatggtgctgccgctcctgcacgatgcctcccttaaggttcttgggaga



agatgggtgctggtatgggatggagattaggcccttgagtgaaaaagaag



agaacatggtcaaatcacaggtgacggccggacagggcacatcagaaact



ttttctatgggtctgttgtgcctgaccttgtttgtggaagaatgcttgag



gagaagagtcactaggaaacacatgatattagttgtggtgatcactcttt



gtgctatcatcctgggaggcctcacatggatggacttactacgagccctc



atcatgttgggggacactatgtctggtagaataggaggacagatccacct



agccatcatggcagtgttcaagatgtcaccaggatacgtgctgggtgtgt



ttttaaggaaactcacttcaagagagacagcactaatggtaataggaatg



gccatgacaacggtgctttcaattccacatgaccttatggaactcattga



tggaatatcactgggactaattttgctaaaaatagtaacacagtttgaca



acacccaagtgggaaccttagctctttccttgactttcataagatcaaca



atgccattggtcatggcttggaggaccattatggctgtgttgtttgtggt



cacactcattcctttgtgcaggacaagctgtcttcaaaaacagtctcatt



gggtagaaataacagcactcatcctaggagcccaagctctgccagtgtac



ctaatgactcttatgaaaggagcctcaagaagatcttggcctcttaacga



gggcataatggctgtgggtttggttagtctcttaggaagcgctcttttaa



agaatgatgtccctttagctggcccaatggtggcaggaggcttacttctg



gcggcttacgtgatgagtggtagctcagcagatctgtcactagagaaggc



cgccaacgtgcagtgggatgaaatggcagacataacaggctcaagcccaa



tcgtagaagtgaagcaggatgaagatggctctttctccatacgggacgtc



gaggaaaccaatatgataacccttttggtgaaactggcactgataacagt



gtcaggtctctaccccttggcaattccagtcacaatgaccttatggtaca



tgtggcaagtgaaaacacaaagatcaggagccctgtgggacgtcccctca



cccgctgccactaaaaaagccgcactgtctgaaggagtgtacaggatcat



gcaaagagggttattcgggaaaactcaggttggagtagggatacacatgg



aaggtgtatttcacacaatgtggcatgtaacaagaggatcagtgatctgc



cacgagactgggagattggagccatcttgggctgacgtcaggaatgacat



gatatcatacggtgggggatggaggcttggagacaaatgggacaaagaag



aagacgttcaggtcctcgccatagaaccaggaaaaaatcctaaacatgtc



caaacgaaacctggccttttcaagaccctaactggagaaattggagcagt



aacattagatttcaaacccggaacgtctggttctcccatcatcaacagga



aaggaaaagtcatcggactctatggaaatggagtagttaccaaatcaggt



gattacgtcagtgccataacgcaagccgaaagaattggagagccagatta



tgaagtggatgaggacatttttcgaaagaaaagattaactataatggact



tacaccccggagctggaaagacaaaaagaattcttccatcaatagtgaga



gaagccttaaaaaggaggctacgaactttgattttagctcccacgagagt



ggtggcggccgagatggaagaggccctacgtggactgccaatccgttatc



agaccccagctgtgaaatcagaacacacaggaagagagattgtagacctc



atgtgtcatgcaaccttcacaacaagacttttgtcatcaaccagggttcc



aaattacaaccttatagtgatggatgaagcacatttcaccgatccttcta



gtgtcgcggctagaggatacatctcgaccagggtggaaatgggagaggca



gcagccatcttcatgaccgcaacccctcccggagcgacagatccctttcc



ccagagcaacagcccaatagaagacatcgagagggaaattccggaaaggt



catggaacacagggttcgactggataacagactaccaagggaaaactgtg



tggtttgttcccagcataaaagctggaaatgacattgcaaattgtttgag



aaagtcgggaaagaaagttatccagttgagtaggaaaacctttgatacag



agtatccaaaaacgaaactcacggactgggactttgtggtcactacagac



atatctgaaatgggggccaattttagagccgggagagtgatagaccctag



aagatgcctcaagccagttatcctaccagatgggccagagagagtcattt



tagcaggtcctattccagtgactccagcaagcgctgctcagagaagaggg



cgaataggaaggaacccagcacaagaagacgaccaatacgttttctccgg



agacccactaaaaaatgatgaagatcatgcccactggacagaagcaaaga



tgctgcttgacaatatctacaccccagaagggatcattccaacattgttt



ggtccggaaagggaaaaaacccaagccattgatggagagtttcgcctcag



aggggaacaaaggaagacttttgtggaattaatgaggagaggagaccttc



cggtgtggctgagctataaggtagcttctgctggcatttcttacgaagat



cgggaatggtgcttcacaggggaaagaaataaccaaattttagaagaaaa



catggaggttgaaatttggactagagagggagaaaagaaaaagctaaggc



caagatggttagatgcacgtgtatacgctgaccccatggctttgaaggat



ttcaaggagtttgccagtggaaggaagagtataactctcgacatcctaac



agagattgccagtttgccaacttacctttcctctagggccaagctcgccc



ttgataacatagtcatgctccacacaacagaaagaggagggagggcctat



caacacgccctgaacgaacttccggagtcactggaaacactcatgcttgt



agctttactaggtgctatgacagcaggcatcttcctgtttttcatgcaag



ggaaaggaatagggaaattgtcaatgggtttgataaccattgcggtggct



agtggcttgctctgggtagcagaaattcaaccccagtggatagcggcctc



aatcatactagagttttttctcatggtactgttgataccggaaccagaaa



aacaaaggaccccacaagacaatcaattgatctacgtcatattgaccatt



ctcaccatcattggtctaatagcagccaacgagatggggctgattgaaaa



aacaaaaacggattttgggttttaccaggtaaaaacagaaaccaccatcc



tcgatgtggacttgagaccagcttcagcatggacgctctatgcagtagcc



accacaattctgactcccatgctgagacacaccatagaaaacacgtcggc



caacctatctctagcagccattgccaaccaggcagccgtcctaatggggc



ttggaaaaggatggccgctccacagaatggacctcggtgtgccgctgtta



gcaatgggatgctattctcaagtgaacccaacaaccttgacagcatcctt



agtcatgcttttagtccattatgcaataataggcccaggattgcaggcaa



aagccacaagagaggcccagaaaaggacagctgctgggatcatgaaaaat



cccacagtggacgggataacagtaatagatctagaaccaatatcctatga



cccaaaatttgaaaagcaattagggcaggtcatgctactagtcttgtgtg



ctggacaactactcttgatgagaacaacatgggctttctgtgaagtcttg



actttggccacaggaccaatcttgaccttgtgggagggcaacccgggaag



gttttggaacacgaccatagccgtatccaccgccaacattttcaggggaa



gttacttggcgggagctggactggctttttcactcataaagaatgcacaa



acccctaggaggggaactgggaccacaggagagacactgggagagaagtg



gaagagacagctaaactcattagacagaaaagagtttgaagagtataaaa



gaagtggaatactagaagtggacaggactgaagccaagtctgccctgaaa



gatgggtctaaaatcaagcatgcagtatcaagagggtccagtaagatcag



atggattgttgagagagggatggtaaagccaaaagggaaagttgtagatc



ttggctgtgggagaggaggatggtcttattacatggcgacactcaagaac



gtgactgaagtgaaagggtatacaaaaggaggtccaggacatgaagaacc



gattcccatggctacttatggttggaatttggtcaaactccattcagggg



ttgacgtgttctacaaacccacagagcaagtggacaccctgctctgtgat



attggggagtcatcttctaatccaacaatagaggaaggaagaacattaag



agttttgaagatggtggagccatggctctcttcaaaacctgaattctgca



tcaaagtccttaacccctacatgccaacagtcatagaagagctggagaaa



ctgcagagaaaacatggtgggaaccttgtcagatgcccgctgtccaggaa



ctccacccatgagatgtattgggtgtcaggagcgtcgggaaacattgtga



gctctgtgaacacaacatcaaagatgttgttgaacaggttcacaacaagg



cataggaaacccacttatgagaaggacgtagatcttggggcaggaacgag



aagtgtctccactgaaacagaaaaaccagacatgacaatcattgggagaa



ggcttcagcgattgcaagaagagcacaaagaaacctggcattatgatcag



gaaaacccatacagaacctgggcgtatcatggaagctatgaagctccttc



gacaggctctgcatcctccatggtgaacggggtggtaaaactgctaacaa



aaccctgggatgtgattccaatggtgactcagttagccatgacagataca



accccttttgggcaacaaagagtgttcaaagagaaggtggataccagaac



accacaaccaaaacccggtacacgaatggttatgaccacgacagccaatt



ggctgtgggccctccttggaaagaagaaaaatcccagactgtgcacaagg



gaagagttcatctcaaaagttagatcaaacgcagccataggcgcagtctt



tcaggaagaacagggatggacatcagccagtgaagctgtgaatgacagcc



ggttttgggaactggttgacaaagaaagggccctacaccaggaagggaaa



tgtgaatcgtgtgtctataacatgatgggaaaacgtgagaaaaagttagg



agagtttggcagagccaagggaagccgagcaatctggtacatgtggctgg



gagcgcggtttctggaatttgaagccctgggttttttgaatgaagatcac



tggtttggcagagaaaattcatggagtggagtggaaggggaaggtctgca



cagattgggatatatcctggaggagatagacaagaaggatggagacctaa



tgtatgctgatgacacagcaggctgggacacaagaatcactgaggatgac



cttcaaaatgaggaactgatcacggaacagatggctccccaccacaagat



cctagccaaagccattttcaaactaacctatcaaaacaaagtggtgaaag



tcctcagacccacaccgcggggagcggtgatggatatcatatccaggaaa



gaccaaagaggtagtggacaagttggaacatatggtttgaacacattcac



caacatggaagttcaactcatccgccaaatggaagctgaaggagtcatca



cacaagatgacatgcagaacccaaaagggttgaaagaaagagttgagaaa



tggctgaaagagtgtggtgtcgacaggttaaagaggatggcaatcagtgg



agacgattgcgtggtgaagcccctagatgagaggtttggcacttccctcc



tcttcttgaacgacatgggaaaggtgaggaaagacattccgcagtgggaa



ccatctaagggatggaaaaactggcaagaggttcctttttgctcccacca



ctttcacaagatctttatgaaggatggccgctcactagttgttccatgta



gaaaccaggatgaactgatagggagagccagaatctcgcagggagctgga



tggagcttaagagaaacagcctgcctgggcaaagcttacgcccagatgtg



gtcgcttatgtacttccacagaagggatctgcgtttagcctccatggcca



tatgctcagcagttccaacggaatggtttccaacaagcagaacaacatgg



tcaatccacgctcatcaccagtggatgaccactgaagatatgctcaaagt



gtggaacagagtgtggatagaagacaaccctaatatgactgacaagactc



cagtccattcgtgggaagatataccttacctagggaaaagagaggatttg



tggtgtggatccctgattggactttcttccagagccacctgggcgaagaa



cattcatacggccataacccaggtcaggaacctgatcggaaaagaggaat



acgtggattacatgccagtaatgaaaagatacagtgctccttcagagagt



gaaggagttctgtaattaccaacaacaaacaccaaaggctattgaagtca



ggccacttgtgccacggtttgagcaaaccgtgctgcctgtagctccgcca



ataatgggaggcgtaataatccccagggaggccatgcgccacggaagctg



tacgcgtggcatattggactagcggttagaggagacccctcccatcactg



ataaaacgcagcaaaagggggcccgaagccaggaggaagctgtactcctg



gtggaaggactagaggttagaggagacccccccaacacaaaaacagcata



ttgacgctgggaaagaccagagatcctgctgtctctgcaacatcaatcca



ggcacagagcgccgcaagatggattggtgttgttgatccaacaggttct









Example 19: Dengue Virus RNA Vaccine Immunogenicity in Mice

This study provides a preliminary analysis of the immunogenicity of a nucleic acid mRNA vaccine using a dengue virus (DENV) serotype 2 antigen in BALB/c mice. The study utilizes 44 groups of 10 BALB/c female (5) and male (5) mice (440 total, 6-8 weeks of age at study initiation, see Table 10 for design summary). In this study, construct numbers used are referenced and found in Table 14.









TABLE 14







Dengue Antigen polynucleotides
















ORF
mRNA
Protein



Construct


SEQ
SEQ
SEQ


Number
Gene ID
Description
ID NO
ID NO
ID NO
Construct





1
131502
Dengue 2,
24
25
23
DEN2_D2Y98P_PrME_Hs3




D2Y98P strain,




PrME




transmembrane




antigen


2
131503
Dengue 2,
27
28
26
DEN2_D2Y98P_PrME80_Hs3




D2Y98P strain,




PrME secreted




antigen


3
131507
Dengue 2,
30
31
29
DEN2_D2Y98P_PrME80_ScFv.aDEC205.FLAG_Hs3




D2Y98P strain,




PrME secreted




antigen with




dendritic




targeting ScFv




against mouse




DEC205


4
120554
Dengue strain 2
33
34
32
DEN2_DIII_Ferritin_Hs3




domain 3




ferritin










The sequences are shown below:











TABLE 15







SEQ ID


Name
Sequence
NO








MDAMKRGLCCVLLLCGAVFVSPFHLTTRNGEPHMIVSRQEKGKSLLFKTE
23



NGVNMCTLMAMDLGELCEDTITYNCPLLRQNEPEDIDCWCNSTSTWVTYG



TCTATGEHRREKRSVALVPHVGMGLETRTETWMSSEGAWKHAQRIETWVL



RHPGFTIMAAILAYTIGTTYFQRVLIFILLTAVAPSMTMRCIGISNRDFV



EGVSGGSWVDIVLEHGSCVTTMAKNKPTLDFELIKTEAKHPATLRKYCIE



AKLTNTTTASRCPTQGEPSLNEEQDKRFVCKHSMVDRGWGNGCGLFGKGG



IVTCAMFTCKKNMEGKIVQPENLEYTIVITPHSGEEGNDTGKHGKEIKVT



PQSSITEAELTGYGTVTMECSPRTGLDFNEMVLLQMENKAWLVHRQWFLD



LPLPWLPGADTQGSNWIQKETLVTFKNPHAKKQDVVVLGSQEGAMHTALT



GATEIQMSSGNLLFTGHLKCRLRMDKLQLKGMSYSMCTGKFKVVKEIAET



QHGTIVIRVQYEGDGSPCKIPFEIMDLEKRHVLGRLITVNPIVTEKDSPV



NIEAEPPFGDSYIIIGVEPGQLKLSWFKKGSSIGQMFETTMRGAKRMAIL



GDTAWDFGSLGGVFTSIGKALHQVFGAIYGAAFSGVSWTMKILIGVVITW



IGMNSRSTSLSVSLVLVGVVTLYLGVMVQA






ATGGATGCTATGAAAAGAGGCCTGTGTTGTGTGTTGCTGTTGTGCGGAGC
24



TGTGTTTGTGTCACCTTTCCACCTGACTACCCGCAATGGTGAGCCCCATA



TGATTGTGTCGCGCCAGGAGAAGGGGAAGTCCCTCCTGTTCAAAACTGAA



AACGGCGTGAACATGTGTACCCTGATGGCCATGGACCTTGGAGAACTGTG



CGAGGACACCATCACCTACAATTGTCCGCTCCTGCGCCAAAACGAACCAG



AAGATATCGACTGCTGGTGCAATTCCACTTCAACCTGGGTTACCTACGGA



ACTTGCACCGCCACGGGAGAACACAGAAGAGAAAAGCGCTCGGTGGCGCT



GGTGCCTCATGTCGGAATGGGACTGGAGACTCGGACGGAGACTTGGATGT



CCTCGGAGGGAGCATGGAAACATGCCCAACGGATCGAAACTTGGGTGCTG



AGGCACCCTGGATTCACCATCATGGCAGCGATCCTCGCCTACACTATAGG



TACTACCTACTTTCAAAGGGTGCTGATCTTCATTCTCCTCACCGCAGTGG



CCCCTTCAATGACCATGAGGTGCATTGGGATCTCGAACCGGGACTTCGTC



GAAGGAGTGTCCGGAGGTAGCTGGGTCGACATCGTCCTGGAACACGGAAG



CTGCGTGACTACTATGGCGAAGAACAAGCCAACCTTGGACTTCGAGCTTA



TCAAGACCGAGGCGAAGCACCCGGCCACTCTGAGAAAGTACTGCATCGAG



GCTAAGCTCACCAACACGACCACTGCCTCGCGATGCCCAACTCAGGGAGA



ACCGTCACTGAACGAAGAACAGGATAAACGCTTTGTGTGCAAGCATAGCA



TGGTGGATAGAGGCTGGGGAAACGGCTGTGGACTCTTCGGAAAGGGTGGA



ATTGTGACGTGCGCAATGTTCACTTGCAAGAAGAATATGGAAGGGAAGAT



CGTCCAGCCGGAGAACCTGGAATACACTATCGTGATCACCCCGCACTCAG



GCGAGGAGAACGCAGTGGGCAACGATACCGGGAAGCACGGGAAGGAAATC



AAGGTGACCCCGCAGTCGTCCATTACCGAGGCCGAACTCACCGGATACGG



CACTGTGACTATGGAATGCTCGCCACGGACCGGGCTGGATTTCAATGAGA



TGGTGCTCTTGCAAATGGAGAACAAAGCCTGGCTGGTCCACCGCCAGTGG



TTCCTCGACCTCCCCCTTCCGTGGCTGCCGGGAGCTGACACCCAAGGATC



CAACTGGATCCAAAAAGAAACCCTTGTCACGTTTAAGAATCCACATGCCA



AAAAGCAGGACGTGGTCGTGCTCGGAAGCCAGGAAGGAGCCATGCACACT



GCGCTGACTGGAGCAACCGAAATTCAAATGTCGAGCGGCAACCTCCTCTT



CACTGGACATCTGAAGTGCCGGCTGCGCATGGACAAACTGCAACTTAAGG



GCATGTCATACTCGATGTGTACCGGCAAATTCAAGGTGGTGAAGGAGATC



GCGGAGACTCAGCACGGGACCATCGTCATCCGGGTCCAGTATGAGGGTGA



TGGTTCCCCCTGCAAGATCCCTTTCGAAATCATGGATCTGGAGAAACGTC



ACGTGCTGGGCCGGCTGATCACTGTGAATCCGATCGTTACGGAGAAAGAC



AGCCCGGTGAACATCGAAGCTGAACCGCCGTTTGGGGATAGCTACATTAT



CATCGGCGTGGAACCAGGCCAGCTCAAGTTGTCGTGGTTCAAGAAAGGAT



CCAGCATCGGACAGATGTTCGAAACCACTATGCGCGGAGCCAAACGCATG



GCTATCCTGGGGGACACGGCCTGGGACTTCGGGTCGCTGGGTGGTGTGTT



CACCTCCATTGGAAAGGCGCTCCATCAGGTGTTTGGTGCGATCTACGGCG



CCGCATTCTCCGGAGTGTCATGGACCATGAAGATCCTCATCGGAGTCGTC



ATCACCTGGATCGGCATGAATTCTCGGTCCACTTCCTTGAGCGTCAGCCT



GGTGCTGGTCGGAGTTGTGACTCTGTACCTTGGAGTGATGGTCCAGGCC






GGGAAAUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAGAGCCACCAUG
25



GAUGCUAUGAAAAGAGGCCUGUGUUGUGUGUUGCUGUUGUGCGGAGCUGU



GUUUGUGUCACCUUUCCACCUGACUACCCGCAAUGGUGAGCCCCAUAUGA



UUGUGUCGCGCCAGGAGAAGGGGAAGUCCCUCCUGUUCAAAACUGAAAAC



GGCGUGAACAUGUGUACCCUGAUGGCCAUGGACCUUGGAGAACUGUGCGA



GGACACCAUCACCUACAAUUGUCCGCUCCUGCGCCAAAACGAACCAGAAG



AUAUCGACUGCUGGUGCAAUUCCACUUCAACCUGGGUUACCUACGGAACU



UGCACCGCCACGGGAGAACACAGAAGAGAAAAGCGCUCGGUGGCGCUGGU



GCCUCAUGUCGGAAUGGGACUGGAGACUCGGACGGAGACUUGGAUGUCCU



CGGAGGGAGCAUGGAAACAUGCCCAACGGAUCGAAACUUGGGUGCUGAGG



CACCCUGGAUUCACCAUCAUGGCAGCGAUCCUCGCCUACACUAUAGGUAC



UACCUACUUUCAAAGGGUGCUGAUCUUCAUUCUCCUCACCGCAGUGGCCC



CUUCAAUGACCAUGAGGUGCAUUGGGAUCUCGAACCGGGACUUCGUCGAA



GGAGUGUCCGGAGGUAGCUGGGUCGACAUCGUCCUGGAACACGGAAGCUG



CGUGACUACUAUGGCGAAGAACAAGCCAACCUUGGACUUCGAGCUUAUCA



AGACCGAGGCGAAGCACCCGGCCACUCUGAGAAAGUACUGCAUCGAGGCU



AAGCUCACCAACACGACCACUGCCUCGCGAUGCCCAACUCAGGGAGAACC



GUCACUGAACGAAGAACAGGAUAAACGCUUUGUGUGCAAGCAUAGCAUGG



UGGAUAGAGGCUGGGGAAACGGCUGUGGACUCUUCGGAAAGGGUGGAAUU



GUGACGUGCGCAAUGUUCACUUGCAAGAAGAAUAUGGAAGGGAAGAUCGU



CCAGCCGGAGAACCUGGAAUACACUAUCGUGAUCACCCCGCACUCAGGCG



AGGAGAACGCAGUGGGCAACGAUACCGGGAAGCACGGGAAGGAAAUCAAG



GUGACCCCGCAGUCGUCCAUUACCGAGGCCGAACUCACCGGAUACGGCAC



UGUGACUAUGGAAUGCUCGCCACGGACCGGGCUGGAUUUCAAUGAGAUGG



UGCUCUUGCAAAUGGAGAACAAAGCCUGGCUGGUCCACCGCCAGUGGUUC



CUCGACCUCCCCCUUCCGUGGCUGCCGGGAGCUGACACCCAAGGAUCCAA



CUGGAUCCAAAAAGAAACCCUUGUCACGUUUAAGAAUCCACAUGCCAAAA



AGCAGGACGUGGUCGUGCUCGGAAGCCAGGAAGGAGCCAUGCACACUGCG



CUGACUGGAGCAACCGAAAUUCAAAUGUCGAGCGGCAACCUCCUCUUCAC



UGGACAUCUGAAGUGCCGGCUGCGCAUGGACAAACUGCAACUUAAGGGCA



UGUCAUACUCGAUGUGUACCGGCAAAUUCAAGGUGGUGAAGGAGAUCGCG



GAGACUCAGCACGGGACCAUCGUCAUCCGGGUCCAGUAUGAGGGUGAUGG



UUCCCCCUGCAAGAUCCCUUUCGAAAUCAUGGAUCUGGAGAAACGUCACG



UGCUGGGCCGGCUGAUCACUGUGAAUCCGAUCGUUACGGAGAAAGACAGC



CCGGUGAACAUCGAAGCUGAACCGCCGUUUGGGGAUAGCUACAUUAUCAU



CGGCGUGGAACCAGGCCAGCUCAAGUUGUCGUGGUUCAAGAAAGGAUCCA



GCAUCGGACAGAUGUUCGAAACCACUAUGCGCGGAGCCAAACGCAUGGCU



AUCCUGGGGGACACGGCCUGGGACUUCGGGUCGCUGGGUGGUGUGUUCAC



CUCCAUUGGAAAGGCGCUCCAUCAGGUGUUUGGUGCGAUCUACGGCGCCG



CAUUCUCCGGAGUGUCAUGGACCAUGAAGAUCCUCAUCGGAGUCGUCAUC



ACCUGGAUCGGCAUGAAUUCUCGGUCCACUUCCUUGAGCGUCAGCCUGGU



GCUGGUCGGAGUUGUGACUCUGUACCUUGGAGUGAUGGUCCAGGCCUGAU



AAUAGGCUGGAGCCUCGGUGGCCAUGCUUCUUGCCCCUUGGGCCUCCCCC



CAGCCCCUCCUCCCCUUCCUGCACCCGUACCCCCGUGGUCUUUGAAUAAA



GUCUGAGUGGGCGGC






MDAMKRGLCCVLLLCGAVFVSPFHLTTRNGEPHMIVSRQEKGKSLLFKTE
26



NGVNMCTLMAMDLGELCEDTITYNCPLLRQNEPEDIDCWCNSTSTWVTYG



TCTATGEHRREKRSVALVPHVGMGLETRTETWMSSEGAWKHAQRIETWVL



RHPGFTIMAAILAYTIGTTYFQRVLIFILLTAVAPSMTMRCIGISNRDFV



EGVSGGSWVDIVLEHGSCVTTMAKNKPTLDFELIKTEAKHPATLRKYCIE



AKLTNTTTASRCPTQGEPSLNEEQDKRFVCKHSMVDRGWGNGCGLFGKGG



IVTCAMFTCKKNMEGKIVQPENLEYTIVITPHSGEEGNDTGKHGKEIKVT



PQSSITEAELTGYGTVTMECSPRTGLDFNEMVLLQMENKAWLVHRQWFLD



LPLPWLPGADTQGSNWIQKETLVTFKNPHAKKQDVVVLGSQEGAMHTALT



GATEIQMSSGNLLFTGHLKCRLRMDKLQLKGMSYSMCTGKFKVVKEIAET



QHGTIVIRVQYEGDGSPCKIPFEIMDLEKRHVLGRLITVNPIVTEKDSPV



NIEAEPPFGDSYIIIGVEPGQLKLSWFKKG






ATGGATGCTATGAAAAGAGGCCTGTGTTGTGTGTTGCTGTTGTGCGGAGC
27



TGTGTTTGTGTCACCTTTCCACCTGACTACCCGCAATGGTGAGCCCCATA



TGATTGTGTCGCGCCAGGAGAAGGGGAAGTCCCTCCTGTTCAAAACTGAA



AACGGCGTGAACATGTGTACCCTGATGGCCATGGACCTTGGAGAACTGTG



CGAGGACACCATCACCTACAATTGTCCGCTCCTGCGCCAAAACGAACCAG



AAGATATCGACTGCTGGTGCAATTCCACTTCAACCTGGGTTACCTACGGA



ACTTGCACCGCCACGGGAGAACACAGAAGAGAAAAGCGCTCGGTGGCGCT



GGTGCCTCATGTCGGAATGGGACTGGAGACTCGGACGGAGACTTGGATGT



CCTCGGAGGGAGCATGGAAACATGCCCAACGGATCGAAACTTGGGTGCTG



AGGCACCCTGGATTCACCATCATGGCAGCGATCCTCGCCTACACTATAGG



TACTACCTACTTTCAAAGGGTGCTGATCTTCATTCTCCTCACCGCAGTGG



CCCCTTCAATGACCATGAGGTGCATTGGGATCTCGAACCGGGACTTCGTC



GAAGGAGTGTCCGGAGGTAGCTGGGTCGACATCGTCCTGGAACACGGAAG



CTGCGTGACTACTATGGCGAAGAACAAGCCAACCTTGGACTTCGAGCTTA



TCAAGACCGAGGCGAAGCACCCGGCCACTCTGAGAAAGTACTGCATCGAG



GCTAAGCTCACCAACACGACCACTGCCTCGCGATGCCCAACTCAGGGAGA



ACCGTCACTGAACGAAGAACAGGATAAACGCTTTGTGTGCAAGCATAGCA



TGGTGGATAGAGGCTGGGGAAACGGCTGTGGACTCTTCGGAAAGGGTGGA



ATTGTGACGTGCGCAATGTTCACTTGCAAGAAGAATATGGAAGGGAAGAT



CGTCCAGCCGGAGAACCTGGAATACACTATCGTGATCACCCCGCACTCAG



GCGAGGAGAACGCAGTGGGCAACGATACCGGGAAGCACGGGAAGGAAATC



AAGGTGACCCCGCAGTCGTCCATTACCGAGGCCGAACTCACCGGATACGG



CACTGTGACTATGGAATGCTCGCCACGGACCGGGCTGGATTTCAATGAGA



TGGTGCTCTTGCAAATGGAGAACAAAGCCTGGCTGGTCCACCGCCAGTGG



TTCCTCGACCTCCCCCTTCCGTGGCTGCCGGGAGCTGACACCCAAGGATC



CAACTGGATCCAAAAAGAAACCCTTGTCACGTTTAAGAATCCACATGCCA



AAAAGCAGGACGTGGTCGTGCTCGGAAGCCAGGAAGGAGCCATGCACACT



GCGCTGACTGGAGCAACCGAAATTCAAATGTCGAGCGGCAACCTCCTCTT



CACTGGACATCTGAAGTGCCGGCTGCGCATGGACAAACTGCAACTTAAGG



GCATGTCATACTCGATGTGTACCGGCAAATTCAAGGTGGTGAAGGAGATC



GCGGAGACTCAGCACGGGACCATCGTCATCCGGGTCCAGTATGAGGGTGA



TGGTTCCCCCTGCAAGATCCCTTTCGAAATCATGGATCTGGAGAAACGTC



ACGTGCTGGGCCGGCTGATCACTGTGAATCCGATCGTTACGGAGAAAGAC



AGCCCGGTGAACATCGAAGCTGAACCGCCGTTTGGGGATAGCTACATTAT



CATCGGCGTGGAACCAGGCCAGCTCAAGTTGTCGTGGTTCAAGAAAGGA






GGGAAAUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAGAGCCACCAUG
28



GAUGCUAUGAAAAGAGGCCUGUGUUGUGUGUUGCUGUUGUGCGGAGCUGU



GUUUGUGUCACCUUUCCACCUGACUACCCGCAAUGGUGAGCCCCAUAUGA



UUGUGUCGCGCCAGGAGAAGGGGAAGUCCCUCCUGUUCAAAACUGAAAAC



GGCGUGAACAUGUGUACCCUGAUGGCCAUGGACCUUGGAGAACUGUGCGA



GGACACCAUCACCUACAAUUGUCCGCUCCUGCGCCAAAACGAACCAGAAG



AUAUCGACUGCUGGUGCAAUUCCACUUCAACCUGGGUUACCUACGGAACU



UGCACCGCCACGGGAGAACACAGAAGAGAAAAGCGCUCGGUGGCGCUGGU



GCCUCAUGUCGGAAUGGGACUGGAGACUCGGACGGAGACUUGGAUGUCCU



CGGAGGGAGCAUGGAAACAUGCCCAACGGAUCGAAACUUGGGUGCUGAGG



CACCCUGGAUUCACCAUCAUGGCAGCGAUCCUCGCCUACACUAUAGGUAC



UACCUACUUUCAAAGGGUGCUGAUCUUCAUUCUCCUCACCGCAGUGGCCC



CUUCAAUGACCAUGAGGUGCAUUGGGAUCUCGAACCGGGACUUCGUCGAA



GGAGUGUCCGGAGGUAGCUGGGUCGACAUCGUCCUGGAACACGGAAGCUG



CGUGACUACUAUGGCGAAGAACAAGCCAACCUUGGACUUCGAGCUUAUCA



AGACCGAGGCGAAGCACCCGGCCACUCUGAGAAAGUACUGCAUCGAGGCU



AAGCUCACCAACACGACCACUGCCUCGCGAUGCCCAACUCAGGGAGAACC



GUCACUGAACGAAGAACAGGAUAAACGCUUUGUGUGCAAGCAUAGCAUGG



UGGAUAGAGGCUGGGGAAACGGCUGUGGACUCUUCGGAAAGGGUGGAAUU



GUGACGUGCGCAAUGUUCACUUGCAAGAAGAAUAUGGAAGGGAAGAUCGU



CCAGCCGGAGAACCUGGAAUACACUAUCGUGAUCACCCCGCACUCAGGCG



AGGAGAACGCAGUGGGCAACGAUACCGGGAAGCACGGGAAGGAAAUCAAG



GUGACCCCGCAGUCGUCCAUUACCGAGGCCGAACUCACCGGAUACGGCAC



UGUGACUAUGGAAUGCUCGCCACGGACCGGGCUGGAUUUCAAUGAGAUGG



UGCUCUUGCAAAUGGAGAACAAAGCCUGGCUGGUCCACCGCCAGUGGUUC



CUCGACCUCCCCCUUCCGUGGCUGCCGGGAGCUGACACCCAAGGAUCCAA



CUGGAUCCAAAAAGAAACCCUUGUCACGUUUAAGAAUCCACAUGCCAAAA



AGCAGGACGUGGUCGUGCUCGGAAGCCAGGAAGGAGCCAUGCACACUGCG



CUGACUGGAGCAACCGAAAUUCAAAUGUCGAGCGGCAACCUCCUCUUCAC



UGGACAUCUGAAGUGCCGGCUGCGCAUGGACAAACUGCAACUUAAGGGCA



UGUCAUACUCGAUGUGUACCGGCAAAUUCAAGGUGGUGAAGGAGAUCGCG



GAGACUCAGCACGGGACCAUCGUCAUCCGGGUCCAGUAUGAGGGUGAUGG



UUCCCCCUGCAAGAUCCCUUUCGAAAUCAUGGAUCUGGAGAAACGUCACG



UGCUGGGCCGGCUGAUCACUGUGAAUCCGAUCGUUACGGAGAAAGACAGC



CCGGUGAACAUCGAAGCUGAACCGCCGUUUGGGGAUAGCUACAUUAUCAU



CGGCGUGGAACCAGGCCAGCUCAAGUUGUCGUGGUUCAAGAAAGGAUGAU



AAUAGGCUGGAGCCUCGGUGGCCAUGCUUCUUGCCCCUUGGGCCUCCCCC



CAGCCCCUCCUCCCCUUCCUGCACCCGUACCCCCGUGGUCUUUGAAUAAA



GUCUGAGUGGGCGGC






MDAMKRGLCCVLLLCGAVFVSPFHLTTRNGEPHMIVSRQEKGKSLLFKTE
29



NGVNMCTLMAMDLGELCEDTITYNCPLLRQNEPEDIDCWCNSTSTWVTYG



TCTATGEHRREKRSVALVPHVGMGLETRTETWMSSEGAWKHAQRIETWVL



RHPGFTIMAAILAYTIGTTYFQRVLIFILLTAVAPSMTMRCIGISNRDFV



EGVSGGSWVDIVLEHGSCVTTMAKNKPTLDFELIKTEAKHPATLRKYCIE



AKLTNTTTASRCPTQGEPSLNEEQDKRFVCKHSMVDRGWGNGCGLFGKGG



IVTCAMFTCKKNMEGKIVQPENLEYTIVITPHSGEEGNDTGKHGKEIKVT



PQSSITEAELTGYGTVTMECSPRTGLDFNEMVLLQMENKAWLVHRQWFLD



LPLPWLPGADTQGSNWIQKETLVTFKNPHAKKQDVVVLGSQEGAMHTALT



GATEIQMSSGNLLFTGHLKCRLRMDKLQLKGMSYSMCTGKFKVVKEIAET



QHGTIVIRVQYEGDGSPCKIPFEIMDLEKRHVLGRLITVNPIVTEKDSPV



NIEAEPPFGDSYIIIGVEPGQLKLSWFKKGGGGGSGGGGSGGGGSEVKLQ



QSGTEVVKPGASVKLSCKASGYIFTSYDIDWVRQTPEQGLEWIGWIFPGE



GSTEYNEKFKGRATLSVDKSSSTAYMELTRLTSEDSAVYFCARGDYYRRY



FDLWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSFLSTSLGNSITI



TCHASQNIKGWLAWYQQKSGNAPQLLIYKASSLQSGVPSRFSGSGSGTDY



IFTISNLQPEDIATYYCQHYQSFPWTFGGGTKLEIKRDYKDDDDK






ATGGATGCTATGAAAAGAGGCCTGTGTTGTGTGTTGCTGTTGTGCGGAGC
30



TGTGTTTGTGTCACCTTTCCACCTGACTACCCGCAATGGTGAGCCCCATA



TGATTGTGTCGCGCCAGGAGAAGGGGAAGTCCCTCCTGTTCAAAACTGAA



AACGGCGTGAACATGTGTACCCTGATGGCCATGGACCTTGGAGAACTGTG



CGAGGACACCATCACCTACAATTGTCCGCTCCTGCGCCAAAACGAACCAG



AAGATATCGACTGCTGGTGCAATTCCACTTCAACCTGGGTTACCTACGGA



ACTTGCACCGCCACGGGAGAACACAGAAGAGAAAAGCGCTCGGTGGCGCT



GGTGCCTCATGTCGGAATGGGACTGGAGACTCGGACGGAGACTTGGATGT



CCTCGGAGGGAGCATGGAAACATGCCCAACGGATCGAAACTTGGGTGCTG



AGGCACCCTGGATTCACCATCATGGCAGCGATCCTCGCCTACACTATAGG



TACTACCTACTTTCAAAGGGTGCTGATCTTCATTCTCCTCACCGCAGTGG



CCCCTTCAATGACCATGAGGTGCATTGGGATCTCGAACCGGGACTTCGTC



GAAGGAGTGTCCGGAGGTAGCTGGGTCGACATCGTCCTGGAACACGGAAG



CTGCGTGACTACTATGGCGAAGAACAAGCCAACCTTGGACTTCGAGCTTA



TCAAGACCGAGGCGAAGCACCCGGCCACTCTGAGAAAGTACTGCATCGAG



GCTAAGCTCACCAACACGACCACTGCCTCGCGATGCCCAACTCAGGGAGA



ACCGTCACTGAACGAAGAACAGGATAAACGCTTTGTGTGCAAGCATAGCA



TGGTGGATAGAGGCTGGGGAAACGGCTGTGGACTCTTCGGAAAGGGTGGA



ATTGTGACGTGCGCAATGTTCACTTGCAAGAAGAATATGGAAGGGAAGAT



CGTCCAGCCGGAGAACCTGGAATACACTATCGTGATCACCCCGCACTCAG



GCGAGGAGAACGCAGTGGGCAACGATACCGGGAAGCACGGGAAGGAAATC



AAGGTGACCCCGCAGTCGTCCATTACCGAGGCCGAACTCACCGGATACGG



CACTGTGACTATGGAATGCTCGCCACGGACCGGGCTGGATTTCAATGAGA



TGGTGCTCTTGCAAATGGAGAACAAAGCCTGGCTGGTCCACCGCCAGTGG



TTCCTCGACCTCCCCCTTCCGTGGCTGCCGGGAGCTGACACCCAAGGATC



CAACTGGATCCAAAAAGAAACCCTTGTCACGTTTAAGAATCCACATGCCA



AAAAGCAGGACGTGGTCGTGCTCGGAAGCCAGGAAGGAGCCATGCACACT



GCGCTGACTGGAGCAACCGAAATTCAAATGTCGAGCGGCAACCTCCTCTT



CACTGGACATCTGAAGTGCCGGCTGCGCATGGACAAACTGCAACTTAAGG



GCATGTCATACTCGATGTGTACCGGCAAATTCAAGGTGGTGAAGGAGATC



GCGGAGACTCAGCACGGGACCATCGTCATCCGGGTCCAGTATGAGGGTGA



TGGTTCCCCCTGCAAGATCCCTTTCGAAATCATGGATCTGGAGAAACGTC



ACGTGCTGGGCCGGCTGATCACTGTGAATCCGATCGTTACGGAGAAAGAC



AGCCCGGTGAACATCGAAGCTGAACCGCCGTTTGGGGATAGCTACATTAT



CATCGGCGTGGAACCAGGCCAGCTCAAGTTGTCGTGGTTCAAGAAAGGAG



GAGGTGGAGGATCCGGAGGCGGAGGGTCGGGCGGTGGTGGATCGGAGGTC



AAACTGCAGCAATCAGGGACCGAAGTCGTGAAGCCGGGGGCTTCAGTCAA



GCTGTCCTGCAAGGCCAGCGGCTATATCTTCACTAGCTACGACATCGATT



GGGTGCGGCAGACTCCGGAGCAAGGACTCGAGTGGATTGGGTGGATCTTT



CCGGGCGAGGGATCAACCGAGTACAACGAAAAATTTAAGGGACGGGCAAC



GCTGTCCGTGGACAAGAGCTCATCTACGGCGTACATGGAGCTGACGCGGC



TCACGTCAGAGGATTCCGCCGTCTACTTCTGTGCCAGGGGCGACTACTAC



CGGCGCTACTTTGATCTGTGGGGACAAGGAACGACCGTGACTGTCTCATC



AGGCGGCGGCGGATCGGGAGGAGGCGGATCGGGTGGCGGTGGTTCGGACA



TTCAGATGACTCAATCGCCCAGCTTCCTGTCGACCTCACTGGGGAATTCT



ATTACGATCACTTGTCACGCTTCGCAGAACATCAAGGGTTGGCTGGCTTG



GTACCAGCAGAAAAGCGGTAACGCCCCGCAACTGCTCATCTACAAGGCAT



CGTCCCTGCAATCGGGAGTGCCGTCACGCTTTTCAGGATCGGGCTCCGGA



ACCGATTACATCTTTACCATCAGCAACCTGCAGCCGGAAGACATCGCCAC



TTACTACTGTCAACACTATCAGAGCTTTCCGTGGACCTTTGGAGGGGGGA



CCAAATTGGAGATCAAGCGCGACTACAAGGATGACGATGACAAA






GGGAAAUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAGAGCCACCAUG
31



GAUGCUAUGAAAAGAGGCCUGUGUUGUGUGUUGCUGUUGUGCGGAGCUGU



GUUUGUGUCACCUUUCCACCUGACUACCCGCAAUGGUGAGCCCCAUAUGA



UUGUGUCGCGCCAGGAGAAGGGGAAGUCCCUCCUGUUCAAAACUGAAAAC



GGCGUGAACAUGUGUACCCUGAUGGCCAUGGACCUUGGAGAACUGUGCGA



GGACACCAUCACCUACAAUUGUCCGCUCCUGCGCCAAAACGAACCAGAAG



AUAUCGACUGCUGGUGCAAUUCCACUUCAACCUGGGUUACCUACGGAACU



UGCACCGCCACGGGAGAACACAGAAGAGAAAAGCGCUCGGUGGCGCUGGU



GCCUCAUGUCGGAAUGGGACUGGAGACUCGGACGGAGACUUGGAUGUCCU



CGGAGGGAGCAUGGAAACAUGCCCAACGGAUCGAAACUUGGGUGCUGAGG



CACCCUGGAUUCACCAUCAUGGCAGCGAUCCUCGCCUACACUAUAGGUAC



UACCUACUUUCAAAGGGUGCUGAUCUUCAUUCUCCUCACCGCAGUGGCCC



CUUCAAUGACCAUGAGGUGCAUUGGGAUCUCGAACCGGGACUUCGUCGAA



GGAGUGUCCGGAGGUAGCUGGGUCGACAUCGUCCUGGAACACGGAAGCUG



CGUGACUACUAUGGCGAAGAACAAGCCAACCUUGGACUUCGAGCUUAUCA



AGACCGAGGCGAAGCACCCGGCCACUCUGAGAAAGUACUGCAUCGAGGCU



AAGCUCACCAACACGACCACUGCCUCGCGAUGCCCAACUCAGGGAGAACC



GUCACUGAACGAAGAACAGGAUAAACGCUUUGUGUGCAAGCAUAGCAUGG



UGGAUAGAGGCUGGGGAAACGGCUGUGGACUCUUCGGAAAGGGUGGAAUU



GUGACGUGCGCAAUGUUCACUUGCAAGAAGAAUAUGGAAGGGAAGAUCGU



CCAGCCGGAGAACCUGGAAUACACUAUCGUGAUCACCCCGCACUCAGGCG



AGGAGAACGCAGUGGGCAACGAUACCGGGAAGCACGGGAAGGAAAUCAAG



GUGACCCCGCAGUCGUCCAUUACCGAGGCCGAACUCACCGGAUACGGCAC



UGUGACUAUGGAAUGCUCGCCACGGACCGGGCUGGAUUUCAAUGAGAUGG



UGCUCUUGCAAAUGGAGAACAAAGCCUGGCUGGUCCACCGCCAGUGGUUC



CUCGACCUCCCCCUUCCGUGGCUGCCGGGAGCUGACACCCAAGGAUCCAA



CUGGAUCCAAAAAGAAACCCUUGUCACGUUUAAGAAUCCACAUGCCAAAA



AGCAGGACGUGGUCGUGCUCGGAAGCCAGGAAGGAGCCAUGCACACUGCG



CUGACUGGAGCAACCGAAAUUCAAAUGUCGAGCGGCAACCUCCUCUUCAC



UGGACAUCUGAAGUGCCGGCUGCGCAUGGACAAACUGCAACUUAAGGGCA



UGUCAUACUCGAUGUGUACCGGCAAAUUCAAGGUGGUGAAGGAGAUCGCG



GAGACUCAGCACGGGACCAUCGUCAUCCGGGUCCAGUAUGAGGGUGAUGG



UUCCCCCUGCAAGAUCCCUUUCGAAAUCAUGGAUCUGGAGAAACGUCACG



UGCUGGGCCGGCUGAUCACUGUGAAUCCGAUCGUUACGGAGAAAGACAGC



CCGGUGAACAUCGAAGCUGAACCGCCGUUUGGGGAUAGCUACAUUAUCAU



CGGCGUGGAACCAGGCCAGCUCAAGUUGUCGUGGUUCAAGAAAGGAGGAG



GUGGAGGAUCCGGAGGCGGAGGGUCGGGCGGUGGUGGAUCGGAGGUCAAA



CUGCAGCAAUCAGGGACCGAAGUCGUGAAGCCGGGGGCUUCAGUCAAGCU



GUCCUGCAAGGCCAGCGGCUAUAUCUUCACUAGCUACGACAUCGAUUGGG



UGCGGCAGACUCCGGAGCAAGGACUCGAGUGGAUUGGGUGGAUCUUUCCG



GGCGAGGGAUCAACCGAGUACAACGAAAAAUUUAAGGGACGGGCAACGCU



GUCCGUGGACAAGAGCUCAUCUACGGCGUACAUGGAGCUGACGCGGCUCA



CGUCAGAGGAUUCCGCCGUCUACUUCUGUGCCAGGGGCGACUACUACCGG



CGCUACUUUGAUCUGUGGGGACAAGGAACGACCGUGACUGUCUCAUCAGG



CGGCGGCGGAUCGGGAGGAGGCGGAUCGGGUGGCGGUGGUUCGGACAUUC



AGAUGACUCAAUCGCCCAGCUUCCUGUCGACCUCACUGGGGAAUUCUAUU



ACGAUCACUUGUCACGCUUCGCAGAACAUCAAGGGUUGGCUGGCUUGGUA



CCAGCAGAAAAGCGGUAACGCCCCGCAACUGCUCAUCUACAAGGCAUCGU



CCCUGCAAUCGGGAGUGCCGUCACGCUUUUCAGGAUCGGGCUCCGGAACC



GAUUACAUCUUUACCAUCAGCAACCUGCAGCCGGAAGACAUCGCCACUUA



CUACUGUCAACACUAUCAGAGCUUUCCGUGGACCUUUGGAGGGGGGACCA



AAUUGGAGAUCAAGCGCGACUACAAGGAUGACGAUGACAAAUGAUAAUAG



GCUGGAGCCUCGGUGGCCAUGCUUCUUGCCCCUUGGGCCUCCCCCCAGCC



CCUCCUCCCCUUCCUGCACCCGUACCCCCGUGGUCUUUGAAUAAAGUCUG



AGUGGGCGGC






MDWTWILFLVAAATRVHSKGMSYSMCTGKFKVVKEIAETQHGTIVIRVQT
32



EGDGSPCKIPFEIMDLEKRHVLGRLITVNPIVTEKDSPVNIEAEPPFGDS



YIIIGVEPGQLKLNWFKKGSSIGQMFETTMRGAKRMAILSGGDIIKLLNE



QVNKEMQSSNLYMSMSSWCYTHSLDGAGLFLFDHAAEEYEHAKKLIIFLN



ENNVPVQLTSISAPEHKFEGLTQIFQKAYEHEQHISESINNIVDHAIKSK



DHATFNFLQWYVAEQHEEEVLFKDILDKIELIGNENHGLYLADQYVKGIA



KSRKS






ATGGATTGGACCTGGATCTTGTTTCTCGTCGCCGCAGCCACTCGCGTTCA
33



TAGCAAAGGAATGTCATACTCCATGTGCACGGGAAAATTCAAGGTGGTCA



AAGAGATCGCGGAGACTCAGCACGGCACCATCGTCATTCGCGTGCAAACT



GAAGGAGATGGATCTCCCTGCAAGATCCCGTTCGAGATCATGGACCTGGA



AAAGAGACACGTCCTCGGTAGACTGATCACCGTGAACCCGATCGTGACGG



AGAAGGATTCCCCGGTGAATATTGAAGCAGAGCCTCCATTTGGGGACTCA



TACATTATCATTGGGGTCGAGCCGGGCCAGCTGAAGCTGAATTGGTTTAA



GAAGGGCTCGTCAATCGGACAGATGTTCGAAACTACTATGAGGGGTGCAA



AGCGGATGGCGATCCTCTCGGGCGGAGATATCATCAAACTCCTTAACGAA



CAGGTGAACAAGGAGATGCAGTCCTCAAACCTTTACATGAGCATGTCGTC



CTGGTGTTACACCCATAGCCTGGACGGCGCTGGATTGTTCCTGTTTGACC



ATGCAGCGGAGGAATACGAACACGCCAAGAAGCTCATCATCTTCCTGAAC



GAGAATAACGTGCCAGTGCAACTGACCTCCATCTCGGCTCCTGAGCACAA



GTTCGAAGGACTCACCCAGATCTTCCAAAAGGCCTACGAACACGAACAGC



ACATCAGCGAATCCATCAACAATATCGTGGACCATGCTATCAAAAGCAAA



GACCATGCGACCTTCAACTTCCTGCAATGGTATGTCGCCGAACAGCACGA



AGAGGAGGTGCTGTTCAAGGACATTCTCGACAAAATCGAATTGATAGGGA



ACGAAAATCACGGTCTGTACCTGGCCGATCAATACGTGAAGGGAATTGCC



AAGTCGCGGAAGTCGT






GGGAAAUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAGAGCCACCAUG
34



GAUUGGACCUGGAUCUUGUUUCUCGUCGCCGCAGCCACUCGCGUUCAUAG



CAAAGGAAUGUCAUACUCCAUGUGCACGGGAAAAUUCAAGGUGGUCAAAG



AGAUCGCGGAGACUCAGCACGGCACCAUCGUCAUUCGCGUGCAAACUGAA



GGAGAUGGAUCUCCCUGCAAGAUCCCGUUCGAGAUCAUGGACCUGGAAAA



GAGACACGUCCUCGGUAGACUGAUCACCGUGAACCCGAUCGUGACGGAGA



AGGAUUCCCCGGUGAAUAUUGAAGCAGAGCCUCCAUUUGGGGACUCAUAC



AUUAUCAUUGGGGUCGAGCCGGGCCAGCUGAAGCUGAAUUGGUUUAAGAA



GGGCUCGUCAAUCGGACAGAUGUUCGAAACUACUAUGAGGGGUGCAAAGC



GGAUGGCGAUCCUCUCGGGCGGAGAUAUCAUCAAACUCCUUAACGAACAG



GUGAACAAGGAGAUGCAGUCCUCAAACCUUUACAUGAGCAUGUCGUCCUG



GUGUUACACCCAUAGCCUGGACGGCGCUGGAUUGUUCCUGUUUGACCAUG



CAGCGGAGGAAUACGAACACGCCAAGAAGCUCAUCAUCUUCCUGAACGAG



AAUAACGUGCCAGUGCAACUGACCUCCAUCUCGGCUCCUGAGCACAAGUU



CGAAGGACUCACCCAGAUCUUCCAAAAGGCCUACGAACACGAACAGCACA



UCAGCGAAUCCAUCAACAAUAUCGUGGACCAUGCUAUCAAAAGCAAAGAC



CAUGCGACCUUCAACUUCCUGCAAUGGUAUGUCGCCGAACAGCACGAAGA



GGAGGUGCUGUUCAAGGACAUUCUCGACAAAAUCGAAUUGAUAGGGAACG



AAAAUCACGGUCUGUACCUGGCCGAUCAAUACGUGAAGGGAAUUGCCAAG



UCGCGGAAGUCGUGAUAAUAGGCUGGAGCCUCGGUGGCCAUGCUUCUUGC



CCCUUGGGCCUCCCCCCAGCCCCUCCUCCCCUUCCUGCACCCGUACCCCC



GUGGUCUUUGAAUAAAGUCUGAGUGGGCGGCU









Mice were vaccinated on weeks 0 and 3 via intramuscular (IM) or intradermal (ID) routes. One group remained unvaccinated and one was administered 105 plaque-forming units (PFU) live DENV2, D2Y98P isolate via intravenous (IV) injection as a positive control. Serum was collected from each mouse on weeks 1, 3, and 5; bleeds on weeks 1 and 3 were in-life samples (tail vein or submandibular bleeds) and week 5 will be a terminal (intracardiac) bleed. Individual serum samples were stored at −80° C. until analysis by neutralization or microneutralization assay. Pooled samples from each group at the week 5 time points were tested by Western blot for reactivity with viral lysate.









TABLE 16







Detailed experimental design (treatment, readouts)















Vaccine (n =








10, female)




mice/group)



Mouse
Delivered

Formulation/


Group
Strain
week 0 and 3
Chemistry
Route
Dose
Readouts
















1
Female
N/A

N/A
N/A
Serum


2
BALB/c
DEN2Y98-PrME
N1-methyl-
ID
0.4 
samples


3
6-8
(construct 1
pseudouridine/
IM
mg/kg
collected



weeks
from Table 14)
5-methyl-

in LNP
on weeks


4
of age

cytosine
ID
0.08
1, 3, and 5.


5



IM
mg/kg
Serum







in LNP
analyzed


6



ID
 0.016
via


7



IM
mg/kg
Western







in LNP
blot


8


N1-methyl-
ID
0.4 


9


pseudouridine
IM
mg/kg







in LNP


10



ID
0.08


11



IM
mg/kg







in LNP


11



ID
 0.016


12



IM
mg/kg







in LNP


13

DEN2Y98-PrME80
N1-methyl-
ID
0.4 


14

(construct 2
pseudouridine/
IM
mg/kg




from Table 14)
5-methyl-

in LNP


15


cytosine
ID
0.08


16



IM
mg/kg







in LNP


17



ID
 0.016


18



IM
mg/kg







in LNP


19


N1-methyl-
ID
0.4 


20


pseudouridine
IM
mg/kg







in LNP


21



ID
0.08


22



IM
mg/kg







in LNP


23



ID
 0.016


24



IM
mg/kg







in LNP


25

DEN2Y98-
N1-methyl-
ID
0.4 


26

PrME80-DC
pseudouridine/
IM
mg/kg




(construct 3
5-methyl-

in LNP


27

from Table 14)
cytosine
ID
0.08


28



IM
mg/kg







in LNP


29



ID
 0.016


30



IM
mg/kg







in LNP


31


N1-methyl-
ID
0.4 


32


pseudouridine
IM
mg/kg







in LNP


33



ID
0.08


34



IM
mg/kg







in LNP


35



ID
 0.016


36



IM
mg/kg







in LNP


37

DEN2-DIII-
N1-methyl-
ID
0.4 


38

Ferritin
pseudouridine
IM
mg/kg




(construct 4


in LNP


39

from Table 14)

ID
0.08


40



IM
mg/kg







in LNP


41



ID
 0.016


42



IM
mg/kg







in LNP


43

Control,

IV
105 PFU




D2Y98P




live virus










Signal was detected in groups 5, 15, 39, and 44 (live virus control) by a band that appeared between 50 and 60 kDa in the Western blot data. The data suggests that a mRNA vaccine to a single dengue viral antigen can produce antibody in preliminary studies.


In order to provide a Dengue vaccine having enhanced immunogenicity, RNA vaccines for concatemeric antigens were designed and tested according to the invention. These vaccines, which have significantly enhanced activity, in comparison to the single protein antigens described herein, are described below.


Example 20: In Silico Prediction of T Cell Epitopes for RNA Vaccine Design

Several peptide epitopes from Dengue virus were generated and tested for antigenic activity. The peptide epitopes are designed to maximize MHC presentation. In general the process of MHC class I presentation is quite inefficient, with only 1 peptide of 10,000 degraded molecules actually being presented. Additionally the priming of CD8 T cell with APCs having insufficient densities of surface peptide/MHC class I complexes results in weak responders exhibiting impaired cytokine secretion and a decrease memory pool. Thus, the process of designing highly effective peptide epitopes is important to the immunogenicity of the ultimate vaccine.


In silico prediction of desirable peptide epitopes was performed using Immune Epitope Database. Using this database several immunogenic Dengue T cell epitopes showing strong homology across all 4 Dengue serotypes were predicted. Examples of these epitopes are shown in FIGS. 16A-16C and 17A-17C.


Example 21: Prediction of DENV T Cell Epitopes for RNA Vaccine Design

The design of optimized vaccination systems to prevent or treat conditions that have failed to respond to more traditional treatments or early vaccination strategies relies on the identification of the antigens or epitopes that play a role in these conditions and which the immune system can effectively target. T cell epitopes (e.g., MHC peptide binding) for the various alleles shown in Table 17 were determined using Rapid Epitope Discovery System (ProImmune REVEAL & ProVE®). This system is used to identify those candidate epitopes that actually cause relevant immune responses from the numerous other potential candidates identified using algorithms to predict MHC-peptide binding. The REVEAL binding assay determines the ability of each candidate peptide to bind to one or more MHC I class alleles and stabilize the MHC-peptide complex. The assay identifies the most likely immunogenic peptides in a protein sequence by comparing the binding to that of a high affinity T cell epitope and detecting the presence or absence of the native conformation of the MHC-peptide complex. The epitope peptides are further tested using the assays described herein to confirm their immunogenic activity.









TABLE 17





Alleles Tested


Allele

















A*01:01



A*02:01



A*03:01



A*11:01



A*24:02



B*07:02



B*27:05



H-2Kb

















TABLE 18







ProImmune REVEAL ® binding assay data for A*01:01











Peptide I.D.
SEQ ID NO
REVEAL ® score at 0 h







TTDISEMGA
217
68.4

















TABLE 19







ProImmune REVEAL ® binding assay data for A*02:01











Peptide I.D.
SEQ ID NO
REVEAL ® score at 0 h















TMWHVTRGA
218
112.0







MWHVTRGAV
219
62.7







GLYGNGVVT
220
87.7







TLILAPTRV
221
104.2







LILAPTRVV
222
106.4







ILAPTRVVA
223
95.7







VVAAEMEEA
224
92.2







IVDLMCHAT
225
62.7







LMCHATFTM
226
72.9







MGEAAAIFM
227
50.6







GEAAAIFMT
228
74.3







KTVWFVPSI
229
115.9







LMRRGDLPV
230
82.3







TLLCDIGES
231
63.9







LLCDIGESS
232
93.9







AMTDTTPFG
233
91.9







GQQRVFKEK
234
47.1







KLTYQNKVV
235
92.3







AISGDDCVV
236
91.1







LMYFHRRDL
237
97.8

















TABLE 20







ProImmune REVEAL ® binding assay data for A*03:01











Peptide I.D.
SEQ ID NO
REVEAL ® score at 0 h







RTLILAPTR
238
91.4







TLILAPTRV
239
55.2







MCHATFTMR
240
86.8







TVWFVPSIK
241
53.6







GQQRVFKEK
242
59.6







CVYNMMGKR
243
81.6

















TABLE 21







ProImmune REVEAL ® binding assay data for A*11:01











Peptide I.D.
SEQ ID NO
REVEAL ® score at 0 h















HTMWHVTRG
244
56.3







RTLILAPTR
245
89.9







TLILAPTRV
246
59.0







MCHATFTMR
247
91.0







ATFTMRLLS
248
58.5







GEAAAIFMT
249
50.3







KTVWFVPSI
250
50.8







TVWFVPSIK
251
92.2







GQQRVFKEK
252
85.5







CVYNMMGKR
253
113.2







VYNMMGKRE
254
62.5







YNMMGKREK
255
80.9







NMMGKREKK
256
77.9







GTYGLNTFT
257
63.6







ISGDDCVVK
258
88.7

















TABLE 22







ProImmune REVEAL ® binding assay data for A*24:02











Peptide I.D.
SEQ ID NO
REVEAL ® score at 0 h














LMCHATFTM
259
99.5






CHATFTMRL
260
75.9






GEAAAIFMT
261
58.9






KTVWFVPSI
262
89.1






HWTEAKMLL
263
103.2






WTEAKMLLD
264
94.7






LGCGRGGWS
265
74.8






MAMTDTTPF
266
51.3






MYADDTAGW
267
76.8






VGTYGLNTF
268
96.0






YFHRRDLRL
269
87.5
















TABLE 23







ProImmune REVEAL ® binding assay data for B*07:02











Peptide I.D.
SEQ ID NO
REVEAL ® score at 0 h














FKPGTSGSP
270
50.4






KPGTSGSPI
271
112.1






IPERSWNSG
272
45.2






PERVILAGP
273
56.1






LMRRGDLPV
274
178.9






PLSRNSTHE
275
65.0






LSRNSTHEM
276
124.5






SRNSTHEMY
277
52.0






MAMTDTTPF
278
117.4






TPFGQQRVF
279
112.7






LMYFHRRDL
280
119.6
















TABLE 24







ProImmune REVEAL ® binding assay data for B*27:05











Peptide I.D.
SEQ ID NO
REVEAL ® score at 0 h














LRTLILAPT
281
58.7






LMCHATFTM
282
98.2






ARGYISTRV
283
125.3






RRGDLPVWL
284
144.8






GQQRVFKEK
285
95.4






SRAIWYMWL
286
53.9






FKLTYQNKV
287
53.7
















TABLE 25







ProImmune REVEAL ® binding assay data for H-2Kb











Peptide I.D.
SEQ ID NO
REVEAL ® score at 0 h














FKPGTSGSP
288
45.7






LAPTRVVAA
289
102.5






LMCHATFTM
290
59.0






CHATFTMRL
291
60.3






HATFTMRLL
292
69.5






ATFTMRLLS
293
55.6






KTVWFVPSI
294
54.4






LSRNSTHEM
295
51.1






QQRVFKEKV
296
63.4






YGLNTFTNM
297
75.4






LMYFHRRDL
298
54.9









Example 22: Activity Testing for Predicted Peptide Epitopes

Exemplary peptide epitopes selected using the methods described above were further characterized. These peptide epitopes were confirmed to have activity using in vitro HLA binding assays (human lymphocyte binding assays). Peptides (9 aa peptides from the dengue antigen) were screened for their ability to bind to HLA. The analysis of the homology, affinity, frequency and design of these peptides is shown in FIGS. 16A-16C and 17A-17C.


Example 23: In Vivo Analysis of Mimectopes of Predicted Human Epitopes RNA Vaccines
Methods

IFNγ ELISpot.


Mouse IFNγ ELISpot assays were performed using IFNγ coated Millipore IP Opaque plates according to the manufacturer's mouse IFNγ ELISPOT guidelines. Briefly, the plates were blocked using complete RPMI (R10) and incubated for 30 minutes prior to plating cells. Peptides (284-292, 408-419 or 540-548) were diluted to 5 different concentrations for stimulation at 5, −6, −7, −8, or −9 from an original stock concentration of 10 mM (−2). Mouse splenocytes (200,000-250,000 cells) were plated in appropriate wells with peptide, PMA+ Ionomycin or R10 media alone. Cells were stimulated in a total volume of 125 μL per well. Plates were then incubated at 37° C., 5% CO2 for 18-24 hrs. Plates were developed following the manufacturer's instructions. Plates were counted and quality controlled using the automated ELISPOT reader CTL ImmunoSpot/FluoroSpot.


Intracellular Cytokine Staining (ICS).


Intracellular Cytokine Staining (ICS). For intracellular cytokine staining, individual splenocytes, were resuspended at a concentration of 1.5×106 cells per mL. Peptides (284-292, 408-419 or 540-548) were made into 5 dilutions from a stock concentration of 10 mM(−2). The final concentrations of each peptide were −5, −6, −7, −8, or −9 in their respective wells. Cells were stimulated in a final volume of 200 uL within a 96 well culture plate. After the addition of Golgi plug (0.2 uL per well), cells were incubated at 37° C., 5% CO2 for 5 hours. Following stimulation, cells were surface stained, fixed, washed and put at 4° C. overnight. Intracellular staining was performed the following day, resulting in full panel of Live/Dead (Invitrogen), αCD3, αCD4, αCD8, αCD45, αCCR7, αCD44, αCD25, αIL-2, αIFNγ, and αTNFα (BD Biosciences). Cells were acquired in a 96-U bottom plate using BD LSR Fortessa HTS (BD Biosciences).


Results

The exemplary peptide epitopes selected using the methods described herein were used to produce tests mouse mimectopes of the predicted human epitopes. These mimectopes were analyzed for in vivo activity using restimulation assays during the acute phase of Dengue infection (Day 7). The methods were performed on dengue-infected IFNαβ/γ-receptor-deficient mice (AG129). Seven days post infection splenocytes were harvested and subjected to an ELISPOT assay to quantify secretion of cytokines by T cells (CD8) as described above. Briefly, the isolated splenocytes were stimulated with the test peptides and tested for T cell activation. If the peptide is an appropriate antigen, some cells would be present antigen during infection and would be capable of stimulating T cells. The methods for analyzing the T cell activation were performed as follows:


T cells (at a known concentration) were incubated with a specific antigen in a cell culture well the activated T cells were transferred to ELISPOT plates (precoated with anti-cytokine antibody)


the cells were incubated such that cytokines could be secreted


the cells were washed off the plate and enzyme coupled secondary Ig was added


the plates were washed and substrate was added


positive spots were scored under microscope.


The data is shown in FIGS. 18-19. FIGS. 18 and 19 are graphs depicting the results of an ELISPOT assay of dengue-specific peptides measuring IFN-γ (spots per million splenocytes).


A schematic of an assay on a BLT Mouse Model (Bone Marrow/Liver/Thymus) is shown in FIG. 20. The results of a histogram analysis of human CD8 T cells stimulated with peptide epitope is also shown in FIG. 20.


The following two sequences were used as controls:









(V5)8-cathb:


(SEQ ID NO: 35)



Kozak Start GKPIPNPLLGLDST-GFLG-GKPIPNPLLGLDST-






GFLG-GKPIPNPLLGLDST-GFLG-GKPIPNPLLGLDST-GFLG-






GKPIPNPLLGLDST-GFLG-GKPIPNPLLGLDST-GFLG-







GKPIPNPLLGLDST-GFLG-GKPIPNPLLGLDST



Stop





(v5)8-cathb + MHCi:


(SEQ ID NO: 36)



Kozak Start GKPIPNPLLGLDST-GFLG-GKPIPNPLLGLDST-






GFLG-GKPIPNPLLGLDST-GFLG-GKPIPNPLLGLDST-GFLG-






GKPIPNPLLGLDST-GFLG-GKPIPNPLLGLDST-GFLG-







GKPIPNPLLGLDST-GFLG-GKPIPNPLLGLDST



Stop







Some results are shown in Table 26:









TABLE 26







Results


A*02:01








Peptide ID
REVEAL ® Score













5.
KQWFLDLPL (SEQ ID NO: 213)
86.0






6.
RQWFLDLPL (SEQ ID NO: 214)
77.7






7.
RQWFFDLPL (SEQ ID NO: 215)
80.5






8.
TALTGATEI (SEQ ID NO: 216)
0.9













Positive Control
100.
+/−









Example 24: AG129 Mouse Challenge of Mimectopes of Predicted Human Epitopes from DENV2

A study is performed on AG129 mouse using a cocktail of 2 peptide epitopes. The immunogenicity of the peptide epitopes is determined in AG129 mice against challenge with a lethal dose of mouse-adapted DENV 2 strain D2Y98P. AG129 mice, which lack IFN α/β and γ receptor signaling, injected intradermally in the footpad with 104 PFU of DENV do not survive past day 5 post-injection. AG129 mice are vaccinated via intramuscular (IM) injection with either 2 μg or 10 μg of a cocktail of 2 peptide epitopes. The vaccines are given to AG129 mice with a prime and a boost (day 0 and day 28). The positive control group is vaccinated with heat-inactivated DENV 2. Phosphate-buffered saline (PBS) is used as a negative control. On day 56, mice are challenged with mouse-adapted DENV 2 and monitored for 10 days for weight loss, morbidity, and mortality. Mice that display severe illness, defined as >30% weight loss, a health score of 6 or above, extreme lethargy, and/or paralysis are euthanized.


Example 25: “Humanized” DENV Peptides Mouse Immunogenicity Study

A study analyzing immunogenicity of the peptide epitopes on humanized mice is performed. A single-dose cocktail (30 μg) containing 3 different peptide epitopes are delivered by IM route of immunization with prime and boost (day 0, day 28). A T cell (ELISPOT and ICS) characterization may be performed on Day 7, Day 28, and Day 56.


Example 26: Testing of Non-Human Primate (NHP) Mimectopes of Predicted DENV Human Epitopes

Non-human primate (NHP) mimectopes to the human epitopes may also be developed and tested for activity in NHP assays. The NHP mimectopes are designed based on the human antigen sequence. These mimectopes may be analyzed for in vivo activity in an NHP model using, for instance, restimulation assays. Once the NHPs have been infected, immune cells may be isolated and tested for sensitivity of activation by the particular mimectopes.


Example 27: Targeting of DENV Concatemeric Constructs Using Cytoplasmic Domain of MHC I

MHC-1_V5 concatemer constructs were developed and transfected in HeLa cells. Triple immunofluorescence using Mitotracker Red (mitochondria), anti-V5, and anti-MHC-1 antibodies plus Dapi was performed. The data is shown in FIGS. 21-23. FIG. 21 shows MHC-1_V5 concatemer transfection in HeLa cells. The arrows indicate V5-MHC1 colocalization (bottom right). FIG. 22 shows MHC-1_V5 concatemer transfection. The arrows indicate regions where V5 preferentially colocalizes with MHC1 and not with Mitotracker. FIG. 23 shows V5 concatemer transfection in HeLa cells. V5 has homogeneous cytoplasmic distribution preferentially colocalizes with MHC1 and not with Mitotracker. These data demonstrate that the V5 concatemer with the cytoplasmic domain from MHC class I colocalizes with MHC class I expression (FIG. 21), while the V5 concatemer without this sequence is only found in the cytoplasm (FIG. 23) following transfection in HeLa cells.


Example 28: In Vivo Analysis of DENV Concatemeric mRNA Epitope Construct

The Dengue concatemers used in this study consist of 8 repeats of the peptide TALGATEI (SEQ ID NO: 299), a mouse CD8 T cell epitope found in the DENV2 envelope. The peptide repeats were linked via cathepsin B cleavage sites and modified with the various sequences as follows:


(1) TALGATEI (SEQ ID NO: 299) peptide concatemer with no modification


(2) TALGATEI (SEQ ID NO: 299) peptide concatemer with IgKappa signal peptide


(3) TALGATEI (SEQ ID NO: 299) peptide concatemer with PEST sequence


(4) TALGATEI (SEQ ID NO: 299) peptide concatemer with IgKappa signal peptide and PEST sequence


(5) TALGATEI (SEQ ID NO: 299) peptide concatemer with MHC class I cytoplasmic domain


(6) TALGATEI (SEQ ID NO: 299) peptide concatemer with IgKappa signal peptide and MHC class I cytoplasmic domain


(7) Heat-inactivated DENV2 (D2Y98P)

(8) No immunization


The immunogenicity of the peptide concatemeric candidate vaccines were determined in AG129 mice against challenge with a lethal dose of DENV strain D2Y98P. AG129 mice, which lack IFN α/β and γ receptor signaling, injected intradermally in the footpad with 104 PFU of DENV do not survive past day 5 post-injection. (In this study, the mice died due to a problem with the heat-attenuation). The tested vaccines included constructs (1)-(8) disclosed above. AG129 mice were vaccinated via intramuscular (IM) injection with either 2 μg or 10 μg of the candidate vaccine. The vaccines were given to AG129 mice as a prime and a boost (second dose provided 28 days after the first dose). The positive control group was vaccinated with heat-inactivated DENV 2. Phosphate-buffered saline (PBS) was used as a negative control.


On day 56, mice were challenged with mouse-adapted DENV 2 and monitored for 10 days for weight loss, morbidity, and mortality. Mice that displayed severe illness, defined as >30% weight loss, a health score of 6 or above, extreme lethargy, and/or paralysis were euthanized. Notably, mice “vaccinated” with heat-inactivated DENV (positive control group) became morbid and died (they were not included in the challenge portion of the study).


In addition, individual serum samples were collected prior to challenge on day 54 and PBMCs were isolated and frozen for subsequent testing.


The AG129 mice PBMCs were thawed and stimulated with TALGATEI (SEQ ID NO: 299) peptide for 5 hours in a standard intracellular cytokine assay. For intracellular cytokine staining, PBMCs were thawed and suspended in media. The TALGATEI (SEQ ID NO: 299) peptide was administered to stimulate the cells. After the addition of Golgi plug, cells were incubated at 37° C., 5% CO2 for 5 hours. Following stimulation, cells were surface stained, fixed, washed and put at 4° C. overnight. Intracellular staining was performed the following day and assayed via ELISPOT assay to quantify secretion of cytokines by T cells (CD8) as described above to determine T cell activation. If the peptide is an appropriate antigen, some cells would be present antigen during infection and would be capable of stimulating T cells. The results are shown in FIGS. 24A and 24B, which demonstrate that each of the peptides (1)-(6) stimulate T cell activation.


Example 29: Exemplary CHIKV Polypeptides

The amino acids presented in the Table 27 are exemplary CHIKV antigenic polypeptides. To the extent that any exemplary antigenic peptide described herein includes a flag tag or V5, or a polynucleotide encodes a flag tag or V5, the skilled artisan understands that such flag tag or V5 is excluded from the antigenic polynucleotide in a vaccine formulation. Thus, any of the polynucleotides encoding proteins described herein are encompassed within the compositions of the invention without the flag tag or V5 sequence.










TABLE 27





Antigen



identifier
Amino acid sequence







SE_chikv-
MYEHVTVIPNTVGVPYKTLVNRPGYSPMVLEMELLSVTLEPTLSLDYITCEYKTVIPSPYVK


Brazillian-
CCGTAECKDKSLPDYSCKVFTGVYPFMWGGAYCFCDTENTQLSEAHVEKSESCKTEFASAYR


E1_KP164567-
AHTASASAKLRVLYQGNNITVAAYANGDHAVTVKDAKFIVGPMSSAWTPFDNKIVVYKGDVY


71_72
NMDYPPFGAGRPGQFGDIQSRTPESEDVYANTQLVLQRPSAGTVHVPYSQAPSGFKYWLKER



GASLQHTAPFGCQIATNPVRAMNCAVGNMPISIDIPDAAFTRVVDAPSLTDMSCEVSACTHS



SDFGGVAIIKYAASKKGKCAVHSMTNAVTIREAEIEVEGNSQLQISFSTALASAEFRVQVCS



TQVHCAAECHPPKDHIVNYPASHTTLGVQDISATAMSWVQKITGGVGLVVAVAALILIVVLC



VSFSRH (SEQ ID NO. 37)





SE_chikv-
MYEHVTVIPNTVGVPYKTLVNRPGYSPMVLEMELLSVTLEPTLSLDYITCEYKTVIPSPYVK


Brazillian-
CCGTAECKDKNLPDYSCKVFTGVYPFMWGGAYCFCDAENTQLSEAHVEKSESCKTEFASAYR


E1_KP164568-
AHTASASAKLRVLYQGNNITVTAYANGDHAVTVKDAKFIVGPMSSAWTPFDNKIVVYKGDVY


69_70
NMDYPPFGAGRPGQFGDIQSRTPESKDVYANTQLVLQRPAAGTVHVPYSQAPSGFKYWLKER



GASLQHTAPFGCQIATNPVRAVNCAVGNMPISIDIPDAAFIRVVDAPSLTDMSCEVPACTHS



SDFGGVAIIKYAASKKGKCAVHSMTNAVTIREAEIEVEGNSQLQISFSTALASAEFRVQVCS



TQVHCVAECHPPKDHIVNYPASHTTLGVQDISATALSWVQKITGGVGLVVAVAALILIVVLC



VSFSRH (SEQ ID NO. 38)





SE_chikv-
MSIKDHFNVYKATRPYLAHCPDCGEGHSCHSPVALERIRNEATDGTLKIQVSLQIGIKTDDS


Brazillian-
HDWTKLRYMDNHMPADAERAGLFVRTSAPCTITGTMGHFILARCPKGETLTVGFTDGRKISH


E2-
SCTHPFHHDPPVIGREKFHSRPQHGRELPCSTYAQSTAATAEEIEVHMPPDTPDRTLMSQQS


E1_KP164567-
GNVKITVNSQTVRYKCNCGDSSEGLTTTDKVINNCKVDQCHAAVTNHKKWQYNSPLVPRNAE


71_72
FGDRKGKVHIPFPLANVTCRVPKARNPTVTYGKNQVIMLLYPDHPTLLSYRNMGEEPNYQEE



WVTHKKEIRLTVPTEGLEVTWGNNEPYKYWPQLSTNGTAHGHPHEIILYYYELYPTMTAVVL



SVASFILLSMVGVAVGMCMCARRRCITPYELTPGATVPFLLSLICCIRTAKAYEHVTVIPNT



VGVPYKTLVNRPGYSPMVLEMELLSVTLEPTLSLDYITCEYKTVIPSPYVKCCGTAECKDKS



LPDYSCKVFTGVYPFMWGGAYCFCDTENTQLSEAHVEKSESCKTEFASAYRAHTASASAKLR



VLYQGNNITVAAYANGDHAVTVKDAKFIVGPMSSAWTPFDNKIVVYKGDVYNMDYPPFGAGR



PGQFGDIQSRTPESEDVYANTQLVLQRPSAGTVHVPYSQAPSGFKYWLKERGASLQHTAPFG



CQIATNPVRAMNCAVGNMPISIDIPDAAFTRVVDAPSLTDMSCEVSACTHSSDFGGVAIIKY



AASKKGKCAVHSMTNAVTIREAEIEVEGNSQLQISFSTALASAEFRVQVCSTQVHCAAECHP



PKDHIVNYPASHTTLGVQDISATAMSWVQKITGGVGLVVAVAALILIVVLCVSFSRHMSIKD



HFNVYKATRPYLAHCPDCGEGHSCHSPVALERIRNEATDGTLKIQVSLQIGIKTDDSHDWTK



LRYMDNHMPADAERAGLFVRTSAPCTITGTMGHFILARCPKGETLTVGFTDGRKISHSCTHP



FHHDPPVIGREKFHSRPQHGRELPCSTYAQSTAATAEEIEVHMPPDTPDRTLMSQQSGNVKI



TVNSQTVRYKCNCGDSSEGLTTTDKVINNCKVDQCHAAVTNHKKWQYNSPLVPRNAEFGDRK



GKVHIPFPLANVTCRVPKARNPTVTYGKNQVIMLLYPDHPTLLSYRNMGEEPNYQEEWVTHK



KEIRLTVPTEGLEVTWGNNEPYKYWPQLSTNGTAHGHPHEIILYYYELYPTMTAVVLSVASF



ILLSMVGVAVGMCMCARRRCITPYELTPGATVPFLLSLICCIRTAKAYEHVTVIPNTVGVPY



KTLVNRPGYSPMVLEMELLSVTLEPTLSLDYITCEYKTVIPSPYVKCCGTAECKDKSLPDYS



CKVFTGVYPFMWGGAYCFCDTENTQLSEAHVEKSESCKTEFASAYRAHTASASAKLRVLYQG



NNITVAAYANGDHAVTVKDAKFIVGPMSSAWTPFDNKIVVYKGDVYNMDYPPFGAGRPGQFG



DIQSRTPESEDVYANTQLVLQRPSAGTVHVPYSQAPSGFKYWLKERGASLQHTAPFGCQIAT



NPVRAMNCAVGNMPISIDIPDAAFTRVVDAPSLTDMSCEVSACTHSSDFGGVAIIKYAASKK



GKCAVHSMTNAVTIREAEIEVEGNSQLQISFSTALASAEFRVQVCSTQVHCAAECHPPKDHI



VNYPASHTTLGVQDISATAMSWVQKITGGVGLVVAVAALILIVVLCVSFSRH (SEQ ID



NO. 39)





SQ-031495
MSTKDNFNVYKATRPYLAHCPDCGEGHSCHSPVALERIRNEATDGTLKIQVSLQIGIKTDDS


SE_chikv-
HDWTKLRYMDNHTPADAERAGLFVRTSAPCTITGTMGHFILTRCPKGETLTVGFTDSRKISH


Brazillian-
SCTHPFHHDPPVIGREKFHSRPQHGKELPCSTYVQSTAATTEEIEVHMPPDTPDRTLMSQQS


E2-
GNVKITVNGQTVRYKCNCGGSNEGLITTDKVINNCKVDQCHAAVTNHKKWQYNSPLVPRNAE


E1_KP164568-
LGDRKGKIHIPFPLANVTCRVPKARNPTVTYGKNQVIMLLYPDHPTLLSYRNMGEEPNYQEE


69_70
WVTHKKEVVLTVPTEGLEVTWGNNEPYKYWPQLSTNGTAHGHPHEIILYYYELYPTMTVVVV



SVASFVLLSMVGVAVGMCMCARRRCITPYELTPGATVPFLLSLICCIRTAKAYEHVTVIPNT



VGVPYKTLVNRPGYSPMVLEMELLSVTLEPTLSLDYITCEYKTVIPSPYVKCCGTAECKDKN



LPDYSCKVFTGVYPFMWGGAYCFCDAENTQLSEAHVEKSESCKTEFASAYRAHTASASAKLR



VLYQGNNITVTAYANGDHAVTVKDAKFIVGPMSSAWTPFDNKIVVYKGDVYNMDYPPFGAGR



PGQFGDIQSRTPESKDVYANTQLVLQRPAAGTVHVPYSQAPSGFKYWLKERGASLQHTAPFG



CQIATNPVRAVNCAVGNMPISIDIPDAAFIRVVDAPSLTDMSCEVPACTHSSDFGGVAIIKY



AASKKGKCAVHSMTNAVTIREAEIEVEGNSQLQISFSTALASAEFRVQVCSTQVHCVAECHP



PKDHIVNYPASHTTLGVQDISATALSWVQKITGGVGLVVAVAALILIVVLCVSFSRH (SEQ



ID NO. 40)





SE_chikv-
MSIKDHFNVYKATRPYLAHCPDCGEGHSCHSPVALERIRNEATDGTLKIQVSLQIGIKTDDS


Brazillian-
HDWTKLRYMDNHMPADAERAGLFVRTSAPCTITGTMGHFILARCPKGETLTVGFTDGRKISH


E2_KP164567-
SCTHPFHHDPPVIGREKFHSRPQHGRELPCSTYAQSTAATAEEIEVHMPPDTPDRTLMSQQS


71_72
GNVKITVNSQTVRYKCNCGDSSEGLTTTDKVINNCKVDQCHAAVTNHKKWQYNSPLVPRNAE



FGDRKGKVHIPFPLANVTCRVPKARNPTVTYGKNQVIMLLYPDHPTLLSYRNMGEEPNYQEE



WVTHKKEIRLTVPTEGLEVTWGNNEPYKYWPQLSTNGTAHGHPHEIILYYYELYPTMTAVVL



SVASFILLSMVGVAVGMCMCARRRCITPYELTPGATVPFLLSLICCIRTAKA (SEQ ID



NO. 41)





SE_chikv-
MSTKDNFNVYKATRPYLAHCPDCGEGHSCHSPVALERIRNEATDGTLKIQVSLQIGIKTDDS


Brazillian-
HDWTKLRYMDNHTPADAERAGLFVRTSAPCTITGTMGHFILTRCPKGETLTVGFTDSRKISH


E2_KP164568-
SCTHPFHHDPPVIGREKFHSRPQHGKELPCSTYVQSTAATTEEIEVHMPPDTPDRTLMSQQS


69_70
GNVKITVNGQTVRYKCNCGGSNEGLITTDKVINNCKVDQCHAAVTNHKKWQYNSPLVPRNAE



LGDRKGKIHIPFPLANVTCRVPKARNPTVTYGKNQVIMLLYPDHPTLLSYRNMGEEPNYQEE



WVTHKKEVVLTVPTEGLEVTWGNNEPYKYWPQLSTNGTAHGHPHEIILYYYELYPTMTVVVV



SVASFVLLSMVGVAVGMCMCARRRCITPYELTPGATVPFLLSLICCIRTAKA (SEQ ID



NO. 42)





SE_CHIKV_C_E3_E2_6K_E1_no
MEFIPTQTFYNRRYQPRPWAPRPTIQVIRPRPRPQRQAGQLAQLISAVNKLTMRAVPQQKPR


Flag or V5 or
RNRKNKKQRQKKQAPQNDPKQKKQPPQKKPAQKKKKPGRRERMCMKIENDCIFEVKHEGKVM


HA (Strain
GYACLVGDKVMKPAHVKGTIDNADLAKLAFKRSSKYDLECAQIPVHMKSDASKFTHEKPEGY


37997
YNWHHGAVQYSGGRFTIPTGAGKPGDSGRPIFDNKGRVVAIVLGGANEGARTALSVVTWNKD


Senegal)
IVTKITPEGAEEWSLALPVLCLLANTTFPCSQPPCTPCCYEKEPESTLRMLEDNVMRPGYYQ



LLKASLTCSPHRQRRSTKDNFNVYKATRPYLAHCPDCGEGHSCHSPIALERIRNEATDGTLK



IQVSLQIGIKTDDSHDWTKLRYMDSHTPADAERAGLLVRTSAPCTITGTMGHFILARCPKGE



TLTVGFTDSRKISHTCTHPFHHEPPVIGRERFHSRPQHGKELPCSTYVQSTAATAEEIEVHM



PPDTPDRTLMTQQSGNVKITVNGQTVRYKCNCGGSNEGLTTTDKVINNCKIDQCHAAVTNHK



NWQYNSPLVPRNAELGDRKGKIHIPFPLANVTCRVPKARNPTVTYGKNQVTMLLYPDHPTLL



SYRNMGQEPNYHEEWVTHKKEVTLTVPTEGLEVTWGNNEPYKYWPQMSTNGTAHGHPHEIIL



YYYELYPTMTVVIVSVASFVLLSMVGTAVGMCVCARRRCITPYELTPGATVPFLLSLLCCVR



TTKAATYYEAAAYLWNEQQPLFWLQALIPLAALIVLCNCLKLLPCCCKTLAFLAVMSIGAHT



VSAYEHVTVIPNTVGVPYKTLVNRPGYSPMVLEMELQSVTLEPTLSLDYITCEYKTVIPSPY



VKCCGTAECKDKSLPDYSCKVFTGVYPFMWGGAYCFCDAENTQLSEAHVEKSESCKTEFASA



YRAHTASASAKLRVLYQGNNITVAAYANGDHAVTVKDAKFVVGPMSSAWTPFDNKIVVYKGD



VYNMDYPPFGAGRPGQFGDIQSRTPESKDVYANTQLVLQRPAAGTVHVPYSQAPSGFKYWLK



ERGASLQHTAPFGCQIATNPVRAVNCAVGNIPISIDIPDAAFTRVVDAPSVTDMSCEVPACT



HSSDFGGVAIIKYTASKKGKCAVHSMTNAVTIREADVEVEGNSQLQISFSTALASAEFRVQV



CSTQVHCAAACHPPKDHIVNYPASHTTLGVQDISTTAMSWVQKITGGVGLIVAVAALILIVV



LCVSFSRH (SEQ ID NO. 43)





SE_CHIKV_C_E3_E2_6K_E1_no
MEFIPTQTFYNRRYQPRPWAPRPTIQVIRPRPRPQRQAGQLAQLISAVNKLTMRAVPQQKPR


Flag or V5 or
RNRKNKKQRQKKQAPQNDPKQKKQPPQKKPAQKKKKPGRRERMCMKIENDCIFEVKHEGKVM


HA_DX
GYACLVGDKVMKPAHVKGTIDNADLAKLAFKRSSKYDLECAQIPVHMKSDASKFTHEKPEGY



YNWHHGAVQYSGGRFTIPTGAGKPGDSGRPIFDNKGRVVAIVLGGANEGARTALSVVTWNKD



IVTKITPEGAEEWSLALPVLCLLANTTFPCSQPPCTPCCYEKEPESTLRMLEDNVMRPGYYQ



LLKASLTCSPHRQRRSTKDNFNVYKATRPYLAHCPDCGEGHSCHSPIALERIRNEATDGTLK



IQVSLQIGIKTDDSHDWTKLRYMDSHTPADAERAGLLVRTSAPCTITGTMGHFILARCPKGE



TLTVGFTDSRKISHTCTHPFHHEPPVIGRERFHSRPQHGKELPCSTYVQSTAATAEEIEVHM



PPDTPDRTLMTQQSGNVKITVNGQTVRYKCNCGGSNEGLTTTDKVINNCKIDQCHAAVTNHK



NWQYNSPLVPRNAELGDRKGKIHIPFPLANVTCRVPKARNPTVTYGKNQVTMLLYPDHPTLL



SYRNMGQEPNYHEEWVTHKKEVTLTVPTEGLEVTWGNNEPYKYWPQMSTNGTAHGHPHEIIL



YYYELYPTMTVVIVSVASFVLLSMVGTAVGMCVCARRRCITPYELTPGATVPFLLSLLCCVR



TTKAATYYEAAAYLWNEQQPLFWLQALIPLAALIVLCNCLKLLPCCCKTLAFLAVMSIGAHT



VSAYEHVTVIPNTVGVPYKTLVNRPGYSPMVLEMELQSVTLEPTLSLDYITCEYKTVIPSPY



VKCCGTAECKDKSLPDYSCKVFTGVYPFMWGGAYCFCDAENTQLSEAHVEKSESCKTEFASA



YRAHTASASAKLRVLYQGNNITVAAYANGDHAVTVKDAKFVVGPMSSAWTPFDNKIVVYKGD



VYNMDYPPFGAGRPGQFGDIQSRTPESKDVYANTQLVLQRPAAGTVHVPYSQAPSGFKYWLK



ERGASLQHTAPFGCQIATNPVRAVNCAVGNIPISIDIPDAAFTRVVDAPSVTDMSCEVPACT



HSSDFGGVAIIKYTASKKGKCAVHSMTNAVTIREADVEVEGNSQLQISFSTALASAEFRVQV



CSTQVHCAAACHPPKDHIVNYPASHTTLGVQDISTTAMSWVQKITGGVGLIVAVAALILIVV



LCVSFSRH (SEQ ID NO. 44)





SE_CHIKV_E1_no
MYEHVTVIPNTVGVPYKTLVNRPGYSPMVLEMELQSVTLEPTLSLDYITCEYKTVIPSPYVK


Flag or V5
CCGTAECKDKSLPDYSCKVFTGVYPFMWGGAYCFCDAENTQLSEAHVEKSESCKTEFASAYR



AHTASASAKLRVLYQGNNITVAAYANGDHAVTVKDAKFVVGPMSSAWTPFDNKIVVYKGDVY



NMDYPPFGAGRPGQFGDIQSRTPESKDVYANTQLVLQRPAAGTVHVPYSQAPSGFKYWLKER



GASLQHTAPFGCQIATNPVRAVNCAVGNIPISIDIPDAAFTRVVDAPSVTDMSCEVPACTHS



SDFGGVAIIKYTASKKGKCAVHSMTNAVTIREADVEVEGNSQLQISFSTALASAEFRVQVCS



TQVHCAAACHPPKDHIVNYPASHTTLGVQDISTTAMSWVQKITGGVGLIVAVAALILIVVLC



VSFSRH (SEQ ID NO. 45)





CHIKV_E2_6K_E1_no
MSTKDNFNVYKATRPYLAHCPDCGEGHSCHSPIALERIRNEATDGTLKIQVSLQIGIKTDDS


Flag or
HDWTKLRYMDSHTPADAERAGLLVRTSAPCTITGTMGHFILARCPKGETLTVGFTDSRKISH


V5
TCTHPFHHEPPVIGRERFHSRPQHGKELPCSTYVQSTAATAEEIEVHMPPDTPDRTLMTQQS



GNVKITVNGQTVRYKCNCGGSNEGLTTTDKVINNCKIDQCHAAVTNHKNWQYNSPLVPRNAE



LGDRKGKIHIPFPLANVTCRVPKARNPTVTYGKNQVTMLLYPDHPTLLSYRNMGQEPNYHEE



WVTHKKEVTLTVPTEGLEVTWGNNEPYKYWPQMSTNGTAHGHPHEIILYYYELYPTMTVVIV



SVASFVLLSMVGTAVGMCVCARRRCITPYELTPGATVPFLLSLLCCVRTTKAATYYEAAAYL



WNEQQPLFWLQALIPLAALIVLCNCLKLLPCCCKTLAFLAVMSIGAHTVSAYEHVTVIPNTV



GVPYKTLVNRPGYSPMVLEMELQSVTLEPTLSLDYITCEYKTVIPSPYVKCCGTAECKDKSL



PDYSCKVFTGVYPFMWGGAYCFCDAENTQLSEAHVEKSESCKTEFASAYRAHTASASAKLRV



LYQGNNITVAAYANGDHAVTVKDAKFVVGPMSSAWTPFDNKIVVYKGDVYNMDYPPFGAGRP



GQFGDIQSRTPESKDVYANTQLVLQRPAAGTVHVPYSQAPSGFKYWLKERGASLQHTAPFGC



QIATNPVRAVNCAVGNIPISIDIPDAAFTRVVDAPSVTDMSCEVPACTHSSDFGGVAIIKYT



ASKKGKCAVHSMTNAVTIREADVEVEGNSQLQISFSTALASAEFRVQVCSTQVHCAAACHPP



KDHIVNYPASHTTLGVQDISTTAMSWVQKITGGVGLIVAVAALILIVVLCVSFSRH (SEQ



ID NO. 46)





SE_CHIKV_E2_no
MSTKDNFNVYKATRPYLAHCPDCGEGHSCHSPIALERIRNEATDGTLKIQVSLQIGIKTDDS


Flag or
HDWTKLRYMDSHTPADAERAGLLVRTSAPCTITGTMGHFILARCPKGETLTVGFTDSRKISH


V5
TCTHPFHHEPPVIGRERFHSRPQHGKELPCSTYVQSTAATAEEIEVHMPPDTPDRTLMTQQS



GNVKITVNGQTVRYKCNCGGSNEGLTTTDKVINNCKIDQCHAAVTNHKNWQYNSPLVPRNAE



LGDRKGKIHIPFPLANVTCRVPKARNPTVTYGKNQVTMLLYPDHPTLLSYRNMGQEPNYHEE



WVTHKKEVTLTVPTEGLEVTWGNNEPYKYWPQMSTNGTAHGHPHEIILYYYELYPTMTVVIV



SVASFVLLSMVGTAVGMCVCARRRCITPYELTPGATVPFLLSLLCCVRTTKA (SEQ ID



NO. 47)









Example 30. ZIKV Vaccines

The design of preferred Zika vaccine mRNA constructs of the invention encode prME proteins from the Zika virus intended to produce significant immunogenicity. The open reading frame comprises a signal peptide (to optimize expression into the endoplasmic reticulum) followed by the Zika prME polyprotein sequence. The particular prME sequence used is from a Micronesian strain (2007) that most closely represents a consensus of contemporary strain prMEs. This construct has 99% prME sequence identity to the current Brazilian isolates.


Within the Zika family, there is a high level of homology within the prME sequence (>90%) across all strains so far isolated (See Table 28 below). The high degree of homology is also preserved when comparing the original isolates from 1947 to the more contemporary strains circulating in Brazil in 2015, suggesting that there is “drift” occurring from the original isolates. Furthermore, attenuated virus preparations have provided cross-immunization to all other strains tested, including Latin American/Asian, and African.


Overall, this data suggests that cross-protection of all Zika strains is possible with a vaccine based on prME.









TABLE 28







Zika virus prME homology








Zika virus
Pairwise AA % identity











Country of
Year of
to Brazilian isolates











Strain
Isolation
Isolation
prME
Genome














South
Suriname
2015
100.0%
99.0%


American


Asian
Cambodia
2010
99.4%
99.1%



French Polynesia
2013
99.7%
99.4%



Micronesia
2007
98.8%
97.1%


African
Senegal
2002
92.5%
89.9%



Ugnada
1947
91.0%
87.3%









In fact, the prM/M and E proteins of ZIKV have a very high level (99%) of sequence conservation between the currently circulating Asiatic and Brazilian viral strains. The sequence alignment of the prM/M and E proteins is shown in FIG. 27.


The M and E proteins are on the surface of the viral particle. Neutralizing antibodies predominantly bind to the E protein, the preM/M protein functions as a chaperone for proper folding of E protein and prevent premature fusion of E protein within acidic compartments along the cellular secretory pathway.


Described herein are examples of ZIKV vaccine designs comprising mRNA encoding the both prM/M and E proteins or E protein alone (FIGS. 26A and 26B). FIG. 26A depicts mRNA encoding an artificial signal peptide fused to prM protein fused to E protein. FIG. 2B depicts mRNA encoding an artificial signal peptide fused to E protein.


ZIKV vaccine constructs can encode the prME or E proteins from different strains, for example, Brazil_isolate_ZikaSPH2015 or ACD75819_Micronesia, having a signal peptide fused to the N-termini of the antigenic protein(s). In this example, ZIKV vaccines comprise mRNAs encoding antigenic polypeptides having amino acid sequences of SEQ ID NO: 50-59. The examples are not meant to be limiting.


Example 31. Expression of ZIKV prME Protein in Mammalian Cells Using ZIKV mRNA Vaccine Construct

The ZIKV prME mRNA vaccine construct were tested in mammalian cells (239T cells) for the expression of ZIKV prME protein. 293T cells were plated in 24-well plates and were transfected with 2 μg of ZIKV prME mRNA using a Lipofectamine transfection reagent. The cells were incubated for the expression of the ZIKV prME proteins before they were lysed in an immunoprecipitation buffer containing protease inhibitor cocktails. Reducing agent was not added to the lysis buffer to ensure that the cellular proteins were in a non-reduced state. Cell lysates were centrifuged at 8,000×g for 20 mins to collect lysed cell precipitate. The cell precipitates were then stained with anti ZIKV human serum and goat anti-human Alexa Fluor 647. Fluorescence was detected as an indication of prME expression (FIG. 28).


The expression of ZIKV prME protein was also detected by fluorescence-activated cell sorting (FACS) using a flow cytometer. 293F cells (2×106 cells/ml, 30 ml) were transfected with 120 μg PEI, 1 ml of 150 mM NaCl, and 60 μg prME mRNA. Transfected cells were incubated for 48 hours at 37° C. in a shaker at 130 rpm and under 5% CO2. The cells were then washed with PBS buffer containing 2% FBS and fixed in a fixation buffer (PBS buffer containing formalin) for 20 minutes at room temperature. The fixed cells were permeabilized in a permeabilization buffer (PBS+1% Triton X100+1 μl of Golgi plug/ml of cells). The permeabilized cells were then stained with anti-ZIKV human serum (1:20 dilution) and goat anti-human Alexa Fluor 647 secondary antibody, before they were sorted on a flow cytometer. As shown in FIG. 29, FIG. 30A and FIG. 30B, cells transfected with prME mRNA and stained with the anti-ZIKA human serum shifted to higher fluorescent intensity, indicating that prME expressed from the ZIKV mRNA vaccine constructs in the transfected cells.


Example 32. Expression, Purification and Characterization of Zika VLPs

VLPs were made in HeLa cells and in HEK293t cells and purified via PEG precipitation or ultracentrifugation, respectively. Cells were cultured in culture media. Prior to transfection, cells were passaged twice in virus growth media+10% FBS to media adaptation.


Cells were seeded the day before transfection into T-175 flask. 100 ug of prME-encoding mRNA was transfected using 100 μg pf lipofectamine as per manufacturer's protocol. 6 hours post transfection, monolayers were washed twice with 1×PBS and 20 mL of virus growth media was added. Supernatant was collected 24-48 hours post transfection by centrifugation at 2000×g for 10 mins and 0.22 μm filtration.


For VLP purification via PEG precipitation, VLP's were concentrated using Biovision PEG precipitation kit as per manufacturer's protocol. In brief, supernatant with VLP's was mixed with PEG8000 and incubated at 4° C. for 16 hours. After incubation, mixture was centrifuged at 3000×g for 30 mins. Pellet containing concentrated VLP's was collected and suspended into PBS. VLP's were further buffer exchanged into PBS (1:500) using amicon ultra 100MWCO filter. Purified samples were negative stained (FIG. 32).


Expression of prME from the vaccine mRNA constructs on the invention was demonstrated to result in the production of virus like particles (VLPs) that are expected to present to the immune system as identical to Zika virus particles. FIG. 32 shows negative stain electron micrographs of supernatants from HeLa cells transfected with mRNA encoding Zika prME. The virus-like particles (VLPs), purified by PEG precipitation, have highly uniform size (˜35-40 nm) and morphology. The bumpy appearance of the VLP surface appears to reflect mostly immature morphology due to expression from HeLa cells, which have very low expression of furin, a host protease that is required for maturation the viral envelope. Upon maturation, these VLPs will have an exterior structure essentially identical to wild type viral particles, thus eliciting a broad immune response to future Zika virus exposure.


For VLP purification via ultracentrifugation, 293T cells were transfected with Zika prME mRNA as described herein. Supernatant was collected 24 hours after changing the media as described herein. (30 hours post transfection) VLP's were concentrated using Biovision PEG virus precipitation kit into 500 μL volume. VLP were further purified using a 10-50% sucrose gradient. Sample layer was seen between 20-30% sucrose layers and collected. VLP's were buffered exchanged into PBS by 1:1000 dilution using a 100MWCO amicon ultra filter. VLP's concentrated after PEG precipitation and ultracentrifuge purified VLP were analyzed on a reducing SDS-PAGE gel for purity (FIG. 33).


Example 33: Immunogenicity Studies
Study A

The instant study was designed to test the immunogenicity in Balb/c mice of candidate ZIKV vaccines comprising a mRNA polynucleotide encoding ZIKV prME. Four groups of Balb/c mice (n=5) were immunized intramuscularly (IM) with 10 μg (n=2) or 2 μg (n=2) of the candidate vaccine. One group of mice was administered PBS intramuscularly as a control. All mice were administered an initial dose of vaccine (Groups 1-4) or PBS (Group 5) on Day 0, and then the mice in Groups 1 and 3 were administered a boost dose on Day 21, while the mice in Group 5 were administered PBS on Day 21. All mice were bled on Day 41. See Table 29. Anti-Zika neutralization IgG titer was determined on Day −1, Day 28 and Day 41 (FIG. 33B).









TABLE 29







ZIKV mRNA Vaccine Immunogenicity Study












Study






design



BALB/C

Immunization














Group
Vaccine
N
Dose
Route
Prime
Boost
Endpoint





1
Zika
5
10 ug
IM
Day
Day
Terminal



prME



0
21
bleeds



vaccine





on Day 41.


2
Zika
5
10 ug
IM
Day
NA
Anti Zika



prME



0

neutralizing



vaccine





IgG titer.


3
Zika
5
 2 ug
IM
Day
Day



prME



0
21



vaccine


4
Zika
5
 2 ug
IM
Day
NA



prME



0



vaccine


5
PBS
5
NA
IM
Day
Day







0
21









Day 42 neutralizing titers reached EC50s of 427 for 2 μg and 690 for 10 μg. The control serum in this experiment was from naturally infected immunocompromised mice (Ifnar1−/−, derived from B/6 lineage) in which high viral loads would be achieved.


Study B

The instant study is designed to test the immunogenicity in mice of candidate ZIKV vaccines comprising a mRNA polynucleotide encoding ZIKV polyprotein. Mice are immunized intravenously (IV), intramuscularly (IM), or intradermally (ID) with candidate vaccines. Up to three immunizations are given at 3-week intervals (i.e., at weeks 0, 3, 6, and 9), and sera are collected after each immunization until weeks 33-51. Serum antibody titers against ZIKV polyprotein are determined by ELISA.


Example 34: ZIKV Rodent Challenge
Study A

The instant study was designed to test the efficacy in AG129 mice of candidate ZIKV vaccines against a lethal challenge using a ZIKV vaccine comprising mRNA encoding ZIKV prME. Four groups of AG129 mice (n=8) were immunized intramuscularly (IM) with 10 μg (n=2) or 2 μg (n=2) of the candidate vaccine. One group of mice was administered PBS intramuscularly as a control. All mice were administered an initial dose of vaccine (Groups 1-4) or PBS (Group 5) on Day 0, and then the mice in Groups 1 and 3 were administered a boost dose on Day 21, while the mice in Group 5 were administered PBS on Day 21. All mice were challenged with a lethal dose of ZIKV in Day 42. All mice were then monitored for survival and weight loss. Anti-Zika neutralization IgG titer was determined on Day −1, Day 28 and Day 41, and viral load was determined 5 days post challenge.









TABLE 30







ZIKV In vivo challenge













Study







design



AG129

Immunization
Chal-
End-















Group
Vaccine
n
Dose
Route
Prime
Boost
lenge
point





1
Zika
8
10 ug
IM
Day
Day
Day
Monitor



prME



0
21
42
for



vaccine






survival


2
Zika
8
10 ug
IM
Day
NA

and



prME



0


weight



vaccine






loss.


3
Zika
8
 2 ug
IM
Day
Day

Viral



prME



0
21

load at



vaccine






Day 5


4
Zika
8
 2 ug
IM
Day
NA



prME



0



vaccine


5
PBS
8
NA
IM
Day
Day







0
21









Study B

The instant study is designed to test the efficacy in AG129 mice of candidate ZIKV vaccines against a lethal challenge using a ZIKV vaccine comprising mRNA encoding ZIKV polyprotein. Animals are challenged with a lethal dose of the ZIKV. Animals are immunized intravenously (IV), intramuscularly (IM), or intradermally (ID) at week 0 and week 3 with candidate ZIKV vaccines with and without adjuvant. The animals are then challenged with a lethal dose of ZIKV on week 7 via IV, IM or ID. Endpoint is day 13 post infection, death or euthanasia. Animals displaying severe illness as determined by >30% weight loss, extreme lethargy or paralysis are euthanized. Body temperature and weight are assessed and recorded daily.


In experiments where a lipid nanoparticle (LNP) formulation is used, the formulation may include a cationic lipid, non-cationic lipid, PEG lipid and structural lipid in the ratios 50:10:1.5:38.5. The cationic lipid is DLin-KC2-DMA or DLin-MC3-DMA (50 mol %), the non-cationic lipid is DSPC (10 mol %), the PEG lipid is PEG-DOMG or PEG-DMG (1.5 mol %) and the structural lipid is cholesterol (38.5 mol %), for example.









TABLE 31







ZIKV Nucleic Acid Sequences











SEQ




ID


Description
Sequence
NO:





Zika virus
ATGAAAAACCCAAAGAAGAAATCCGGAGGATTCCGGATTGTCAATATGCTAAAAC
48


strain MR 766
GCGGAGTAGCCCGTGTAAACCCCTTGGGAGGTTTGAAGAGGCTGCCAGCCGGACT



polyprotein
TCTGCTGGGTCATGGACCCATCAGAATGGTTTTGGCGATATTAGCCTTTTTGAGA



gene,
TTCACAGCAATCAAGCCATCACTGGGCCTCATCAACAGATGGGGTACCGTGGGGA



complete cds
AAAAAGAGGCTATGGAAATAATAAAAAAATTTAAGAAAGATCTTGCTGCCATGTT



GenBank
GAGAATAATCAATGCTAGGAAGGAGAGGAAGAGACGTGGCGCAGACACCAGCATC



Accession:
GGAATCGTTGGCCTCCTGTTGACTACAGCCATGGCAGCAGAGATCACTAGACGTG



DQ859059
GGAGTGCATACTACATGTACTTGGATAGGAGCGATGCAGGGAAGGCCATTTCTTT




CGCTACCACATTGGGGGTGAACAAATGCCATGTGCAGATCATGGACCTCGGGCAC




ATGTGTGACGCCACCATGAGCTATGAATGCCCTATGCTGGACGAGGGGGTGGAAC




CAGATGACGTCGATTGCTGGTGCAACACGACATCAACTTGGGTTGTGTACGGAAC




CTGTCATCATAAAAAAGGTGAAGCACGGCGATCTAGAAGAGCCGTCACGCTCCCA




TCTCACTCCACAAGGAAATTGCAAACGCGGTCGCAGACTTGGCTAGAATCAAGAG




AATACACAAAGCACCTGATCAAGGTTGAAAATTGGATATTCAGGAACCCTGGTTT




TACGCTAGTGGCTGTCGCCATCGCCTGGCTTTTGGGAAGCTCGACGAGCCAAAAA




GTCATATACTTGGTCATGATACTGCTGATTGCCCCGGCATACAGTATCAGGTGCA




TAGGAGTCAGCAATAGAGACTTCGTGGAGGGCATGTCAGGTGGGACCTGGGTTGA




CGTTGTCCTGGAACATGGAGGCTGCGTCACCGTGATGGCACAGGACAAGCCAACA




GTTGACATAGAGCTGGTCACAACAACGGTTAGTAACATGGCCGAGGTGAGATCCT




ATTGTTACGAGGCATCAATATCGGACATGGCTTCGGACAGTCGCTGCCCAACACA




AGGTGAAGCCTACCTTGACAAGCAATCAGACACTCAATATGTTTGCAAAAGAACA




TTGGTGGACAGAGGTTGGGGAAATGGGTGTGGACTCTTTGGCAAAGGGAGTTTGG




TGACATGTGCTAAGTTCACGTGCTCCAAGAAGATGACTGGGAAGAGCATTCAGCC




GGAGAACCTGGAGTATCGGATAATGCTATCAGTGCATGGCTCCCAGCACAGTGGG




ATGATTGTTAATGATGAAAACAGAGCGAAGGTCGAGGTTACGCCCAATTCACCAA




GAGCAGAAGCAACCCTGGGAGGCTTTGGAAGCTTAGGACTTGATTGTGAACCAAG




GACAGGCCTTGACTTTTCAGATCTGTATTACCTAACCATGAATAACAAGCATTGG




TTGGTGCACAAAGAGTGGTTTCATGACATCCCATTGCCCTGGCATGCTGGGGCAG




ACACTGGAACTCCACATTGGAACAACAAGGAGGCATTAGTGGAATTCAAGGACGC




CCACGCCAAGAGGCAAACCGTCGTGGTTTTGGGGAGCCAGGAAGGAGCCGTCCAC




ACGGCTCTTGCTGGAGCTCTAGAGGCTGAGATGGATGGTGCAAAGGGAAGGCTAT




TCTCTGGCCACTTGAAATGTCGCTTAAAAATGGACAAGCTTAGATTGAAGGGCGT




GTCATATTCCTTGTGCACCGCGGCATTCACATTCACCAAGGTCCCGGCTGAAACA




CTACATGGAACAGTCACAGTGGAGGTGCAGTATGCAGGGACAGATGGACCCTGCA




AGGTCCCAGCCCAGATGGCGGTGGACATGCAGACCTTGACCCCAGTCGGAAGGCT




GATAACCGCCAACCCCGTGATTACTGAAAGCACTGAGAATTCAAAGATGATGTTG




GAGCTCGACCCACCATTTGGGGATTCTTACATTGTCATAGGAGTTGGGGATAAGA




AAATCACCCATCACTGGCATAGGAGTGGCAGCACCATTGGAAAAGCATTTGAAGC




CACTGTGAGAGGCGCTAAGAGAATGGCAGTCCTGGGGGACACAGCTTGGGACTTT




GGATCAGTCGGAGGTGTGTTTAACTCATTGGGCAAGGGCATTCATCAGATTTTTG




GAGCAGCTTTCAAATCACTGTTTGGAGGAATGTCCTGGTTCTCACAGATCCTCAT




AGGCACTCTGCTGGTGTGGTTAGGTCTGAACACAAAGAATGGGTCTATCTCCCTC




ACATGCTTAGCCCTGGGGGGAGTGATGATCTTCCTCTCCACGGCTGTTTCTGCTG




ACGTGGGGTGCTCGGTGGACTTCTCAAAAAAAGAAACGAGATGTGGCACGGGGGT




GTTCGTCTACAATGACGTTGAAGCCTGGAGGGACCGGTACAAGTACCATCCTGAC




TCCCCTCGTAGACTGGCAGCAGCCGTTAAGCAAGCTTGGGAAGAGGGGATTTGTG




GGATCTCCTCTGTTTCTAGAATGGAAAACATAATGTGGAAATCAGTGGAAGGAGA




GCTCAATGCAATCCTAGAGGAGAATGGAGTCCAACTGACAGTTGTTGTGGGATCT




GTAAAAAACCCCATGTGGAGAGGCCCACAAAGATTGCCAGTGCCTGTGAATGAGC




TGCCCCATGGCTGGAAAGCCTGGGGGAAATCGTACTTTGTTAGGGCGGCAAAGAC




CAACAACAGTTTTGTTGTCGACGGTGACACATTGAAGGAATGTCCGCTCAAGCAC




AGAGCATGGAACAGCTTCCTCGTGGAGGATCACGGGTTTGGGGTCTTCCACACCA




GTGTTTGGCTTAAGGTTAGAGAAGATTACTCACTGGAGTGTGACCCAGCCGTCAT




AGGAACAGCTGTTAAGGGAAAGGAGGCCGCGCACAGTGATCTAGGCTATTGGATT




GAAAGTGAAAAGAATGACACATGGAGGCTGAAGAGGGCTCATTTGATTGAGATGA




AAACATGTGAGTGGCCAAAGTCTCACACACTGTGGACAGATGGAGTGGAAGAAAG




TGATCTGATCATACCCAAGTCTTTAGCTGGTCCACTCAGCCACCACAACACCAGA




GAGGGTTACAGAACTCAAGTGAAAGGGCCATGGCATAGTGAGGAGCTTGAAATCC




GATTTGAGGAATGTCCAGGTACCAAGGTTCATGTGGAGGAGACATGCGGAACGAG




AGGACCATCTCTGAGATCAACCACTGCAAGCGGAAGGGTCATTGAGGAATGGTGC




TGTAGGGAATGCACAATGCCCCCACTATCGTTCCGAGCAAAAGATGGCTGCTGGT




ATGGAATGGAGATAAGGCCTAGGAAAGAACCAGAGAGCAACTTAGTGAGGTCAAT




GGTGACAGCGGGATCAACCGATCATATGGATCATTTTTCTCTTGGAGTGCTTGTG




ATTCTACTCATGGTGCAGGAAGGGTTGAAGAAGAGAATGACCACAAAGATCATCA




TGAGCACATCAATGGCAGTGCTGGTGGCCATGATCTTGGGAGGATTCTCAATGAG




TGACCTGGCTAAGCTTGTGATCCTGATGGGGGCCACTTTCGCAGAAATGAACACT




GGAGGAGACGTAGCTCACTTGGCATTAGTAGCGGCATTTAAAGTCAGACCAGCCT




TGCTGGTCTCATTTATCTTCAGAGCCAACTGGACACCTCGTGAGAGCATGCTGCT




AGCCTTGGCTTCGTGTCTTCTGCAAACTGCGATCTCCGCTCTTGAAGGCGACTTG




ATGGTCCTCGTTAATGGATTTGCTTTGGCCTGGTTGGCAATACGTGCAATGGCCG




TGCCACGCACTGACAACATCGCTCTAGCAATTCTGGCTGCTCTAACACCACTAGC




CCGAGGCACACTGCTCGTGGCATGGAGAGCGGGCCTCGCCACTTGTGGAGGGTTC




ATGCTCCTCTCCCTGAAAGGGAAAGGTAGTGTGAAGAAGAACCTGCCATTCGTCG




CGGCCTTGGGATTGACCGCTGTGAGAATAGTGGACCCCATTAATGTGGTGGGACT




ACTGTTACTCACAAGGAGTGGGAAGCGGAGCTGGCCCCCTAGTGAAGTGCTCACT




GCTGTCGGCCTGATATGTGCATTGGCCGGAGGGTTTGCCAAGGCAGACATAGAGA




TGGCTGGGCCCATGGCGGCAGTGGGCCTGCTAATTGTCAGTTATGTGGTCTCGGG




AAAGAGTGTAGATATGTACATTGAAAGAGCAGGTGACATCACATGGGAGAAAGAC




GCGGAAGTCACTGGAAACAGTCCTCGGCTTGACGTGGCACTAGATGAGAGTGGTG




ATTTCTCTCTGGTGGAGGAAGATGGTCCACCCATGAGAGAGATCATACTTAAGGT




GGTCTTGATGGCCATCTGTGGCATGAACCCAATAGCCATACCTTTTGCTGCAGGA




GCGTGGTATGTGTATGTGAAGACTGGGAAAAGGAGTGGTGCCCTCTGGGACGTGC




CTGCTCCGAAAGAAGTGAAAAAAGGAGAGACCACAGATGGAGTGTACAGAGTGAT




GACTCGCAGACTGCTGGGTTCAACACAAGTTGGAGTGGGAGTCATGCAGGAGGGA




GTCTTCCACACCATGTGGCACGTCACAAAAGGGGCCGCATTGAGGAGCGGTGAAG




GGAGACTTGATCCATACTGGGGGGATGTCAAGCAGGACTTGGTGTCATATTGTGG




GCCTTGGAAGCTGGACGCAGCTTGGGACGGAGTTAGTGAGGTGCAGCTTCTGGCC




GTACCCCCTGGAGAGAGAGCCAGAAACATTCAGACTCTGCCTGGAATATTTAAGA




CAAAGGATGGGGACATCGGAGCAGTTGCTTTGGACTATCCTGCAGGAACCTCAGG




ATCTCCGATCCTAGACAAATGCGGGAGAGTGATAGGACTCTATGGCAATGGGGTT




GTGATCAAGAACGGAAGCTATGTTAGTGCTATAACCCAGGGAAAGAGGGAGGAGG




AGACTCCGGTTGAGTGTTTTGAACCCTCGATGCTGAAGAAGAAGCAGCTAACTGT




CCTGGACCTGCATCCAGGGGCTGGGAAAACCAGGAGAGTTCTTCCTGAAATAGTC




CGTGAAGCTATAAAGAAGAGACTCCGCACGGTGATCTTGGCACCAACCAGGGTCG




TCGCTGCTGAGATGGAGGAAGCCCTGAGAGGACTTCCGGTGCGTTACATGACAAC




AGCAGTCAAGGTCACCCATTCTGGGACAGAAATCGTTGATTTGATGTGCCATGCC




ACCTTCACTTCACGCCTACTACAACCCATTAGAGTCCCTAATTACAACCTCTACA




TCATGGATGAAGCCCATTTCACAGACCCCTCAAGCATAGCTGCAAGAGGATATAT




ATCAACAAGGGTTGAGATGGGCGAGGCAGCAGCCATCTTTATGACTGCCACACCA




CCAGGAACCCGCGATGCGTTTCCAGATTCCAACTCACCAATCATGGACACAGAAG




TGGAAGTCCCAGAGAGAGCCTGGAGCTCAGGCTTTGATTGGGTGACGGACCATTC




TGGGAAAACAGTTTGGTTCGTTCCAAGCGTGAGGAATGGAAATGAAATCGCAGCC




TGTCTGACAAAGGCTGGAAAGCGGGTTATACAGCTTAGTAGGAAAACTTTTGAGA




CAGAGTTTCAGAAAACAAAAAATCAAGAGTGGGACTTTGTCATAACAACTGACAT




CTCAGAGATGGGTGCCAACTTCAAGGCTGACCGGGTTATAGATTCCAGGAGATGC




CTAAAGCCAGTTATACTTGATGGTGAGAGAGTCATCTTGGCTGGGCCCATGCCTG




TCACGCATGCTAGCGCTGCTCAGAGGAGAGGACGTATAGGCAGGAACCCCAACAA




GCCTGGAGATGAGTACATGTATGGAGGTGGGTGTGCGGAGACTGATGAAGACCAT




GCACATTGGCTTGAAGCAAGAATGCTTCTTGACAACATTTACCTCCAGGATGGCC




TCATAGCCTCGCTCTATCGACCTGAGGCCGACAAGGTAGCCGCCATTGAGGGAGA




GTTTAAGCTGAGGACAGAGCAAAGGAAGACCTTTGTGGAACTCATGAAGAGAGGA




GATCTTCCCGTTTGGTTGGCCTACCAGGTTGCATCTGCCGGAATAACTTATACAG




ACAGAAGATGGTGTTTTGATGGCACAACCAACAACACCATAATGGAAGACAGTGT




ACCAGCAGAGGTGTGGACCAAGTATGGAGAGAAGAGAGTGCTCAAACCAAGATGG




ATGGACGCCAGGGTCTGCTCAGATCATGCGGCCCTGAAGTCGTTCAAAGAATTCG




CCGCTGGGAAAAGAGGAGCGGCTTTGGGAGTAATGGAGGCCCTGGGAACATTACC




AGGACACATGACAGAGAGGTTTCAGGAAGCCATTGATAACCTCGCTGTGCTCATG




CGAGCAGAGACTGGAAGCAGGCCCTACAAGGCAGCGGCAGCCCAATTGCCGGAGA




CCCTAGAGACCATCATGCTTTTAGGCCTGCTGGGAACAGTATCGCTGGGGATCTT




TTTTGTCTTGATGAGGAACAAGGGCATCGGGAAGATGGGCTTTGAAATGGTAACC




CTTGGGGCCAGCGCATGGCTCATGTGGCTCTCAGAAATCGAACCAGCCAGAATTG




CATGTGTCCTTATTGTTGTGTTTTTATTACTGGTGGTGCTAATACCAGAGCCAGA




GAAGCAAAGATCCCCCCAGGACAATCAGATGGCAATCATTATTATGGTGGCAGTG




GGCCTTTTGGGGTTGATAACTGCAAATGAACTTGGATGGCTGGAGAGAACAAAAA




ATGACATAGCTCATCTGATGGGAAAGAGAGAAGAGGGAACAACCGTGGGATTCTC




AATGGACATCGATCTGCGACCAGCCTCCGCATGGGCTATTTATGCCGCATTGACA




ACCCTCATCACCCCAGCCGTCCAGCACGCGGTAACTACCTCGTACAACAACTACT




CCTTAATGGCGATGGCCACACAAGCTGGAGTGCTGTTTGGCATGGGCAAAGGGAT




GCCATTTTATGCATGGGACTTAGGAGTCCCGTTGCTAATGATGGGCTGCTACTCA




CAACTAACACCCCTGACCCTGATAGTAGCCATCATTTTGCTTGTGGCACATTACA




TGTACTTGATCCCAGGCCTACAGGCAGCAGCAGCACGCGCTGCCCAGAAGAGAAC




AGCAGCCGGCATCATGAAGAATCCCGTTGTGGATGGAATAGTGGTAACTGACATT




GACACAATGACAATTGACCCCCAAGTGGAGAAGAAGATGGGACAAGTGCTACTTA




TAGCAGTGGCTGTCTCCAGTGCTGTGTTGCTGCGGACCGCTTGGGGATGGGGGGA




GGCTGGAGCTTTGATCACAGCAGCAACTTCCACCCTGTGGGAAGGCTCCCCAAAC




AAATACTGGAACTCCTCCACAGCCACCTCACTGTGCAACATCTTCAGAGGAAGTT




ACTTGGCAGGAGCTTCCCTTATTTACACAGTGACAAGAAATGCCGGCCTGGTTAA




GAGACGTGGAGGTGGAACGGGAGAAACTCTGGGAGAGAAGTGGAAAGCCCGCCTG




AATCAGATGTCGGCCTTGGAGTTCTACTCTTACAAAAAGTCAGGCATCACTGAAG




TATGTAGAGAGGAGGCTCGCCGCGCCCTCAAGGATGGAGTGGCCACAGGAGGACA




TGCTGTATCCCGAGGAAGCGCAAAACTCAGATGGTTGGTGGAGAGAGGATATCTG




CAGCCCTATGGAAAGGTTGTTGATCTCGGATGCGGCAGAGGGGGCTGGAGTTATT




ATGCCGCCACCATCCGCAAAGTGCAGGAGGTGAGAGGATACACAAAGGGAGGTCC




CGGTCATGAAGAGCCCATGCTGGTGCAAAGCTATGGGTGGAACATAATTCGTCTC




AAGAGTGGAGTGGACGTCTTCCACATGGCGGCTGAGTCGTGTGACACTTTGCTGT




GTGACATAGGTGAGTCATCATCCAGTCCTGAAGTGGAGGAGACGCGAACACTCAG




AGTGCTCTCCATGGTGGGGGACTGGCTTGAGAAGAGACCAGGGGCCTTCTGCATA




AAGGTGTTATGCCCATACACCAGCACCATGATGGAGACCATGGAGCGACTGCAAC




GTAGGTATGGGGGAGGACTAGTCAGAGTGCCACTGTCCCGCAATTCTACACATGA




GATGTATTGGGTCTCTGGAGCAAAAAGTAACATCATAAAAAGTGTGTCCACCACA




AGTCAGCTCCTCCTGGGACGCATGGATGGGCCCAGGAGGCCAGTGAAGTATGAGG




AGGATGTGAACCTCGGCTCAGGCACACGAGCTGTGGCAAGCTGTGCTGAGGCTCC




CAACATGAAGGTCATTGGTAGGCGCATTGAGAGAATCCGTAGTGAACATGCAGAA




ACATGGTTCTTTGATGAAAACCATCCATACAGGACATGGGCCTACCACGGGAGCT




ACGAAGCCCCCACGCAAGGGTCAGCATCTTCCCTCGTGAATGGGGTTGTTAGACT




CCTGTCAAAGCCCTGGGATGTGGTGACTGGAGTTACAGGAATAGCTATGACTGAC




ACCACACCGTACGGCCAACAAAGAGTCTTCAAAGAAAAAGTGGACACCAGGGTGC




CAGACCCTCAAGAAGGTACTCGCCAGGTAATGAACATGGTCGCTTCCTGGCTGTG




GAAGGAGCTGGGAAAACGTAAGCGGCCACGTGTCTGCACCAAAGAAGAGTTCATC




AACAAGGTGCGCAGCAATGCAGCACTGGGAGCAATATTTGAAGAGGAAAAAGAAT




GGAAGACGGCTGTGGAAGCTGTGAATGATCCAAGGTTTTGGGCCCTAGTGGATAA




GGAAAGAGAACACCACCTGAGAGGAGAGTGCCATAGTTGTGTGTACAACATGATG




GGAAAAAGAGAAAAGAAGCAAGGGGAATTCGGGAAAGCAAAAGGCAGTCGCGCCA




TCTGGTACATGTGGTTGGGAGCCAGATTCTTGGAGTTTGAAGCCCTTGGATTCTT




GAACGAGGACCATTGGATGGGAAGAGAAAACTCAGGAGGTGGTGTCGAAGGGTTG




GGACTGCAAAGACTTGGATACGTTCTAGAAGAAATGAGCCGGGCACCAGGAGGAA




AGATGTATGCAGATGACACCGCTGGCTGGGACACCCGCATTAGCAAGTTTGATTT




GGAGAATGAAGCCTTGATTACTAACCAAATGGATGAAGGGCACAGAACTCTGGCG




TTGGCCGTGATTAAGTACACATACCAAAACAAAGTGGTGAAGGTCCTCAGACCAG




CTGAAGGAGGAAAAACAGTCATGGACATCATTTCAAGACAAGACCAGAGGGGGAG




CGGACAAGTTGTCACTTATGCTCTCAACACATTTACCAACTTGGTGGTGCAGCTC




ATCCGGAACATGGAGGCTGAGGAAGTGTTAGAGATGCAAGACTTATGGCTGTTGA




GGAAGCCAGAGAAAGTAACCAGATGGCTGCAGAGTAGCGGATGGGACAGACTCAA




ACGAATGGCAGTCAGTGGTGATGACTGTGTTGTAAAGCCAATTGATGACAGGTTT




GCACACGCCCTCAGGTTCTTGAATGATATGGGGAAAGTTAGGAAAGACACACAGG




AATGGAAACCCTCAACTGGATGGAGCAACTGGGAAGAAGTCCCGTTCTGCTCCCA




CCACTTTAACAAGCTGCACCTCAAAGACGGGAGATCCATTGTGGTCCCTTGCCGC




CACCAAGATGAACTGATTGGCCGGGCTCGCGTTTCGCCGGGGGCAGGATGGAGCA




TCCGGGAGACTGCCTGTCTTGCAAAATCATATGCACAGATGTGGCAGCTTCTTTA




TTTCCACAGAAGAGACCTCCGACTGATGGCCAATGCCATTTGCTCGGCCGTGCCA




GTTGACTGGGTCCCAACTGGGAGAACTACCTGGTCAATCCATGGAAAGGGAGAAT




GGATGACTACTGAGGACATGCTCATGGTGTGGAATAGAGTGTGGATTGAGGAGAA




TGATCACATGGAGGACAAGACCCCTGTAACAAAATGGACAGACATTCCCTATTTG




GGAAAAAGGGAGGACTTATGGTGTGGATCCCTTATAGGACACAGACCTCGCACCA




CTTGGGCTGAGAACATCAAAGACACAGTCAGCATGGTGCGCAGAATCATAGGTGA




TGAAGAAAAGTACATGGACTACCTATCCACTCAAGTTCGCTACTTGGGTGAGGAA




GGGTCTACACCTGGAGTGCTGTAA






IgE HC signal
TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAAATAAG
49


peptide_prM-E
AGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGGACTGGACCTGGATC



#1
CTGTTCCTGGTGGCCGCTGCCACAAGAGTGCACAGCGTGGAAGTGACCAGACGGG



(Brazil_isolate_ZikaSPH2015,
GCAGCGCCTACTACATGTACCTGGACAGAAGCGACGCCGGCGAGGCCATCAGCTT



Sequence,
TCCAACCACCCTGGGCATGAACAAGTGCTACATCCAGATCATGGACCTGGGCCAC



NT (5′ UTR,
ATGTGCGACGCCACCATGAGCTACGAGTGCCCCATGCTGGACGAGGGCGTGGAAC



ORF, 3′ UTR)
CCGACGATGTGGACTGCTGGTGCAACACCACCAGCACCTGGGTGGTGTACGGCAC




CTGTCACCACAAGAAGGGCGAAGCCAGACGGTCCAGACGGGCCGTGACACTGCCT




AGCCACAGCACCAGAAAGCTGCAGACCCGGTCCCAGACCTGGCTGGAAAGCAGAG




AGTACACCAAGCACCTGATCCGGGTGGAAAACTGGATCTTCCGGAACCCCGGCTT




TGCCCTGGCTGCCGCTGCTATTGCTTGGCTGCTGGGCAGCAGCACCTCCCAGAAA




GTGATCTACCTCGTGATGATCCTGCTGATCGCCCCTGCCTACAGCATCCGGTGTA




TCGGCGTGTCCAACCGGGACTTCGTGGAAGGCATGAGCGGCGGCACATGGGTGGA




CGTGGTGCTGGAACATGGCGGCTGCGTGACAGTGATGGCCCAGGATAAGCCCGCC




GTGGACATCGAGCTCGTGACCACCACCGTGTCCAATATGGCCGAAGTGCGGAGCT




ACTGCTACGAGGCCAGCATCAGCGACATGGCCAGCGACAGCAGATGCCCTACACA




GGGCGAGGCCTACCTGGATAAGCAGTCCGACACCCAGTACGTGTGCAAGCGGACC




CTGGTGGATAGAGGCTGGGGCAATGGCTGCGGCCTGTTTGGCAAGGGCAGCCTCG




TGACCTGCGCCAAGTTCGCCTGCAGCAAGAAGATGACCGGCAAGAGCATCCAGCC




CGAGAACCTGGAATACCGGATCATGCTGAGCGTGCACGGCTCCCAGCACAGCGGC




ATGATCGTGAACGACACCGGCCACGAGACAGACGAGAACCGGGCCAAGGTGGAAA




TCACCCCCAACAGCCCTAGAGCCGAGGCCACACTGGGCGGCTTTGGATCTCTGGG




CCTGGACTGCGAGCCTAGAACCGGCCTGGATTTCAGCGACCTGTACTACCTGACC




ATGAACAACAAGCACTGGCTGGTGCACAAAGAGTGGTTCCACGACATCCCCCTGC




CCTGGCATGCTGGCGCTGATACAGGCACCCCCCACTGGAACAACAAAGAGGCTCT




GGTGGAATTCAAGGACGCCCACGCCAAGCGGCAGACCGTGGTGGTGCTGGGATCT




CAGGAAGGCGCCGTGCATACAGCTCTGGCTGGCGCCCTGGAAGCCGAAATGGATG




GCGCCAAAGGCAGACTGTCCTCCGGCCACCTGAAGTGCCGGCTGAAGATGGACAA




GCTGCGGCTGAAGGGCGTGTCCTACAGCCTGTGTACCGCCGCCTTCACCTTCACC




AAGATCCCCGCCGAGACACTGCACGGCACCGTGACTGTGGAAGTGCAGTACGCCG




GCACCGACGGCCCTTGTAAAGTGCCTGCTCAGATGGCCGTGGATATGCAGACCCT




GACCCCCGTGGGCAGACTGATCACCGCCAACCCTGTGATCACCGAGAGCACCGAG




AACAGCAAGATGATGCTGGAACTGGACCCCCCCTTCGGCGACTCCTACATCGTGA




TCGGCGTGGGAGAGAAGAAGATCACCCACCACTGGCACAGATCCGGCAGCACCAT




CGGCAAGGCCTTTGAGGCTACAGTGCGGGGAGCCAAGAGAATGGCCGTGCTGGGC




GATACCGCCTGGGATTTTGGCTCTGTGGGCGGAGCCCTGAACAGCCTGGGAAAGG




GCATCCACCAGATCTTCGGCGCTGCCTTCAAGAGCCTGTTCGGCGGCATGAGCTG




GTTCAGCCAGATCCTGATCGGCACCCTGCTCGTGTGGCTGGGCCTGAACACCAAG




AACGGCAGCATCTCCCTGACCTGCCTGGCTCTGGGCGGCGTGCTGATCTTTCTGA




GCACAGCCGTGTCCGCCTGATAATAGGCTGGAGCCTCGGTGGCCATGCTTCTTGC




CCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCCCCGTGGT




CTTTGAATAAAGTCTGAGTGGGCGGC






IgE HC signal
ATGGACTGGACCTGGATCCTGTTCCTGGTGGCCGCTGCCACAAGAGTGCACAGCG
50


peptide_prM-E
TGGAAGTGACCAGACGGGGCAGCGCCTACTACATGTACCTGGACAGAAGCGACGC



#1
CGGCGAGGCCATCAGCTTTCCAACCACCCTGGGCATGAACAAGTGCTACATCCAG



(Brazil_isolate_ZikaSPH2015),
ATCATGGACCTGGGCCACATGTGCGACGCCACCATGAGCTACGAGTGCCCCATGC



ORF
TGGACGAGGGCGTGGAACCCGACGATGTGGACTGCTGGTGCAACACCACCAGCAC



Sequence, NT
CTGGGTGGTGTACGGCACCTGTCACCACAAGAAGGGCGAAGCCAGACGGTCCAGA




CGGGCCGTGACACTGCCTAGCCACAGCACCAGAAAGCTGCAGACCCGGTCCCAGA




CCTGGCTGGAAAGCAGAGAGTACACCAAGCACCTGATCCGGGTGGAAAACTGGAT




CTTCCGGAACCCCGGCTTTGCCCTGGCTGCCGCTGCTATTGCTTGGCTGCTGGGC




AGCAGCACCTCCCAGAAAGTGATCTACCTCGTGATGATCCTGCTGATCGCCCCTG




CCTACAGCATCCGGTGTATCGGCGTGTCCAACCGGGACTTCGTGGAAGGCATGAG




CGGCGGCACATGGGTGGACGTGGTGCTGGAACATGGCGGCTGCGTGACAGTGATG




GCCCAGGATAAGCCCGCCGTGGACATCGAGCTCGTGACCACCACCGTGTCCAATA




TGGCCGAAGTGCGGAGCTACTGCTACGAGGCCAGCATCAGCGACATGGCCAGCGA




CAGCAGATGCCCTACACAGGGCGAGGCCTACCTGGATAAGCAGTCCGACACCCAG




TACGTGTGCAAGCGGACCCTGGTGGATAGAGGCTGGGGCAATGGCTGCGGCCTGT




TTGGCAAGGGCAGCCTCGTGACCTGCGCCAAGTTCGCCTGCAGCAAGAAGATGAC




CGGCAAGAGCATCCAGCCCGAGAACCTGGAATACCGGATCATGCTGAGCGTGCAC




GGCTCCCAGCACAGCGGCATGATCGTGAACGACACCGGCCACGAGACAGACGAGA




ACCGGGCCAAGGTGGAAATCACCCCCAACAGCCCTAGAGCCGAGGCCACACTGGG




CGGCTTTGGATCTCTGGGCCTGGACTGCGAGCCTAGAACCGGCCTGGATTTCAGC




GACCTGTACTACCTGACCATGAACAACAAGCACTGGCTGGTGCACAAAGAGTGGT




TCCACGACATCCCCCTGCCCTGGCATGCTGGCGCTGATACAGGCACCCCCCACTG




GAACAACAAAGAGGCTCTGGTGGAATTCAAGGACGCCCACGCCAAGCGGCAGACC




GTGGTGGTGCTGGGATCTCAGGAAGGCGCCGTGCATACAGCTCTGGCTGGCGCCC




TGGAAGCCGAAATGGATGGCGCCAAAGGCAGACTGTCCTCCGGCCACCTGAAGTG




CCGGCTGAAGATGGACAAGCTGCGGCTGAAGGGCGTGTCCTACAGCCTGTGTACC




GCCGCCTTCACCTTCACCAAGATCCCCGCCGAGACACTGCACGGCACCGTGACTG




TGGAAGTGCAGTACGCCGGCACCGACGGCCCTTGTAAAGTGCCTGCTCAGATGGC




CGTGGATATGCAGACCCTGACCCCCGTGGGCAGACTGATCACCGCCAACCCTGTG




ATCACCGAGAGCACCGAGAACAGCAAGATGATGCTGGAACTGGACCCCCCCTTCG




GCGACTCCTACATCGTGATCGGCGTGGGAGAGAAGAAGATCACCCACCACTGGCA




CAGATCCGGCAGCACCATCGGCAAGGCCTTTGAGGCTACAGTGCGGGGAGCCAAG




AGAATGGCCGTGCTGGGCGATACCGCCTGGGATTTTGGCTCTGTGGGCGGAGCCC




TGAACAGCCTGGGAAAGGGCATCCACCAGATCTTCGGCGCTGCCTTCAAGAGCCT




GTTCGGCGGCATGAGCTGGTTCAGCCAGATCCTGATCGGCACCCTGCTCGTGTGG




CTGGGCCTGAACACCAAGAACGGCAGCATCTCCCTGACCTGCCTGGCTCTGGGCG




GCGTGCTGATCTTTCTGAGCACAGCCGTGTCCGCC






IgE HC signal
G*GGGAAATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGGAC
51


peptide_prM-E
TGGACCTGGATCCTGTTCCTGGTGGCCGCTGCCACAAGAGTGCACAGCGTGGAAG



#1
TGACCAGACGGGGCAGCGCCTACTACATGTACCTGGACAGAAGCGACGCCGGCGA



(Brazil_isolate_ZikaSPH2015),
GGCCATCAGCTTTCCAACCACCCTGGGCATGAACAAGTGCTACATCCAGATCATG



mRNA
GACCTGGGCCACATGTGCGACGCCACCATGAGCTACGAGTGCCCCATGCTGGACG



Sequence
AGGGCGTGGAACCCGACGATGTGGACTGCTGGTGCAACACCACCAGCACCTGGGT



(T100 tail)
GGTGTACGGCACCTGTCACCACAAGAAGGGCGAAGCCAGACGGTCCAGACGGGCC




GTGACACTGCCTAGCCACAGCACCAGAAAGCTGCAGACCCGGTCCCAGACCTGGC




TGGAAAGCAGAGAGTACACCAAGCACCTGATCCGGGTGGAAAACTGGATCTTCCG




GAACCCCGGCTTTGCCCTGGCTGCCGCTGCTATTGCTTGGCTGCTGGGCAGCAGC




ACCTCCCAGAAAGTGATCTACCTCGTGATGATCCTGCTGATCGCCCCTGCCTACA




GCATCCGGTGTATCGGCGTGTCCAACCGGGACTTCGTGGAAGGCATGAGCGGCGG




CACATGGGTGGACGTGGTGCTGGAACATGGCGGCTGCGTGACAGTGATGGCCCAG




GATAAGCCCGCCGTGGACATCGAGCTCGTGACCACCACCGTGTCCAATATGGCCG




AAGTGCGGAGCTACTGCTACGAGGCCAGCATCAGCGACATGGCCAGCGACAGCAG




ATGCCCTACACAGGGCGAGGCCTACCTGGATAAGCAGTCCGACACCCAGTACGTG




TGCAAGCGGACCCTGGTGGATAGAGGCTGGGGCAATGGCTGCGGCCTGTTTGGCA




AGGGCAGCCTCGTGACCTGCGCCAAGTTCGCCTGCAGCAAGAAGATGACCGGCAA




GAGCATCCAGCCCGAGAACCTGGAATACCGGATCATGCTGAGCGTGCACGGCTCC




CAGCACAGCGGCATGATCGTGAACGACACCGGCCACGAGACAGACGAGAACCGGG




CCAAGGTGGAAATCACCCCCAACAGCCCTAGAGCCGAGGCCACACTGGGCGGCTT




TGGATCTCTGGGCCTGGACTGCGAGCCTAGAACCGGCCTGGATTTCAGCGACCTG




TACTACCTGACCATGAACAACAAGCACTGGCTGGTGCACAAAGAGTGGTTCCACG




ACATCCCCCTGCCCTGGCATGCTGGCGCTGATACAGGCACCCCCCACTGGAACAA




CAAAGAGGCTCTGGTGGAATTCAAGGACGCCCACGCCAAGCGGCAGACCGTGGTG




GTGCTGGGATCTCAGGAAGGCGCCGTGCATACAGCTCTGGCTGGCGCCCTGGAAG




CCGAAATGGATGGCGCCAAAGGCAGACTGTCCTCCGGCCACCTGAAGTGCCGGCT




GAAGATGGACAAGCTGCGGCTGAAGGGCGTGTCCTACAGCCTGTGTACCGCCGCC




TTCACCTTCACCAAGATCCCCGCCGAGACACTGCACGGCACCGTGACTGTGGAAG




TGCAGTACGCCGGCACCGACGGCCCTTGTAAAGTGCCTGCTCAGATGGCCGTGGA




TATGCAGACCCTGACCCCCGTGGGCAGACTGATCACCGCCAACCCTGTGATCACC




GAGAGCACCGAGAACAGCAAGATGATGCTGGAACTGGACCCCCCCTTCGGCGACT




CCTACATCGTGATCGGCGTGGGAGAGAAGAAGATCACCCACCACTGGCACAGATC




CGGCAGCACCATCGGCAAGGCCTTTGAGGCTACAGTGCGGGGAGCCAAGAGAATG




GCCGTGCTGGGCGATACCGCCTGGGATTTTGGCTCTGTGGGCGGAGCCCTGAACA




GCCTGGGAAAGGGCATCCACCAGATCTTCGGCGCTGCCTTCAAGAGCCTGTTCGG




CGGCATGAGCTGGTTCAGCCAGATCCTGATCGGCACCCTGCTCGTGTGGCTGGGC




CTGAACACCAAGAACGGCAGCATCTCCCTGACCTGCCTGGCTCTGGGCGGCGTGC




TGATCTTTCTGAGCACAGCCGTGTCCGCCTGATAATAGGCTGGAGCCTCGGTGGC




CATGCTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCG




TACCCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGCAAAAAAAAAAAAAAAAA




AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA




AAAAAAAAAAAAAAAAAAAAAAAAAAAATCTAG






IgE HC signal
TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAAATAAG
52


peptide_prM-E
AGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGGACTGGACCTGGATC



#2
CTGTTCCTGGTGGCCGCTGCCACAAGAGTGCACAGCACCAGAAGAGGCAGCGCCT



(Brazil_isolate_ZikaSPH2015),
ACTACATGTACCTGGACAGAAGCGACGCCGGCGAGGCCATCAGCTTTCCAACCAC



Sequence,
CCTGGGCATGAACAAGTGCTACATCCAGATCATGGACCTGGGCCACATGTGCGAC



NT (5′ UTR,
GCCACCATGAGCTACGAGTGCCCCATGCTGGACGAGGGCGTGGAACCCGACGATG



ORF, 3′ UTR)
TGGACTGCTGGTGCAACACCACCAGCACCTGGGTGGTGTACGGCACCTGTCACCA




CAAGAAGGGCGAAGCCAGACGGTCCAGACGGGCCGTGACACTGCCTAGCCACTCC




ACCAGAAAGCTGCAGACCCGGTCCCAGACCTGGCTGGAAAGCAGAGAGTACACCA




AGCACCTGATCCGGGTGGAAAACTGGATCTTCCGGAACCCCGGCTTTGCCCTGGC




TGCCGCTGCTATTGCTTGGCTGCTGGGCAGCAGCACCTCCCAGAAAGTGATCTAC




CTCGTGATGATCCTGCTGATCGCCCCTGCCTACAGCATCCGGTGTATCGGCGTGT




CCAACCGGGACTTCGTGGAAGGCATGAGCGGCGGCACATGGGTGGACGTGGTGCT




GGAACATGGCGGCTGCGTGACAGTGATGGCCCAGGATAAGCCCGCCGTGGACATC




GAGCTCGTGACCACCACCGTGTCCAATATGGCCGAAGTGCGGAGCTACTGCTACG




AGGCCAGCATCAGCGACATGGCCAGCGACAGCAGATGCCCTACACAGGGCGAGGC




CTACCTGGATAAGCAGTCCGACACCCAGTACGTGTGCAAGCGGACCCTGGTGGAT




AGAGGCTGGGGCAATGGCTGCGGCCTGTTTGGCAAGGGCAGCCTCGTGACCTGCG




CCAAGTTCGCCTGCAGCAAGAAGATGACCGGCAAGAGCATCCAGCCCGAGAACCT




GGAATACCGGATCATGCTGAGCGTGCACGGCTCCCAGCACAGCGGCATGATCGTG




AACGACACCGGCCACGAGACAGACGAGAACCGGGCCAAGGTGGAAATCACCCCCA




ACAGCCCTAGAGCCGAGGCCACACTGGGCGGCTTTGGATCTCTGGGCCTGGACTG




CGAGCCTAGAACCGGCCTGGATTTCAGCGACCTGTACTACCTGACCATGAACAAC




AAGCACTGGCTGGTGCACAAAGAGTGGTTCCACGACATCCCCCTGCCCTGGCATG




CTGGCGCTGATACAGGCACCCCCCACTGGAACAACAAAGAGGCTCTGGTGGAATT




CAAGGACGCCCACGCCAAGCGGCAGACCGTGGTGGTGCTGGGATCTCAGGAAGGC




GCCGTGCATACAGCTCTGGCTGGCGCCCTGGAAGCCGAAATGGATGGCGCCAAAG




GCAGACTGTCCTCCGGCCACCTGAAGTGCCGGCTGAAGATGGACAAGCTGCGGCT




GAAGGGCGTGTCCTACAGCCTGTGTACCGCCGCCTTCACCTTCACCAAGATCCCC




GCCGAGACACTGCACGGCACCGTGACTGTGGAAGTGCAGTACGCCGGCACCGACG




GCCCTTGTAAAGTGCCTGCTCAGATGGCCGTGGATATGCAGACCCTGACCCCCGT




GGGCAGACTGATCACCGCCAACCCTGTGATCACCGAGAGCACCGAGAACAGCAAG




ATGATGCTGGAACTGGACCCCCCCTTCGGCGACTCCTACATCGTGATCGGCGTGG




GAGAGAAGAAGATCACCCACCACTGGCACAGATCCGGCAGCACCATCGGCAAGGC




CTTTGAGGCTACAGTGCGGGGAGCCAAGAGAATGGCCGTGCTGGGCGATACCGCC




TGGGATTTTGGCTCTGTGGGCGGAGCCCTGAACAGCCTGGGAAAGGGCATCCACC




AGATCTTCGGAGCCGCCTTTAAGAGCCTGTTCGGCGGCATGAGCTGGTTCAGCCA




GATCCTGATCGGCACCCTGCTCGTGTGGCTGGGCCTGAACACCAAGAACGGCAGC




ATCTCCCTGACCTGCCTGGCTCTGGGCGGCGTGCTGATCTTTCTGAGCACAGCCG




TGTCCGCCTGATAATAGGCTGGAGCCTCGGTGGCCATGCTTCTTGCCCCTTGGGC




CTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCCCCGTGGTCTTTGAATA




AAGTCTGAGTGGGCGGC






IgE HC signal
ATGGACTGGACCTGGATCCTGTTCCTGGTGGCCGCTGCCACAAGAGTGCACAGCA
53


peptide_prM-E
CCAGAAGAGGCAGCGCCTACTACATGTACCTGGACAGAAGCGACGCCGGCGAGGC



#2
CATCAGCTTTCCAACCACCCTGGGCATGAACAAGTGCTACATCCAGATCATGGAC



(Brazil_isolate_ZikaSPH2015),
CTGGGCCACATGTGCGACGCCACCATGAGCTACGAGTGCCCCATGCTGGACGAGG



ORF
GCGTGGAACCCGACGATGTGGACTGCTGGTGCAACACCACCAGCACCTGGGTGGT



Sequence, NT
GTACGGCACCTGTCACCACAAGAAGGGCGAAGCCAGACGGTCCAGACGGGCCGTG




ACACTGCCTAGCCACTCCACCAGAAAGCTGCAGACCCGGTCCCAGACCTGGCTGG




AAAGCAGAGAGTACACCAAGCACCTGATCCGGGTGGAAAACTGGATCTTCCGGAA




CCCCGGCTTTGCCCTGGCTGCCGCTGCTATTGCTTGGCTGCTGGGCAGCAGCACC




TCCCAGAAAGTGATCTACCTCGTGATGATCCTGCTGATCGCCCCTGCCTACAGCA




TCCGGTGTATCGGCGTGTCCAACCGGGACTTCGTGGAAGGCATGAGCGGCGGCAC




ATGGGTGGACGTGGTGCTGGAACATGGCGGCTGCGTGACAGTGATGGCCCAGGAT




AAGCCCGCCGTGGACATCGAGCTCGTGACCACCACCGTGTCCAATATGGCCGAAG




TGCGGAGCTACTGCTACGAGGCCAGCATCAGCGACATGGCCAGCGACAGCAGATG




CCCTACACAGGGCGAGGCCTACCTGGATAAGCAGTCCGACACCCAGTACGTGTGC




AAGCGGACCCTGGTGGATAGAGGCTGGGGCAATGGCTGCGGCCTGTTTGGCAAGG




GCAGCCTCGTGACCTGCGCCAAGTTCGCCTGCAGCAAGAAGATGACCGGCAAGAG




CATCCAGCCCGAGAACCTGGAATACCGGATCATGCTGAGCGTGCACGGCTCCCAG




CACAGCGGCATGATCGTGAACGACACCGGCCACGAGACAGACGAGAACCGGGCCA




AGGTGGAAATCACCCCCAACAGCCCTAGAGCCGAGGCCACACTGGGCGGCTTTGG




ATCTCTGGGCCTGGACTGCGAGCCTAGAACCGGCCTGGATTTCAGCGACCTGTAC




TACCTGACCATGAACAACAAGCACTGGCTGGTGCACAAAGAGTGGTTCCACGACA




TCCCCCTGCCCTGGCATGCTGGCGCTGATACAGGCACCCCCCACTGGAACAACAA




AGAGGCTCTGGTGGAATTCAAGGACGCCCACGCCAAGCGGCAGACCGTGGTGGTG




CTGGGATCTCAGGAAGGCGCCGTGCATACAGCTCTGGCTGGCGCCCTGGAAGCCG




AAATGGATGGCGCCAAAGGCAGACTGTCCTCCGGCCACCTGAAGTGCCGGCTGAA




GATGGACAAGCTGCGGCTGAAGGGCGTGTCCTACAGCCTGTGTACCGCCGCCTTC




ACCTTCACCAAGATCCCCGCCGAGACACTGCACGGCACCGTGACTGTGGAAGTGC




AGTACGCCGGCACCGACGGCCCTTGTAAAGTGCCTGCTCAGATGGCCGTGGATAT




GCAGACCCTGACCCCCGTGGGCAGACTGATCACCGCCAACCCTGTGATCACCGAG




AGCACCGAGAACAGCAAGATGATGCTGGAACTGGACCCCCCCTTCGGCGACTCCT




ACATCGTGATCGGCGTGGGAGAGAAGAAGATCACCCACCACTGGCACAGATCCGG




CAGCACCATCGGCAAGGCCTTTGAGGCTACAGTGCGGGGAGCCAAGAGAATGGCC




GTGCTGGGCGATACCGCCTGGGATTTTGGCTCTGTGGGCGGAGCCCTGAACAGCC




TGGGAAAGGGCATCCACCAGATCTTCGGAGCCGCCTTTAAGAGCCTGTTCGGCGG




CATGAGCTGGTTCAGCCAGATCCTGATCGGCACCCTGCTCGTGTGGCTGGGCCTG




AACACCAAGAACGGCAGCATCTCCCTGACCTGCCTGGCTCTGGGCGGCGTGCTGA




TCTTTCTGAGCACAGCCGTGTCCGCC






IgE HC signal
G*GGGAAATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGGAC
54


peptide_prM-E
TGGACCTGGATCCTGTTCCTGGTGGCCGCTGCCACAAGAGTGCACAGCACCAGAA



#2
GAGGCAGCGCCTACTACATGTACCTGGACAGAAGCGACGCCGGCGAGGCCATCAG



(Brazil_isolate_ZikaSPH2015),
CTTTCCAACCACCCTGGGCATGAACAAGTGCTACATCCAGATCATGGACCTGGGC



mRNA
CACATGTGCGACGCCACCATGAGCTACGAGTGCCCCATGCTGGACGAGGGCGTGG



Sequence
AACCCGACGATGTGGACTGCTGGTGCAACACCACCAGCACCTGGGTGGTGTACGG



(T100 tail)
CACCTGTCACCACAAGAAGGGCGAAGCCAGACGGTCCAGACGGGCCGTGACACTG




CCTAGCCACTCCACCAGAAAGCTGCAGACCCGGTCCCAGACCTGGCTGGAAAGCA




GAGAGTACACCAAGCACCTGATCCGGGTGGAAAACTGGATCTTCCGGAACCCCGG




CTTTGCCCTGGCTGCCGCTGCTATTGCTTGGCTGCTGGGCAGCAGCACCTCCCAG




AAAGTGATCTACCTCGTGATGATCCTGCTGATCGCCCCTGCCTACAGCATCCGGT




GTATCGGCGTGTCCAACCGGGACTTCGTGGAAGGCATGAGCGGCGGCACATGGGT




GGACGTGGTGCTGGAACATGGCGGCTGCGTGACAGTGATGGCCCAGGATAAGCCC




GCCGTGGACATCGAGCTCGTGACCACCACCGTGTCCAATATGGCCGAAGTGCGGA




GCTACTGCTACGAGGCCAGCATCAGCGACATGGCCAGCGACAGCAGATGCCCTAC




ACAGGGCGAGGCCTACCTGGATAAGCAGTCCGACACCCAGTACGTGTGCAAGCGG




ACCCTGGTGGATAGAGGCTGGGGCAATGGCTGCGGCCTGTTTGGCAAGGGCAGCC




TCGTGACCTGCGCCAAGTTCGCCTGCAGCAAGAAGATGACCGGCAAGAGCATCCA




GCCCGAGAACCTGGAATACCGGATCATGCTGAGCGTGCACGGCTCCCAGCACAGC




GGCATGATCGTGAACGACACCGGCCACGAGACAGACGAGAACCGGGCCAAGGTGG




AAATCACCCCCAACAGCCCTAGAGCCGAGGCCACACTGGGCGGCTTTGGATCTCT




GGGCCTGGACTGCGAGCCTAGAACCGGCCTGGATTTCAGCGACCTGTACTACCTG




ACCATGAACAACAAGCACTGGCTGGTGCACAAAGAGTGGTTCCACGACATCCCCC




TGCCCTGGCATGCTGGCGCTGATACAGGCACCCCCCACTGGAACAACAAAGAGGC




TCTGGTGGAATTCAAGGACGCCCACGCCAAGCGGCAGACCGTGGTGGTGCTGGGA




TCTCAGGAAGGCGCCGTGCATACAGCTCTGGCTGGCGCCCTGGAAGCCGAAATGG




ATGGCGCCAAAGGCAGACTGTCCTCCGGCCACCTGAAGTGCCGGCTGAAGATGGA




CAAGCTGCGGCTGAAGGGCGTGTCCTACAGCCTGTGTACCGCCGCCTTCACCTTC




ACCAAGATCCCCGCCGAGACACTGCACGGCACCGTGACTGTGGAAGTGCAGTACG




CCGGCACCGACGGCCCTTGTAAAGTGCCTGCTCAGATGGCCGTGGATATGCAGAC




CCTGACCCCCGTGGGCAGACTGATCACCGCCAACCCTGTGATCACCGAGAGCACC




GAGAACAGCAAGATGATGCTGGAACTGGACCCCCCCTTCGGCGACTCCTACATCG




TGATCGGCGTGGGAGAGAAGAAGATCACCCACCACTGGCACAGATCCGGCAGCAC




CATCGGCAAGGCCTTTGAGGCTACAGTGCGGGGAGCCAAGAGAATGGCCGTGCTG




GGCGATACCGCCTGGGATTTTGGCTCTGTGGGCGGAGCCCTGAACAGCCTGGGAA




AGGGCATCCACCAGATCTTCGGAGCCGCCTTTAAGAGCCTGTTCGGCGGCATGAG




CTGGTTCAGCCAGATCCTGATCGGCACCCTGCTCGTGTGGCTGGGCCTGAACACC




AAGAACGGCAGCATCTCCCTGACCTGCCTGGCTCTGGGCGGCGTGCTGATCTTTC




TGAGCACAGCCGTGTCCGCCTGATAATAGGCTGGAGCCTCGGTGGCCATGCTTCT




TGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCCCCGT




GGTCTTTGAATAAAGTCTGAGTGGGCGGCAAAAAAAAAAAAAAAAAAAAAAAAAA




AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA




AAAAAAAAAAAAAAAAAAATCTAG






HuIgGk signal
TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAAATAAG
55


peptide_prME
AGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGGAAACCCCTGCCCAG



#1
CTGCTGTTCCTGCTGCTGCTGTGGCTGCCTGATACCACCGGCGTGGAAGTGACCA



(Brazil_isolate_ZikaSPH2015),
GAAGAGGCAGCGCCTACTACATGTACCTGGACAGAAGCGACGCCGGCGAGGCCAT



Sequence,
CAGCTTTCCAACCACCCTGGGCATGAACAAGTGCTACATCCAGATCATGGACCTG



NT (5′ UTR,
GGCCACATGTGCGACGCCACCATGAGCTACGAGTGCCCCATGCTGGACGAGGGCG



ORF, 3′ UTR)
TGGAACCCGACGATGTGGACTGCTGGTGCAACACCACCAGCACCTGGGTGGTGTA




CGGCACCTGTCACCACAAGAAGGGCGAAGCCAGACGGTCCAGACGGGCCGTGACA




CTGCCTAGCCACTCCACCAGAAAGCTGCAGACCCGGTCCCAGACCTGGCTGGAAA




GCAGAGAGTACACCAAGCACCTGATCCGGGTGGAAAACTGGATCTTCCGGAACCC




CGGCTTTGCCCTGGCCGCTGCTGCTATTGCTTGGCTGCTGGGCAGCAGCACCTCC




CAGAAAGTGATCTACCTCGTGATGATCCTGCTGATCGCCCCTGCCTACAGCATCC




GGTGTATCGGCGTGTCCAACCGGGACTTCGTGGAAGGCATGAGCGGCGGCACATG




GGTGGACGTGGTGCTGGAACATGGCGGCTGCGTGACAGTGATGGCCCAGGATAAG




CCCGCCGTGGACATCGAGCTCGTGACCACCACCGTGTCCAATATGGCCGAAGTGC




GGAGCTACTGCTACGAGGCCAGCATCAGCGACATGGCCAGCGACAGCAGATGCCC




TACACAGGGCGAGGCCTACCTGGATAAGCAGTCCGACACCCAGTACGTGTGCAAG




CGGACCCTGGTGGATAGAGGCTGGGGCAATGGCTGCGGCCTGTTTGGCAAGGGCA




GCCTCGTGACCTGCGCCAAGTTCGCCTGCAGCAAGAAGATGACCGGCAAGAGCAT




CCAGCCCGAGAACCTGGAATACCGGATCATGCTGAGCGTGCACGGCAGCCAGCAC




TCCGGCATGATCGTGAACGACACCGGCCACGAGACAGACGAGAACCGGGCCAAGG




TGGAAATCACCCCCAACAGCCCTAGAGCCGAGGCCACACTGGGCGGCTTTGGATC




TCTGGGCCTGGACTGCGAGCCTAGAACCGGCCTGGATTTCAGCGACCTGTACTAC




CTGACCATGAACAACAAGCACTGGCTGGTGCACAAAGAGTGGTTCCACGACATCC




CCCTGCCCTGGCATGCCGGCGCTGATACAGGCACACCCCACTGGAACAACAAAGA




GGCTCTGGTGGAATTCAAGGACGCCCACGCCAAGCGGCAGACCGTGGTGGTGCTG




GGATCTCAGGAAGGCGCCGTGCATACAGCTCTGGCTGGCGCCCTGGAAGCCGAAA




TGGATGGCGCCAAAGGCAGACTGTCCAGCGGCCACCTGAAGTGCCGGCTGAAGAT




GGACAAGCTGCGGCTGAAGGGCGTGTCCTACAGCCTGTGTACCGCCGCCTTCACC




TTCACCAAGATCCCCGCCGAGACACTGCACGGCACCGTGACTGTGGAAGTGCAGT




ACGCCGGCACCGACGGCCCTTGTAAAGTGCCTGCTCAGATGGCCGTGGATATGCA




GACCCTGACCCCCGTGGGCAGACTGATCACCGCCAACCCTGTGATCACCGAGAGC




ACCGAGAACAGCAAGATGATGCTGGAACTGGACCCCCCCTTCGGCGACTCCTACA




TCGTGATCGGCGTGGGAGAGAAGAAGATCACCCACCACTGGCACCGCAGCGGCAG




CACAATCGGCAAGGCCTTTGAAGCCACAGTGCGGGGAGCCAAGAGAATGGCCGTG




CTGGGAGATACCGCCTGGGACTTTGGCTCTGTGGGCGGAGCCCTGAACTCTCTGG




GCAAGGGAATCCACCAGATCTTCGGAGCCGCCTTTAAGAGCCTGTTCGGCGGCAT




GAGCTGGTTCAGCCAGATCCTGATCGGCACCCTGCTCGTGTGGCTGGGCCTGAAC




ACCAAGAACGGCAGCATCTCCCTGACCTGCCTGGCTCTGGGAGGCGTGCTGATCT




TTCTGAGCACCGCCGTGTCTGCCTGATAATAGGCTGGAGCCTCGGTGGCCATGCT




TCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCCC




CGTGGTCTTTGAATAAAGTCTGAGTGGGCGGC






HuIgGk signal
ATGGAAACCCCTGCCCAGCTGCTGTTCCTGCTGCTGCTGTGGCTGCCTGATACCA
56


peptide_prME
CCGGCGTGGAAGTGACCAGAAGAGGCAGCGCCTACTACATGTACCTGGACAGAAG



#1
CGACGCCGGCGAGGCCATCAGCTTTCCAACCACCCTGGGCATGAACAAGTGCTAC



(Brazil_isolate_ZikaSPH2015),
ATCCAGATCATGGACCTGGGCCACATGTGCGACGCCACCATGAGCTACGAGTGCC



ORF
CCATGCTGGACGAGGGCGTGGAACCCGACGATGTGGACTGCTGGTGCAACACCAC



Sequence, NT
CAGCACCTGGGTGGTGTACGGCACCTGTCACCACAAGAAGGGCGAAGCCAGACGG




TCCAGACGGGCCGTGACACTGCCTAGCCACTCCACCAGAAAGCTGCAGACCCGGT




CCCAGACCTGGCTGGAAAGCAGAGAGTACACCAAGCACCTGATCCGGGTGGAAAA




CTGGATCTTCCGGAACCCCGGCTTTGCCCTGGCCGCTGCTGCTATTGCTTGGCTG




CTGGGCAGCAGCACCTCCCAGAAAGTGATCTACCTCGTGATGATCCTGCTGATCG




CCCCTGCCTACAGCATCCGGTGTATCGGCGTGTCCAACCGGGACTTCGTGGAAGG




CATGAGCGGCGGCACATGGGTGGACGTGGTGCTGGAACATGGCGGCTGCGTGACA




GTGATGGCCCAGGATAAGCCCGCCGTGGACATCGAGCTCGTGACCACCACCGTGT




CCAATATGGCCGAAGTGCGGAGCTACTGCTACGAGGCCAGCATCAGCGACATGGC




CAGCGACAGCAGATGCCCTACACAGGGCGAGGCCTACCTGGATAAGCAGTCCGAC




ACCCAGTACGTGTGCAAGCGGACCCTGGTGGATAGAGGCTGGGGCAATGGCTGCG




GCCTGTTTGGCAAGGGCAGCCTCGTGACCTGCGCCAAGTTCGCCTGCAGCAAGAA




GATGACCGGCAAGAGCATCCAGCCCGAGAACCTGGAATACCGGATCATGCTGAGC




GTGCACGGCAGCCAGCACTCCGGCATGATCGTGAACGACACCGGCCACGAGACAG




ACGAGAACCGGGCCAAGGTGGAAATCACCCCCAACAGCCCTAGAGCCGAGGCCAC




ACTGGGCGGCTTTGGATCTCTGGGCCTGGACTGCGAGCCTAGAACCGGCCTGGAT




TTCAGCGACCTGTACTACCTGACCATGAACAACAAGCACTGGCTGGTGCACAAAG




AGTGGTTCCACGACATCCCCCTGCCCTGGCATGCCGGCGCTGATACAGGCACACC




CCACTGGAACAACAAAGAGGCTCTGGTGGAATTCAAGGACGCCCACGCCAAGCGG




CAGACCGTGGTGGTGCTGGGATCTCAGGAAGGCGCCGTGCATACAGCTCTGGCTG




GCGCCCTGGAAGCCGAAATGGATGGCGCCAAAGGCAGACTGTCCAGCGGCCACCT




GAAGTGCCGGCTGAAGATGGACAAGCTGCGGCTGAAGGGCGTGTCCTACAGCCTG




TGTACCGCCGCCTTCACCTTCACCAAGATCCCCGCCGAGACACTGCACGGCACCG




TGACTGTGGAAGTGCAGTACGCCGGCACCGACGGCCCTTGTAAAGTGCCTGCTCA




GATGGCCGTGGATATGCAGACCCTGACCCCCGTGGGCAGACTGATCACCGCCAAC




CCTGTGATCACCGAGAGCACCGAGAACAGCAAGATGATGCTGGAACTGGACCCCC




CCTTCGGCGACTCCTACATCGTGATCGGCGTGGGAGAGAAGAAGATCACCCACCA




CTGGCACCGCAGCGGCAGCACAATCGGCAAGGCCTTTGAAGCCACAGTGCGGGGA




GCCAAGAGAATGGCCGTGCTGGGAGATACCGCCTGGGACTTTGGCTCTGTGGGCG




GAGCCCTGAACTCTCTGGGCAAGGGAATCCACCAGATCTTCGGAGCCGCCTTTAA




GAGCCTGTTCGGCGGCATGAGCTGGTTCAGCCAGATCCTGATCGGCACCCTGCTC




GTGTGGCTGGGCCTGAACACCAAGAACGGCAGCATCTCCCTGACCTGCCTGGCTC




TGGGAGGCGTGCTGATCTTTCTGAGCACCGCCGTGTCTGCC






HuIgGk signal
G*GGGAAATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGGAA
57


peptide_prME
ACCCCTGCCCAGCTGCTGTTCCTGCTGCTGCTGTGGCTGCCTGATACCACCGGCG



#1
TGGAAGTGACCAGAAGAGGCAGCGCCTACTACATGTACCTGGACAGAAGCGACGC



(Brazil_isolate_ZikaSPH2015),
CGGCGAGGCCATCAGCTTTCCAACCACCCTGGGCATGAACAAGTGCTACATCCAG



mRNA
ATCATGGACCTGGGCCACATGTGCGACGCCACCATGAGCTACGAGTGCCCCATGC



Sequence
TGGACGAGGGCGTGGAACCCGACGATGTGGACTGCTGGTGCAACACCACCAGCAC



(T100 tail)
CTGGGTGGTGTACGGCACCTGTCACCACAAGAAGGGCGAAGCCAGACGGTCCAGA




CGGGCCGTGACACTGCCTAGCCACTCCACCAGAAAGCTGCAGACCCGGTCCCAGA




CCTGGCTGGAAAGCAGAGAGTACACCAAGCACCTGATCCGGGTGGAAAACTGGAT




CTTCCGGAACCCCGGCTTTGCCCTGGCCGCTGCTGCTATTGCTTGGCTGCTGGGC




AGCAGCACCTCCCAGAAAGTGATCTACCTCGTGATGATCCTGCTGATCGCCCCTG




CCTACAGCATCCGGTGTATCGGCGTGTCCAACCGGGACTTCGTGGAAGGCATGAG




CGGCGGCACATGGGTGGACGTGGTGCTGGAACATGGCGGCTGCGTGACAGTGATG




GCCCAGGATAAGCCCGCCGTGGACATCGAGCTCGTGACCACCACCGTGTCCAATA




TGGCCGAAGTGCGGAGCTACTGCTACGAGGCCAGCATCAGCGACATGGCCAGCGA




CAGCAGATGCCCTACACAGGGCGAGGCCTACCTGGATAAGCAGTCCGACACCCAG




TACGTGTGCAAGCGGACCCTGGTGGATAGAGGCTGGGGCAATGGCTGCGGCCTGT




TTGGCAAGGGCAGCCTCGTGACCTGCGCCAAGTTCGCCTGCAGCAAGAAGATGAC




CGGCAAGAGCATCCAGCCCGAGAACCTGGAATACCGGATCATGCTGAGCGTGCAC




GGCAGCCAGCACTCCGGCATGATCGTGAACGACACCGGCCACGAGACAGACGAGA




ACCGGGCCAAGGTGGAAATCACCCCCAACAGCCCTAGAGCCGAGGCCACACTGGG




CGGCTTTGGATCTCTGGGCCTGGACTGCGAGCCTAGAACCGGCCTGGATTTCAGC




GACCTGTACTACCTGACCATGAACAACAAGCACTGGCTGGTGCACAAAGAGTGGT




TCCACGACATCCCCCTGCCCTGGCATGCCGGCGCTGATACAGGCACACCCCACTG




GAACAACAAAGAGGCTCTGGTGGAATTCAAGGACGCCCACGCCAAGCGGCAGACC




GTGGTGGTGCTGGGATCTCAGGAAGGCGCCGTGCATACAGCTCTGGCTGGCGCCC




TGGAAGCCGAAATGGATGGCGCCAAAGGCAGACTGTCCAGCGGCCACCTGAAGTG




CCGGCTGAAGATGGACAAGCTGCGGCTGAAGGGCGTGTCCTACAGCCTGTGTACC




GCCGCCTTCACCTTCACCAAGATCCCCGCCGAGACACTGCACGGCACCGTGACTG




TGGAAGTGCAGTACGCCGGCACCGACGGCCCTTGTAAAGTGCCTGCTCAGATGGC




CGTGGATATGCAGACCCTGACCCCCGTGGGCAGACTGATCACCGCCAACCCTGTG




ATCACCGAGAGCACCGAGAACAGCAAGATGATGCTGGAACTGGACCCCCCCTTCG




GCGACTCCTACATCGTGATCGGCGTGGGAGAGAAGAAGATCACCCACCACTGGCA




CCGCAGCGGCAGCACAATCGGCAAGGCCTTTGAAGCCACAGTGCGGGGAGCCAAG




AGAATGGCCGTGCTGGGAGATACCGCCTGGGACTTTGGCTCTGTGGGCGGAGCCC




TGAACTCTCTGGGCAAGGGAATCCACCAGATCTTCGGAGCCGCCTTTAAGAGCCT




GTTCGGCGGCATGAGCTGGTTCAGCCAGATCCTGATCGGCACCCTGCTCGTGTGG




CTGGGCCTGAACACCAAGAACGGCAGCATCTCCCTGACCTGCCTGGCTCTGGGAG




GCGTGCTGATCTTTCTGAGCACCGCCGTGTCTGCCTGATAATAGGCTGGAGCCTC




GGTGGCCATGCTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTG




CACCCGTACCCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGCAAAAAAAAAAA




AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA




AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATCTAG






HuIgGk signal
TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAAATAAG
58


peptide_prME
AGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGGAAACCCCTGCCCAG



#2
CTGCTGTTCCTGCTGCTGCTGTGGCTGCCTGATACCACCGGCACCAGAAGAGGCA



(Brazil_isolate_ZikaSPH2015),
GCGCCTACTACATGTACCTGGACAGAAGCGACGCCGGCGAGGCCATCAGCTTTCC



Sequence,
AACCACCCTGGGCATGAACAAGTGCTACATCCAGATCATGGACCTGGGCCACATG



NT (5′ UTR,
TGCGACGCCACCATGAGCTACGAGTGCCCCATGCTGGACGAGGGCGTGGAACCCG



ORF, 3′ UTR)
ACGATGTGGACTGCTGGTGCAACACCACCAGCACCTGGGTGGTGTACGGCACCTG




TCACCACAAGAAGGGCGAAGCCAGACGGTCCAGACGGGCCGTGACACTGCCTAGC




CACTCCACCAGAAAGCTGCAGACCCGGTCCCAGACCTGGCTGGAAAGCAGAGAGT




ACACCAAGCACCTGATCCGGGTGGAAAACTGGATCTTCCGGAACCCCGGCTTTGC




CCTGGCCGCTGCTGCTATTGCTTGGCTGCTGGGCAGCAGCACCTCCCAGAAAGTG




ATCTACCTCGTGATGATCCTGCTGATCGCCCCTGCCTACAGCATCCGGTGTATCG




GCGTGTCCAACCGGGACTTCGTGGAAGGCATGAGCGGCGGCACATGGGTGGACGT




GGTGCTGGAACATGGCGGCTGCGTGACAGTGATGGCCCAGGATAAGCCCGCCGTG




GACATCGAGCTCGTGACCACCACCGTGTCCAATATGGCCGAAGTGCGGAGCTACT




GCTACGAGGCCAGCATCAGCGACATGGCCAGCGACAGCAGATGCCCTACACAGGG




CGAGGCCTACCTGGATAAGCAGTCCGACACCCAGTACGTGTGCAAGCGGACCCTG




GTGGATAGAGGCTGGGGCAATGGCTGCGGCCTGTTTGGCAAGGGCAGCCTCGTGA




CCTGCGCCAAGTTCGCCTGCAGCAAGAAGATGACCGGCAAGAGCATCCAGCCCGA




GAACCTGGAATACCGGATCATGCTGAGCGTGCACGGCAGCCAGCACTCCGGCATG




ATCGTGAACGACACCGGCCACGAGACAGACGAGAACCGGGCCAAGGTGGAAATCA




CCCCCAACAGCCCTAGAGCCGAGGCCACACTGGGCGGCTTTGGATCTCTGGGCCT




GGACTGCGAGCCTAGAACCGGCCTGGATTTCAGCGACCTGTACTACCTGACCATG




AACAACAAGCACTGGCTGGTGCACAAAGAGTGGTTCCACGACATCCCCCTGCCCT




GGCATGCCGGCGCTGATACAGGCACACCCCACTGGAACAACAAAGAGGCTCTGGT




GGAATTCAAGGACGCCCACGCCAAGCGGCAGACCGTGGTGGTGCTGGGATCTCAG




GAAGGCGCCGTGCATACAGCTCTGGCTGGCGCCCTGGAAGCCGAAATGGATGGCG




CCAAAGGCAGACTGTCCAGCGGCCACCTGAAGTGCCGGCTGAAGATGGACAAGCT




GCGGCTGAAGGGCGTGTCCTACAGCCTGTGTACCGCCGCCTTCACCTTCACCAAG




ATCCCCGCCGAGACACTGCACGGCACCGTGACTGTGGAAGTGCAGTACGCCGGCA




CCGACGGCCCTTGTAAAGTGCCTGCTCAGATGGCCGTGGATATGCAGACCCTGAC




CCCCGTGGGCAGACTGATCACCGCCAACCCTGTGATCACCGAGAGCACCGAGAAC




AGCAAGATGATGCTGGAACTGGACCCCCCCTTCGGCGACTCCTACATCGTGATCG




GCGTGGGAGAGAAGAAGATCACCCACCACTGGCACCGCAGCGGCAGCACAATCGG




CAAGGCCTTTGAAGCCACAGTGCGGGGAGCCAAGAGAATGGCCGTGCTGGGAGAT




ACCGCCTGGGACTTTGGCTCTGTGGGCGGAGCCCTGAACTCTCTGGGCAAGGGAA




TCCACCAGATCTTCGGAGCCGCCTTTAAGAGCCTGTTCGGCGGCATGAGCTGGTT




CAGCCAGATCCTGATCGGCACCCTGCTCGTGTGGCTGGGCCTGAACACCAAGAAC




GGCAGCATCTCCCTGACCTGCCTGGCTCTGGGAGGCGTGCTGATCTTTCTGAGCA




CCGCCGTGTCTGCCTGATAATAGGCTGGAGCCTCGGTGGCCATGCTTCTTGCCCC




TTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCCCCGTGGTCTT




TGAATAAAGTCTGAGTGGGCGGC






HuIgGk signal
ATGGAAACCCCTGCCCAGCTGCTGTTCCTGCTGCTGCTGTGGCTGCCTGATACCA
59


peptide_prME
CCGGCACCAGAAGAGGCAGCGCCTACTACATGTACCTGGACAGAAGCGACGCCGG



#2
CGAGGCCATCAGCTTTCCAACCACCCTGGGCATGAACAAGTGCTACATCCAGATC



(Brazil_isolate_ZikaSPH2015),
ATGGACCTGGGCCACATGTGCGACGCCACCATGAGCTACGAGTGCCCCATGCTGG



ORF
ACGAGGGCGTGGAACCCGACGATGTGGACTGCTGGTGCAACACCACCAGCACCTG



Sequence, NT
GGTGGTGTACGGCACCTGTCACCACAAGAAGGGCGAAGCCAGACGGTCCAGACGG




GCCGTGACACTGCCTAGCCACTCCACCAGAAAGCTGCAGACCCGGTCCCAGACCT




GGCTGGAAAGCAGAGAGTACACCAAGCACCTGATCCGGGTGGAAAACTGGATCTT




CCGGAACCCCGGCTTTGCCCTGGCCGCTGCTGCTATTGCTTGGCTGCTGGGCAGC




AGCACCTCCCAGAAAGTGATCTACCTCGTGATGATCCTGCTGATCGCCCCTGCCT




ACAGCATCCGGTGTATCGGCGTGTCCAACCGGGACTTCGTGGAAGGCATGAGCGG




CGGCACATGGGTGGACGTGGTGCTGGAACATGGCGGCTGCGTGACAGTGATGGCC




CAGGATAAGCCCGCCGTGGACATCGAGCTCGTGACCACCACCGTGTCCAATATGG




CCGAAGTGCGGAGCTACTGCTACGAGGCCAGCATCAGCGACATGGCCAGCGACAG




CAGATGCCCTACACAGGGCGAGGCCTACCTGGATAAGCAGTCCGACACCCAGTAC




GTGTGCAAGCGGACCCTGGTGGATAGAGGCTGGGGCAATGGCTGCGGCCTGTTTG




GCAAGGGCAGCCTCGTGACCTGCGCCAAGTTCGCCTGCAGCAAGAAGATGACCGG




CAAGAGCATCCAGCCCGAGAACCTGGAATACCGGATCATGCTGAGCGTGCACGGC




AGCCAGCACTCCGGCATGATCGTGAACGACACCGGCCACGAGACAGACGAGAACC




GGGCCAAGGTGGAAATCACCCCCAACAGCCCTAGAGCCGAGGCCACACTGGGCGG




CTTTGGATCTCTGGGCCTGGACTGCGAGCCTAGAACCGGCCTGGATTTCAGCGAC




CTGTACTACCTGACCATGAACAACAAGCACTGGCTGGTGCACAAAGAGTGGTTCC




ACGACATCCCCCTGCCCTGGCATGCCGGCGCTGATACAGGCACACCCCACTGGAA




CAACAAAGAGGCTCTGGTGGAATTCAAGGACGCCCACGCCAAGCGGCAGACCGTG




GTGGTGCTGGGATCTCAGGAAGGCGCCGTGCATACAGCTCTGGCTGGCGCCCTGG




AAGCCGAAATGGATGGCGCCAAAGGCAGACTGTCCAGCGGCCACCTGAAGTGCCG




GCTGAAGATGGACAAGCTGCGGCTGAAGGGCGTGTCCTACAGCCTGTGTACCGCC




GCCTTCACCTTCACCAAGATCCCCGCCGAGACACTGCACGGCACCGTGACTGTGG




AAGTGCAGTACGCCGGCACCGACGGCCCTTGTAAAGTGCCTGCTCAGATGGCCGT




GGATATGCAGACCCTGACCCCCGTGGGCAGACTGATCACCGCCAACCCTGTGATC




ACCGAGAGCACCGAGAACAGCAAGATGATGCTGGAACTGGACCCCCCCTTCGGCG




ACTCCTACATCGTGATCGGCGTGGGAGAGAAGAAGATCACCCACCACTGGCACCG




CAGCGGCAGCACAATCGGCAAGGCCTTTGAAGCCACAGTGCGGGGAGCCAAGAGA




ATGGCCGTGCTGGGAGATACCGCCTGGGACTTTGGCTCTGTGGGCGGAGCCCTGA




ACTCTCTGGGCAAGGGAATCCACCAGATCTTCGGAGCCGCCTTTAAGAGCCTGTT




CGGCGGCATGAGCTGGTTCAGCCAGATCCTGATCGGCACCCTGCTCGTGTGGCTG




GGCCTGAACACCAAGAACGGCAGCATCTCCCTGACCTGCCTGGCTCTGGGAGGCG




TGCTGATCTTTCTGAGCACCGCCGTGTCTGCC






HuIgGk signal
G*GGGAAATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGGAA
60


peptide_prME
ACCCCTGCCCAGCTGCTGTTCCTGCTGCTGCTGTGGCTGCCTGATACCACCGGCA



#2
CCAGAAGAGGCAGCGCCTACTACATGTACCTGGACAGAAGCGACGCCGGCGAGGC



(Brazil_isolate_ZikaSPH2015),
CATCAGCTTTCCAACCACCCTGGGCATGAACAAGTGCTACATCCAGATCATGGAC



mRNA
CTGGGCCACATGTGCGACGCCACCATGAGCTACGAGTGCCCCATGCTGGACGAGG



Sequence
GCGTGGAACCCGACGATGTGGACTGCTGGTGCAACACCACCAGCACCTGGGTGGT



(T100 tail)
GTACGGCACCTGTCACCACAAGAAGGGCGAAGCCAGACGGTCCAGACGGGCCGTG




ACACTGCCTAGCCACTCCACCAGAAAGCTGCAGACCCGGTCCCAGACCTGGCTGG




AAAGCAGAGAGTACACCAAGCACCTGATCCGGGTGGAAAACTGGATCTTCCGGAA




CCCCGGCTTTGCCCTGGCCGCTGCTGCTATTGCTTGGCTGCTGGGCAGCAGCACC




TCCCAGAAAGTGATCTACCTCGTGATGATCCTGCTGATCGCCCCTGCCTACAGCA




TCCGGTGTATCGGCGTGTCCAACCGGGACTTCGTGGAAGGCATGAGCGGCGGCAC




ATGGGTGGACGTGGTGCTGGAACATGGCGGCTGCGTGACAGTGATGGCCCAGGAT




AAGCCCGCCGTGGACATCGAGCTCGTGACCACCACCGTGTCCAATATGGCCGAAG




TGCGGAGCTACTGCTACGAGGCCAGCATCAGCGACATGGCCAGCGACAGCAGATG




CCCTACACAGGGCGAGGCCTACCTGGATAAGCAGTCCGACACCCAGTACGTGTGC




AAGCGGACCCTGGTGGATAGAGGCTGGGGCAATGGCTGCGGCCTGTTTGGCAAGG




GCAGCCTCGTGACCTGCGCCAAGTTCGCCTGCAGCAAGAAGATGACCGGCAAGAG




CATCCAGCCCGAGAACCTGGAATACCGGATCATGCTGAGCGTGCACGGCAGCCAG




CACTCCGGCATGATCGTGAACGACACCGGCCACGAGACAGACGAGAACCGGGCCA




AGGTGGAAATCACCCCCAACAGCCCTAGAGCCGAGGCCACACTGGGCGGCTTTGG




ATCTCTGGGCCTGGACTGCGAGCCTAGAACCGGCCTGGATTTCAGCGACCTGTAC




TACCTGACCATGAACAACAAGCACTGGCTGGTGCACAAAGAGTGGTTCCACGACA




TCCCCCTGCCCTGGCATGCCGGCGCTGATACAGGCACACCCCACTGGAACAACAA




AGAGGCTCTGGTGGAATTCAAGGACGCCCACGCCAAGCGGCAGACCGTGGTGGTG




CTGGGATCTCAGGAAGGCGCCGTGCATACAGCTCTGGCTGGCGCCCTGGAAGCCG




AAATGGATGGCGCCAAAGGCAGACTGTCCAGCGGCCACCTGAAGTGCCGGCTGAA




GATGGACAAGCTGCGGCTGAAGGGCGTGTCCTACAGCCTGTGTACCGCCGCCTTC




ACCTTCACCAAGATCCCCGCCGAGACACTGCACGGCACCGTGACTGTGGAAGTGC




AGTACGCCGGCACCGACGGCCCTTGTAAAGTGCCTGCTCAGATGGCCGTGGATAT




GCAGACCCTGACCCCCGTGGGCAGACTGATCACCGCCAACCCTGTGATCACCGAG




AGCACCGAGAACAGCAAGATGATGCTGGAACTGGACCCCCCCTTCGGCGACTCCT




ACATCGTGATCGGCGTGGGAGAGAAGAAGATCACCCACCACTGGCACCGCAGCGG




CAGCACAATCGGCAAGGCCTTTGAAGCCACAGTGCGGGGAGCCAAGAGAATGGCC




GTGCTGGGAGATACCGCCTGGGACTTTGGCTCTGTGGGCGGAGCCCTGAACTCTC




TGGGCAAGGGAATCCACCAGATCTTCGGAGCCGCCTTTAAGAGCCTGTTCGGCGG




CATGAGCTGGTTCAGCCAGATCCTGATCGGCACCCTGCTCGTGTGGCTGGGCCTG




AACACCAAGAACGGCAGCATCTCCCTGACCTGCCTGGCTCTGGGAGGCGTGCTGA




TCTTTCTGAGCACCGCCGTGTCTGCCTGATAATAGGCTGGAGCCTCGGTGGCCAT




GCTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTAC




CCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGCAAAAAAAAAAAAAAAAAAAA




AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA




AAAAAAAAAAAAAAAAAAAAAAAAATCTAG






HuIgGk signal
TCAAGCTTTTGGACCCTCGTACAGAAGCTAATACGACTCACTATAGGGAAATAAG
61


peptide_E
AGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGGAAACCCCTGCCCAG



(Brazil_isolate_ZikaSPH2015),
CTGCTGTTCCTGCTGCTGCTGTGGCTGCCTGACACCACCGGCATCAGATGCATCG



Sequence,
GCGTGTCCAACCGGGACTTCGTGGAAGGCATGAGCGGCGGCACATGGGTGGACGT



NT (5′ UTR,
GGTGCTGGAACATGGCGGCTGCGTGACAGTGATGGCCCAGGATAAGCCCGCCGTG



ORF, 3′ UTR)
GACATCGAGCTCGTGACCACCACCGTGTCCAATATGGCCGAAGTGCGGAGCTACT




GCTACGAGGCCAGCATCAGCGACATGGCCAGCGACAGCAGATGCCCTACACAGGG




CGAGGCCTACCTGGACAAGCAGAGCGACACCCAGTACGTGTGCAAGCGGACCCTG




GTGGATAGAGGCTGGGGCAATGGCTGCGGCCTGTTTGGCAAGGGCAGCCTCGTGA




CCTGCGCCAAGTTCGCCTGCAGCAAGAAGATGACCGGCAAGAGCATCCAGCCCGA




GAACCTGGAATACCGGATCATGCTGAGCGTGCACGGCAGCCAGCACTCCGGCATG




ATCGTGAACGACACCGGCCACGAGACAGACGAGAACCGGGCCAAGGTGGAAATCA




CCCCCAACAGCCCTAGAGCCGAGGCCACACTGGGCGGCTTTGGATCTCTGGGCCT




GGACTGCGAGCCTAGAACCGGCCTGGATTTCAGCGACCTGTACTACCTGACCATG




AACAACAAGCACTGGCTGGTGCACAAAGAGTGGTTCCACGACATCCCCCTGCCCT




GGCATGCCGGCGCTGATACAGGCACACCCCACTGGAACAACAAAGAGGCTCTGGT




GGAATTCAAGGACGCCCACGCCAAGCGGCAGACCGTGGTGGTGCTGGGATCTCAG




GAAGGCGCCGTGCATACAGCTCTGGCTGGCGCCCTGGAAGCCGAAATGGATGGCG




CCAAAGGCAGACTGAGCAGCGGCCACCTGAAGTGCCGGCTGAAGATGGACAAGCT




GCGGCTGAAGGGCGTGTCCTACAGCCTGTGTACCGCCGCCTTCACCTTCACCAAG




ATCCCCGCCGAGACACTGCACGGCACCGTGACTGTGGAAGTGCAGTACGCCGGCA




CCGACGGCCCTTGTAAAGTGCCTGCTCAGATGGCCGTGGATATGCAGACCCTGAC




CCCCGTGGGCAGGCTGATCACAGCCAACCCTGTGATCACCGAGAGCACCGAGAAC




AGCAAGATGATGCTGGAACTGGACCCCCCCTTCGGCGACTCCTACATCGTGATCG




GCGTGGGAGAGAAGAAGATCACCCACCACTGGCACAGAAGCGGCAGCACCATCGG




CAAGGCCTTTGAGGCTACAGTGCGGGGAGCCAAGAGAATGGCCGTGCTGGGAGAT




ACCGCCTGGGACTTTGGCTCTGTGGGCGGAGCCCTGAACTCTCTGGGCAAGGGAA




TCCACCAGATCTTCGGCGCTGCCTTCAAGAGCCTGTTCGGCGGCATGAGCTGGTT




CAGCCAGATCCTGATCGGCACCCTGCTCGTGTGGCTGGGCCTGAACACCAAGAAC




GGCAGCATCTCCCTGACCTGCCTGGCTCTGGGAGGCGTGCTGATCTTTCTGAGCA




CCGCCGTGTCTGCCTGATAATAGGCTGGAGCCTCGGTGGCCATGCTTCTTGCCCC




TTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTACCCCCGTGGTCTT




TGAATAAAGTCTGAGTGGGCGGC






HuIgGk signal
ATGGAAACCCCTGCCCAGCTGCTGTTCCTGCTGCTGCTGTGGCTGCCTGACACCA
62


peptide_E
CCGGCATCAGATGCATCGGCGTGTCCAACCGGGACTTCGTGGAAGGCATGAGCGG



(Brazil_isolate_ZikaSPH2015),
CGGCACATGGGTGGACGTGGTGCTGGAACATGGCGGCTGCGTGACAGTGATGGCC



ORF
CAGGATAAGCCCGCCGTGGACATCGAGCTCGTGACCACCACCGTGTCCAATATGG



Sequence, NT
CCGAAGTGCGGAGCTACTGCTACGAGGCCAGCATCAGCGACATGGCCAGCGACAG




CAGATGCCCTACACAGGGCGAGGCCTACCTGGACAAGCAGAGCGACACCCAGTAC




GTGTGCAAGCGGACCCTGGTGGATAGAGGCTGGGGCAATGGCTGCGGCCTGTTTG




GCAAGGGCAGCCTCGTGACCTGCGCCAAGTTCGCCTGCAGCAAGAAGATGACCGG




CAAGAGCATCCAGCCCGAGAACCTGGAATACCGGATCATGCTGAGCGTGCACGGC




AGCCAGCACTCCGGCATGATCGTGAACGACACCGGCCACGAGACAGACGAGAACC




GGGCCAAGGTGGAAATCACCCCCAACAGCCCTAGAGCCGAGGCCACACTGGGCGG




CTTTGGATCTCTGGGCCTGGACTGCGAGCCTAGAACCGGCCTGGATTTCAGCGAC




CTGTACTACCTGACCATGAACAACAAGCACTGGCTGGTGCACAAAGAGTGGTTCC




ACGACATCCCCCTGCCCTGGCATGCCGGCGCTGATACAGGCACACCCCACTGGAA




CAACAAAGAGGCTCTGGTGGAATTCAAGGACGCCCACGCCAAGCGGCAGACCGTG




GTGGTGCTGGGATCTCAGGAAGGCGCCGTGCATACAGCTCTGGCTGGCGCCCTGG




AAGCCGAAATGGATGGCGCCAAAGGCAGACTGAGCAGCGGCCACCTGAAGTGCCG




GCTGAAGATGGACAAGCTGCGGCTGAAGGGCGTGTCCTACAGCCTGTGTACCGCC




GCCTTCACCTTCACCAAGATCCCCGCCGAGACACTGCACGGCACCGTGACTGTGG




AAGTGCAGTACGCCGGCACCGACGGCCCTTGTAAAGTGCCTGCTCAGATGGCCGT




GGATATGCAGACCCTGACCCCCGTGGGCAGGCTGATCACAGCCAACCCTGTGATC




ACCGAGAGCACCGAGAACAGCAAGATGATGCTGGAACTGGACCCCCCCTTCGGCG




ACTCCTACATCGTGATCGGCGTGGGAGAGAAGAAGATCACCCACCACTGGCACAG




AAGCGGCAGCACCATCGGCAAGGCCTTTGAGGCTACAGTGCGGGGAGCCAAGAGA




ATGGCCGTGCTGGGAGATACCGCCTGGGACTTTGGCTCTGTGGGCGGAGCCCTGA




ACTCTCTGGGCAAGGGAATCCACCAGATCTTCGGCGCTGCCTTCAAGAGCCTGTT




CGGCGGCATGAGCTGGTTCAGCCAGATCCTGATCGGCACCCTGCTCGTGTGGCTG




GGCCTGAACACCAAGAACGGCAGCATCTCCCTGACCTGCCTGGCTCTGGGAGGCG




TGCTGATCTTTCTGAGCACCGCCGTGTCTGCC






HuIgGk signal
G*GGGAAATAAGAGAGAAAAGAAGAGTAAGAAGAAATATAAGAGCCACCATGGAA
63


peptide_E
ACCCCTGCCCAGCTGCTGTTCCTGCTGCTGCTGTGGCTGCCTGACACCACCGGCA



(Brazil_isolate_ZikaSPH2015),
TCAGATGCATCGGCGTGTCCAACCGGGACTTCGTGGAAGGCATGAGCGGCGGCAC



mRNA
ATGGGTGGACGTGGTGCTGGAACATGGCGGCTGCGTGACAGTGATGGCCCAGGAT



Sequence
AAGCCCGCCGTGGACATCGAGCTCGTGACCACCACCGTGTCCAATATGGCCGAAG



(T100 tail)
TGCGGAGCTACTGCTACGAGGCCAGCATCAGCGACATGGCCAGCGACAGCAGATG




CCCTACACAGGGCGAGGCCTACCTGGACAAGCAGAGCGACACCCAGTACGTGTGC




AAGCGGACCCTGGTGGATAGAGGCTGGGGCAATGGCTGCGGCCTGTTTGGCAAGG




GCAGCCTCGTGACCTGCGCCAAGTTCGCCTGCAGCAAGAAGATGACCGGCAAGAG




CATCCAGCCCGAGAACCTGGAATACCGGATCATGCTGAGCGTGCACGGCAGCCAG




CACTCCGGCATGATCGTGAACGACACCGGCCACGAGACAGACGAGAACCGGGCCA




AGGTGGAAATCACCCCCAACAGCCCTAGAGCCGAGGCCACACTGGGCGGCTTTGG




ATCTCTGGGCCTGGACTGCGAGCCTAGAACCGGCCTGGATTTCAGCGACCTGTAC




TACCTGACCATGAACAACAAGCACTGGCTGGTGCACAAAGAGTGGTTCCACGACA




TCCCCCTGCCCTGGCATGCCGGCGCTGATACAGGCACACCCCACTGGAACAACAA




AGAGGCTCTGGTGGAATTCAAGGACGCCCACGCCAAGCGGCAGACCGTGGTGGTG




CTGGGATCTCAGGAAGGCGCCGTGCATACAGCTCTGGCTGGCGCCCTGGAAGCCG




AAATGGATGGCGCCAAAGGCAGACTGAGCAGCGGCCACCTGAAGTGCCGGCTGAA




GATGGACAAGCTGCGGCTGAAGGGCGTGTCCTACAGCCTGTGTACCGCCGCCTTC




ACCTTCACCAAGATCCCCGCCGAGACACTGCACGGCACCGTGACTGTGGAAGTGC




AGTACGCCGGCACCGACGGCCCTTGTAAAGTGCCTGCTCAGATGGCCGTGGATAT




GCAGACCCTGACCCCCGTGGGCAGGCTGATCACAGCCAACCCTGTGATCACCGAG




AGCACCGAGAACAGCAAGATGATGCTGGAACTGGACCCCCCCTTCGGCGACTCCT




ACATCGTGATCGGCGTGGGAGAGAAGAAGATCACCCACCACTGGCACAGAAGCGG




CAGCACCATCGGCAAGGCCTTTGAGGCTACAGTGCGGGGAGCCAAGAGAATGGCC




GTGCTGGGAGATACCGCCTGGGACTTTGGCTCTGTGGGCGGAGCCCTGAACTCTC




TGGGCAAGGGAATCCACCAGATCTTCGGCGCTGCCTTCAAGAGCCTGTTCGGCGG




CATGAGCTGGTTCAGCCAGATCCTGATCGGCACCCTGCTCGTGTGGCTGGGCCTG




AACACCAAGAACGGCAGCATCTCCCTGACCTGCCTGGCTCTGGGAGGCGTGCTGA




TCTTTCTGAGCACCGCCGTGTCTGCCTGATAATAGGCTGGAGCCTCGGTGGCCAT




GCTTCTTGCCCCTTGGGCCTCCCCCCAGCCCCTCCTCCCCTTCCTGCACCCGTAC




CCCCGTGGTCTTTGAATAAAGTCTGAGTGGGCGGCAAAAAAAAAAAAAAAAAAAA




AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA




AAAAAAAAAAAAAAAAAAAAAAAAATCTAG






Zika_RIO-
ATGCTGGGCAGCAACAGCGGCCAGAGAGTGGTGTTCACCATCCTGCTGCTGCTGG
64


U1_JEVsp
TGGCCCCTGCCTACAGCGCCGAAGTGACAAGAAGAGGCAGCGCCTACTACATGTA



Zika PRME
CCTGGACCGGAACGATGCCGGCGAGGCCATCAGCTTTCCAACCACCCTGGGCATG



Strain
AACAAGTGCTACATCCAGATCATGGACCTGGGCCACATGTGCGACGCCACCATGA



ascension id:
GCTACGAGTGCCCCATGCTGGACGAGGGCGTGGAACCCGACGATGTGGACTGCTG



ANG09399 with
GTGCAATACCACCAGCACCTGGGTGGTGTACGGCACCTGTCACCACAAGAAGGGC



JEV PRM
GAAGCCAGACGGTCCAGACGGGCCGTGACACTGCCTAGCCACAGCACCAGAAAGC



signal
TGCAGACCCGGTCCCAGACCTGGCTGGAAAGCAGAGAGTACACCAAGCACCTGAT



sequence
CCGGGTGGAAAACTGGATCTTCCGGAACCCCGGCTTTGCCCTGGCTGCCGCTGCT



(optimized)
ATTGCTTGGCTGCTGGGCTCTAGCACCAGCCAGAAAGTGATCTACCTCGTGATGA




TCCTGCTGATCGCCCCAGCCTACTCCATCCGGTGTATCGGCGTGTCCAACCGGGA




CTTCGTGGAAGGCATGAGCGGCGGCACATGGGTGGACGTGGTGCTGGAACATGGC




GGCTGCGTGACAGTGATGGCCCAGGACAAGCCCACCGTGGACATCGAGCTCGTGA




CCACCACCGTGTCCAATATGGCCGAAGTGCGGAGCTACTGCTACGAGGCCAGCAT




CAGCGACATGGCCAGCGACAGCAGATGCCCTACACAGGGCGAGGCCTACCTGGAC




AAGCAGTCCGACACCCAGTACGTGTGCAAGCGGACCCTGGTGGACAGGGGCTGGG




GCAATGGCTGTGGCCTGTTTGGCAAGGGCAGCCTCGTGACCTGCGCCAAGTTCGC




CTGCAGCAAGAAGATGACCGGCAAGAGCATCCAGCCCGAGAACCTGGAATACCGG




ATCATGCTGAGCGTGCACGGCTCCCAGCACAGCGGCATGATCGTGAACGACACCG




GCCACGAGACAGACGAGAACCGGGCCAAGGTGGAAATCACCCCCAACAGCCCTAG




AGCCGAGGCCACACTGGGCGGCTTTGGATCTCTGGGCCTGGACTGCGAGCCTAGA




ACCGGCCTGGATTTCAGCGACCTGTACTACCTGACCATGAACAACAAACACTGGC




TGGTGCACAAAGAGTGGTTCCACGACATCCCCCTGCCCTGGCATGCTGGCGCTGA




TACAGGCACCCCCCACTGGAACAACAAAGAGGCCCTGGTGGAATTCAAGGACGCC




CACGCCAAGCGGCAGACCGTGGTGGTGCTGGGATCTCAGGAAGGCGCCGTGCATA




CAGCTCTGGCTGGCGCCCTGGAAGCCGAAATGGATGGCGCCAAAGGCAGACTGAG




CAGCGGCCACCTGAAGTGCCGGCTGAAGATGGACAAGCTGCGGCTGAAGGGCGTG




TCCTACAGCCTGTGTACCGCCGCCTTCACCTTCACCAAGATCCCCGCCGAGACAC




TGCACGGCACCGTGACTGTGGAAGTGCAGTACGCCGGCACCGACGGCCCTTGTAA




AGTGCCTGCTCAGATGGCCGTGGATATGCAGACCCTGACCCCCGTGGGCAGGCTG




ATCACAGCCAACCCTGTGATCACCGAGAGCACCGAGAACAGCAAGATGATGCTGG




AACTGGACCCCCCCTTCGGCGACTCCTACATCGTGATCGGCGTGGGAGAGAAGAA




GATCACCCACCACTGGCACAGAAGCGGCAGCACCATCGGCAAGGCCTTTGAGGCT




ACAGTGCGGGGAGCCAAGAGAATGGCCGTGCTGGGCGATACCGCCTGGGATTTTG




GCTCTGTGGGCGGAGCCCTGAACAGCCTGGGAAAGGGCATCCACCAGATCTTCGG




AGCCGCCTTTAAGAGCCTGTTCGGCGGCATGAGCTGGTTCAGCCAGATCCTGATC




GGCACCCTGCTGATGTGGCTGGGCCTGAACACCAAGAACGGCAGCATCTCCCTGA




TGTGCCTGGCTCTGGGCGGCGTGCTGATCTTTCTGAGCACAGCCGTGTCCGCC






Zika_RIO-
ATGAAGTGCCTGCTGTACCTGGCCTTCCTGTTCATCGGCGTGAACTGCGCCGAAG
65


U1¬_VSVgSp
TGACCAGAAGAGGCAGCGCCTACTACATGTACCTGGACCGGAACGATGCCGGCGA



Zika PRME
GGCCATCAGCTTTCCAACCACCCTGGGCATGAACAAGTGCTACATCCAGATCATG



Strain
GACCTGGGCCACATGTGCGACGCCACCATGAGCTACGAGTGCCCCATGCTGGACG



ascension id:
AGGGCGTGGAACCCGACGATGTGGACTGCTGGTGCAACACCACCAGCACCTGGGT



ANG09399 with
GGTGTACGGCACCTGTCACCACAAGAAGGGCGAAGCCAGACGGTCCAGACGGGCC



VSV g protein
GTGACACTGCCTAGCCACAGCACCAGAAAGCTGCAGACCCGGTCCCAGACCTGGC



signal
TGGAAAGCAGAGAGTACACCAAGCACCTGATCCGGGTGGAAAACTGGATCTTCCG



sequence
GAACCCCGGCTTTGCCCTGGCCGCTGCTGCTATTGCTTGGCTGCTGGGCAGCAGC



(optimized)
ACCTCCCAGAAAGTGATCTACCTCGTGATGATCCTGCTGATCGCCCCTGCCTACA




GCATCCGGTGTATCGGCGTGTCCAACCGGGACTTCGTGGAAGGCATGAGCGGCGG




CACATGGGTGGACGTGGTGCTGGAACATGGCGGCTGCGTGACAGTGATGGCCCAG




GACAAGCCCACCGTGGACATCGAGCTCGTGACCACCACCGTGTCCAATATGGCCG




AAGTGCGGAGCTACTGCTACGAGGCCAGCATCAGCGACATGGCCAGCGACAGCAG




ATGCCCTACACAGGGCGAGGCCTACCTGGACAAGCAGTCCGACACCCAGTACGTG




TGCAAGCGGACCCTGGTGGATAGAGGCTGGGGCAATGGCTGCGGCCTGTTTGGCA




AGGGCAGCCTCGTGACCTGTGCCAAGTTCGCCTGCAGCAAGAAGATGACCGGCAA




GAGCATCCAGCCCGAGAACCTGGAATACCGGATCATGCTGAGCGTGCACGGCAGC




CAGCACTCCGGCATGATCGTGAACGACACCGGCCACGAGACAGACGAGAACCGGG




CCAAGGTGGAAATCACCCCCAACAGCCCTAGAGCCGAGGCCACACTGGGCGGCTT




TGGATCTCTGGGCCTGGACTGCGAGCCTAGAACCGGCCTGGATTTCAGCGACCTG




TACTACCTGACCATGAACAACAAGCACTGGCTGGTGCACAAAGAGTGGTTCCACG




ACATCCCCCTGCCCTGGCATGCCGGCGCTGATACAGGCACACCCCACTGGAACAA




CAAAGAGGCTCTGGTGGAATTCAAGGACGCCCACGCCAAGCGGCAGACCGTGGTG




GTGCTGGGATCTCAGGAAGGCGCCGTGCATACAGCTCTGGCTGGCGCCCTGGAAG




CCGAAATGGATGGCGCCAAAGGCAGACTGTCCAGCGGCCACCTGAAGTGCAGACT




GAAGATGGACAAGCTGCGGCTGAAGGGCGTGTCCTACAGCCTGTGTACCGCCGCC




TTCACCTTCACCAAGATCCCCGCCGAGACACTGCACGGCACCGTGACTGTGGAAG




TGCAGTACGCCGGCACCGACGGCCCTTGTAAAGTGCCAGCTCAGATGGCCGTGGA




TATGCAGACCCTGACCCCCGTGGGCAGACTGATCACCGCCAACCCTGTGATCACC




GAGAGCACCGAGAACAGCAAGATGATGCTGGAACTGGACCCCCCCTTCGGCGACT




CCTACATCGTGATCGGCGTGGGAGAGAAGAAGATCACCCACCACTGGCACAGAAG




CGGCAGCACCATCGGCAAGGCCTTTGAGGCTACAGTGCGGGGAGCCAAGAGAATG




GCCGTGCTGGGAGATACCGCCTGGGACTTTGGCTCTGTGGGCGGAGCCCTGAACT




CTCTGGGCAAGGGAATCCACCAGATCTTCGGAGCCGCCTTTAAGAGCCTGTTCGG




CGGCATGAGCTGGTTCAGCCAGATCCTGATCGGCACCCTGCTGATGTGGCTGGGC




CTGAACACCAAGAACGGCAGCATCTCCCTGATGTGCCTGGCTCTGGGAGGCGTGC




TGATCTTCCTGAGCACAGCCGTGTCTGCC






ZIKA_PRME_DSP_N154A
ATGGACTGGACCTGGATCCTGTTCCTGGTGGCCGCTGCCACAAGAGTGCACAGCG
66


Zika PRME
TGGAAGTGACCAGACGGGGCAGCGCCTACTACATGTACCTGGACAGAAGCGACGC



Strain
CGGCGAGGCCATCAGCTTTCCAACCACCCTGGGCATGAACAAGTGCTACATCCAG



ascension id:
ATCATGGACCTGGGCCACATGTGCGACGCCACCATGAGCTACGAGTGCCCCATGC



ACD75819 with
TGGACGAGGGCGTGGAACCCGACGATGTGGACTGCTGGTGCAACACCACCAGCAC



IgE signal
CTGGGTGGTGTACGGCACCTGTCACCACAAGAAGGGCGAAGCCAGACGGTCCAGA



peptide
CGGGCCGTGACACTGCCTAGCCACAGCACCAGAAAGCTGCAGACCCGGTCCCAGA



(optimized)
CCTGGCTGGAAAGCAGAGAGTACACCAAGCACCTGATCCGGGTGGAAAACTGGAT




CTTCCGGAACCCCGGCTTTGCCCTGGCTGCCGCTGCTATTGCTTGGCTGCTGGGC




AGCAGCACCTCCCAGAAAGTGATCTACCTCGTGATGATCCTGCTGATCGCCCCTG




CCTACAGCATCCGGTGTATCGGCGTGTCCAACCGGGACTTCGTGGAAGGCATGAG




CGGCGGCACATGGGTGGACGTGGTGCTGGAACATGGCGGCTGCGTGACAGTGATG




GCCCAGGATAAGCCCGCCGTGGACATCGAGCTCGTGACCACCACCGTGTCCAATA




TGGCCGAAGTGCGGAGCTACTGCTACGAGGCCAGCATCAGCGACATGGCCAGCGA




CAGCAGATGCCCTACACAGGGCGAGGCCTACCTGGATAAGCAGTCCGACACCCAG




TACGTGTGCAAGCGGACCCTGGTGGATAGAGGCTGGGGCAATGGCTGCGGCCTGT




TTGGCAAGGGCAGCCTCGTGACCTGCGCCAAGTTCGCCTGCAGCAAGAAGATGAC




CGGCAAGAGCATCCAGCCCGAGAACCTGGAATACCGGATCATGCTGAGCGTGCAC




GGCTCCCAGCACAGCGGCATGATCGTGGCCGACACCGGCCACGAGACAGACGAGA




ACCGGGCCAAGGTGGAAATCACCCCCAACAGCCCTAGAGCCGAGGCCACACTGGG




CGGCTTTGGATCTCTGGGCCTGGACTGCGAGCCTAGAACCGGCCTGGATTTCAGC




GACCTGTACTACCTGACCATGAACAACAAGCACTGGCTGGTGCACAAAGAGTGGT




TCCACGACATCCCCCTGCCCTGGCATGCTGGCGCTGATACAGGCACCCCCCACTG




GAACAACAAAGAGGCTCTGGTGGAATTCAAGGACGCCCACGCCAAGCGGCAGACC




GTGGTGGTGCTGGGATCTCAGGAAGGCGCCGTGCATACAGCTCTGGCTGGCGCCC




TGGAAGCCGAAATGGATGGCGCCAAAGGCAGACTGTCCTCCGGCCACCTGAAGTG




CCGGCTGAAGATGGACAAGCTGCGGCTGAAGGGCGTGTCCTACAGCCTGTGTACC




GCCGCCTTCACCTTCACCAAGATCCCCGCCGAGACACTGCACGGCACCGTGACTG




TGGAAGTGCAGTACGCCGGCACCGACGGCCCTTGTAAAGTGCCTGCTCAGATGGC




CGTGGATATGCAGACCCTGACCCCCGTGGGCAGACTGATCACCGCCAACCCTGTG




ATCACCGAGAGCACCGAGAACAGCAAGATGATGCTGGAACTGGACCCCCCCTTCG




GCGACTCCTACATCGTGATCGGCGTGGGAGAGAAGAAGATCACCCACCACTGGCA




CAGATCCGGCAGCACCATCGGCAAGGCCTTTGAGGCTACAGTGCGGGGAGCCAAG




AGAATGGCCGTGCTGGGCGATACCGCCTGGGATTTTGGCTCTGTGGGCGGAGCCC




TGAACAGCCTGGGAAAGGGCATCCACCAGATCTTCGGCGCTGCCTTCAAGAGCCT




GTTCGGCGGCATGAGCTGGTTCAGCCAGATCCTGATCGGCACCCTGCTCGTGTGG




CTGGGCCTGAACACCAAGAACGGCAGCATCTCCCTGACCTGCCTGGCTCTGGGCG




GCGTGCTGATCTTTCTGAGCACAGCCGTGTCCGCC
















TABLE 32







ZIKV Amino Acid Sequences











SEQ




ID


Description
Sequence
NO:












FSM|ACD75819
MKNPKEEIRRIRIVNMLKRGVARVSPFGGLKRLPAGLLLGHGPIRMVLAI
67


polyprotein
LAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKE




KKRRGTDTSVGIVGLLLTTAMAVEVTRRGSAYYMYLDRSDAGEAISFPTT




LGMNKCYIQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVY




GTCHHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIRVENW




IFRNPGFALAAAAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRD




FVEGMSGGTWVDVVLEHGGCVTVMAQDKPAVDIELVTTTVSNMAEVRSYC




YEASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGK




GSLVTCAKFACSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDTGHET




DENRAKVEITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKH




WLVHKEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGS




QEGAVHTALAGALEAEMDGAKGRLSSGHLKCRLKMDKLRLKGVSYSLCTA




AFTFTKIPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLIT




ANPVITESTENSKMMLELDPPFGDSYIVIGVGEKKITHHWHRSGSTIGKA




FEATVRGAKRMAVLGDTAWDFGSVGGALNSLGKGIHQIFGAAFKSLFGGM




SWFSQILIGTLLVWLGLNTKNGSISLTCLALGGVLIFLSTAVSA






MR_766|ABI54475
MKNPKKKSGGFRIVNMLKRGVARVNPLGGLKRLPAGLLLGHGPIRMVLAI
68



LAFLRFTAIKPSLGLINRWGTVGKKEAMEIIKKFKKDLAAMLRIINARKE




RKRRGADTSIGIVGLLLTTAMAAEITRRGSAYYMYLDRSDAGKAISFATT




LGVNKCHVQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVY




GTCHHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIKVENW




IFRNPGFTLVAVAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRD




FVEGMSGGTWVDVVLEHGGCVTVMAQDKPTVDIELVTTTVSNMAEVRSYC




YEASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGK




GSLVTCAKFTCSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDENRAK




VEVTPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKE




WFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVH




TALAGALEAEMDGAKGRLFSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTK




VPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLITANPVIT




ESTENSKMMLELDPPFGDSYIVIGVGDKKITHHWHRSGSTIGKAFEATVR




GAKRMAVLGDTAWDFGSVGGVFNSLGKGIHQIFGAAFKSLFGGMSWFSQI




LIGTLLVWLGLNTKNGSISLTCLALGGVMIFLSTAVSA






SM_6_V_1|ABI54480
MKNPKRAGSSRLVNMLRRGAARVIPPGGGLKRLPVGLLLGRGPIKMILAI
69



LAFLRFTAIKPSTGLINRWGKVGKKEAIKILTKFKADVGTMLRIINNRKT




KKRGVETGIVFLALLVSIVAVEVTKKGDTYYMFADKKDAGKVVTFETESG




PNRCSIQAMDIGHMCPATMSYECPVLEPQYEPEDVDCWCNSTAAWIVYGT




CTHKTTGETRRSRRSITLPSHASQKLETRSSTWLESREYSKYLIKVENWI




LRNPGYALVAAVIGWTLGSSRSQKIIFVTLLMLVAPAYSIRCIGIGNRDF




IEGMSGGTWVDIVLEHGGCVTVMSNDKPTLDFELVTTTASNMAEVRSYCY




EANISEMASDSRCPTQGEAYLDKMADSQFVCKRGYVDRGWGNGCGLFGKG




SIVTCAKFTCVKKLTGKSIQPENLEYRVLVSVHASQHGGMINNDTNHQHD




KENRARIDITASAPRVEVELGSFGSFSMECEPRSGLNFGDLYYLTMNNKH




WLVNRDWFHDLSLPWHTGATSNNHHWNNKEALVEFREAHAKKQTAVVLGS




QEGAVHAALAGALEAESDGHKATIYSGHLKCRLKLDKLRLKGMSYALCTG




AFTFARTPSETIHGTATVELQYAGEDGPCKVPIVITSDTNSMASTGRLIT




ANPVVTESGANSKMMVEIDPPFGDSYIIVGTGTTKITHHWHRAGSSIGRA




FEATMRGAKRMAVLGDTAWDFGSVGGMFNSVGKFVHQVFGSAFKALFGGM




SWFTQLLIGFLLIWMGLNARGGTVAMSFMGIGAMLIFLATSVSG






MR_766|AAV34151
MKNPKEEIRRIRIVNMLKRGVARVNPLGGLKRLPAGLLLGHGPIRMVLAI
70



LAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKE




RKRRGADTSIGIIGLLLTTAMAAEITRRGSAYYMYLDRSDAGKAISFATT




LGVNKCHVQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVY




GTCHHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIKVENW




IFRNPGFALVAVAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRD




FVEGMSGGTWVDVVLEHGGCVTVMAQDKPTVDIELVTTTVSNMAEVRSYC




YEASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGK




GSLVTCAKFTCSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIGYETDEDR




AKVEVTPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVH




KEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGA




VHTALAGALEAEMDGAKGRLFSGHLKCRLKMDKLRLKGVSYSLCTAAFTF




TKVPAETLHGTVTVEVQYAGTDGPCKIPVQMAVDMQTLTPVGRLITANPV




ITESTENSKMMLELDPPFGDSYIVIGVGDKKITHHWHRSGSTIGKAFEAT




VRGAKRMAVLGDTAWDFGSVGGVFNSLGKGIHQIFGAAFKSLFGGMSWFS




QILIGTLLVWLGLNTKNGSISLTCLALGGVMIFLSTAVSA






MR_766|YP_002790881
MKNPKEEIRRIRIVNMLKRGVARVNPLGGLKRLPAGLLLGHGPIRMVLAI
71



LAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKE




RKRRGADTSIGIIGLLLTTAMAAEITRRGSAYYMYLDRSDAGKAISFATT




LGVNKCHVQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVY




GTCHHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIKVENW




IFRNPGFALVAVAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRD




FVEGMSGGTWVDVVLEHGGCVTVMAQDKPTVDIELVTTTVSNMAEVRSYC




YEASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGK




GSLVTCAKFTCKKMTGKSIQPENLEYRIMLSVHGSQHSGMIGYETDEDRA




KVEVTPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHK




EWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAV




HTALAGALEAEMDGAKGRLFSGHLKCRLKMDKLRLKGVSYSLCTAAFTFT




KVPAETLHGTVTVEVQYAGTDGPCKIPVQMAVDMQTLTPVGRLITANPVI




TESTENSKMMLELDPPFGDSYIVIGVGDKKITHHWHRSGSTIGKAFEATV




RGAKRMAVLGDTAWDFGSVGGVFNSLGKGIHQIFGAAFKSLFGGMSWFSQ




ILIGTLLVWLGLNTKNGSISLTCLALGGVMIFLSTAVSA






ARB7701|AHF49785
MKNPKKKSGGFRIVNMLKRGVARVNPLGGLKRLPAGLLLGHGPIRMVLAI
72



LAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKE




RKRRGADTSIGIIGLLLTTAMAAEITRRGSAYYMYLDRSDAGKAISFATN




LGVNKCHVQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVY




GTCHHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIKVENW




IFRNPGFALAAVAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRD




FVEGMSGGTWVDVVLEHGGCVTVMAQDKPTVDIELVTTTVSNMAEVRSYC




YEASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGK




GSLVTCAKFTCSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDIGHET




DENRAKVEVTPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKH




WLVHKEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGS




QEGAVHTALAGALEAEMDGAKGRLFSGHLKCRLKMDKLRLKGVSYSLCTA




AFTFTKVPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLIT




ANPVITESTENSKMMLELDPPFGDSYIVIGVGDKKITHHWHRSGSTIGKA




FEATVRGAKRMAVLGDTAWDFGSVGGVFNSLGKGVHQIFGAAFKSLFGGM




SWFSQILIGTLLVWLGLNTKNGSISLTCLALGGVMIFLSTAVSA






ARB15076|AHF49784
MKNPKKKSGGFRIVNMLKRGVARVNPLGGLKRLPAGLLLGHGPIRMVLAI
73



LAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKE




RKRRGADTSIGIIGLLLTTAMAAEITRRGSAYYMYLDRSDAGKAISFATN




LGVNKCHVQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVY




GTCHHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIKVENW




IFRNPGFALAAVAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRD




FVEGMSGGTWVDVVLEHGGCVTVMAQDKPTVDIELVTTTVSNMAEVRSYC




YEASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGK




GSLVTCAKFTCSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDENRAK




VEVTPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKE




WFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVH




TALAGALEAEMDGAKGRLFSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTK




VPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLITANPVIT




ESTENSKMMLELDPPFGDSYIVIGVGDKKITHHWHRSGSTIGKAFEATVR




GAKRMAVLGDTAWDFGSVGGVFNSLGKGIHQIFGAAFKSLFGGMSWFSQI




LIGTLLVWLGLNTKNGSISLTCLALGGVMIFLSTAVSA






ARB13565|AHF49783
MKNPKKKSGGFRIVNMLKRGVARVNPLGGLKRLPAGLLLGHGPIRMVLAI
74



LAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKE




RKRRGADTSIGIIGLLLTTAMAAEITRRGSAYYMYLDRSDAGKAISFATN




LGVNKCHVQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVY




GTCHHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIKVENW




IFRNPGFALAAVAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRD




FVEGMSGGTWVDVVLEHGGCVTVMAQDKPTVDIELVTTTVSNMAEVRSYC




YEASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGK




GSLVTCAKFTCSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDIGHET




DENRAKVEVTPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKH




WLVHKEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGS




QEGAVHTALAGALEAEMDGAKGRLFSGHLKCRLKMDKLRLKGVSYSLCTA




AFTFTKVPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLIT




ANPVITESTENSKMMLELDPPFGDSYIVIGVGDKKITHHWHRSGSTIGKA




FEATVRGAKRMAVLGDTAWDFGSVGGVFNSLGKGVHQIFGAAFKSLFGGM




SWFSQILIGTLLVWLGLNTKNGSISLTCLALGGVMIFLSTAVSA






ArB1362|AHL43500
MKNPKKKSGGFRIVNMLKRGVARVNPLGGLKRLPAGLLLGHGPIRMVLAI
75



LAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKE




RKRRGADTSIGIIGLLLTTAMAAEITRRGSAYYMYLDRSDAGKAISFATT




LGVNKCHVQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVY




GTCHHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIKVENW




IFRNPGFALAAVAIAWLLGSSTSQKVIYLIMILLIAPAYSIRCIGVSNRD




FVEGMSGGTWVDVVLEHGGCVTVMAQDKPTVDIELVTTTVSNMAEVRSYC




YEASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGK




GSLVTCAKFTCSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDXXXXX




XXNRAEVEVTPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKH




WLVHKEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGS




QEGAVHTALAGALEAEMDGAKGRLFSGHLKCRLKMDKLRLKGVSYSLCTA




AFTFTKVPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLIT




ANPVITESTENSKMMLELDPPFGDSYIVIGVGDKKITHHWHRSGSTIGKA




FEATVRGAKRMAVLGDTAWDFGSVGGVFNSLGKGIHQIFGAAFKSLFGGM




SWFSQILIGTLLVWLGLNTKNGSISLTCLALGGVMIFLSTAVSA






ArD7117|AHL43501
MKNPKKRSGGFRIVNMLKRGVARVNPLGGLKRLPAGLLLGHGPIRMVLAI
76



LAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKE




RKRRGADTSIGIVGLLLTTAMAAEITRRGSAYYMYLDRSDAGKAISFATT




LGVNKCHVQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVY




GTCQHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIKVENW




IFRNPGFALVAVAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRD




FVEGMSGGTWVDVVLEHGGCVTVMAQDKPTVDIELVTTTVSNMAEVRSYC




YEASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGK




GSLVTCAKFTCSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDIGHET




DENRAKVEVTPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKH




WLVHKEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGS




QEGAVHTALAGALEAEMDGAKGRLFSGHLKCRLKMDKLRLKGVSYSLCTA




VCTAAKVPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLIT




ANPVITESTENSKMMLELDPPFGDSYIVIGVGDKKITHHWHRSGSTIGKA




FEATVRGAKRMAVLGDTAWDFGSVGGVFNSLGKGIHQIFGAAFKSLFGGM




SWFSQILIGTLLVWLGLNTKNGSISLTCLALGGVMIFLSTAVSA






ArD157995|AHL43503
MKNPKKKSGRFRIVNMLKRGVARVNPLGGLKRLPAGLLLGHGPIRMVLAI
77



LAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKE




RKRRGADTSIGIIGLLLTTAMAAEITRRGSAYYMYLDRSDAGKAISFATT




LGVNKCHVQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVY




GTCHHKKGETRRSRRSVSLRYHYTRKLQTRSQTWLESREYKKHLIMVENW




IFRNPGFAIVSVAITWLMGSLTSQKVIYLVMIVLIVPAYSISCIGVSNRD




LVEGMSGGTWVDVVLEHGGCVTEMAQDKPTVDIELVTMTVSNMAEVRSYC




YEASLSDMASASRCPTQGEPSLDKQSDTQSVCKRTLGDRGWGNGCGIFGK




GSLVTCSKFTCCKKMPGKSIQPENLEYRIMLPVHGSQHSGMIVNDIGHET




DENRAKVEVTPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKH




WLVHKEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGS




QEGAVHTALAGALEAEMDGAKGRLFSGHLKCRLKMDKLRLKGVSYSLCTA




AFTFTKVPAETLHGTVTVEVQSAGTDGPCKVPAQMAVDMQTLTPVGRLIT




ANPVITESTENSKMMLELDPPFGDSYIVIGVGDKKITHHWHRSGSTIGKA




FEATVRGAKRMAVLGDTAWDFGSVGGVFNSLGKGIHQIFGAAFKSLFGGM




SWFSQILIGTLLVWLGLNTKNGSISLTCLALGGVMIFLSTAVSA






ArD128000|AHL43502
MKNPKRKSGGFRIVNMLKRGVARVNPLGGLKRLPAGLLLGHGPIRMVLAI
78



LAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKE




RKRRGADTSIGIIGLLLTTAMAAEITRRGSAYYMYLDRSDAGKAISFATT




LGVNKCHVQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVY




GTCHHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIKVENW




IFRNPGFALAAVAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRD




FVEGMSGGTWVDVVLEHGGCVTVMAQDKPTVDIELVTTTVSNMAEVRSYC




YEASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGK




GSLVTCAKFTCSKKMTGKSIQPENLEYRIMLSVHGSQHSGMXXXXXGHET




DENRAKVEVTPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKH




RLVRKEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGS




QEGAVHTALAGALEAEMDGAKGRLFSGHLKCRLKMDKLRLKGVSYSLCTA




AFTFTKVPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLIT




ANPVITESTENSKMMLELDPPFGDSYIVIGVGDKKITHHWLKKGSSIGKA




FEATVRGAKRMAVLGDTAWDFGSVGGVFNSLGKGVHQIFGAAFKSLFGGM




SWFSQILIGTLLVWLGLNTKNGSISLTCLALGGVMIFLSTAVSA






ArD158084|AHL43504
MKNPKKKSGGFRIVNMLKRGVARVNPLGGLKRLPAGLLLGHGPIRMVLAI
79



LAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKE




RKRRGADTSIGIIGLLLTTAMAAEITRRGSAYYMYLDRSDAGKAISFATT




LGVNKCHVQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVY




GTCHHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIKVENW




IFRNPGFALVAVAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRD




FVEGMSGGTWVDVVLEHGGCVTVMAQDKPTVDIELVTTTVSNMAEVRSYC




YEASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGK




GSLVTCAKFTCSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDIGHET




DENRAKVEVTPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKH




WLVHKEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGS




QEGAVHTALAGALEAEMDGAKGRLFSGHLKCRLKMDKLRLKGVSYSLCTA




AFTFTKVPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLIT




ANPVITESTENSKMMLELDPPFGDSYIVIGVGDKKITHHWHRSGSTIGKA




FEATVRGAKRMAVLGDTAWDFGSVGGVFNSLGKGIHQIFGAAFKSLFGGM




SWFSQILIGTLLVWLGLNTKNGSISLTCLALGGVMIFLSTAVSA






H/PF/2013|AHZ13508
MKNPKKKSGGFRIVNMLKRGVARVSPFGGLKRLPAGLLLGHGPIRMVLAI
80



LAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKE




KKRRGADTSVGIVGLLLTTAMAAEVTRRGSAYYMYLDRNDAGEAISFPTT




LGMNKCYIQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVY




GTCHHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIRVENW




IFRNPGFALAAAAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRD




FVEGMSGGTWVDVVLEHGGCVTVMAQDKPTVDIELVTTTVSNMAEVRSYC




YEASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGK




GSLVTCAKFACSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDTGHET




DENRAKVEITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKH




WLVHKEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGS




QEGAVHTALAGALEAEMDGAKGRLSSGHLKCRLKMDKLRLKGVSYSLCTA




AFTFTKIPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLIT




ANPVITESTENSKMMLELDPPFGDSYIVIGVGEKKITHHWHRSGSTIGKA




FEATVRGAKRMAVLGDTAWDFGSVGGALNSLGKGIHQIFGAAFKSLFGGM




SWFSQILIGTLLMWLGLNTKNGSISLMCLALGGVLIFLSTAVSA






MR766_NIID|BAP47441
MKNPKKKSGGFRIVNMLKRGVARVNPLGGLKRLPAGLLLGHGPIRMVLAI
81



LAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKE




RKRRGADTSIGIIGLLLTTAMAAEITRRGSAYYMYLDRSDAGKAISFATT




LGVNKCHVQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVY




GTCHHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIKVENW




IFRNPGFALVAVAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRD




FVEGMSGGTWVDVVLEHGGCVTVMAQDKPTVDIELVTTTVSNMAEVRSYC




YEASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGK




GSLVTCAKFTCSKKMTGKSIQPENLEYRIMLSVHGSQHSGMTVNDIGYET




DENRAKVEVTPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKH




WLVHKEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGS




QEGAVHTALAGALEAEMDGAKGKLFSGHLKCRLKMDKLRLKGVSYSLCTA




AFTFTKVPAETLHGTVTVEVQYAGTDGPCKIPVQMAVDMQTLTPVGRLIT




ANPVITESTENSKMMLELDPPFGDSYIVIGVGDKKITHHWHRSGSTIGKA




FEATVRGAKRMAVLGDTAWDFGSVGGVFNSLGKGIHQIFGAAFKSLFGGM




SWFSQILIGTLLVWLGLNTKNGSISLTCLALGGVMIFLSTAVSA






prME
VEVTKKGDTYYMFADKKDAGKVVTFETESGPNRCSIQAMDIGHMCPATMS
82


ABI54480_SouthAfrica
YECPVLEPQYEPEDVDCWCNSTAAWIVYGTCTHKTTGETRRSRRSITLPS




HASQKLETRSSTWLESREYSKYLIKVENWILRNPGYALVAAVIGWTLGSS




RSQKIIFVTLLMLVAPAYSIRCIGIGNRDFIEGMSGGTWVDIVLEHGGCV




TVMSNDKPTLDFELVTTTASNMAEVRSYCYEANISEMASDSRCPTQGEAY




LDKMADSQFVCKRGYVDRGWGNGCGLFGKGSIVTCAKFTCVKKLTGKSIQ




PENLEYRVLVSVHASQHGGMINNDTNHQHDKENRARIDITASAPRVEVEL




GSFGSFSMECEPRSGLNFGDLYYLTMNNKHWLVNRDWFHDLSLPWHTGAT




SNNHHWNNKEALVEFREAHAKKQTAVVLGSQEGAVHAALAGALEAESDGH




KATIYSGHLKCRLKLDKLRLKGMSYALCTGAFTFARTPSETIHGTATVEL




QYAGEDGPCKVPIVITSDTNSMASTGRLITANPVVTESGANSKMMVEIDP




PFGDSYIIVGTGTTKITHHWHRAGSSIGRAFEATMRGAKRMAVLGDTAWD




FGSVGGMFNSVGKFVHQVFGSAFKALFGGMSWFTQLLIGFLLIWMGLNAR




GGTVAMSFMGIGAMLIFLATSVSG






prME
AEITRRGSAYYMYLDRSDAGKAISFATTLGVNKCHVQIMDLGHMCDATMS
83


AAV34151_Uganda_NHP
YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH




STRKLQTRSQTWLESREYTKHLIKVENWIFRNPGFALVAVAIAWLLGSST




SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT




VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL




DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFTCSKKMTGKSIQP




ENLEYRIMLSVHGSQHSGMIGYETDEDRAKVEVTPNSPRAEATLGGFGSL




GLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTGTPHW




NNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKGRLFS




GHLKCRLKMDKLRLKGVSYSLCTAAFTFTKVPAETLHGTVTVEVQYAGTD




GPCKIPVQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPFGDSY




IVIGVGDKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFGSVGG




VFNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLVWLGLNTKNGSISL




TCLALGGVMIFLSTAVSA






prME
AEVTRRGSAYYMYLDRNDAGEAISFPTTLGMNKCYIQIMDLGHMCDATMS
84


AHZ13508_FrenchPoly_2013
YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH




STRKLQTRSQTWLESREYTKHLIRVENWIFRNPGFALAAAAIAWLLGSST




SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT




VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL




DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFACSKKMTGKSIQP




ENLEYRIMLSVHGSQHSGMIVNDTGHETDENRAKVEITPNSPRAEATLGG




FGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTG




TPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKG




RLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKIPAETLHGTVTVEVQY




AGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPF




GDSYIVIGVGEKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFG




SVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLMWLGLNTKNG




SISLMCLALGGVLIFLSTAVSA






prME
AEITRRGSAYYMYLDRSDAGKAISFATTLGVNKCHVQIMDLGHMCDATMS
85


gAHL43504
YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH




STRKLQTRSQTWLESREYTKHLIKVENWIFRNPGFALVAVAIAWLLGSST




SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT




VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL




DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFTCSKKMTGKSIQP




ENLEYRIMLSVHGSQHSGMIVNDIGHETDENRAKVEVTPNSPRAEATLGG




FGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTG




TPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKG




RLFSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKVPAETLHGTVTVEVQY




AGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPF




GDSYIVIGVGDKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFG




SVGGVFNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLVWLGLNTKNG




SISLTCLALGGVMIFLSTAVSA






prME
AEITRRGSAYYMYLDRSDAGKAISFATTLGVNKCHVQIMDLGHMCDATMS
86


AHL43503
YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGETRRSRRSVSLRYH




YTRKLQTRSQTWLESREYKKHLIMVENWIFRNPGFAIVSVAITWLMGSLT




SQKVIYLVMIVLIVPAYSISCIGVSNRDLVEGMSGGTWVDVVLEHGGCVT




EMAQDKPTVDIELVTMTVSNMAEVRSYCYEASLSDMASASRCPTQGEPSL




DKQSDTQSVCKRTLGDRGWGNGCGIFGKGSLVTCSKFTCCKKMPGKSIQP




ENLEYRIMLPVHGSQHSGMIVNDIGHETDENRAKVEVTPNSPRAEATLGG




FGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTG




TPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKG




RLFSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKVPAETLHGTVTVEVQS




AGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPF




GDSYIVIGVGDKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFG




SVGGVFNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLVWLGLNTKNG




SISLTCLALGGVMIFLSTAVSA






prME
AAEITRRGSAYYMYLDRSDAGKAISFATTLGVNKCHVQIMDLGHMCDATM
87


AHL43502
SYECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPS




HSTRKLQTRSQTWLESREYTKHLIKVENWIFRNPGFALAAVAIAWLLGSS




TSQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCV




TVMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAY




LDKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFTCSKKMTGKSIQ




PENLEYRIMLSVHGSQHSGMXXXXXGHETDENRAKVEVTPNSPRAEATLG




GFGSLGLDCEPRTGLDFSDLYYLTMNNKHRLVRKEWFHDIPLPWHAGADT




GTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAK




GRLFSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKVPAETLHGTVTVEVQ




YAGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPP




FGDSYIVIGVGDKKITHHWLKKGSSIGKAFEATVRGAKRMAVLGDTAWDF




GSVGGVFNSLGKGVHQIFGAAFKSLFGGMSWFSQILIGTLLVWLGLNTKN




GSISLTCLALGGVMIFLSTAVSA






prME
AEITRRGSAYYMYLDRSDAGKAISFATTLGVNKCHVQIMDLGHMCDATMS
88


AHL43501
YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCQHKKGEARRSRRAVTLPSH




STRKLQTRSQTWLESREYTKHLIKVENWIFRNPGFALVAVAIAWLLGSST




SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT




VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL




DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFTCSKKMTGKSIQP




ENLEYRIMLSVHGSQHSGMIVNDIGHETDENRAKVEVTPNSPRAEATLGG




FGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTG




TPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKG




RLFSGHLKCRLKMDKLRLKGVSYSLCTAVCTAAKVPAETLHGTVTVEVQY




AGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPF




GDSYIVIGVGDKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFG




SVGGVFNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLVWLGLNTKNG




SISLTCLALGGVMIFLSTAVSA






prME
AEITRRGSAYYMYLDRSDAGKAISFATTLGVNKCHVQIMDLGHMCDATMS
89


AHL43500
YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH




STRKLQTRSQTWLESREYTKHLIKVENWIFRNPGFALAAVAIAWLLGSST




SQKVIYLIMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT




VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL




DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFTCSKKMTGKSIQP




ENLEYRIMLSVHGSQHSGMIVNDXXXXXXXNRAEVEVTPNSPRAEATLGG




FGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTG




TPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKG




RLFSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKVPAETLHGTVTVEVQY




AGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPF




GDSYIVIGVGDKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFG




SVGGVFNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLVWLGLNTKNG




SISLTCLALGGVMIFLSTAVSA






prME
AEITRRGSAYYMYLDRSDAGKAISFATNLGVNKCHVQIMDLGHMCDATMS
90


AHF49785
YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH




STRKLQTRSQTWLESREYTKHLIKVENWIFRNPGFALAAVAIAWLLGSST




SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT




VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL




DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFTCSKKMTGKSIQP




ENLEYRIMLSVHGSQHSGMIVNDIGHETDENRAKVEVTPNSPRAEATLGG




FGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTG




TPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKG




RLFSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKVPAETLHGTVTVEVQY




AGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPF




GDSYIVIGVGDKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFG




SVGGVFNSLGKGVHQIFGAAFKSLFGGMSWFSQILIGTLLVWLGLNTKNG




SISLTCLALGGVMIFLSTAVSA






prME
AEITRRGSAYYMYLDRSDAGKAISFATNLGVNKCHVQIMDLGHMCDATMS
91


AHF49784_1976
YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH




STRKLQTRSQTWLESREYTKHLIKVENWIFRNPGFALAAVAIAWLLGSST




SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT




VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL




DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFTCSKKMTGKSIQP




ENLEYRIMLSVHGSQHSGMIVNDENRAKVEVTPNSPRAEATLGGFGSLGL




DCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTGTPHWNN




KEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKGRLFSGH




LKCRLKMDKLRLKGVSYSLCTAAFTFTKVPAETLHGTVTVEVQYAGTDGP




CKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPFGDSYIV




IGVGDKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFGSVGGVF




NSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLVWLGLNTKNGSISLTC




LALGGVMIFLSTAVSA






prME
AEITRRGSAYYMYLDRSDAGKAISFATNLGVNKCHVQIMDLGHMCDATMS
92


AHF49783
YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH




STRKLQTRSQTWLESREYTKHLIKVENWIFRNPGFALAAVAIAWLLGSST




SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT




VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL




DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFTCSKKMTGKSIQP




ENLEYRIMLSVHGSQHSGMIVNDIGHETDENRAKVEVTPNSPRAEATLGG




FGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTG




TPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKG




RLFSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKVPAETLHGTVTVEVQY




AGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPF




GDSYIVIGVGDKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFG




SVGGVFNSLGKGVHQIFGAAFKSLFGGMSWFSQILIGTLLVWLGLNTKNG




SISLTCLALGGVMIFLSTAVSA






prME
VEVTRRGSAYYMYLDRSDAGEAISFPTTLGMNKCYIQIMDLGHMCDATMS
93


ACD75819_Micronesia
YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH




STRKLQTRSQTWLESREYTKHLIRVENWIFRNPGFALAAAAIAWLLGSST




SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT




VMAQDKPAVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL




DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFACSKKMTGKSIQP




ENLEYRIMLSVHGSQHSGMIVNDTGHETDENRAKVEITPNSPRAEATLGG




FGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTG




TPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKG




RLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKIPAETLHGTVTVEVQY




AGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPF




GDSYIVIGVGEKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFG




SVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLVWLGLNTKNG




SISLTCLALGGVLIFLSTAVSA






prME
AEITRRGSAYYMYLDRSDAGKAISFATTLGVNKCHVQIMDLGHMCDATMS
94


ABI54475
YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH




STRKLQTRSQTWLESREYTKHLIKVENWIFRNPGFTLVAVAIAWLLGSST




SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT




VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL




DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFTCSKKMTGKSIQP




ENLEYRIMLSVHGSQHSGMIVNDENRAKVEVTPNSPRAEATLGGFGSLGL




DCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTGTPHWNN




KEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKGRLFSGH




LKCRLKMDKLRLKGVSYSLCTAAFTFTKVPAETLHGTVTVEVQYAGTDGP




CKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPFGDSYIV




IGVGDKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFGSVGGVF




NSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLVWLGLNTKNGSISLTC




LALGGVMIFLSTAVSA






prME
AEITRRGSAYYMYLDRSDAGKAISFATTLGVNKCHVQIMDLGHMCDATMS
95


YP_002790881
YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH




STRKLQTRSQTWLESREYTKHLIKVENWIFRNPGFALVAVAIAWLLGSST




SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT




VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL




DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFTCSKKMTGKSIQP




ENLEYRIMLSVHGSQHSGMIGYETDEDRAKVEVTPNSPRAEATLGGFGSL




GLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTGTPHW




NNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKGRLFS




GHLKCRLKMDKLRLKGVSYSLCTAAFTFTKVPAETLHGTVTVEVQYAGTD




GPCKIPVQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPFGDSY




IVIGVGDKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFGSVGG




VFNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLVWLGLNTKNGSISL




TCLALGGVMIFLSTAVSA






prME
AEITRRGSAYYMYLDRSDAGKAISFATTLGVNKCHVQIMDLGHMCDATMS
96


BAP4744
YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH




STRKLQTRSQTWLESREYTKHLIKVENWIFRNPGFALVAVAIAWLLGSST




SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT




VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL




DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFTCSKKMTGKSIQP




ENLEYRIMLSVHGSQHSGMTVNDIGYETDENRAKVEVTPNSPRAEATLGG




FGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTG




TPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKG




KLFSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKVPAETLHGTVTVEVQY




AGTDGPCKIPVQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPF




GDSYIVIGVGDKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFG




SVGGVFNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLVWLGLNTKNG




SISLTCLALGGVMIFLSTAVSA






prME
AEVTRRGSAYYMYLDRNDAGEAISFPTTLGMNKCYIQIMDLGHMCDATMS
97


KU365780_2015_Brazil_isolate_BeH815744
YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH




STRKLQTRSQTWLESREYTKHLIRVENWIFRNPGFALAAAAIAWLLGSST




SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT




VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL




DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFACSKKMTGKSIQP




ENLEYRIMLSVHGSQHSGMIVNDTGHETDENRAKVEITPNSPRAEATLGG




FGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTG




TPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKG




RLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKIPAETLHGTVTVEVQY




AGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPF




GDSYIVIGVGEKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFG




SVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLMWLGLNTKNG




SISLMCLALGGVLIFLSTAVSA






prME
AEVTRRGSAYYMYLDRNDAGEAISFPTTLGMNKCYIQIMDLGHMCDATMS
98


KU365779_2015_Brazil_isolate_BeH819966
YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH




STRKLQTRSQTWLESREYTKHLIRVENWIFRNPGFALAAAAIAWLLGSST




SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT




VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL




DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFACSKKMTGKSIQP




ENLEYRIMLSVHGSQHSGMIVNDTGHETDENRAKVEITPNSPRAEATLGG




FGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTG




TPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKG




RLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKIPAETLHGTVTVEVQY




AGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPF




GDSYIVIGVGEKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFG




SVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLMWLGLNTKNG




SISLMCLALGGVLIFLSTAVSA






prME
AEVTRRGSAYYMYLDRNDAGEAISFPTTLGMNKCYIQIMDLGHMCDATMS
99


KU365778_2015_Brazil_isolate_BeH819015
YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH




STRKLQTRSQTWLESREYTKHLIRVENWIFRNPGFALAAAAIAWLLGSST




SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT




VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL




DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFACSKKMTGKSIQP




ENLEYRIMLSVHGSQHSGMIVNDTGHETDENRAKVEITPNSPRAEATLGG




FGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTG




TPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKG




RLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKIPAETLHGTVTVEVQY




AGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPF




GDSYIVIGVGEKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFG




SVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLMWLGLNTKNG




SISLMCLALGGVLIFLSTAVSA






prME
AEVTRRGSAYYMYLDRNDAGEAISFPTTLGMNKCYIQIMDLGHMCDATMS
100


KU365777_2015_Brazil_isolate_BeH818995
YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH




STRKLQTRSQTWLESREYTKHLIRVENWIFRNPGFALAAAAIAWLLGSST




SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT




VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL




DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFACSKKMTGKSIQP




ENLEYRIMLSVHGSQHSGMIVNDTGHETDENRAKVEITPNSPRAEATLGG




FGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTG




TPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKG




RLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKIPAETLHGTVTVEVQY




AGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPF




GDSYIVIGVGEKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFG




SVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLMWLGLNTKNG




SISLMCLALGGVLIFLSTAVSA






prME
AEVTRRGSAYYMYLDRNDAGEAISFPTTLGMNKCYIQIMDLGHMCDATMS
101


KU321639_2015_Brazil_isolate_ZikaSPH2015
YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH




STRKLQTRSQTWLESREYTKHLIRVENWIFRNPGFALAAAAIAWLLGSST




SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDIVLEHGGCVT




VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL




DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFACSKKMTGKSIQP




ENLEYRIMLSVHGSQHSGMIVNDTGHETDENRAKVEITPNSPRAEATLGG




FGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTG




TPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKG




RLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKIPAETLHGTVTVEVQY




AGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPF




GDSYIVIGVGEKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFG




SVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLMWLGLNTKNG




SISLMCLALGGVLIFLSTAVSA






prME
AEVTRRGSAYYMYLDRNDAGEAISFPTTLGMNKCYIQIMDLGHTCDATMS
102


KU312312_2015_Suriname_isolate_Z1106033
YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH




STRKLQTRSQTWLESREYTKHLIRVENWIFRNPGFALAAAAIAWLLGSST




SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT




VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL




DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFACSKKMTGKSIQP




ENLEYRIMLSVHGSQHSGMIVNDTGHETDENRAKVEITPNSPRAEATLGG




FGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTG




TPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKG




RLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKIPAETLHGTVTVEVQY




AGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPF




GDSYIVIGVGEKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFG




SVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLMWLGLNAKNG




SISLMCLALGGVLIFLSTAVSA






Premembrane/membrane
AEVTRRGSAYYMYLDRNDAGEAISFPTTLGMNKCYIQIMDLGHMCDATMS
103


protein
YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH



KU321639_2015_Brazil_isolate_ZikaSPH2015
STRKLQTRSQTWLESREYTKHLIRVENWIFRNPGFALAAAAIAWLLGSST




SQKVIYLVMILLIAPAYS






Envelop protein
IRCIGVSNRDFVEGMSGGTWVDIVLEHGGCVTVMAQDKPTVDIELVTTTV
104


KU321639_2015_Brazil_isolate_ZikaSPH2015
SNMAEVRSYCYEASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRG




WGNGCGLFGKGSLVTCAKFACSKKMTGKSIQPENLEYRIMLSVHGSQHSG




MIVNDTGHETDENRAKVEITPNSPRAEATLGGFGSLGLDCEPRTGLDFSD




LYYLTMNNKHWLVHKEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHA




KRQTVVVLGSQEGAVHTALAGALEAEMDGAKGRLSSGHLKCRLKMDKLRL




KGVSYSLCTAAFTFTKIPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQ




TLTPVGRLITANPVITESTENSKMMLELDPPFGDSYIVIGVGEKKITHHW




HRSGSTIGKAFEATVRGAKRMAVLGDTAWDFGSVGGALNSLGKGIHQIFG




AAFKSLFGGMSWFSQILIGTLLMWLGLNTKNGSISLMCLALGGVLIFLST




AVSA






Capsid protein
MKNPKKKSGGFRIVNMLKRGVARVSPFGGLKRLPAGLLLGHGPIRMVLAI
105


KU321639_2015_Brazil_isolate_ZikaSPH2015
LAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKE




KKRRGADTSVGIVGLLLTTAMAAEV






Non-structural
VGCSVDFSKKETRCGTGVFVYNDVEAWRDRYKYHPDSPRRLAAAVKQAWE
106


protein 1
DGICGISSVSRMENIMWRSVEGELNAILEENGVQLTVVVGSVKNPMWRGP



KU321639_2015_Brazil_isolate_ZikaSPH2015
QRLPVPVNELPHGWKAWGKSHFVRAAKTNNSFVVDGDTLKECPLKHRAWN




SFLVEDHGFGVFHTSVWLKVREDYSLECDPAVIGTAVKGKEAVHSDLGYW




IESEKNDTWRLKRAHLIEMKTCEWPKSHTLWTDGIEESDLIIPKSLAGPL




SHHNTREGYRTQMKGPWHSEELEIRFEECPGTKVHVEETCGTRGPSLRST




TASGRVIEEWCCRECTMPPLSFRAKDGCWYGMEIRPRKEPESNLVRSMVT




AGSTDHMDHFSL






Non-structural
GVLVILLMVQEGLKKRMTTKIIISTSMAVLVAMILGGFSMSDLAKLAILM
107


protein 2A
GATFAEMNTGGDVAHLALIAAFKVRPALLVSFIFRANWTPRESMLLALAS



KU321639_2015_Brazil_isolate_ZikaSPH2015
CLLQTAISALEGDLMVLINGFALAWLAIRAMVVPRTDNITLAILAALTPL




ARGTLLVAWRAGLATCGGFMLLSLKGKGSVKKNLPFVMALGLTAVRLVDP




INVVGLLLLTRSGKRSWP






Non-structural
PSEVLTAVGLICALAGGFAKADIEMAGPMAAVGLLIVSYVVSGKSVDMYI
108


protein 2B
ERAGDITWEKDAEVTGNSPRLDVALDESGDFSLVEDDGPPMREIILKVVL



KU321639_2015_Brazil_isolate_ZikaSPH2015
MTICGMNPIAIPFAAGAWYVYVKTGKRSGALWDVPAPKEVKKGE






Non-structural
TTDGVYRVMTRRLLGSTQVGVGVMQEGVFHTMWHVTKGSALRSGEGRLDP
109


protein 3
YWGDVKQDLVSYCGPWKLDAAWDGHSEVQLLAVPPGERARNIQTLPGIFK



KU321639_2015_Brazil_isolate_ZikaSPH2015
TKDGDIGAVALDYPAGTSGSPILDKCGRVIGLYGNGVVIKNGSYVSAITQ




GRREEETPVECFEPSMLKKKQLTVLDLHPGAGKTRRVLPEIVREAIKTRL




RTVILAPTRVVAAEMEEALRGLPVRYMTTAVNVTHSGTEIVDLMCHATFT




SRLLQPIRVPNYNLYIMDEAHFTDPSSIAARGYISTRVEMGEAAAIFMTA




TPPGTRDAFPDSNSPIMDTEVEVPERAWSSGFDWVTDYSGKTVWFVPSVR




NGNEIAACLTKAGKRVIQLSRKTFETEFQKTKHQEWDFVVTTDISEMGAN




FKADRVIDSRRCLKPVILDGERVILAGPMPVTHASAAQRRGRIGRNPNKP




GDEYLYGGGCAETDEDHAHWLEARMLLDNIYLQDGLIASLYRPEADKVAA




IEGEFKLRTEQRKTFVELMKRGDLPVWLAYQVASAGITYTDRRWCFDGTT




NNTIMEDSVPAEVWTRHGEKRVLKPRWMDARVCSDHAALKSFKEFAAGKR




GAA






Non-structural
FGVMEALGTLPGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLE
110


protein 4A
TIMLLGLLGTVSLGIFFVLMRNKGIGKMGFGMVTLGASAWLMWLSEIEPA



KU321639_2015_Brazil_isolate_ZikaSPH2015
RIACVLIVVFLLLVVLIPEPEKQRSPQDNQMAIIIMVAVGLLGLITA






Non-structural
NELGWLERTKSDLSHLMGRREEGATMGFSMDIDLRPASAWAIYAALTTFI
111


protein 4B
TPAVQHAVTTSYNNYSLMAMATQAGVLFGMGKGMPFYAWDFGVPLLMIGC



KU321639_2015_Brazil_isolate_ZikaSPH2015
YSQLTPLTLIVAIILLVAHYMYLIPGLQAAAARAAQKRTAAGIMKNPVVD




GIVVTDIDTMTIDPQVEKKMGQVLLMAVAVSSAILSRTAWGWGEAGALIT




AATSTLWEGSPNKYWNSSTATSLCNIFRGSYLAGASLIYTVTRNAGLVKR




RGGGTGETLGEKWKARLNQMSALEFYSYKKSGITEVCREEARRALKDGVA




TGGHAVSRGSAKLRWLVERGYLQPYGKVIDLGCGRGGWSYYAATIRKVQE




VKGYTKGGPGHEEPVLVQSYGWNIVRLKSGVDVFHMAAEPCDTLLCDIGE




SSSSPEVEEARTLRVLSMVGDWLEKRPGAFCIKVLCPYTSTMMETLERLQ




RRYGGGLVRVPLSRNSTHEMYWVSGAKSNTIKSVSTTSQLLLGRMDGPRR




PV






Non-structural
KYEEDVNLGSGTRAVVSCAEAPNMKIIGNRIERIRSEHAETWFFDENHPY
112


protein 5
RTWAYHGSYEAPTQGSASSLINGVVRLLSKPWDVVTGVTGIAMTDTTPYG



KU321639_2015_Brazil_isolate_ZikaSPH2015
QQRVFKEKVDTRVPDPQEGTRQVMSMVSSWLWKELGKHKRPRVCTKEEFI




NKVRSNAALGAIFEEEKEWKTAVEAVNDPRFWALVDKEREHHLRGECQSC




VYNMMGKREKKQGEFGKAKGSRAIWYMWLGARFLEFEALGFLNEDHWMGR




ENSGGGVEGLGLQRLGYVLEEMSRIPGGRMYADDTAGWDTRISRFDLENE




ALITNQMEKGHRALALAIIKYTYQNKVVKVLRPAEKGKTVMDIISRQDQR




GSGQVVTYALNTFTNLVVQLIRNMEAEEVLEMQDLWLLRRSEKVTNWLQS




NGWDRLKRMAVSGDDCVVKPIDDRFAHALRFLNDMGKVRKDTQEWKPSTG




WDNWEEVPFCSHHFNKLHLKDGRSIVVPCRHQDELIGRARVSPGAGWSIR




ETACLAKSYAQMWQLLYFHRRDLRLMANAICSSVPVDWVPTGRTTWSIHG




KGEWMTTEDMLVVWNRVWIEENDHMEDKTPVTKWTDIPYLGKREDLWCGS




LIGHRPRTTWAENIKNTVNMVRRIIGDEEKYMDYLSTQVRYLGEEGSTPG




VL






Signal
METPAQLLFLLLLWLPDTTGAEVTRRGSAYYMYLDRNDAGEAISFPTTLG
113


peptide_prM-E
MNKCYIQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVYGT




CHHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIRVENWIF




RNPGFALAAAAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRDFV




EGMSGGTWVDIVLEHGGCVTVMAQDKPTVDIELVTTTVSNMAEVRSYCYE




ASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGKGS




LVTCAKFACSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDTGHETDE




NRAKVEITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWL




VHKEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGSQE




GAVHTALAGALEAEMDGAKGRLSSGHLKCRLKMDKLRLKGVSYSLCTAAF




TFTKIPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLITAN




PVITESTENSKMMLELDPPFGDSYIVIGVGEKKITHHWHRSGSTIGKAFE




ATVRGAKRMAVLGDTAWDFGSVGGALNSLGKGIHQIFGAAFKSLFGGMSW




FSQILIGTLLMWLGLNTKNGSISLMCLALGGVLIFLSTAVSA






Signal peptide_E
METPAQLLFLLLLWLPDTTGIRCIGVSNRDFVEGMSGGTWVDIVLEHGGC
114



VTVMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEA




YLDKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFACSKKMTGKSI




QPENLEYRIMLSVHGSQHSGMIVNDTGHETDENRAKVEITPNSPRAEATL




GGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGAD




TGTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGA




KGRLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKIPAETLHGTVTVEV




QYAGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDP




PFGDSYIVIGVGEKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWD




FGSVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLMWLGLNTK




NGSISLMCLALGGVLIFLSTAVSA






IgE HC signal
MDWTWILFLVAAATRVHSVEVTRRGSAYYMYLDRSDAGEAISFPTTLGMN
115


peptide_prM-E #1
KCYIQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVYGTCH



(Brazil_isolate_ZikaSPH2015)
HKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIRVENWIFRN




PGFALAAAAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRDFVEG




MSGGTWVDVVLEHGGCVTVMAQDKPAVDIELVTTTVSNMAEVRSYCYEAS




ISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLV




TCAKFACSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDTGHETDENR




AKVEITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVH




KEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGA




VHTALAGALEAEMDGAKGRLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTF




TKIPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLITANPV




ITESTENSKMMLELDPPFGDSYIVIGVGEKKITHHWHRSGSTIGKAFEAT




VRGAKRMAVLGDTAWDFGSVGGALNSLGKGIHQIFGAAFKSLFGGMSWFS




QILIGTLLVWLGLNTKNGSISLTCLALGGVLIFLSTAVSA






IgE HC signal
MDWTWILFLVAAATRVHSVEVTRRGSAYYMYLDRSDAGEAISFPTTLGMN
116


peptide_prM-E #1
KCYIQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVYGTCH



(ACD75819_Micronesia)
HKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIRVENWIFRN




PGFALAAAAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRDFVEG




MSGGTWVDVVLEHGGCVTVMAQDKPAVDIELVTTTVSNMAEVRSYCYEAS




ISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLV




TCAKFACSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDTGHETDENR




AKVEITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVH




KEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGA




VHTALAGALEAEMDGAKGRLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTF




TKIPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLITANPV




ITESTENSKMMLELDPPFGDSYIVIGVGEKKITHHWHRSGSTIGKAFEAT




VRGAKRMAVLGDTAWDFGSVGGALNSLGKGIHQIFGAAFKSLFGGMSWFS




QILIGTLLVWLGLNTKNGSISLTCLALGGVLIFLSTAVSA






IgE HC signal
MDWTWILFLVAAATRVHSTRRGSAYYMYLDRSDAGEAISFPTTLGMNKCY
117


peptide_prM-E #2
IQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKK



(Brazil_isolate_ZikaSPH2015)
GEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIRVENWIFRNPGF




ALAAAAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSG




GTWVDVVLEHGGCVTVMAQDKPAVDIELVTTTVSNMAEVRSYCYEASISD




MASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCA




KFACSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDTGHETDENRAKV




EITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEW




FHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHT




ALAGALEAEMDGAKGRLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKI




PAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITE




STENSKMMLELDPPFGDSYIVIGVGEKKITHHWHRSGSTIGKAFEATVRG




AKRMAVLGDTAWDFGSVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQIL




IGTLLVWLGLNTKNGSISLTCLALGGVLIFLSTAVSA






HuIgGk signal
METPAQLLFLLLLWLPDTTGVEVTRRGSAYYMYLDRSDAGEAISFPTTLG
118


peptide_prME #1
MNKCYIQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVYGT



(Brazil_isolate_ZikaSPH2015)
CHHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIRVENWIF




RNPGFALAAAAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRDFV




EGMSGGTWVDVVLEHGGCVTVMAQDKPAVDIELVTTTVSNMAEVRSYCYE




ASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGKGS




LVTCAKFACSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDTGHETDE




NRAKVEITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWL




VHKEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGSQE




GAVHTALAGALEAEMDGAKGRLSSGHLKCRLKMDKLRLKGVSYSLCTAAF




TFTKIPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLITAN




PVITESTENSKMMLELDPPFGDSYIVIGVGEKKITHHWHRSGSTIGKAFE




ATVRGAKRMAVLGDTAWDFGSVGGALNSLGKGIHQIFGAAFKSLFGGMSW




FSQILIGTLLVWLGLNTKNGSISLTCLALGGVLIFLSTAVSA






HuIgGk signal
METPAQLLFLLLLWLPDTTGTRRGSAYYMYLDRSDAGEAISFPTTLGMNK
119


peptide_prME #2
CYIQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHH



(Brazil_isolate_ZikaSPH2015)
KKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIRVENWIFRNP




GFALAAAAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGM




SGGTWVDVVLEHGGCVTVMAQDKPAVDIELVTTTVSNMAEVRSYCYEASI




SDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVT




CAKFACSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDTGHETDENRA




KVEITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHK




EWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAV




HTALAGALEAEMDGAKGRLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFT




KIPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLITANPVI




TESTENSKMMLELDPPFGDSYIVIGVGEKKITHHWHRSGSTIGKAFEATV




RGAKRMAVLGDTAWDFGSVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQ




ILIGTLLVWLGLNTKNGSISLTCLALGGVLIFLSTAVSA






HuIgGk signal
METPAQLLFLLLLWLPDTTGIRCIGVSNRDFVEGMSGGTWVDVVLEHGGC
120


peptide_E
VTVMAQDKPAVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEA



(Brazil_isolate_ZikaSPH2015)
YLDKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFACSKKMTGKSI




QPENLEYRIMLSVHGSQHSGMIVNDTGHETDENRAKVEITPNSPRAEATL




GGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGAD




TGTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGA




KGRLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKIPAETLHGTVTVEV




QYAGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDP




PFGDSYIVIGVGEKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWD




FGSVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLVWLGLNTK




NGSISLTCLALGGVLIFLSTAVSA






IgE HC signal
MDWTWILFLVAAATRVHSTRRGSAYYMYLDRSDAGEAISFPTTLGMNKCY
121


peptide_prM-E #2
IQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKK



(ACD75819_Micronesia)
GEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIRVENWIFRNPGF




ALAAAAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSG




GTWVDVVLEHGGCVTVMAQDKPAVDIELVTTTVSNMAEVRSYCYEASISD




MASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCA




KFACSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDTGHETDENRAKV




EITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEW




FHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHT




ALAGALEAEMDGAKGRLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKI




PAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITE




STENSKMMLELDPPFGDSYIVIGVGEKKITHHWHRSGSTIGKAFEATVRG




AKRMAVLGDTAWDFGSVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQIL




IGTLLVWLGLNTKNGSISLTCLALGGVLIFLSTAVSA






HuIgGk signal
METPAQLLFLLLLWLPDTTGVEVTRRGSAYYMYLDRSDAGEAISFPTTLG
122


peptide_prME #1,
MNKCYIQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVYGT



(ACD75819_Micronesia)
CHHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIRVENWIF




RNPGFALAAAAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRDFV




EGMSGGTWVDVVLEHGGCVTVMAQDKPAVDIELVTTTVSNMAEVRSYCYE




ASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGKGS




LVTCAKFACSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDTGHETDE




NRAKVEITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWL




VHKEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGSQE




GAVHTALAGALEAEMDGAKGRLSSGHLKCRLKMDKLRLKGVSYSLCTAAF




TFTKIPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLITAN




PVITESTENSKMMLELDPPFGDSYIVIGVGEKKITHHWHRSGSTIGKAFE




ATVRGAKRMAVLGDTAWDFGSVGGALNSLGKGIHQIFGAAFKSLFGGMSW




FSQILIGTLLVWLGLNTKNGSISLTCLALGGVLIFLSTAVSA






HuIgGk signal
METPAQLLFLLLLWLPDTTGTRRGSAYYMYLDRSDAGEAISFPTTLGMNK
123


peptide_prME #2,
CYIQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHH



(ACD75819_Micronesia)
KKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIRVENWIFRNP




GFALAAAAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGM




SGGTWVDVVLEHGGCVTVMAQDKPAVDIELVTTTVSNMAEVRSYCYEASI




SDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVT




CAKFACSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDTGHETDENRA




KVEITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHK




EWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAV




HTALAGALEAEMDGAKGRLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFT




KIPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLITANPVI




TESTENSKMMLELDPPFGDSYIVIGVGEKKITHHWHRSGSTIGKAFEATV




RGAKRMAVLGDTAWDFGSVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQ




ILIGTLLVWLGLNTKNGSISLTCLALGGVLIFLSTAVSA






HuIgGk signal
METPAQLLFLLLLWLPDTTGIRCIGVSNRDFVEGMSGGTWVDVVLEHGGC
124


peptide_E,
VTVMAQDKPAVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEA



(ACD75819_Micronesia)
YLDKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFACSKKMTGKSI




QPENLEYRIMLSVHGSQHSGMIVNDTGHETDENRAKVEITPNSPRAEATL




GGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGAD




TGTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGA




KGRLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKIPAETLHGTVTVEV




QYAGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDP




PFGDSYIVIGVGEKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWD




FGSVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLVWLGLNTK




NGSISLTCLALGGVLIFLSTAVSA






HuIgGk signal
METPAQLLFLLLLWLPDTTG
125


peptide







IgE heavy chain
MDWTWILFLVAAATRVHS
126


epsilon-1 signal




peptide







Zika_RIO-U1_JEVsp
AEVTRRGSAYYMYLDRNDAGEAISFPTTLGMNKCYIQIMDLGHMCDATMS
127


Zika PRME Strain
YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH



ascension id:
STRKLQTRSQTWLESREYTKHLIRVENWIFRNPGFALAAAAIAWLLGSST



ANG09399
SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT




VMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL




DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFACSKKMTGKSIQP




ENLEYRIMLSVHGSQHSGMIVNDTGHETDENRAKVEITPNSPRAEATLGG




FGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTG




TPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKG




RLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKIPAETLHGTVTVEVQY




AGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPF




GDSYIVIGVGEKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFG




SVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLMWLGLNTKNG




SISLMCLALGGVLIFLSTAVSA






Japanese
MLGSNSGQRVVFTILLLLVAPAYS
128


encephalitis PRM




signal sequence







Zika_RIO-U1_JEVsp
MLGSNSGQRVVFTILLLLVAPAYSAEVTRRGSAYYMYLDRNDAGEAISFP
129


Zika PRME Strain
TTLGMNKCYIQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWV



ascension id:
VYGTCHHKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIRVE



ANG09399 with JEV
NWIFRNPGFALAAAAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSN



PRM signal
RDFVEGMSGGTWVDVVLEHGGCVTVMAQDKPTVDIELVTTTVSNMAEVRS



sequence
YCYEASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLF




GKGSLVTCAKFACSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDTGH




ETDENRAKVEITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNN




KHWLVHKEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVL




GSQEGAVHTALAGALEAEMDGAKGRLSSGHLKCRLKMDKLRLKGVSYSLC




TAAFTFTKIPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRL




ITANPVITESTENSKMMLELDPPFGDSYIVIGVGEKKITHHWHRSGSTIG




KAFEATVRGAKRMAVLGDTAWDFGSVGGALNSLGKGIHQIFGAAFKSLFG




GMSWFSQILIGTLLMWLGLNTKNGSISLMCLALGGVLIFLSTAVSA






Zika_RIO-
EVTRRGSAYYMYLDRNDAGEAISFPTTLGMNKCYIQIMDLGHMCDATMSY
130


U1¬_VSVgSp
ECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSHS



Zika PRME Strain
TRKLQTRSQTWLESREYTKHLIRVENWIFRNPGFALAAAAIAWLLGSSTS



ascension id:
QKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVTV



ANG09399
MAQDKPTVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYLD




KQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFACSKKMTGKSIQPE




NLEYRIMLSVHGSQHSGMIVNDTGHETDENRAKVEITPNSPRAEATLGGF




GSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTGT




PHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKGR




LSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKIPAETLHGTVTVEVQYA




GTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPFG




DSYIVIGVGEKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFGS




VGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLMWLGLNTKNGS




ISLMCLALGGVLIFLSTAVSA






VSV g protein
MKCLLYLAFLFIGVNCA
131


signal sequence







Zika_RIO-
MKCLLYLAFLFigVNCAEVTRRGSAYYMYLDRNDAGEAISFPTTLGMNKC
132


U1¬_VSVgSp
YIQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHK



Zika PRME Strain
KGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIRVENWIFRNPG



ascension id:
FALAAAAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMS



ANG09399 with VSV
GGTWVDVVLEHGGCVTVMAQDKPTVDIELVTTTVSNMAEVRSYCYEASIS



g protein signal
DMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTC



sequence
AKFACSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDTGHETDENRAK




VEITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKE




WFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVH




TALAGALEAEMDGAKGRLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTK




IPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLITANPVIT




ESTENSKMMLELDPPFGDSYIVIGVGEKKITHHWHRSGSTIGKAFEATVR




GAKRMAVLGDTAWDFGSVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQI




LIGTLLMWLGLNTKNGSISLMCLALGGVLIFLSTAVSA






ZIKA_PRME_DSP_N154A
VEVTRRGSAYYMYLDRSDAGEAISFPTTLGMNKCYIQIMDLGHMCDATMS
133


(glycosylation
YECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVTLPSH



mutant)
STRKLQTRSQTWLESREYTKHLIRVENWIFRNPGFALAAAAIAWLLGSST



Zika PRME Strain
SQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVT



ascension id:
VMAQDKPAVDIELVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYL



ACD75819
DKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCAKFACSKKMTGKSIQP




ENLEYRIMLSVHGSQHSGMIVADTGHETDENRAKVEITPNSPRAEATLGG




FGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWFHDIPLPWHAGADTG




TPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAEMDGAKG




RLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKIPAETLHGTVTVEVQY




AGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPF




GDSYIVIGVGEKKITHHWHRSGSTIGKAFEATVRGAKRMAVLGDTAWDFG




SVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQILIGTLLVWLGLNTKNG




SISLTCLALGGVLIFLSTAVSA






ZIKA_PRME_DSP_N154A
MDWTWILFLVAAATRVHSVEVTRRGSAYYMYLDRSDAGEAISFPTTLGMN
134


(glycosylation
KCYIQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVYGTCH



mutant with
HKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIRVENWIFRN



signal peptide)
PGFALAAAAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRDFVEG



Zika PRME Strain
MSGGTWVDVVLEHGGCVTVMAQDKPAVDIELVTTTVSNMAEVRSYCYEAS



ascension id:
ISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLV



ACD75819 with IgE
TCAKFACSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVADTGHETDENR



signal peptide
AKVEITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVH




KEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGA




VHTALAGALEAEMDGAKGRLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTF




TKIPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLITANPV




ITESTENSKMMLELDPPFGDSYIVIGVGEKKITHHWHRSGSTIGKAFEAT




VRGAKRMAVLGDTAWDFGSVGGALNSLGKGIHQIFGAAFKSLFGGMSWFS




QILIGTLLVWLGLNTKNGSISLTCLALGGVLIFLSTAVSA
















TABLE 33







ZIKV NCBI Accession Numbers (Amino Acid Sequences)










Name
GenBank Accession







polyprotein [Zika virus]
YP_002790881.1



polyprotein [Zika virus]
BAP47441.1



polyprotein [Zika virus]
AEN75263.1



polyprotein [Zika virus]
AHL43504.1



polyprotein [Zika virus]
AEN75266.1



polyprotein [Zika virus]
AHF49784.1



polyprotein [Zika virus]
AHF49783.1



polyprotein [Zika virus]
AHF49785.1



polyprotein [Zika virus]
ABI54475.1



polyprotein [Zika virus]
AHL43501.1



polyprotein [Zika virus]
AHL43500.1



polyprotein [Zika virus]
AHL43502.1



polyprotein [Zika virus]
AEN75265.1



polyprotein [Zika virus]
AHL43503.1



polyprotein [Zika virus]
AEN75264.1



polyprotein [Zika virus]
AHZ13508.1



polyprotein [Zika virus]
ACD75819.1



polyprotein [Zika virus]
AFD30972.1



polyprotein [Zika virus]
AAK91609.1



envelope protein [Zika virus]
AHL43462.1



envelope protein [Zika virus]
AHL43464.1



envelope protein [Zika virus]
AHL43461.1



envelope protein [Zika virus]
AHL43460.1



envelope protein [Zika virus]
AHL43463.1



envelope protein [Zika virus]
AHL43444.1



envelope protein [Zika virus]
AHL43451.1



envelope protein [Zika virus]
AHL43437.1



envelope protein [Zika virus]
AHL43455.1



envelope protein [Zika virus]
AHL43448.1



envelope protein [Zika virus]
AHL43439.1



envelope protein [Zika virus]
AHL43468.1



E protein [Zika virus]
AIC06934.1



envelope protein [Zika virus]
AHL43450.1



envelope protein [Zika virus]
AHL43442.1



envelope protein [Zika virus]
AHL43458.1



envelope glycoprotein [Zika virus]
AHL16749.1



envelope protein [Zika virus]
AHL43453.1



envelope protein [Zika virus]
AHL43443.1



envelope protein [Zika virus]
AHL43438.1



envelope protein [Zika virus]
AHL43441.1



envelope protein [Zika virus]
AHL43457.1



envelope protein [Zika virus]
AAK91609.1



polyprotein [Zika virus]
AHL43505.1










Example 35: Surface Expressed DENV2 prME Antigens

The DENV2 prME polypeptide antigen sequences provided in Table 34 were tested to confirm that the DENV prME protein antigen is translated, properly folded and expressed on the surface of cells. For the polypeptide sequences, the bolded sequence is Dengue signal sequence, the underlined sequence is DENV2 precursor membrane sequence, and the unmarked sequence is DENV2 envelope sequence. The sequences encoding the polypeptides are codon-optimized. HeLa cells were transfected with DNA encoding the prMEs from nine different Dengue 2 isolates. After 24 hours, surface expression of the prME was detected using three different antibodies followed by goat-anti-human AF700 secondary antibody and subjecting the cells to FACS analyses. Each of the three antibodies are broadly neutralizing DENV2 prME antibodies that have in vivo efficacy against Dengue virus. D88 binds to DIII of Envelope protein for all 4 Dengue serotypes (US20150225474). 2D22 binds to DIII of Envelope protein for Dengue 2 serotype. 5J7 binds to 3 domains of Envelope protein for Dengue 3 serotype. FIG. 34B shows that two of the DENV2 prME antigens are recognized by the D88 and 2D22 antibodies. These results show that the two DENV2 prME antigens identified as Thailand/01 68/1979 and Peru/IQT29 13/1996 are expressed at the cell surface in a conformationally correct form and are excellent vaccine candidates (FIG. 34A). FIG. 34B shows a repeat of staining in triplicate and in two different cell lines (HeLa and 293T). These results confirm proper conformation of expressed DENV2 prME antigens (in particular, the prME antigens from Thailand/01 68/1979 and Peru/IQT29 13/1996) and also evidence at least non-inferior and even superior DENV2 antigenicity as compared to Dengvaxia (CYD-TDV), a live attenuated tetravalent chimeric vaccine. Antigen expressed from the mRNA encoding Dengue 2 prME from Peru/IQT2913/1996 shows the best binding to 2 different DENV2 antibodies in 293T cells and in HeLa cells (D88—binds all 4 serotypes 2D22—binds Dengue 2). This construct has a single amino acid difference from the Dengue 2 Envelope III Domain immunodeterminant region (see bold, underline in SEQ ID NO: 168, Table 34).









TABLE 34







Example DENV2 PrME Polypeptide











Sequence



Polypeptide


Name
5′ UTR
ORF
3′ UTR
Sequence





Dengue 2
TCAAGCTT
ATGCTGAATATTCTGAACCGCCG
TGATAATA

MLNILNRRRRTA



prME
TTGGACCC
CCGCCGGACTGCCGGGATTATAA
GGCTGGAG

GIIIMMIPTVMA



(Thailand/
TCGTACAG
TTATGATGATTCCCACCGTGATG
CCTCGGTG

FHLTTRNGEPHM



0168/1979)
AAGCTAAT
GCCTTCCACCTGACCACCCGGAA
GCCATGCT

IVSRQEKGKSLL




ACGACTCA
CGGGGAACCACATATGATCGTGT
TCTTGCCC

FKTEDGVNMCTL




CTATAGGG
CCAGACAGGAGAAGGGAAAGTCC
CTTGGGCC

MAMDLGELCEDT




AAATAAGA
CTGCTGTTCAAGACCGAGGACGG
TCCCCCCA

ITYKCPLLRQNE




GAGAAAAG
CGTGAACATGTGCACCCTCATGG
GCCCCTCC

PEDIDCWCNSTS




AAGAGTAA
CTATGGACCTGGGCGAACTCTGC
TCCCCTTC

TWVTYGTCTTTG




GAAGAAAT
GAGGACACCATCACCTACAAGTG
CTGCACCC

EHRREKRSVALV




ATAAGAGC
CCCCCTGTTGAGGCAGAACGAGC
GTACCCCC

PHVGMGLETRTE




CACC
CGGAGGATATTGACTGCTGGTGC
GTGGTCTT

TWMSSEGAWKHA




(SEQ ID
AATTCGACCAGCACCTGGGTCAC
TGAATAAA

QRIETWILRHPG




NO: 135)
CTACGGGACTTGCACCACAACCG
GTCTGAGT

FTIMAAILAYTI





GAGAACATCGGCGCGAAAAGCGC
GGGCGGC

GTTHFQRALIFI





AGCGTGGCTTTGGTGCCTCACGT
(SEQ ID

LLTAVAPSMTMR





CGGAATGGGGCTGGAGACTAGAA
NO: 153)
CIGISNRDFVEG




CCGAGACTTGGATGTCGTCGGAA

VSGGSWVDIVLE




GGGGCCTGGAAACACGCACAGCG

HGSCVTTMAKNK




CATCGAAACTTGGATACTCAGGC

PTLDFELIKTEA




ATCCCGGCTTCACCATTATGGCC

KQPATLRKYCIE




GCGATCCTGGCATACACCATCGG

AKLTNTTTESRC




TACTACCCACTTCCAACGGGCCC

PTQGEPSLNEEQ




TGATCTTTATCCTCCTGACCGCT

DKRFVCKHSMVD




GTCGCACCATCCATGACCATGCG

RGWGNGCGLFGK




GTGTATCGGTATCAGCAACAGGG

GGIVTCAMFTCK




ACTTCGTGGAGGGAGTGTCGGGA

KNMEGKIVQPEN




GGATCCTGGGTGGATATTGTGCT

LEYTIVVTPHSG




GGAACACGGTTCCTGCGTCACTA

EEHAVGNDTGKH




CCATGGCGAAGAACAAGCCTACC

GKEIKVTPQSSI




CTGGACTTTGAGCTGATCAAAAC

TEAELTGYGTVT




TGAGGCCAAGCAGCCGGCCACCC

MECSPRTGLDFN




TGCGCAAGTACTGCATCGAAGCC

EMVLLQMENKAW




AAGCTGACCAATACCACTACCGA

LVHRQWFLDLPL




ATCCCGCTGTCCGACCCAAGGGG

PWLPGADTQGSN




AGCCCTCCCTGAATGAGGAGCAG

WIQKETLVTFKN




GACAAGCGCTTCGTCTGCAAGCA

PHAKKQDVVVLG




TTCAATGGTCGACCGCGGCTGGG

SQEGAMHTALTG




GAAACGGCTGCGGACTGTTCGGA

ATEIQMSSGNLL




AAGGGCGGCATTGTGACCTGTGC

FTGHLKCRLRMD




CATGTTCACTTGCAAGAAGAACA

KLQLKGMSYSMC




TGGAAGGAAAGATCGTGCAGCCC

TGKFKVVKEIAE




GAAAACCTGGAGTATACCATCGT

TQHGTIVIRVQY




CGTGACCCCGCACTCCGGGGAAG

EGDGSPCKIPFE




AACACGCTGTGGGAAACGACACC

IMDLEKRHVLGR




GGAAAGCACGGAAAGGAGATCAA

LITVNPIVTEKD




AGTGACCCCACAGTCGAGCATTA

SPVNIEAEPPFG




CCGAGGCCGAACTTACTGGTTAC

DSYIIIGVEPGQ




GGCACTGTGACGATGGAATGTTC

LKLNWFKKGSSI




ACCGAGAACTGGACTGGATTTCA

GQMFETTMRGAK




ACGAAATGGTGCTGCTCCAAATG

RMAILGDTAWDF




GAAAACAAGGCCTGGCTGGTGCA

GSLGGVFTSIGK




CCGCCAGTGGTTTCTTGACCTCC

ALHQVFGAIYGA




CTCTCCCTTGGCTGCCTGGAGCA

AFSGVSWTMKIL




GACACTCAGGGTTCCAACTGGAT

IGVIITWIGMNS




TCAGAAGGAAACACTCGTGACCT

RSTSLSVSLVLV




TCAAGAACCCTCACGCGAAGAAG

GIVTLYLGVMVQ




CAGGATGTGGTCGTGCTGGGAAG

A (SEQ ID




CCAGGAGGGAGCGATGCATACCG

NO: 162)




CCCTCACCGGCGCGACGGAGATT




CAGATGTCCAGCGGAAACCTTCT




GTTCACCGGACACCTGAAGTGCA




GACTGAGGATGGACAAGCTGCAG




CTCAAGGGAATGTCCTACTCCAT




GTGCACTGGAAAGTTCAAGGTCG




TGAAGGAGATTGCCGAAACTCAG




CATGGTACCATCGTGATCCGGGT




GCAATATGAAGGGGACGGATCCC




CGTGCAAGATCCCTTTCGAAATC




ATGGACTTGGAGAAGCGACACGT




GCTGGGCAGACTGATCACAGTCA




ACCCCATCGTGACTGAGAAGGAT




TCACCCGTGAACATTGAAGCCGA




GCCGCCTTTCGGCGATAGCTACA




TCATCATTGGCGTGGAACCGGGA




CAGCTTAAGCTCAACTGGTTCAA




GAAGGGTTCCTCGATCGGTCAAA




TGTTTGAAACCACGATGCGGGGT




GCCAAACGGATGGCCATTCTGGG




AGACACCGCCTGGGATTTCGGCT




CCTTGGGCGGAGTGTTCACTTCT




ATCGGAAAGGCGCTGCACCAAGT




GTTCGGAGCCATCTACGGCGCCG




CGTTCTCGGGCGTCAGCTGGACC




ATGAAGATTCTGATCGGGGTCAT




CATCACTTGGATTGGGATGAACT




CACGGTCCACCTCCCTGAGCGTG




TCCCTTGTCCTGGTCGGCATCGT




GACCCTGTACCTCGGAGTGATGG




TGCAGGCTTAG (SEQ ID NO:




144)





Dengue 2
TCAAGCTT
ATGCTTAACATTCTCAACCGCCG
TGATAATA

MLNILNRRRRTA



prME
TTGGACCC
CCGGAGAACTGCTGGTATTATCA
GGCTGGAG

GIIIMMIPTVMA



(Thailand/
TCGTACAG
TTATGATGATTCCCACTGTGATG
CCTCGGTG

FHLTTRNGEPHM



16681/1984)
AAGCTAAT
GCCTTCCACCTGACCACGCGGAA
GCCATGCT

IVGRQEKGKSLL




ACGACTCA
CGGCGAACCCCATATGATTGTCG
TCTTGCCC

FKTEDGVNMCTL




CTATAGGG
GTCGGCAGGAAAAGGGGAAGTCC
CTTGGGCC

MAIDLGELCEDT




AAATAAGA
CTGCTGTTCAAAACTGAGGACGG
TCCCCCCA

ITYKCPLLRQNE




GAGAAAAG
AGTGAACATGTGCACCCTCATGG
GCCCCTCC

PEDIDCWCNSTS




AAGAGTAA
CTATTGACCTGGGAGAGCTGTGC
TCCCCTTC

TWVTYGTCATTG




GAAGAAAT
GAAGATACTATCACGTACAAGTG
CTGCACCC

EHRREKRSVALV




ATAAGAGC
CCCCCTGCTGCGCCAGAACGAGC
GTACCCCC

PHVGMGLETRTE




CACC
CTGAGGACATTGACTGCTGGTGC
GTGGTCTT

TWMSSEGAWKHV




(SEQ ID
AACTCCACGTCAACCTGGGTCAC
TGAATAAA

QRIETWILRHPG




NO: 136)
CTACGGAACTTGCGCGACTACCG
GTCTGAGT

FTIMAAILAYTI





GCGAACATCGCAGAGAAAAGAGA
GGGCGGC

GTTHFQRALIFI





AGCGTGGCCCTCGTGCCGCACGT
(SEQ ID

LLTAVAPSMTMR





CGGGATGGGGCTGGAAACCCGGA
NO: 154)
CIGMSNRDFVEG




CCGAAACCTGGATGTCCTCGGAA

VSGGSWVDIVLE




GGCGCCTGGAAGCACGTGCAGAG

HGSCVTTMAKNK




GATCGAAACTTGGATCCTCCGGC

PTLDFELIKTEA




ACCCGGGATTCACCATCATGGCC

KQPATLRKYCIE




GCCATCCTCGCTTACACAATCGG

AKLTNTTTESRC




AACCACTCACTTTCAACGCGCCC

PTQGEPSLNEEQ




TGATCTTCATCCTGCTTACCGCC

DKRFVCKHSMVD




GTGGCCCCGTCCATGACCATGCG

RGWGNGCGLFGK




CTGCATTGGAATGTCAAACCGGG

GGIVTCAMFRCK




ACTTCGTCGAGGGAGTCTCCGGA

KNMEGKVVQPEN




GGAAGCTGGGTGGACATCGTGCT

LEYTIVITPHSG




GGAGCACGGCAGCTGTGTGACCA

EEHAVGNDTGKH




CCATGGCCAAGAACAAGCCAACT

GKEIKITPQSST




CTTGATTTCGAACTGATCAAGAC

TEAELTGYGTVT




CGAGGCCAAGCAGCCTGCCACTC

MECSPRTGLDFN




TGAGGAAGTACTGTATCGAAGCG

EMVLLQMENKAW




AAGCTGACCAACACCACTACCGA

LVHRQWFLDLPL




ATCCCGCTGCCCGACCCAGGGCG

PWLPGADTQGSN




AACCTTCCTTGAACGAAGAACAG

WIQKETLVTFKN




GACAAGAGATTCGTGTGCAAGCA

PHAKKQDVVVLG




TAGCATGGTCGACAGGGGATGGG

SQEGAMHTALTG




GGAACGGATGTGGACTCTTTGGG

ATEIQMSSGNLL




AAGGGCGGAATCGTCACCTGTGC

FTGHLKCRLRMD




GATGTTCCGGTGCAAGAAGAACA

KLQLKGMSYSMC




TGGAGGGGAAGGTCGTGCAGCCC

TGKFKVVKEIAE




GAAAATCTCGAGTACACTATCGT

TQHGTIVIRVQY




GATCACCCCGCATTCCGGAGAGG

EGDGSPCKIPFE




AGCACGCCGTGGGCAACGACACC

IMDLEKRHVLGR




GGGAAGCACGGAAAGGAGATCAA

LITVNPIVTEKD




AATTACCCCTCAATCCTCCACCA

SPVNIEAEPPFG




CCGAAGCCGAATTGACTGGTTAC

DSYIIIGVEPGQ




GGTACCGTGACTATGGAGTGCTC

LKLNWFKKGSSI




GCCGCGGACTGGCTTGGACTTCA

GQMFETTMRGAK




ACGAGATGGTGCTGCTGCAAATG

RMAILGDTAWDF




GAGAACAAGGCCTGGCTGGTGCA

GSLGGVFTSIGK




CCGGCAGTGGTTTCTTGATCTGC

ALHQVFGAIYGA




CTCTGCCTTGGCTGCCCGGAGCC

AFSGVSWTMKIL




GACACCCAGGGTAGCAATTGGAT

IGVIITWIGMNS




CCAGAAAGAGACACTCGTGACCT

RSTSLSVTLVLV




TTAAGAACCCGCACGCAAAGAAG

GIVTLYLGVMVQ




CAGGATGTCGTGGTCCTGGGAAG

A (SEQ ID




CCAAGAAGGGGCAATGCATACCG

NO: 163)




CACTCACTGGAGCCACTGAAATC




CAGATGTCCTCCGGCAATCTGCT




GTTCACCGGCCATCTGAAGTGCC




GACTGCGCATGGACAAGCTCCAG




CTTAAGGGAATGTCCTACTCCAT




GTGTACTGGAAAGTTCAAAGTCG




TGAAGGAAATTGCCGAAACCCAG




CACGGCACCATAGTGATCCGGGT




GCAGTACGAGGGCGACGGCTCAC




CCTGCAAAATCCCGTTCGAGATT




ATGGATCTCGAAAAGCGCCACGT




GCTGGGCAGACTGATTACCGTGA




ACCCTATCGTGACCGAGAAGGAT




TCCCCAGTGAACATCGAGGCCGA




ACCGCCCTTCGGAGACTCGTATA




TCATCATCGGCGTGGAGCCCGGC




CAGCTGAAGCTGAACTGGTTCAA




GAAGGGGTCGAGCATCGGCCAGA




TGTTCGAGACTACCATGCGCGGC




GCGAAGAGGATGGCGATCCTGGG




GGATACCGCTTGGGACTTCGGTT




CCCTCGGCGGGGTGTTCACCTCG




ATTGGGAAGGCCCTCCACCAAGT




GTTCGGTGCAATCTACGGAGCGG




CGTTCAGCGGAGTGTCGTGGACC




ATGAAGATTCTGATCGGCGTGAT




CATCACCTGGATTGGCATGAACT




CCCGGTCTACTAGCCTGTCGGTG




ACCCTGGTGCTGGTCGGAATCGT




GACCTTGTACCTGGGAGTGATGG




TGCAAGCTTAG (SEQ ID NO:




145)





Dengue 2
TCAAGCTT
ATGCTGAACATCCTGAACCGCAG
TGATAATA

MLNILNRRRRTA



prME
TTGGACCC
AAGGAGAACCGCCGGTATTATTA
GGCTGGAG

GIIIMMIPTVMA



(Jamaica/1409/
TCGTACAG
TTATGATGATCCCCACCGTGATG
CCTCGGTG

FHLTTRNGEPHM



1983)
AAGCTAAT
GCATTCCACCTGACTACCCGCAA
GCCATGCT

IVGRQEKGKSLL




ACGACTCA
CGGAGAGCCGCATATGATCGTGG
TCTTGCCC

FKTEDGVNMCTL




CTATAGGG
GCCGCCAGGAAAAGGGAAAGTCC
CTTGGGCC

MAIDLGELCEDT




AAATAAGA
CTGCTGTTCAAGACTGAGGACGG
TCCCCCCA

ITYKCPLLRQNE




GAGAAAAG
CGTGAACATGTGCACTCTCATGG
GCCCCTCC

PEDIDCWCNSTS




AAGAGTAA
CCATCGACCTCGGCGAACTGTGC
TCCCCTTC

TWVTYGTCATTG




GAAGAAAT
GAGGACACCATTACTTACAAGTG
CTGCACCC

EHRREKRSVALV




ATAAGAGC
CCCGCTGCTGAGACAGAACGAGC
GTACCCCC

PHVGMGLETRTE




CACC
CTGAGGACATCGACTGTTGGTGT
GTGGTCTT

TWMSSEGAWKHV




(SEQ ID
AACTCGACCTCCACCTGGGTCAC
TGAATAAA

QRIETWILRHPG




NO: 137)
CTACGGAACGTGCGCCACAACCG
GTCTGAGT

FTIMAAILAYTI





GAGAACACCGCCGGGAAAAGCGG
GGGCGGC

GTTHFQRALIFI





AGCGTGGCTCTGGTGCCGCACGT
(SEQ ID

LLTAVAPSMTMR





CGGAATGGGTCTGGAGACTAGAA
NO: 155)
CIGISNRDFVEG




CCGAAACCTGGATGTCATCCGAG

VSGGSWVDIVLE




GGGGCATGGAAACATGTGCAGCG

HGSCVTTMAKNK




AATCGAGACTTGGATCCTGAGAC

PTLDFELIKTEA




ACCCGGGCTTCACTATCATGGCG

KQPATLRKYCIE




GCCATCCTTGCCTACACCATTGG

AKLTNTTTESRC




CACTACTCACTTCCAACGGGCGC

PTQGEPSLNEEQ




TGATCTTCATACTGCTCACCGCG

DKRFLCKHSMVD




GTGGCCCCCTCCATGACGATGCG

RGWGNGCGLFGK




CTGCATCGGAATCTCCAACCGGG

GGIVTCAMFTCK




ACTTCGTGGAGGGCGTCAGCGGA

KNMEGKVVLPEN




GGCAGCTGGGTGGACATCGTGTT

LEYTIVITPHSG




GGAGCACGGAAGCTGCGTGACCA

EEHAVGNDTGKH




CCATGGCCAAGAACAAGCCCACT

GKEIKITPQSSI




CTTGATTTTGAGCTGATCAAGAC

TEAELTGYGTVT




GGAAGCAAAGCAGCCGGCCACTC

MECSPRTGLDFN




TGAGGAAGTACTGCATCGAGGCC

EMVLLQMEDKAW




AAGCTCACCAACACAACCACCGA

LVHRQWFLDLPL




ATCTCGGTGCCCGACCCAAGGAG

PWLPGADTQGSN




AGCCATCACTGAACGAGGAACAG

WIQKETLVTFKN




GACAAGAGATTCCTGTGCAAACA

PHAKKQDVVVLG




TTCGATGGTGGACAGGGGATGGG

SQEGAMHTALTG




GAAATGGTTGCGGCCTGTTCGGC

ATEIQMSSGNLL




AAAGGAGGCATTGTGACCTGTGC

FTGHLKCRLRMD




GATGTTCACTTGCAAGAAAAACA

KLQLKGMSYSMC




TGGAGGGGAAGGTCGTGTTGCCG

TGKFKIVKEIAE




GAGAACCTGGAGTACACTATCGT

TQHGTIVIRVQY




GATTACCCCGCACTCCGGGGAGG

EGDGSPCKIPFE




AACATGCCGTGGGAAATGACACC

IMDLEKRHVLGR




GGAAAGCACGGGAAGGAAATCAA

LITVNPIVTEKD




AATCACGCCTCAGTCCTCAATCA

SPVNIEAEPPFG




CCGAAGCCGAGCTTACCGGCTAC

DSYIIIGVEPGQ




GGTACCGTGACCATGGAGTGCAG

LKLNWFKKGSSI




CCCTCGGACTGGACTGGACTTCA

GQMFETTMRGAK




ACGAGATGGTGCTGCTGCAAATG

RMAILGDTAWDF




GAAGATAAGGCCTGGCTGGTGCA

GSLGGVFTSIGK




CCGGCAGTGGTTCTTGGATTTGC

ALHQVFGAIYGA




CACTGCCTTGGCTGCCCGGCGCG

AFSGVSWTMKIL




GATACCCAGGGTTCCAACTGGAT

IGVIITWIGMNS




TCAGAAGGAAACCCTCGTGACCT

RSTSLSVSLVLV




TCAAGAATCCTCACGCCAAGAAG

GVVTLYLGAMVQ




CAGGACGTGGTGGTGCTGGGTTC

A (SEQ ID




CCAAGAAGGGGCCATGCATACTG

NO: 164)




CCCTCACTGGAGCGACCGAAATC




CAGATGTCGTCCGGCAACCTCCT




GTTCACCGGCCACCTGAAGTGCC




GCCTGCGGATGGACAAGTTGCAG




CTGAAGGGAATGAGCTACTCGAT




GTGTACCGGAAAGTTCAAGATCG




TGAAGGAAATCGCCGAAACCCAG




CACGGAACCATCGTCATTAGAGT




GCAGTACGAAGGGGACGGCAGCC




CGTGCAAGATCCCCTTCGAAATT




ATGGACCTGGAGAAGCGCCACGT




GCTCGGAAGGCTCATCACTGTCA




ACCCAATCGTCACCGAAAAGGAC




TCCCCTGTGAACATCGAAGCAGA




GCCCCCTTTCGGGGACTCCTACA




TTATTATCGGCGTGGAGCCCGGC




CAGCTGAAGCTGAACTGGTTCAA




GAAGGGATCCTCGATCGGACAGA




TGTTCGAAACCACCATGCGGGGA




GCCAAGCGGATGGCTATTCTGGG




AGATACCGCTTGGGATTTCGGCT




CCCTCGGCGGCGTCTTTACTTCC




ATCGGGAAAGCGCTCCACCAAGT




GTTTGGAGCCATCTACGGTGCCG




CTTTTTCCGGGGTGTCATGGACC




ATGAAGATTCTTATCGGGGTCAT




TATTACTTGGATCGGCATGAACT




CCCGGAGCACCTCGCTGTCCGTG




AGCCTCGTGCTCGTGGGGGTGGT




CACTCTGTATCTTGGTGCCATGG




TGCAGGCCTAG (SEQ ID NO:




146)





Dengue 2
TCAAGCTT
ATGCTTAACATCCTGAATAGAAG
TGATAATA

MLNILNRRRRTA



prME
TTGGACCC
AAGAAGAACCGCCGGCATTATCA
GGCTGGAG

GIIIMMIPTVMA



(Thailand/
TCGTACAG
TTATGATGATACCCACCGTGATG
CCTCGGTG

FHLTTRNGEPHM



NGS-
AAGCTAAT
GCCTTCCACCTGACTACTCGCAA
GCCATGCT

IVSRQEKGKSLL



C/1944)
ACGACTCA
CGGAGAGCCTCATATGATCGTGT
TCTTGCCC

FKTEDGVNMCTL




CTATAGGG
CGCGGCAGGAGAAGGGAAAGTCC
CTTGGGCC

MAMDLGELCEDT




AAATAAGA
CTGCTGTTTAAGACGGAGGACGG
TCCCCCCA

ITYKCPFLKQNE




GAGAAAAG
CGTGAACATGTGCACTCTTATGG
GCCCCTCC

PEDIDCWCNSTS




AAGAGTAA
CAATGGACCTTGGAGAGCTGTGC
TCCCCTTC

TWVTYGTCTTTG




GAAGAAAT
GAGGATACCATCACCTACAAGTG
CTGCACCC

EHRREKRSVALV




ATAAGAGC
TCCGTTCCTGAAGCAAAACGAGC
GTACCCCC

PHVGMGLETRTE




CACC
CTGAGGATATTGACTGCTGGTGC
GTGGTCTT

TWMSSEGAWKHA




(SEQ ID
AACTCCACCTCAACCTGGGTCAC
TGAATAAA

QRIETWILRHPG




NO: 138)
ATATGGGACCTGTACCACTACTG
GTCTGAGT

FTIMAAILAYTI





GCGAACACCGCCGCGAGAAAAGA
GGGCGGC

GTTHFQRALIFI





AGCGTGGCGTTGGTGCCTCACGT
(SEQ ID

LLTAVAPSMTMR





CGGCATGGGTCTGGAAACTCGGA
NO: 156)
CIGISNRDFVEG




CCGAAACTTGGATGAGCTCAGAG

VSGGSWVDIVLE




GGGGCATGGAAGCACGCCCAGAG

HGSCVTTMAKNK




GATTGAAACCTGGATTCTGCGCC

PTLDFELIETEA




ACCCTGGATTCACCATCATGGCG

KQPATLRKYCIE




GCTATTCTGGCGTACACTATTGG

AKLTNTTTDSRC




AACCACCCACTTTCAGCGGGCCC

PTQGEPSLNEEQ




TTATCTTCATCCTCCTCACTGCC

DKRFVCKHSMVD




GTGGCGCCCTCCATGACTATGCG

RGWGNGCGLFGK




GTGTATCGGAATTTCCAACCGCG

GGIVTCAMFTCK




ACTTCGTGGAAGGAGTGTCCGGA

KNMKGKVVQPEN




GGCTCCTGGGTCGACATTGTGCT

LEYTIVITPHSG




GGAACATGGTTCATGCGTGACCA

EEHAVGNDTGKH




CGATGGCCAAGAACAAGCCCACC

GKEIKITPQSSI




CTCGACTTCGAGCTGATCGAGAC

TEAELTGYGTVT




TGAAGCCAAGCAGCCGGCCACTC

MECSPRTGLDFN




TGCGGAAGTACTGTATCGAGGCC

EMVLLQMENKAW




AAGCTCACCAACACCACCACCGA

LVHRQWFLDLPL




TTCCCGCTGCCCGACCCAAGGAG

PWLPGADTQGSN




AACCTTCGCTCAACGAGGAGCAG

WIQKETLVTFKN




GACAAGCGGTTCGTGTGCAAGCA

PHAKKQDVVVLG




CAGCATGGTCGACAGGGGATGGG

SQEGAMHTALTG




GGAATGGATGCGGTCTGTTCGGA

ATEIQMSSGNLL




AAGGGAGGCATTGTGACTTGTGC

FTGHLKCRLRMD




AATGTTCACTTGCAAGAAGAACA

KLQLKGMSYSMC




TGAAGGGGAAGGTCGTGCAGCCG

TGKFKVVKEIAE




GAAAACCTGGAGTACACCATCGT

TQHGTIVIRVQY




GATCACCCCTCATTCGGGCGAAG

EGDGSPCKIPFE




AACACGCTGTGGGGAATGATACC

IMDLEKRHVLGR




GGAAAGCACGGAAAGGAAATTAA

LITVNPIVTEKD




GATCACACCCCAATCCAGCATCA

SPVNIEAEPPFG




CTGAGGCAGAACTGACCGGCTAC

DSYIIIGVEPGQ




GGCACTGTGACCATGGAGTGCTC

LKLNWFKKGSSI




GCCTCGGACTGGCCTGGACTTCA

GQMIETTMRGAK




ACGAGATGGTGCTGCTCCAAATG

RMAILGDTAWDF




GAAAACAAGGCCTGGCTGGTGCA

GSLGGVFTSIGK




CAGACAGTGGTTCCTCGATTTGC

ALHQVFGAIYGA




CCTTGCCGTGGCTCCCTGGCGCC

AFSGVSWIMKIL




GACACCCAGGGATCTAACTGGAT

IGVIITWIGMNS




CCAGAAGGAAACCCTTGTGACCT

RSTSLSVSLVLV




TCAAGAACCCGCACGCTAAGAAA

GVVTLYLGVMVQ




CAGGATGTGGTGGTGCTGGGAAG

A (SEQ ID




CCAGGAAGGAGCAATGCATACCG

NO: 165)




CGCTCACGGGTGCCACCGAGATC




CAGATGAGCTCCGGGAACCTCCT




GTTCACCGGTCACCTGAAGTGCC




GACTCCGCATGGACAAACTGCAG




CTCAAGGGGATGTCCTACTCCAT




GTGCACCGGGAAATTCAAGGTCG




TGAAGGAGATCGCTGAGACTCAG




CACGGTACTATCGTGATCCGGGT




GCAGTATGAGGGAGATGGGAGCC




CGTGCAAAATCCCATTTGAGATC




ATGGACTTGGAAAAGCGCCATGT




GCTGGGTCGGCTGATTACCGTGA




ACCCAATCGTCACCGAAAAGGAC




AGCCCCGTCAACATTGAAGCCGA




ACCACCCTTCGGAGACTCGTACA




TCATCATTGGCGTGGAACCGGGC




CAGCTGAAGCTGAACTGGTTCAA




AAAGGGGTCCTCTATCGGCCAAA




TGATCGAAACCACCATGCGGGGA




GCTAAGCGGATGGCGATTTTGGG




AGACACTGCGTGGGACTTTGGCT




CACTGGGGGGAGTGTTCACCAGC




ATCGGCAAAGCCCTGCACCAAGT




GTTCGGTGCCATCTACGGAGCCG




CCTTCAGCGGAGTGTCCTGGATC




ATGAAGATCCTGATCGGCGTGAT




CATTACCTGGATCGGCATGAACT




CCAGGTCCACCTCGCTCTCCGTG




TCGCTGGTGCTGGTCGGGGTCGT




GACCCTGTACCTGGGAGTGATGG




TCCAGGCCTGA (SEQ ID NO:




147)





Dengue 2
TCAAGCTT
ATGTTGAATATCCTGAACCGCCG
TGATAATA

MLNILNRRRRTA



prME
TTGGACCC
CCGGAGAACTGCCGGAATTATCA
GGCTGGAG

GIIIMMIPTVMA



(PuertoRico/
TCGTACAG
TTATGATGATCCCTACCGTGATG
CCTCGGTG

FHLTTRNGEPHM



PR159-
AAGCTAAT
GCGTTCCACCTTACTACCCGGAA
GCCATGCT

IVSRQEKGKSLL



S1/1969)
ACGACTCA
CGGGGAGCCTCACATGATCGTGT
TCTTGCCC

FKTKDGTNMCTL




CTATAGGG
CACGCCAGGAGAAGGGGAAATCC
CTTGGGCC

MAMDLGELCEDT




AAATAAGA
CTGCTGTTCAAGACCAAGGACGG
TCCCCCCA

ITYKCPFLKQNE




GAGAAAAG
TACCAACATGTGTACCCTGATGG
GCCCCTCC

PEDIDCWCNSTS




AAGAGTAA
CGATGGACCTCGGAGAGCTGTGC
TCCCCTTC

TWVTYGTCTTTG




GAAGAAAT
GAGGACACCATCACCTACAAATG
CTGCACCC

EHRREKRSVALV




ATAAGAGC
CCCGTTCCTGAAGCAGAACGAGC
GTACCCCC

PHVGMGLETRTE




CACC
CGGAAGATATTGACTGTTGGTGC
GTGGTCTT

TWMSSEGAWKHA




(SEQ ID
AACTCCACCTCCACTTGGGTCAC
TGAATAAA

QRIETWILRHPG




NO: 139)
CTACGGAACTTGCACCACTACTG
GTCTGAGT

FTIMAAILAYTI





GGGAGCATAGACGGGAGAAGCGC
GGGCGGC

GTTHFQRVLIFI





TCCGTGGCCCTGGTGCCGCACGT
(SEQ ID

LLTAIAPSMTMR





CGGCATGGGACTGGAAACCAGAA
NO: 157)
CIGISNRDFVEG




CCGAGACTTGGATGTCCAGCGAA

VSGGSWVDIVLE




GGCGCCTGGAAGCACGCCCAGCG

HGSCVTTMAKNK




GATTGAAACTTGGATCCTGAGGC

PTLDFELIKTEA




ACCCGGGTTTTACCATTATGGCC

KQPATLRKYCIE




GCTATCTTGGCATACACCATCGG

AKLTNTTTDSRC




CACCACCCACTTCCAACGCGTCC

PTQGEPTLNEEQ




TGATCTTCATCCTGCTGACCGCC

DKRFVCKHSMVD




ATTGCGCCCTCCATGACCATGCG

RGWGNGCGLFGK




GTGCATCGGAATCAGCAACCGCG

GGIVTCAMFTCK




ACTTCGTGGAAGGCGTCAGCGGC

KNMEGKIVQPEN




GGTTCTTGGGTGGACATCGTGTT

LEYTVVITPHSG




GGAGCACGGATCGTGCGTGACCA

EEHAVGNDTGKH




CCATGGCCAAGAACAAGCCGACC

GKEVKITPQSSI




CTCGATTTCGAGCTGATCAAGAC

TEAELTGYGTVT




TGAAGCCAAGCAGCCAGCTACCC

MECSPRTGLDFN




TGCGGAAGTATTGCATCGAAGCC

EMVLLQMKDKAW




AAGCTCACTAATACTACGACCGA

LVHRQWFLDLPL




CAGCCGGTGTCCGACCCAAGGAG

PWLPGADTQGSN




AGCCCACCCTGAATGAGGAACAA

WIQKETLVTFKN




GACAAGCGCTTCGTGTGCAAGCA

PHAKKQDVVVLG




TTCCATGGTGGACCGGGGCTGGG

SQEGAMHTALTG




GAAACGGCTGCGGACTGTTCGGG

ATEIQMSSGNLL




AAAGGAGGAATTGTGACTTGCGC

FTGHLKCRLRMD




CATGTTCACTTGCAAGAAGAACA

KLQLKGMSYSMC




TGGAGGGGAAGATCGTCCAGCCT

TGKFKVVKEIAE




GAGAACCTCGAGTACACGGTCGT

TQHGTIVIRVQY




GATTACTCCGCACTCGGGAGAAG

EGDGSPCKTPFE




AACACGCCGTGGGCAACGACACC

IMDLEKRHVLGR




GGAAAGCATGGGAAGGAAGTGAA

LTTVNPIVTEKD




AATCACGCCCCAATCGTCGATTA

SPVNIEAEPPFG




CCGAGGCTGAGCTGACCGGCTAC

DSYIIIGVEPGQ




GGCACCGTGACCATGGAGTGCTC

LKLDWFKKGSSI




CCCGAGGACCGGACTGGACTTCA

GQMFETTMRGAK




ACGAAATGGTGCTGCTGCAGATG

RMAILGDTAWDF




AAGGACAAGGCCTGGCTGGTGCA

GSLGGVFTSIGK




CCGCCAGTGGTTCCTCGACCTCC

ALHQVFGAIYGA




CACTCCCCTGGCTGCCCGGAGCG

AFSGVSWTMKIL




GATACGCAGGGATCCAACTGGAT

IGVIITWIGMNS




CCAGAAGGAAACTCTTGTGACCT

RSTSLSVSLVLV




TCAAGAACCCTCATGCCAAGAAG

GIVTLYLGVMVQ




CAGGACGTGGTGGTCCTGGGATC

A (SEQ ID




CCAAGAGGGCGCGATGCACACCG

NO: 166)




CACTGACCGGCGCCACCGAAATT




CAGATGTCCTCCGGAAACCTCCT




GTTCACTGGCCACCTGAAGTGCA




GACTCCGCATGGACAAGCTGCAG




CTCAAGGGGATGAGCTACTCCAT




GTGTACCGGAAAATTCAAGGTCG




TGAAGGAAATTGCAGAAACACAG




CATGGGACAATTGTCATTCGGGT




CCAGTACGAGGGCGATGGTTCAC




CGTGCAAGACTCCATTCGAGATC




ATGGATCTGGAGAAAAGACACGT




GCTGGGTCGGCTGACTACCGTGA




ACCCAATCGTGACTGAGAAGGAC




TCCCCCGTGAACATCGAAGCCGA




GCCTCCTTTTGGCGATTCCTACA




TCATCATTGGAGTGGAACCCGGA




CAGCTTAAGTTGGATTGGTTCAA




GAAGGGCTCCTCGATCGGACAGA




TGTTCGAAACCACCATGCGCGGT




GCCAAGCGAATGGCCATCCTGGG




GGACACCGCCTGGGACTTCGGTA




GCCTGGGCGGAGTGTTTACCTCA




ATTGGAAAGGCTCTGCACCAAGT




GTTTGGGGCGATCTACGGAGCGG




CCTTCAGCGGTGTCTCCTGGACT




ATGAAGATTCTCATCGGAGTGAT




AATCACCTGGATCGGCATGAACA




GCCGGTCAACCAGCCTGTCCGTG




TCCCTGGTGCTGGTCGGCATCGT




GACTCTCTACCTCGGAGTGATGG




TGCAGGCCTAG (SEQ ID NO:




148)





Dengue 2
TCAAGCTT
ATGCTCAACATACTGAACAGACG
TGATAATA

MLNILNRRRRTA



prME
TTGGACCC
GAGAAGGACCGCCGGTATTATTA
GGCTGGAG

GIIIMMIPTVMA



(16681-
TCGTACAG
TCATGATGATCCCTACTGTGATG
CCTCGGTG

FHLTTRNGEPHM



PDK53)
AAGCTAAT
GCATTCCACCTGACAACCCGCAA
GCCATGCT

IVSRQEKGKSLL




ACGACTCA
CGGAGAGCCCCACATGATCGTGT
TCTTGCCC

FKTEVGVNMCTL




CTATAGGG
CACGCCAGGAGAAAGGGAAGTCA
CTTGGGCC

MAMDLGELCEDT




AAATAAGA
CTGCTGTTCAAGACCGAAGTCGG
TCCCCCCA

ITYKCPLLRQNE




GAGAAAAG
CGTGAACATGTGTACCCTGATGG
GCCCCTCC

PEDIDCWCNSTS




AAGAGTAA
CGATGGATCTTGGCGAACTGTGC
TCCCCTTC

TWVTYGTCTTMG




GAAGAAAT
GAGGACACCATCACGTACAAGTG
CTGCACCC

EHRREKRSVALV




ATAAGAGC
CCCCCTGTTGCGGCAAAACGAAC
GTACCCCC

PHVGMGLETRTE




CACC
CAGAGGACATCGACTGCTGGTGT
GTGGTCTT

TWMSSEGAWKHV




(SEQ ID
AACTCCACCTCGACCTGGGTCAC
TGAATAAA

QRIETWILRHPG




NO: 140)
CTACGGAACCTGTACCACTATGG
GTCTGAGT

FTMMAAILAYTI





GGGAACACCGGCGGGAGAAGCGC
GGGCGGC

GTTHFQRALILI





TCCGTGGCGCTCGTGCCTCATGT
(SEQ ID

LLTAVTPSMTMR





CGGCATGGGACTGGAGACTCGGA
NO: 158)
CIGMSNRDFVEG




CTGAAACCTGGATGTCGTCGGAG

VSGGSWVDIVLE




GGGGCCTGGAAGCACGTCCAGCG

HGSCVTTMAKNK




GATCGAGACTTGGATCCTTCGCC

PTLDFELIKTEA




ATCCGGGCTTCACCATGATGGCC

KQPATLRKYCIE




GCCATCCTGGCCTACACCATCGG

AKLTNTTTESRC




AACCACCCATTTCCAACGGGCCC

PTQGEPSLNEEQ




TGATCCTGATCCTGTTGACTGCC

DKRFVCKHSMVD




GTGACCCCCTCCATGACTATGCG

RGWGNGCGLFGK




GTGCATTGGGATGTCGAACAGGG

GGIVTCAMFRCK




ATTTCGTGGAGGGAGTCAGCGGT

KNMEGKVVQPEN




GGCAGCTGGGTGGACATCGTGCT

LEYTIVITPHSG




GGAACATGGATCCTGCGTGACTA

EEHAVGNDTGKH




CCATGGCAAAGAACAAGCCAACC

GKEIKITPQSSI




CTCGATTTCGAACTGATCAAGAC

TEAELTGYGTIT




CGAGGCGAAACAGCCGGCGACCC

MECSPRTGLDFN




TGAGGAAGTACTGCATCGAGGCC

EIVLLQMENKAW




AAGCTCACCAACACCACTACCGA

LVHRQWFLDLPL




GAGCAGATGCCCTACCCAAGGGG

PWLPGADTQGSN




AACCTTCCCTGAACGAGGAGCAG

WIQKETLVTFKN




GACAAGAGATTCGTCTGCAAGCA

PHAKKQDVVVLG




CTCCATGGTGGACCGCGGCTGGG

SQEGAMHTALTG




GAAACGGATGCGGACTCTTCGGA

ATEIQMSSGNLL




AAGGGCGGTATTGTGACCTGTGC

FTGHLKCRLRMD




CATGTTCCGCTGCAAGAAAAACA

KLQLKGMSYSMC




TGGAAGGGAAAGTGGTGCAGCCC

TGKFKVVKEIAE




GAGAACCTCGAGTACACTATCGT

TQHGTIVIRVQY




GATCACACCGCACAGCGGAGAAG

EGDGSPCKIPFE




AACACGCCGTGGGCAACGACACT

IMDLEKRHVLGR




GGAAAGCACGGGAAGGAAATCAA

LITVNPIVTEKD




GATCACCCCGCAATCCTCAATCA

SPVNIEAEPPFG




CTGAGGCTGAGTTGACCGGCTAC

DSYIIIGVEPGQ




GGGACTATTACCATGGAATGCTC

LKLNWFKKGSSI




CCCACGAACGGGACTGGACTTCA

GQMFETTMRGAK




ACGAAATTGTGTTGCTCCAAATG

RMAILGDTAWDF




GAAAACAAGGCCTGGCTCGTGCA

GSLGGVFTSIGK




CCGGCAGTGGTTCCTGGATCTGC

ALHQVFGAIYGA




CCCTGCCGTGGCTGCCGGGTGCC

AFSGVSWTMKIL




GACACTCAGGGGAGCAACTGGAT

IGVIITWIGMNS




TCAGAAGGAAACCCTTGTGACCT

RSTSLSVTLVLV




TCAAGAACCCCCACGCAAAGAAG

GIVTLYLGVMVQ




CAGGACGTGGTGGTGCTGGGTAG

A (SEQ ID




CCAAGAAGGCGCCATGCACACGG

NO: 167)




CCCTGACCGGAGCGACCGAGATC




CAGATGTCCAGCGGAAATCTGCT




CTTTACTGGTCATCTGAAGTGCA




GACTTCGGATGGACAAGCTGCAA




CTGAAGGGAATGTCCTACTCAAT




GTGCACTGGAAAGTTCAAGGTCG




TGAAGGAGATCGCCGAAACCCAG




CACGGGACTATCGTCATCCGCGT




GCAGTACGAAGGAGATGGCTCCC




CGTGCAAGATCCCTTTCGAAATC




ATGGACCTGGAGAAGCGCCACGT




GTTGGGGCGCCTTATTACTGTGA




ACCCCATCGTGACCGAGAAGGAC




TCCCCTGTCAACATCGAGGCTGA




ACCGCCATTCGGAGATTCCTATA




TCATTATCGGAGTGGAACCGGGC




CAGCTCAAGCTGAATTGGTTCAA




GAAGGGATCCTCGATTGGCCAGA




TGTTCGAAACGACTATGCGGGGC




GCTAAGCGCATGGCCATCCTGGG




CGATACTGCCTGGGATTTTGGTT




CTCTGGGCGGAGTGTTCACCTCC




ATTGGAAAGGCCCTGCACCAAGT




GTTCGGCGCCATCTACGGTGCCG




CGTTTAGCGGTGTCTCATGGACC




ATGAAAATCCTCATTGGCGTGAT




CATTACCTGGATTGGCATGAACT




CCAGAAGCACTTCCCTGTCCGTG




ACCCTGGTGCTCGTCGGAATTGT




GACACTCTACCTCGGAGTGATGG




TGCAGGCTTGA (SEQ ID NO:




149)





Dengue 2
TCAAGCTT
ATGCTGAACATTTTGAACAGACG
TCAAGCTT

MLNILNRRRRTA



prME
TTGGACCC
CCGAAGGACCGCAGGCATTATCA
TTGGACCC

GIIIMMIPTVMA



(Peru/IQT2913/
TCGTACAG
TTATGATGATCCCTACCGTGATG
TCGTACAG

FHLTTRNGEPHM



1996)
AAGCTAAT
GCCTTCCATCTGACTACTAGGAA
AAGCTAAT

IVSRQEKGKSLL




ACGACTCA
CGGAGAGCCACATATGATCGTGT
ACGACTCA

FKTKDGTNMCTL




CTATAGGG
CGCGCCAGGAAAAGGGAAAGAGC
CTATAGGG

MAMDLGELCEDT




AAATAAGA
CTGCTTTTTAAAACCAAGGACGG
AAATAAGA

ITYKCPFLKQNE




GAGAAAAG
CACGAACATGTGCACCCTTATGG
GAGAAAAG

PEDIDCWCNSTS




AAGAGTAA
CCATGGACCTGGGGGAGTTGTGC
AAGAGTAA

TWVTYGTCTTTG




GAAGAAAT
GAGGACACCATCACCTACAAGTG
GAAGAAAT

EHRREKRSVALV




ATAAGAGC
CCCGTTCCTGAAGCAAAACGAGC
ATAAGAGC

PHVGMGLETRTE




CACC
CCGAAGATATTGACTGCTGGTGC
CACC

TWMSSEGAWKHA




(SEQ ID
AACTCCACCTCCACCTGGGTCAC
(SEQ ID

QRIETWILRHPG




NO: 141)
TTATGGGACTTGCACCACCACCG
NO: 159)

FTIMAAILAYTI





GCGAACATCGCAGAGAAAAGAGA


GTTHFQRVLIFI





AGCGTGGCCCTGGTCCCCCACGT


LLTAIAPSMTMR





CGGGATGGGCCTCGAGACTCGGA

CIGISNRDFVEG




CCGAAACTTGGATGTCATCAGAG

VSGGSWVDIVLE




GGCGCATGGAAGCATGCTCAGCG

HGSCVTTMAKNK




GATCGAAACCTGGATCCTGAGAC

PTLDFELIKTEA




ACCCTGGTTTCACAATTATGGCC

KQPATLRKYCIE




GCCATTCTTGCGTACACGATCGG

AKLTNTTTDSRC




AACGACTCATTTCCAACGCGTGC

PTQGEPTLNEEQ




TGATCTTCATTCTCCTGACCGCT

DKRFVCKHSMVD




ATTGCGCCGTCCATGACTATGCG

RGWGNGCGLFGK




GTGCATCGGAATCTCAAACCGGG

GGIVTCAMFTCK




ACTTCGTGGAAGGAGTGTCGGGA

KNMEGKIVQPEN




GGATCCTGGGTGGACATTGTGCT

LEYTVVITPHSG




GGAGCACGGTTCCTGCGTCACCA

EEHAVGNDTGKH




CCATGGCCAAAAACAAGCCTACC

GKEVKITPQSSI




CTGGACTTCGAGCTGATCAAGAC

TEAELTGYGTVT




TGAGGCCAAGCAGCCCGCGACCC

MECSPRTGLDFN




TCCGGAAGTACTGCATCGAGGCC

EMVLLQMEDKAW




AAGTTGACCAACACTACTACCGA

LVHRQWFLDLPL




TTCCCGGTGCCCGACCCAAGGAG

PWLPGADTQGSN




AACCAACTCTGAACGAAGAACAG

WIQKETLVTFKN




GATAAGCGGTTTGTGTGCAAGCA

PHAKKQDVVVLG




CTCAATGGTGGACAGGGGATGGG

SQEGAMHTALTG




GCAACGGCTGTGGACTGTTCGGA

ATEIQMSSGNLL




AAGGGTGGTATTGTGACCTGTGC

FTGHLKCRLRMD




AATGTTTACCTGTAAAAAGAATA

KLQLKGMSYSMC




TGGAGGGGAAGATCGTGCAGCCT

TGKFKIVKEIAE




GAAAATCTCGAGTACACTGTCGT

TQHGTIVIRVQY




CATCACCCCGCACTCGGGAGAGG

EGDGSPCKIPFE




AGCACGCTGTGGGCAACGACACC

IMDLEKRHVLGR




GGAAAGCACGGAAAGGAGGTCAA

LITVNPIVTEKD




GATAACCCCGCAATCCTCCATTA

SPVNIEAEPPFG




CGGAAGCCGAACTGACTGGTTAC

DSYIIIGAEPGQ




GGCACCGTGACTATGGAGTGCTC

LKLDWFKKGSSI




CCCTCGGACCGGCCTGGACTTCA

GQMFETTMRGAK




ACGAAATGGTGCTGCTCCAAATG

RMAILGDTAWDF




GAAGATAAGGCCTGGCTGGTGCA

GSLGGVFTSIGK




CAGGCAGTGGTTCCTGGATCTCC

ALHQVFGAIYGA




CGCTGCCGTGGCTGCCTGGCGCT

AFSGVSWTMKIL




GACACTCAGGGAAGCAACTGGAT

IGVIITWIGMNS




CCAGAAGGAAACCCTCGTGACCT

RSTSLSVSLVLV




TTAAGAACCCCCACGCCAAGAAG

GIVTLYLGVMVQ




CAGGATGTGGTGGTGTTGGGAAG

A (SEQ ID




CCAGGAGGGGGCCATGCATACTG

NO: 168)




CCCTCACCGGCGCGACCGAAATC




CAGATGTCGTCCGGCAATCTGCT




GTTCACCGGACACCTCAAGTGTC




GCCTTCGGATGGACAAGCTGCAG




CTGAAGGGAATGAGCTACAGCAT




GTGCACCGGGAAGTTCAAGATCG




TGAAGGAAATCGCCGAAACCCAG




CACGGAACCATCGTGATCCGGGT




GCAGTACGAGGGCGACGGTTCTC




CCTGCAAAATCCCCTTCGAAATC




ATGGATCTGGAGAAGAGACACGT




CCTGGGTCGCCTGATCACCGTGA




ACCCCATTGTGACTGAGAAGGAC




TCCCCAGTGAACATCGAAGCGGA




GCCCCCATTCGGAGACAGCTACA




TTATCATTGGTGCCGAACCGGGG




CAGCTGAAACTGGACTGGTTCAA




GAAGGGCAGCTCGATTGGCCAAA




TGTTCGAAACGACAATGCGGGGC




GCAAAGCGCATGGCCATCCTGGG




AGACACTGCCTGGGACTTCGGGT




CCCTTGGGGGGGTGTTCACCTCG




ATCGGAAAAGCCTTGCACCAAGT




GTTCGGCGCAATCTACGGCGCCG




CGTTCTCGGGAGTCTCCTGGACT




ATGAAGATCCTGATCGGTGTCAT




CATCACCTGGATCGGGATGAACT




CCCGGTCCACTTCCCTCTCGGTG




TCACTCGTGCTTGTGGGAATTGT




CACCCTGTACCTCGGAGTGATGG




TGCAGGCCTGA (SEQ ID NO:




150)





Dengue 2
TCAAGCTT
ATGCTGAATATTCTGAACCGACG
TGATAATA

MLNILNRRRRTA



prME
TTGGACCC
CCGCCGCACTGCCGGAATCATTA
GGCTGGAG

GIIIMMIPTVMA



(Thailand/
TCGTACAG
TCATGATGATCCCTACCGTGATG
CCTCGGTG

FHLTTRNGEPHM



PUO-
AAGCTAAT
GCGTTCCATCTCACCACTCGGAA
GCCATGCT

IVSRQEKGKSLL



218/1980)
ACGACTCA
TGGCGAACCCCATATGATCGTGT
TCTTGCCC

FKTEDGVNMCTL




CTATAGGG
CGAGACAGGAAAAGGGAAAGAGC
CTTGGGCC

MAMDLGELCEDT




AAATAAGA
CTTTTGTTCAAAACTGAAGATGG
TCCCCCCA

ITYKCPLLRQNE




GAGAAAAG
AGTGAACATGTGCACTCTCATGG
GCCCCTCC

PEDIDCWCNSTS




AAGAGTAA
CAATGGATCTGGGCGAACTGTGC
TCCCCTTC

TWVTYGTCTTTG




GAAGAAAT
GAAGATACCATCACTTACAAGTG
CTGCACCC

EHRREKRSVALV




ATAAGAGC
TCCGCTGTTGAGACAGAACGAGC
GTACCCCC

PHVGMGLETRTE




CACC
CTGAGGACATCGACTGCTGGTGT
GTGGTCTT

TWMSSEGAWKHA




(SEQ ID
AACAGCACTTCCACCTGGGTCAC
TGAATAAA

QRIEIWILRHPG




NO: 142)
CTACGGCACTTGCACTACCACCG
GTCTGAGT

FTIMAAILAYTI





GAGAACACCGGCGCGAGAAGAGG
GGGCGGC

GTTHFQRALIFI





AGCGTGGCTCTTGTGCCGCACGT
(SEQ ID

LLTAVAPSMTMR





CGGCATGGGACTCGAGACTCGGA
NO: 160)
CIGISNRDFVEG




CCGAAACCTGGATGTCATCCGAA

VSGGSWVDIVLE




GGAGCCTGGAAACACGCCCAACG

HGSCVTTMAKNK




GATCGAAATTTGGATCCTGAGAC

PTLDFELIKTEA




ACCCCGGTTTCACTATCATGGCC

KQPATLRKYCIE




GCAATCCTGGCGTACACTATTGG

AKLTNTTTESRC




CACCACGCACTTCCAGAGGGCCC

PTQGEPSLNEEQ




TCATTTTCATCCTCCTGACTGCC

DKRFVCKHSMVD




GTGGCGCCATCCATGACCATGAG

RGWGNGCGLFGK




ATGTATTGGCATTTCCAACCGCG

GGIVTCAMFTCK




ATTTCGTGGAGGGAGTGTCCGGA

KNMEGKVVQPEN




GGATCCTGGGTCGACATCGTGCT

LEYTIVVTPHSG




GGAACACGGATCTTGCGTCACCA

EEHAVGNDTGKH




CCATGGCTAAGAACAAGCCCACC

GKEIKVTPQSSI




CTCGACTTCGAGCTGATCAAGAC

TEAELTGYGTVT




AGAAGCCAAGCAGCCGGCCACCC

MECSPRTGLDFN




TCCGCAAGTATTGCATTGAAGCC

EMVLLQMENKAW




AAGCTTACCAACACCACCACCGA

LVHRQWFLDLPL




GTCGCGGTGCCCAACCCAAGGAG

PWLPGADTQGSN




AGCCGAGCCTCAATGAGGAACAG

WIQKETLVTFKN




GACAAGCGCTTCGTGTGCAAACA

PHAKKQDVVVLG




CAGCATGGTCGACCGGGGTTGGG

SQEGAMHTALTG




GCAACGGATGTGGCCTGTTCGGG

ATEIQMSSGNLL




AAGGGTGGCATTGTGACTTGCGC

FTGHLKCRLRMD




AATGTTCACTTGCAAGAAGAACA

KLQLKGMSYSMC




TGGAGGGGAAAGTGGTGCAACCC

TGKFKVVKEIAE




GAGAACCTGGAGTACACCATCGT

TQHGTIVIRVQY




CGTGACCCCACACTCCGGAGAGG

EGDGSPCKIPFE




AGCACGCCGTGGGAAACGACACG

IMDLEKRHVLGR




GGGAAGCATGGAAAGGAGATCAA

LITVNPIVTEKD




GGTCACACCCCAATCATCTATTA

SPVNIEAEPPFG




CCGAGGCCGAACTGACCGGATAC

DSYIIIGVEPGQ




GGTACTGTGACGATGGAGTGCAG

LKLNWFKKGSSI




CCCGAGGACTGGACTGGACTTCA

GQMFETTMRGAK




ACGAAATGGTGCTGCTGCAAATG

RMAILGDTAWDF




GAGAACAAGGCCTGGCTCGTGCA

GSLGGVFTSIGK




CCGGCAGTGGTTTCTGGATCTCC

ALHQVFGAIYGA




CACTGCCGTGGTTGCCGGGAGCC

AFSGVSWTMKIL




GACACCCAGGGGTCGAACTGGAT

IGVIITWIGMNS




CCAGAAGGAAACTCTTGTGACGT

RSTSLSVSLVLV




TTAAGAATCCTCACGCGAAGAAG

GIVTLYLGVMVQ




CAGGACGTGGTGGTCCTGGGATC

A (SEQ ID




GCAGGAAGGAGCTATGCACACCG

NO: 169)




CTCTGACCGGCGCCACTGAGATC




CAGATGTCCTCGGGCAACCTCCT




GTTCACCGGTCATCTGAAGTGCC




GGCTGCGGATGGACAAATTGCAG




CTGAAGGGGATGTCCTACTCCAT




GTGCACCGGGAAGTTCAAGGTCG




TGAAGGAGATCGCGGAAACTCAG




CACGGCACCATTGTCATTAGAGT




GCAGTACGAGGGAGATGGTTCAC




CGTGCAAGATACCGTTCGAAATC




ATGGACCTGGAAAAGAGACATGT




CTTGGGACGCCTGATCACTGTGA




ACCCTATCGTGACCGAAAAGGAC




TCCCCTGTGAACATCGAGGCGGA




GCCGCCTTTCGGCGACTCCTACA




TCATTATCGGAGTGGAGCCCGGG




CAGCTGAAGCTCAACTGGTTTAA




GAAGGGGTCCAGCATCGGCCAGA




TGTTCGAAACCACCATGCGGGGG




GCGAAGAGGATGGCGATCCTGGG




AGACACCGCCTGGGATTTCGGTT




CACTGGGCGGAGTGTTCACCTCC




ATCGGAAAGGCCCTGCACCAAGT




GTTCGGCGCAATCTACGGTGCTG




CCTTCTCGGGAGTCTCCTGGACC




ATGAAGATCCTGATCGGCGTGAT




TATCACATGGATCGGCATGAACA




GCCGGTCAACCTCCCTTTCCGTG




TCCCTGGTGCTGGTCGGCATCGT




GACTCTGTACCTGGGCGTGATGG




TGCAGGCCTGA (SEQ ID NO:




151)





Dengue 2
TCAAGCTT
ATGCTGAACATTCTGAACCGGAG
TGATAATA

MLNILNRRRRTA



prME
TTGGACCC
AAGAAGAACCGCCGGCATTATTA
GGCTGGAG

GIIIMMIPTVMA



(D2Y98P)
TCGTACAG
TCATGATGATTCCCACTGTGATG
CCTCGGTG

FHLTTRNGEPHM



with
AAGCTAAT
GCATTTCACCTGACCACCCGGAA
GCCATGCT

IVSRQEKGKSLL



native
ACGACTCA
CGGAGAACCTCATATGATCGTGT
TCTTGCCC

FKTENGVNMCTL



leader
CTATAGGG
CGAGACAGGAGAAGGGAAAGTCC
CTTGGGCC

MAMDLGELCEDT




AAATAAGA
CTGCTGTTCAAGACAGAAAACGG
TCCCCCCA

ITYNCPLLRQNE




GAGAAAAG
AGTGAACATGTGCACCCTGATGG
GCCCCTCC

PEDIDCWCNSTS




AAGAGTAA
CCATGGATCTCGGCGAACTGTGC
TCCCCTTC

TWVTYGTCTATG




GAAGAAAT
GAGGATACTATCACCTACAACTG
CTGCACCC

EHRREKRSVALV




ATAAGAGC
TCCGTTGCTGCGCCAAAACGAGC
GTACCCCC

PHVGMGLETRTE




CACC
CGGAGGACATCGACTGCTGGTGT
GTGGTCTT

TWMSSEGAWKHA




(SEQ ID
AACTCCACGTCGACCTGGGTCAC
TGAATAAA

QRIETWVLRHPG




NO: 143)
CTACGGCACTTGCACCGCGACCG
GTCTGAGT

FTIMAAILAYTI





GCGAACACAGAAGAGAGAAACGC
GGGCGGC

GTTYFQRVLIFI





TCCGTCGCTCTGGTGCCGCACGT
(SEQ ID

LLTAVAPSMTMR





CGGGATGGGGCTTGAAACCCGGA
NO: 161)
CIGISNRDFVEG




CTGAAACCTGGATGAGCTCGGAG

VSGGSWVDIVLE




GGCGCTTGGAAGCATGCCCAGCG

HGSCVTTMAKNK




CATCGAAACTTGGGTGCTGAGGC

PTLDFELIKTEA




ATCCAGGCTTCACAATCATGGCC

KHPATLRKYCIE




GCCATCCTCGCGTACACCATCGG

AKLTNTTTASRC




TACTACGTACTTCCAGCGGGTGT

PTQGEPSLNEEQ




TGATCTTCATTCTGCTGACCGCC

DKRFVCKHSMVD




GTGGCCCCTAGCATGACCATGCG

RGWGNGCGLFGK




GTGCATCGGGATCTCCAACCGCG

GGIVTCAMFTCK




ATTTCGTGGAGGGGGTGTCCGGT

KNMEGKIVQPEN




GGAAGCTGGGTGGACATTGTGCT

LEYTIVITPHSG




GGAGCACGGCTCGTGCGTGACCA

EENAVGNDTGKH




CCATGGCCAAGAACAAGCCCACC

GKEIKVTPQSSI




CTTGATTTTGAGCTGATCAAGAC

TEAELTGYGTVT




CGAAGCGAAACACCCCGCGACCC

MECSPRTGLDFN




TCCGGAAGTACTGCATTGAAGCC

EMVLLQMENKAW




AAGCTCACCAACACTACCACGGC

LVHRQWFLDLPL




CTCCCGGTGCCCTACCCAAGGAG

PWLPGADTQGSN




AACCTTCCTTGAACGAAGAACAG

WIQKETLVTFKN




GACAAGCGCTTCGTGTGCAAGCA

PHAKKQDVVVLG




TTCAATGGTGGACCGGGGCTGGG

SQEGAMHTALTG




GAAATGGCTGTGGCCTCTTCGGA

ATEIQMSSGNLL




AAAGGCGGAATTGTGACTTGCGC

FTGHLKCRLRMD




AATGTTCACTTGCAAGAAGAACA

KLQLKGMSYSMC




TGGAGGGAAAGATTGTGCAGCCC

TGKFKVVKEIAE




GAGAACCTCGAGTACACTATTGT

TQHGTIVIRVQY




CATCACTCCCCACTCCGGCGAAG

EGDGSPCKIPFE




AAAACGCTGTCGGCAACGACACC

IMDLEKRHVLGR




GGAAAGCATGGAAAGGAGATCAA

LITVNPIVTEKD




GGTCACCCCGCAATCCTCAATTA

SPVNIEAEPPFG




CTGAGGCAGAACTGACCGGTTAC

DSYIIIGVEPGQ




GGAACTGTGACTATGGAGTGTTC

LKLSWFKKGSSI




CCCTCGCACCGGCCTCGATTTCA

GQMFETTMRGAK




ACGAGATGGTGCTGCTGCAAATG

RMAILGDTAWDF




GAGAACAAGGCCTGGCTGGTGCA

GSLGGVFTSIGK




CCGGCAGTGGTTCCTCGATTTGC

ALHQVFGAIYGA




CCCTGCCGTGGCTGCCGGGAGCC

AFSGVSWTMKIL




GACACTCAGGGATCCAACTGGAT

IGVVITWIGMNS




CCAGAAAGAAACCCTCGTGACCT

RSTSLSVSLVLV




TCAAAAACCCCCACGCGAAGAAG

GVVTLYLGVMVQ




CAGGACGTGGTGGTGCTGGGTTC

A (SEQ ID




CCAAGAAGGGGCGATGCATACCG

NO: 170)




CCCTGACTGGTGCTACCGAAATC




CAGATGTCAAGCGGAAATCTCCT




GTTTACCGGTCACCTGAAGTGCA




GGCTCCGGATGGACAAGTTGCAG




CTGAAGGGGATGTCGTACAGCAT




GTGTACTGGGAAGTTCAAGGTCG




TGAAGGAGATTGCCGAAACCCAG




CACGGAACCATAGTCATCAGGGT




CCAGTACGAGGGCGACGGCAGCC




CTTGCAAGATCCCGTTCGAGATC




ATGGATCTGGAGAAGCGACACGT




GCTGGGCCGGCTTATCACTGTGA




ATCCAATCGTGACCGAGAAAGAC




TCGCCCGTGAACATCGAAGCCGA




GCCGCCGTTCGGCGACTCATACA




TCATCATCGGCGTGGAACCAGGA




CAGCTGAAGCTGTCATGGTTCAA




GAAGGGTTCCAGCATTGGTCAGA




TGTTCGAAACAACGATGCGCGGA




GCCAAGCGCATGGCTATCCTTGG




GGACACCGCCTGGGACTTCGGGT




CGCTGGGAGGAGTGTTTACCAGC




ATCGGAAAGGCCCTGCACCAAGT




GTTCGGTGCCATCTACGGAGCCG




CATTTTCCGGAGTGTCGTGGACT




ATGAAGATTCTGATCGGCGTCGT




GATTACCTGGATCGGGATGAACT




CCAGGTCTACTTCCCTCTCCGTG




AGCCTGGTGCTGGTCGGCGTGGT




CACCCTGTATCTGGGCGTGATGG




TCCAGGCTTAG (SEQ ID NO:




152)
















TABLE 35







Full-length Dengue Amino Acid Sequences (Homo sapiens strains; Brazil, Cuba and U.S.)













GenBank




Collection



Accession
Length
Type
Country
Genome Region
Date
Virus Name





AGN94866
3392
1
Brazil
UTR5CMENS1NS
2010
Dengue virus 1






2ANS2BNS3NS4

isolate 12898/BR-






A2KNS4BNS5UT

PE/10, complete






R3

genome


AGN94867
3392
1
Brazil
UTR5CMENS1NS
2010
Dengue virus 1






2ANS2BNS3NS4

isolate 13501/BR-






A2KNS4BNS5UT

PE/10, complete






R3

genome


AGN94868
3392
1
Brazil
UTR5CMENS1NS
2010
Dengue virus 1






2ANS2BNS3NS4

isolate 13671/BR-






A2KNS4BNS5UT

PE/10, complete






R3

genome


AGN94869
3392
1
Brazil
UTR5CMENS1NS
2010
Dengue virus 1






2ANS2BNS3NS4

isolate 13861/BR-






A2KNS4BNS5UT

PE/10, complete






R3

genome


AGN94870
3392
1
Brazil
UTR5CMENS1NS
2010
Dengue virus 1






2ANS2BNS3NS4

isolate 14985/BR-






A2KNS4BNS5UT

PE/10, complete






R3

genome


AGN94871
3392
1
Brazil
UTR5CMENS1NS
1996
Dengue virus 1






2ANS2BNS3NS4

isolate 21814/BR-






A2KNS4BNS5UT

PE/96, complete






R3

genome


AGN94872
3392
1
Brazil
UTR5CMENS1NS
1997
Dengue virus 1






2ANS2BNS3NS4

isolate 40604/BR-






A2KNS4BNS5UT

PE/97, complete






R3

genome


AGN94873
3392
1
Brazil
UTR5CMENS1NS
1997
Dengue virus 1






2ANS2BNS3NS4

isolate 41111/BR-






A2KNS4BNS5UT

PE/97, complete






R3

genome


AGN94874
3392
1
Brazil
UTR5CMENS1NS
1998
Dengue virus 1






2ANS2BNS3NS4

isolate 52082/BR-






A2KNS4BNS5UT

PE/98, complete






R3

genome


AGN94875
3392
1
Brazil
UTR5CMENS1NS
1999
Dengue virus 1






2ANS2BNS3NS4

isolate 59049/BR-






A2KNS4BNS5UT

PE/99, complete






R3

genome


AGN94876
3392
1
Brazil
UTR5CMENS1NS
2000
Dengue virus 1






2ANS2BNS3NS4

isolate 70523/BR-






A2KNS4BNS5UT

PE/00, complete






R3

genome


AGN94877
3392
1
Brazil
UTR5CMENS1NS
2001
Dengue virus 1






2ANS2BNS3NS4

isolate 74488/BR-






A2KNS4BNS5UT

PE/01, complete






R3

genome


AGN94878
3392
1
Brazil
UTR5CMENS1NS
2001
Dengue virus 1






2ANS2BNS3NS4

isolate 75861/BR-






A2KNS4BNS5UT

PE/01, complete






R3

genome


AGN94879
3392
1
Brazil
UTR5CMENS1NS
2002
Dengue virus 1






2ANS2BNS3NS4

isolate 88463/BR-






A2KNS4BNS5UT

PE/02, complete






R3

genome


AGN94865
3392
1
Brazil
UTR5CMENS1NS
2010
Dengue virus 1






2ANS2BNS3NS4

isolate 9808/BR-






A2KNS4BNS5UT

PE/10, complete






R3

genome


ACO06150
3392
1
Brazil
UTR5CMENS1NS
2000
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/BR/BID-






R3

V2374/2000,








complete genome


ACO06151
3392
1
Brazil
UTR5CMENS1NS
2000
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/BR/BID-






R3

V2375/2000,








complete genome


ACO06153
3392
1
Brazil
UTR5CMENS1NS
2001
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/BR/BID-






R3

V2378/2001,








complete genome


ACO06155
3392
1
Brazil
UTR5CMENS1NS
2002
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/BR/BID-






R3

V2381/2002,








complete genome


ACO06157
3392
1
Brazil
UTR5CMENS1NS
2003
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/BR/BID-






R3

V2384/2003,








complete genome


ACO06161
3392
1
Brazil
UTR5CMENS1NS
2004
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/BR/BID-






R3

V2389/2004,








complete genome


ACO06164
3392
1
Brazil
UTR5CMENS1NS
2005
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/BR/BID-






R3

V2392/2005,








complete genome


ACO06167
3392
1
Brazil
UTR5CMENS1NS
2006
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/BR/BID-






R3

V2395/2006,








complete genome


ACO06170
3392
1
Brazil
UTR5CMENS1NS
2007
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/BR/BID-






R3

V2398/2007,








complete genome


ACO06173
3392
1
Brazil
UTR5CMENS1NS
2008
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/BR/BID-






R3

V2401/2008,








complete genome


ACY70762
3392
1
Brazil
UTR5CMENS1NS
2008
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5

1/BR/BID-








V3490/2008,








complete genome


ACJ12617
3392
1
Brazil
UTR5CMENS1NS

Dengue virus 1






2ANS2BNS3NS4

isolate DF01-






A2KNS4BNS5UT

HUB01021093,






R3

complete genome


AHC08447
3392
1
Brazil
CMENS1NS2ANS
2011
Dengue virus 1






2BNS3NS4A2KN

strain






S4BNS5

1266/2011/BR/RJ/








2011 polyprotein








gene, partial cds


AHC08446
3392
1
Brazil
CMENS1NS2ANS
2010
Dengue virus 1






2BNS3NS4A2KN

strain






S4BNS5

242/2010/BR/RJ/








2010 polyprotein








gene, partial cds


AHC08448
3392
1
Brazil
CMENS1NS2ANS
1988
Dengue virus 1






2BNS3NS4A2KN

strain






S4BNS5

36034/BR/RJ/








1988 polyprotein








gene, partial cds


AHC08449
3392
1
Brazil
CMENS1NS2ANS
1989
Dengue virus 1






2BNS3NS4A2KN

strain






S4BNS5

38159/BR/RJ/








1989 polyprotein








gene, partial cds


AHC08450
3392
1
Brazil
CMENS1NS2ANS
2000
Dengue virus 1






2BNS3NS4A2KN

strain






S4BNS5

66694/BR/ES/








2000 polyprotein








gene, partial cds


AHC08451
3392
1
Brazil
CMENS1NS2ANS
2001
Dengue virus 1






2BNS3NS4A2KN

strain






S4BNS5

68826/BR/RJ/








2001 polyprotein








gene, partial cds


AGN94880
3391
2
Brazil
UTR5CMENS1NS
2010
Dengue virus 2






2ANS2BNS3NS4

isolate 13858/BR-






A2KNS4BNS5UT

PE/10, complete






R3

genome


AGN94881
3391
2
Brazil
UTR5CMENS1NS
2010
Dengue virus 2






2ANS2BNS3NS4

isolate 14905/BR-






A2KNS4BNS5UT

PE/10, complete






R3

genome


AGN94882
3391
2
Brazil
UTR5CMENS1NS
2010
Dengue virus 2






2ANS2BNS3NS4

isolate 19190/BR-






A2KNS4BNS5UT

PE/10, complete






R3

genome


AGN94884
3391
2
Brazil
UTR5CMENS1NS
1995
Dengue virus 2






2ANS2BNS3NS4

isolate 3275/BR-






A2KNS4BNS5UT

PE/95, complete






R3

genome


AGN94885
3391
2
Brazil
UTR5CMENS1NS
1995
Dengue virus 2






2ANS2BNS3NS4

isolate 3311/BR-






A2KNS4BNS5UT

PE/95, complete






R3

genome


AGN94886
3391
2
Brazil
UTR5CMENS1NS
1995
Dengue virus 2






2ANS2BNS3NS4

isolate 3337/BR-






A2KNS4BNS5UT

PE/95, complete






R3

genome


AGN94887
3391
2
Brazil
UTR5CMENS1NS
1997
Dengue virus 2






2ANS2BNS3NS4

isolate 37473/BR-






A2KNS4BNS5UT

PE/97, complete






R3

genome


AGN94888
3391
2
Brazil
UTR5CMENS1NS
1998
Dengue virus 2






2ANS2BNS3NS4

isolate 47913/BR-






A2KNS4BNS5UT

PE/98, complete






R3

genome


AGN94889
3391
2
Brazil
UTR5CMENS1NS
1998
Dengue virus 2






2ANS2BNS3NS4

isolate 51347/BR-






A2KNS4BNS5UT

PE/98, complete






R3

genome


AGN94890
3391
2
Brazil
UTR5CMENS1NS
1999
Dengue virus 2






2ANS2BNS3NS4

isolate 57135/BR-






A2KNS4BNS5UT

PE/99, complete






R3

genome


AGN94891
3391
2
Brazil
UTR5CMENS1NS
2000
Dengue virus 2






2ANS2BNS3NS4

isolate 72144/BR-






A2KNS4BNS5UT

PE/00, complete






R3

genome


AGN94892
3391
2
Brazil
UTR5CMENS1NS
2002
Dengue virus 2






2ANS2BNS3NS4

isolate 87086/BR-






A2KNS4BNS5UT

PE/02, complete






R3

genome


AGN94883
3391
2
Brazil
UTR5CMENS1NS
2010
Dengue virus 2






2ANS2BNS3NS4

isolate 9479/BR-






A2KNS4BNS5UT

PE/10, complete






R3

genome


AGK36299
3391
2
Brazil
CMENS1NS2ANS
Mar. 30, 2010
Dengue virus 2






2BNS3NS4A2KN

isolate ACS380,






S4BNS5UTR3

complete genome


AGK36289
3391
2
Brazil
UTR5CMENS1NS
Mar. 1, 2010
Dengue virus 2






2ANS2BNS3NS4

isolate ACS46,






A2KNS4BNS5UT

complete genome






R3


AGK36290
3391
2
Brazil
UTR5CMENS1NS
Mar. 1, 2010
Dengue virus 2






2ANS2BNS3NS4

isolate ACS46_II,






A2KNS4BNS5UT

complete genome






R3


AGK36291
3391
2
Brazil
UTR5CMENS1NS
Apr. 12, 2010
Dengue virus 2






2ANS2BNS3NS4

isolate ACS538,






A2KNS4BNS5UT

complete genome






R3


AGK36292
3391
2
Brazil
UTR5CMENS1NS
May 4, 2010
Dengue virus 2






2ANS2BNS3NS4

isolate ACS542,






A2KNS4BNS5UT

complete genome






R3


AGK36294
3391
2
Brazil
UTR5CMENS1NS
May 4, 2010
Dengue virus 2






2ANS2BNS3NS4

isolate ACS721,






A2KNS4BNS5UT

complete genome






R3


ACO06152
3391
2
Brazil
UTR5CMENS1NS
2000
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/BR/BID-






R3

V2376/2000,








complete genome


AET43250
3391
2
Brazil
CMENS1NS2ANS
2000
Dengue virus 2






2BNS3NS4A2KN

isolate DENV-






S4BNS5UTR3

2/BR/BID-








V2377/2000,








complete genome


ACO06154
3391
2
Brazil
UTR5CMENS1NS
2001
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/BR/BID-






R3

V2379/2001,








complete genome


ACO06156
3391
2
Brazil
UTR5CMENS1NS
2002
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/BR/BID-






R3

V2382/2002,








complete genome


ACW82928
3391
2
Brazil
UTR5CMENS1NS
2003
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/BR/BID-






R3

V2385/2003,








complete genome


ACO06158
3391
2
Brazil
UTR5CMENS1NS
2003
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/BR/BID-






R3

V2386/2003,








complete genome


ACO06162
3391
2
Brazil
UTR5CMENS1NS
2004
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/BR/BID-






R3

V2390/2004,








complete genome


ACO06165
3391
2
Brazil
UTR5CMENS1NS
2005
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/BR/BID-






R3

V2393/2005,








complete genome


ACO06168
3391
2
Brazil
UTR5CMENS1NS
2006
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/BR/BID-






R3

V2396/2006,








complete genome


ACO06171
3391
2
Brazil
UTR5CMENS1NS
2007
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/BR/BID-






R3

V2399/2007,








complete genome


ACS32031
3391
2
Brazil
UTR5CMENS1NS
2008
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/BR/BID-






R3

V2402/2008,








complete genome


ACW82873
3391
2
Brazil
UTR5CMENS1NS
2008
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/BR/BID-






R3

V3481/2008,








complete genome


ACW82874
3391
2
Brazil
UTR5CMENS1NS
2008
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/BR/BID-






R3

V3483/2008,








complete genome


ACW82875
3391
2
Brazil
UTR5CMENS1NS
2008
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/BR/BID-






R3

V3486/2008,








complete genome


ACY70763
3391
2
Brazil
UTR5CMENS1NS
2008
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5

2/BR/BID-








V3495/2008,








complete genome


ADI80655
3391
2
Brazil
UTR5CMENS1NS
2008
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5

2/BR/BID-








V3637/2008,








complete genome


ACY70778
3391
2
Brazil
UTR5CMENS1NS
2008
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/BR/BID-






R3

V3638/2008,








complete genome


ACY70779
3391
2
Brazil
UTR5CMENS1NS
2008
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5

2/BR/BID-








V3640/2008,








complete genome


ACY70780
3391
2
Brazil
UTR5CMENS1NS
2008
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5

2/BR/BID-








V3644/2008,








complete genome


ACY70781
3391
2
Brazil
UTR5CMENS1NS
2008
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/BR/BID-






R3

V3645/2008,








complete genome


ACY70782
3391
2
Brazil
UTR5CMENS1NS
2008
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/BR/BID-






R3

V3648/2008,








complete genome


ACY70783
3391
2
Brazil
UTR5CMENS1NS
2008
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/BR/BID-






R3

V3650/2008,








complete genome


ACY70784
3391
2
Brazil
UTR5CMENS1NS
2008
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/BR/BID-






R3

V3653/2008,








complete genome


AGK36297
3391
2
Brazil
UTR5CMENS1NS
Apr. 15, 2010
Dengue virus 2






2ANS2BNS3NS4

isolate DGV106,






A2KNS4BNS5UT

complete genome






R3


AGK36295
3391
2
Brazil
UTR5CMENS1NS
Feb. 24, 2010
Dengue virus 2






2ANS2BNS3NS4

isolate DGV34,






A2KNS4BNS5UT

complete genome






R3


AGK36293
3391
2
Brazil
UTR5CMENS1NS
Feb. 24, 2010
Dengue virus 2






2ANS2BNS3NS4

isolate DGV37,






A2KNS4BNS5UT

complete genome






R3


AGK36298
3391
2
Brazil
UTR5CMENS1NS
Mar. 9, 2010
Dengue virus 2






2ANS2BNS3NS4

isolate DGV69,






A2KNS4BNS5UT

complete genome






R3


AGK36296
3391
2
Brazil
UTR5CMENS1NS
Mar. 24, 2010
Dengue virus 2






2ANS2BNS3NS4

isolate DGV91,






A2KNS4BNS5UT

complete genome






R3


AFV95788
3391
2
Brazil
CMENS1NS2ANS
2008
Dengue virus 2






2BNS3NS4A2KN

strain






S4BNS5

BR0337/2008/RJ/








2008 polyprotein








gene, partial cds


AFV95787
3391
2
Brazil
CMENS1NS2ANS
2008
Dengue virus 2






2BNS3NS4A2KN

strain






S4BNS5

BR0450/2008/RJ/








2008 polyprotein








gene, partial cds


ADV39968
3391
2
Brazil
CMENS1NS2ANS
2008
Dengue virus 2






2BNS3NS4A2KN

strain






S4BNS5

BR0690/RJ/2008








polyprotein gene,








complete cds


ADV71220
3391
2
Brazil
CMENS1NS2ANS
1990
Dengue virus 2






2BNS3NS4A2KN

strain






S4BNS5

BR39145/RJ/90








polyprotein gene,








partial cds


ADV71215
3391
2
Brazil
CMENS1NS2ANS
1990
Dengue virus 2






2BNS3NS4A2KN

strain






S4BNS5

BR41768/RJ/90








polyprotein gene,








partial cds


ADV71216
3391
2
Brazil
CMENS1NS2ANS
1991
Dengue virus 2






2BNS3NS4A2KN

strain






S4BNS5

BR42727/RJ/91








polyprotein gene,








partial cds


ADV71217
3391
2
Brazil
CMENS1NS2ANS
1994
Dengue virus 2






2BNS3NS4A2KN

strain






S4BNS5

BR48622/CE/94








polyprotein gene,








partial cds


ADV71218
3391
2
Brazil
CMENS1NS2ANS
1998
Dengue virus 2






2BNS3NS4A2KN

strain






S4BNS5

BR61310/RJ/98








polyprotein gene,








partial cds


ADV71219
3391
2
Brazil
CMENS1NS2ANS
1999
Dengue virus 2






2BNS3NS4A2KN

strain






S4BNS5

BR64905/RJ/99








polyprotein gene,








partial cds


AFH53774
3390
2
Brazil
UTR5CMENS1NS

Dengue virus 2






2ANS2BNS3NS4

strain JHA1,






A2KNS4BNS5

partial genome


AGN94893
3390
3
Brazil
UTR5CMENS1NS
2003
Dengue virus 3






2ANS2BNS3NS4

isolate






A2KNS4BNS5UT

101905/BR-






R3

PE/03, complete








genome


AGN94902
3390
3
Brazil
UTR5CMENS1NS
2004
Dengue virus 3






2ANS2BNS3NS4

isolate 129/BR-






A2KNS4BNS5UT

PE/04, complete






R3

genome


AGN94899
3390
3
Brazil
UTR5CMENS1NS
2004
Dengue virus 3






2ANS2BNS3NS4

isolate 145/BR-






A2KNS4BNS5UT

PE/04, complete






R3

genome


AGN94903
3390
3
Brazil
UTR5CMENS1NS
2004
Dengue virus 3






2ANS2BNS3NS4

isolate 161/BR-






A2KNS4BNS5UT

PE/04, complete






R3

genome


AGN94896
3390
3
Brazil
UTR5CMENS1NS
2005
Dengue virus 3






2ANS2BNS3NS4

isolate 206/BR-






A2KNS4BNS5UT

PE/05, complete






R3

genome


AGN94904
3390
3
Brazil
UTR5CMENS1NS
2005
Dengue virus 3






2ANS2BNS3NS4

isolate 249/BR-






A2KNS4BNS5UT

PE/05, complete






R3

genome


AGN94901
3390
3
Brazil
UTR5CMENS1NS
2005
Dengue virus 3






2ANS2BNS3NS4

isolate 255/BR-






A2KNS4BNS5UT

PE/05, complete






R3

genome


AGN94905
3390
3
Brazil
UTR5CMENS1NS
2005
Dengue virus 3






2ANS2BNS3NS4

isolate 263/BR-






A2KNS4BNS5UT

PE/05, complete






R3

genome


AGN94898
3390
3
Brazil
UTR5CMENS1NS
2005
Dengue virus 3






2ANS2BNS3NS4

isolate 277/BR-






A2KNS4BNS5UT

PE/05, complete






R3

genome


AGN94906
3390
3
Brazil
UTR5CMENS1NS
2005
Dengue virus 3






2ANS2BNS3NS4

isolate 283/BR-






A2KNS4BNS5UT

PE/05, complete






R3

genome


AGN94907
3390
3
Brazil
UTR5CMENS1NS
2005
Dengue virus 3






2ANS2BNS3NS4

isolate 314/BR-






A2KNS4BNS5UT

PE/06, complete






R3

genome


AGN94897
3390
3
Brazil
UTR5CMENS1NS
2005
Dengue virus 3






2ANS2BNS3NS4

isolate 339/BR-






A2KNS4BNS5UT

PE/05, complete






R3

genome


AGN94908
3390
3
Brazil
UTR5CMENS1NS
2006
Dengue virus 3






2ANS2BNS3NS4

isolate 411/BR-






A2KNS4BNS5UT

PE/06, complete






R3

genome


AGN94909
3390
3
Brazil
UTR5CMENS1NS
2006
Dengue virus 3






2ANS2BNS3NS4

isolate 418/BR-






A2KNS4BNS5UT

PE/06, complete






R3

genome


AGN94910
3390
3
Brazil
UTR5CMENS1NS
2006
Dengue virus 3






2ANS2BNS3NS4

isolate 420/BR-






A2KNS4BNS5UT

PE/06, complete






R3

genome


AGN94911
3390
3
Brazil
UTR5CMENS1NS
2006
Dengue virus 3






2ANS2BNS3NS4

isolate 423/BR-






A2KNS4BNS5UT

PE/06, complete






R3

genome


AGN94912
3390
3
Brazil
UTR5CMENS1NS
2006
Dengue virus 3






2ANS2BNS3NS4

isolate 424/BR-






A2KNS4BNS5UT

PE/06, complete






R3

genome


AGN94900
3390
3
Brazil
UTR5CMENS1NS
2006
Dengue virus 3






2ANS2BNS3NS4

isolate 603/BR-






A2KNS4BNS5UT

PE/06, complete






R3

genome


AGN94895
3390
3
Brazil
UTR5CMENS1NS
2002
Dengue virus 3






2ANS2BNS3NS4

isolate 81257/BR-






A2KNS4BNS5UT

PE/02, complete






R3

genome


AGN94894
3390
3
Brazil
UTR5CMENS1NS
2002
Dengue virus 3






2ANS2BNS3NS4

isolate 85469/BR-






A2KNS4BNS5UT

PE/02, complete






R3

genome


AFK83756
3390
3
Brazil
UTR5CMENS1NS
2007
Dengue virus 3






2ANS2BNS3NS4

isolate






A2KNS4BNS5UT

D3BR/ACN/2007,






R3

complete genome


AFK83755
3390
3
Brazil
UTR5CMENS1NS
2009
Dengue virus 3






2ANS2BNS3NS4

isolate






A2KNS4BNS5UT

D3BR/AL95/2009,






R3

complete genome


AFK83754
3390
3
Brazil
UTR5CMENS1NS
2004
Dengue virus 3






2ANS2BNS3NS4

isolate






A2KNS4BNS5UT

D3BR/BR8/04,






R3

complete genome


AFK83753
3390
3
Brazil
UTR5CMENS1NS
2002
Dengue virus 3






2ANS2BNS3NS4

isolate






A2KNS4BNS5UT

D3BR/BV4/02,






R3

complete genome


AFK83762
3390
3
Brazil
UTR5CMENS1NS
2002
Dengue virus 3






2ANS2BNS3NS4

isolate






A2KNS4BNS5UT

D3BR/CU6/02,






R3

complete genome


AFK83759
3390
3
Brazil
UTR5CMENS1NS
2003
Dengue virus 3






2ANS2BNS3NS4

isolate






A2KNS4BNS5UT

D3BR/MR9/03,






R3

complete genome


AFK83761
3390
3
Brazil
UTR5CMENS1NS
2003
Dengue virus 3






2ANS2BNS3NS4

isolate






A2KNS4BNS5UT

D3BR/PV1/03,






R3

complete genome


AFK83760
3390
3
Brazil
UTR5CMENS1NS
2002
Dengue virus 3






2ANS2BNS3NS4

isolate






A2KNS4BNS5UT

D3BR/SL3/02,






R3

complete genome


AHG23238
3390
3
Brazil
UTR5CMENS1NS
2002
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5

3/BR/BID-








V2383/2002,








complete genome


ACO06159
3390
3
Brazil
UTR5CMENS1NS
2003
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/BR/BID-






R3

V2387/2003,








complete genome


ACO06160
3390
3
Brazil
UTR5CMENS1NS
2003
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/BR/BID-






R3

V2388/2003,








complete genome


ACO06163
3390
3
Brazil
UTR5CMENS1NS
2004
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/BR/BID-






R3

V2391/2004,








complete genome


ACO06166
3390
3
Brazil
UTR5CMENS1NS
2005
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/BR/BID-






R3

V2394/2005,








complete genome


ACO06169
3390
3
Brazil
UTR5CMENS1NS
2006
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/BR/BID-






R3

V2397/2006,








complete genome


ACO06172
3390
3
Brazil
UTR5CMENS1NS
2007
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/BR/BID-






R3

V2400/2007,








complete genome


ACO06174
3390
3
Brazil
UTR5CMENS1NS
2008
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/BR/BID-






R3

V2403/2008,








complete genome


ACQ44485
3390
3
Brazil
UTR5CMENS1NS
2001
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/BR/BID-






R3

V2977/2001,








complete genome


ACQ44486
3390
3
Brazil
UTR5CMENS1NS
2003
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/BR/BID-






R3

V2983/2003,








complete genome


ACY70743
3390
3
Brazil
UTR5CMENS1NS
2006
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/BR/BID-






R3

V3417/2006,








complete genome


ACY70744
3390
3
Brazil
UTR5CMENS1NS
2006
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5

3/BR/BID-








V3423/2006,








complete genome


ACY70745
3390
3
Brazil
UTR5CMENS1NS
2006
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/BR/BID-






R3

V3424/2006,








complete genome


ACY70746
3390
3
Brazil
UTR5CMENS1NS
2006
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5

3/BR/BID-








V3427/2006,








complete genome


ACY70747
3390
3
Brazil
UTR5CMENS1NS
2006
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5

3/BR/BID-








V3429/2006,








complete genome


ACY70748
3390
3
Brazil
UTR5CMENS1NS
2006
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5

3/BR/BID-








V3430/2006,








complete genome


ACW82870
3390
3
Brazil
UTR5CMENS1NS
2006
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/BR/BID-






R3

V3431/2006,








complete genome


ACY70749
3390
3
Brazil
UTR5CMENS1NS
2006
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5

3/BR/BID-








V3434/2006,








complete genome


ACY70750
3390
3
Brazil
UTR5CMENS1NS
2006
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5

3/BR/BID-








V3435/2006,








complete genome


ACY70751
3390
3
Brazil
UTR5CMENS1NS
2006
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5

3/BR/BID-








V3441/2006,








complete genome


ACY70752
3390
3
Brazil
UTR5CMENS1NS
2006
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5

3/BR/BID-








V3442/2006,








complete genome


ACW82871
3390
3
Brazil
UTR5CMENS1NS
2006
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/BR/BID-






R3

V3444/2006,








complete genome


ACY70753
3390
3
Brazil
UTR5CMENS1NS
2006
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5

3/BR/BID-








V3446/2006,








complete genome


ACY70754
3390
3
Brazil
UTR5CMENS1NS
2006
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/BR/BID-






R3

V3451/2006,








complete genome


ACY70755
3390
3
Brazil
UTR5CMENS1NS
2006
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/BR/BID-






R3

V3456/2006,








complete genome


ACY70756
3390
3
Brazil
UTR5CMENS1NS
2006
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/BR/BID-






R3

V3457/2006,








complete genome


ACY70757
3390
3
Brazil
UTR5CMENS1NS
2006
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5

3/BR/BID-








V3460/2006,








complete genome


ACW82872
3390
3
Brazil
UTR5CMENS1NS
2006
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/BR/BID-






R3

V3463/2006,








complete genome


ACY70758
3390
3
Brazil
UTR5CMENS1NS
2006
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5

3/BR/BID-








V3464/2006,








complete genome


ACY70759
3390
3
Brazil
UTR5CMENS1NS
2006
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5

3/BR/BID-








V3465/2006,








complete genome


ACY70760
3390
3
Brazil
UTR5CMENS1NS
2007
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5

3/BR/BID-








V3469/2007,








complete genome


ACY70761
3390
3
Brazil
UTR5CMENS1NS
2007
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5

3/BR/BID-








V3470/2007,








complete genome


ACY70764
3390
3
Brazil
UTR5CMENS1NS
2006
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5

3/BR/BID-








V3584/2006,








complete genome


ACY70765
3390
3
Brazil
UTR5CMENS1NS
2007
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5

3/BR/BID-








V3585/2007,








complete genome


ACY70766
3390
3
Brazil
UTR5CMENS1NS
2007
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5

3/BR/BID-








V3588/2007,








complete genome


ACY70767
3390
3
Brazil
UTR5CMENS1NS
2007
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5

3/BR/BID-








V3589/2007,








complete genome


ACY70768
3390
3
Brazil
UTR5CMENS1NS
2007
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5

3/BR/BID-








V3590/2007,








complete genome


ACY70769
3390
3
Brazil
UTR5CMENS1NS
2007
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5

3/BR/BID-








V3591/2007,








complete genome


ACY70770
3390
3
Brazil
UTR5CMENS1NS
2007
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5

3/BR/BID-








V3593/2007,








complete genome


ACY70771
3390
3
Brazil
UTR5CMENS1NS
2007
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/BR/BID-






R3

V3597/2007,








complete genome


ACY70772
3390
3
Brazil
UTR5CMENS1NS
2007
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5

3/BR/BID-








V3598/2007,








complete genome


ACY70773
3390
3
Brazil
UTR5CMENS1NS
2007
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5

3/BR/BID-








V3601/2007,








complete genome


ACY70774
3390
3
Brazil
UTR5CMENS1NS
2007
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5

3/BR/BID-








V3605/2007,








complete genome


ACY70775
3390
3
Brazil
UTR5CMENS1NS
2007
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5

3/BR/BID-








V3606/2007,








complete genome


ACY70776
3390
3
Brazil
UTR5CMENS1NS
2007
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/BR/BID-






R3

V3609/2007,








complete genome


ACY70777
3390
3
Brazil
UTR5CMENS1NS
2007
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/BR/BID-






R3

V3615/2007,








complete genome


AEV42062
3390
3
Brazil
UTR5CMENS1NS
2006
Dengue virus 3






2ANS2BNS3NS4

isolate






A2KNS4BNS5UT

DENV3/BR/






R3

D3LIMHO/2006,








complete genome


AGH08164
3390
3
Brazil
UTR5CMENS1NS
2002
Dengue virus 3






2ANS2BNS3NS4

strain 95016/BR-






A2KNS4BNS5UT

PE/02, complete






R3

genome


AEX91754
3387
4
Brazil
UTR5CMENS1NS
Sep. 8, 2010
Dengue virus 4






2ANS2BNS3NS4

isolate






A2KNS4BNS5UT

Br246RR/10,






R3

complete genome


AIQ84223
3387
4
Brazil
UTR5CMENS1NS
Mar. 28, 2012
Dengue virus 4






2ANS2BNS3NS4

strain DENV-4/MT/






A2KNS4BNS5UT

BR12_TVP17898/






R3

2012








isolate serum_12,








complete genome


AIQ84224
3387
4
Brazil
UTR5CMENS1NS
Mar. 30, 2012
Dengue virus 4






2ANS2BNS3NS4

strain DENV-4/MT/






A2KNS4BNS5UT

BR20_TVP17906/






R3

2012








isolate serum_20,








complete genome


AIQ84225
3387
4
Brazil
UTR5CMENS1NS
Mar. 30, 2012
Dengue virus 4






2ANS2BNS3NS4

strain DENV-4/MT/






A2KNS4BNS5UT

BR23_TVP17909/






R3

2012








isolate serum_23,








complete genome


AIQ84226
3387
4
Brazil
UTR5CMENS1NS
Apr. 19, 2012
Dengue virus 4






2ANS2BNS3NS4

strain DENV-4/MT/






A2KNS4BNS5UT

BR24_TVP17910/






R3

2012








isolate serum_24,








complete genome


AIQ84227
3387
4
Brazil
UTR5CMENS1NS
Apr. 12, 2012
Dengue virus 4






2ANS2BNS3NS4

strain DENV-4/MT/






A2KNS4BNS5UT

BR27_TVP17913/






R3

2012








isolate serum_27,








complete genome


AIQ84228
3387
4
Brazil
UTR5CMENS1NS
Apr. 19, 2012
Dengue virus 4






2ANS2BNS3NS4

strain DENV-4/MT/






A2KNS4BNS5UT

BR28_TVP17914/






R3

2012








isolate serum_28,








complete genome


AIQ84220
3387
4
Brazil
UTR5CMENS1NS
Apr. 23, 2012
Dengue virus 4






2ANS2BNS3NS4

strain DENV-4/MT/






A2KNS4BNS5UT

BR2_TVP17888/






R3

2012








isolate serum_2,








complete genome


AIQ84245
3387
4
Brazil
UTR5CMENS1NS
Apr. 20, 2012
Dengue virus 4






2ANS2BNS3NS4

strain DENV-4/MT/






A2KNS4BNS5UT

BR33_TVP17919/






R3

2012








isolate serum_33,








complete genome


AIQ84244
3387
4
Brazil
UTR5CMENS1NS
Mar. 30, 2012
Dengue virus 4






2ANS2BNS3NS4

strain DENV-4/MT/






A2KNS4BNS5UT

BR35_TVP17921/






R3

2012








isolate serum_35,








complete genome


AIQ84243
3387
4
Brazil
UTR5CMENS1NS
Apr. 3, 2012
Dengue virus 4






2ANS2BNS3NS4

strain DENV-4/MT/






A2KNS4BNS5UT

BR40_TVP17926/






R3

2012








isolate serum_40,








complete genome


AIQ84242
3387
4
Brazil
UTR5CMENS1NS
Apr. 5, 2012
Dengue virus 4






2ANS2BNS3NS4

strain DENV-4/MT/






A2KNS4BNS5UT

BR44_TVP17930/






R3

2012








isolate serum_44,








complete genome


AIQ84241
3387
4
Brazil
UTR5CMENS1NS
Mar. 23, 2012
Dengue virus 4






2ANS2BNS3NS4

strain DENV-4/MT/






A2KNS4BNS5UT

BR47_TVP17933/






R3

2012








isolate serum_47,








complete genome


AIQ84240
3387
4
Brazil
UTR5CMENS1NS
Mar. 21, 2012
Dengue virus 4






2ANS2BNS3NS4

strain DENV-4/MT/






A2KNS4BNS5UT

BR48_TVP17934/






R3

2012








isolate serum_48,








complete genome


AIQ84239
3387
4
Brazil
UTR5CMENS1NS
Mar. 12, 2012
Dengue virus 4






2ANS2BNS3NS4

strain DENV-4/MT/






A2KNS4BNS5UT

BR50_TVP18148/






R3

2012








isolate serum_50,








complete genome


AIQ84238
3387
4
Brazil
UTR5CMENS1NS
Mar. 20, 2012
Dengue virus 4






2ANS2BNS3NS4

strain DENV-4/MT/






A2KNS4BNS5UT

BR52_TVP17938/






R3

2012








isolate serum_52,








complete genome


AIQ84237
3387
4
Brazil
UTR5CMENS1NS
Mar. 14, 2012
Dengue virus 4






2ANS2BNS3NS4

strain DENV-4/MT/






A2KNS4BNS5UT

BR53_TVP17939/






R3

2012








isolate serum_53,








complete genome


AIQ84236
3387
4
Brazil
UTR5CMENS1NS
Mar. 14, 2012
Dengue virus 4






2ANS2BNS3NS4

strain DENV-4/MT/






A2KNS4BNS5UT

BR55_TVP17941/






R3

2012








isolate serum_55,








complete genome


AIQ84235
3387
4
Brazil
UTR5CMENS1NS
Mar. 14, 2012
Dengue virus 4






2ANS2BNS3NS4

strain DENV-4/MT/






A2KNS4BNS5UT

BR60_TVP17946/






R3

2012








isolate serum_60,








complete genome


AIQ84234
3387
4
Brazil
UTR5CMENS1NS
Apr. 19, 2012
Dengue virus 4






2ANS2BNS3NS4

strain DENV-4/MT/






A2KNS4BNS5UT

BR73_TVP17951/






R3

2012








isolate serum_73,








complete genome


AIQ84233
3387
4
Brazil
UTR5CMENS1NS
Apr. 19, 2012
Dengue virus 4






2ANS2BNS3NS4

strain DENV-4/MT/






A2KNS4BNS5UT

BR76_TVP17953/






R3

2012








isolate serum_76,








complete genome


AIQ84232
3387
4
Brazil
UTR5CMENS1NS
Feb. 3, 2012
Dengue virus 4






2ANS2BNS3NS4

strain DENV-4/MT/






A2KNS4BNS5UT

BR84_TVP17961/






R3

2012








isolate serum_84,








complete genome


AIQ84221
3387
4
Brazil
UTR5CMENS1NS
Apr. 23, 2012
Dengue virus 4






2ANS2BNS3NS4

strain DENV-4/MT/






A2KNS4BNS5UT

BR8_TVP17894/






R3

2012








isolate serum_8,








complete genome


AIQ84231
3387
4
Brazil
UTR5CMENS1NS
Feb. 3, 2012
Dengue virus 4






2ANS2BNS3NS4

strain DENV-4/MT/






A2KNS4BNS5UT

BR91_TVP17968/






R3

2012








isolate serum_91,








complete genome


AIQ84230
3387
4
Brazil
UTR5CMENS1NS
Feb. 29, 2012
Dengue virus 4






2ANS2BNS3NS4

strain DENV-4/MT/






A2KNS4BNS5UT

BR92_TVP17969/






R3

2012








isolate serum_92,








complete genome


AIQ84229
3387
4
Brazil
UTR5CMENS1NS
Feb. 16, 2012
Dengue virus 4






2ANS2BNS3NS4

strain DENV-4/MT/






A2KNS4BNS5UT

BR94_TVP17971/






R3

2012








isolate serum_94,








complete genome


AIQ84222
3387
4
Brazil
UTR5CMENS1NS
Apr. 18, 2012
Dengue virus 4






2ANS2BNS3NS4

strain DENV-4/MT/






A2KNS4BNS5UT

BR9_TVP17895/






R3

2012








isolate serum_9,








complete genome


AEW50182
3387
4
Brazil
UTR5CMENS1NS
Mar. 26, 1982
Dengue virus 4






2ANS2BNS3NS4

strain H402276,






A2KNS4BNS5

complete genome


AFX65866
3387
4
Brazil
UTR5CMENS1NS
Jul. 17, 2010
Dengue virus 4






2ANS2BNS3NS4

strain H772846,






A2KNS4BNS5UT

complete genome






R3


AFX65867
3387
4
Brazil
UTR5CMENS1NS
Jul. 18, 2010
Dengue virus 4






2ANS2BNS3NS4

strain H772852,






A2KNS4BNS5UT

complete genome






R3


AEW50183
3387
4
Brazil
UTR5CMENS1NS
Jul. 21, 2010
Dengue virus 4






2ANS2BNS3NS4

strain H772854,






A2KNS4BNS5

complete genome


AFX65868
3387
4
Brazil
UTR5CMENS1NS
Aug. 20, 2010
Dengue virus 4






2ANS2BNS3NS4

strain H773583,






A2KNS4BNS5UT

complete genome






R3


AFX65869
3387
4
Brazil
UTR5CMENS1NS
Aug. 24, 2010
Dengue virus 4






2ANS2BNS3NS4

strain H774846,






A2KNS4BNS5UT

complete genome






R3


AFX65870
3387
4
Brazil
UTR5CMENS1NS
Nov. 10, 2010
Dengue virus 4






2ANS2BNS3NS4

strain H775222,






A2KNS4BNS5UT

complete genome






R3


AFX65871
3387
4
Brazil
UTR5CMENS1NS
Jan. 12, 2011
Dengue virus 4






2ANS2BNS3NS4

strain H778494,






A2KNS4BNS5UT

complete genome






R3


AFX65872
3387
4
Brazil
UTR5CMENS1NS
Jan. 11, 2011
Dengue virus 4






2ANS2BNS3NS4

strain H778504,






A2KNS4BNS5UT

complete genome






R3


AFX65873
3387
4
Brazil
UTR5CMENS1NS
Jan. 20, 2011
Dengue virus 4






2ANS2BNS3NS4

strain H778887,






A2KNS4BNS5UT

complete genome






R3


AFX65874
3387
4
Brazil
UTR5CMENS1NS
Jan. 14, 2011
Dengue virus 4






2ANS2BNS3NS4

strain H779228,






A2KNS4BNS5UT

complete genome






R3


AFX65875
3387
4
Brazil
UTR5CMENS1NS
Jan. 24, 2011
Dengue virus 4






2ANS2BNS3NS4

strain H779652,






A2KNS4BNS5UT

complete genome






R3


AFX65876
3387
4
Brazil
UTR5CMENS1NS
Nov. 29, 2010
Dengue virus 4






2ANS2BNS3NS4

strain H780090,






A2KNS4BNS5UT

complete genome






R3


AFX65877
3387
4
Brazil
UTR5CMENS1NS
Nov. 21, 2010
Dengue virus 4






2ANS2BNS3NS4

strain H780120,






A2KNS4BNS5UT

complete genome






R3


AFX65878
3387
4
Brazil
UTR5CMENS1NS
Jan. 29, 2011
Dengue virus 4






2ANS2BNS3NS4

strain H780556,






A2KNS4BNS5UT

complete genome






R3


AFX65879
3387
4
Brazil
UTR5CMENS1NS
Jan. 29, 2011
Dengue virus 4






2ANS2BNS3NS4

strain H780563,






A2KNS4BNS5UT

complete genome






R3


AFX65880
3387
4
Brazil
UTR5CMENS1NS
Jan. 13, 2011
Dengue virus 4






2ANS2BNS3NS4

strain H780571,






A2KNS4BNS5UT

complete genome






R3


AFX65881
3387
4
Brazil
UTR5CMENS1NS
Mar. 18, 2011
Dengue virus 4






2ANS2BNS3NS4

strain H781363,






A2KNS4BNS5UT

complete genome






R3


AIK23224
3391
2
Cuba
CMENS1NS2ANS
1981
Dengue virus 2






2BNS3NS4A2KN

isolate






S4BNS5

Cuba_A115_1981








polyprotein gene,








complete cds


AIK23223
3391
2
Cuba
CMENS1NS2ANS
1981
Dengue virus 2






2BNS3NS4A2KN

isolate






S4BNS5

Cuba_A132_1981








polyprotein gene,








complete cds


AIK23222
3391
2
Cuba
CMENS1NS2ANS
1981
Dengue virus 2






2BNS3NS4A2KN

isolate






S4BNS5

Cuba_A15_1981








polyprotein gene,








complete cds


AIK23225
3391
2
Cuba
CMENS1NS2ANS
1981
Dengue virus 2






2BNS3NS4A2KN

isolate






S4BNS5

Cuba_A169_1981








polyprotein gene,








complete cds


AIK23226
3391
2
Cuba
CMENS1NS2ANS
1981
Dengue virus 2






2BNS3NS4A2KN

isolate






S4BNS5

Cuba_A35_1981








polyprotein gene,








complete cds


AAW31409
3391
2
Cuba
UTR5CMENS1NS

Dengue virus type






2ANS2BNS3NS4

2 strain






A2KNS4BNS5UT

Cuba115/97,






R3

complete genome


AAW31407
3391
2
Cuba
UTR5CMENS1NS

Dengue virus type






2ANS2BNS3NS4

2 strain






A2KNS4BNS5UT

Cuba13/97,






R3

complete genome


AAW31411
3391
2
Cuba
UTR5CMENS1NS

Dengue virus type






2ANS2BNS3NS4

2 strain






A2KNS4BNS5UT

Cuba165/97,






R3

complete genome


AAW31412
3391
2
Cuba
UTR5CMENS1NS
1997
Dengue virus type






2ANS2BNS3NS4

2 strain






A2KNS4BNS5UT

Cuba205/97,






R3

complete genome


AAW31408
3391
2
Cuba
UTR5CMENS1NS

Dengue virus type






2ANS2BNS3NS4

2 strain






A2KNS4BNS5UT

Cuba58/97,






R3

complete genome


AAW31410
3391
2
Cuba
UTR5CMENS1NS
1997
Dengue virus type






2ANS2BNS3NS4

2 strain






A2KNS4BNS5UT

Cuba89/97,






R3

complete genome


AFJ91714
3392
1
USA
UTR5CMENS1NS
2010, October
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/BOL-KW010,






R3

complete genome


ACA48834
3392
1
USA
UTR5CMENS1NS
1998
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/US/BID-






R3

V1162/1998,








complete genome


ACJ04186
3392
1
USA
UTR5CMENS1NS
1995
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/US/BID-






R3

V1734/1995,








complete genome


ACJ04190
3392
1
USA
UTR5CMENS1NS
1998
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/US/BID-






R3

V1738/1998,








complete genome


ACH99678
3392
1
USA
UTR5CMENS1NS
1998
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/US/BID-






R3

V1739/1998,








complete genome


ACH99679
3392
1
USA
UTR5CMENS1NS
1998
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/US/BID-






R3

V1740/1998,








complete genome


ACJ04191
3392
1
USA
UTR5CMENS1NS
1998
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/US/BID-






R3

V1741/1998,








complete genome


ACJ04192
3392
1
USA
UTR5CMENS1NS
1998
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/US/BID-






R3

V1742/1998,








complete genome


ACH99680
3392
1
USA
UTR5CMENS1NS
1995
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/US/BID-






R3

V1743/1995,








complete genome


ACH99681
3392
1
USA
UTR5CMENS1NS
1995
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/US/BID-






R3

V1744/1995,








complete genome


ACJ04215
3392
1
USA
UTR5CMENS1NS
1998
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/US/BID-






R3

V2093/1998,








complete genome


ACJ04216
3392
1
USA
UTR5CMENS1NS
1995
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/US/BID-






R3

V2094/1995,








complete genome


ACJ04217
3392
1
USA
UTR5CMENS1NS
1994
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/US/BID-






R3

V2095/1994,








complete genome


ACL99012
3392
1
USA
UTR5CMENS1NS
1993
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/US/BID-






R3

V2096/1993,








complete genome


ACL99013
3392
1
USA
UTR5CMENS1NS
1986
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/US/BID-






R3

V2097/1986,








complete genome


ACJ04221
3392
1
USA
UTR5CMENS1NS
1994
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/US/BID-






R3

V2127/1994,








complete genome


ACJ04222
3392
1
USA
UTR5CMENS1NS
1995
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/US/BID-






R3

V2128/1995,








complete genome


ACJ04223
3392
1
USA
UTR5CMENS1NS
1995
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/US/BID-






R3

V2129/1995,








complete genome


ACL99002
3392
1
USA
UTR5CMENS1NS
1995
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/US/BID-






R3

V2130/1995,








complete genome


ACJ04224
3392
1
USA
UTR5CMENS1NS
1996
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/US/BID-






R3

V2131/1996,








complete genome


ACJ04225
3392
1
USA
UTR5CMENS1NS
1993
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/US/BID-






R3

V2132/1993,








complete genome


ACJ04226
3392
1
USA
UTR5CMENS1NS
1993
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/US/BID-






R3

V2133/1993,








complete genome


ACJ04227
3392
1
USA
UTR5CMENS1NS
1993
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/US/BID-






R3

V2134/1993,








complete genome


ACL99003
3392
1
USA
UTR5CMENS1NS
1992
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/US/BID-






R3

V2135/1992,








complete genome


ACJ04228
3392
1
USA
UTR5CMENS1NS
1992
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/US/BID-






R3

V2136/1992,








complete genome


ACJ04229
3392
1
USA
UTR5CMENS1NS
1992
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/US/BID-






R3

V2137/1992,








complete genome


ACK28188
3392
1
USA
UTR5CMENS1NS
1996
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/US/BID-






R3

V2138/1996,








complete genome


ACJ04230
3392
1
USA
UTR5CMENS1NS
1996
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/US/BID-






R3

V2139/1996,








complete genome


ACJ04231
3392
1
USA
UTR5CMENS1NS
1996
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/US/BID-






R3

V2140/1996,








complete genome


ACK28189
3392
1
USA
UTR5CMENS1NS
1987
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/US/BID-






R3

V2142/1987,








complete genome


ACJ04232
3392
1
USA
UTR5CMENS1NS
1987
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/US/BID-






R3

V2143/1987,








complete genome


ACA48858
3392
1
USA
UTR5CMENS1NS
2006
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/US/BID-






R3

V852/2006,








complete genome


ACA48859
3392
1
USA
UTR5CMENS1NS
1998
Dengue virus 1






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

1/US/BID-






R3

V853/1998,








complete genome


ACF49259
3392
1
USA
UTR5CMENS1NS
1944
Dengue virus 1






2ANS2BNS3NS4

isolate






A2KNS4BNS5UT

US/Hawaii/1944,






R3

complete genome


AIU47321
3392
1
USA
UTR5CMENS1NS
1944
Dengue virus 1






2ANS2BNS3NS4

strain Hawaii,






A2KNS4BNS5UT

complete genome






R3


ACA48811
3391
2
USA
UTR5CMENS1NS
2006
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1031/2006,








complete genome


ACA48812
3391
2
USA
UTR5CMENS1NS
1998
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1032/1998,








complete genome


ACA48813
3391
2
USA
UTR5CMENS1NS
1998
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1033/1998,








complete genome


ACA48814
3391
2
USA
UTR5CMENS1NS
1998
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1034/1998,








complete genome


ACA48815
3391
2
USA
UTR5CMENS1NS
2006
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1035/2006,








complete genome


ACA48816
3391
2
USA
UTR5CMENS1NS
2006
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1036/2006,








complete genome


ACA48817
3391
2
USA
UTR5CMENS1NS
1998
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1038/1998,








complete genome


ACA48818
3391
2
USA
UTR5CMENS1NS
2006
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1039/2006,








complete genome


ACA48819
3391
2
USA
UTR5CMENS1NS
2006
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1040/2006,








complete genome


ACA48820
3391
2
USA
UTR5CMENS1NS
2006
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1041/2006,








complete genome


ACA48821
3391
2
USA
UTR5CMENS1NS
1998
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1042/1998,








complete genome


ACA48823
3391
2
USA
UTR5CMENS1NS
2005
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1045/2005,








complete genome


ACA58330
3391
2
USA
UTR5CMENS1NS
2004
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1046/2004,








complete genome


ACA48824
3391
2
USA
UTR5CMENS1NS
1999
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1048/1999,








complete genome


ACA48827
3391
2
USA
UTR5CMENS1NS
1998
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1052/1998,








complete genome


ACA48828
3391
2
USA
UTR5CMENS1NS
1996
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1054/1996,








complete genome


ACB29511
3391
2
USA
UTR5CMENS1NS
1996
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1055/1996,








complete genome


ACA58331
3391
2
USA
UTR5CMENS1NS
1994
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1057/1994,








complete genome


ACA58332
3391
2
USA
UTR5CMENS1NS
1994
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1058/1994,








complete genome


ACA48829
3391
2
USA
UTR5CMENS1NS
1989
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1060/1989,








complete genome


ACD13309
3391
2
USA
UTR5CMENS1NS
1989
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1061/1989,








complete genome


ACA48832
3391
2
USA
UTR5CMENS1NS
1998
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1084/1998,








complete genome


ACA58337
3391
2
USA
UTR5CMENS1NS
1994
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1085/1994,








complete genome


ACA58338
3391
2
USA
UTR5CMENS1NS
1991
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1087/1991,








complete genome


ACB29512
3391
2
USA
UTR5CMENS1NS
1986
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1163/1986,








complete genome


ACA48835
3391
2
USA
UTR5CMENS1NS
1986
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1164/1986,








complete genome


ACA48836
3391
2
USA
UTR5CMENS1NS
1987
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1165/1987,








complete genome


ACA48837
3391
2
USA
UTR5CMENS1NS
1987
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1166/1987,








complete genome


ACA48838
3391
2
USA
UTR5CMENS1NS
1987
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1167/1987,








complete genome


ACA48839
3391
2
USA
UTR5CMENS1NS
1987
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1168/1987,








complete genome


ACA48840
3391
2
USA
UTR5CMENS1NS
1987
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1169/1987,








complete genome


ACA48841
3391
2
USA
UTR5CMENS1NS
1987
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1170/1987,








complete genome


ACA48842
3391
2
USA
UTR5CMENS1NS
1987
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1171/1987,








complete genome


ACA48843
3391
2
USA
UTR5CMENS1NS
1987
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1172/1987,








complete genome


ACA48844
3391
2
USA
UTR5CMENS1NS
1987
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1174/1987,








complete genome


ACA48845
3391
2
USA
UTR5CMENS1NS
1988
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1175/1988,








complete genome


ACA48846
3391
2
USA
UTR5CMENS1NS
1988
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1176/1988,








complete genome


ACA48847
3391
2
USA
UTR5CMENS1NS
1989
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1177/1989,








complete genome


ACA48848
3391
2
USA
UTR5CMENS1NS
1989
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1178/1989,








complete genome


ACA48849
3391
2
USA
UTR5CMENS1NS
1989
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1179/1989,








complete genome


ACA48850
3391
2
USA
UTR5CMENS1NS
1989
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1180/1989,








complete genome


ACA48851
3391
2
USA
UTR5CMENS1NS
1989
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1181/1989,








complete genome


ACA48852
3391
2
USA
UTR5CMENS1NS
1989
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1182/1989,








complete genome


ACA48853
3391
2
USA
UTR5CMENS1NS
1990
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1183/1990,








complete genome


ACA48854
3391
2
USA
UTR5CMENS1NS
1990
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1188/1990,








complete genome


ACA48855
3391
2
USA
UTR5CMENS1NS
1990
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1189/1990,








complete genome


ACB29513
3391
2
USA
UTR5CMENS1NS
1993
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1356/1993,








complete genome


ACA48856
3391
2
USA
UTR5CMENS1NS
1993
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1360/1993,








complete genome


ACB29514
3391
2
USA
UTR5CMENS1NS
1995
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1367/1995,








complete genome


ACB29515
3391
2
USA
UTR5CMENS1NS
1995
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1368/1995,








complete genome


ACD13310
3391
2
USA
UTR5CMENS1NS
1995
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1372/1995,








complete genome


ACB29516
3391
2
USA
UTR5CMENS1NS
1995
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1373/1995,








complete genome


ACB29517
3391
2
USA
UTR5CMENS1NS
1996
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1376/1996,








complete genome


ACB87126
3391
2
USA
UTR5CMENS1NS
1996
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1378/1996,








complete genome


ACB29518
3391
2
USA
UTR5CMENS1NS
1996
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1383/1996,








complete genome


ACB87127
3391
2
USA
UTR5CMENS1NS
1996
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1385/1996,








complete genome


ACD13396
3391
2
USA
UTR5CMENS1NS
1998
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1387/1998,








complete genome


ACD13311
3391
2
USA
UTR5CMENS1NS
1998
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1388/1998,








complete genome


ACB29519
3391
2
USA
UTR5CMENS1NS
1998
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1392/1998,








complete genome


ACB29520
3391
2
USA
UTR5CMENS1NS
1998
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1393/1998,








complete genome


ACB87128
3391
2
USA
UTR5CMENS1NS
1998
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1394/1998,








complete genome


ACB29521
3391
2
USA
UTR5CMENS1NS
1997
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1395/1997,








complete genome


ACB29522
3391
2
USA
UTR5CMENS1NS
1997
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1396/1997,








complete genome


ACB29523
3391
2
USA
UTR5CMENS1NS
1997
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1397/1997,








complete genome


ACB29524
3391
2
USA
UTR5CMENS1NS
1997
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1398/1997,








complete genome


ACB29525
3391
2
USA
UTR5CMENS1NS
1997
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1399/1997,








complete genome


ACB29526
3391
2
USA
UTR5CMENS1NS
1997
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1401/1997,








complete genome


ACB29527
3391
2
USA
UTR5CMENS1NS
1997
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1404/1997,








complete genome


ACB29528
3391
2
USA
UTR5CMENS1NS
1997
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1409/1997,








complete genome


ACB87129
3391
2
USA
UTR5CMENS1NS
2007
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1410/2007,








complete genome


ACB87130
3391
2
USA
UTR5CMENS1NS
2007
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1411/2007,








complete genome


ACB87131
3391
2
USA
UTR5CMENS1NS
2007
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1412/2007,








complete genome


ACB87132
3391
2
USA
UTR5CMENS1NS
2007
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1413/2007,








complete genome


ACD13348
3391
2
USA
UTR5CMENS1NS
1996
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1424/1996,








complete genome


ACD13349
3391
2
USA
UTR5CMENS1NS
1999
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1425/1999,








complete genome


ACD13350
3391
2
USA
UTR5CMENS1NS
1999
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1426/1999,








complete genome


ACD13351
3391
2
USA
UTR5CMENS1NS
1999
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1427/1999,








complete genome


ACD13352
3391
2
USA
UTR5CMENS1NS
1999
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1428/1999,








complete genome


ACD13353
3391
2
USA
UTR5CMENS1NS
2004
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/B ID-






R3

V1431/2004,








complete genome


ACD13354
3391
2
USA
UTR5CMENS1NS
2004
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1432/2004,








complete genome


ACD13397
3391
2
USA
UTR5CMENS1NS
2004
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1434/2004,








complete genome


ACD13398
3391
2
USA
UTR5CMENS1NS
2004
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1435/2004,








complete genome


ACD13399
3391
2
USA
UTR5CMENS1NS
2004
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1436/2004,








complete genome


ACD13400
3391
2
USA
UTR5CMENS1NS
2005
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1439/2005,








complete genome


ACE63530
3391
2
USA
UTR5CMENS1NS
2005
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1440/2005,








complete genome


ACD13401
3391
2
USA
UTR5CMENS1NS
2005
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1441/2005,








complete genome


ACE63543
3391
2
USA
UTR5CMENS1NS
2005
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1442/2005,








complete genome


ACD13406
3391
2
USA
UTR5CMENS1NS
2000
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1461/2000,








complete genome


ACD13407
3391
2
USA
UTR5CMENS1NS
2000
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1462/2000,








complete genome


ACD13408
3391
2
USA
UTR5CMENS1NS
2000
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1463/2000,








complete genome


ACD13409
3391
2
USA
UTR5CMENS1NS
2000
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1464/2000,








complete genome


ACD13411
3391
2
USA
UTR5CMENS1NS
2001
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1467/2001,








complete genome


ACD13412
3391
2
USA
UTR5CMENS1NS
2001
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1468/2001,








complete genome


ACD13413
3391
2
USA
UTR5CMENS1NS
2001
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1469/2001,








complete genome


ACD13414
3391
2
USA
UTR5CMENS1NS
2001
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1470/2001,








complete genome


ACD13415
3391
2
USA
UTR5CMENS1NS
2001
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1471/2001,








complete genome


ACD13416
3391
2
USA
UTR5CMENS1NS
2001
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1472/2001,








complete genome


ACD13395
3391
2
USA
UTR5CMENS1NS
2003
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1482/2003,








complete genome


ACD13419
3391
2
USA
UTR5CMENS1NS
2003
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1483/2003,








complete genome


ACD13420
3391
2
USA
UTR5CMENS1NS
2003
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1484/2003,








complete genome


ACD13421
3391
2
USA
UTR5CMENS1NS
2003
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1486/2003,








complete genome


ACD13422
3391
2
USA
UTR5CMENS1NS
2003
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1487/2003,








complete genome


ACD13424
3391
2
USA
UTR5CMENS1NS
2003
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1492/2003,








complete genome


ACD13425
3391
2
USA
UTR5CMENS1NS
2003
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1493/2003,








complete genome


ACD13426
3391
2
USA
UTR5CMENS1NS
2004
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1494/2004,








complete genome


ACD13427
3391
2
USA
UTR5CMENS1NS
2004
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1495/2004,








complete genome


ACD13428
3391
2
USA
UTR5CMENS1NS
2004
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1496/2004,








complete genome


ACD13429
3391
2
USA
UTR5CMENS1NS
2005
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V1497/2005,








complete genome


AEH59341
3390
2
USA
CMENS1NS2ANS
2009
Dengue virus 2






2BNS3NS4A2KN

isolate DENV-






S4BNS5

2/US/BID-








V4824/2009,








complete genome


AEH59346
3391
2
USA
UTR5CMENS1NS
2006
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5

2/US/BID-








V5411/2006,








complete genome


AEH59345
3391
2
USA
UTR5CMENS1NS
2007
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5

2/US/BID-








V5412/2007,








complete genome


ACA58343
3391
2
USA
UTR5CMENS1NS
2006
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V585/2006,








complete genome


ACA48986
3391
2
USA
UTR5CMENS1NS
2006
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V587/2006,








complete genome


ACA48987
3391
2
USA
UTR5CMENS1NS
2006
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V588/2006,








complete genome


ACA48988
3391
2
USA
UTR5CMENS1NS
2006
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V589/2006,








complete genome


ACA48989
3391
2
USA
UTR5CMENS1NS
2002
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V591/2002,








complete genome


ACA48990
3391
2
USA
UTR5CMENS1NS
2002
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V592/2002,








complete genome


ACA48991
3391
2
USA
UTR5CMENS1NS
2005
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V593/2005,








complete genome


ACA48992
3391
2
USA
UTR5CMENS1NS
2006
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V594/2006,








complete genome


ACA48993
3391
2
USA
UTR5CMENS1NS
2006
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V595/2006,








complete genome


ACA48994
3391
2
USA
UTR5CMENS1NS
1998
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V596/1998,








complete genome


ACA48995
3391
2
USA
UTR5CMENS1NS
1998
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V597/1998,








complete genome


ACA48996
3391
2
USA
UTR5CMENS1NS
1999
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V598/1999,








complete genome


ACA48997
3391
2
USA
UTR5CMENS1NS
1999
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V599/1999,








complete genome


ACA48998
3391
2
USA
UTR5CMENS1NS
2005
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V600/2005,








complete genome


ACA48999
3391
2
USA
UTR5CMENS1NS
1998
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V675/1998,








complete genome


ACA49000
3391
2
USA
UTR5CMENS1NS
1998
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V676/1998,








complete genome


ACA49001
3391
2
USA
UTR5CMENS1NS
1998
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V677/1998,








complete genome


ACA49002
3391
2
USA
UTR5CMENS1NS
1998
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V678/1998,








complete genome


ACA49003
3391
2
USA
UTR5CMENS1NS
1994
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V679/1994,








complete genome


ACA49004
3391
2
USA
UTR5CMENS1NS
1994
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V680/1994,








complete genome


ACA49005
3391
2
USA
UTR5CMENS1NS
1998
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V681/1998,








complete genome


ACA49006
3391
2
USA
UTR5CMENS1NS
1994
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V682/1994,








complete genome


ACA49007
3391
2
USA
UTR5CMENS1NS
1994
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V683/1994,








complete genome


ACA49008
3391
2
USA
UTR5CMENS1NS
1994
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V684/1994,








complete genome


ACA49009
3391
2
USA
UTR5CMENS1NS
1988
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V685/1988,








complete genome


ACA49010
3391
2
USA
UTR5CMENS1NS
1989
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V686/1989,








complete genome


ACA49011
3391
2
USA
UTR5CMENS1NS
1989
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V687/1989,








complete genome


ACA49012
3391
2
USA
UTR5CMENS1NS
1989
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V688/1989,








complete genome


ACA49013
3391
2
USA
UTR5CMENS1NS
1989
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V689/1989,








complete genome


ACA49014
3391
2
USA
UTR5CMENS1NS
1988
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V690/1988,








complete genome


ACA48857
3391
2
USA
UTR5CMENS1NS
1990
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V851/1990,








complete genome


ACA48860
3391
2
USA
UTR5CMENS1NS
2001
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V854/2001,








complete genome


ACA48861
3391
2
USA
UTR5CMENS1NS
1992
Dengue virus 2






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

2/US/BID-






R3

V855/1992,








complete genome


ACA48822
3390
3
USA
UTR5CMENS1NS
2006
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1043/2006,








complete genome


ACA58329
3390
3
USA
UTR5CMENS1NS
2006
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1044/2006,








complete genome


ACA48825
3390
3
USA
UTR5CMENS1NS
1998
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1049/1998,








complete genome


ACA48826
3390
3
USA
UTR5CMENS1NS
1998
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1050/1998,








complete genome


ACA48830
3390
3
USA
UTR5CMENS1NS
1998
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1075/1998,








complete genome


ACA58333
3390
3
USA
UTR5CMENS1NS
1999
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1076/1999,








complete genome


ACA58334
3390
3
USA
UTR5CMENS1NS
2000
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1077/2000,








complete genome


ACA48831
3390
3
USA
UTR5CMENS1NS
2003
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1078/2003,








complete genome


ACA58335
3390
3
USA
UTR5CMENS1NS
2006
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1079/2006,








complete genome


ACA58336
3390
3
USA
UTR5CMENS1NS
2006
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1080/2006,








complete genome


ACA48833
3390
3
USA
UTR5CMENS1NS
1998
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1088/1998,








complete genome


ACA58339
3390
3
USA
UTR5CMENS1NS
2003
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1089/2003,








complete genome


ACA58340
3390
3
USA
UTR5CMENS1NS
1998
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1090/1998,








complete genome


ACA58341
3390
3
USA
UTR5CMENS1NS
2004
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1091/2004,








complete genome


ACA58342
3390
3
USA
UTR5CMENS1NS
2004
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1092/2004,








complete genome


ACB87133
3390
3
USA
UTR5CMENS1NS
2007
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1415/2007,








complete genome


ACB87134
3390
3
USA
UTR5CMENS1NS
2007
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1416/2007,








complete genome


ACB87135
3390
3
USA
UTR5CMENS1NS
2007
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1417/2007,








complete genome


ACD13402
3390
3
USA
UTR5CMENS1NS
1998
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1447/1998,








complete genome


ACE63531
3390
3
USA
UTR5CMENS1NS
1998
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1448/1998,








complete genome


ACE63532
3390
3
USA
UTR5CMENS1NS
1998
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1449/1998,








complete genome


ACH99660
3390
3
USA
UTR5CMENS1NS
1998
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1450/1998,








complete genome


ACE63544
3390
3
USA
UTR5CMENS1NS
1999
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1451/1999,








complete genome


ACE63545
3390
3
USA
UTR5CMENS1NS
1999
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1452/1999,








complete genome


ACE63533
3390
3
USA
UTR5CMENS1NS
1999
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1453/1999,








complete genome


ACE63534
3390
3
USA
UTR5CMENS1NS
1999
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1454/1999,








complete genome


ACD13403
3390
3
USA
UTR5CMENS1NS
1999
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1455/1999,








complete genome


ACD13405
3390
3
USA
UTR5CMENS1NS
2000
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1460/2000,








complete genome


ACE63528
3390
3
USA
UTR5CMENS1NS
2000
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1465/2000,








complete genome


ACD13410
3390
3
USA
UTR5CMENS1NS
1999
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1466/1999,








complete genome


ACD13417
3391
3
USA
UTR5CMENS1NS
2002
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1473/2002,








complete genome


ACD13418
3390
3
USA
UTR5CMENS1NS
2002
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1475/2002,








complete genome


ACD13392
3390
3
USA
UTR5CMENS1NS
2002
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1476/2002,








complete genome


ACH61690
3390
3
USA
UTR5CMENS1NS
2002
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1477/2002,








complete genome


ACJ04182
3390
3
USA
UTR5CMENS1NS
2002
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1478/2002,








complete genome


ACD13393
3390
3
USA
UTR5CMENS1NS
2003
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1480/2003,








complete genome


ACD13394
3390
3
USA
UTR5CMENS1NS
2003
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1481/2003,








complete genome


ACE63529
3390
3
USA
UTR5CMENS1NS
2003
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1490/2003,








complete genome


ACD13423
3390
3
USA
UTR5CMENS1NS
2003
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1491/2003,








complete genome


ACH99651
3390
3
USA
UTR5CMENS1NS
2004
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1604/2004,








complete genome


ACO06143
3390
3
USA
UTR5CMENS1NS
2004
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1605/2004,








complete genome


ACH61715
3390
3
USA
UTR5CMENS1NS
2004
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1606/2004,








complete genome


ACH61716
3390
3
USA
UTR5CMENS1NS
2004
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1607/2004,








complete genome


ACH61717
3390
3
USA
UTR5CMENS1NS
2004
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1608/2004,








complete genome


ACH61718
3390
3
USA
UTR5CMENS1NS
2004
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1609/2004,








complete genome


ACH61719
3390
3
USA
UTR5CMENS1NS
2004
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1610/2004,








complete genome


ACO06144
3390
3
USA
UTR5CMENS1NS
2004
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1611/2004,








complete genome


ACH61720
3390
3
USA
UTR5CMENS1NS
2004
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1612/2004,








complete genome


ACH61721
3390
3
USA
UTR5CMENS1NS
2004
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1613/2004,








complete genome


ACH99652
3390
3
USA
UTR5CMENS1NS
2004
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1614/2004,








complete genome


ACJ04178
3390
3
USA
UTR5CMENS1NS
2004
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1615/2004,








complete genome


ACH99653
3390
3
USA
UTR5CMENS1NS
2004
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1616/2004,








complete genome


ACH99654
3390
3
USA
UTR5CMENS1NS
2005
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1617/2005,








complete genome


ACH99655
3390
3
USA
UTR5CMENS1NS
2005
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1618/2005,








complete genome


ACH99656
3390
3
USA
UTR5CMENS1NS
2005
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1619/2005,








complete genome


ACH99657
3390
3
USA
UTR5CMENS1NS
2005
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1620/2005,








complete genome


ACH99658
3390
3
USA
UTR5CMENS1NS
2005
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1621/2005,








complete genome


ACH99665
3390
3
USA
UTR5CMENS1NS
2005
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1622/2005,








complete genome


ACH99666
3390
3
USA
UTR5CMENS1NS
2005
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1623/2005,








complete genome


ACH99667
3390
3
USA
UTR5CMENS1NS
2005
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1624/2005,








complete genome


ACH99668
3390
3
USA
UTR5CMENS1NS
2005
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1625/2005,








complete genome


ACH99669
3390
3
USA
UTR5CMENS1NS
2005
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1626/2005,








complete genome


ACJ04183
3390
3
USA
UTR5CMENS1NS
2003
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1729/2003,








complete genome


ACJ04184
3390
3
USA
UTR5CMENS1NS
2003
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1730/2003,








complete genome


ACH99676
3390
3
USA
UTR5CMENS1NS
2003
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1731/2003,








complete genome


ACJ04185
3390
3
USA
UTR5CMENS1NS
2002
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1732/2002,








complete genome


ACH99677
3390
3
USA
UTR5CMENS1NS
1999
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1733/1999,








complete genome


ACJ04187
3390
3
USA
UTR5CMENS1NS
1999
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1735/1999,








complete genome


ACJ04188
3390
3
USA
UTR5CMENS1NS
1999
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1736/1999,








complete genome


ACJ04189
3390
3
USA
UTR5CMENS1NS
1999
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V1737/1999,








complete genome


ACL98985
3390
3
USA
UTR5CMENS1NS
1999
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V2098/1999,








complete genome


ACL98986
3390
3
USA
UTR5CMENS1NS
1998
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V2099/1998,








complete genome


ACL99014
3390
3
USA
UTR5CMENS1NS
2000
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V2100/2000,








complete genome


ACL98987
3390
3
USA
UTR5CMENS1NS
2000
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V2103/2000,








complete genome


ACJ04218
3390
3
USA
UTR5CMENS1NS
2000
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V2104/2000,








complete genome


ACJ04219
3390
3
USA
UTR5CMENS1NS
2000
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V2105/2000,








complete genome


ACL98988
3390
3
USA
UTR5CMENS1NS
2000
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V2106/2000,








complete genome


ACL98989
3390
3
USA
UTR5CMENS1NS
2000
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V2107/2000,








complete genome


ACL98990
3390
3
USA
UTR5CMENS1NS
2000
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V2108/2000,








complete genome


ACL98991
3390
3
USA
UTR5CMENS1NS
2000
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V2110/2000,








complete genome


ACL98992
3390
3
USA
UTR5CMENS1NS
2000
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V2111/2000,








complete genome


ACL98993
3390
3
USA
UTR5CMENS1NS
2000
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V2112/2000,








complete genome


ACL98994
3390
3
USA
UTR5CMENS1NS
2000
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V2113/2000,








complete genome


ACL98995
3390
3
USA
UTR5CMENS1NS
2001
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V2114/2001,








complete genome


ACL98996
3390
3
USA
UTR5CMENS1NS
2001
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V2115/2001,








complete genome


ACL98997
3390
3
USA
UTR5CMENS1NS
2001
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V2117/2001,








complete genome


ACL98998
3390
3
USA
UTR5CMENS1NS
2001
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V2118/2001,








complete genome


ACL98999
3390
3
USA
UTR5CMENS1NS
2002
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V2119/2002,








complete genome


ACJ04220
3390
3
USA
UTR5CMENS1NS
2002
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V2120/2002,








complete genome


ACL99000
3390
3
USA
UTR5CMENS1NS
2002
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V2122/2002,








complete genome


ACK28187
3390
3
USA
UTR5CMENS1NS
2002
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V2123/2002,








complete genome


ACL99001
3390
3
USA
UTR5CMENS1NS
2006
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V2126/2006,








complete genome


ACA48862
3390
3
USA
UTR5CMENS1NS
2003
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V858/2003,








complete genome


ACA48863
3390
3
USA
UTR5CMENS1NS
1998
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/US/BID-






R3

V859/1998,








complete genome


AFZ40124
3390
3
USA
UTR5CMENS1NS
1963
Dengue virus 3






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

3/USA/633798/






R3

1963,








complete genome


ACH61714
3387
4
USA
UTR5CMENS1NS
1998
Dengue virus 4






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

4/US/BID-






R3

V1082/1998,








complete genome


ACH61687
3387
4
USA
UTR5CMENS1NS
1986
Dengue virus 4






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

4/US/BID-






R3

V1083/1986,








complete genome


ACH61688
3387
4
USA
UTR5CMENS1NS
1998
Dengue virus 4






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

4/US/BID-






R3

V1093/1998,








complete genome


ACH61689
3387
4
USA
UTR5CMENS1NS
1998
Dengue virus 4






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

4/US/BID-






R3

V1094/1998,








complete genome


ACS32012
3387
4
USA
UTR5CMENS1NS
1994
Dengue virus 4






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

4/US/BID-






R3

V2429/1994,








complete genome


ACS32013
3387
4
USA
UTR5CMENS1NS
1994
Dengue virus 4






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

4/US/BID-






R3

V2430/1994,








complete genome


ACS32014
3387
4
USA
UTR5CMENS1NS
1995
Dengue virus 4






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

4/US/BID-






R3

V2431/1995,








complete genome


ACS32037
3387
4
USA
UTR5CMENS1NS
1995
Dengue virus 4






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

4/US/BID-






R3

V2432/1995,








complete genome


ACO06140
3387
4
USA
UTR5CMENS1NS
1995
Dengue virus 4






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

4/US/BID-






R3

V2433/1995,








complete genome


ACO06145
3387
4
USA
UTR5CMENS1NS
1995
Dengue virus 4






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

4/US/BID-






R3

V2434/1995,








complete genome


ACS32015
3387
4
USA
UTR5CMENS1NS
1996
Dengue virus 4






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

4/US/BID-






R3

V2435/1996,








complete genome


ACS32016
3387
4
USA
UTR5CMENS1NS
1996
Dengue virus 4






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

4/US/BID-






R3

V2436/1996,








complete genome


ACS32017
3387
4
USA
UTR5CMENS1NS
1996
Dengue virus 4






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

4/US/BID-






R3

V2437/1996,








complete genome


ACS32018
3387
4
USA
UTR5CMENS1NS
1996
Dengue virus 4






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

4/US/BID-






R3

V2438/1996,








complete genome


ACS32019
3387
4
USA
UTR5CMENS1NS
1996
Dengue virus 4






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

4/US/BID-






R3

V2439/1996,








complete genome


ACO06146
3387
4
USA
UTR5CMENS1NS
1996
Dengue virus 4






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

4/US/BID-






R3

V2440/1996,








complete genome


ACQ44402
3387
4
USA
UTR5CMENS1NS
1998
Dengue virus 4






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

4/US/BID-






R3

V2441/1998,








complete genome


ACQ44403
3387
4
USA
UTR5CMENS1NS
1998
Dengue virus 4






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

4/US/BID-






R3

V2442/1998,








complete genome


ACO06147
3387
4
USA
UTR5CMENS1NS
1998
Dengue virus 4






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

4/US/BID-






R3

V2443/1998,








complete genome


ACQ44404
3387
4
USA
UTR5CMENS1NS
1998
Dengue virus 4






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

4/US/BID-






R3

V2444/1998,








complete genome


ACQ44405
3387
4
USA
UTR5CMENS1NS
1998
Dengue virus 4






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

4/US/BID-






R3

V2445/1998,








complete genome


ACQ44406
3387
4
USA
UTR5CMENS1NS
1999
Dengue virus 4






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

4/US/BID-






R3

V2446/1999,








complete genome


ACQ44407
3387
4
USA
UTR5CMENS1NS
1999
Dengue virus 4






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

4/US/BID-






R3

V2447/1999,








complete genome


ACQ44408
3387
4
USA
UTR5CMENS1NS
1999
Dengue virus 4






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

4/US/BID-






R3

V2448/1999,








complete genome


ACJ04171
3387
4
USA
UTR5CMENS1NS
1994
Dengue virus 4






2ANS2BNS3NS4

isolate DENV-






A2KNS4BNS5UT

4/US/BID-






R3

V860/1994,








complete genome
















TABLE 36







DENV POLYPEPTIDE SEQUENCES









SEQ ID




NO:
Accession No.
Sequence





171
gi|158348409|ref|
MNNQRKKTGRPSFNMLKRARNRVSTVSQLAKRFSKGLL



NP_722466.2|
SGQGPMKLVMAFIAFLRFLAIPPTAGILARWGSFKKNGAI



capsid protein
KVLRGFKKEISNMLNIMNRRKR



[Dengue virus 1]





172
gi|164654862|ref|
MNNQRKKTGKPSINMLKRVRNRVSTGSQLAKRFSKGLL



YP_001531164.2|
NGQGPMKLVMAFIAFLRFLAIPPTAGVLARWGTFKKSGA



Capsid protein
IKVLKGFKKEISNMLSIINQRKK



[Dengue virus 3]





173
gi|159024809|ref|
MNNQRKKAKNTPFNMLKRERNRVSTVQQLTKRFSLGM



NP_739591.2|
LQGRGPLKLFMALVAFLRFLTIPPTAGILKRWGTIKKSKA



Capsid protein
INVLRGFRKEIGRMLNILNRRRR



[Dengue virus 2]





174
gi|158348408|ref|
MNNQRKKTGRPSFNMLKRARNRVSTVSQLAKRFSKGLL



NP_722457.2|
SGQGPMKLVMAFIAFLRFLAIPPTAGILARWGSFKKNGAI



anchored capsid
KVLRGFKKEISNMLNIMNRRKRSVTMLLMLLPTALA



protein [Dengue



virus 1]





175
gi|164654854|ref|
MNNQRKKTGKPSINMLKRVRNRVSTGSQLAKRFSKGLL



YP_001531165.2|
NGQGPMKLVMAFIAFLRFLAIPPTAGVLARWGTFKKSGA



Anchored capsid
IKVLKGFKKEISNMLSIINQRKKTSLCLMMILPAALA



protein [Dengue



virus 3]





176
gi|159024808|ref|
MNNQRKKAKNTPFNMLKRERNRVSTVQQLTKRFSLGM



NP_739581.2|
LQGRGPLKLFMALVAFLRFLTIPPTAGILKRWGTIKKSKA



Anchored capsid
INVLRGFRKEIGRMLNILNRRRRSAGMIIMLIPTVMA



protein [Dengue



virus 2]





177
gi|73671168|ref|
MNQRKKVVRPPFNMLKRERNRVSTPQGLVKRFSTGLFS



NP_740314.1|
GKGPLRMVLAFITFLRVLSIPPTAGILKRWGQLKKNKAIK



anchored capsid
ILIGFRKEIGRMLNILNGRKRSTITLLCLIPTVMA



(anchC) protein



[Dengue virus 4]





178
gi|73671167|ref|
MNQRKKVVRPPFNMLKRERNRVSTPQGLVKRFSTGLFS



NP_740313.1|
GKGPLRMVLAFITFLRVLSIPPTAGILKRWGQLKKNKAIK



virion capsid
ILIGFRKEIGRMLNILNGRKR



(virC) protein



[Dengue virus 4]





Envelope
gi|164654853|ref|
MRCVGVGNRDFVEGLSGATWVDVVLEHGGCVTTMAKN


Protein
YP_001531168.2|
KPTLDIELQKTEATQLATLRKLCIEGKITNITTDSRCPTQG


179
Envelope
EAVLPEEQDQNYVCKHTYVDRGWGNGCGLFGKGSLVT



protein [Dengue
CAKFQCLEPIEGKVVQYENLKYTVIITVHTGDQHQVGNE



virus 3]
TQGVTAEITPQASTTEAILPEYGTLGLECSPRTGLDFNEMI




LLTMKNKAWMVHRQWFFDLPLPWASGATTETPTWNRK




ELLVTFKNAHAKKQEVVVLGSQEGAMHTALTGATEIQN




SGGTSIFAGHLKCRLKMDKLELKGMSYAMCTNTFVLKK




EVSETQHGTILIKVEYKGEDAPCKIPFSTEDGQGKAHNGR




LITANPVVTKKEEPVNIEAEPPFGESNIVIGIGDNALKINW




YKKGSSIGKMFEATERGARRMAILGDTAWDFGSVGGVL




NSLGKMVHQIFGSAYTALFSGVSWVMKIGIGVLLTWIGL




NSKNTSMSFSCIAIGIITLYLGAVVQA





180
gi|158828123|ref|
MRCVGIGNRDFVEGLSGATWVDVVLEHGSCVTTMAKD



NP_722460.2|
KPTLDIELLKTEVTNPAVLRKLCIEAKISNTTTDSRCPTQG



envelope protein
EATLVEEQDTNFVCRRTFVDRGWGNGCGLFGKGSLITCA



[Dengue virus 1]
KFKCVTKLEGKIVQYENLKYSVIVTVHTGDQHQVGNETT




EHGTTATITPQAPTSEIQLTDYGALTLDCSPRTGLDFNEM




VLLTMKKKSWLVHKQWFLDLPLPWTSGASTSQETWNR




QDLLVTFKTAHAKKQEVVVLGSQEGAMHTALTGATEIQ




TSGTTTIFAGHLKCRLKMDKLILKGMSYVMCTGSFKLEK




EVAETQHGTVLVQVKYEGTDAPCKIPFSSQDEKGVTQNG




RLITANPIVTDKEKPVNIEAEPPFGESYIVVGAGEKALKLS




WFKKGSSIGKMFEATARGARRMAILGDTAWDFGSIGGV




FTSVGKLIHQIFGTAYGVLFSGVSWTMKIGIGILLTWLGL




NSRSTSLSMTCIAVGMVTLYLGVMVQA





181
gi|159024812|ref|
MRCIGMSNRDFVEGVSGGSWVDIVLEHGSCVTTMAKNK



NP_739583.2|
PTLDFELIKTEAKQPATLRKYCIEAKLTNTTTESRCPTQGE



Envelope protein
PSLNEEQDKRFVCKHSMVDRGWGNGCGLFGKGGIVTCA



[Dengue virus 2]
MFRCKKNMEGKVVQPENLEYTIVITPHSGEEHAVGNDTG




KHGKEIKITPQSSITEAELTGYGTVTMECSPRTGLDFNEM




VLLQMENKAWLVHRQWFLDLPLPWLPGADTQGSNWIQ




KETLVTFKNPHAKKQDVVVLGSQEGAMHTALTGATEIQ




MSSGNLLFTGHLKCRLRMDKLQLKGMSYSMCTGKFKV




VKEIAETQHGTIVIRVQYEGDGSPCKIPFEIMDLEKRHVL




GRLITVNPIVTEKDSPVNIEAEPPFGDSYIIIGVEPGQLKLN




WFKKGSSIGQMFETTMRGAKRMAILGDTAWDFGSLGGV




FTSIGKALHQVFGAIYGAAFSGVSWTMKILIGVIITWIGM




NSRSTSLSVTLVLVGIVTLYLGVMVQA





182
tr|Q9IZI6|Q9IZI6_9FLAV
MRCVGVGNRDFVEGVSGGAWVDLVLEHGGCVTTMAQ



Envelope protein
GKPTLDFELTKTTAKEVALLRTYCIEASISNITTATRCPTQ



(Fragment)
GEPYLKEEQDQQYICRRDVVDRGWGNGCGLFGKGGVV



OS = Dengue virus
TCAKFSCSGKITGNLVRIENLEYTVVVTVHNGDTHAVGN



4 GN = E PE = 4
DTSNHGVTAMITPRSPSVEVKLPDYGELTLDCEPRSGIDF



SV = 1
NEMILMKMKKKTWLVHKQWFLDLPLPWTAGADTSEVH




WNYKERMVTFKVPHAKRQDVTVLGSQEGAMHSALAGA




TEVDSGDGNHMFAGHLKCEVRMEKLRIKGMSYTMCSG




KFSIDKEMAETQHGTTVVKVKYEGAGAPCKVPIEIRDVN




KEKVVGRIISSTPLAENTNSVTNIELEPPFGDSYIVIGVGNS




ALTLHWFRKGSSIGKMFESTYRGAKRMAILGETAWDFGS




VGGLFTSLGKAVHQVFGSVYTTMFGGVSWMIRILIGFLV




LWIGTNSRNTSMAMTCIAVGGITLFLGF





183
gi|73671170|ref|
SVALTPHSGMGLETRAETWMSSEGAWKHAQRVESWILR



NP_740316.1|
NPGFALLAGFMAYMIGQTGIQRTVFFVLMMLVAPSYG



membrane (M)



protein [Dengue



virus 4]





184
gi|158828127|ref|
SVALAPHVGMGLDTRTQTWMSAEGAWRQVEKVETWA



YP_001531167.1|
LRHPGFTILALFLAHYIGTSLTQKVVIFILLMLVTPSMT



Membrane



glycoprotein



[Dengue virus 3]





185
gi|158828122|ref|
SVALAPHVGLGLETRTETWMSSEGAWKQIQKVETWALR



NP_722459.2|
HPGFTVIALFLAHAIGTSITQKGIIFILLMLVTPSMA



membrane



glycoprotein



[Dengue virus 1]





186
gi|159024811|ref|
SVALVPHVGMGLETRTETWMSSEGAWKHVQRIETWILR



NP_739592.2|
HPGFTMMAAILAYTIGTTHFQRALIFILLTAVTPSMT



Membrane



glycoprotein



[Dengue virus 2]









Example 36. OVA Multitope In Vitro Screening Assay Kinetic Analysis

As depicted in FIG. 35, antigen surface presentation is an inefficient process in the antigen presenting cells (APC). Peptides generated from proteasome degradation of the antigens are presented with low efficiency (only 1 peptide of 10000 degraded molecules is actually presented). Thus, priming of CD8 T cells with APCs provides insufficient densities of surface peptide/MHC I complexes, resulting in weak responders exhibiting impaired cytokine secretion and decreased memory pool. To improve DENV mRNA vaccines encoding concatemeric DENV antigens, an in vitro assay was designed to test the linkers used to connect peptide repeats, the number of peptide repeats, and sequences known to enhance antigen presentation.


mRNA constructs encoding one or more OVA epitopes were configured with different linker sequences, protease cleavage sites, and antigen presentation enhancer sequences. Their respective sequences were as shown in Table 37. To perform the assay, 200 ng of each MC3-formulated mRNA construct was transfected into JAWSII cells in a 24-well plate. Cells were isolated at 6, 24, and 48 hours post transfection and stained with fluorescently-labeled Anti-Mouse OVA257-264 (SIINFEKL) peptide bound to H-2Kb. Staining was analyzed on a LSRFortessa flow cytometer. Samples were run in triplicate. The Mean Fluorescent Intensity (MFI) for each mRNA construct was measured and shown in FIG. 36. Constructs 2, 3, 7, 9, and 10 showed enhanced surface presentation of the OVA epitope, indicating that the configurations of these constructs may be used for DENV mRNA vaccine. Construct 5 comprises a single OVA peptide and a KDEL sequence that is known to prevent the secretion of a protein. Construct 5 showed little surface antigen presentation because the secretion of the peptide was inhibited.


Example 37. Antibody Binding to DENV-1, 2, 3, and 4 prME Epitopes

DENV mRNA vaccines encoding concatemeric antigen epitopes were tested for binding to antibodies known to recognize one or more DENV serotypes. To test antibody binding to the epitopes, 200 ng of DENV mRNA vaccines encoding different Dengue prME epitopes were transfected into HeLa cells in 24-well plates using the TransitIT-mRNA Transfection Kit (Mires Bio). The DENV mRNA vaccine constructs are shown in Table 34. Transfections were done in triplicate. After 24 hours, surface expression was detected using four different antibodies (10 μg/mL) followed by either goat-anti-human or anti-mouse AF700 secondary antibody (1/500). Signal generated from antibody binding are shown as Mean Fluorescent Intensity (MFI) (FIG. 37). Antibody D88 is known to recognize all 4 serotypes and bound to all antigen epitopes encoded by the DENV mRNA vaccine constructs tested. Antibody 2D22 is known to recognize only DENV 2 and preferentially bound to construct 21, which encodes DENV 2 antigen epitopes. Antibody 2D22 also showed weak binding to epitopes of other DENV serotypes. Antibody 5J7 is known to recognize only DENV 3 and only bound to antigen epitopes encoded by constructs 13, 19, and 20, which encode DENV 3 antigen epitopes. Antibody 1-11 is known to bind strongly to DENV 1 and 2, to bind weakly to DENV 3 and to bind little DENV 4. Antibody 1-11 bound to DENV 1, 2, and 3, and binding to DENV 3 antigen epitopes was stronger than binding to DENV 1 or 2 (FIG. 37).









TABLE 37







mRNA constructs that encode one or more OVA epitopes













# of

Antigen Presentation

SEQ ID


Construct
Peptides/Repeats
Linker
Enhancer Sequence
Amino acid Sequence
NO:















1
8 OVA
G/S

MLESIINFEKLTEGGGGS
187



(8mer)


GGGGSLESIINFEKLTEG



Repeats


GGGSGGGGSLESIINFEK



(Flanking


LTEGGGGSGGGGSLESII



AA)


NFEKLTEGGGGSGGGGSL







ESIINFEKLTEGGGGSGG







GGSLESIINFEKLTEGGG






GSGGGGSLESIINFEKLT







EGGGGSGGGGSLESIINF







EKLTE





2
8 OVA
Cathepsin B

MLESIINFEKLTEGFLGL
188



(8mer)
Cleavage


ESIINFEKLTEGFLGLES




Repeats
Site

IINFEKLTEGFLGLESII



(Flanking
(GFLG)

NFEKLTEGFLGLESIINF



AA)


EKLTEGFLGLESIINFEK






LTEGFLGLESIINFEKLT







EGFLGLESIINFEKLTE






3
8 OVA

Human MHCI
MRVTAPRTVLLLLSAALA
189



(8mer)

Secretion
LTETWALESIINFEKLTE



Repeats

Peptide/Cytoplasmic

LESIINFEKLTELESIIN




(Flanking

Domain
FEKLTELESIINFEKLTE



AA)



LESIINFEKLTELESIIN







FEKLTELESIINFEKLTE







LESIINFEKLTEGSIVGI







VAGLAVLAVVVIGAVVAT






VMCRRKSSGGKGGSYSQA






ASSDSAQGSDVSLTA





4
8 OVA
Cathepsin B
Human MHCI
MRVTAPRTVLLLLSAALA
190



(8mer)
Cleavage
Secretion
LTETWALESIINFEKLTE



Repeats
Site
Peptide/Cytoplasmic
GFLGLESIINFEKLTEGF



(Flanking
(GFLG)
Domain
LGLESIINFEKLTEGFLG



AA)



LESIINFEKLTEGFLGLE







SIINFEKLTEGFLGLESI






INFEKLTEGFLGLESIIN






FEKLTEGFLGLESIINFE






KLTEGSIVGIVAGLAVLA






VVVIGAVVATVMCRRKSS






GGKGGSYSQAASSDSAQG






SDVSLTA





5
Single OVA

KDEL
MSIINFEKLKDEL
191





6
Single OVA

Human MHCI
MRVTAPRTVLLLLSAALA
192



(Flanking

Secretion
LTETWALESIINFEKLTE



AA)

Peptide/Cytoplasmic
GSIVGIVAGLAVLAVVVI





Domain
GAVVATVMCRRKSSGGKG






GSYSQAASSDSAQGSDVS






LTA





7
8 OVA
Cathepsin B
Murine Ig Kappa
METDTLLLWVLLLWVPGS
193



(8mer)
Cleavage
Signal Peptide(Igκ)
TGDSIINFEKLGFLGSII



Repeats
Site

NFEKLGFLGSIINFEKLG




(GFLG)

FLGSIINFEKLGFLGSII






NFEKLGFLGSIINFEKLG






FLGSIINFEKLGFLGSII






NFEKL





8
8 OVA
G/S
Human MHCI
MRVTAPRTVLLLLSAALA
194



(8mer)

Secretion
LTETWLESIINFEKLTE



Repeats

Peptide/Cytoplasmic
GGGGSGGGGSLESIINFE



(Flanking

Domain
KLTEGGGGSGGGGSLESI



AA)


INFEKLTEGGGGSGGGGS







LESIINFEKLTEGGGGSG







GGGSLESIINFEKLTEGG






GGSGGGGSLESIINFEKL







TEGGGGSGGGGSLESIIN







FEKLTEGGGGSGGGGSLE






SIINFEKLTEGSIVGIVA






GLAVLAVVVIGAVVATVM






CRRKSSGGKGGSYSQAAS






SDSAQGSDVSLTA





9
8 OVA


MLESIINFEKLTELESII
195



(8mer)


NFEKLTELESIINFEKLT



Repeats



ELESIINFEKLTELESII




(Flanking


NFEKLTELESIINFEKLT



AA)



ELESIINFEKLTELESII







NFEKLTE





10
Single OVA


MSIINFEKL
196





11
8 OVA
Cathepsin B
Murine Ig Kappa
METDTLLLWVLLLWVPGS
197



(8mer)
Cleavage
Signal Peptide(Igκ)
TGDHPFTEDDAVDPNDSD



Repeats
Site
and PEST
IDPESRSIINFEKLGFLG




(GFLG)

SIINFEKLGFLGSIINFE






KLGFLGSIINFEKLGFLG






SIINFEKLGFLGSIINFE






KLGFLGSIINFEKLGFLG






SIINFEKL





12
8 OVA
Cathepsin B
Murine MHC Class I
MSIINFEKLGFLGSIINF
198



(8mer)
Cleavage
Cytoplasmic Domain
EKLGFLGSIINFEKLGFL



Repeats
Site
(MITD)
GSIINFEKLGFLGSIINF




(GFLG)

EKLGFLGSIINFEKLGFL






GSIINFEKLGFLGSIINF






EKLPPPSTVSNMIIIEVL







IVLGAVINIGAMVAFVLK








SKRKIGGKGGVYALAGGS








NSIHGSALFLEAFKA

















TABLE 38







DENV mRNA vaccine constructs tested for


antibody binding or in challenge studies









Con-

SEQ


struct
mRNA Name
ID NO












13
DEN3_prME_PaH881/88_AF349753.1
199


14
DEN1_prME_West_Pac_AY145121.1
200


15
DEN1_prME_PUO-359_AAN32784.1
201


16
DEN4_prME_DHF_Patient_JN638571.1
202


17
DEN4_prME_DENV4/CN/GZ29/2010_KP723482.1
203


18
DEN4_prME_rDEN4_AF326825.1
204


19
DEN3_prME_L11439.1
205


20
DEN3_prME_D3/Hu/TL129NIID/2005_AB214882
206


21
DENV2_prME_Peru_IQT2913_1996
207


22
DENV2_prME_Thailand-168_1979
208


23
DENV2_prME_Thailand_PUO-218_1980
209



(Sanofi strain)


24
DEN2_D2Y98P_PRME80_Hs3_LSP
210


25
Non-H2Kb multitope
211


26
H2Kb multitope
212









Example 38. DENV prME Challenge Study in Cynomolgus (Cyno) Monkey Model

Shown in Table 39 is the design of DENV prME challenge study in cynomolgus (cyno) money. Indicated DENV mRNA vaccine encoding prME antigen epitopes, or vaccines thereof, are used to immunize cyno. The vaccines are formulated in lipid nanoparticles (e.g., MC3 formulation) and administered to the cyno monkeys intramuscularly on day 0, 21, and 42. Dosages of the vaccines are 250 μg or 5 μg per immunization. In experiments where a combination of different DENV mRNA vaccines are used, 250 μg or 5 μg of each mRNA vaccine is used. FLAG-tagged H10N8 flu vaccine is used as control at a dosage of 250 μg per immunization. Naïve cyno monkeys without immunization are also used as control. Cyno monkey sera are collected on days 20, 41, 62, and 92 post initial immunization and used for serotype-specific neutralization assays.


Immunized cyno monkeys are challenged on day 63 post initial immunization with indicated DENV viruses. Cyno monkey sera are collected on days 62 (pre-challenge), 63-66, 68, 70, 72, 76, and 92 (end of life) to determine serum viral load.









TABLE 39







DENV prME Challenge Study Design in Cynomolgus (cyno) Monkey











Group

Vaccine




n = 3
Vaccine
Schedule
Dosage/Route
Challenge














1
Dengue 1
Day 0, 21, 42
IM, LNP
Challenge with



prME

250 μg
Dengue 1/03135 s.c


2
(Construct

IM, LNP
(5log PFU)



15)

5 μg


3
Dengue 2
Day 0, 21, 42
IM, LNP
Challenge with



prME

250 μg
Dengue 2/99345 s.c


4
(Construct

IM, LNP
(5log PFU)



21)

5 μg


5
Dengue 3
Day 0, 21, 42
IM, LNP
Challenge with



prME

250 μg
Dengue 3/16562 s.c


6
(Construct

IM, LNP
(5log PFU)



19)

5 μg


7
Dengue 4
Day 0, 21, 42
IM, LNP
Challenge with



prME

250 μg
Dengue 4/1036 s.c


8
(Construct

IM, LNP
(5log PFU)



17)

5 μg


9
prME Combo
Day 0, 21, 42
IM, LNP
Challenge with



(Post-

1000 μg Total
Dengue 1/03135 s.c



Formulation

(250 μg of each)
(5log PFU)


10
Mix)

IM, LNP



(Constructs

20 μg Total



15, 17, 19,

(5 μg of each)



and 21)


11
prME Combo
Day 0, 21, 42
IM, LNP
Challenge with



(Post-

1000 μg Total
Dengue 2/99345 s.c



Formulation

(250 μg of each)
(5log PFU)


12
Mix)

IM, LNP



(Constructs

20 μg Total



15, 17, 19,

(5 μg of each)



and 21)


13
prME Combo
Day 0, 21, 42
IM, LNP
Challenge with



(Post-

1000 μg Total
Dengue 3/16562 s.c



Formulation

(250 μg of each)
(5log PFU)


14
Mix)

IM, LNP



(Constructs

20 μg Total



15, 17, 19,

(5 μg of each)



and 21)


15
prME Combo
Day 0, 21, 42
IM, LNP
Challenge with



(Post-

1000 μg Total
Dengue 4/1036 s.c



Formulation

(250 μg of each)
(5log PFU)


16
Mix)

IM, LNP



(Constructs

20 μg Total



15, 17, 19,

(5 μg of each)



and 21)


17
prME Combo
Day 0, 21, 42
IM, LNP
Challenge with



(Post-

1000 μg Total
Dengue 2/99345 s.c



Formulation

(250 μg of each)
(5log PFU)



Mix)



(Constructs



15, 17, 19,



and 22)


18
H10N8-FLAG
Day 0, 21, 42
IM, LNP
Challenge with





250 μg
Dengue 2/99345 s.c






(5log PFU)


19
Naive


Challenge with






Dengue 1/03135 s.c






(5log PFU)


20
Naive


Challenge with






Dengue 2/99345 s.c






(5log PFU)


21
Naive


Challenge with






Dengue 3/16562 s.c






(5log PFU)


22
Naive


Challenge with






Dengue 4/1036 s.c






(5log PFU)





Collect serum on day 20, 41, 62, and 92 for serotype-specific neutralization assay


Collect serum on day 62 (pre-challenge), 63-66, 68, 70, 72, 76, and 92 (end of In-life) to determine serum viral load






Example 39: Dengue 2 prME Challenge Study in AG129 Mice

The instant study was designed to evaluate the efficacy of four DENV mRNA vaccine constructs (constructs 21-24 in Table 38) in AG129 mice challenge assays. The schedule of the challenge study was shown in FIG. 38A. The DENV mRNA vaccines were formulated in lipid nanoparticles (e.g., MC3 formulation) and administered to the AG129 mice intramuscularly on days 0 and 21. Dosage of the vaccines were 2 μg or 10 μg per immunization. Heat inactivated D2Y98P strain was used as a negative control to vaccinate the mice. Naïve AG129 mice without immunization were also used as control.


Immunized AG129 mice were challenged on day 42 post initial immunization with Dengue D2Y98P virus (s.c., 1e5 PFU per mouse). AG129 mice sera were collected on days 20 and 41 post initial immunization and used for serotype-specific neutralization assays. Mice immunized with any of the four DENV mRNA vaccine constructs survived, while the control mice died. These data demonstrate that, after lethal challenge, there was 100% protection provided by each mRNA vaccine construct, regardless of dose. The weights and health of the mice were monitored and the results were plotted in FIGS. 38C-38D.


Mice sera collected from mice immunized with 2 μg of the DENV mRNA vaccines were able to neutralize several DENV 2 strains and variations in the neutralization ability between the tested mRNA vaccines and between different DENV 2 strains were observed (FIG. 39).


Example 40: DENV prME Challenge Study in AG129 Mice Model

Shown in Table 40 is the design of a DENV prME challenge study in AG129 mice, including the mRNA constructs tested, the vaccination schedule, the dosage, the challenge strains, and the serum collection schedule.


Indicated DENV mRNA vaccine encoding prME antigen epitopes, or vaccines thereof, were used to immunize AG129 mice. The vaccines were formulated in lipid nanoparticles (e.g., MC3 formulation) and administered to the mice intramuscularly on days 0 and 21. Dosages of the vaccines were 2 μg or 10 μg per immunization. In experiments where a combination of different DENV mRNA vaccines were used, 2 μg of each mRNA vaccine was used. Naïve AG129 mice without immunization were used as control. AG129 mice sera were collected on days 20 and 41 post initial immunization and used for serotype-specific neutralization assays.


Immunized AG129 mice were challenged on day 42 post initial immunization with Dengue D2Y98P virus (s.c., 1e5 PFU per mouse). The weights and health of the mice were monitored for 14 days post infection and the results were plotted in FIGS. 40A-40I.









TABLE 40







DENV prME Challenge Study Design in AG129 Mice












Group

Vaccine
Dosage/
Serum/














n = 5
Vaccine
Schedule
Route
PBMCs
Challenge
Readout





 1
Dengue 1
Day 0,
IM, LNP,
Collect serum on
Challenge with
Monitor



prME
21
10 μg
day 20 and 41 for
1e5 PFU per
weights



(Construct 15)


serotype-specific
mouse of
and health






neutralization
D2Y98P SC
for 14






assay
injection
days p.i.







(Day 42)



 2

Day 0,
IM, LNP,







21
2 μg





 3
Dengue 2
Day 0,
IM, LNP,






prME
21
10 μg






(Construct 21)







 4

Day 0,
IM, LNP,







21
2 μg





 5
Dengue 3
Day 0,
IM, LNP,






prME
21
10 μg





 6
(Construct 19)
Day 0,
IM, LNP,







21
2 μg





 7
Dengue 4
Day 0,
IM, LNP,






prME
21
10 μg





 8
(Construct 17)
Day 0,
IM, LNP,







21
2 μg





 9
H2Kb
Day 0,
IM, LNP,
Collect and





Multitope
21
10 μg
cryopreserve





(Construct 25)


PBMCs on day 20








and 41; Ship to








Valera




10

Day 0,
IM, LNP,







21
2 μg





11
Non-H2Kb
Day 0,
IM, LNP,






Multitope
21
10 μg





12
(Construct 26)
Day 0,
IM, LNP,







21
2 μg





13
prME
Day 0,
IM, LNP,
Collect serum on





Combo +
21
10 μg Total
day 20 and 41 for





H2Kb

(2 μg of
serotype-specific





Multitope

each)
neutralization





(Constructs 15,


assay





17, 19, and 21)








(Post7)







14
prME
Day 0,
IM, LNP,






Combo +
21
10 μg Total






non-H2Kb

(2 μg of






Multitope

each)






(Constructs 15,








17, 19, 21, and








26) (Post7)







15
prME Combo
Day 0,
IM, LNP,






(Constructs 15,
21
8 μg Total






17, 19, and 21)

(2 μg of






(Post7)

each)





16
prME
Day 0,
IM, LNP,






Combo +
21
10 μg Total






H2Kb

(2 μg of






Multitope

each)






(Constructs 15,








17, 19, 21 and








25) (Post1)







17
prME
Day 0,
IM, LNP,






Combo +
21
10 μg Total






non-H2Kb

(2 μg of






Multitope

each)






(Constructs 15,








17, 19, 21, and








26) (Post1)







18
prME Combo
Day 0,
IM, LNP,






(Constructs 15,
21
8 μg Total






17, 19, and 21)

(2 μg of






(Post1)

each)





19
Dengue 2
Day 0,
IM, LNP,
Collect serum on





prME
21
2 μg
day 20 and 41 for





(Construct 22)


Dengue 2-specific




20
Naive
Day 0,
Tris/Sucrose
neutralization






21

assay









Example 41: Virus-Like Particles

The antigens produced from the DENV prME mRNA vaccines of the present disclosure, when expressed, are able to assemble into virus-like particles (VLPs). The instant study was designed to evaluate the immunogenicity of the VLPs by negative stain electron microscope imaging. As shown in FIG. 41, DENV mRNA vaccine constructs 21-24 were expressed and VLPs were assembled an isolated. The VLPs were visualized under negative stain electron microscopy. Construct 23 is the vaccine construct used by Sanofi in its DENV vaccines. Constructs 21, 22, and 24 produced more uniform VLPs, suggesting that these VLPs may be more superior in their immunogenicity than the VLPs produced from construct 23.


Example 42: Efficacy of CHIKV mRNA Vaccine X Against CHIKV in AG129 Mice
Study Design

Chikungunya virus (CHIKV) 181/25 strain is an attenuated vaccine strain that was developed by the US Army via multiple plaque-to-plaque passages of the 15561 Southeast Asian human isolate (Levitt et al.). It is well tolerated in humans and is highly immunogenic. It produces small plaques and has decreased virulence in infant mice and nonhuman primates. When the attenuated virus is administered to immunodeficient AG129 mice (lacking the IFN-α/β and γ receptors) the mice succumb to a lethal disease within 3-4 days with ruffled fur and weight loss (Partidos, et al. 2011 Vaccine).


This instant study was designed to evaluate the efficacy of CHIKV candidate vaccines as described herein in AG129 mice (Table 41). The study consisted of 14 groups of female 6-8 week old AG129 mice (Table 41). Groups 1-4, 7-8, and 10-15 were vaccinated with CHIKV vaccine X via the intramuscular (IM; 0.05 mL) route on Day 0 and select groups received an additional boost on Day 28. Control Groups 9 and 16 received vehicle (PBS) only on Days 0 and 28 via IM route (0.05 mL). Regardless of vaccination schedule, Groups 1-4 and 7-9 were challenged on Day 56 while Groups 10-16 were challenged on Day 112 using the CHIKV 181/25 strain (stock titer 3.97×107 PFU/mL, challenge dose 1×104 PFU/mouse). For virus challenge, all mice received a lethal dose (1×104 PFU) of Chikungunya (CHIK) strain 181/25 via intradermal (ID) route (0.050 mL via footpad). All mice were monitored for 10 days post infection for weight loss, morbidity, and mortality. Each mice was assigned a heath score based on Table 5. Mice displaying severe illness as determined by >30% weight loss, a health score of higher than 5, extreme lethargy, and/or paralysis were euthanized with a study endpoint of day 10 post virus challenge. Test bleeds via retro-orbital (RO) collection were performed on mice from all groups on Days −3, 28, and 56. Mice from Groups 10-16 were also bled on Days 84 & 112. Mice that survived challenge were also terminally bled on Day 10 post challenge. Serum samples from mice (Days −3, 28, 56, 84, 112 and surviving mice) were kept frozen (−80° C.) and stored until they were tested for reactivity in a semi quantitative ELISA for mouse IgG against either E1, E2 or CHIKV lysate.


Experimental Procedure
Intramuscular (IM) Injection of Mice

1. Restrain the animal either manually, chemically, or with a restraint device.


2. Insert the needle into the muscle. Pull back slightly on the plunger of the syringe to check proper needle placement. If blood is aspirated, redirect the needle and recheck placement again.


3. Inject appropriate dose and withdraw needle. Do not exceed maximum volume. If the required volume exceeds the maximum volume allowed, multiple sites may be used with each receiving no more than the maximum volume.


4. The injection site may be massaged gently to disperse the injected material.


Intradermal (ID) Injections of Mice

1. Restrain the animal either manually, chemically, or with a restraint device.


2. Carefully clip the hair from the intended injection site. This procedure can be done upon animals arriving or the day before any procedures or treatments are required.


3. Lumbar area is the most common site for ID injections in all species, but other areas can be used as well.


4. Pinch or stretch the skin between your fingers (or tweezers) to isolate the injection site.


5. With the beveled edge facing up, insert the needle just under the surface between the layers of skin. Inject the appropriate dose and withdraw needle. A small bleb will form when an ID injection is given properly.


6. If the required volume exceeds the maximum volume allowed, multiple sites may be used with each receiving no more than the maximum volume.


Retro-Orbital Bleeding in Mice

1. Place the mice in the anesthesia chamber and open oxygen line and set to 2.5% purge. Start flow of anesthesia at 5% isoflurane.


2. Once the animal becomes sedate, turn anesthesia to 2.5%-3% isoflurane and continue to expose the animal to the anesthesia. Monitor the animal to avoid breathing becoming slow.


3. Remove the small rodent from anesthesia chamber and place on its back while restraining with left hand and scruff the back of the animal's neck, so it is easy to restrain and manipulate while performing the procedure with the right hand.


4. With a small motion movement, place the capillary tube in the corner of the animal's eye close to the nostril, and rotate or spin the Hematocrit glass pipette until blood start flowing out. Collect the appropriate amount of blood needed into the appropriate labeled vial.


5. Monitor the animal after retro-orbital bleeding is done for at least 10-15 seconds to ensure hemostasis.


6. Place the animal back to its original cage and monitor for any other problems or issues caused while manipulating animal due to the procedure.


Observation of Mice

1. Mice were observed through 10 days post infection (11 days total, 0-10 days post infection).


2. Mice were weighed daily on an Ohause scale and the weights are recorded.


3. Survival and health of each mouse were evaluated once time a day using a scoring system of 1-7 described in Table 5.


Infection

On either Day 56 (Groups 1-4, 7-9) or Day 112 (Groups 10-16) groups of 5 female 6-8 week old AG129 mice were infected via intradermal injection with 1×104 PFU/mouse of the 181/25 strain of Chikungunya diluted in PBS. The total inoculation volume was 0.05 mL administered in the rear footpad of each animal. Mice were anesthetized lightly using 2-5% v/v of isoflurane at ˜2.5 L/min of 02 (VetEquip IMPAC6) immediately prior to infection.


Dose Administration

In this study mice were administered 0.04 μg, 2 μg, or 10 μg of various formulations of the CHIKV vaccine X or vehicle alone (PBS) on either Day 0 or on Days 0 and 28 via the intramuscular route (0.05 mL). The material was pre-formulated by the Client and diluted in PBS by IBT prior to dosing as per instructions provided by the Client.


Results

Mice were immunized once (Day 0) or twice (Days 0 & 28) with either 0.04 μg, 2 μg, or 10 μg of Chikungunya vaccine X and were challenged with CHIKV strain 181/25 on either Day 56 (Groups 1-4, 7-9) or on Day 112 (Groups 10-16). Mice were monitored for a total of 10 days post infection for health and weight changes. Mice that received either 2 μg or 10 μg of the CHIKV vaccine X either once (Day 0) or twice (Days 0 and 28) were fully protected (100%) regardless of whether the mice were challenged 56 days or 112 days after the initial vaccination (FIGS. 42A-42B, Table 44). Mice receiving 0.04 μg of the CHIKV vaccine were not protected at all from lethal CHIKV infection. This efficacy data is supported by the health scores observed in the vaccinated mice in that the protected mice displayed little to no adverse health effects of a CHIKV infection (FIGS. 44A-44B). Weight loss is not a strong indicator of disease progression in the CHIKV AG129 mouse model (FIGS. 43A-43B).


Mice immunized with the CHIKV vaccine X showed increased antibody titers against CHIKV E1, E2 and CHIKV lysate as compared to the vehicle only (PBS) treated groups. Serum binding against the virus lysate yielded the highest antibody titers for all vaccinated groups (FIGS. 45A-45C, 46A-46C, 47A-47C, 48A-48C). Overall, the antibody titers were dose dependent with the highest titers observed in serum from mice vaccinated with 10 μg of CHIKV vaccine X while the lowest titers were observed in serum from mice vaccinated with 0.04 μg of the CHIKV vaccine X. Similarly, higher titers were observed in serum from mice vaccinated twice (Days 0 and 28) as compared to serum from mice vaccinated only once (Day 0). Serum obtained on Day 112 post initial vaccination still yielded increased antibody titers in mice that received either 10 μg or 2 μg of CHIKV vaccine X (FIGS. 47A-47C).


Serum from mice groups 10-16, 112 days post immunization were also tested in a Plaque Reduction Neutralization Test (PRNT). Serum from each mice was diluted from 1/20 to 1/40960 and assessed for its ability to reduce CHIKV plaque formation. The results were shown in Table 46.









TABLE 41







CHIKV Challenge Study Design in AG129 mice















Dose




Group*


(IM


(n = 5)
Vaccine
Schedule
route)
Challenge
Bleeds
















1
VAL-
Day 0
10
μg
Challenge with
Pre-bleed for












2
181388
Day 0 & 28

1 × 104 PFU per
serum via RO













3

Day 0
2
μg
mouse of CHIK
route on days −3,












4

Day 0 & 28

181/25 via ID
28, 56, (all






injection
groups) & 84, 112






on day 56.
(groups 10-16













7

Day 0
0-4
μg
Weights and
only).












8

Day 0 & 28

health for 10
Terminal bleed


9
PBS
Day 0 & 28

days following
surviving mice on






infection.
day 10 post













10
VAL-
Day 0
10
μg
Challenge with
challenge.












11
181388
Day 0 & 28

1 × 104 PFU per
Serum stored













12

Day 0
2
μg
mouse of CHIK
at −80° C.












13

Day 0 & 28

181/25 via ID














14

Day 0
0-4
μg
injection on day













15

Day 0 & 28

112. Weights and



16
PBS
Day 0 & 28

health for 10






days following






infection.





*No group 5 or 6 in this study













TABLE 42







Equipment and Software









Item
Vendor
Cat#/Model





Syringes
BD
Various


Animal Housing
InnoVive
Various


Scale
Ohause
AV2101


Prism software
GraphPad
N/A


Microplate Washer
BioTek
ELx405


Plate reader with SoftMax Pro
Molecular Devices
VersaMax


version 5.4.5
















TABLE 43







ELISA Reagents












Storage



Name
Supplier cat#
Temperature
Notes





DPBS 1X, sterile
Corning 21-031-
Ambient
For dilution of coating antigen



CM or equivalent


StartingBlock T20
Thermo Scientific
2-8° C.
For blocking non-specific


(PBS) Blocking
37539

binding and use as diluent of


Buffer


Standards, unknown test sera





and detection antibody


SureBlue Reserve
KPL 53-00-02 or
2-8° C.
N/A


TMB Microwell
equivalent


Peroxidase


Substrate (1-


Component)


DPBS powder, non-
Corning 55-031-PB
2-8° C.
Use deionized water to


sterile
or equivalent

dissolved DPBS powder from





one bottle to a final volume of





10 liters of 1X DPBS


TWEEN-20
Sigma-Aldrich
Ambient
Add 5 mL TWEEN-20 to 10



P1379-500ML or

liters of 1X DPBS and mix



equivalent

well to prepare DPBS +





0.05% TWEEN-20 Wash





Buffer for automatic plate





washer
















TABLE 44







ELISA Reagents










Critical Reagent Please note: Coating antigens and standards
Supplier cat#
Storage



are stored as single-use aliquots.
and/or lot#
Temperature
Assay Parameter














Coating antigens
CHIKV recombinant E1 glycoprotein,
IBT Bioservices,
−70° C. or below
400 ng/well



expressed in 293 mammalian cells IBT's
lot 08.11.2015



BCA = 0.351 mg/mL



CHIKV recombinant E2 glycoprotein,
ImmunoDx, cat#
−70° C. or below
400 ng/well



expressed in E. coli IBT's BCA = 1.291
80002, lot



mg/mL
10MY4



CHIKV 181/25 lysate from sucrose-
IBT Bioservices,
−70° C. or below
300 ng/well



purified viruses, lysed by sonication
lot 11.23.2015



IBT's BCA = 1.316 mg/mL


Standards
Anti-E1 positive control Pooled mouse
IBT Bioservices
−70° C. or below
Assigned, 30,812



serum from survivors of BS-1842 group


Antibody Units/mL



4 (vaccinated with E1 mRNA 10 μg, ID,


against E1 protein



LNP on study days 0 and 28) day 66



terminal bleeds (10 days after CHIKV



infection)



Anti-E2 positive control, Pooled mouse
IBT Bioservices
−70° C. or below
Assigned, 16912



serum from survivors of BS-1842 group


Antibody Units/mL



8 (vaccinated with E2 mRNA 10 μg, ID,


against E2 protein



LNP on study days 0 and 28) day 66


Assigned 14,200



terminal bleeds (10 days after CHIKV


Antibody Units/mL



infection)


Detection antibody
Anti-mouse IgG (H + L)-HRP
KPL, cat# 474-
2-8° C.
1:6000 dilution




1806, lot 140081
















TABLE 45





Survival Percentage







a. Groups 1-4 and 7-9, Day 56 Challenge
















10 μg

2 μg

0.4 μg



Days
10 μg
Day 0 &
2 μg
Day 0
0.4 μg
Day 0 &



p.i.
Day 0
28
Day 0
& 28
Day 0
28
PBS





 0
100
100
100
100
100
100
100


 3





80



 4




0
40
80


 5





0
0


10
100
100
100
100










b. Groups 10-16, Day 112 Challenge
















10 μg

2 μg

0.04 μg



Days
10 μg
Day 0 &
2 μg
Day 0
0.04 μg
Day 0 &



p.i.
Day 0
28
Day 0
& 28
Day 0
28
PBS





 0
100
100
100
100
100
100
100


 3




80
80



 4




20
20
50


 5




0
0
0


10
100
100
100
100
















TABLE 46







CHIKV Plaque Reduction Neutralization Test (PRNT)


Serum dilutions from 1/20 to 1/40960














Expt info






Vaccination
CHIKV strain
sample
PRNT80
PRNT50


GP#
regimen
37997
ID
titer
titer















10
Day 0,
CHIKV
1
 1/160
 1/640



IM/10 μg
37997
2
 1/320
 1/320




working stock
3
 1/160
 1/640




titer =
4
 1/160
   1/1280




780 PFU/ml
5
 1/320
   1/1280


11
Day 0/Day 28,

1
 1/640
   1/2560



IM/10 μg

2
   1/1280
   1/1280





3
 1/320
   1/2560





4
 1/640
   1/5120





5
   1/1280
   1/5120


12
Day 0,

1
 1/20
 1/80



IM/2 μg

2
 1/40
 1/320





3
<1/20
 1/160




PRNT80
4
<1/20
 1/160




cutoff
5
<1/20
 1/20


13
Day 0,
8 PFU
1
 1/80
 1/320



Day 28,

2
 1/80
 1/640



IM/2 μg

3
 1/20
 1/320





4
 1/20
 1/320





5
 1/320
 1/640


14
Day 0,

1
<1/20
80



IM/0.4 μg

2
<1/20
<1/20





3
<1/20
<1/20





4
<1/20
<1/20





5
<1/20
<1/20


15
Day 0,
PRNT50
1
<1/20
<1/20



Day 28,
cutoff
2
<1/20
80



IM/0.4 μg
20 PFU
3
<1/20
<1/20





4
<1/20
<1/20





5
<1/20
<1/20


16
Vehicle

1
<1/20
<1/20



Day 0/Day 28

2
<1/20
<1/20





3
<1/20
<1/20





4
<1/20
<1/20





5
<1/20
<1/20









Example 43: Immunogenicity of Chikungunya Polyprotein (C-E3-E2-6K-E1) mRNA Vaccine Candidate in Rats

Sprague Dawley rats (n=5) were vaccinated with 20 μg of MC-3-LNP formulated mRNA 30 encoded CHIKV polyprotein (C-E3-E2-6K-E1) (SEQ ID NO: 13). The rats were vaccinated on either Day 0 or Days 0 and 14 or Days 0, 14 and 28 via IM delivery. Sera was collected on days −3, 14, 28 and 42 for ELISA testing. FIG. 58 demonstrated that there was at least a two log increase in antibody titer against CHIKV lysate post 3rd vaccination with the mRNA vaccine in normal rats.


Example 44: Evaluation of T Cell Activation of Chikungunya P 5 Polyprotein (C-E3-E2-6K-E1) mRNA Vaccine Candidate

C57BL/6 mice (n=6 experimental group; n=3 control group) were vaccinated with 10 μg of MC-3-LNP formulated mRNA encoded CHIKV polyprotein (C-E3-E2-6K-E1) (SEQ ID NO: 13). The mice were vaccinated on either Day 0 or Days 0 and 28 (boost) via IM delivery. Sera was collected on days 3, 28 and 42 for ELISA testing. Animals were sacrificed on day 42 and spleens were harvested for immunological evaluation of T cells. Splenic cells were isolated and analyzed by FACS. Briefly, spleens were removed, cells isolated, and stimulated in vitro with immunogenic peptides found within either C, E1, or E2 region of CHIKV that are known to be CD8 epitopes in B6 mice. The readout for this assay was cytokine secretion (IFN-gamma and TNF-alpha), which reveals whether the vaccine induced antigen-specific T cell responses. No CD8 T cell responses were detected using the E2 or C peptide (baseline levels of IFN-gamma and TNF-alpha), whereas there was a response to the E1-corresponding peptide (average of about 0.4% IFN-gamma and 0.1% TNF). The peptides were used to stimulate T cells used in the study were E1=HSMTNAVTI (SEQ ID NO: 300), E2=IILYYYELY (SEQ ID NO: 301), and C=ACLVGDKVM (SEQ ID NO: 302).



FIG. 59 shows that the polyprotein-encoding CHIKV polyprotein vaccine elicited high antibody titers against the CHIKV glycoproteins. FIGS. 60 and 61A-61B show T cell activation by E1 peptide.


EQUIVALENTS

All references, patents and patent applications disclosed herein are incorporated by reference with respect to the subject matter for which each is cited, which in some cases may encompass the entirety of the document.


The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.”


It should also be understood that, unless clearly indicated to the contrary, in any methods claimed herein that include more than one step or act, the order of the steps or acts of the method is not necessarily limited to the order in which the steps or acts of the method are recited.


In the claims, as well as in the specification above, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” “composed of,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of” shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent Examining Procedures, Section 2111.03.

Claims
  • 1. A Zika virus (ZIKV) vaccine, comprising: a ribonucleic acid (RNA) polynucleotide having an open reading frame encoding a ZIKV antigenic polypeptide.
  • 2. The ZIKV vaccine of claim 1, wherein the antigenic polypeptide is a ZIKV polyprotein.
  • 3. The ZIKV vaccine of claim 1, wherein the antigenic polypeptide is selected from a ZIKV capsid protein, a ZIKV premembrane/membrane protein, a ZIKV envelope protein, a ZIKV non-structural protein 1, a ZIKV non-structural protein 2A, a ZIKV non-structural protein 2B, a ZIKV non-structural protein 3, a ZIKV non-structural protein 4A, a ZIKV non-structural protein 4B, and a ZIKV non-structural protein 5.
  • 4. The ZIKV vaccine of claim 3, wherein the antigenic polypeptide is a ZIKV capsid protein, a ZIKV premembrane/membrane protein, and a ZIKV envelope protein.
  • 5. The ZIKV vaccine of claim 4, wherein the antigenic polypeptide is a ZIKV capsid protein and a ZIKV premembrane/membrane protein.
  • 6. The ZIKV vaccine of claim 3, wherein the antigenic polypeptide is a ZIKV capsid protein and a ZIKV envelope protein.
  • 7. The ZIKV vaccine of claim 3, wherein the antigenic polypeptide is a ZIKV premembrane/membrane protein and a ZIKV envelope protein.
  • 8. (canceled)
  • 9. The ZIKV vaccine of claim 1, wherein the open reading frame encodes at least two ZIKV antigenic polypeptides.
  • 10.-12. (canceled)
  • 13. The ZIKV vaccine of claim 1, wherein the vaccine comprises at least two RNA polynucleotides each having an open reading frame encoding a ZIKV antigenic polypeptide.
  • 14.-16. (canceled)
  • 17. The ZIKV vaccine of claim 1, wherein the antigenic polypeptide comprises an amino acid sequences of SEQ ID NO: 76-134.
  • 18. The ZIKV vaccine of claim 1, wherein the antigenic polypeptide has an amino acid sequence that has at least 95% identity to an amino acid sequence of SEQ ID NO: 76-134.
  • 19.-28. (canceled)
  • 29. The ZIKV vaccine of claim 1, wherein the antigenic polypeptide is obtained from ZIKV strain MR 766, ZIKV strain ACD75819 or ZIKV strain SPH2015.
  • 30. The ZIKV vaccine of claim 1, wherein the RNA polynucleotide comprises a chemical modification.
  • 31.-32. (canceled)
  • 33. The ZIKV vaccine of claim 30, wherein the chemical modification is a N1-methylpseudouridine.
  • 34. The ZIKV vaccine of claim 30, wherein at least 80% of the uracil in the open reading frame have a chemical modification.
  • 35. The ZIKV vaccine of claim 34, wherein 100% of the uracil in the open reading frame has a chemical modification.
  • 36. The ZIKV vaccine of claim 1, wherein the RNA polynucleotide further encodes a 5′ terminal cap.
  • 37. The ZIKV vaccine of claim 36, wherein the 5′ terminal cap is 7mG(5′)ppp(5′)NlmpNp.
  • 38.-41. (canceled)
  • 42. The ZIKV vaccine of claim 1, formulated in a lipid nanoparticle.
  • 43.-44. (canceled)
  • 45. The ZIKV vaccine of claim 42, wherein the lipid nanoparticle comprises a cationic lipid, a PEG-modified lipid, a sterol and a non-cationic lipid.
  • 46. The ZIKV vaccine of claim 45, wherein the lipid nanoparticle carrier comprises a molar ratio of about 20-60% cationic lipid, 0.5-15% PEG-modified lipid, 25-55% sterol, and 25% non-cationic lipid.
  • 47. The ZIKV vaccine of claim 45, wherein the cationic lipid is an ionizable cationic lipid and the non-cationic lipid is a neutral lipid, and the sterol is a cholesterol.
  • 48. The ZIKV vaccine of claim 45, wherein the cationic lipid is selected from 2,2-dilinoleyl-4-dimethylaminoethyl-[1,3]-dioxolane (DLin-KC2-DMA), dilinoleyl-methyl-4-dimethylaminobutyrate (DLin-MC3-DMA), and di((Z)-non-2-en-1-yl) 9-((4-(dimethylamino)butanoyl)oxy)heptadecanedioate (L319).
  • 49.-54. (canceled)
  • 55. A method of inducing an immune response in a subject, the method comprising administering to the subject the ZIKV vaccine of claim 1, in an amount effective to produce an antigen-specific immune response in the subject.
  • 56.-101. (canceled)
  • 102. A Zika virus (ZIKV) vaccine, comprising a ribonucleic acid (RNA) polynucleotide having an open reading frame encoding a ZIKV antigenic polypeptide a 5′ terminal cap, and a chemical modification, wherein the vaccine is formulated within a lipid nanoparticle.
  • 103. The ZIKV vaccine of claim 102, wherein at least 80% of the uracil in the open reading frame have a chemical modification.
  • 104.-108. (canceled)
  • 109. A Zika virus (ZIKV) vaccine, comprising a ribonucleic acid (RNA) polynucleotide having an open reading frame encoding a ZIKV polypeptide linked to a signal peptide.
  • 110. The ZIKV vaccine of claim 109, wherein the ZIKV antigenic polypeptide is a ZIKV PrM protein, a ZIKV envelope (E) protein, or a ZIKV prME fusion protein.
  • 111. The ZIKV vaccine of claim 109, wherein the ZIKV antigenic polypeptide is fused to a signal peptide selected from: a HuIgGk signal peptide (METPAQLLFLLLLWLPDTTG; SEQ ID NO: 125); IgE heavy chain epsilon-1 signal peptide (MDWTWILFLVAAATRVHS; SEQ ID NO: 126); Japanese encephalitis PRM signal sequence (MLGSNSGQRVVFTILLLLVAPAYS; SEQ ID NO: 128) and VSVg protein signal sequence (MKCLLYLAFLFIGVNCA; SEQ ID NO: 131).
  • 112.-375. (canceled)
  • 376. The vaccine of claim 1, further comprising a RNA polynucleotide having an open reading frame encoding a CHIKV antigenic polypeptide and/or a DENV antigenic polypeptide.
  • 377.-477. (canceled)
RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 15/746,286, filed Jan. 19, 2018, entitled “INFECTIOUS DISEASE VACCINES”, which is a national stage filing under 35 U.S.C. § 371 of International Patent Application Serial No. PCT/US2016/043348, filed Jul. 21, 2016, which claims the benefit under 35 U.S.C. § 119(e) of U.S. provisional application No. 62/195,263, filed Jul. 21, 2015, U.S. provisional application No. 62/241,699, filed Oct. 14, 2015, U.S. provisional application No. 62/244,859, filed Oct. 22, 2015, U.S. provisional application No. 62/247,551, filed Oct. 28, 2015, and U.S. provisional application No. 62/351,148, filed Jun. 16, 2016, each of which is incorporated by reference herein in its entirety. This application also claims the benefit under 35 U.S.C. § 119(e) of U.S. provisional application No. 62/244,855, filed Oct. 22, 2015, U.S. provisional application No. 62/247,527, filed Oct. 28, 2015, U.S. provisional application No. 62/303,405, filed Mar. 4, 2016, and U.S. provisional application No. 62/351,200, filed Jun. 16, 2016, each of which is incorporated by reference herein in its entirety. This application also claims the benefit under 35 U.S.C. § 119(e) of U.S. provisional application No. 62/199,204, filed Jul. 30, 2015, U.S. provisional application No. 62/245,179, filed Oct. 22, 2015, U.S. provisional application No. 62/247,581, filed Oct. 28, 2015, and U.S. provisional application No. 62/351,206, filed Jun. 16, 2016, each of which is incorporated by reference herein in its entirety. This application also claims the benefit under 35 U.S.C. § 119(e) of U.S. provisional application No. 62/245,233, filed Oct. 22, 2015, U.S. provisional application No. 62/247,660, filed Oct. 28, 2015, U.S. provisional application No. 62/303,666, filed Mar. 4, 2016, U.S. provisional application No. 62/351,244, filed Jun. 16, 2016, and U.S. provisional application No. 62/357,806, filed Jul. 1, 2016, each of which is incorporated by reference herein in its entirety. This application also claims the benefit under 35 U.S.C. § 119(e) of U.S. provisional application No. 62/244,995, filed Oct. 22, 2015, U.S. provisional application No. 62/247,644, filed Oct. 28, 2015, and U.S. provisional application No. 62/351,267, filed Jun. 16, 2016, each of which is incorporated by reference herein in its entirety.

Provisional Applications (21)
Number Date Country
62357806 Jul 2016 US
62351148 Jun 2016 US
62351206 Jun 2016 US
62351200 Jun 2016 US
62351244 Jun 2016 US
62351267 Jun 2016 US
62303666 Mar 2016 US
62303405 Mar 2016 US
62247551 Oct 2015 US
62247527 Oct 2015 US
62247660 Oct 2015 US
62247644 Oct 2015 US
62247581 Oct 2015 US
62245179 Oct 2015 US
62244995 Oct 2015 US
62244855 Oct 2015 US
62244859 Oct 2015 US
62245233 Oct 2015 US
62241699 Oct 2015 US
62199204 Jul 2015 US
62195263 Jul 2015 US
Continuations (1)
Number Date Country
Parent 15746286 US
Child 16009811 US