Zika virus mRNA vaccines

Information

  • Patent Grant
  • 11207398
  • Patent Number
    11,207,398
  • Date Filed
    Tuesday, April 14, 2020
    4 years ago
  • Date Issued
    Tuesday, December 28, 2021
    3 years ago
Abstract
Provided herein, in some embodiments, are Zika virus RNA vaccines and methods of producing an antigen-specific immune response in a subject.
Description
BACKGROUND

Zika virus (ZIKV) was identified in 1947 from a sentinel Rhesus monkey in the Zika Forest of Uganda. Historically, ZIKV circulated between Aedes species mosquitoes, non-human primates in the jungle, and episodically spilled into human populations in Africa and parts of Southeast Asia. Infection was associated with a mild, self-limiting febrile illness characterized by headache, rash, conjunctivitis, myalgia, and arthralgia. Since 2010, and especially in the context of its spread and dissemination to countries of the Western Hemisphere, more severe clinical consequences have been observed. Infection of fetuses in utero during pregnancy, particularly during the first and second trimesters, has been associated with placental insufficiency and congenital malformations including cerebral calcifications, microcephaly, and miscarriage. In adults, ZIKV infection is linked to an increased incidence of Guillain-Barré-syndrome (GBS), an autoimmune disease characterized by paralysis and polyneuropathy. In addition to mosquito and in utero transmission, sexual transmission of ZIKV has been described from men-to-women, men-to-men, and women-to-men. Persistent ZIKV infection can occur, as viral RNA has been detected in semen, sperm, and vaginal secretions up to 6 months following infection. Thus, ZIKV is now a global disease with locally-acquired and travel-associated transmission through multiple routes in the Americas, Africa, and Asia. The emergence of ZIKV infection has prompted a global effort to develop safe and effective vaccines.


SUMMARY

Experimental results provided herein demonstrate an unexpected improvement in efficacy with Zika virus (ZIKV) RNA vaccines encoding a Japanese encephalitis virus (JEV) signal peptide fused to a ZIKV prME protein. As shown in the Examples, the ZIKV mRNA vaccine encoding a JEV signal peptide fused to prME unexpectedly provided sterilizing immunity in non-human primates at a 20-fold lower dose relative to a ZIKV mRNA vaccine encoding a IgE signal peptide fused to prME.


Thus, in some aspects, provided herein are RNA vaccines that comprise a 5′ UTR, an ORF encoding a JEV signal peptide fused to a ZIKV prME protein, and a 3′ UTR. In some embodiments, the 5′ UTR is selected from SEQ ID NO:13 and SEQ ID NO:14. In some embodiments, the ORF comprises a sequence selected from SEQ ID NOs:1-6. In some embodiments, the 3′ UTR is selected from SEQ ID NO:15 and SEQ ID NO:16. In some embodiments, the JEV signal peptide comprises the following sequence: MWLVSLAIVTACAGA (SEQ ID NO:18). In some embodiments, the JEV signal peptide is encoded by the following sequence: AUGUGGCUGGUGUCCCUGGCCAUCGUGACA GCCUGUGCUGGCGCC (SEQ ID NO:19).


Also provided herein are methods comprising administering to a subject a RNA vaccine comprising an open reading frame (ORF) encoding a JEV signal peptide fused to a ZIKV prME protein in an effective amount to induce in the subject a ZIKV prME-specific immune response, wherein the effective amount is sufficient to provide sterilizing immunity in the subject at an at least 10-fold lower dose relative to a ZIKV mRNA vaccine encoding a IgE signal peptide fused to prME. In some embodiments, the effective amount is sufficient to provide sterilizing immunity in the subject at an at least 20-fold lower dose relative to a ZIKV mRNA vaccine encoding a IgE signal peptide fused to prME.


In some aspects, the methods comprise administering to a subject a RNA vaccine comprising an ORF encoding a JEV signal peptide fused to a ZIKV prME protein in an effective amount to reduce viral load in the subject by at least 80%, relative to a control, at 3-7 days following exposure to ZIKV, wherein the control is the viral load in a subject administered a ZIKV RNA vaccine lacking the JEV signal sequence.


In other aspects, the methods comprise administering to a subject a RNA vaccine comprising an ORF encoding a JEV signal peptide fused to a ZIKV prME protein in an effective amount to induce in the subject a ZIKV prME-specific immune response, wherein efficacy of the RNA vaccine is at least 80% relative to unvaccinated control subjects.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a graph showing the viral yield (log10 focus forming units (FFU)/ml) 3, 4, 5, 6 and 7 days post challenge (with ZIKV) in non-human primates (NHPs) vaccinated with 10 μg, 50 μg, or 200 μg ZIKV mRNA vaccine. Vaccine ‘mRNA-1325’ encodes an IgE signal peptide fused to ZIKV prME. Vaccine ‘mRNA-1893’ encodes a JEV signal peptide fused to ZIKV prME. A single 200 μg dose of the mRNA-1325 vaccine confers nearly complete protection. Unexpectedly, the mRNA-1893 vaccine outperforms the mRNA-1325 vaccine in this model by at least 20×.



FIG. 2 includes graphs showing neutralizing antibody titers (EC50 fold change relative to week 8) obtained from the same NHP experiments described in FIG. 1.





DETAILED DESCRIPTION

Zika virus (ZIKV) is a member of the Flaviviridae virus family and the flavivirus genus. In humans, it causes a disease known as Zika fever. It is related to dengue, yellow fever, West Nile and Japanese encephalitis, viruses that are also members of the virus family Flaviviridae. ZIKV is spread to people through mosquito bites. The most common symptoms of ZIKV disease (Zika) are fever, rash, joint pain, and red eye. The illness is usually mild with symptoms lasting from several days to a week. There is no vaccine to prevent, or medicine to treat ZIKV.


Provided herein, in some embodiments, are ZIKV ribonucleic acid (RNA) vaccines (e.g., mRNA vaccines) comprising a 5′ untranslated region (UTR), an open reading frame (ORF) encoding a JEV signal peptide fused to a ZIKV prME protein, and a 3′ UTR. In some embodiments, the ZIKV RNA vaccines comprise a polyA tail.


A 5′ UTR is region of an mRNA that is directly upstream (5′) from the start codon (the first codon of an mRNA transcript translated by a ribosome). A 5′ UTR does not encode a polypeptide (is non-coding). In some embodiments, a 5′ UTR of the present disclosure comprises a sequence selected from SEQ ID NO:13 and SEQ ID NO:14.


A 3′ UTR is region of an mRNA that is directly downstream (3′) from the stop codon (the codon of an mRNA transcript that signals a termination of translation) A 3′ UTR does not encode a polypeptide (is non-coding). In some embodiments, a 3′ UTR of the present disclosure comprises a sequence selected from SEQ ID NO:15 and SEQ ID NO:16.


A polyA tail is a region of mRNA that is downstream, e.g., directly downstream, from the 3′ UTR and contains multiple, consecutive adenosine monophosphates. In a relevant biological setting (e.g., in cells, in vivo), the polyA tail functions to protect mRNA from enzymatic degradation, e.g., in the cytoplasm, and aids in transcription termination, export of the mRNA from the nucleus, and translation. A polyA tail may comprise, for example, 10 to 300 adenosine monophosphates. For example, a polyA tail may comprise 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290 or 300 adenosine monophosphates. In some embodiments, a polyA tail comprises 50 to 250 adenosine monophosphates. In some embodiments, a polyA tail comprises 100 adenosine monophosphates.


In some embodiments, the ZIKV RNA vaccine comprises 5′ terminal cap, for example, 7mG(5′)ppp(5′)NlmpNp.


An open reading frame is a continuous stretch of DNA or RNA beginning with a start codon (e.g., methionine (ATG or AUG)) and ending with a stop codon (e.g., TAA, TAG or TGA, or UAA, UAG or UGA). In some embodiments, an ORF of the present disclosure is selected from SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:5, and SEQ ID NO:6. In some embodiments, the ORF comprises the sequence of SEQ ID NO:1. In some embodiments, the ORF comprises the sequence of SEQ ID NO:2. In some embodiments, the ORF comprises the sequence of SEQ ID NO:3. In some embodiments, the ORF comprises the sequence of SEQ ID NO:4. In some embodiments, the ORF comprises the sequence of SEQ ID NO:5. In some embodiments, the ORF comprises the sequence of SEQ ID NO:6.


The ZIKV RNA vaccines (e.g., mRNA vaccines) of the present disclosure encode a JEV signal peptide (e.g., SEQ ID NO:18) fused (in frame) to a ZIKV prME protein. The particular prME sequence may be from any ZIKV strain, for example those strains as are known in the art or as otherwise described herein, such as a Brazilian strain, a Micronesian strain, or an African strain. Within the Zika family, there is a high level of homology within the prME sequence (>90%) across all strains so far isolated. The high degree of homology is also preserved when comparing the original isolates from 1947 to the more contemporary strains circulating in Brazil in 2015, suggesting that there is “drift” occurring from the original isolates. Furthermore, attenuated virus preparations have provided cross-immunization to all other strains tested, including Latin American/Asian, and African. Overall, this data suggests that cross-protection of all Zika strains is possible with a vaccine based on prME. In fact, the prM/M and E proteins of ZIKV have a very high level (99%) of sequence conservation between the currently circulating Asiatic and Brazilian viral strains.


The M and E proteins are on the surface of the viral particle. Neutralizing antibodies predominantly bind to the E protein, the preM/M protein functions as a chaperone for proper folding of E protein and prevent premature fusion of E protein within acidic compartments along the cellular secretory pathway.


In some embodiments, the ZIKV prME protein comprises a sequence selected from SEQ ID NO:7, SEQ ID NO:8, SEQ ID NO:9, SEQ ID NO:10, SEQ ID NO:11, and SEQ ID NO:12. In some embodiments, the ZIKV prME protein comprises the sequence of SEQ ID NO:7. In some embodiments, the ZIKV prME protein comprises the sequence of SEQ ID NO:8. In some embodiments, the ZIKV prME protein comprises the sequence of SEQ ID NO:9. In some embodiments, the ZIKV prME protein comprises the sequence of SEQ ID NO:10. In some embodiments, the ZIKV prME protein comprises the sequence of SEQ ID NO:11. In some embodiments, the ZIKV prME protein comprises the sequence of SEQ ID NO:12.


ZIKV RNA vaccines (e.g., mRNA vaccines) of the present disclosure encode a JEV signal peptide fused to a prME protein. Signal peptides, comprising the N-terminal 15-60 amino acids of proteins, are typically needed for the translocation across the membrane on the secretory pathway and, thus, universally control the entry of most proteins both in eukaryotes and prokaryotes to the secretory pathway. In eukaryotes, the signal peptide of a nascent precursor protein (pre-protein) directs the ribosome to the rough endoplasmic reticulum (ER) membrane and initiates the transport of the growing peptide chain across it for processing. ER processing produces mature proteins, wherein the signal peptide is cleaved from precursor proteins, typically by a ER-resident signal peptidase of the host cell, or they remain uncleaved and function as a membrane anchor. A signal peptide may also facilitate the targeting of the protein to the cell membrane. In some embodiments, the JEV signal peptide of the present disclosure comprises the sequence of SEQ ID NO:18.


In some embodiments, a RNA (e.g., mRNA) of a ZIKV RNA vaccine of the present disclosure is chemically modified. For example, at least 80% of the uracil in the ORF may have a chemical modification selected from N1-methyl-pseudouridine and N1-ethyl-pseudouridine. In some embodiments, at least 85%, at least 90%, at least 95% or 100% of the uracil in the ORF have a chemical modification. In some embodiments, the chemical modification is in the 5-position of the uracil.


In some embodiments, at least one RNA (e.g., mRNA) of the ZIKV RNA vaccines of the present disclosure are not chemically modified, and comprise the standard ribonucleotides consisting of adenosine, guanosine, cytosine and uridine.


ZIKV RNA vaccines (e.g., mRNA vaccines) of the present disclosure are typically formulated in lipid nanoparticle. In some embodiments, the lipid nanoparticle comprises at least one ionizable cationic lipid, at least one non-cationic lipid, at least one sterol, and/or at least one polyethylene glycol (PEG)-modified lipid. In some embodiments, the lipid nanoparticle comprises a molar ratio of 20-60% ionizable cationic lipid, 5-25% non-cationic lipid, 25-55% sterol, and 0.5-15% PEG-modified lipid. In some embodiments, the ionizable cationic lipid comprises the following compound:




embedded image


Data provided herein demonstrates that ZIKV mRNA vaccines encoding a JEV signal peptide fused to prME provide sterilizing immunity in non-human primates at a 20-fold lower dose relative to a ZIKV mRNA vaccine encoding a IgE signal peptide fused to prME. Thus, provided herein, in some embodiments, are methods comprising administering to a subject a RNA vaccine comprising an ORF encoding a JEV signal peptide fused to a ZIKV prME protein in an effective amount to induce in the subject a ZIKV prME-specific immune response, wherein the effective amount is sufficient to provide sterilizing immunity in the subject at an at least 5-fold lower dose relative to a ZIKV mRNA vaccine encoding a IgE signal peptide fused to prME. In some embodiments, the effective amount is sufficient to provide sterilizing immunity in the subject at an at least 10-fold lower dose relative to a ZIKV mRNA vaccine encoding a IgE signal peptide fused to prME. the effective amount is sufficient to provide sterilizing immunity in the subject at an at least 15-fold lower dose relative to a ZIKV mRNA vaccine encoding a IgE signal peptide fused to prME. the effective amount is sufficient to provide sterilizing immunity in the subject at an at least 20-fold lower dose relative to a ZIKV mRNA vaccine encoding a IgE signal peptide fused to prME.


A subject may be any mammal, including non-human primate and human subjects. Typically, a subject is a human subject.


In some embodiments, methods of the present disclosure comprise administering to a subject a RNA vaccine comprising an ORF encoding a JEV signal peptide fused to a ZIKV prME protein in an effective amount to reduce viral load in the subject by at least 80%, relative to a control (e.g., at 3-7 days following exposure to ZIKV), wherein the control is the viral load in a subject administered a ZIKV RNA vaccine lacking the JEV signal sequence. In some embodiments, the amount of ZIKV RNA vaccine administered is effective to reduce viral load in the subject by at least 85%, at least 90%, at least 95%, at least 98% or 100%. In some embodiments, the control is the viral load in a subject administered a ZIKV RNA vaccine containing an IgE signal sequence. In some embodiments, the control is the viral load in an unvaccinated subject.


In some embodiments, the methods comprise administering to a subject ZIKV vaccine comprising an ORF encoding a JEV signal peptide fused to a ZIKV prME protein in an effective amount to induce in the subject a ZIKV prME-specific immune response, wherein efficacy of the RNA vaccine is at least 60% relative to unvaccinated control subjects. For example, the efficacy of the ZIKV RNA vaccine may be at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, or at least 98%, relative to unvaccinated control subjects. In some embodiments, the efficacy of the RNA vaccine is at least 80% relative to unvaccinated control subjects. In some embodiments, the efficacy of the RNA vaccine is at least 95% relative to unvaccinated control subjects.


Vaccine efficacy may be assessed using standard analyses (see, e.g., Weinberg et al., J Infect Dis. 2010 Jun. 1; 201(11):1607-10). For example, vaccine efficacy may be measured by double-blind, randomized, clinical controlled trials. Vaccine efficacy may be expressed as a proportionate reduction in disease attack rate (AR) between the unvaccinated (ARU) and vaccinated (ARV) study cohorts and can be calculated from the relative risk (RR) of disease among the vaccinated group with use of the following formulas:

Efficacy=(ARU−ARV)/ARU×100; and
Efficacy=(1−RR)×100.


Likewise, vaccine effectiveness may be assessed using standard analyses (see, e.g., Weinberg et al., J Infect Dis. 2010 Jun. 1; 201(11):1607-10). Vaccine effectiveness is an assessment of how a vaccine (which may have already proven to have high vaccine efficacy) reduces disease in a population. This measure can assess the net balance of benefits and adverse effects of a vaccination program, not just the vaccine itself, under natural field conditions rather than in a controlled clinical trial. Vaccine effectiveness is proportional to vaccine efficacy (potency) but is also affected by how well target groups in the population are immunized, as well as by other non-vaccine-related factors that influence the ‘real-world’ outcomes of hospitalizations, ambulatory visits, or costs. For example, a retrospective case control analysis may be used, in which the rates of vaccination among a set of infected cases and appropriate controls are compared. Vaccine effectiveness may be expressed as a rate difference, with use of the odds ratio (OR) for developing infection despite vaccination:

Effectiveness=(1−OR)×100.


In some embodiments, the effective amount of a ZIKV RNA vaccine is sufficient to produce detectable levels of ZIKV prME protein as measured in serum of the subject at 1-72 hours post administration.


In some embodiments, the effective amount of a ZIKV RNA vaccine amount is sufficient to produce a 1,000-10,000 neutralization titer produced by neutralizing antibody against the ZIKV prME protein as measured in serum of the subject at 1-72 hours post administration. In some embodiments, the effective amount of a ZIKV RNA vaccine amount is sufficient to produce a 1,000-5,000 neutralization titer produced by neutralizing antibody against the ZIKV prME protein as measured in serum of the subject at 1-72 hours post administration. In some embodiments, the effective amount of a ZIKV RNA vaccine amount is sufficient to produce a 5,000-10,000 neutralization titer produced by neutralizing antibody against the ZIKV prME protein as measured in serum of the subject at 1-72 hours post administration.


In some embodiments, an anti-ZIKV prME protein antibody titer produced in a subject administered a ZIKV RNA vaccine is increased by at least 1 log relative to a control, wherein the control is an anti-ZIKV prME protein antibody titer produced in a subject who has not been administered a vaccine against ZIKV. In some embodiments, an anti-ZIKV prME protein antibody titer produced in a subject administered a ZIKV RNA vaccine is increased by at least 2 log relative to the control. In some embodiments, an anti-ZIKV prME protein antibody titer produced in a subject administered a ZIKV RNA vaccine is increased by at least 5 log relative to the control. In some embodiments, an anti-ZIKV prME protein antibody titer produced in a subject administered a ZIKV RNA vaccine is increased by at least 10 log relative to the control.


In some embodiments, an anti-ZIKV prME protein antibody titer produced in a subject is increased at least 2 times relative to a control, wherein the control is an anti-ZIKV prME protein antibody titer produced in a subject who has not been administered a vaccine against ZIKV. In some embodiments, an anti-ZIKV prME protein antibody titer produced in a subject is increased at least 5 times relative to a control. In some embodiments, an anti-ZIKV prME protein antibody titer produced in a subject is increased at least 10 times relative to a control.


The effective amount of a ZIKV RNA vaccine (e.g., mRNA vaccine), as provided herein, surprisingly may be as low as 20 μg, administered for example as a single dose or as two 10 μg doses. In some embodiments, the effective amount is 20 μg, 25 μg, 30 μg, 35 μg, 40 μg, 45 μg, 50 μg, 55 μg, 60 μg, 65 μg, 70 μg, 75 μg, 80 μg, 85 μg, 90 μg, 95 μg, 100 μg, 110 μg, 120 μg, 130 μg, 140 μg, 150 μg, 160 μg, 170 μg, 180 μg, 190 μg or 200 μg. In some embodiments, the effective amount is a total dose of 25 μg-200 μg.


Table 1 below provides examples of ZIKV mRNA vaccine sequences and corresponding protein sequences encoded by the vaccines.









TABLE 1







ZIKV mRNA Vaccine Sequences








ORF (with JEV signal
Protein (with JEV signal


sequence underlined)
sequence underlined)





ZIKV prME Brazil Isolate (mRNA)
ZIKV prME Brazil Isolate (protein)



AUGUGGCUGGUGUCCCUGGCCAUCGUGACA


MWLVSLAIVTACAGAAEVTRRGSAYYMYLDR




GCCUGUGCUGGCGCCGCUGAAGUGACCAGA

NDAGEAISFPTTLGMNKCYIQIMDLGHMCDA


AGAGGCAGCGCCUACUACAUGUACCUGGAC
TMSYECPMLDEGVEPDDVDCWCNTTSTWVVY


CGGAACGAUGCCGGCGAGGCCAUCAGCUUU
GTCHHKKGEARRSRRAVTLPSHSTRKLQTRS


CCAACCACCCUGGGCAUGAACAAGUGCUAC
QTWLESREYTKHLIRVENWIFRNPGFALAAA


AUCCAGAUCAUGGACCUGGGCCACAUGUGC
AIAWLLGSSTSQKVIYLVMILLIAPAYSIRC


GACGCCACCAUGAGCUACGAGUGCCCCAUG
IGVSNRDFVEGMSGGTWVDVVLEHGGCVTVM


CUGGACGAGGGCGUGGAACCCGACGAUGUG
AQDKPTVDIELVTTTVSNMAEVRSYCYEASI


GACUGCUGGUGCAACACCACCAGCACCUGG
SDMASDSRCPTQGEAYLDKQSDTQYVCKRTL


GUGGUGUACGGCACCUGUCACCACAAGAAG
VDRGWGNGCGLFGKGSLVTCAKFACSKKMTG


GGCGAAGCCAGACGGUCCAGACGGGCCGUG
KSIQPENLEYRIMLSVHGSQHSGMIVNDTGH


ACACUGCCUAGCCACAGCACCAGAAAGCUG
ETDENRAKVEITPNSPRAEATLGGFGSLGLD


CAGACCCGGUCCCAGACCUGGCUGGAAAGC
CEPRTGLDFSDLYYLTMNNKHWLVHKEWFHD


AGAGAGUACACCAAGCACCUGAUCCGGGUG
IPLPWHAGADTGTPHWNNKEALVEFKDAHAK


GAAAACUGGAUCUUCCGGAACCCCGGCUUU
RQTVVVLGSQEGAVHTALAGALEAEMDGAKG


GCCCUGGCCGCUGCUGCUAUUGCUUGGCUG
RLSSGHLKCRLKMDKLRLKGVSYSLCTAAFT


CUGGGCAGCAGCACCUCCCAGAAAGUGAUC
FTKIPAETLHGTVTVEVQYAGTDGPCKVPAQ


UACCUCGUGAUGAUCCUGCUGAUCGCCCCU
MAVDMQTLTPVGRLITANPVITESTENSKMM


GCCUACAGCAUCCGGUGUAUCGGCGUGUCC
LELDPPFGDSYIVIGVGEKKITHHWHRSGST


AACCGGGACUUCGUGGAAGGCAUGAGCGGC
IGKAFEATVRGAKRMAVLGDTAWDFGSVGGA


GGCACAUGGGUGGACGUGGUGCUGGAACAU
LNSLGKGIHQIFGAAFKSLFGGMSWFSQILI


GGCGGCUGCGUGACAGUGAUGGCCCAGGAC
GTLLMWLGLNTKNGSISLMCLALGGVLIFLS


AAGCCCACCGUGGACAUCGAGCUCGUGACC
TAVSA (SEQ ID NO: 7)


ACCACCGUGUCCAAUAUGGCCGAAGUGCGG



AGCUACUGCUACGAGGCCAGCAUCAGCGAC



AUGGCCAGCGACAGCAGAUGCCCUACACAG



GGCGAGGCCUACCUGGACAAGCAGUCCGAC



ACCCAGUACGUGUGCAAGCGGACCCUGGUG



GAUAGAGGCUGGGGCAAUGGCUGCGGCCUG



UUUGGCAAGGGCAGCCUCGUGACCUGCGCC



AAGUUCGCCUGCAGCAAGAAGAUGACCGGC



AAGAGCAUCCAGCCCGAGAACCUGGAAUAC



CGGAUCAUGCUGAGCGUGCACGGCAGCCAG



CACUCCGGCAUGAUCGUGAACGACACCGGC



CACGAGACAGACGAGAACCGGGCCAAGGUG



GAAAUCACCCCUAACAGCCCUAGAGCCGAG



GCCACACUGGGCGGCUUUGGAUCUCUGGGC



CUGGACUGCGAGCCUAGAACCGGCCUGGAU



UUCAGCGACCUGUACUACCUGACCAUGAAC



AACAAGCACUGGCUGGUGCACAAAGAGUGG



UUCCACGACAUCCCUCUGCCCUGGCAUGCC



GGCGCUGAUACAGGCACACCCCACUGGAAC



AACAAAGAGGCUCUGGUGGAAUUCAAGGAC



GCCCACGCCAAGCGGCAGACCGUGGUGGUG



CUGGGAUCUCAGGAAGGCGCCGUGCAUACA



GCUCUGGCAGGCGCCCUGGAAGCCGAAAUG



GAUGGCGCCAAAGGCAGACUGUCCAGCGGC



CACCUGAAGUGCCGGCUGAAGAUGGACAAG



CUGCGGCUGAAGGGCGUGUCCUACUCCCUG



UGUACCGCCGCCUUCACCUUCACCAAGAUC



CCCGCCGAGACACUGCACGGCACCGUGACU



GUGGAAGUGCAGUACGCCGGCACCGACGGC



CCUUGUAAAGUGCCUGCUCAGAUGGCCGUG



GAUAUGCAGACCCUGACCCCUGUGGGCAGA



CUGAUCACCGCCAACCCCGUGAUCACCGAG



AGCACCGAGAACAGCAAGAUGAUGCUGGAA



CUGGACCCACCCUUCGGCGACAGCUACAUC



GUGAUCGGCGUGGGAGAGAAGAAGAUCACC



CACCACUGGCACAGAAGCGGCAGCACCAUC



GGCAAGGCCUUUGAGGCUACAGUGCGGGGA



GCCAAGAGAAUGGCCGUGCUGGGAGAUACC



GCCUGGGACUUUGGCUCUGUGGGCGGAGCC



CUGAACUCUCUGGGCAAGGGAAUCCACCAG



AUCUUCGGAGCCGCCUUUAAGAGCCUGUUC



GGCGGCAUGAGCUGGUUCAGCCAGAUCCUG



AUCGGCACCCUGCUGAUGUGGCUGGGCCUG



AACACCAAGAACGGCAGCAUCUCCCUGAUG



UGCCUGGCUCUGGGAGGCGUGCUGAUCUUC



CUGAGCACAGCCGUGUCUGCC (SEQ ID



NO: 1)






ZIKV prME Brazil Isolate
ZIKV prME Brazil Isolate


(mRNA), with T76R, Q77E,
(protein), with T76R, Q77E,


W101R, L107R mutations
W101R, L107R mutations



AUGUGGCUGGUGUCCCUGGCCAUCGUGACA


MWLVSLAIVTACAGAAEVTRRGSAYYMYLDR




GCCUGUGCUGGCGCCGCUGAAGUGACCAGA

NDAGEAISFPTTLGMNKCYIQIMDLGHMCDA


AGAGGCAGCGCCUACUACAUGUACCUGGAC
TMSYECPMLDEGVEPDDVDCWCNTTSTWVVY


CGGAACGAUGCCGGCGAGGCCAUCAGCUUU
GTCHHKKGEARRSRRAVTLPSHSTRKLQTRS


CCAACCACCCUGGGCAUGAACAAGUGCUAC
QTWLESREYTKHLIRVENWIFRNPGFALAAA


AUCCAGAUCAUGGACCUGGGCCACAUGUGC
AIAWLLGSSTSQKVIYLVMILLIAPAYSIRC


GACGCCACCAUGAGCUACGAGUGCCCCAUG
IGVSNRDFVEGMSGGTWVDVVLEHGGCVTVM


CUGGACGAGGGCGUGGAACCCGACGAUGUG
AQDKPTVDIELVTTTVSNMAEVRSYCYEASI


GACUGCUGGUGCAACACCACCAGCACCUGG
SDMASDSRCPREGEAYLDKQSDTQYVCKRTL


GUGGUGUACGGCACCUGUCACCACAAGAAG
VDRGRGNGCGRFGKGSLVTCAKFACSKKMTG


GGCGAAGCCAGACGGUCCAGACGGGCCGUG
KSIQPENLEYRIMLSVHGSQHSGMIVNDTGH


ACACUGCCUAGCCACAGCACCAGAAAGCUG
ETDENRAKVEITPNSPRAEATLGGFGSLGLD


CAGACCCGGUCCCAGACCUGGCUGGAAAGC
CEPRTGLDFSDLYYLTMNNKHWLVHKEWFHD


AGAGAGUACACCAAGCACCUGAUCCGGGUG
IPLPWHAGADTGTPHWNNKEALVEFKDAHAK


GAAAACUGGAUCUUCCGGAACCCCGGCUUU
RQTVVVLGSQEGAVHTALAGALEAEMDGAKG


GCCCUGGCCGCUGCUGCUAUUGCUUGGCUG
RLSSGHLKCRLKMDKLRLKGVSYSLCTAAFT


CUGGGCAGCAGCACCUCCCAGAAAGUGAUC
FTKIPAETLHGTVTVEVQYAGTDGPCKVPAQ


UACCUCGUGAUGAUCCUGCUGAUCGCCCCU
MAVDMQTLTPVGRLITANPVITESTENSKMM


GCCUACAGCAUCCGGUGUAUCGGCGUGUCC
LELDPPFGDSYIVIGVGEKKITHHWHRSGST


AACCGGGACUUCGUGGAAGGCAUGAGCGGC
IGKAFEATVRGAKRMAVLGDTAWDFGSVGGA


GGCACAUGGGUGGACGUGGUGCUGGAACAU
LNSLGKGIHQIFGAAFKSLFGGMSWFSQILI


GGCGGCUGCGUGACAGUGAUGGCCCAGGAC
GTLLMWLGLNTKNGSISLMCLALGGVLIFLS


AAGCCCACCGUGGACAUCGAGCUCGUGACC
TAVSA (SEQ ID NO: 8)


ACCACCGUGUCCAAUAUGGCCGAAGUGCGG



AGCUACUGCUACGAGGCCAGCAUCAGCGAC



AUGGCCAGCGACAGCAGAUGCCCCAGAGAG



GGCGAGGCCUACCUGGACAAGCAGUCCGAC



ACCCAGUACGUGUGCAAGCGGACCCUGGUG



GACAGAGGCAGAGGCAAUGGCUGCGGCAGA



UUCGGCAAGGGCAGCCUCGUGACCUGCGCC



AAGUUCGCCUGCAGCAAGAAGAUGACCGGC



AAGAGCAUCCAGCCCGAGAACCUGGAAUAC



CGGAUCAUGCUGAGCGUGCACGGCAGCCAG



CACUCCGGCAUGAUCGUGAACGACACCGGC



CACGAGACAGACGAGAACCGGGCCAAGGUG



GAAAUCACCCCUAACAGCCCUAGAGCCGAG



GCCACACUGGGCGGCUUUGGAUCUCUGGGC



CUGGACUGCGAGCCUAGAACCGGCCUGGAU



UUCAGCGACCUGUACUACCUGACCAUGAAC



AACAAGCACUGGCUGGUGCACAAAGAGUGG



UUCCACGACAUCCCUCUGCCCUGGCAUGCC



GGCGCUGAUACAGGCACACCCCACUGGAAC



AACAAAGAGGCUCUGGUGGAAUUCAAGGAC



GCCCACGCCAAGCGGCAGACCGUGGUGGUG



CUGGGAUCUCAGGAAGGCGCCGUGCAUACA



GCUCUGGCAGGCGCCCUGGAAGCCGAAAUG



GAUGGCGCCAAAGGCAGACUGUCCAGCGGC



CACCUGAAGUGCCGGCUGAAGAUGGACAAG



CUGCGGCUGAAGGGCGUGUCCUACUCCCUG



UGUACCGCCGCCUUCACCUUCACCAAGAUC



CCCGCCGAGACACUGCACGGCACCGUGACU



GUGGAAGUGCAGUACGCCGGCACCGACGGC



CCUUGUAAAGUGCCUGCUCAGAUGGCCGUG



GAUAUGCAGACCCUGACCCCUGUGGGCAGA



CUGAUCACCGCCAACCCCGUGAUCACCGAG



AGCACCGAGAACAGCAAGAUGAUGCUGGAA



CUGGACCCACCCUUCGGCGACAGCUACAUC



GUGAUCGGCGUGGGAGAGAAGAAGAUCACC



CACCACUGGCACAGAAGCGGCAGCACCAUC



GGCAAGGCCUUUGAGGCUACAGUGCGGGGA



GCCAAGAGAAUGGCCGUGCUGGGAGAUACC



GCCUGGGACUUUGGCUCUGUGGGCGGAGCC



CUGAACUCUCUGGGCAAGGGAAUCCACCAG



AUCUUCGGAGCCGCCUUUAAGAGCCUGUUC



GGCGGCAUGAGCUGGUUCAGCCAGAUCCUG



AUCGGCACCCUGCUGAUGUGGCUGGGCCUG



AACACCAAGAACGGCAGCAUCUCCCUGAUG



UGCCUGGCUCUGGGAGGCGUGCUGAUCUUC



CUGAGCACAGCCGUGUCUGCC (SEQ ID



NO: 2)






ZIKV prME Micronesia
ZIKV prME Micronesia


Isolate (mRNA)
Isolate (protein)


AUGUGGCUGGUGAGCCUGGCCAUCGUGACC

MWLVSLAIVTACAGAVEVTRRGSAYYMYLDR



GCCUGCGCCGGCGCCGUGGAGGUGACCAGA
SDAGEAISFPTTLGMNKCYIQIMDLGHMCDA


AGAGGCAGCGCCUACUACAUGUACCUGGAC
TMSYECPMLDEGVEPDDVDCWCNTTSTWVVY


AGAAGCGACGCCGGCGAGGCCAUCAGCUUC
GTCHHKKGEARRSRRAVTLPSHSTRKLQTRS


CCUACCACCCUGGGCAUGAACAAGUGCUAC
QTWLESREYTKHLIRVENWIFRNPGFALAAA


AUCCAGAUCAUGGACCUGGGCCACAUGUGC
AIAWLLGSSTSQKVIYLVMILLIAPAYSIRC


GACGCCACCAUGAGCUACGAGUGCCCUAUG
IGVSNRDFVEGMSGGTWVDVVLEHGGCVTVM


CUGGACGAGGGCGUGGAGCCUGACGACGUG
AQDKPAVDIELVTTTVSNMAEVRSYCYEASI


GACUGCUGGUGCAACACCACCAGCACCUGG
SDMASDSRCPTQGEAYLDKQSDTQYVCKRTL


GUGGUGUACGGCACCUGCCACCACAAGAAG
VDRGWGNGCGLFGKGSLVTCAKFACSKKMTG


GGAGAGGCGAGAAGAAGCAGGAGAGCCGUG
KSIQPENLEYRIMLSVHGSQHSGMIVNDTGH


ACCCUGCCUAGCCACAGCACCAGAAAGCUG
ETDENRAKVEITPNSPRAEATLGGFGSLGLD


CAGACCCGGAGCCAGACCUGGCUGGAGAGC
CEPRTGLDFSDLYYLTMNNKHWLVHKEWFHD


AGAGAGUACACCAAGCACCUGAUCAGAGUG
IPLPWHAGADTGTPHWNNKEALVEFKDAHAK


GAGAACUGGAUCUUCAGAAACCCUGGCUUC
RQTVVVLGSQEGAVHTALAGALEAEMDGAKG


GCCCUGGCCGCGGCUGCUAUCGCCUGGCUG
RLSSGHLKCRLKMDKLRLKGVSYSLCTAAFT


CUGGGUAGUUCAACCAGCCAGAAGGUGAUC
FTKIPAETLHGTVTVEVQYAGTDGPCKVPAQ


UACCUGGUGAUGAUCCUGCUGAUCGCCCCG
MAVDMQTLTPVGRLITANPVITESTENSKMM


GCAUACAGCAUCCGCUGCAUCGGCGUGAGC
LELDPPFGDSYIVIGVGEKKITHHWHRSGST


AACAGAGACUUCGUGGAGGGCAUGAGCGGA
IGKAFEATVRGAKRMAVLGDTAWDFGSVGGA


GGAACGUGGGUUGACGUGGUGCUGGAGCAC
LNSLGKGIHQIFGAAFKSLFGGMSWFSQILI


GGCGGCUGCGUGACCGUGAUGGCCCAGGAC
GTLLVWLGLNTKNGSISLTCLALGGVLIFLS


AAGCCUGCCGUGGACAUCGAGCUGGUGACC
TAVSA (SEQ ID NO: 9)


ACCACCGUAUCCAACAUGGCCGAGGUGAGA



AGCUACUGCUACGAGGCUAGCAUAAGCGAC



AUGGCCAGCGACAGCCGAUGCCCUACCCAG



GGAGAAGCCUACCUGGACAAGCAGAGCGAC



ACCCAGUACGUGUGCAAGAGAACCCUGGUG



GACAGAGGCUGGGGCAACGGCUGCGGCCUG



UUCGGCAAGGGCAGCCUGGUUACUUGCGCC



AAGUUCGCCUGCAGCAAGAAGAUGACCGGC



AAGAGCAUCCAGCCUGAGAACCUGGAGUAC



AGAAUCAUGCUGAGCGUGCACGGCAGCCAG



CACAGCGGCAUGAUCGUGAACGACACCGGC



CACGAAACAGACGAGAACAGAGCCAAGGUG



GAGAUCACCCCUAACAGCCCUAGAGCCGAG



GCCACCCUUGGCGGCUUCGGCAGCCUCGGC



CUGGACUGCGAGCCUAGAACGGGCCUGGAU



UUCAGCGACCUGUACUACCUGACUAUGAAU



AACAAGCACUGGCUUGUUCACAAGGAGUGG



UUCCACGACAUCCCUCUGCCUUGGCACGCG



GGAGCUGACACAGGAACCCCUCACUGGAAC



AACAAGGAGGCCCUAGUUGAGUUCAAGGAC



GCCCACGCCAAGAGACAGACCGUGGUCGUG



CUGGGUUCCCAAGAGGGCGCUGUCCACACU



GCACUCGCUGGCGCCCUGGAGGCCGAGAUG



GACGGCGCCAAGGGAAGACUGAGCAGCGGC



CACCUGAAGUGCAGGCUGAAGAUGGACAAG



CUGCGGCUGAAGGGCGUGUCCUACAGCCUG



UGCACCGCCGCCUUCACCUUCACCAAGAUC



CCUGCCGAGACACUACACGGCACAGUGACC



GUCGAGGUGCAGUACGCCGGCACCGACGGC



CCUUGCAAGGUGCCUGCCCAGAUGGCCGUC



GAUAUGCAAACUCUGACCCCUGUGGGACGG



CUUAUCACCGCCAACCCUGUGAUUACUGAG



AGCACCGAGAAUAGCAAGAUGAUGUUGGAA



CUGGACCCUCCUUUCGGCGACAGCUACAUC



GUGAUUGGAGUUGGAGAGAAGAAGAUCACA



CACCACUGGCACAGAUCUGGAUCUACUAUU



GGCAAGGCCUUCGAGGCAACAGUGAGAGGA



GCAAAGAGAAUGGCAGUUCUGGGAGACACC



GCCUGGGAUUUCGGAAGCGUAGGAGGUGCA



UUGAACUCCCUAGGAAAGGGAAUCCACCAG



AUCUUCGGAGCUGCAUUCAAGAGCCUAUUC



GGCGGAAUGUCCUGGUUCAGCCAGAUCCUG



AUCGGCACCCUGCUUGUGUGGCUUGGAUUG



AACACCAAGAACGGUAGUAUUAGUCUGACC



UGCCUGGCUCUCGGCGGUGUGCUGAUCUUC



CUGAGUACUGCGGUGAGCGCC (SEQ ID



NO: 3)






ZIKV prME Micronesia Isolate
ZIKV prME Micronesia Isolate


(mRNA), with T76R, Q77E,
(protein), with T76R, Q77E,


W101R, L107R mutations
W101R, L107R mutations


AUGUGGCUGGUGAGCCUGGCCAUCGUGACC

MWLVSLAIVTACAGAVEVTRRGSAYYMYLDR



GCCUGCGCCGGCGCCGUGGAGGUGACCAGA
SDAGEAISFPTTLGMNKCYIQIMDLGHMCDA


AGAGGCAGCGCCUACUACAUGUACCUGGAC
TMSYECPMLDEGVEPDDVDCWCNTTSTWVVY


AGAAGCGACGCCGGCGAGGCCAUCAGCUUC
GTCHHKKGEARRSRRAVTLPSHSTRKLQTRS


CCUACCACCCUGGGCAUGAACAAGUGCUAC
QTWLESREYTKHLIRVENWIFRNPGFALAAA


AUCCAGAUCAUGGACCUGGGCCACAUGUGC
AIAWLLGSSTSQKVIYLVMILLIAPAYSIRC


GACGCCACCAUGAGCUACGAGUGCCCUAUG
IGVSNRDFVEGMSGGTWVDVVLEHGGCVTVM


CUGGACGAGGGCGUGGAGCCUGACGACGUG
AQDKPAVDIELVTTTVSNMAEVRSYCYEASI


GACUGCUGGUGCAACACCACCAGCACCUGG
SDMASDSRCPREGEAYLDKQSDTQYVCKRTL


GUGGUGUACGGCACCUGCCACCACAAGAAG
VDRGRGNGCGRFGKGSLVTCAKFACSKKMTG


GGCGAGGCCAGAAGAAGCAGAAGAGCCGUG
KSIQPENLEYRIMLSVHGSQHSGMIVNDTGH


ACCCUGCCUAGCCACAGCACCAGAAAGCUG
ETDENRAKVEITPNSPRAEATLGGFGSLGLD


CAGACCAGAAGCCAGACCUGGCUGGAGAGC
CEPRTGLDFSDLYYLTMNNKHWLVHKEWFHD


AGAGAGUACACCAAGCACCUGAUCAGAGUG
IPLPWHAGADTGTPHWNNKEALVEFKDAHAK


GAGAACUGGAUCUUCAGAAACCCUGGCUUC
RQTVVVLGSQEGAVHTALAGALEAEMDGAKG


GCCCUGGCCGCCGCCGCCAUCGCCUGGCUG
RLSSGHLKCRLKMDKLRLKGVSYSLCTAAFT


CUGGGCAGCAGCACCAGCCAGAAGGUGAUC
FTKIPAETLHGTVTVEVQYAGTDGPCKVPAQ


UACCUGGUGAUGAUCCUGCUGAUCGCCCCU
MAVDMQTLTPVGRLITANPVITESTENSKMM


GCCUACAGCAUCAGAUGCAUCGGCGUGAGC
LELDPPFGDSYIVIGVGEKKITHHWHRSGST


AACAGAGACUUCGUGGAGGGCAUGAGCGGC
IGKAFEATVRGAKRMAVLGDTAWDFGSVGGA


GGCACCUGGGUGGACGUGGUGCUGGAGCAC
LNSLGKGIHQIFGAAFKSLFGGMSWFSQILI


GGCGGCUGCGUGACCGUGAUGGCCCAGGAC
GTLLVWLGLNTKNGSISLTCLALGGVLIFLS


AAGCCUGCCGUGGACAUCGAGCUGGUGACC
TAVSA (SEQ ID NO: 10)


ACCACCGUGAGCAACAUGGCCGAGGUGAGA



AGCUACUGCUACGAGGCCAGCAUCAGCGAC



AUGGCCAGCGACAGCAGAUGCCCUAGAGAG



GGCGAGGCCUACCUGGACAAGCAGAGCGAC



ACCCAGUACGUGUGCAAGAGAACCCUGGUG



GACAGAGGCAGAGGCAACGGCUGCGGCAGA



UUCGGCAAGGGCAGCCUGGUGACCUGCGCC



AAGUUCGCCUGCAGCAAGAAGAUGACCGGC



AAGAGCAUCCAGCCUGAGAACCUGGAGUAC



AGAAUCAUGCUGAGCGUGCACGGCAGCCAG



CACAGCGGCAUGAUCGUGAACGACACCGGC



CACGAGACCGACGAGAACAGAGCCAAGGUG



GAGAUCACCCCUAACAGCCCUAGAGCCGAG



GCCACCCUGGGCGGCUUCGGCAGCCUGGGC



CUGGACUGCGAGCCUAGAACCGGCCUGGAC



UUCAGCGACCUGUACUACCUGACCAUGAAC



AACAAGCACUGGCUGGUGCACAAGGAGUGG



UUCCACGACAUCCCUCUGCCUUGGCACGCC



GGCGCCGACACCGGCACCCCUCACUGGAAC



AACAAGGAGGCCCUGGUGGAGUUCAAGGAC



GCCCACGCCAAGAGACAGACCGUGGUGGUG



CUGGGCAGCCAGGAGGGCGCCGUGCACACC



GCCCUGGCCGGCGCCCUGGAGGCCGAGAUG



GACGGCGCCAAGGGCAGACUGAGCAGCGGC



CACCUGAAGUGCAGACUGAAGAUGGACAAG



CUGAGACUGAAGGGCGUGAGCUACAGCCUG



UGCACCGCCGCCUUCACCUUCACCAAGAUC



CCUGCCGAGACCCUGCACGGCACCGUGACC



GUGGAGGUGCAGUACGCCGGCACCGACGGC



CCUUGCAAGGUGCCUGCCCAGAUGGCCGUG



GACAUGCAGACCCUGACCCCUGUGGGCAGA



CUGAUCACCGCCAACCCUGUGAUCACCGAG



AGCACCGAGAACAGCAAGAUGAUGCUGGAG



CUGGACCCUCCUUUCGGCGACAGCUACAUC



GUGAUCGGCGUGGGCGAGAAGAAGAUCACC



CACCACUGGCACAGAAGCGGCAGCACCAUC



GGCAAGGCCUUCGAGGCCACCGUGAGAGGC



GCCAAGAGAAUGGCCGUGCUGGGCGACACC



GCCUGGGACUUCGGCAGCGUGGGCGGCGCC



CUGAACAGCCUGGGCAAGGGCAUCCACCAG



AUCUUCGGCGCCGCCUUCAAGAGCCUGUUC



GGCGGCAUGAGCUGGUUCAGCCAGAUCCUG



AUCGGCACCCUGCUGGUGUGGCUGGGCCUG



AACACCAAGAACGGCAGCAUCAGCCUGACC



UGCCUGGCCCUGGGCGGCGUGCUGAUCUUC



CUGAGCACCGCCGUGAGCGCC (SEQ ID



NO: 4)






ZIKV prME Africa Isolate (mRNA)
ZIKV prME Africa Isolate (protein)


AUGUGGCUGGUGAGCCUGGCCAUCGUGACA

MWLVSLAIVTACAGAAEITRRGSAYYMYLDR



GCGUGCGCUGGAGCCGCCGAGAUCACCAGA
SDAGKAISFATTLGVNKCHVQIMDLGHMCDA


AGAGGCAGCGCCUACUACAUGUACCUGGAC
TMSYECPMLDEGVEPDDVDCWCNTTSTWVVY


AGAAGCGACGCCGGCAAGGCCAUCAGCUUC
GTCHHKKGEARRSRRAVTLPSHSTRKLQTRS


GCCACCACCCUGGGCGUGAACAAGUGCCAC
QTWLESREYTKHLIKVENWIFRNPGFALVAV


GUGCAGAUCAUGGACCUGGGCCACAUGUGC
AIAWLLGSSTSQKVIYLVMILLIAPAYSIRC


GACGCCACCAUGAGCUACGAGUGCCCUAUG
IGVSNRDFVEGMSGGTWVDVVLEHGGCVTVM


CUGGACGAGGGCGUGGAGCCUGACGACGUG
AQDKPTVDIELVTTTVSNMAEVRSYCYEASI


GACUGCUGGUGCAACACCACCAGCACCUGG
SDMASDSRCPTQGEAYLDKQSDTQYVCKRTL


GUGGUGUACGGCACCUGCCACCACAAGAAG
VDRGWGNGCGLFGKGSLVTCAKFTCSKKMTG


GGCGAGGCCAGAAGAAGCAGACGUGCCGUG
KSIQPENLEYRIMLSVHGSQHSGMIGYETDE


ACCCUGCCUAGCCACAGCACCAGAAAGCUG
DRAKVEVTPNSPRAEATLGGFGSLGLDCEPR


CAGACCAGAAGCCAGACCUGGCUGGAGAGC
TGLDFSDLYYLTMNNKHWLVHKEWFHDIPLP


AGAGAGUACACCAAGCACCUGAUCAAGGUG
WHAGADTGTPHWNNKEALVEFKDAHAKRQTV


GAGAACUGGAUCUUCAGAAACCCUGGCUUC
VVLGSQEGAVHTALAGALEAEMDGAKGRLFS


GCCCUGGUGGCCGUGGCAAUUGCCUGGCUG
GHLKCRLKMDKLRLKGVSYSLCTAAFTFTKV


CUGGGCAGCUCCACAAGCCAGAAGGUGAUC
PAETLHGTVTVEVQYAGTDGPCKIPVQMAVD


UACCUGGUGAUGAUCCUGCUGAUCGCUCCA
MQTLTPVGRLITANPVITESTENSKMMLELD


GCCUACAGCAUCCGAUGCAUCGGCGUGAGC
PPFGDSYIVIGVGDKKITHHWHRSGSTIGKA


AACAGAGACUUCGUGGAGGGCAUGAGCGGC
FEATVRGAKRMAVLGDTAWDFGSVGGVFNSL


GGAACCUGGGUUGACGUGGUGCUGGAGCAC
GKGIHQIFGAAFKSLFGGMSWFSQILIGTLL


GGCGGCUGCGUGACCGUGAUGGCCCAGGAC
VWLGLNTKNGSISLTCLALGGVMIFLSTAVS


AAGCCUACCGUGGACAUCGAGCUGGUGACC
A (SEQ ID NO: 11)


ACCACCGUUAGCAACAUGGCCGAGGUGAGA



AGCUACUGCUACGAGGCAUCCAUCAGCGAC



AUGGCCAGCGACAGCCGCUGCCCUACCCAG



GGCGAAGCAUACCUCGAUAAGCAGAGCGAC



ACCCAGUACGUGUGCAAGAGAACUCUCGUG



GACAGAGGCUGGGGCAACGGCUGCGGCCUG



UUCGGCAAGGGCAGCCUGGUGACUUGCGCC



AAGUUCACCUGCAGCAAGAAGAUGACCGGC



AAGAGCAUCCAGCCUGAGAACCUGGAGUAC



AGAAUCAUGCUGAGCGUGCACGGCAGCCAG



CACAGCGGCAUGAUCGGCUACGAAACUGAC



GAGGACAGAGCCAAGGUCGAAGUGACCCCU



AACAGCCCUAGAGCCGAGGCCACCCUUGGA



GGCUUCGGCUCCCUCGGCCUGGACUGCGAG



CCUAGAACAGGACUCGACUUCAGCGACCUG



UACUACCUGACCAUGAACAACAAGCACUGG



CUGGUCCACAAGGAGUGGUUCCACGACAUC



CCUCUGCCUUGGCACGCCGGAGCAGACACC



GGCACCCCUCACUGGAAUAACAAGGAGGCG



CUUGUGGAGUUCAAGGACGCCCACGCCAAG



AGACAGACCGUGGUUGUGCUCGGAAGUCAG



GAGGGCGCCGUGCACACCGCCCUGGCCGGA



GCCCUGGAGGCCGAGAUGGACGGCGCAAAG



GGCAGACUGUUCAGCGGCCACCUGAAGUGC



AGACUGAAGAUGGACAAGCUGAGACUUAAG



GGCGUCAGCUACAGCCUGUGCACCGCCGCC



UUCACCUUCACCAAGGUGCCUGCCGAAACC



CUGCACGGAACUGUAACCGUAGAGGUCCAG



UACGCAGGAACCGACGGCCCUUGCAAGAUC



CCUGUGCAGAUGGCGGUGGAUAUGCAGACC



CUGACCCCUGUUGGCCGUUUGAUCACCGCC



AACCCUGUGAUAACCGAGAGCACCGAGAAC



AGCAAGAUGAUGCUGGAACUGGACCCUCCU



UUCGGCGACAGCUACAUCGUGAUCGGAGUG



GGCGAUAAGAAGAUCACCCACCACUGGCAU



CGCAGCGGUUCUACCAUCGGAAAGGCCUUC



GAAGCUACCGUUAGAGGUGCAAAGCGCAUG



GCAGUCUUAGGUGACACCGCCUGGGACUUC



GGUUCUGUCGGAGGCGUGUUCAACAGUCUG



GGCAAGGGAAUCCACCAGAUCUUCGGCGCU



GCCUUCAAGUCUUUGUUCGGAGGUAUGUCU



UGGUUCAGCCAGAUCCUGAUCGGCACCCUU



CUGGUUUGGCUGGGCCUCAACACCAAGAAC



GGAUCCAUAUCCCUGACCUGCCUGGCCUUG



GGCGGUGUCAUGAUCUUCCUGUCGACUGCC



GUGAGCGCC (SEQ ID NO: 5)






ZIKV prME Africa Isolate
ZIKV prME Africa Isolate


(mRNA), with T76R, Q77E,
(protein), with T76R, Q77E,


W101R, L107R mutations
W101R, L107R mutations


AUGUGGCUGGUGAGCCUGGCCAUCGUGACU
MWLVSLAIVTACAGAAEITRRGSAYYMYLDR


GCUUGCGCGGGUGCCGCCGAGAUCACCAGA
SDAGKAISFATTLGVNKCHVQIMDLGHMCDA


AGAGGCAGCGCCUACUACAUGUACCUGGAC
TMSYECPMLDEGVEPDDVDCWCNTTSTWVVY


AGAAGCGACGCCGGCAAGGCCAUCAGCUUC
GTCHHKKGEARRSRRAVTLPSHSTRKLQTRS


GCCACCACCCUGGGCGUGAACAAGUGCCAC
QTWLESREYTKHLIKVENWIFRNPGFALVAV


GUGCAGAUCAUGGACCUGGGCCACAUGUGC
AIAWLLGSSTSQKVIYLVMILLIAPAYSIRC


GACGCCACCAUGAGCUACGAGUGCCCUAUG
IGVSNRDFVEGMSGGTWVDVVLEHGGCVTVM


CUGGACGAGGGCGUGGAGCCUGACGACGUG
AQDKPTVDIELVTTTVSNMAEVRSYCYEASI


GACUGCUGGUGCAACACCACCAGCACCUGG
SDMASDSRCPREGEAYLDKQSDTQYVCKRTL


GUGGUGUACGGCACCUGCCACCACAAGAAG
VDRGRGNGCGRFGKGSLVTCAKFTCSKKMTG


GGCGAGGCCAGAAGAAGCAGGAGGGCCGUG
KSIQPENLEYRIMLSVHGSQHSGMIGYETDE


ACCCUGCCUAGCCACAGCACCAGAAAGCUG
DRAKVEVTPNSPRAEATLGGFGSLGLDCEPR


CAGACCAGAAGCCAGACCUGGCUGGAGAGC
TGLDFSDLYYLTMNNKHWLVHKEWFHDIPLP


AGAGAGUACACCAAGCACCUGAUCAAGGUG
WHAGADTGTPHWNNKEALVEFKDAHAKRQTV


GAGAACUGGAUCUUCAGAAACCCUGGCUUC
VVLGSQEGAVHTALAGALEAEMDGAKGRLFS


GCCCUGGUGGCCGUGGCUAUAGCCUGGCUG
GHLKCRLKMDKLRLKGVSYSLCTAAFTFTKV


CUGGGAUCUUCAACAAGCCAGAAGGUGAUC
PAETLHGTVTVEVQYAGTDGPCKIPVQMAVD


UACCUGGUGAUGAUCCUGCUGAUCGCGCCA
MQTLTPVGRLITANPVITESTENSKMMLELD


GCCUACAGCAUCCGCUGCAUCGGCGUGAGC
PPFGDSYIVIGVGDKKITHHWHRSGSTIGKA


AACAGAGACUUCGUGGAGGGCAUGAGCGGC
FEATVRGAKRMAVLGDTAWDFGSVGGVFNSL


GGAACUUGGGUGGACGUGGUGCUGGAGCAC
GKGIHQIFGAAFKSLFGGMSWFSQILIGTLL


GGCGGCUGCGUGACCGUGAUGGCCCAGGAC
VWLGLNTKNGSISLTCLALGGVMIFLSTAVS


AAGCCUACCGUGGACAUCGAGCUGGUGACC
A (SEQ ID NO: 12)


ACCACGGUUUCUAAUAUGGCCGAGGUGAGA



AGCUACUGCUACGAGGCAUCCAUCAGCGAC



AUGGCCAGCGACAGCAGGUGCCCUAGAGAA



GGAGAAGCCUAUCUCGACAAGCAGAGCGAC



ACCCAGUACGUGUGCAAGAGAACCCUCGUG



GACAGAGGCAGAGGCAACGGCUGCGGCAGA



UUCGGCAAGGGCAGCCUGGUUACGUGCGCC



AAGUUCACCUGCAGCAAGAAGAUGACCGGC



AAGAGCAUCCAGCCUGAGAACCUGGAGUAC



AGAAUCAUGCUGAGCGUGCACGGCAGCCAG



CACAGCGGCAUGAUCGGCUACGAGACAGAC



GAGGACAGAGCUAAGGUCGAGGUGACCCCU



AACUCCCCACGCGCCGAGGCUACGCUGGGA



GGCUUCGGAUCUCUGGGCCUGGACUGCGAG



CCUAGAACCGGCUUGGAUUUCAGCGACCUG



UACUACCUGACCAUGAACAACAAGCACUGG



UUGGUCCACAAGGAGUGGUUCCACGACAUC



CCUCUGCCUUGGCACGCGGGCGCUGACACC



GGCACCCCUCACUGGAAUAACAAGGAGGCC



UUGGUGGAGUUCAAGGACGCCCACGCCAAG



AGACAGACCGUGGUGGUCUUGGGUUCCCAG



GAGGGCGCCGUGCACACCGCCCUGGCAGGA



GCUCUGGAGGCCGAGAUGGACGGCGCCAAG



GGUAGACUGUUCAGCGGCCACCUGAAGUGC



AGACUGAAGAUGGAUAAGCUGAGACUCAAG



GGUGUGUCAUACAGCCUGUGCACCGCCGCC



UUCACCUUCACCAAGGUGCCUGCCGAAACC



CUGCACGGAACCGUGACUGUAGAGGUACAG



UACGCUGGCACCGACGGCCCUUGCAAGAUC



CCUGUGCAGAUGGCCGUUGACAUGCAGACC



CUGACCCCUGUGGGCAGGCUGAUCACCGCC



AACCCUGUGAUCACUGAGAGCACCGAGAAC



AGCAAGAUGAUGCUGGAACUGGACCCUCCU



UUCGGCGACAGCUACAUCGUGAUAGGCGUG



GGCGAUAAGAAGAUCACCCACCAUUGGCAC



AGAAGUGGUUCGACUAUCGGUAAGGCAUUC



GAAGCUACAGUGAGAGGAGCCAAGAGGAUG



GCAGUGCUGGGUGACACCGCCUGGGAUUUC



GGUUCAGUGGGCGGCGUGUUCAAUUCCCUG



GGCAAGGGUAUCCACCAGAUCUUCGGCGCU



GCCUUCAAGAGCCUGUUCGGUGGAAUGAGC



UGGUUCAGCCAGAUCCUGAUCGGCACCCUC



CUGGUUUGGCUUGGUUUGAACACCAAGAAC



GGCUCUAUUUCCCUGACCUGCCUGGCACUA



GGAGGCGUCAUGAUAUUCCUGAGUACCGCC



GUGAGCGCC (SEQ ID NO: 6)









Any of the open reading frames (ORFs) provided in Table 1 may include any of the following 5′ UTR sequences or other 5′ UTR sequence (e.g., wild-type 5′ UTR sequence):









(SEQ ID NO: 13)


GGGAAAUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAGACCCCGGCGC






CGCCACC






(SEQ ID NO: 14)


GGGAAAUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAGAGCCACC.






Likewise, any of the ORFs provided in Table 1 may include any of the following 3′ UTR sequences or other 3′ UTR sequence (e.g., wild-type 3′ UTR sequence):









(SEQ ID NO: 15)


UGAUAAUAGGCUGGAGCCUCGGUGGCCUAGCUUCUUGCCCCUUGGGCCUC





CCCCCAGCCCCUCCUCCCCUUCCUGCACCCGUACCCCCGUGGUCUUUGAA





UAAAGUCUGAGUGGGCGGC





(SEQ ID NO: 16)


UGAUAAUAGGCUGGAGCCUCGGUGGCCAUGCUUCUUGCCCCUUGGGCCUC





CCCCCAGCCCCUCCUCCCCUUCCUGCACCCGUACCCCCGUGGUCUUUGAA





UAAAGUCUGAGUGGGCGGC






Further, any of the ORFs provided in Table 1 may include a polyA tail (e.g., 100 nucleotides).


In some embodiments, a ZIKV mRNA vaccine (mRNA-1893) comprises the following sequence, including a 5′ UTR, 3′ UTR and polyA tail:









(SEQ ID NO: 20)


GGGAAAUAAGAGAGAAAAGAAGAGUAAGAAGAAAUAUAAGACCCCGGCGC





CGCCACCAUGUGGCUGGUGUCCCUGGCCAUCGUGACAGCCUGUGCUGGCG





CCGCUGAAGUGACCAGAAGAGGCAGCGCCUACUACAUGUACCUGGACCGG





AACGAUGCCGGCGAGGCCAUCAGCUUUCCAACCACCCUGGGCAUGAACAA





GUGCUACAUCCAGAUCAUGGACCUGGGCCACAUGUGCGACGCCACCAUGA





GCUACGAGUGCCCCAUGCUGGACGAGGGCGUGGAACCCGACGAUGUGGAC





UGCUGGUGCAACACCACCAGCACCUGGGUGGUGUACGGCACCUGUCACCA





CAAGAAGGGCGAAGCCAGACGGUCCAGACGGGCCGUGACACUGCCUAGCC





ACAGCACCAGAAAGCUGCAGACCCGGUCCCAGACCUGGCUGGAAAGCAGA





GAGUACACCAAGCACCUGAUCCGGGUGGAAAACUGGAUCUUCCGGAACCC





CGGCUUUGCCCUGGCCGCUGCUGCUAUUGCUUGGCUGCUGGGCAGCAGCA





CCUCCCAGAAAGUGAUCUACCUCGUGAUGAUCCUGCUGAUCGCCCCUGCC





UACAGCAUCCGGUGUAUCGGCGUGUCCAACCGGGACUUCGUGGAAGGCAU





GAGCGGCGGCACAUGGGUGGACGUGGUGCUGGAACAUGGCGGCUGCGUGA





CAGUGAUGGCCCAGGACAAGCCCACCGUGGACAUCGAGCUCGUGACCACC





ACCGUGUCCAAUAUGGCCGAAGUGCGGAGCUACUGCUACGAGGCCAGCAU





CAGCGACAUGGCCAGCGACAGCAGAUGCCCUACACAGGGCGAGGCCUACC





UGGACAAGCAGUCCGACACCCAGUACGUGUGCAAGCGGACCCUGGUGGAU





AGAGGCUGGGGCAAUGGCUGCGGCCUGUUUGGCAAGGGCAGCCUCGUGAC





CUGCGCCAAGUUCGCCUGCAGCAAGAAGAUGACCGGCAAGAGCAUCCAGC





CCGAGAACCUGGAAUACCGGAUCAUGCUGAGCGUGCACGGCAGCCAGCAC





UCCGGCAUGAUCGUGAACGACACCGGCCACGAGACAGACGAGAACCGGGC





CAAGGUGGAAAUCACCCCUAACAGCCCUAGAGCCGAGGCCACACUGGGCG





GCUUUGGAUCUCUGGGCCUGGACUGCGAGCCUAGAACCGGCCUGGAUUUC





AGCGACCUGUACUACCUGACCAUGAACAACAAGCACUGGCUGGUGCACAA





AGAGUGGUUCCACGACAUCCCUCUGCCCUGGCAUGCCGGCGCUGAUACAG





GCACACCCCACUGGAACAACAAAGAGGCUCUGGUGGAAUUCAAGGACGCC





CACGCCAAGCGGCAGACCGUGGUGGUGCUGGGAUCUCAGGAAGGCGCCGU





GCAUACAGCUCUGGCAGGCGCCCUGGAAGCCGAAAUGGAUGGCGCCAAAG





GCAGACUGUCCAGCGGCCACCUGAAGUGCCGGCUGAAGAUGGACAAGCUG





CGGCUGAAGGGCGUGUCCUACUCCCUGUGUACCGCCGCCUUCACCUUCAC





CAAGAUCCCCGCCGAGACACUGCACGGCACCGUGACUGUGGAAGUGCAGU





ACGCCGGCACCGACGGCCCUUGUAAAGUGCCUGCUCAGAUGGCCGUGGAU





AUGCAGACCCUGACCCCUGUGGGCAGACUGAUCACCGCCAACCCCGUGAU





CACCGAGAGCACCGAGAACAGCAAGAUGAUGCUGGAACUGGACCCACCCU





UCGGCGACAGCUACAUCGUGAUCGGCGUGGGAGAGAAGAAGAUCACCCAC





CACUGGCACAGAAGCGGCAGCACCAUCGGCAAGGCCUUUGAGGCUACAGU





GCGGGGAGCCAAGAGAAUGGCCGUGCUGGGAGAUACCGCCUGGGACUUUG





GCUCUGUGGGCGGAGCCCUGAACUCUCUGGGCAAGGGAAUCCACCAGAUC





UUCGGAGCCGCCUUUAAGAGCCUGUUCGGCGGCAUGAGCUGGUUCAGCCA





GAUCCUGAUCGGCACCCUGCUGAUGUGGCUGGGCCUGAACACCAAGAACG





GCAGCAUCUCCCUGAUGUGCCUGGCUCUGGGAGGCGUGCUGAUCUUCCUG





AGCACAGCCGUGUCUGCCUGAUAAUAGGCUGGAGCCUCGGUGGCCUAGCU





UCUUGCCCCUUGGGCCUCCCCCCAGCCCCUCCUCCCCUUCCUGCACCCGU





ACCCCCGUGGUCUUUGAAUAAAGUCUGAGUGGGCGGCAAAAAAAAAAAAA





AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA





AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA






EXAMPLES

Non-human primates (n=5) were immunized intramuscularly (IM) with a vaccine composition comprising mRNA encoding either an IgE signal peptide fused to a ZIKV prME antigen (mRNA-1325, SEQ ID NO:17) (a single 200 μg dose, or a 10 μg, 50 μg or 200 μg dose followed by an equivalent boost at week 4, or a JEV signal peptide fused to a ZIKV prME antigen (mRNA-1893, SEQ ID NO:7) (a 10 μg followed by an equivalent boost at week 4). Animals were challenged at week 8 with 1000 focus-forming units (FFU) of Zika virus. Serum was collected 3, 4, 5, 6 and 7 days post challenge. The data in FIG. 1 shows that while a single 200 μg dose of the mRNA-1325 vaccine conferred nearly complete protection, the mRNA-1893 vaccine unexpectedly provided sterilizing immunity at a 20 fold lower dose. Neutralizing antibody titers (EC50 fold change relative to week 8) are shown in FIG. 2.









mRNA-1325


(SEQ ID NO: 17)


MDWTWILFLVAAATRVHSVEVTRRGSAYYMYLDRSDAGEAISFPTTLGMN





KCYIQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVYGTCH





HKKGEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIRVENWIFRN





PGFALAAAAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRDFVEG





MSGGTWVDVVLEHGGCVTVMAQDKPAVDIELVTTTVSNMAEVRSYCYEAS





ISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLV





TCAKFACSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDTGHETDENR





AKVEITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVH





KEWFHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGA





VHTALAGALEAEMDGAKGRLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTF





TKIPAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLITANPV





ITESTENSKMMLELDPPFGDSYIVIGVGEKKITHHWHRSGSTIGKAFEAT





VRGAKRMAVLGDTAWDFGSVGGALNSLGKGIHQIFGAAFKSLFGGMSWFS





QILIGTLLVWLGLNTKNGSISLTCLALGGVLIFLSTAVSA





mRNA-1893


(SEQ ID NO: 7)


MWLVSLAIVTACAGAAEVTRRGSAYYMYLDRNDAGEAISFPTTLGMNKCY





IQIMDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKK





GEARRSRRAVTLPSHSTRKLQTRSQTWLESREYTKHLIRVENWIFRNPGF





ALAAAAIAWLLGSSTSQKVIYLVMILLIAPAYSIRCIGVSNRDFVEGMSG





GTWVDVVLEHGGCVTVMAQDKPTVDIELVTTTVSNMAEVRSYCYEASISD





MASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWGNGCGLFGKGSLVTCA





KFACSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDTGHETDENRAKV





EITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEW





FHDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHT





ALAGALEAEMDGAKGRLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKI





PAETLHGTVTVEVQYAGTDGPCKVPAQMAVDMQTLTPVGRLITANPVITE





STENSKMMLELDPPFGDSYIVIGVGEKKITHHWHRSGSTIGKAFEATVRG





AKRMAVLGDTAWDFGSVGGALNSLGKGIHQIFGAAFKSLFGGMSWFSQIL





IGTLLMWLGLNTKNGSISLMCLALGGVLIFLSTAVSA






All references, patents and patent applications disclosed herein are incorporated by reference with respect to the subject matter for which each is cited, which in some cases may encompass the entirety of the document.


The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.”


It should also be understood that, unless clearly indicated to the contrary, in any methods claimed herein that include more than one step or act, the order of the steps or acts of the method is not necessarily limited to the order in which the steps or acts of the method are recited.


In the claims, as well as in the specification above, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” “composed of,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of” shall be closed or semi-closed transitional phrases, respectively, as set forth in the United States Patent Office Manual of Patent Examining Procedures, Section 2111.03.

Claims
  • 1. A composition comprising a messenger ribonucleic acid (mRNA) comprising a 5′ untranslated region (UTR), an open reading frame (ORF) encoding a JEV signal peptide fused to a Zika virus (ZIKV) prME protein, and a 3′ UTR, wherein the mRNA is formulated in a lipid nanoparticle, and the ORF comprises a nucleotide sequence having at least 98% identity to the nucleotide sequence of SEQ ID NO: 1.
  • 2. The composition of claim 1, wherein the ORF comprises the nucleotide sequence of SEQ ID NO: 1.
  • 3. The composition of claim 1, wherein the ZIKV prME protein comprises the amino acid sequence of SEQ ID NO: 7.
  • 4. The composition of claim 1, wherein the mRNA comprises a chemical modification.
  • 5. The composition of claim 4, wherein the chemical modification is 1-methyl-pseudouridine.
  • 6. The composition of claim 1, wherein the lipid nanoparticle comprises an ionizable cationic lipid, a non-cationic lipid, a sterol, and a PEG-modified lipid.
  • 7. The composition of claim 6, wherein the lipid nanoparticle comprises 20-60 mol % ionizable cationic lipid, 5-25 mol % non-cationic lipid, 25-55 mol % sterol, and 0.5-15 mol % PEG-modified lipid.
  • 8. The composition of claim 6, wherein the ionizable cationic lipid comprises the following compound:
  • 9. A method comprising administering to a subject the composition of claim 1 in an effective amount to induce in the subject a ZIKV-specific immune response.
  • 10. A composition comprising a messenger ribonucleic acid (mRNA) comprising an open reading frame (ORF) encoding a Zika virus (ZIKV) prME protein, wherein the mRNA is formulated in a lipid nanoparticle, and the ORF comprises the nucleotide sequence of SEQ ID NO: 1.
  • 11. The composition of claim 10, wherein the ZIKV prME protein comprises the amino acid sequence of SEQ ID NO: 7.
  • 12. The composition of claim 10, wherein the mRNA further comprises a 5′ UTR that comprises a sequence selected from SEQ ID NO: 13 and SEQ ID NO: 14.
  • 13. The composition of claim 10, wherein the mRNA further comprises a 3′ UTR that comprises a sequence selected from SEQ ID NO: 15 and SEQ ID NO: 16.
  • 14. The composition of claim 10, wherein the mRNA comprises a chemical modification.
  • 15. The composition of claim 14, wherein the chemical modification is 1-methyl-pseudouridine.
  • 16. The composition of claim 10, wherein the lipid nanoparticle comprises an ionizable cationic lipid, a non-cationic lipid, a sterol, and a PEG-modified lipid.
  • 17. The composition of claim 16, wherein the lipid nanoparticle comprises 20-60 mol % ionizable cationic lipid, 5-25 mol % non-cationic lipid, 25-55 mol % sterol, and 0.5-15 mol % PEG-modified lipid.
  • 18. The composition of claim 17, wherein the ionizable cationic lipid comprises the following compound:
  • 19. A method comprising administering to a subject the composition of claim 10 in an effective amount to induce in the subject a ZIKV prME-specific immune response.
  • 20. The composition of claim 10, wherein the mRNA further comprises a 5′ UTR that comprises the sequence of SEQ ID NO: 13 and a 3′ UTR that comprises the sequence of SEQ ID NO: 15.
  • 21. The composition of claim 10, wherein the mRNA further comprises a 5′ UTR that comprises the sequence of SEQ ID NO: 14 and a 3′ UTR that comprises the sequence of SEQ ID NO: 16.
  • 22. The composition of claim 1, wherein the 5′ UTR comprises a sequence selected from SEQ ID NO: 13 and SEQ ID NO: 14.
  • 23. The composition of claim 1, wherein the 3′ UTR comprises a sequence selected from SEQ ID NO: 15 and SEQ ID NO: 16.
  • 24. The composition of claim 1, wherein the 5′ UTR comprises the sequence of SEQ ID NO: 13 and the 3′ UTR comprises the sequence of SEQ ID NO: 15.
  • 25. The composition of claim 1, wherein the 5′ UTR comprises the sequence of SEQ ID NO: 14 and the 3′ UTR comprises the sequence of SEQ ID NO: 16.
RELATED APPLICATIONS

This application is a division of U.S. application Ser. No. 16/131,793, filed Sep. 14, 2018, which claims the benefit under 35 U.S.C. § 119(e) of U.S. provisional application No. 62/558,746, filed Sep. 14, 2017, each of which is incorporated by reference herein in its entirety.

GOVERNMENT LICENSE RIGHTS

This invention was made with government support under Contract No. W911NF-13-1-0417 awarded by Defense Advanced Research Projects Agency (DARPA). The government has certain rights in the invention.

US Referenced Citations (184)
Number Name Date Kind
3906092 Hilleman et al. Sep 1975 A
6500419 Hone et al. Dec 2002 B1
6514948 Raz et al. Feb 2003 B1
6610044 Mathiesen Aug 2003 B2
7001890 Wagner et al. Feb 2006 B1
8217016 Hoerr et al. Jul 2012 B2
8569256 Heyes et al. Oct 2013 B2
8609142 Troiano et al. Dec 2013 B2
8613954 Zale et al. Dec 2013 B2
8617608 Zale et al. Dec 2013 B2
8673316 Kinney et al. Mar 2014 B2
8691961 Puffer et al. Apr 2014 B1
8710200 Schrum et al. Apr 2014 B2
8734832 O'Hagan et al. May 2014 B2
8734853 Sood et al. May 2014 B2
8754062 de Fougerolles et al. Jun 2014 B2
8822663 Schrum et al. Sep 2014 B2
8999380 Bancel et al. Apr 2015 B2
9000141 Chang et al. Apr 2015 B2
9221891 Bancel et al. Dec 2015 B2
9267114 Yamshchikov et al. Feb 2016 B2
9283287 Bancel et al. Mar 2016 B2
9303079 Bancel et al. Apr 2016 B2
9464124 Bancel et al. Oct 2016 B2
9512456 Wang et al. Dec 2016 B2
9533047 de Fougerolles et al. Jan 2017 B2
9597380 Chakraborty et al. Mar 2017 B2
9868691 Benenato et al. Jan 2018 B2
9872900 Ciaramella et al. Jan 2018 B2
10064934 Ciaramella et al. Sep 2018 B2
10064935 Ciaramella et al. Sep 2018 B2
10124055 Ciaramella et al. Nov 2018 B2
10207010 Besin et al. Feb 2019 B2
10232055 Kariko et al. Mar 2019 B2
10273269 Ciaramella Apr 2019 B2
10286086 Roy et al. May 2019 B2
10385088 Fraley et al. Aug 2019 B2
10449244 Ciaramella et al. Oct 2019 B2
10465190 Chen et al. Nov 2019 B1
10493143 Ciaramella et al. Dec 2019 B2
10526629 Rabideau et al. Jan 2020 B2
10653712 Hoge May 2020 B2
10653767 Ciaramella et al. May 2020 B2
10695419 Ciaramella et al. Jun 2020 B2
10857105 Benenato et al. Dec 2020 B2
10925958 Ciaramella Feb 2021 B2
20010001066 Cezayirli et al. May 2001 A1
20030032615 Felgner et al. Feb 2003 A1
20030092653 Kisich et al. May 2003 A1
20040005667 Ratti et al. Jan 2004 A1
20050032730 Von Der Mulbe et al. Feb 2005 A1
20050059624 Hoerr et al. Mar 2005 A1
20050250723 Hoerr et al. Nov 2005 A1
20060172003 Meers et al. Aug 2006 A1
20060172966 Lipford et al. Aug 2006 A1
20070280929 Hoerr et al. Dec 2007 A1
20070292453 Floyd et al. Dec 2007 A1
20080025944 Hoerr et al. Jan 2008 A1
20080171711 Hoerr et al. Jul 2008 A1
20100130588 Yaworski et al. May 2010 A1
20100189729 Hoerr et al. Jul 2010 A1
20100203076 Fotin-Mleczek et al. Aug 2010 A1
20100239608 Von Der Mulbe et al. Sep 2010 A1
20100291156 Barner et al. Nov 2010 A1
20100303851 Hoerr et al. Dec 2010 A1
20100305196 Probst et al. Dec 2010 A1
20110250225 Fotin-Mleczek et al. Oct 2011 A1
20110269950 Von Der Mulbe et al. Nov 2011 A1
20110311472 Hoerr et al. Dec 2011 A1
20120009221 Hoerr et al. Jan 2012 A1
20120101148 Aking et al. Apr 2012 A1
20120189700 Aguilar et al. Jul 2012 A1
20120219573 Baumhof et al. Aug 2012 A1
20120258046 Mutske Oct 2012 A1
20130022538 Rossi Jan 2013 A1
20130102034 Schrum et al. Apr 2013 A1
20130121988 Hoerr et al. May 2013 A1
20130142818 Baumhof et al. Jun 2013 A1
20130156849 de Fougerolles et al. Jun 2013 A1
20130171241 Geall Jul 2013 A1
20130183355 Jain et al. Jul 2013 A1
20130189351 Geall Jul 2013 A1
20130195867 Hoerr et al. Aug 2013 A1
20130195967 Guild et al. Aug 2013 A1
20130195968 Geall et al. Aug 2013 A1
20130195969 Geall et al. Aug 2013 A1
20130202684 Geall et al. Aug 2013 A1
20130236533 Von Andrian et al. Sep 2013 A1
20130236974 De Fougerolles Sep 2013 A1
20130243848 Lobovkina et al. Sep 2013 A1
20130245103 de Fougerolles et al. Sep 2013 A1
20130259923 Bancel et al. Oct 2013 A1
20130266640 De Fougerolles et al. Oct 2013 A1
20130295043 Kallen et al. Nov 2013 A1
20130336998 Kallen et al. Dec 2013 A1
20140037660 Folin-Mleczek et al. Feb 2014 A1
20140065228 Yarowoski et al. Mar 2014 A1
20140134201 Tureci et al. May 2014 A1
20140147432 Bancel et al. May 2014 A1
20140148502 Bancel et al. May 2014 A1
20140193482 Bancel et al. Jul 2014 A1
20140206752 Afeyan et al. Jul 2014 A1
20140206753 Guild et al. Jul 2014 A1
20140271829 Lilja et al. Sep 2014 A1
20140308304 Manoharan et al. Oct 2014 A1
20140378538 Bancel Dec 2014 A1
20150051268 Bancel et al. Feb 2015 A1
20150056253 Bancel et al. Feb 2015 A1
20150141499 Bancel et al. May 2015 A1
20150307542 Roy et al. Oct 2015 A1
20150315541 Bancel et al. Nov 2015 A1
20160024140 Issa et al. Jan 2016 A1
20160024141 Issa et al. Jan 2016 A1
20160032273 Shahrokh et al. Feb 2016 A1
20160038612 Hoge et al. Feb 2016 A1
20160243221 Hoge et al. Aug 2016 A1
20160271272 Bancel et al. Sep 2016 A1
20160317647 Ciaramella et al. Nov 2016 A1
20160331828 Ciaramella et al. Nov 2016 A1
20160367658 Kinney et al. Dec 2016 A1
20170043037 Kariko et al. Feb 2017 A1
20170065675 Bancel et al. Mar 2017 A1
20170130255 Wang et al. May 2017 A1
20170202979 Chakraborty et al. Jul 2017 A1
20170340724 Ciaramella et al. Nov 2017 A1
20170340725 Ciaramella et al. Nov 2017 A1
20180000953 Almarsson et al. Jan 2018 A1
20180002393 Bancel et al. Jan 2018 A1
20180028645 Ciaramella et al. Feb 2018 A1
20180028664 Besin et al. Feb 2018 A1
20180237849 Thompson Aug 2018 A1
20180243225 Ciaramella Aug 2018 A1
20180243230 Smith Aug 2018 A1
20180256628 Hoge et al. Sep 2018 A1
20180271795 Martini et al. Sep 2018 A1
20180271970 Ciaramella et al. Sep 2018 A1
20180273977 Mousavi et al. Sep 2018 A1
20180274009 Marquardt et al. Sep 2018 A1
20180280496 Ciaramella et al. Oct 2018 A1
20180289792 Ciaramella et al. Oct 2018 A1
20180303929 Ciaramella et al. Oct 2018 A1
20180311336 Ciaramella et al. Nov 2018 A1
20180311343 Huang et al. Nov 2018 A1
20180312549 Ciaramella Nov 2018 A1
20180318409 Valiante et al. Nov 2018 A1
20180363019 Hoge Dec 2018 A1
20180369374 Frederick et al. Dec 2018 A1
20180371047 Ticho et al. Dec 2018 A1
20190002890 Martini et al. Jan 2019 A1
20190008938 Ciaramella et al. Jan 2019 A1
20190085368 Bancel et al. Mar 2019 A1
20190099481 Ciaramella et al. Apr 2019 A1
20190175517 Martini et al. Jun 2019 A1
20190175727 Huang et al. Jun 2019 A1
20190192646 Cohen et al. Jun 2019 A1
20190192653 Hoge et al. Jun 2019 A1
20190275170 Benenato et al. Sep 2019 A1
20190298657 Martini et al. Oct 2019 A1
20190298658 Benenato Oct 2019 A1
20190300906 Martini et al. Oct 2019 A1
20190314292 Benenato et al. Oct 2019 A1
20190336595 Ciaramella Nov 2019 A1
20190351040 Valiante et al. Nov 2019 A1
20190382774 Hoge et al. Dec 2019 A1
20190390181 Benenato et al. Dec 2019 A1
20200030432 Ciaramella et al. Jan 2020 A1
20200032274 Mauger et al. Jan 2020 A1
20200038499 Narayanan et al. Feb 2020 A1
20200054737 Ciaramella et al. Feb 2020 A1
20200069599 Smith et al. Mar 2020 A1
20200069793 Ciaramella Mar 2020 A1
20200069794 Ciaramella et al. Mar 2020 A1
20200071689 Miracco Mar 2020 A1
20200085916 Martini et al. Mar 2020 A1
20200109420 Brito et al. Apr 2020 A1
20200129608 Ciaramella et al. Apr 2020 A1
20200129615 Ciaramella et al. Apr 2020 A1
20200163878 Baumhof et al. May 2020 A1
20200239869 Issa et al. Jul 2020 A1
20200254086 Hoge et al. Aug 2020 A1
20200282047 Ciaramella et al. Sep 2020 A1
20200368343 Ciaramella et al. Nov 2020 A1
20210046173 Ciaramella et al. Feb 2021 A1
20210163919 Issa et al. Jun 2021 A1
Foreign Referenced Citations (174)
Number Date Country
652831 Sep 1994 AU
2015210364 Mar 2017 AU
2473135 Jun 2003 CA
1026253 Aug 2000 EP
1083232 Feb 2005 EP
1301614 Nov 2006 EP
1383556 Oct 2007 EP
1905844 Feb 2008 EP
2188379 Jan 2013 EP
2548960 Jan 2013 EP
WO 1987005326 Sep 1987 WO
WO 199011092 Oct 1990 WO
WO 1990011092 Oct 1990 WO
WO 199314778 Aug 1993 WO
WO 1993014778 Aug 1993 WO
WO 199524485 Sep 1995 WO
WO 1995024485 Sep 1995 WO
WO 199526204 Oct 1995 WO
WO 1995026204 Oct 1995 WO
WO 199533835 Dec 1995 WO
WO 1995033835 Dec 1995 WO
WO 199933982 Jul 1999 WO
WO 1999033982 Jul 1999 WO
WO 1999052503 Oct 1999 WO
WO 2001021810 Mar 2001 WO
WO 2004058166 Jul 2004 WO
WO 2004076645 Sep 2004 WO
WO 2005007689 Jan 2005 WO
WO 2005009346 Feb 2005 WO
WO 2006056027 Jun 2006 WO
WO 2006071903 Jul 2006 WO
WO 2006095259 Sep 2006 WO
WO 2007095976 Aug 2007 WO
WO 2008014979 Feb 2008 WO
WO 2008052770 May 2008 WO
WO 2008083949 Jul 2008 WO
WO 2009030254 Mar 2009 WO
WO 2009030481 Mar 2009 WO
WO 2009095226 Aug 2009 WO
WO 2009127230 Oct 2009 WO
WO 2010037408 Apr 2010 WO
WO 2010037539 Apr 2010 WO
WO 2010042877 Apr 2010 WO
WO 2010054406 May 2010 WO
WO 2010088927 Aug 2010 WO
WO 2010115046 Oct 2010 WO
WO 2011005799 Jan 2011 WO
WO 2011026641 Mar 2011 WO
WO 2011068810 Jun 2011 WO
WO 2011069529 Jun 2011 WO
WO 2011069586 Jun 2011 WO
WO 2011144358 Nov 2011 WO
WO 2012006369 Jan 2012 WO
WO 2012006380 Jan 2012 WO
WO 2012019630 Feb 2012 WO
WO 2012019780 Feb 2012 WO
WO 2012075040 Jun 2012 WO
WO 2012089225 Jul 2012 WO
WO 2012113513 Aug 2012 WO
WO 2012116714 Sep 2012 WO
WO 2012116715 Sep 2012 WO
WO 2012116810 Sep 2012 WO
WO 2012116811 Sep 2012 WO
WO 2013006834 Jan 2013 WO
WO 2013006837 Jan 2013 WO
WO 2013006838 Jan 2013 WO
WO 2013006842 Jan 2013 WO
WO 2013030778 Mar 2013 WO
WO 2013052167 Apr 2013 WO
WO 2013055905 Apr 2013 WO
WO 2013056132 Apr 2013 WO
WO 2013059496 Apr 2013 WO
WO 2013090186 Jun 2013 WO
WO 2013090648 Jun 2013 WO
WO 2013102203 Jul 2013 WO
WO 2013113502 Aug 2013 WO
WO 2013120497 Aug 2013 WO
WO 2013120628 Aug 2013 WO
WO 2013120629 Aug 2013 WO
WO 2013174409 Nov 2013 WO
WO 2013185069 Dec 2013 WO
WO 2014071963 May 2014 WO
WO 2014072061 May 2014 WO
WO 2014089239 Jun 2014 WO
WO 2014089486 Jun 2014 WO
WO 2014127917 Aug 2014 WO
WO 2014144196 Sep 2014 WO
WO 2014152027 Sep 2014 WO
WO 2014152774 Sep 2014 WO
WO 2014152940 Sep 2014 WO
WO 2014160243 Oct 2014 WO
WO 2015005253 Jan 2015 WO
WO 2015013551 Jan 2015 WO
WO 2015024667 Feb 2015 WO
WO 2015024668 Feb 2015 WO
WO 2015164674 Apr 2015 WO
WO 2015130584 Sep 2015 WO
WO 2015134332 Sep 2015 WO
WO 2015189425 Dec 2015 WO
WO 2016044023 Mar 2016 WO
WO 2016092460 Jun 2016 WO
WO 2016116904 Jul 2016 WO
WO 2016164762 Oct 2016 WO
WO 2016176330 Nov 2016 WO
WO 2016184822 Nov 2016 WO
WO 2016201377 Dec 2016 WO
WO 2016203025 Dec 2016 WO
WO 2017015457 Jan 2017 WO
WO 2017015463 Jan 2017 WO
WO 2017020026 Feb 2017 WO
WO 2017021546 Feb 2017 WO
WO 2017062513 Apr 2017 WO
WO 2017066789 Apr 2017 WO
WO 2017070601 Apr 2017 WO
WO 2017070624 Apr 2017 WO
WO 2017070626 Apr 2017 WO
WO 2017075531 May 2017 WO
WO 2017109222 Jun 2017 WO
WO 2017127750 Jul 2017 WO
WO 2017140905 Aug 2017 WO
WO 2017147458 Aug 2017 WO
WO 2017162265 Sep 2017 WO
WO 2017165317 Sep 2017 WO
WO 2017201333 Nov 2017 WO
WO 2017201340 Nov 2017 WO
WO 2017201342 Nov 2017 WO
WO 2017201347 Nov 2017 WO
WO 2017208191 Dec 2017 WO
WO 2017210215 Dec 2017 WO
WO 2017210364 Dec 2017 WO
WO 2018020271 Feb 2018 WO
WO 2018052549 Mar 2018 WO
WO 2018053209 Mar 2018 WO
WO 2018075980 Apr 2018 WO
WO 2018081459 May 2018 WO
WO 2018081462 May 2018 WO
WO 2018089851 May 2018 WO
WO 2018091540 May 2018 WO
WO 2018107088 Jun 2018 WO
WO 2018111967 Jun 2018 WO
WO 2018132537 Jul 2018 WO
WO 2018144082 Aug 2018 WO
WO 2018144778 Aug 2018 WO
WO 2018151816 Aug 2018 WO
WO 2018157009 Aug 2018 WO
WO 2018170245 Sep 2018 WO
WO 2018170256 Sep 2018 WO
WO 2018170260 Sep 2018 WO
WO 2018170270 Sep 2018 WO
WO 2018170347 Sep 2018 WO
WO 2018175783 Sep 2018 WO
WO 2018187590 Oct 2018 WO
WO 2018200737 Nov 2018 WO
WO 2018232355 Dec 2018 WO
WO 2018232357 Dec 2018 WO
WO 2019036670 Feb 2019 WO
WO 2019036682 Feb 2019 WO
WO 2019036683 Feb 2019 WO
WO 2019036685 Feb 2019 WO
WO 2019103993 May 2019 WO
WO 2019148101 Aug 2019 WO
WO 2020006242 Jan 2020 WO
WO 2020056370 Mar 2020 WO
WO 2020061284 Mar 2020 WO
WO 2020061295 Mar 2020 WO
WO 2020061367 Mar 2020 WO
WO 2020097291 May 2020 WO
WO 2020172239 Aug 2020 WO
WO 2020185811 Sep 2020 WO
WO 2020190750 Sep 2020 WO
WO 2020243561 Dec 2020 WO
WO 2021030533 Feb 2021 WO
WO 2021050864 Mar 2021 WO
WO 2021055811 Mar 2021 WO
Non-Patent Literature Citations (162)
Entry
International Search Report and Written Opinion for Application No. PCT/US2018/051120, dated Dec. 24, 2018.
[No Author Listed], “Messenger RNA”, Internet: Wikipedia. Jun. 19, 2013, XP002699196, Retrieved from the Internet: URL: http://en.wikipedia.org/wiki/Messenger RNA.
[No Author Listed], GenBank Accession No. Q5XXP3, RecName: Full=Structural polyprotein; AltName: Full=p130; Contains: RecName: Full=Capsid protein; AltName: Full=Coat protein; Short=C; Contains: RecName: Full=p62; AltName: Full=E3/E2; Contains: RecName: Full=E3 protein; AltName: Full=Spike glycoprotein E3; 2013.
Anderson et al., Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation, Nucleic Acids Res. Sep. 2010;38(17):5884-92. doi: 10.1093/nar/gkq347. Epub May 10, 2010.
Archer, Induction of a T-cell specific antigen on bone marrow lymphocytes with thymus RNA. Immunology. Jan. 1978;34(1):123-9.
Ashley et al., Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J Exp Med. Oct. 6, 1997;186(7): 1177-82.
Bahl et al., Preclinical and Clinical Demonstration of Immunogenicity by mRNA Vaccines against H10N8 and H7N9 Influenza Viruses. Mol Ther. Jun. 7, 2017;25(6):1316-1327. doi: 10.1016/j.ymthe.2017.03.035. Epub Apr. 27, 2017.
Bettinger et al., Peptide-mediated RNA delivery: a novel approach for enhanced transfection of primary and post-mitotic cells. Nucleic Acids Res. Sep. 15, 2001;29(18):3882-91.
Bogers et al., Potent immune responses in rhesus macaques induced by nonviral delivery of a self-amplifying RNA vaccine expressing HIV type 1 envelope with a cationic nanoemulsion. J Infect Dis. Mar. 15, 2015;211(6):947-55. doi: 10.1093/infdis/jiu522. Epub Sep. 18, 2014.
Bonehill et al., Single-step antigen loading and activation of dendritic cells by mRNA electroporation for the purpose of therapeutic vaccination in melanoma patients. Clin Cancer Res. May 2009; 15(10): 3366-3375.
Brito et al., A cationic nanoemulsion for the delivery of next-generation RNA vaccines. Mol Ther. Dec. 2014;22(12):2118-29. doi: 10.1038/mt.2014.133. Epub Jul. 16, 2014.
Chahal et al., An RNA nanoparticle vaccine against Zika virus elicits antibody and CD8+ T cell responses in a mouse model. Sci Rep. Mar. 21, 2017;7(1):252. doi: 10.1038/s41598-017-00193-w.
Chattopadhyay et al., A chimeric vesiculo/alphavirus is an effective alphavirus vaccine. J Virol. Jan. 2013;87(1):395-402.
Cheng et al., Multifunctional triblock copolymers for intracellular messenger RNA delivery. Biomaterials. Oct. 2012; 33(28): 6868-6876.
Conry et al., Characterization of a messenger RNA polynucleotide vaccine vector. Cancer Res. Apr. 1, 1995 ;55 (7):1397-1400.
Cox et al., Predicting Zika virus structural biology: Challenges and opportunities for intervention. Antivir Chem Chemother. Aug. 2015; 24(3-4):118-26. doi: 10.1177/2040206616653873. Epub Jun. 13, 2016.
Cu et al., Enhanced Delivery and Potency of Self-Amplifying mRNA Vaccines by Electroporation in Situ, Vaccines, 2013, 1, 367-383. Abstract Only.
Dahlman et al., In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat Nanotechnol. Aug. 2014;9(8):648-655. doi: 10.1038/nnano.2014.84. Epub May 11, 2014.
Deering et al., Nucleic acid vaccines: prospects for non-viral delivery of mRNA vaccines.Expert Opin Drug Deliv. Jun. 2014;11(6):885-99. doi: 10.1517/17425247.2014.901308. Epub Mar. 26, 2014.
Dicaro et al., In Vivo Delivery of Nucleic Acid-Formulated Microparticles as a Potential Tolerogenic Vaccine for Type 1 Diabetes. Rev Diabet Stud. 2012 Winter;9(4):348-56.
Diken et al., Current Developments in Actively Personalized Cancer Vaccination with a Focus on RNA as the Drug Format. Prog Tumor Res. 2015;42:44-54. doi: 10.1159/000437184. Epub Sep. 4, 2015. Review.
Dowd et al., Rapid development of a DNA vaccine for Zika virus.Science. Oct. 14, 2016;354(6309):237-240. Epub Sep. 22, 2016.
Durbin, Vaccine Development for Zika Virus-Timelines and Strategies. Semin Reprod Med. Sep. 2016;34(5):299-304. Epub Sep. 8, 2016.
Fleeton et al., Self-replicative RNA vaccines elicit protection against influenza A virus, respiratory syncytial virus, and a tickborne encephalitis virus. J Infect Dis. May 1, 2001;183(9):1395-8. Epub Mar. 30, 2001.
Garcia-Arriaza et al., A novel poxvirus-based vaccine, MVA-CHIKV, is highly immunogenic and protects mice against chikungunya infection. J Virol. Mar. 2014;88(6):3527-47. doi: 10.1128/JVI.03418-13. Epub Jan. 8, 2014.
Geall et al., Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci U S A. Sep. 4, 2012;109(36):14604-9. doi:10.1073/pnas.1209367109. Epub Aug. 20, 2012.
GenBank Accession No. KJ776791, first seen on NCBI on May 12, 2014.
Gilboa et al., Cancer immunotherapy with mRNA-transfected dendritic cells. Immunol Rev. Jun. 2004;199:251-63.
Gupta et al., ZikaVR: An Integrated Zika Virus Resource for Genomics, Proteomics, Phylogenetic and Therapeutic Analysis. Sci Rep. Sep. 16, 2016;6:32713. doi: 10.1038/srep32713.
Hecker et al., Non-Viral DNA and mRNA Gene Delivery to the CNS Pre-Operatively for Neuroprotection and Following Neurotrauma. Molecular Therapy. 2004; 9, S258-S258.
Heiser et al., Induction of polyclonal prostate cancer-specific CTL using dendritic cells transfected with amplified tumor RNA. J Immunol. Mar. 1, 2001; 166(5):2953-60.
Heyes et al., Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. J Control Release. Oct. 3, 2005;107(2):276-87.
Hoerr et al., In vivo application of RNA leads to induction of specific cytotoxic T lymphocytes and antibodies. EurJ Immunol. Jan. 2000;30(1):1-7.
Hoerr et al., Stabilized Messenger RNA (RNActiveTM) as a Tool for Innovative Gene Delivery. Tissue Engineering. Apr. 2007; 13(4): 865-925.
Hoerr, More than a messenger: A new class of drugs-mRNA-based therapeutics. Genetic Engineering & Biotechnology News. Jun. 18, 2013. http://www.genengnews.com/gen-articles/more-than-a-messenger-a-new-class-of-drugs-mrna-based-therapeutics/4916/ [last accessed Mar. 25, 2016].
Holtkamp et al., Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood. Dec. 15, 2006;108(13):4009-17.
Jirikowski et al., Reversal of diabetes insipidus in Brattleboro Rats: Intrahypothalamic injection of vasopressin mRNA. Science. Feb. 1992; 255(5047): 996-998.
Kallen et al., A development that may evolve into a revolution in medicine: mRNA as the basis for novel, nucleotide-based vaccines and drugs. Ther Adv Vaccines. Jan. 2014;2(1):10-31. doi: 10.1177/2051013613508729.
Kallen et al., A novel, disruptive vaccination technology: self-adjuvanted RNActive(®) vaccines. Hum Vaccin Immunother. Oct. 2013;9(10):2263-76. doi: 10.4161/hv.25181. Epub Jun. 4, 2013. Review.
Kanapathipillai et al., Nanoparticle targeting of anti-cancer drugs that alter intracellular signaling or influence the tumor microenvironment. Adv Drug Deliv Rev. Dec. 15, 2014;79-80:107-18. doi: 10.1016/j.addr.2014.05.005. Epub May 9, 2014.
Kariko et al., Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA, Nucleic Acids Research, Oxford University Press, GB, vol. 39, No. 21, Sep. 2, 2011 (Sep. 2, 2011), e142. doi: 10.1093/nar/gkr695. Epub Sep. 2, 2011.
Kauffman et al., Efficacy and immunogenicity of unmodified and pseudouridine-modifted mRNA delivered systemically with lipid nanoparticles in vivo. Biomaterials. Dec. 2016;109:78-87. doi: 10.1016/j.biomaterials.2016.09.006. Epub Sep. 25, 2016.
Kisich et al., Antimycobacterial agent based on mRNA encoding human beta-defensin 2 enables primary macrophages to restrict growth of Mycobacterium tuberculosis.Infect Immun. Apr. 2001;69(4):2692-9.
Kofler et al., Mimicking live flavivirus immunization with a noninfectious RNA vaccine. Proc. Natl. Acad. Sci. U S A. Feb. 2004;101(7):1951-1956.
Kozielski et al., Bioreducible Cationic Polymer-Based Nanoparticles for Efficient and Environmentally Triggered Cytoplasmic siRNA Delivery to Primary Human Brain Cancer Cells, ACS Nano. Apr. 22, 2014;8(4):3232-41. doi: 10.1021/nn500704t. Epub Apr. 3, 2014.
Kreiter et al., Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity. Cancer Res. 2010; 70: 9031-9040.
Kreiter et al., Tumor vaccination using messenger RNA: prospects of a future therapy. Curr Opinion in Immun. Jun. 2011; 23(3): 399-406.
Kuhn et al., mRNA as a versatile tool for exogenous protein expression. Current Gene Therapy. Oct. 2012; 12(5): 347-361.
Leitner et al., DNA and RNA-based vaccines: principles, progress and prospects. Vaccine. Dec. 10, 1999;18 (9-10):765-77.
Li et al., Overcoming obstacles to develop effective and safe siRNA therapeutics. Expert Opin Biol Ther. May 2009; 9(5): 609-19.
Lian et al., Trends and developments in liposome drug delivery systems. J Pharm Sci. Jun. 2001;90(6):667-80.
Liang et al., Efficient Targeting and Activation of Antigen-Presenting Cells In Vivo after Modified mRNA Vaccine Administration in Rhesus Macaques. Mol Ther. Dec. 6, 2017;25(12):2635-2647. doi: 10.1016/j.ymthe.2017.08.006. Epub Aug. 12, 2017.
Lindgren et al., Induction of Robust B Cell Responses after Influenza mRNA Vaccination Is Accompanied by Circulating Hemagglutinin-Specific ICOS+ PD-1+ CXCR3+ T Follicular Helper Cells. Front Immunol. Nov. 13, 2017;8:1539. doi: 10.3389/fimmu.2017.01539. eCollection 2017.
Lorenzi et al., Intranasal vaccination with messenger RNA as a new approach in gene therapy: Use against tuberculosis. BMC Biotechnol. Oct. 2010; 10(77): 1-11.
Maclachlan, Lipid Nanoparticle-mediated delivery of messenger RNA. Presentation. 1st International mRNA Health Conference. Tubingen, Germany. Oct. 24, 2013. http://files.shareholder.com/downloads/ABEA-50QJTB/2628241206x0x699789/47543d12-db34-4e6e-88a9-f3ae5d97b1d2/MacLachlan_mRNA_Conf_2013.pdf. Last accessed Dec. 22, 2016.
Madden et al., Administration of nucleoside-modifted mRNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge. Nat Commun. Mar. 2, 2017;8:14630. doi: 10.1038/ncomms14630. Available at https://acuitastx.com/wp-content/uploads/2015/01/Poster-Second-International-mRNA-Health-Conference.pdf.
Madden et al., Systemic delivery of mRNA therapeutics using lipid nanoparticles (LNP): improved potency for novel LNP and influence of route of administration on protein expression. 2nd International mRNA Health Conference. Nov. 12, 2014. https://acuitastx.com/wp-content/uploads/2015/01/Poster-Second-International-mRNA-Health-Conference.pdf. 1 page.
Magini et al., Self-Amplifying mRNA Vaccines Expressing Multiple Conserved Influenza Antigens Confer Protection against Homologous and Heterosubtypic Viral Challenge. PLoS One. Aug. 15, 2016;11(8):e0161193. doi: 10.1371/journal.pone.0161193. eCollection 2016.
Mahfuz Ali Khan Shaw An et al., In silico modeling and immunoinformatics probing disclose the epitope based peptide vaccine against Zika virus envelope glycoprotein. Indian J. Pharm. Biol. Res. Dec. 2014; 2(4):44-57.
Martinon et al., Induction of virus-specific cytotoxic T lymphocytes in vivo by liposome-entrapped mRNA. EurJ Immunol. Jul. 1993;23(7):1719-22.
McKenzie et al., Nucleic acid vaccines: tasks and tactics. Immunol Res. 2001;24(3):225-44.
McSweegan et al., The Global Virus Network: Challenging chikungunya. Antiviral Res. Aug. 2015;120:147-52. doi: 10.1016/j.antiviral.2015.06.003. Epub Jun. 10, 2015.
Midoux et al., Lipid-based mRNA vaccine delivery systems. Expert Rev Vaccines. Feb. 2015;14(2):221-34. doi: 10.1586/14760584.2015.986104. Epub Dec. 26, 2014. Review.
Mitchell et al., RNA transfected dendritic cells as cancer vaccines. Curr Opin Mal Ther. Apr. 2000;2(2):176-81.
Mitchell et al., RNA-transfected dendritic cells in cancer immunotherapy. J Clin Invest. Nov. 2000;106 (9):1065-9.
Mockey et al., mRNA-based cancer vaccine: prevention of B16 melanoma progression and metastasis by systemic injection of MART1 mRNA histidylated lipopolyplexes, Cancer Gene Therapy, 2007, 14, pp. 802-814.
Muller et al., Transfection of dendritic cells with RNA induces CD4- and COB-mediated T cell immunity against breast carcinomas and reveals the immunodominance of presented T cell epitopes. J Immunol. Jun. 15, 2003;170 (12):5892-6.
Pardi et al., Zika virus protection by a single low-dose nucleoside-modified mRNA vaccination. Nature. Mar. 9, 2017;543(7644):248-251. doi: 10.1038/nature21428. Epub Feb. 2, 2017.
Parisien et al., Rationalization and prediction of selective decoding of pseudouridine-modified nonsense and sense codons. RNA. Mar. 2012;18(3):355-67. doi: 10.1261/rna.031351.111. Epub Jan. 26, 2012.
Petsch et al., Protective efficacy of in vitro synthesized, specific mRNA vaccines against influenza A virus infection. Nat Biotechnol. Dec. 2012;30(12):1210-6. doi: 10.1038/nbt.2436. Epub Nov. 25, 2012.
Phua et al., Messenger RNA (mRNA) nanoparticle tumour vaccination. Nanoscale. Jul. 21, 2014;6(14):7715-29. doi: 10.1039/c4nr01346h. Review.
Pollard et al., Type I IFN counteracts the induction of antigen-specific immune responses by lipid-based delivery of mRNA vaccines. Mol Ther. Jan. 2013; 21 (1): 251-259.
Pulford et al., Liposome-siRNA-peptide complexes cross the blood-brain barrier and significantly decrease PrP'C on neuronal cells and PrP'RES in infected cell cultures. PLoS One. 201 O; 5(6): e11085.
Rabinovich et al., Synthetic messenger RNA as a tool for gene therapy. Hum. Gene Ther. Oct. 2006; 17: 1027-1035.
Richner et al., Modified mRNA Vaccines Protect against Zika Virus Infection. Cell. Mar. 23, 2017;169(1):176. doi: 10.1016/j.cell.2017.03.016.
Richner et al., Vaccine Mediated Protection Against Zika Virus-Induced Congenital Disease. Cell. Jul. 13, 2017;170(2):273-283.e12. doi: 10.1016/j.cell.2017.06.040.
Rettig et al., Intradermal vaccinations with RNA coding for TAA generate CD8+ and CD4+ immune responses and induce clinical benefit in vaccinated patients. Mol Ther. May 2011;19(5):990-9. doi: 10.1038/mt.2010.289. Epub Dec. 28, 2010.
Schirrmacher et al., Intra-pinna anti-tumor vaccination with self-replicating infectious RNA or with DNA encoding a model tumor antigen and a cytokine. Gene Ther. Jul. 2000;7(13):1137-47.
Schmitt et al., In vitro induction of a bladder cancer-specific T-cell response by mRNA-transfected dendritic cells. J Cancer Res Clin Oncol. 2001 ;127(3):203-6.
Schott et al., Viral and non-viral approaches for transient delivery of mRNA and proteins. Current Gene Ther. 2011; 11 (5): 382-398.
Segura et al., Monitoring gene therapy by external imaging of mRNA: Pilot study on murine erythropoietin. Ther Drug Monit. Oct. 2007; 29(5): 612-8.
Smits et al. RNA-based gene transfer for adult stem cells and T cells. Leukemia. 2004; 18: 1898-1902.
Sohn et al., In-vivo particle mediated delivery of mRNA to mammalian tissues: ballistic and biological effects. Wound Rep and Regen. Jul.-Aug. 2001; 287-296.
Strong et al., Incorporation of beta-globin untranslated regions into a Sindbis virus vector for augmentation of heterologous mRNA expression. Gene Ther. Jun. 1997;4(6):624-7.
Sullenger et al., Emerging clinical applications of RNA. Nature. Jul. 11, 2002;418(6894):252-8.
Tavernier et al., mRNA as gene therapeutic: How to control protein expression. J. of Controlled Release. Mar. 2011; 150(3): 238-247.
Tekmira, Lipid Nanoparticle-mediated delivery of messenger RNA (retrieved from the internet). Published Oct. 24, 2013. Available at http://files.shareholder.com/downloads/ABEA-50QJTB/2628241206x0x699789/47543d12-db34-4e6e-88a9-f3ae5d97b1d2/MacLachlan_mRNA_Conf_2013.pdf.
Teufel et al., Human peripheral blood mononuclear cells transfected with messenger RNA stimulate antigen-specific cytotoxic T-lymphocytes in vitro. Cell Mol Life Sci. Aug. 2005;62(15):1755-62.
Thess et al., Sequence-engineered mRNA Without Chemical Nucleoside Modifications Enables an Effective Protein Therapy in Large Animals. Mol Ther. Sep. 2015;23(9):1456-64. doi: 10.1038/mt.2015.103. Epub Jun. 8, 2015.
Vassilev et al., Microparticle-mediated RNA immunization against bovine viral diarrhea virus. Vaccine. Feb. 28, 2001;19(15-16):2012-9.
Wang et al., Systemic delivery of modified mRNA encoding herpes simplex virus 1 thymidine kinase for targeted cancer gene therapy. Mol Ther. Feb. 2013;21(2):358-67. doi: 10.1038/mt.2012.250. Epub Dec. 11, 2012.
Weber et al., A small antigenic determinant of the Chikungunya virus E2 protein is sufficient to induce neutralizing antibodies which are partially protective in mice. PLoS Negl Trop Dis. Apr. 23, 2015;9(4):e0003684. doi: 10.1371/journal.pntd.0003684. eCollection Apr. 2015.
Weilhammer et al., The use of nanolipoprotein particles to enhance the immunostimulatory properties of innate immune agonists against lethal influenza challenge. Biomaterials. Dec. 2013;34(38):10305-18. doi: 10.1016/j.biomaterials.2013.09.038. Epub Sep. 27, 2013.
Wong et al., An mRNA vaccine for influenza. Nat Biotechnol. Dec. 2012;30(12):1202-4. doi: 10.1038/nbt.2439.
Wong et al., An mRNA-based vaccine strategy against Zika. Cell Res. Sep. 2017;27(9):1077-1078. doi: 10.1038/cr.2017.53. Epub Apr. 11, 2017.
Yamamoto et al., Current prospects for mRNA gene delivery. Eur J Pharm Biopharm. Mar. 2009;71(3):484-9. doi: 10.1016/j.ejpb.2008.09.016. Epub Oct. 10, 2008.
Ying et al., Cancer therapy using a self-replicating RNA vaccine. Nat Med. Jul. 1999;5(7):823-7.
Zhou et al., RNA melanoma vaccine: induction of antitumor immunity by human glycoprotein 100 mRNA immunization. Hum Gene Ther. Nov. 1, 1999;10(16):2719-24.
Kurimoto et al., PEG-OligoRNA Hybridization of mRNA for Developing Sterically Stable Lipid Nanoparticles toward In Vivo Administration. Molecules. Apr. 3, 2019;24(7): 1303.
Poveda et al., Establishing Preferred Product Characterization for the Evaluation of RNA Vaccine Antigens. Vaccines (Basel). Sep. 27, 2019;7(4):131. doi: 10.3390/vaccines7040131.
U.S. Appl. No. 16/036,318, filed Jul. 16, 2018, Ciaramella et al.
U.S. Appl. No. 16/144,394, filed Sep. 27, 2018, Ciaramella et al.
U.S. Appl. No. 90/014,395, filed Oct. 24, 2019, Ciaramella et al.
U.S. Appl. No. 15/748,773, filed Jan. 30, 2018, Ciaramella et al.
U.S. Appl. No. 15/753,293, filed Feb. 17, 2018, Smith.
U.S. Appl. No. 15/753,297, filed Feb. 17, 2018, Thompson.
U.S. Appl. No. 15/748,782, filed Jan. 30, 2018, Mousavi et al.
U.S. Appl. No. 15/767,587, filed Apr. 11, 2018, Ciaramella.
U.S. Appl. No. 16/450,882, filed Jun. 24, 2019, Ciaramella.
U.S. Appl. No. 16/833,409, filed Mar. 27, 2020, Ciaramella.
U.S. Appl. No. 15/767,600, filed Apr. 11, 2018, Ciaramella et al.
U.S. Appl. No. 15/769,710, filed Apr. 19, 2018, Ciaramella et al.
U.S. Appl. No. 15/767,609, filed Apr. 11, 2018, Ciaramella et al.
U.S. Appl. No. 15/767,613, filed Apr. 11, 2018, Ciaramella et al.
U.S. Appl. No. 15/767,618, filed Apr. 11, 2018, Ciaramella et al.
U.S. Appl. No. 16/853,973, filed Apr. 21, 2020, Ciaramella et al.
U.S. Appl. No. 16/850,519, filed Apr. 16, 2020, Ciaramella et al.
U.S. Appl. No. 15/746,286, filed Jan. 19, 2018, Ciaramella et al.
U.S. Appl. No. 16/897,859, filed Jun. 10, 2020, Ciaramella et al.
U.S. Appl. No. 16/898,268, filed Jun. 10, 2020, Ciaramella et al.
U.S. Appl. No. 15/981,762, filed May 16, 2018, Bancel et al.
U.S. Appl. No. 16/599,661, filed Oct. 11, 2019, Besin et al.
U.S. Appl. No. 16/333,330, filed Mar. 14, 2019, Hoge et al.
U.S. Appl. No. 16/864,566, filed May 1, 2020, Ciaramella et al.
U.S. Appl. No. 16/880,829, filed May 21, 2020, Ciaramella et al.
U.S. Appl. No. 16/897,734, filed Jun. 10, 2020, Ciaramella et al.
U.S. Appl. No. 16/468,838, filed Jun. 12, 2019, Miracco.
U.S. Appl. No. 16/001,765, filed Jun. 6, 2018, Marquardt et al.
U.S. Appl. No. 16/348,943, filed May 10, 2019, Ciaramella.
U.S. Appl. No. 16/467,142, filed Jun. 6, 2019, Ciaramella et al.
U.S. Appl. No. 16/603,111, filed Oct. 4, 2019, Brito et al.
U.S. Appl. No. 16/482,844, filed Aug. 1, 2019, Valiante et al.
U.S. Appl. No. 16/496,135, filed Sep. 20, 2019, Narayanan et al.
U.S. Appl. No. 16/483,012, filed Aug. 1, 2019, Mauger et al.
U.S. Appl. No. 16/657,122, filed Oct. 18, 2019, Rabideau et al.
U.S. Appl. No. 16/362,366, filed Mar. 22, 2019, Ciaramella.
U.S. Appl. No. 16/493,986, filed Sep. 13, 2019, Ciaramella et al.
U.S. Appl. No. 16/494,130, filed Sep. 13, 2019, Ciaramella et al.
U.S. Appl. No. 16/494,103, filed Sep. 13, 2019, Ciaramella et al.
U.S. Appl. No. 16/494,162, filed Sep. 13, 2019, Ciaramella.
U.S. Appl. No. 16/494,988, filed Sep. 17, 2019, Ciaramella et al.
U.S. Appl. No. 16/639,265, filed Feb. 14, 2020, Issa et al.
U.S. Appl. No. 16/639,305, filed Feb. 14, 2020, Issa et al.
U.S. Appl. No. 16/765,285, filed May 19, 2020, Ciaramella et al.
U.S. Appl. No. 16/302,607, filed Nov. 16, 2018, Benenato et al.
U.S. Appl. No. 16/623,069, filed Dec. 16, 2019, Hoge et al.
U.S. Appl. No. 16/639,403, filed Feb. 14, 2020, Hoge et al.
U.S. Appl. No. 16/608,451, filed Oct. 25, 2019, Ciaramella et al.
U.S. Appl. No. 16/788,182, filed Feb. 11, 2020, Panther et al.
U.S. Appl. No. 16/794,318, filed Feb. 19, 2020, Mauger et al.
PCT/US2018/051120, Dec. 24, 2018, International Search Report and Written Opinion.
Cullis et al., Lipid Nanoparticle Systems for Enabling Gene Therapies. Mol Ther. Jul. 5, 2017;25(7):1467-1475. doi: 10.1016/j.ymthe.2017.03.013. Epub Apr. 13, 2017.
Hadinoto et al., Lipid-polymer Hybrid Nanoparticles as a New Generation Therapeutic Delivery Platform: A Review. Eur J Pharm Biopharm. Nov. 2013;85(3 Pt A):427-43. doi: 10.1016/j.ejpb.2013.07.002. Epub Jul. 17, 2013.
Hassett et al., Optimization of Lipid Nanoparticles for Intramuscular Administration of mRNA Vaccines. Mol Ther Nucleic Acids. Apr. 15, 2019;15:1-11. Epub Feb. 7, 2019.
Kowalski et al., Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Molecular Therapy vol. 27 No. Apr. 4, 2019.
Maier et al., Biodegradable Lipids Enabling Rapidly Eliminated Lipid Nanoparticles for Systemic Delivery of RNAi Therapeutics. Mol Ther. Aug. 2013; 21(8): 1570-1578.
Pardi et al., Expression Kinetics of Nucleoside-Modified mRNA Delivered in Lipid Nanoparticles to Mice by Various Routes. J Control Release. Nov. 10, 2015;217:345-51. doi: 10.1016/j.jconrel.2015.08.007. Epub Aug. 8, 2015.
Pardi et al., mRNA vaccines—a new era in vaccinology. Nat Rev Drug Discov. Apr. 2018;17(4):261-279. doi: 10.1038/nrd.2017.243. Epub Jan. 12, 2018.
Reichmuth et al., mRNA Vaccine Delivery Using Lipid Nanoparticles. Ther Deliv. 2016;7(5):319-34. doi: 10.4155/tde-2016-0006.
Sabnis et al., A Novel Amino Lipid Series for mRNA Delivery: Improved Endosomal Escape and Sustained Pharmacology and Safety in Non-human Primates. Mol Ther. Jun. 6, 2018;26(6):1509-1519. doi: 10.1016/j.ymthe.2018.03.010. Epub Mar. 14, 2018.
Schlake et al., Developing mRNA-vaccine technologies. RNA Biol. Nov. 2012;9(11):1319-30. doi: 10.4161/rna.22269. Epub Oct. 12, 2012.
Zhao et al., Nanoparticle vaccines. Vaccine. Jan. 9, 2014;32(3):327-37. doi: 10.1016/j.vaccine.2013.11.069. Epub Dec. 2, 2013.
Related Publications (1)
Number Date Country
20200276296 A1 Sep 2020 US
Provisional Applications (1)
Number Date Country
62558746 Sep 2017 US
Divisions (1)
Number Date Country
Parent 16131793 Sep 2018 US
Child 16848318 US