ZIKA VIRUS VACCINES USING VIRUS-LIKE PARTICLES

Information

  • Patent Application
  • 20220118074
  • Publication Number
    20220118074
  • Date Filed
    September 16, 2021
    4 years ago
  • Date Published
    April 21, 2022
    3 years ago
Abstract
A flavivirus virus-like particle and methods of making and using that particle, and antibodies raised to a plurality of those particles, arc provided.
Description
BACKGROUND

Zika virus (ZIKV; Flaviviridae, Flavivirus) is an emerging arbovirus, transmitted by Aedes mosquitoes (Ioos et al., 2014). ZIKV has a positive-sense, single-stranded RNA genome, approximately 11 kilobases in length that encodes three structural proteins: the capsid (C), premembrane/membrane (prM), and envelope (E), and seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A, 2K, NS4B, and NS5). Based on a genetic study using nucleotide sequences derived from the NS5 gene, there are three ZIKV lineages: East African, West African, and Asian (Mosso, 2015; Faye et al., 2014). ZIKV emerged out of Africa and previously caused outbreaks of febrile disease in the Yap islands of the Federated states of Micronesia (Duffy et al., 2009), French Polynesia (Cao-Lormeau et al., 2014), and Oceania. Currently, several Latin American countries are experiencing the first-ever reported local transmission of ZIKV in the Americas (Hennessey et al., 2016). The current outbreak in the Americas is cause for great concern, because of the fast and uncontrolled autochthonous spread. Clinically, infection with ZIKV resembles dengue fever and several other arboviral diseases (Dyer, 2015), but it has been linked to neurological syndromes and congenital malformation (Pinto Junior et al., 2015). Alarmingly, the rate of microcephaly (small head, reduced brain size, impaired neurocognitive development) in infants born to pregnant women has increased significantly (20-fold in 2015) in areas with high ZIKV incidence in Brazil (Oliveira Melo et al., 2016) (Butler, 2016). In February 2016, the World Health Organization declared the Zika virus an international public health emergency, prompted by its link to microcephaly. As many as four million people could be infected by the end of the year (Gulland, 2016).


To date, there are no vaccines or antiviral therapy for ZIKV, although successful vaccines have been developed for other flavivirus infections (dengue, Japanese encephalitis and yellow fever).


SUMMARY

Mosquito-borne Zika virus (ZIKV) typically causes a mild and self-limiting illness known as Zika fever, which often is accompanied by maculopapular rash, headache, and myalgia. However, more serious consequences have been reported for ZIKV infection during pregnancy, e.g., microcephaly of the fetus. As described herein, Zika virus-like particles (VLPs) were developed and their immunogenicity and protective efficacy were evaluated in a small animal model for wild-type ZIKV. The prM and E genes of ZIKV strain 33 H/PF/2013 with a nascent signal sequence in the 3′ coding region of the capsid protein were cloned into a pCMV expression vector under the control of a cytomegalovirus (CMV) promoter and CMV polyadenylation signal. Following transfection of HEK293 cells, ZIKV-VLPs expression was confirmed by Western blot and transmission electron microscopy. ZIKV-VLPs (about 0.45 μg) were formulated with 0.2% Imject alum and used to inject groups of six-week-old AG129 mice by the intramuscular (IM) route, followed by a boost administration two weeks later. Control groups received PBS mixed with alum. At five weeks post-initial vaccination all animals were challenged with 200 PFU (>400 LD50s) of ZIKV strain H/PF/2013 by injection into the right hind footpad. All control animals (n=6) died 9 days post challenge, while vaccinated mice survived with no morbidity or weight loss and had significantly lower viremia. This was in contrast to Dengue VLPs produced from prM and E, which did not produce a protective immune response (Pillman, 2015). Significant levels of neutralizing antibodies were observed in all ZIKV-VLP vaccinated mice compared to control groups. The role of neutralizing antibodies in protecting mice was demonstrated by antibody passive transfer studies; naive AG129 mice that received pooled serum from VIP vaccinated animals were fully protected. Thus, the present findings demonstrate the protective efficacy of the ZIKV-VLP vaccine and highlight the role that neutralizing antibodies play in protection against ZIKV infection.


One advantage of VLPs is that VLPs structurally mimic the conformation of native viruses but do not contain any viral genetic material (no viral replication) and are therefore non-infectious. This is in contrast to a live attenuated vaccine (which has genetic material) or in the case of insufficient inactivation of killed vaccines (resulting in viral replication). A VLP vaccine approach eliminates concerns associated with such replication for pregnant women and other populations at high risk for suffering the effects of ZIKV infections.


In one embodiment, a recombinant nucleic acid vector is provided comprising a heterologous promoter operably linked to a sequence encoding flavivirus, e.g., ZIKV, prM/E. In one embodiment, the vector lacks nucleic acid sequences encoding one or more of flavivirus NS1, NS2A, NS2B, NS3, NS4A, NS4B or NS5 and optionally lacks nucleic acid sequences encoding functional flavivirus capsid, e.g., a protein that aggregates so as to form a viral capsid having a diameter of about 50 to 60 nm or about 45 nm to 70 nm. In one embodiment, the heterologous promoter is expressed in mammalian cells. In one embodiment, the heterologous promoter is a heterologous viral promoter. In one embodiment, the heterologous promoter comprises a CMV promoter, a SV40 promoter, an EF-1α promoter or a PGK1 promoter. In one embodiment, the flavivirus is a Zika virus. In one embodiment, the vector sequences are from a Zika virus from the East African or West African lineage. In one embodiment, only a portion of flavivirus capsid sequences is included, e.g., a CT-terminal portion of a flavivirus capsid that is linked to prM/E sequences as in the polyprotein that is expressed by wild-type flavivirus. In one embodiment, the portion of the capsid sequence includes amino acids 98 to 112 of the capsid protein encoded by SEQ ID NO:1 or a protein having at least 80%, 82%o, 85%, 87%, 90%, 92%, 95%, 97%, 99% or more amino acid sequence identity thereto. In one embodiment, the prM/E sequences have at least 80%%, 82%, 85%, 87%, 90%, 92%, 95%, 97%, 98%, 99% or more amino acid sequence identity to the prM/E sequences encoded by any one of SEQ ID Nos. 1-3, 5 or 11-13. In one embodiment, the portion of the capsid sequence lacks a NS2B-3 cleavage site, e.g., KEKKRR (SEQ ID NO:10). In one embodiment, the prM/E sequences are operably linked to a heterologous secretion signal. In one embodiment, the vector further comprises an intron and/or enhancer sequence, e.g., 5′ to a prM/E coding sequence. In one embodiment, the vector further comprises comprises an intron, internal ribosome entry sequence, or an enhancer sequence, or any combinantion thereof.


A recombinant host cell comprising the vector is also provided. In one embodiment, the cell is a mammalian, e,g, Vero cell, HeLa cell or CHO cell, insect or yeast cell. In one embodiment, the cell is a human or simian cell. In one embodiment, the genome of the cell is augmented, e.g., stably augmented, with nucleic acid sequences encoding flavivirus NS2B, e.g., the source of NS2B may be heterologous or homologous to the source for prM/E. In one embodiment, the genome of the cell is augmented, e.g., stably augmented, with nucleic acid sequences encoding flavivirus capsid, e.g., the capsid may be heterologous or homologous to prM/E, which sequences are optionally integrated into the genome of the cell in one embodiment, the genome of the cell is augmented with nucleic acid sequences encoding flavivuirus NS2B, which sequences are optionally integrated into the genome of the cell. In one embodiment, the vector is integrated into the genome of the host cell.


Also provided is a method to prepare flavivirus VLPs. The method includes contacting a culture of isolated host cells that do not express one or more of flavivirus NS1, NS2A, NS2B, NS3, NS4A, NS4B or NSS and optionally do not express functional flavivirus capsid, with the recombinant vector and collecting VLPs from supernatant of the culture. Thus, in one embodiment, the isolated host cells do not have flavivirus sequences prior to contact with the vector. In one embodiment, the collected particles have a diameter of about 10 to 100 nm, e.g., 20 to 60 nm, 40 to 70 nm or 40 to 60 nm. In one embodiment, the host cell expresses flavivirus NS2B. In one embodiment, the host cell expresses flavivirus capsid protein and optionally NS2B.


Further provided is a preparation comprising a flavivirus VD's. The VLP comprises a lipid bilayer comprising flavivirus prM/E but lacks one or more of a flavivirus NS1, NS2A, NS2B, NS3, NS4A, NS4B or NS5 and optionally lacks functional flavivirus capsid. Such a preparation may be used in a vaccine or immunogenic composition. The vaccine or immunogenic composition may have about 10 μg to 1000 μg, e.g., 200 μg to 400 μg or 400 μg to 800 μg, about 0.5 μg to 100 μg, about 1 μg to 50 μg, about 5 μg to 75 μg, about 1 to 500 mg, e.g., about 20 to 50 mg, about 100 to 300 or about 300 to 400 mg, of VLP. The vaccine or immunogenic composition may further comprise one or more adjuvants, In one embodiment, the adjuvant comprises alum, monophosphoryl lipid A (MPLA), squalene, a TLR4 agonist, dimethyldioctadecylammonium, tripalmitoyl-S-glyceryl cysteine, trehalose dibehenate; saponin, MF59, AS03, virosomes AS04, CpG, imidazoquinoline, poly LC, flagellin, or any combination thereof. In one embodiment, an adjuvant is included at about 0.001 mg to about 10 mg, about 0.01 to about 10 mg, about 1 to about 20 mg, or about 10 mg to about 100 mg.


Further provided is a method to prevent, inhibit or treat flavivirus infection in a mammal. The method includes administering an effective amount of the recombinant vector, a host cell having the vector or the vaccine or immunogenic composition having the VLPs. In one embodiment, the mammal is a female mammal. In one embodiment, the vector, host cell, vaccine or immunogenic composition is administered subcutaneously, intradermally, intramuscularly or intravenously to the mammal.


In one embodiment, a method to passively prevent, inhibit or treat flavivirus infection in a mammal is provided. The method includes obtaining serum or plasma having anti-flavivirus antibodies from a mammal exposed to flavivirus and optionally isolating antibodies from the serum or plasma; and administering an effective amount of the serum or plasma, or isolated antibodies, to a different mammal at risk of or having a flavivirus infection. In one embodiment, the mammal is immunocompromised. In one embodiment, the and-flavivirus antibodies are isolated from the serum before administration. In one embodiment, the mammal is a human.





BRIEF DESCRIPTION OF THE FIGURES


FIGS. 1A-E. in vitro characterization of Zika virus like particles. A) Schematic of pCMV-prM/E expression cassette. B) Western blot analysis of Zika virus like particles. Lanes are, 1) Bio-rad precision plus kaleidoscope protein standards. 2): pCMV-prM/E transfection pre sucrose cushion purification supe. 3) 3.5×104 PFU ZIKV positive control. 4) pCMV-prM/E transfection post sucrose cushion purification pt. 5) pCMV-GFP transfection post sucrose cushion purification pt. C-E) Sucrose cushion purified Zika VLPs observed using transmission electron microscopy. C) VLPs stained with Tungsten. Diameter is indicated. Background protein staining also apparent. D) VLP stained with Tungsten. Membrane proteins visible on the surface of VLP are indicated with arrow. Background protein staining apparent. E) VLP stained with Uranyl acetate. Membrane proteins visible on the surface of VLP are indicated with an arrow.



FIGS. 2A-F. Protection of ZIKVLPS in AG129 mice. A) Neutralizing antibody titers (+/−SD) of vaccinated AG129 mice pre boost and pre challenge. B) Average weight loss (+/−SD) of AG129 after ID challenge with 200 PFU ZIKV over a 14 day period. C) Survival of 11 week old AG129 after ID challenge with 200 PFU ZIKV over a 14 day period. D) Viremia (+/−SD) in serum samples from mice two days post challenge by qRT-PCR. Values are total RNA copies per reaction, E) Viremia (+/−SD) in serum samples from mice two days post challenge by TCDI50. F) PRNT50 and PRNT90 values (+/−SD) of serum samples taken from ZIKVLP vaccinated AG129 mice post challenge, and pre challenge serum from PBS/alum mice.



FIGS. 3A-B. ZIKVLP serum transfer to naive AG129 mice. A) Average weight loss (+/−SD) of 8 week AG129 transferred serum from mice vaccinated with ZIKVLPs after ID challenge with 20 PFU of ZIKV over a 14 day period. B) Survival of AG129 after challenge with ZIKV over a 14 day period.



FIG. 4. LD50 of ZIKV in AG129 mice. Survival of AG129 after ZIKV over a 14 day period.



FIG. 5A-B. A) Weight loss of AG129 after ID challenge with 20 PFU ZIKV over a 12 day period. B) Survival of AG129 after ID challenge with 200 PFU ZIKV over a 12 day period.



FIG. 6A-B. Sequence of a vector with an exemplary coding sequence to express prM/E (SEQ ID NO:5).



FIG. 7. Schematic of a pCMV pTriex4-neo (B) vector for expression of prM/E.



FIG. 8A-C. Images showing GFP expression in HEK293 cells. A) pTri px4-neo GFP expression, B) pCMV GFP expression, and C) pCMV GFP expression.



FIG. 9. Western blot analysis of pTriex versus pCMV prM/E expression. Lane 1: Zika virus +; lanes 3.9: pCMV-GFP cells (pt.) and supernatant (sup.); lanes 4,10: pCMV-Columbia pt., sup.; lanes 5,11: pCMV-French-Poly pt., sup.; lanes 6, 12: pTriex-Columbia pt., sup.; and lanes 7, 13: pThex-French-Poly pt., sup.



FIG. 10. Anti-Zika antibodies in mice before and after VIP exposure. Mice were injected IP with about 106 TCID50 of ZIKV. 5 weeks later the mice were bled, then injected with crude VLP supernatant. Mice were bled 7 days after injection and antibodies analyzed by ZIKV ELISA.



FIG. 11. Western blot of sucrose purified VLPs. Lane 1: marker; lane 2: VLP 100,000 g precipitation; lane 3: Zika virus +; lane 4: pCMV French-Poly post sucrose purification; and lane 5: pCMV-GFP post sucrose purification. Cells in T-75 flasks were transfected with pCMV-prM/E, or pCMV-GFP, and supernatants were collected after 3 days, then clarified by centrifugation (15,000 g, 30 minutes), then layered onto a 20% sucrose cushion, and pelleted at 112,000 g for 3.5 hours.



FIG. 12. Sucrose fractional analysis. Lane 1: marker; lane 2: Zika virus +; lane 3: Cell debris (pt.) from clarification step; lane 4: Supernatant above sucrose cushion post centrifugation; lane 5: marker; lane 6: VLP post purification batch 1: days 0-3; and lane 7: VLP post purification batch 2: days 3-10. A second batch was harvested from transfected flasks (days 3-10). Purified as before, fractions from each sucrose purification step were analyzed to ensure there was no loss during purification.



FIG. 13. Comparison of protein expression for VLPs produced from pCMV and pTriex constructs.



FIG. 14. Mouse study. 11 AG129 mice of mixed sex and age were used. VLPs were administered IM along with 1 mg Alum. Challenge virus (100 PFU) was administered ID.



FIG. 15. Antibody levels two weeks post boost.



FIG. 16. Survival and morbidity. All controls were moribund on day 9.



FIGS. 17A-C. Dose response of ZIKVLPS in AG129 mice. A-B) PRNT50 and PRNT90 values (+/−SD) of serum samples taken from AG129 mice administered a prime and boost of 0.45 μg (A) or a prime only of 3.0 (B) ZIKVLPs pre and post challenge. C) Survival of 11 week old. AG129 after ID challenge with 200 PFU ZIKV over a 14 day period.



FIGS. 18A-C. Protection of ZIKVLPS in BALB/c mice. A) PRNT50 and PRNT90 values (+/−SD) of serum samples taken from BALB/c mice administered a prime only of 3.0 μg ZIKVLPs post challenge. B) Viremia (+/−SD) in serum samples from mice two days post challenge by qRT-PCR. Values are total RNA copies per reaction. C) Average weight loss (+/−SD) of BALB/c mice after ID challenge with 200 PFU ZIKV over a 14 day period.





DETAILED DESCRIPTION
Definitions

As used herein, the terms “isolated” refers to in vitro preparation, isolation of a nucleic acid molecule such as a vector or plasmid of the invention or a virus-like particle of the invention, so that it is not associated with in vivo substances, or is substantially purified from in vitro substances. An isolated virus-like particle preparation is generally obtained by in vitro culture and propagation and is substantially free from infectious agents. As used herein, “substantially free” means below the level of detection for a particular infectious agent using standard detection methods for that agent. As used herein, the term “recombinant nucleic acid” or “recombinant DNA sequence or segment” refers to a nucleic acid, e.g., to DNA, that has been derived or isolated from a source, that may be subsequently chemically altered in vitro, so that its sequence is not naturally occurring, or corresponds to naturally occurring sequences that are not positioned as they would be positioned in the native genome. An example of DNA “derived” from a source, would be a DNA sequence that is identified as a useful fragment, and which is then chemically synthesized in essentially pure form. An example of such DNA “isolated” from a source would be a useful DNA sequence that is excised or removed from said source by chemical means, e.g., by the use of restriction endonucleases, so that it can be further manipulated, e.g., amplified, for use in the invention, by the methodology of genetic engineering.


A signal peptide (sometimes referred to as signal sequence, secretory signal, e.g., an Oikosin 15 secretory signal, targeting signal, localization signal, localization sequence, transit peptide, leader sequence or leader peptide) is a short (about 5 to 30 amino acids long) peptide present at the N-terminus of proteins that are destined towards the secretory pathway. These proteins include those that reside either inside certain organelles (the endoplasmic reticulum, golgi or endosomes), secreted from the cell, or inserted into most cellular membranes. Although most type I membrane-bound proteins have signal peptides, the majority of type I and multi-spanning membrane-bound proteins are targeted to the secretory pathway by their first transmembrane domain, which biochemically resembles a signal sequence except that it is not cleaved. Signal sequences generally have a tripartite structure, consisting of a hydrophobic care region (h-region) flanked by an n- and c-region. The latter contains the signal peptidase (SPase) consensus cleavage site. Usually, signal sequences are cleaved off co-translationally, the resulting cleaved signal sequences are termed signal peptides.


Exemplary Embodiments

Zika virus infection transmitted by Aedes mosquitoes is now receiving considerable attention due to its associated with microcephaly and Guillain-Barre syndrome. According to the CDC, there have been over 500 cases of travel-related Zika infections in America to date, with no locally-acquired vector-borne cases reported; in contrast, over 700 cases have been reported in US territories, of which nearly all were locally-transmitted.


Computational analysis has identified ZIKV envelope glycoproteins as a good candidate for vaccine development, as these are the most immunogenic (Shawan, 2015). Several approaches are currently being explored to develop a ZIKV vaccine, including inactivated, recombinant live-attenuated viruses, protein subunit vaccines, or DNA vaccines. A VLP vaccine approach against ZIKV may eliminate concerns of live attenuated vaccines and insufficient inactivation of killed vaccines for pregnant women and other populations at high risk of suffering the devastating effects of ZIKV infections.


VLPs are structurally mimic the conformation of native virions but do not generate progeny viruses (VLPs are “non-infectious”) and do not contain any viral genetic material. VLPs are known to be highly immunogenic and elicit higher titer neutralizing antibody responses than subunit vaccines based on individual proteins (Wang et al., 2013). Such VLPs present viral spikes and other surface components that display linear or conformational epitopes in a repetitive array that, effectively results in recognition by B-cells (Metz and Pijlman, 2016). This recognition leads to B cell signaling and MHC class II up-regulation that facilitates the generation of high titer specific antibodies. VLPs from viruses, including hepatitis B virus, West Nile virus and Chikungunya virus, elicit high titer neutralizing antibody responses that contribute to protective immunity in preclinical animal models and in humans (Akahata et al., 2010; Spohn et al., 2010; Wang et al., 2012).


As mentioned above, a VLP vaccine approach against ZIKV eliminates concerns of live attenuated vaccines and insufficient inactivation of killed vaccines for pregnant women and other populations at high risk of suffering the devastating effects of ZIKV infections. The generation of ZIKV-VLPs containing the prM and E genes as well as the immunogenicity and efficacy testing in the AG129 mouse model is described herein. A position in the secretory signal was identified that likely allows for higher than normal levels of VLP secretion, due to the absence of an auto (NS2b-3) cleavage signal. Using bioinformatic signal sequence prediction tools, the putative signal sequences of ZIKV starting from positions aa 98-aa 112 were examined, and a site was selected that putatively resulted in the highest secretion score. The prM and E genes from ZIKV (Colombian isolate; GenBank accession no. K11646827) were combined with a secretory signal (positions aa 98-aa 112), were cloned into a mammalian expression vector (pCMV-prM/E). HEK-293 cells were transfected and supernatants were harvested from the cells at approximately 10 days post transfection. Transfected HEK-293 cells secreted VLPs with relatively high yields, likely due to the inclusion of a secretory signal that allows for higher than normal levels of VLP secretion. The cell supernatants contained a fraction of extracellular particles that were purified by ultracentrifugation though a sucrose cushion. These particles reacted with known ZIKV antibodies by Western Blot. Western blot analysis also revealed relatively high yields of VLPs after purification, indicating the potential for scalable production. To test the efficacy of this VLP vaccine, AG129 mice susceptible to ZIKV were vacinated with 2 μg of total protein (about 400-500 ng of VLPs) formulated with 1 mg of adjuvant, and the mice boosted with the same vaccine two weeks later. At two weeks post boost, serum from vaccinated animals was collected and tested for anti-ZIKV neutralizing antibodies. Three weeks post boost mice were challenged with 200 PFU of ZIKV (about 400 LD50s). All control animals (n=6) died by 9 days post challenge, while vaccinated mice survived with no morbidity/illness (as of 11 days post-challenge). Passive transfer of antibodies from vaccinated mice was efficacious in protecting susceptible mice from Zika infections. Thus, the present findings show the protective efficacy of a ZIKV-VLP vaccine and highlight the important role that neutralizing antibodies play in protection against ZIKV infection. Further, passive transfer may be employed as a treatment for immune-compromised patients that cannot receive a vaccine.


In one embodiment, a recombinant nucleic acid vector is provided comprising a heterologous promoter operably linked to a sequence encoding ZIKV, prM/E. In one embodiment, the vector lacks nucleic acid sequences encoding ZIKV NS1, NS2A, NS2B, NS3, NS4A, NS4B or NS5 and optionally lacks nucleic acid sequences encoding functional ZIKV capsid, e.g., a protein that aggregates so as to form a viral capsid having a diameter of about 50 to 60 nm. In one embodiment, the heterologous promoter is expressed in mammalian cells. In one embodiment, the heterologous promoter is a heterologous viral promoter. In one embodiment, only a portion of ZIKV capsid sequences is included, a C-terminal portion of a ZIKV capsid that is linked to prM/E sequences as in the polyprotein that is expressed by wild-type flavivirus. In one embodiment, the portion of the capsid sequence includes amino acids 98 to 112 of the capsid protein encoded by SEQ ID NO:1 or a protein having at least 80%, 82%, 85%, 87%, 90%, 92%, 95%, 97%, 99% or more amino acid sequence identity thereto. In one embodiment, the prM/E sequences have at least 80%%, 82%, 85%, 87%, 90%, 92%, 95%, 97%, 99% or more amino acid sequence identity to the prM/E sequences encoded by any one of SEQ ID Nos. 1-3 or 5. In one embodiment, the portion of the capsid sequence lacks a NS2B-3 cleavage site. In one embodiment, the prM/E sequences are operably linked to a heterologous secretion signal. In one embodiment, the vector further comprises an intron and/or enhancer sequence, e.g., 5′ to a prM/E coding sequence.


A recombinant host cell comprising the vector is also provided. In one embodiment, the cell is a mammalian cell. In one embodiment, the cell is a human or simian cell. In one embodiment, the genome of the cell is augmented, e.g., stably augmented, with nucleic acid sequences encoding ZIKV NS2B, e.g., the source of NS2B may be heterologous or homologous to the source for prM/E. In one embodiment, the genome of the cell is augmented, e.g., stably augmented, with nucleic acid sequences encoding ZIKV capsid, e.g., the capsid may he heterologous or homologous to prM/E. In one embodiment, the vector is integrated into the genome of the host cell.


Also provided is a method to prepare ZIKV VLPs. The method includes contacting a culture of isolated host cells that do not express ZIKV NS1, NS2A, NS2B, NS3, NS4A, NS4B or NS5 and optionally do not express functional ZIKV capsid, with the recombinant vector and collecting VLPs from supernatant of the culture. Thus, in one embodiment, the isolated host cells do not have ZIKV sequences prior to contact with the vector. In one embodiment, the collected particles have a diameter of about 10 to 100 nm, e.g., 20 to 60 nm, 40 to 70 nm or 40 to 60 nm. In one embodiment, the host cell expresses ZIKV NS2B. In one embodiment, the host cell expresses ZIKV capsid protein and optionally NS2B.


Further provided is a preparation comprising a ZIKV VLPs. The VLP comprises a lipid bilayer comprising ZIKV prM/E but lacks ZIKV NS1, NS2A, NS2B, NS3, NS4A, NS4B or NS5 and optionally lacks functional ZIKV capsid. Such a preparation may be used in a vaccine or immunogenic composition. The vaccine or immunogenic composition may have about 10 to 1000 μg, e.g., 200 to 400 μg or 400 to 800 μg, or about 1 to about 500 mg, e.g., about 20 to 50 mg, about 100 to 300 or about 300 to 400 mg, of VLP. The vaccine or immunogenic composition may further comprise one or more adjuvants. In one embodiment, an adjuvant is included at about 0,01 to about 10 mg, about 1 to about 20 mg, or about 10 mg to about 100 mg.


Further provided is a method to prevent, inhibit or treat ZIKV infection in a mammal. The method includes administering an effective amount of the recombinant vector, a host cell having the vector or the vaccine or immunogenic composition having the VLPs. In one embodiment, the mammal is a female mammal. In one embodiment, the vector, host cell, vaccine or immunogenic composition is administered intradermally, intramuscularly or intravenously to the mammal.


In one embodiment, a method to passively prevent, inhibit or treat ZIKV infection in a mammal is provided. The method includes obtaining serum or plasma having anti-ZIKV antibodies from a mammal exposed to ZIKV and optionally isolating antibodies from the serum or plasma; and administering an effective amount of the serum or plasma, or isolated antibodies, to a different mammal at risk of or having a ZIKV infection. In one embodiment, the mammal is immunocompromised. In one embodiment, the anti-flavivirus antibodies are isolated from the serum before administration. In one embodiment, the mammal is a human.


Exemplary Adjuvants

Adjuvants are compounds that enhance the specific immune response against co-inoculated antigens. Adjuvants can be used for various purposes: to enhance the immunogenicity of highly purified or recombinant antigens; to reduce the amount of antigen or the number of immunizations needed for protective immunity; to prime the efficacy of vaccines in newborns, the elderly or immuno-compromised persons; or as antigen delivery systems for the uptake of antigens by the mucosa. Ideally, adjuvants should not induce immune responses against themselves and promote an appropriate immune response (i.e., cellular or antibody immunity depending on requirements for protection). Adjuvants can be classified into three groups: active immunostimulants, being substances that increase the immune response to the antigen; carriers being immunogenic proteins that provide T-cell help; and vehicle adjuvants, being oil emulsions or liposomes that serve as a matrix for antigens as well as stimulating the immune response.


Adjuvant groups include but are not limited to mineral salt adjuvants, e.g., alum-based adjuvants and salts of calcium, iron and zirconium; tensoactive adjuvants, e.g., Quil A which is a saponin derived from an aqueous extract from the bark of Quillaja sapanaria: Saponins induce a strong adjuvant effect to T-dependent as well as T-independent antigens. Other adjuvant groups are bacteria-derived substances including cell wall peptidoglycan or lipopolysaccharide of Gram-negative bacteria, that enhance immune response against co-administered antigens and which is mediated through activation of Toll-like receptors; lipopolysaccharides (LPS) which are potent B-cell mitogens, but also activate T cells; and trehalose dimycolate (TCM), which simulates both humoral and cellular responses.


Other adjuvants are emulsions, e.g., oil in water or water in oil emulsions such as FIA (Freund's incomplete adjuvant), Montanide, Adjuvant 65, and Lipovant; liposomes, which may enhance both humoral and cellular immunity; polymeric adjuvants such as biocompatible and biodegradable microspheres; cytokines; carbohydrates; inulin-derived adjuvants, e.g., gamma inulin, a carbohydrate derived from plant roots of the Compositae family, is a potent humoral and cellular immune adjuvant and algammulin, which is a combination of γ-inulin and aluminium hydroxide. Other carbohydrate adjuvants include polysaccharides based on glucose and mannose including but not limited to glucans, dextrans, lentinans, glucomannans, galactomannans, levans and xylans.


Some well known parenteral adjuvants, like MDP, monophosphoryl lipid A (MPL) and LPS, also act as mucosal adjuvants. Other mucosal adjuvants poly(DL-lactide-coglycolide) (DL-PLG), cellulose acetate, iminocarbonates, proteinoid microspheres, polyanhydrides, dextrans, as well as particles produced from natural materials like alginates, geletine and plant seeds.


Adjuvants for DNA immunizations include different cytokines, polylactic microspheres, polycarbonates and polystyrene particles.


In one embodiment, adjuvants useful in the vaccines, compositions and methods described herein include, but are not limited to, mineral salts such as aluminum salts, calcium salts, iron salts, and circonium slats, saponin, e.g., Quid A including QS21, squalene (e.g., AS03), TLR ligands, bacterial MDP (N-acetyl muramyl-L-alanyl-D-isoglutamine), lipopolysaccharide (LPS), Lipid A, montanide, Adjuvant 65, Lipovant, Incomplete Freund's adjuvant (IFA), liposmes, microparticles formed of, for example, poly(D,L-lactide (coglycolide)), cytokines, e.g., IFN-gamma or GMCSF, or carbohydrates such as gamma inulin, glucans, dextrans, lentinans, glucomannans and/or glactomannans.


Pharmaceutical Compositions

Pharmaceutical compositions of the present invention, suitable for inoculation or for parenteral or oral administration, comprise flavivirus VLPs, optionally further comprising sterile aqueous or non-aqueous solutions, suspensions, and emulsions. The compositions can further comprise auxiliary agents or excipients, as known in the art. See, e.g., Berkow et al., 1987: Avery's Drug Treatment, 1987. The composition of the invention is generally presented in the form of individual doses (unit doses).


Vaccines may contain about 0.1 to 500 ng, 0.1 to 500 μg, or 1 to 100 μg, of VLPs. In one embodiment, the vaccine may contain about 100 μg to about 500 μg of VLPs. In one embodiment, the vaccine may contain about at least 100 ng of VLPs. In one embodiment, the vaccine may contain about at least 500 ng of VLPs. In one embodiment, the vaccine may contain about at least 1000 ng of VLPs. In one embodiment, the vaccine may contain about at least 50 μg of VLPs, In one embodiment, the vaccine may contain less than about 750 μg of VLPs. In one embodiment, the vaccine may contain less than about 250 μg of VLPs. In one embodiment, the vaccine may contain less than about 100 μg of VLPs. In one embodiment, the vaccine may contain less than about 40 μg of VLPs. The vaccine forming the main constituent of the vaccine composition of the invention may comprise a combination of different flavirus VLPs, for example, at least two of the three types, Chinese, West African or East African.


Preparations for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, and/or emulsions, which may contain auxiliary agents or excipients known in the art. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Carriers or occlusive dressings can be used to increase skin permeability and enhance antigen absorption. Liquid dosage forms for oral administration may generally comprise a liposome solution containing the liquid dosage form. Suitable forms for suspending liposomes include emulsions, suspensions, solutions, syrups, and elixirs containing inert diluents commonly used in the art, such as purified water. Besides the inert diluents, such compositions can also include adjuvants, wetting agents, emulsifying and suspending agents, or sweetening, flavoring, or perfuming agents. See, e.g., Avery's, 1987.


When a composition of the present invention is used for administration to an individual, it can further comprise salts, buffers, adjuvants, or other substances which are desirable for improving the efficacy of the composition. For vaccines, adjuvants, substances which can augment a specific immune response, can be used. Normally, the adjuvant and the composition are mixed prior to presentation to the immune system, or presented separately, but into the same site of the organism being immunized. Examples of materials suitable for use in vaccine compositions are provided.


A pharmaceutical composition according to the present invention may further or additionally comprise at least one chemotherapeutic compound, for example, immunosuppressants, anti-inflammatory agents or immune enhancers, chemotherapeutics including, but not limited to, gamma globulin, amantadine, guanidine, hydroxybenzimidazole, interferon-α, interferon-β, interferon-γ, tumor necrosis factor-alpha, thiosemicarbarzones, methisazone, rifampin, ribavirin, a pyrimidine analog, a purine analog, foscarnet, phosphonoacetic acid, acyclovir, dideoxynucleosides, a protease inhibitor, or ganciclovir.


The composition can also contain variable but small quantities of endotoxin-free formaldehyde, and preservatives, which have been found safe and not contributing to undesirable effects in the organism to which the composition is administered.


Pharmaceutical Purposes

The administration of the composition (or the antisera that it elicits) may be for either a “prophylactic” or “therapeutic” purpose. When provided prophylactically, the compositions of the invention which are vaccines, are provided before any symptom of a pathogen infection becomes manifest. The prophylactic administration of the composition serves to prevent or attenuate any subsequent infection or one or more symptoms associated with the disease.


When provided therapeutically, a VLP vaccine is provided upon the detection of a symptom of actual infection. The therapeutic administration of the vaccine serves to attenuate any actual infection. See, e.g., Avery, 1987.


Thus, a VLP vaccine composition of the present invention may thus be provided either before the onset of infection (so as to prevent or attenuate an anticipated infection) or after the initiation of an actual infection.


A composition is said to be “pharmacologically acceptable” if its administration can be tolerated by a recipient patient. Such an agent is said to be administered in a “therapeutically effective amount” if the amount administered is physiologically significant. A composition of the present invention is physiologically significant if its presence results in a detectable change in the physiology of a recipient patient, e.g., enhances at least one primary or secondary humoral or cellular immune response against at least one strain of an infectious flavivirus.


The “protection” provided need not he absolute, i.e., the flavivirus infection need not be totally prevented or eradicated, if there is a statistically significant improvement compared with a control population or set of patients. Protection may be limited to mitigating the severity or rapidity of onset of symptoms of the flavivirus infection.


Pharmaceutical Administration

A composition of the present invention may confer resistance to one or more pathogens, e.g., one or more flavivirus strains, by either passive immunization or active immunization. In active immunization, an inactivated or attenuated live vaccine composition is administered prophylactically to a host (e.g., a mammal), and the host's immune response to the administration protects against infection and/or disease. For passive immunization, the elicited antisera can be recovered and administered to a recipient suspected of having an infection caused by at least one flavivirus strain.


In one embodiment, the vaccine or immune serum is provided to a mammalian female (at or prior to pregnancy or parturition), under conditions of time and amount sufficient to cause the production of an immune response which serves to protect both the female and the fetus or newborn (via passive incorporation of the antibodies across the placenta or in the mother's milk).


The present invention thus includes methods for preventing or attenuating a disorder or disease, e.g., an infection. As used herein, a vaccine is said to prevent or attenuate an infection if its administration results either in the total or partial attenuation (i.e., suppression) of a symptom or condition of the infection, or in true total or partial immunity of the individual to the disease.


At least one VLP or composition thereof, of the present invention may be administered by any means that achieve the intended purposes, using a pharmaceutical composition as previously described.


For example, administration of such a composition may be by various parenteral routes such as subcutaneous, intravenous, intradermal, intramuscular, intraperitoneal, intranasal, oral or transdermal routes. Parenteral administration can be by bolus injection or by gradual perfusion over time. One mode of using a pharmaceutical composition of the present invention is by intramuscular or subcutaneous application. See, e.g., Avery, 1987.


A typical regimen for preventing, suppressing, or treating a flavivirus related pathology, comprises administration of an effective amount of a vaccine composition as described herein, administered as a single treatment, or repeated as enhancing or booster dosages, over a period up to and including between one week and about 24 months, or any range or value therein.


According to the present invention, an “effective amount” of a composition is one that is sufficient to achieve a desired biological effect. It is understood that the effective dosage will be dependent upon the age, sex, health, and weight of the recipient, kind of concurrent treatment, if any, frequency of treatment, and the nature of the effect wanted. The ranges of effective doses provided below are not intended to limit the invention and represent suggested dose ranges. However, the dosage will he tailored to the individual subject, as is understood and determinable by one of skill in the art. See, e.g., Avery's, 1987; and Ebadi, 1985.


The invention will be further described by the following non-limiting examples.


EXAMPLE 1
Experimental Procedures
Cells and Viruses

African Green Monkey kidney cells (Vero) and Human embryonic kidney 293 (HEK293) were obtained from ATCC (ATCC; Manassas, Va., USA) and grown in Dulbecco's modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS; Hyclone, Logan, Utah), 2 mM L-glutamine, 1.5 g/L sodium bicarbonate, 100 U/mL of penicillin, 100 μg/mL of streptomycin, and incubated at 37° C. in 5% CO2. ZIKV strain H/PF/2013 (GenBank:KJ776791), was obtained from Xavier de Lamballerie (European Virus Archive, Marseille France). Virus stocks were prepared by inoculation onto a confluent monolayer of Vero cells.


Animals

Mice of the 129/Sv background deficient in alpha/beta interferon (IFN-α/β) and IFN-γ receptors (AG129 mice) were obtained from B&K Universal Limited (Hull, England) and were bred in the pathogen-free animal facilities of the University of Wisconsin-Madison School of Veterinary Medicine. Groups of mixed sex mice were used for all experiments.


Production and purification of ZIKV VLPs


The prM and E genes of ZIKV strain H/PF/2013 with nascent signal sequence were cloned into a pCMV expression vector under the control of a cytomegalovirus (CMV) promoter and CMV polyadenylation signal (pCMV-prM/E). Endotoxin free, transfection grade DNA was prepared using Maxiprep kit (Zymo Research, Irvine, Calif.). VLPs were expressed by transfecting 90% confluent monolayers of HEK293 cells in a T-75 flasks with 15 μg of pCMV-prM/E using Eugene HD (Promega, Madison, Wis.) transfection reagent according to manufacturer protocol. The 10 ml supernatant was harvested 72 hours after transfection, and. clarified by centrifugation at 15,000 RCF for 30 minutes at 4° C. Clarified supernatants were layered onto a 20% sucrose cushion and ultra-centrifuged in a SW-28 rotor at 112,000 RCF for 3.5 hours at 4° C. Pellet (PT) and supernatant (SUP) fractions at each step were saved for analysis by SDS-PAGE and Western blot. Post sucrose cushion PT were resuspended in Phosphate Buffered. Saline (PBS) pH 7.2. Total protein in VLP preparations was quantified by Bradford assay. VLP specific protein was determined by comparing Zika specific bands on SDS-PAGE gels to known concentrations of BSA using ImageJ software.


Western Blot

VLP fractions were boiled in sample buffer (BioRad, Hercules, Calif., USA) and resolved on a 4-20% SDS-PAGE gel (Biorad) by electrophoresis using a Mini-PROTEAN 3 system (RIO-RAD, Calif.). Gels were electroblotted onto nitrocellulose membranes using a Turboblot® system. Membranes were blocked in 5% (W/V) skim milk and probed with mouse hyper immune ascites fluid primary antibody (1:5000) and goat anti-mouse HRP conjugated secondary antibody (1:5000). Membranes were developed using a solid phase 3,3′,5,5′-tetramethylbenzidine (TMB) substrate system.


Transmission Electron Microscopy

Samples were negatively stained for electron microscopy using the drop method. A drop of sample was placed on a Pioloform™ (Ted Pella, Inc.) carbon-coated 300 Mesh Cu grid, allowed to adsorb for 30 seconds, and the excess removed with filter paper. Next, a drop of methylamine tungstate or uranyl acetate (Nano-W, Nanoprobes Inc.) was placed on the still wet grid, and the excess removed. The negatively stained sample was allowed to dry, and was documented in a Philips CM120(Eindhoven, The Netherlands) transmission electron microscope at 80 kN. Images were obtained using a SIS MegaView III digital camera (Soft Imaging Systems, Lakewood, Colo.).


Vaccination and Viral Challenge

For VLP formulations, 0.45 μg of sucrose cushion purified. VLPs was mixed with 0.2% inject Alum (Thermo Scientific) according to manufacturer's protocol. Groups of AG129 mice were injected intramuscularly (IM) with VLPs mixed with alum (n=5) or PBS mixed with alum (n=6) at 6 weeks of age, and again at 8 weeks of age. Sub-mandibular blood draws were performed pre boost and pre challenge to collect serum for analysis by neutralization assays and for passive transfer studies.


Vaccinated mice were challenged with 200 PFU of ZIKV strain H/PF/2013 in 25 μl volumes by intradermal (ID) injection into the right hind footpad. Following infection, mice were monitored daily for the duration of the study. Mice that were moribund or that lost greater than 20% of starting weight were humanely euthanized. Sub-mandibular blood draws were performed on day two post challenge (PC) and serum collected to measure viremia.


For passive transfer studies, 5 naive mice were injected intraperitoneally (IP) with 500 μl of pooled serum from VLP vaccinated, diluted serum (1:5 n=4, 1:10, n=4), or serum from PBS/alum (n=5) treated mice. At 12 hours post transfer, mice were challenged with 20 PFU in 2.5 μl as above.


Viremia Assays

Viremia was determined by TCIDSO assay. Briefly, serum was serially diluted ten-fold in microtiter plates 263 and added to duplicate wells of Vero cells in 96-well plates, incubated at 37° C. for 5 days, then fixed and 264 stained with 10% (W/V) crystal violet in 10% (V/V) formalin. Plates were observed under a light microscope to determine the 50% tissue culture infective doses (TCID50s). Serum samples were also tested for viral RNA copies by qRT-PCR. RNA was extracted from 0.02 ml of serum using the ZR Viral 267 RNA Kit (Zymo Research, Irvine, Calif.). Viral RNA was quantified by qRT-PCR using the primers and probe designed by Lanciotti et al. (Lanciotti et al., 2008). The qRT-PCR was performed using the iTaq Universal Probes One-Step Kit (BioRad, Hercules, Calif.) on an iCycler instrument (BioRad, Hercules, Calif.). Primers and probe were used at final concentrations of 500 nM and 250 nM respectively. Cycling conditions were as follows: 50° C. for 10 minutes and 95° C. for 2 minutes, followed by 40 cycles of 95° C. for 15 seconds and 60° C. for 30 seconds. Virus concentration was determined by interpolation onto an internal standard curve made up of a 5-point dilution series of in vitro transcribed RNA.


Neutralization Assay

Serum antibody titers were determined by microneutralization assay. Briefly, serum was incubated at 56° C. for 30 minutes to inactivate complement and then serially diluted two-fold in microtiter plates. 200 PFUs of virus were added to each well and incubated at 37° C. for 1 hour. The virus-serum mixture was added to duplicate wells of Vero cells in 96-well plates, incubated at 37° C. for 5 days, then fixed and stained with 10% (W/V) crystal violet in 10% (WV) formalin, then observed under a light microscope. The titer was determined as the serum dilution resulting in the complete neutralization of the virus.


Plaque Reduction Neutralization Test

Serum samples were serially diluted, mixed with 200 PFU of the ZIKV H/PF/2013 strain and incubated for 1 hour at 37° C. This serum/virus mixture was added to confluent layers of Vero cells in 96 well plates and incubated for 1 hour at 37° C., after which the serum/virus mixture was removed and overlay solution (3% CMC, 1× DMEM, 2% FBS and 1× Anti/Anti) was added. After 48 hours of infection, the monolayers were fixed with 4% PFA, washed twice with PBS, and then incubated with ZIKV hyperimmune mouse ascitic fluid (1:2000, UTMB) diluted in blocking solution (1× PBS, 0.01% Tween-20 and 5% Milk) and incubated. overnight at 4° C. Plates were washed three times with PBS-T and then peroxidase-labeled goat anti-mouse secondary antibody (1:2000) was incubated on monolayers for 2 hours at 37° C. Following incubation, cells were washed a final three times with PBS-T and developed using 3-amino-9-ethylcarbazole (AEC)-peroxidase substrate. The amount of formed foci were counted using an 292 ELISPOT plate reader (ImmunoSPOT-Cellular Technology); quality control was performed to each scanned well to ensure accurate counting. Neutralization percentages (NA) were calculated per sample/replicate/dilution as follows:






Nx


{

100
-

[

100


(

A
Control

)









Where A corresponds to the amount of foci counted in the sample and Control is the geometric mean of foci counted from wells treated with cells and virus only. Data of corresponding transformed dilutions (Log(1/Diltition)) against neutralization percentages per sample was plotted and fitted to a sigmoidal dose-299 response curve to interpolate PRNT50 and PRNT90 values (GraphPad Prism software).










SEQ ID NO: 1:



mknpkkksgg frivnmlkrg varvspfggl krlpaglllg hgpirmvlai laflrftaik 





pslglinrwg svgkkeamei ikkfkkdlaa mlriinarke kkrrgadtsv givgllltta 





maaevtrrgs ayymyldrnd ageaisfptt lgmnkcyiqi mdlghmcdat msyecpmlde 





gvepddvdcw cnttstwvvy gtchhkkgea rrsrravtlp shstrklqtr sqtwlesrey 





tkhlirvenw ifrnpgfala aaaiawllgs stsqkviylv milliapays ircigvsnrd 





fvegmsggtw vdvvlehggc vtvmaqdkpt vdielvtttv snmaevrsyc yeasisdmas 





dsrcptqgea yldkqsdtqy vckrtlvdrg wghgcglfgk gslvtcakfa cskkmtgksi 





gpenleyrim lsvhgsqhsg mivndtghet denrakveit pnspraeatl ggfgslgldc 





eprtgldfsd lyyltmnnkh wlvhkewfhd iplpwhagad tgtphwnnke alvefkdaha 





krqtvvvlgs qegavhtala galeaemdga kgrlssghlk crlkmdklrl kgvsyslcta 





aftftkipae tlhgtvtvev qyagtdgpck vpaqmavdmq tltpvgrlit anpviteste 





nskmmleldp pfgdsyivig vgekkithhw hrsgstigka featvrgakr mavlgdtawd 





fgsvggalns lgkgihqifg aafkslfggm swfsqiligt llmwlglntk ngsislmcla 





lggvliflst avsadvghsv dfskketrcg tgvfvyndve awrdrykyhp dsprrlaaav 





kqamedgicg issvsrmeni mwrsvegeln aileengvql tvvvgsvkhp mwrgpqrlpv 





pvnelphgwk awgksyfvra aktnnsfvvd gdtlkecplk hrawnsflve dhgfgvfhts 





vwlkvredys lecdpavigt avkgkeavhs dlgvwiesek ndtwrlkrah liemktcewp 





kshtlwtdgi eesdliipks lagplshhht regyrtqmkg pwhseeleir feecpgtkvh 





veetcgtrgp slrsttasgr vieewccrec tmpplsfrak dgcwygmeir prkepesnlv 





rsmvtagstd hmdhfslgvl villmvqegl kkrmttkiii stsmavlvam ilggfsmsdl 





aklailmgat faemntggdv ahlaliaafk vrpallvsfi franwtpres mllalascll 





qtaisalegd lmvlingfal awlairamvv prtdnitlai laaltplarg tllvawragl 





atcggfmlls lkgkgsvkkh lpfvmalglt avrlvdpinv vglllltrsg krswppsevl 





tavglicala ggfakadiem agpmaavgll ivsyvvsgks vdmyieragd itwekdaevt 





gnsprldval desgdfslve ddgppmreii lkvvlmticg mnpiaipfaa gawyvyvktg 





krsgalwdvp apkevkkget tdgvyrvmtr rllgstqvgv gvmgegvfht mwhvtkgsal 





rsgegrldpy wgdvkqdlvs ycgpwkldaa wdghsevqll avppgerarn iqtlpgifkt 





kdgdigaval dypagtsgsp ildkcgrvig lygngvvikn gsyvsaitqg rreeetpvec 





fepsmlkkkq ltvldlhpga gktrrvlpei vreaiktrlr tvilaptrvv aaemeealrg 





lpvrymttav nvthsgteiv dlmchatfts rllqpirvpn ynlyimdeah ftdpssiaar 





gyistrvemg eaaaifmtat ppgtrdafpd snspimdtev evperawssg fdwvtdhsgk 





tvwfvpsvrn gneiaacltk agkrviqlsr ktfetefqkt khgewdfvvt tdisemganf 





kadrvidsrr clkpvildge rvilagpmpv thasaaqrrg rigrnpnkpg deylvgggca 





etdedhahwl earmlldniy lqdgliasly rpeadkvaai egefklrteq rktfvelmkr 





gdlpvwlayq vasagitytd rrwcfdgttn ntimedsvpa evwtrhgekr vlkprwmdar 





vcsdhaalks fkefaagkrg aafgvmealg tlpghmterf qeaidnlavl mraetgsrpy 





kaaaaqlpet letimllgll gtvslgiffv lmrnkgigkm gfgmvtlgas awlmwlseie 





pariacvliv vflllvvlip epekqrspqd nqmaiiimva vgllglitan elgwlertks 





dlshlmgrre egatigfsmd idltpasawa iyaalttfit pavqhavtts ynnyslmama 





tgagvlfgmg kgmpfyawdf gvpllmigcy sgltpltliv aiillvahym ylipglqaaa 





araaqkrtaa gimknpvvdg ivvtdidtmt idpqvekkmg qvlliavavs sailsrtawg 





wgeagalita atstlwegsp nkywnsstat slcnifrgsy lagasliytv trnaglvkrr 





gggtgetlge kwkarlnqms alefysykks gitevcreea rralkdgvat gghavsrgsa 





klrwlvergy lqpygkvidl gcgrggwsyy aatirkvqev kgytkggpgh eepmlvqsyg 





wnivrlksgv dvfhmaaepc dtllcdiges ssspeveear tlrvlsmvgd wlekrpgafc 





ikvlcpytst mmetlerlqr ryggglvrvp lsrnsthemy wvsgaksnti ksysttsqll 





lgtmdgprrp vkyeedvnlg sgtravvsca eapnmkiigh rierirseha etwffdenhp 





yrtwavhgsy eaptqgsass lingvvrlls kpwdvvtgvt giamtdttpy gqqrvfkekv 





dtrypdpqeg trqvmsmvss wlwkelgkhk rprvctkeef inkvrsnaal gaifeeekew 





ktaveavndp rfwalvdker ehhlrgecqs cvynmmgkre kkqgefgkak gsraiwymwl 





garflefeal gflnedhwmg rensgggveg lglqrigyvl eemsripggr myaddtagwd 





trisrfdlen ealitnqmek ghralalaii kytyqnkvvk vlrpaekgkt vmdiisrqdq 





rgsgqvvtya lntftnlvvg lirnmeaeev lemgdlwllr rsekvtnwlq sngwdrlkrm 





avsgddcvvk piddrfahal rflndmgkvr kdtqewkpst gwdnweevpf cshhfnklhl 





kdgrsivvpc rhqdeligra rvspgagasi retaclaksy aqmwqllyfh rrdlrlmana 





icssvpvdwv ptgrttwsih gkgewmtted mlvvwnrvwi eendhmedkt pvtkwtdipy 





lgkredlwcg slighrprtt waenikntvn mvrriigdee kymdylstqv rylgeegstp 





gvl 






Results
Expression and Purification of Soluble, Zika VLPs

To generate Zika VLPs (ZIKVLPs), the prM/E genes with a native signal sequence were cloned into a pCMV expression vector (pCMV-prM/E) (FIG. 1A), transfected HEK293 cells and harvested supernatants (supe) 3 days post transfection. 78 μg total protein was recovered from post sucrose purification of which 21.6 μg was VLP protein. Western blot analysis of this pCMV-prM/E supe. revealed expression of about 50 kDa size band (FIG. 1B, lane 2) that corresponded in size to the predicted size of the Zika viers E gene, and additionally matched positive control Zika virus stocks (FIG. 1B, lane 3). To test the hypothesis that expression of Zika prM and E genes spontaneously form extracellular particles, supernatants from pCMV-prM/E and pCMV-GFP (negative control) transfected cells were centrifuged on a sucrose cushion (SC) sufficient for pelleting of flavi virus particles from cell culture proteins (Merino-Ramos et al., 2014). pCMV-prM/E SC purified pellet (pt) appeared to contain high levels of E protein, while pCMV-GFP pt. did not, indicating that staining was specific to expression of 100 prM and E genes.


To determine if the immune reactive extracellular particles were virus like in nature, transmission electron microscopy (TEM) was performed on pCMV-prM/E SC pt. material. TEM revealed flavi virus 103 like particles with a size that ranged from 30-60 nm (data not show), and a typical size of about 50 nm (FIG. 1C). High magnification images demonstrated surface structures characteristic of flaviral envelope proteins (FIGS. 1D, E).


Administration of ZIKVLPs is Immunogenic and Protects Highly ZIKV Susceptible α/β/γ Interferon Deficient Mice

Mice that received ZIKVLPs developed low levels (GMT=1:9.2) of neutralizing antibodies (nAbs) at 109 two weeks post administration, that increased two weeks after boost (GMT=1:32). Five weeks after primary vaccination, all mice were challenged with 200 PFU of ZIKV by the ID route. Mice administered ZIKVLP maintained weight, while mice that received PBS/alum experienced significant weight loss associated morbidity throughout the challenge period.


All control mice (n=6) died 9 days after ZJKV challenge. Mice administered ZIKVLP survived with no apparent morbidity. Finally, ZIKVLP vaccinated mice had significantly lower levels of viremia on day 2 post challenge than control mice detected by qRT-PCR (p=0.0356) and 116 TCID50 assay (p=0.0493).


ZIKVLPs Elicit Plaque Reducing Neutralizing Antibody Titers in Mice that can be Passively Transferred to Naïve Mice.


The plaque reduction neutralization test (PRNT) assay is widely considered to be the “gold standard” for characterizing and quantifying circulating levels of anti-dengue and other flaviviral neutralizing antibodies (nAb) (Thomas et al., 2009). A PRNT assay was developed for rapidly measuring ZIKV specific neutralizing antibodies. Pooled serum samples collected from mice pre-challenge, as well as individual serum samples collected from mice post-challenge were tested by this PRNT assay. Pre-challenge, pooled serum from mice administered ZIKVLP had a calculated 90% plaque reduction (PRNT90) titer of 1:34. The PRNT90 titer increased 2 weeks post challenge (GMT=126 662).


To test the role of anti-ZIKV antibodies in protection against challenge, groups of mice received ZIKVLP 128 antiserum, undiluted (n=5), diluted 1:5 (n=4), or 1:10 (n=4). As a negative control, mice (n=5) were transferred serum from mice previously vaccinated with PBS alum.


Negative control mice rapidly lost weight starting after day 7 and all died day 9 post challenge. Mice that received undiluted serum maintained weight throughout the 12 day period post challenge, and showed no signs of infection. Mice that received diluted anti-ZIKV antibodies were not protected from challenge, although survival and weigh loss were slightly extended relative to negative control mice 134.


Discussion

Most experts and public health workers agree that a Zika vaccine is urgently needed. In February 2016, the World Health Organization declared that the recent clusters of microcephaly and other neurological disorders in Brazil constitute a public health emergency of international concern. Their recommendations included enhanced surveillance and research, as well as aggressive measures to reduce infection with Zika virus, particularly amongst pregnant women and women of childbearing age. ZIKV is now receiving considerable attention due to its rapid spread in the Americas, and its association with microcephaly (Mlakar et al., 2016) and Guillain-Barre syndrome (Pinto Junior et al., 2015). In our studies, we designed a ZIKV-virus-like particle (VLP) vaccine, demonstrated expression in vitro by western blot and transmission electron microscopy, and tested the protective efficacy and role of antibodies in protection in the AG129 mouse model.


Although the transfection and purification procedures for this ZIKV-VLP have yet to be optimized, we had an overall calculated yield of 2.2 mg/ml. Similar expression levels have been reported for other flavivirus VLP expression strategies (Pijlman, 2015). Future work will optimize VLP production and purification parameters, which should significantly increase both yield and purity. Stably transfected. HEK cells that continuously express VLPs allow for scalable production to meet global demand for a ZIKV vaccine.


ZIKV-VLPs, formulated with alum, induced detectable neutralizing antibodies and protected animals against lethal challenge (>400 LD50s) with no morbidity or weight loss. Pre-challenge GMT neutralizing titers were 1:32, and pooled pre-challenge serum PRNT90 and PRNT50 titers were 1:34 and 1:157 respectively. At a relatively low dose of 450 ng, the present results indicate that the ZIKV VLPs are highly immunogenic. Additionally, the antibody titers we obtained are consistent with those reported for other highly immunogenic flavivirus VLP vaccines (Ohtaki et al., 2010; Pijiman. 2015).


Vaccinated mice challenged with >400 LD50s had low levels of viremia (mean=127, geometric mean=25.4 TCID50/ml) detected after challenge. Copies of RNA ZIKV genomes in serum of mice were significantly higher than levels of viremia. However, the disparity between viral genome copies and viremia has been observed for other flaviviruses including dengue (Bae et al., 2003). Since AG129 mice are highly susceptible to viral challenge, it is possible that the challenge dose given for the active vaccination study was artificially high. Additionally, methods for challenging mice from infected mosquito bite should be developed to most accurately mimic natural infection. Animal studies can determine if the ZIKVLP vaccine can protect female mice from contracting ZIKV during pregnancy using established models for such studies (Miner et al., 2016). ZIK-VLP vaccines may be tested in a non-human primate translational model which most accurately mimics human infection.


A VLP vaccine approach against ZIKV has significant advantages over other technologies as it will eliminate concerns of live attenuated vaccines and insufficient inactivation of killed vaccines for pregnant women and other populations at high risk of suffering the devastating effects of ZIKV infections. In recent years, recombinant virus-like particle (VLF)-based vaccine strategies have been frequently used for novel vaccine design. VLPs are known to be highly immunogenic and elicit higher titer neutralizing antibody responses than subunit vaccines based on individual proteins (Ariano et al., 2010).


The role of neutralizing antibodies in protecting against ZIKV was demonstrated by antibody passive transfer studies as naive AG129 mice receiving pooled serum from VLP vaccinated animals were fully protected. These results are consistent with previous findings that indicate the important role of antibodies in protecting against many mosquito-borne viruses, such as Japanese encephalitis, yellow fever and chikungunya. In this study, full protection was observed when animals received undiluted serum, with no weight loss or other clinical signs observed. While these studies highlight the importance of serum antibodies in ZIKV protection, upcoming studies will determine the minimum antibody titer needed for protection, whether the ZIKV-VLP can elicit CD8+ responses, and the overall role of cellular immunity in protection. It is also important to determine whether anti-ZIKV antibodies elicited by the VLPs play any role in dengue protection or disease enhancement.


In this study, the AG129 IFN receptor-deficient mouse model was used for evaluation of the ZIKV-VLP. Recently, the suitability of mice deficient in IFN-α/β and -γ receptors as an animal model for ZIKV was demonstrated, as they are highly susceptible to ZIKV infection and disease, developing rapid viremic dissemination in visceral organs and brain and dying 7-8 days post-infection (Aliota et al., 2016). The AG129 mouse model exhibits an intact adaptive immune system, despite the lack of an IFN response, and it has been used extensively to evaluate vaccines and antivirals for DENV (Brewoo et al., 2012; Fuchs et al., 2014; Johnson and Roehrig, 1999; Sarathy et al., 2015).


In the present study, aluminum hydroxide (commonly known as alum) was used as the adjuvant for the ZIKV-VLP preparations. Since its first use in 1932, vaccines containing aluminum-based adjuvants have been successfully administered. in humans demonstrating excellent safety. A variety of adjuvant formulations may, however, be employed with ZIKV VLPs to enhance immunogenic potential including adjuvants that facilitate antigen dose sparing, enhanced immunogenicity, and/or broadened pathogen protection.


Thus, a VLP based Zika vaccine is described herein that elicits protective antibodies in mice, and is safe, suitable for scalable production, and highly immunogenic. Fast-tracking development of this ZIKV vaccine is a public health priority and is crucial for restoring confidence and security to people who wish to have children or reside in, or visit areas in which ZIKV is endemic.


EXAMPLE 2

Exemplary Zika virus polyprotein sequences:

  • Accession No. KU646827 (which is incorporated by reference herein)










(SEQ ID NO: 6)



IRCIGNTSNRETVEGMSGGTWVDVVLEHGGCVTVMAQDKPTVDIE 






LVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWG 





NGCGLFGKGSLVTCAKFACSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDTGHET 





DENRAKVEITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWF





HDIPLPWHAGADTGTPHWNNKEALVEFKDAHAKRQTVVVLGSQEGAVHTALAGALEAE 





MDGAKGRLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKIPAETLHGTVTVEVQYAG 





TDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPFGDSYIVIGVG 





EKKITHHNVHRSGSTIGKAFEATVRGAKRMAVLGTAWDFGSVGGALNSLGKGIHQIFG 





AAFKSLFGGMSWFSQILIGTLLMWLGLNTKNGSISLMCLALGGVLIFLSTAVSADVGC 





SVDFSKKETRCGTGVFVYNDVEAWRDRYKYHPDSPRRLAAAVKQAWEDGICGISSVSR 





MENIMWRSVEGELNAILEENGVQLTVVVGSVKNPMWRGPQRLPVPVNELPHGWKAWGK 





SYFVRAAKTNNSFVVDGDTLKECPLKHRAWNSFLVEDHGFGVFHTSVWLKVREDYSLE 





CDPAVIGTAVKGKEAVHSDLGYWIESEKNDTWRLKRAHLIEMKTCEWPKSHTLWTDGI 





EESDLIIPKSLAGPLSHHNTREGYRTQMKGPWHSEELEIRFEECPGTKVHVEETCGTR 





GPSLRSTTASGRVIEEWCCRECTMPPLSFWAKDGCWYGMEIRPRKEPESNLVRSMVTA 





GSTDHMDHFSL





(SEQ ID NO: 1)



atacggtgca taggagtcag caatagggac tttgtggaag gtatgtcagg tgggacttgg 






gttgatgtcg tcttggaaca tggaggttgt gtcaccgtaa tggcacagga caaaccgact 





gtcgacatag agctggttac aacaacagtc agcaacatgg cggaggtaag atcctactgc 





tatgaggcat caatatcaga catggcttcg gacagccgct gcccaacaca aggtgaagcc 





taccttgaca agcaatcaga cactcaatat gtctgcaaaa gaacgttagt ggacagaggc 





tggggaaatg gatgtggact ttttggcaaa gggagcctgg tgacatgcgc taagtttgca 





tgctccaaga aaatgaccgg gaagagcatc cagccagaga atctggagta ccggataatg 





ttgtcagttc atggctccca gcacagtggg atgatcgtta atgacacagg acatgaaact





gatgagaata gagcgaaggt tgagataacg cccaattcac caagagccga agccaccctg 





gggggttttg gaagcctagg acttgattgt gaaccgagga caggccttga cttttcagat 





ttgtattact tgactatgaa taacaagcac tggttggttc acaaggagtg gttccacgac 





attccattac cttggcacgc tggggcagac accggaactc cacactggaa caacaaagaa 





gcactggtag agttcaagga cgcacatgcc aaaaggcaaa ctgtcgtggt tctagggagt 





caggaaggag cagttcacac ggcccttgct ggagctctgg aggctgagat ggatggtgca 





aagggaaggc tgtcctctgg ccacttgaaa tgtcgcctga aaatggacaa acttagattg 





aagggcgtgt catactcctt gtgtaccgca gcgttcacat tcaccaagat cccggctgaa 





acactgcacg ggacagtcac agtggaggta cagtacgcag ggacagatgg accttgcaag 





gttccagctc agatggcggt ggacatgcaa actctgaccc cagttgggag gttgataacc 





gctaaccccg taatcactga aagcactgag aactctaaga tgatgctgga acttgatcca 





ccatttgggg actcttacat tgtcatagga gtcggggaga agaagatcac ccaccactgg 





cacaggagtg gcagcaccat tggaaaagca tttgaagcca ctgtgagagg tgccaagaga 





atggcagtct tgggagacac agcctgggac tttggatcag ttggaggcgc tctcaactca 





ttgggcaagg gcatccatca aatttttgga gcagctttca aatcattgtt tggaggaatg 





tcctggttct cacaaattct cattggaacg ttgctgatgt ggttgggtct gaacacaaag 





aatggatcta tttcccttat gtgcttggcc ttagggggag tgttgatctt cttatccaca 





gccgtctctg ctgatgtggg gtgctcggtg gacttctcaa agaaggagac gagatgtggt 





acaggggtgt tcgtctataa cgacgttgaa gcctggaggg acaggtacaa gtaccatcct 





gactcccccc gtagattggc agcagcagtc aagcaagcct gggaagatgg tatctgcggg 





atctcctctg tttcaagaat ggaaaacatc atgtggagat cagtagaagg ggagctcaac 





gcaatcctgg aagagaatgg agttcaactg acggtcgttg tgggatctgt aaaaaacccc 





atgtggagag gtccacagag attgcccgtg cctgtgaacg agctgcccca cggctggaag 





gcttggggga aatcgtactt cgtcagagca gcaaagacaa ataacagctt tgtcgtggat 





ggtgacacac tgaaggaatg cccactcaaa catagagcat ggaacagctt tcttgtggag 





gatcatgggt tcggggtatt tcacactagt gtctggctca aggttagaga agattattca 





ttagagtgtg atccagccgt tattggaaca gctgttaagg gaaaggaggc tgtacacagt 





gatctaggct actggattga gagtgagaag aatgacacat ggaggctgaa gagggcccat 





ctgatcgaga tgaaaacatg tgaatggcca aagtcccaca cattgtggac agatggaata 





gaagagagtg atctgatcat acccaagtct ttagctgggc cactcagcca tcacaatacc 





agagagggct acaggaccca aatgaaaggg ccatggcaca gtgaagagct tgaaattcgg 





tttgaggaat gcccaggcac taaggtccac gtggaggaaa catgtggaac aagaggacca 





tctctgagat caaccactgc aagcggaagg gtgatcgagg aatggtgctg cagggagtgc 





acaatgcccc cactgtcgtt ctgggctaaa gatggctgtt ggtatggaat ggagataagg 





cccaggaaag aaccagaaag caacttagta aggtcaatgg tgactgcagg atcaactgat 





cacatggatc acttctccct t 





KU955593 (full-length) 


(SEQ ID NO: 7)



MKNPKKKSGGFRIVNMLKRGVARVSPFGGLKRLPAGLLLGHGPI 






RMVLAILAFLRFTAIKPSLGLINRWGSVGKKEAMEIIKKFKKDLALMLRIINARKEKK 





RRGTECSVGIVGLLLTTAMAVEVTRRGNAYYMYLDRSDAGEAISFPTTMGMNKCYIQI 





MDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSBRAVT 





LPSHSTRKLQTRSQTWLESREYTKHLIRVENWIFRNPGFALAAAAIAWLLGSSTSQKV 





ITLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWVDVVLEHGGCVTVMAQDKPTVDIE 





LVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYLDKQSDTQYVCKRTLVDRGWG 





NGCGLFGKGSLVTCAKFACSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDTGHET 





DENRAKVEITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWF 





HDIPLPWHAGADTGTPHWNNKEALVEFKDLHAKRQTVVVLGSQEGLVHTALAGLLEAE 





MDGAKGRLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKIPAETLHGTVTVEVQYAG 





TDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPFGDSYIVIGVG 





EKKITHHWHRSGSTIGKAFEATVRGAKPMAVLGDTAWDFGSVGGALNSLGKGIHQIFG 





AAFKSLFGGMSWFSQILIGTLLVWLGLNTKNGSISLMCLALGGVLIFLSTAVSADVGC 





SVDFSKKETRCGTGVFVYNDVEAWRDRYKYHPDSPRRLAAAVKQAWEDGICGISSVSR





MENIMWRSVEGELNAILEENGVQLTVVVGSVKNPMWRGPQRLPVPVNELPHGWKAWGK





SYFVRAAKTNNSFVVDGDTLKECPLKHRAWNSFLVEDHGFGVFHTSVWLKVREDYSLE 





CDPAVIGTAAKGKEAVHSDLGYWIESEKNDTWRLKRAHLIEMKTCEWPKSHTLWTDGI 





EESDLIIPKSLAGPLSHHNTREGYRTQMKGPWHSEELEIRFEECPGTKVHVEETCGTR





GPSLRSTTASGRVIEEWCCRECTMPPLSFRAKDGCWYGMEIRPRKEPESNLVRSMVTA 





GSTDHMDHFSLGVLVILLMVQEGLKKRMTTKIIISTSMAVLVAMILGGFSMSDLAKLA





ILMGATFAEMNTGGDVAHLALIAAFKVRPALLVSFIFRANWTPRESMLLALASCLLQT 





AISALEGDLMVPINGFALAWLAIPAMVVPRTDNITLAILAALTPLARGTLLVAWRAGL 





ATCGGFMLLSLKGKGSVKKNLPFVMALGLTAVRLVDPINVVGLLLLTRSGKRSWPPSE 





VLTAVGLICALAGGFAKADIEMAGPMAAVGLLIVSYVVSGKSVDMYIERAGDITWEKD 





AEVTGNSPRLDVALDESGDFSLVEDDGPPMREIILKVVLMAICGMNPIAIPFAAGAWY





VYVKTGKRSGALWDVPAPKEVKKGETTDGVYRVMTRRLLGSTQVGVGVMQEGVFHTMW 





HVTKGSALRSGEGRLDPYWGDVKQDLVSYCGPWKLDAAWDGHSEVQLLAVPPGERARN 





IQTLPGIFKTKDGDIGAVALDYPAGTSGSPILDKGGRVIGLYGNGVVIKNGSYVSAIT





QGRREEETPVECFEPSMLKKKQLTVLDLHPGAGKTRRVLPEIVREAIKTRLRTVILAP 





TRVVAAEMEEALRGLPVRYMTTAVNVTHSGTEIVDLMCHATFTSRLLQPIRVPNYNLY 





IMDEAHETDPSSIAARGYISTRVEMGEAAAIFMTATPPGTRDAFPDSNSPIMDTEVEV 





PERAWSSGFDWVTDHSGKTVWFVPSVRNGNEIAACLTKAGKRVIQLSRKTFETEFQKT 





KHQEWDFVVTTDISEMGANFKADRVIDSRRCLKPVILDGERVILAGPMPVTHASAAQR 





RGRIGRNPNKPGDEYLYGGGCAETDEDHAHWLEARMLLDNIYLQDGLIASLYRPEADK 





VAAIEGEFKLRTEQRKTFVELMKRGDLPVWLAYQVASAGITYTDRRWCFDGTTNNTIM 





EDSVPAEVWTRYGEKRVLKPRWMDARVCSDHALLKSFKEFAAGKRGAAFGVMEALGTL





PGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFV 





LMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLVVLIPEPEKQRSP





QDNQMAIIIMVAVGLLGLITANELGWLERTKSDLSHLMGRREEGATIGFSMDIDLRPA 





SAWAIYAALTTFITPAVQHAVTTSYNNYSLMAMATQAGVLFGMGKGMPFYAWDFGVPL





LMIGCYSQLTPLTLIVAIILLVAHYKYLIPGLQAAAARAAQKRTAAGIMKNPVVDGIV 





VTDIDTMTIDPQVEKKMGQVLLIAVAYSSAILSRTAWGWGEAGALITAATSTLWEGSP





NKYWNSSTATSLCNIFRGSYLAGASLIYTVTRNAGLVKRRGGGTGETLGEKWKARLNQ 





MSALEFYSYKKSGITEVCREEARRALKDGVATGGHAVSRGSAKLRWLVERGYLQPYGK 





VIDLGCGRGGWSYYAATIRKVQEVKGYTKGGPGHEEPMLVQSYGWNIVRLKSGVDVEH 





MAAEPCDTLLCDIGESSSSPEVEEARTLRVLSMVGDWLEKRPGAFCIKVLCPYTSTMM 





ETLERLQRRYGGGLVRVPLSRNSTHEMYWVSGAKSNTIKSVSTTSQLLLGRMDGPRRP 





VKYEEDVNLGSGTRAVVSCAEAPNMKIIGNRIERIRSEHAETWFFDENHPYRTWAYHG 





SYEAPTQGSASSLINGVVRLLSKPWDVVTGVTGIAMTDTTPYGQORVEKEKVDTRVPD 





PQEGTRQVMSMVSSWLWKELGKHKRPRVCTKEEFINKVRSNAALGAIFEEEKEWKTAV





EAVNDPRFWALVDKEREHHLRGECQSCVYNMMGKREKKQGEFGKAKGSRAIWYMWLGA 





RFLEFEALGELNEDHWMGRENSGGGVEGLGLQRLGYVLEEMSRIPGGRMYADDTAGWD 





TRISRFDLENEALITNQMENGHRALALAIIKYTYQNKVVKVLRPAEKGKTVMDIISRQ 





DQRGSGQVVTYALNTFTNLVVQLIRNMEAEEVLEMQDLWLLRRSEKVTNWLQSNGWDR 





LKRMAVSGDDCVVKPIDDRFAHALRFLNDMGKVRKDTQEWKPSTGWDNWEEVPFCSHH 





FNKLHLKDGRSIVVPCRHQDELIGRARVSPGAGWSIRETACLAKSYAQMWQLLYFHRR 





DLRLMANAICSSVPVDWVPTGRTTWSIHGKGEWMTTEDMLVVNNRVWIEENDHMEDKT 





PVTKWTDIPYLGKREDLWCGSLIGHRPRTTWAENIKNTVNMMRRIIGDEEKYVDYLST 





QVRYLGEEGSTPGVL 





(SEQ ID NO: 2)



agttgttgat ctgtgtgaat cagactgcga cagttcgagt ttgaagcgaa agctagaaac 






agtatcaaca ggttttattt tggatttgga aacgagagtt tctggtcatg aaaaacccaa 





agaagaaatc cggaggattc cggattgtca atatgctaaa acgcggagta gcccgtgtga 





gcccctttgg gggcttgaag aggctgccag ccggacttct gctgggtcat gggcccatca 





ggatggtctt ggcgattcta gcctttttga gattcacggc aatcaagcca tcactgggtc 





tcatcaatag atggggttca gtggggaaaa aagaggctat ggaaataata aagaagttta 





agaaagatct ggctgccatg ctgagaataa tcaatgctag gaaggagaag aagagacgag 





gcacagatac tagtgtcgga attgttggcc tcctgctgac cacagccatg gcagtggagg 





tcactagacg tgggaatgca tactatatgt acttggacag aagcgatgct ggggaggcca 





tatcttttcc aaccacaatg gggatgaata agtgttatat acagatcatg gatcttggac 





acatgtgtga tgccaccatg agctatgaat gccctatgct ggatgagggg gtagaaccag 





atgacgtcga ttgttggtgc aacacgacgt caacttgggt tgtgtacgga acctgccacc 





acaaaaaagg tgaagcacgg agatctagaa gagctgtgac gctcccctcc cattccacta 





ggaagctgca aacgcggtcg cagacctggt tggaatcaag agaatacaca aagcacctga 





ttagagtcga aaattggata ttcaggaacc ctggcttcgc gttagcagca gctgccatcg 





cttggctttt gggaagctca acgagccaaa aagtcatata cttggtcatg atactgctga 





ttgccccggc atacagcatc aggtgcatag gagtcagcaa tagggacttt gtggaaggta 





tgtcaggtgg gacttgggtt gatgttgtct tggaacatgg aggttgtgtt accgtaatgg 





cacaggacaa accgactgtc gacatagagc tggttacaac aacagtcagc aacatggegg 





aggtaagatc ctactgctat gaggcatcaa tatcggacat ggcttcggac agccgctgcc 





caacacaagg tgaagcctac cttgacaagc aatcagacac tcaatatgtc tgcaaaagaa 





cgttagtgga cagaggctgg ggaaatggat gtggactttt tggcaaaggg agcctggtga 





catgcgctaa gtttgcttgc tctaagaaaa tgaccgggaa gagcatccag ccagagaatc 





tggagtaccg gataatgctg tcagttcatg gctcccagca cagtgggatg atcgttaatg 





atacaggaca tgaaactgat gagaatagag cgaaggttga gataacgccc aattcaccaa 





gagccgaagc caccctgggg ggttttggaa gcctaggact tgattgtgaa ccgaggacag 





gccttgactt ttcagatttg tattacttga ctatgaataa caagcactgg ttggttcaca 





aggagtggtt ccacgacatt ccattacctt ggcatgctgg ggcagacacc ggaactccac 





actggaacaa caaagaagca ctggtagagt tcaaggacgc acatgccaaa aggcagactg 





tcgtggttct agggagtcaa gaaggagcag ttcacacggc ccttgctgga gctctggagg 





ctgagatgga tggtgcaaag ggaaggctgt cctctggcca cttgaaatgt cgcctgaaaa 





tggataaact tagattgaag ggcgtgtcat actccttgtg taccgcagog ttcacattca 





ctaagatccc ggctgaaaca ctgcacggga cagtcacagt ggaggtacag tacgcaggga 





cagatggacc ttgcaaggtt ccagctcaga tggcggtgga catgcaaact ctgaccccag 





ttgggaggtt gataaccgct aaccctgtaa tcactgaaag cactgagaac tccaagatga 





tgctggaact ggatccacca tttggggact cttacattgt cataggagtc ggggaaaaga 





agatcaccca ccactggcac aggagtggca gcaccattgg aaaagcattt gaagccactg 





tgagaggtgc caagagaatg gcagtcttgg gagacacagc ctgggacttt ggatcagttg 





ggggtgctct caactcactg ggcaagggca tccatcaaat ttttggagca gctttcaaat 





cattgtttgg aggaatgtcc tggttctcac aaattctcat tggaacgttg ctggtgtggt 





tgggtctgaa tacaaagaat ggatctattt cccttatgtg cttggcctta gggggagtgt 





tgatcttctt atccacagcc gtctctgctg atgtggggtg ctoggtggac ttctcaaaga 





aggaaacgag atgcggtaca ggggtgttcg tctataacga cgttgaagct tggagggaca 





ggtacaagta ccatcctgac tcccctcgta gattggcagc agcagtcaag caagcctggg 





aagatgggat ctgtgggatc tcctctgttt caagaatgga aaacatcatg tggagatcag 





tagaagggga gctcaacgca atcctggaag agaatcgagt tcaactgacg gtcgttgtgg 





gatctgtaaa aaaccccatg tggagaggtc cacagagatt gcccgtgcct gtgaacgagc 





tgccccatgg ctggaaggct tgggggaaat cgtacttcgt cagggcagca aagacaaata 





acagctttgt cgtggatggt gacacactga aggaatgccc actcaaacat agagcatgga 





acagctttct tgtggaggat catgggttcg gggtatttca cactagtgtc tggctcaagg 





ttagagaaga ttattcatta gagtgtgatc cagccgtcat tggaacagcc gctaagggaa 





aggaggctgt gcacagtgat ctaggctact ggattgagag tgagaagaac gacacatgga 





ggctgaagag ggcccacctg atcgagatga aaacatgtga atggccaaag tcccacacat 





tgtggacaga tggaatagaa gaaagtgatc tgatcatacc caagtcttta gctgggccac 





tcagccatca caacaccaga gagggctaca ggacccaaat gaaagggcca tggcatagtg 





aagagcttga aattcggttt gaggaatgcc caggcactaa ggtccacgtg gaggaaacat 





gtggaacaag aggaccatct ctgagatcaa ccactgcaag cggaagggtg atcgaggaat 





ggtgctgcag ggagtgcaca atgcccccac tgtcgttccg ggctaaagat ggttgttggt 





atggaatgga gataaggccc aggaaagaac cagaaagtaa cttagtaagg tcaatggtga 





ctgcaggatc aactgatcac atggatcact tctcccttgg agtgcttgtg attctgctca 





tggtacagga agggctaaag aagagaatga ccacaaagat catcataagc acatcaatgg 





cagtgctggt agctatgatc ctgggaggat tttcaatgag tgacctggct aagcttgcaa 





ttttgatggg tgccaccttc gcggaaatga acactggagg agatgttgct catctggcgc 





tgatagcggc attcaaagtc agacctgcgt tgctggtatc tttcattttc agagctaatt 





ggacaccccg tgagagcatg ctgctggcct tggcctcgtg tcttctgcaa actgcgatct 





ccgccttgga aggcgacctg atggttccca tcaatggttt tgctttggcc tggttggcaa 





tacgagcgat ggttgttcca cgcactgaca acatcacctt ggcaatcctg gctgctctga 





caccactggc ccggggcaca ctgcttgtgg cgtggagagc aggccttgct acttgcgggg 





ggttcatgct cctttctctg aaggggaaag gcagtgtgaa gaagaactta ccatttgtca 





tggccctggg actaaccgct gtgaggctgg tcgaccccat caacgtggtg ggactgctgt 





tgctcacaag gagtgggaag cggagctggc cccctagtga agtactcaca gctgttggcc 





tgatatgcgc attggctgga gggttcgcca aggcggatat agagatggct gggcccatgg 





ccgcggtcgg tctgctaatt gtcagttacg tggtctcagg aaagagtgtg gacatgtaca 





ttgaaagagc aggtgacatc acatgggaaa aagatgcgga agtcactgga aacagtcccc 





ggctcgatgt ggcactagat gagagtggtg atttctccct agtggaggat gatggtcccc 





ccatgagaga gatcatactc aaagtggtcc tgatggccat ctgtggcatg aacccaatag 





ccataccctt tgcagctgga gcgtggtacg tgtatgtgaa gactggaaaa aggagtggtg 





ctctatggga tgtgcctgct cccaaggaag taaaaaaggg ggagaccaca gatggagtgt 





acagagtaat gactcgtaga ctgctaggtt caacacaagt tggagtggga gtcatgcaag 





agggggtctt ccacactatg tggcacgtca caaaaggatc cgcgctgaga agcggtgaag 





ggagacttga tccatactgg ggagatgtca agcaggatct ggtgtcatac tgtggtccat 





ggaagctaga tgccgcctgg gacgggcaca gcgaggtgca gctcttggcc gtgccccccg 





gagagagagc gaggaacatc cagactctgc ccggaatatt taagacaaag gatggggaca 





ttggagcagt tgcgctggac tacccagcag gaacttcagg atctccaatc ctagataagt 





gtgggagagt gataggactc tatggtaatg gggtcgtgat caaaaatggg agttacgtta 





gtgccatcac ccaagggagg agggaggaag agactcctgt tgagtgcttc gagccttcga 





tgctgaagaa gaagcagcta actgtcttag acttgcatcc tggagctggg aaaaccagga 





gagttcttcc tgaaatagtc cgtgaagcca taaaaacaag actccgcact gtgatcttag 





ctccaaccag ggttgtcgct gctgaaatgg aggaagccct tagagggctt ccagtgcgtt 





atatgacaac agcagtcaat gtcacccatt ctgggacaga aatcgttgac ttaatgtgcc 





atgccacctt cacttcacgt ctactacagc caatcagagt ccccaactat aatctgtata 





ttatggatga ggcccacttc acagatccct caagtatagc agcaagagga tacatttcaa 





caagggttga gatgggcgag gcggctgcca tcttcatgac tgccacgcca ccaggaaccc 





gtgacgcatt cccggactcc aactcaccaa ttatggacac cgaagtggaa gtcccagaga 





gagcctggag ctcaggcttt gattgggtga cggatcattc tggaaaaaca gtttggtttg 





ttccaagcgt gaggaatggc aatgagatcg cagcttgtct gacaaaggct ggaaaacggg 





tcatacagct cagcagaaag acttttgaga cagagttcca gaaaacaaaa catcaagagt 





gggacttcgt cgtgacaact gacatttcag agatgggcgc caactttaaa gctgaccgtg 





tcatagattc caggagatgc ctaaagccgg tcatacttga tggcgagaga gtcattctgg 





ctggacccat gcctgtcaca catgccagcg ctgcccagag gagggggogc ataggcagga 





accccaacaa acctggagat gagtatctgt atggaggtgg gtgcgcagag actgatgaag 





accatgcaca ctggcttgaa gcaagaatgc ttcttgacaa catttacctc caagatggcc 





tcatagcctc gctctatcga cctgaggccg acaaagtagc agctattgag ggagagttca 





agcttaggac ggagcaaagg aagacctttg tggaactcat gaaaagagga gatcttcctg 





tttggctggc ctatcaggtt gcatctgccg gaataaccta cacagataga agatggtgct





ttgatggcac gaccaacaac accataatgg aagacagtgt gccggcagag gtgtggacca 





gatacggaga gaaaagagtg ctcaaaccga ggtggatgga cgccagagtt tgttcagatc 





atgcggccct gaagtcattc aaagagtttg ccgctgggaa aagaggagcg gcctttggag 





tgatggaagc cctgggaaca ctgccaggac atatgacaga gagattccag gaggccattg 





acaacctcgc tgtgctcatg cgggcagaga ctggaagcag gccctacaaa gccgcggcgg 





cccaattacc ggagacccta gagactatca tgcttttggg gttgctggga acagtctcgc 





tgggaatctt tttcgtcttg atgcggaaca agggcatagg gaagatgggc tttggaatgg





tgactcttgg ggccagcgca tggcttatgt ggctctcgga aattgagcca gccagaattg 





catgtgtcct cattgttgtg ttcctattgc tggtggtgct catacctgag ccagaaaagc 





aaagatctcc ccaggacaac caaatggcaa tcatcatcat ggtagcagtg ggtcttctgg 





gcttgattac cgccaatgaa ctcggatggt tggagagaac aaagagtgac ctaagccatc 





taatgggaag gagagaggag ggggcaacta taggattctc aatggacatt gacctgcggc





cagcctcagc ttgggctatc tatgctgctc tgacaacttt cattacccca gccgtccaac 





atgcagtgac cacttcatac aacaactact ccttaatggc gatggccacg caagctggag 





tgttgttcgg tatgggtaaa gggatgccat tctatgcatg ggactttgga gtcccgctgc 





taatgatagg ttgctactca caattaacac ccctgaccct aatagtggcc atcattttgc





tcgtggcgca ctacatgtac ttgatcccag ggctgcaggc agcagctgcg cgtgctgccc 





agaagagaac ggcagctggc atcatgaaga accctgttgt ggatggaata gtggtgactg 





acattgacac aatgacaatt gacccccaag tggagaaaaa gatgggacag gtgctactca 





tagcagtagc tgtctccagc gccatactgt cgcggaccgc ctgggggtgg ggtgaggctg 





gggccctgat cacagctgca acttccactt tgtgggaggg ctctccgaac aagtactgga 





actcctccac agccacctca ctgtgtaaca tttttagggg aagctacttg gctggagctt 





ctctaatcta cacagtaaca agaaacgctg gcttggtcaa gagacgtggg ggtggaacgg 





gagagaccct gggagagaaa tggaaggccc gcctgaacca gatgtcggcc ctggagttct 





actcctacaa aaagtcaggc atcaccgagg tgtgcagaga agaggcccgc cgcgccctca 





aggacggtgt ggcaacggga ggccacgctg tgtcccgagg aagtgcaaag ctgagatggt 





tggtggagag gggatacctg cagccctatg gaaaggtcat tgatcttgga tgtggcagag 





ggggctggag ttactatgcc gccaccatcc gcaaagttca agaagtgaaa ggatacacaa 





aaggaggccc tggtcatgaa gaacccatgt tggtgcaaag ctatgggtgg aacatagtcc 





gtcttaagag tggggtggac gtctttcata tggcggctga gccgtgtgac acgttgctgt 





gtgatatagg tgagtcatca tctagtcctg aagtggaaga agcacggacg ctcagagtcc 





tctccatggt gggggattgg cttgaaaaaa gaccaggagc cttttgtata aaagtgttgt





gcccatacac cagcactatg atggaaaccc tggagcgact gcagcgtagg tatgggggag 





gactggtcag agtgccactc tcccgcaact ctacacatga gatgtactgg gtctctggag 





cgaaaagcaa caccataaaa agtgtgtcca ccacgagcca gctccttttg gggcgcatgg 





acgggcccag gaggccagtg aaatatgaag aggatgtgaa tctcggctct ggcacgcggg 





ctgtggtaag ctgcgctgaa gctcccaaca tgaagatcat tggtaaccgc attgagagga 





tccgcagtga gcacgcggaa acgtggttct ttgacgagaa ccacccatat aggacatggg 





cttaccatgg aagctacgag gcccccacac aagggtcagc gtcctctcta ataaacgggg 





ttgtcaggct cctgtcaaaa ccctgggatg tggtgactgg agtcacagga atagccatga 





ccgacaccac accgtatggt cagcaaagag ttttcaagga aaaagtggac actagggtgc 





cagaccccca agaaggcact cgtcaggtta tgagcatggt ctcttcctgg ttgtggaaag 





agttaggcaa acacaaacgg ccacgagtct gtaccaaaga agagttcatc aacaaggttc 





gtagcaacgc agcattaggg gcaatatttg aagaggaaaa agagtggaag actgcagtgg 





aagctgtgaa cgatccaagg ttctgggctc tagtggacaa ggaaagagag caccacctga 





gaggagagtg ccagagctgt gtgtacaaca tgatgggaaa aagagaaaag aaacaagggg 





aatttggaaa ggccaagggc agccgcgcca tctggtacat gtggctaggg gctagatttc 





tagagttcga agcccttgga ttcttgaacg aggatcactg gatggggaga gagaattcag 





gaggtggtgt tgaagggcta ggattacaaa gactcggata tgtcttagaa gagatgagtc 





gcataccagg aggaaggatg tatgcagatg atactgctgg ctgggacacc cgcatcagca 





ggtttgatct ggagaatgaa gctctaatca ccaaccaaat ggagaaaggg cacagggcct 





tggcattggc cataatcaag tacacatacc aaaacaaagt ggtaaaggtc cttagaccag 





ctgaaaaagg gaagacagtt atggacatta tttcaagaca agaccaaagg gggagcggac 





aagttgtcac ttacgctctt aatacattta ccaacctagt ggtgcagctc attcggaata 





tggaggctga ggaagttcta gagatgcaag acttgtggct gctgcggagg tcagagaaag 





tgaccaactg gttgcagagc aatggatggg ataggctcaa acgaatggca gtcagtggag 





atgattgcgt tgtgaaacca attgatgata ggtttgcaca tgctctcagg ttcttgaatg 





atatgggaaa agttaggaag gacacacaag agtggaagcc ctcaactgga tgggacaact 





gggaagaagt tccgttttgc tcccaccact tcaacaagct ccatctcaag gacgggaggt 





ccattgtggt tocctgccgc caccaagatg aactgattgg ccgagctcgc gtctcaccgg 





gggcgggatg gagcatccgg gagactgctt gcctagcaaa atcatatgcg caaatgtggc 





agctccttta tttccacaga agggacctcc gactgatggc caatgccatt tgttcatctg 





tgccagttga ctgggttcca actgggagaa ctacctggtc aatccatgga aagggagaat 





ggatgaccac tgaagacatg cttgtggtgt ggaacagagt gtggcttgag gagaacgacc 





acatggaaga caagacccca gttacgaaat ggacagacat tccctatttg ggaaaaaggg 





aagacttgtg gtgtgggtct ctcatagggc acagaccgcg caccacctgg gctgagaaca 





ttaaaaacac agtcaacatg atgcgtagga tcataggtga tgaagaaaag tacgtggact 





acctatccac ccaagttcgc tacttgggcg aagaagggtc cacacctgga gtgctataag 





caccaatctt agtgttgtca ggcctgctag tcagccacag cttggggaaa gctgtgcagc 





ctgtgacccc cccaggagaa gctgggaaac caagcccata gtcaggccga gaacgccatg 





gcacggaaga agccatgctg cctgtgagcc cctcagagga cactgagtca aaaaacccca 





cgcgcttgga ggcgcaggat gggaaaagaa ggtggcgacc ttccccaccc tttaatctgg 





ggcctgaact ggagatcagc tgtggatctc cagaagaggg actagtggtt agaggagacc 





ccccggaaaa cgcaaaacag catattgacg ctgggaaaga ccagagactc catgagtttc 





caccacgctg gccgccaggc acagatcgcc gaatagcggc ggccggtgtg gggaaatcca 





tgggtct 





KU866423 


(SEQ ID NO: 8)



MYNPKKKSGGFRIVNMLFRGVARVSPFGGLKRLPAGLLLGHGPI 






RMVLAILAFLRFTAINTSLGLINRWGSVGKKEAMEIIKKFKKDLAAMLRIINARKEKK 





RRGADTNVGIVGLLLTTAMAAEVTRRGSAYYMYLDRNDAGEAISFPTTLGMNKCYIQI 





MDLGHMCDATMSYECPMLDEGVEPDDVDCWCNTTSTWVVYGTCHHKKGEARRSRRAVT 





LPSHSTRKLQTRSQTWLESREYTKHLIRVENWIFRNPGFALAAAAIAWLLGSSTSQKV 





IYLVMILLIAPAYSIRCIGVSNRDFVEGMSGGTWYDWILEHGGCVTVMAQDKPTVDIE 





LVTTTVSNMAEVRSYCYEASISDMASDSRCPTQGEAYLDKQSDTQYVCERTLVDRGWG 





NGCGLFGKGSLVTCAKFACSKKMTGKSIQPENLEYRIMLSVHGSQHSGMIVNDTGHET





DENRAKVEITPNSPRAEATLGGFGSLGLDCEPRTGLDFSDLYYLTMNNKHWLVHKEWF





HDIPLPWHAGADTGTPHWNNKEALVEEKDAHAKRQTVVVLGSQEGAVHTALAGALEAE 





MDGAKGRLSSGHLKCRLKMDKLRLKGVSYSLCTAAFTFTKIPAETLHGTVTVEVQYAG 





TDGPCKVPAQMAVDMQTLTPVGRLITANPVITESTENSKMMLELDPPFGDSYIVIGVG 





EKKITHHWHRSGSTIGKAFEATVRGARRMAVLGDTAWDFGSVGGALNSLGKGIHQIFG 





AAFKSLFGGMSWFSQILIGTLLMWLGLNTKNGSISLMCLALGGVLIFLSTAVSADVGC 





SVDFSKKETRCGTGVFVYNDVEAWRDRYKYHPDSPRRLAAAVKQAWEDGICGISSVSR 





MENIMWRSVEGELNAILEENGVQLTVVVGSYKNPMWRGPQRLPVPVNELPHGWKAWGK 





SYFVRAAKTNNSFVVDGDTLKECPLKHRAWNSFLVEDHGFGVEHTSVWLKVREDYSLE 





CDPAVIGTAVKGKEAVHSDLGYWIESEKNDTWRLKRAHLIEMKTCEWPKSHTLWTDGI





EESDLIIPKSLAGPLSHHNTREGYRTQMKGPWHSEELEIRFEECPGTKVHVEETCGTR 





GPSLRSTTASGRVIEEWCCRECTMPPLSFQAKDGCWYGMEIRPRKEPESNLVRSMVTA 





GSTDHKDHFSLGVLVILLMVQEGLKKRMTTKIIISTSMAVLVAMILGGFSMSDLAKLA 





ILMGATFAEMNTGGDVAHLALIAAFKYRPALINSFIFRANWTPRESMLLALASCLLQT





AISALEGDLMVLINGFALAWLAIRAMVVPRTDNITLAILAALTPLARGTLLVAWRAGL 





ATCGGFMLLSLKGKGSVKKNLPFVMALGLTAVRLVDPINVVGLLLLTRSGKRSWPPSE 





VLTAVGLICALAGGFAKADIEMAGPMAAVGLLIVSYVVSGKSVDMYIERAGDITWEKD 





AEVTGNSPRLDVALDESGDFSLVEDDGPPMREIILKVVLMTICGMNPIAIPEAAGAWY 





VYVKTGKRSGALWDVPAPKEVKKGETTDGVYRVMTRRLLGSTQVGVGVMQEGVFHTMW 





HVTKGSALRSGEGRLDPYWGDVKQDLVSYCGPWKLDAAWDGHSEVQLLAVPPGERARN 





IQTLPGIFKTKDGDIGAVALDYPAGTSGSPILDKCGRVIGLYGNGVVIKNGSTVSAIT





QGRREEETPVECFEPSMLKKKQLTVLDLHPGAGKTRRVLPEIVREAIKTRLRTVILAP 





TRVVAAEMEEALRGLPVRYMTTAVNVTHSGTEIVDLMCHATFTSRLLQPIRVPNYNLY 





IMDEAHFTDPSSIAARGYISTRVEMGEAAAIFMTATPPGTRDAFPDSNSPIMDTEVEV 





PERAWSSGEDWVTDHSGKTVWFVPSVRNGNEIAACLTKAGKRVIQLSRKTFETEFQKT 





KHQEWDEVVTTDISEMGANFKADRVIDSRRCLKPVILDGERVILAGPMPVTHASAAQR 





RGRIGRNPNKPGDEYLYGGGCAETDEDHAHWLEARMLLDNIYLQDGLIASLYRPEADK 





VAAIEGEFKLRTEQRKTFVELMKRGDLPVWLAYQVASAGITYTDRRWCFDGTTNNTIM 





EDSVPAEVWTRHGEKRVLKPRWMDARVCSDHAALKSFKEFAAGKRGAAFGVMEALGTL





PGHMTERFQEAIDNLAVLMRAETGSRPYKAAAAQLPETLETIMLLGLLGTVSLGIFFV 





LMRNKGIGKMGFGMVTLGASAWLMWLSEIEPARIACVLIVVFLLLVVLIPEPEKQRSP





QDNQMAIIIMVAVGLLGLITANELGWLERTKSDLSHLMGRREEGATIGESMDIDLRPA 





SAWAIYAALTTFITPAVQHAVTTSYNNYSLMAMATQAGVLFGMGKGMPFYAWDFGVPL





LMIGCYSQLTPLTLIVAIILLVAHYMYLIPGLQAAAARAAQKRTAAGIMKNPVVDGIV 





VTDIDTMTIDPQVEKKMGQVLLIAVAVSSAILSRTAWGWGEAGALITAATSTLWEGSP 





NKYWNSSTATSLCNIFRGSYLAGASLIYTV7RNAGINKRRGGGTGETLGEKWKARLNQ 





MSALEYYSYKKSGITEVCREEARRALKDGVATGGHAVSRGSAKLRWLVERGYLQPYGK 





VIDLGCGRGGWSTYAATIRKVOEVKGYTKGGPGEEEPMLVQSYGWNIVRIKSGVDVFH 





KLAEPCDTLLCDIGESSSSPEVEEARTLRVLSMVGDWIEKRPGAFCIKVLCPYTSTMM 





ETLERIQRRYGGGIVRVPLSRNSTHEMYWVSGAKSNTIKSVSTTSQLLLGRMDGPRRP 





VKYEEDVNLGSGTRAVVSCAEAPNKKIIGNRIERIRSEHAETWFFDENHPYRTWAYHG 





SYEAPTQGSASSLINGVVRLLSKPWDVVTGVTGIAMTDTTPYGQQRVFKEKVDTRVPD 





PQEGTRQVMSMVSSWLWKELGKHKRPRVCTKEEFINKVRSNAALGAIFEEEKEWKTAV 





EAVNDPRFWALVDNEREHHLRGECQSCVYNMMGKREKKGQEFGKAKGSRAIWYMWLGA 





RFLEFEALGFLNEDHWMGRENSGGGVEGLGLQRLGYVLEEMSRIPGGRMYADDTAGWD 





TRISRFDLENEALITNQMEKGHRAIALAIIKYTYQNKVVKVLRPAEKGKTVMDIISRQ





DQRGSGQVVTYALNTFTNLVVQLIRSMEAEEVLEMQDLWLLRRSEKVTNWLQSNGWDR 





LKRMAVSGDDCVVRPIDDRFAHALRFLNDMGKVRKDTQEWKPSTGNDNWEEVPFCSHH 





FNKLHLKDGRSIVVPCRHQDELIGRARVSPGAGWSIRETACLAKSYAQMNQLLYFHRR 





DLRLMANAICSSVPVDWVPTGRTTWSIHGKGEWMTTEDMINVWNRVWIEENDHMEDKT 





PVTKWTDIPYLGKREDLWCGSLIGHRPRTTWAENIKNTVNMVRRIIGDEEKYMDYLST 





WRYLGEEGSTPGVL 





(SEQ ID NO: 3)



atgaaaaacc oaaaaaagaa atccggagga ttccggattg tcaatatgct aaaacgcgga 






gtagcccgtg tgagcccctt tgggggcttg aagaggctgc cagccggact tctgctgggt 





catgggccca tcaggatggt cttggcgatt ctagccttct tgagattcac ggcaatcaag 





ccatcactgg gtctcatcaa tagatggggt tcagtgggga aaaaagaggc tatggaaata 





ataaagaagt tcaagaaaga tctggctgcc atgctgagaa taatcaatgc taggaaggag 





aagaagagac gaggcgcaga tactaatgtc ggaattgttg gcctcctgct gaccacagct 





atggcagcgg aggtcactag acgtgggagt gcatactata tgtacttgga cagaaacgat 





gctggggagg ccatatcttt tccaaccaca ttggggatga ataagtgtta tatacagatc 





atggatcttg gacacatgtg tgatgccacc atgagctatg aatgccctat gctggatgag 





ggggtggaac cagatgacgt cgattgttgg tgcaacacga cgtcaacttg ggttgtgtac 





ggaacctgcc atcacaaaaa aggtgaagca cggagatcta gaagagctgt gacgctcccc 





toccattcca ctaggaagct gcaaacgcgg tcgcaaactt ggttggaatc aagagaatac 





acaaagcact tgattagagt cgaaaattgg atattcagga accctggctt cgcgttagca 





gcagctgcca tcgcttggct tttgggaagc tcaacgagcc aaaaagtcat atacttggtc 





atgatactgc tgattgcccc ggcatacagc atcaggtgca taggagtcag caatagggac 





tttgtggaag gtatgtcagg tgggacttgg gttgatgttg tcttggaaca tggaggttgt 





gtcaccgtaa tggcacagga caaaccgact gtcgacatag agctggttac aacaacagtc 





agcaacatgg cggaggtaag atcctactgc tatgaggcat caatatcgga catggcttcg 





gacagccgct gcccaacaca aggtgaagcc taccttgaca agcaatcaga cactcaatat 





gtctgcaaaa gaacgttagt ggacagaggc tggggaaatg gatgtggact ttttggcaaa 





gggagcctgg tgacatgcgc taagtttgca tgctccaaga aaatgaccgg gaagagcatc 





cagccagaga atctggagta ccggataatg ctgtcagttc atggctccca gcacagtggg 





atgatcgtta atgacacagg acatgaaact gatgagaata gagcgaaggt tgagataacg 





cccaattcac caagagccga agccdccctg gggggttttg gaagcctagg acttgattgt 





gaaccgagga caggccttga cttttcagat ttgtattact tgactatgaa taacaagcac 





tggttggttc acaaggagtg gttccacgac attccattac cttggcacgc tggggcagac 





accggaactc cacactggaa caacaaagaa gcactggtag agttcaagga cgcacatgcc 





aaaaggcaaa ctgtcgtggt tctagggagt caagaaggag cagttcacac ggcccttgct 





ggagctctgg aggctgagat ggatggtgca aagggaaggc tgtcctctgg ccacttgaaa 





tgtcgcctga aaatggataa acttagattg aagggcgtgt catactcctt gtgtaccgca 





gcgttcacat tcaccaagat cccggctgaa acactgcacg ggacagtcac agtggaggta 





cagtacgcag ggacagatgg accttgcaag gttccagctc agatggcggt ggacatgcaa 





actctgaccc cagttgggag gctgataacc gctaaccccg taatcactga aagcactgag 





aactccaaga tgatgctgga acttgatcca ccatttgggg actcttacat tgtcatagga 





gtcggggaga agaagatcac ccaccactgg cacaggagtg gcagcaccat tggaaaagca 





tttgaagcca ctgtgagagg tgccaggaga atggcagtct tgggagacac agcctgggac 





tttggatcag ttggaggcgc tctcaactca ttgggcaagg gcatccatca aatttttgga 





gcagctttca aatcattgtt tggaggaatg tcctggttct cacaaattct cattggaacg 





ttgctgatgt ggttgggtct gaacacaaag aatggatcta tttcccttat gtgcttggcc 





ttagggggag tgttgatctt cttatccaca gccgtctctg ctgatgtggg gtgctcggtg 





gacttctcaa agaaggagac gagatgcggt acaggggtgt tcgtctataa cgacgttgaa 





gcctggaggg acaggtacaa gtaccatcct gactcccocc gtagattggc agcagcagtc 





aagcaagcct gggaagatgg tatctgtggg atctcctctg tttcaagaat ggaaaacatc 





atgtggagat cagtagaagg ggagctcaac gcaatcctgg aagagaatgg agttcaactg 





acggtcgttg tgggatctgt aaaaaacccc atgtggagag gtccacagag attgcccgtg 





cctgtgaacg agctgcccca cggctggaag gcttggggga aatcgtactt cgtcagagca 





gcaaagacaa ataacagctt tgtcgtggat ggtgacacac tgaaggaatg cccactcaaa 





catagagcat ggaacagctt tcttgtggag gatcatgggt tcggggtatt toacactagt 





gtctggctca aggttagaga agattattca ttagagtgtg atccagccgt tattggaaca 





gctgttaagg gaaaggaggc tgtacacagt gatctaggct actggattga gagtgagaag 





aatgacacat ggaggctgaa gagggcccat ctgatcgaga tgaaaacatg tgaatggcca 





aagtcccaca cattgtggac agatggaata gaagagagtg atctgatcat acccaagtct 





ttagctgggc cactcagcca tcacaatacc agagagggct acaggaccca aatgaaaggg 





ccatggcaca gtgaagagct tgaaattcgg tttgaggaat gcccaggcac caaggtccac 





gtggaggaaa catgtggaac aagaggacca tctctgagat caaccacagc aagcggaagg 





gtgatcgagg aatggtgctg cagggagtgc acaatgcccc cactgtcgtt ccaggctaaa 





gatggctgtt ggtatggaat ggagataagg cccaggaaag aaccagaaag taacttagta 





aggtcaatgg tgactgcagg atcaactgat cacatggatc acttctccct tggagtgctt 





gtgattctgc tcatggtgca ggaagggctg aagaagagaa tgaccacaaa gatcatcata 





agcacatcaa tggcagtgct ggtagctatg atcctgggag gattttcaat gagtgacctg 





gctaagcttg caattttgat gggtgccacc ttcgcggaaa tgaacactgg aggagatgta 





gctcatctgg cgctgatagc ggcattcaaa gtcagaccag cgttgctggt atctttcatc 





ttcagagcta attggacacc ccgtgaaagc atgctgctgg ccttggcctc gtgtcttttg 





caaactgcga tctccgcctt ggaaggcgac ctgatggttc tcatcaatgg ttttgctttg 





gcctggttgg caatacgagc gatggttgtt ccacgcactg ataacatcac cttggcaatc 





ctggctgctc tgacaccact ggcccggggc acactgcttg tggcgtggag agcaggcctt 





gctacttgcg gggggtttat gctcctctct ctgaagggaa aaggcagtgt gaagaagaac 





ttaccatttg tcatggccct gggactaacc gctgtgaggc tggtcgaccc catcaacgtg 





gtgggactgc tgttgctcac aaggagtggg aagcggagct ggccccctag cgaagtactc 





acagctgttg gcctgatatg cgcattggct ggagggttcg ccaaggcaga tatagagatg 





gctgggccca tggccgcggt cggtctgcta attgtcagtt acgtggtctc aggaaagagt 





gtggacatgt acattgaaag agcaggtgac atcacatggg aaaaagatgc ggaagtcact 





ggaaacagtc cccggcttgc tgtggcgcta gatgagagtg gtgatttctc cctggtggag 





gatgacggtc cccccatgag agagatcata ctcaaggtgg tcctgatgac catctgtggc 





atgaacccaa tagccatacc ctttgcagct ggagcgtggt acgtatacgt gaagactgga 





aaaaggagtg gagctctatg ggatgtgcct gctcccaagg aagtaaaaaa gggggagacc 





acagatggag tgtacagagt gatgactcgt agactgctag gttcaacaca agttggagtg 





ggagttatgc aagagggggt ctttcacacc atgtggcacg tcacaaaagg atccgcgctg 





agaagcggtg aagggagact tgatccatac tggggagatg tcaagcagga tctggtgtca 





tactgtggtc catggaagct agatgccgcc tgggacgggc acagcgaggt gcagctcttg 





gccgtgcccc ccggagagag agcgaggaac atccagactc tgcccggaat atttaagaca 





aaggatgggg acattggagc ggttgcgctg gattacccag caggaacttc aggatctcca 





atcctagaca agtgtgggag agtgatagga ctttatggca atggggtcgt gatcaaaaat 





gggagttatg ttagtgccat cacccaaggg aggagggagg aagagactcc tgttgagtgc 





ttcgagcctt cgatgctgaa gaagaagcag ctaactgtct tagacttgca tcctggagct 





gggaaaacca ggagagttct tcctgaaata gtccgtgaag ccataaaaac aagactccgt 





actgtgatct tagctccaac cagggttgtc gctgccgaaa tggaggaagc ccttagaggg 





cttccagtgc gttatatgac aacagcagtc aatgtcaccc actctggaac agaaatcgtc 





gacttaatgt gccatgccac cttcacttca cgtctactac agccaatcag agtccccaac 





tataatctgt atattatgga tgaggcccac ttcacagatc cctcaagtat agcagcaaga 





ggatacattt caacaagggt tgagatgggc gaggcggctg ccatcttcat gaccgccacg 





ccaccaggaa cccgtgacgc atttccggac tccaactcac caattatgga caccgaagtg 





gaagtcccag agagagcctg gagctcaggc tttgattggg tgacggatca ttctggaaaa 





acagtctggt ttgttccaag cgtgaggaac ggcaatgaga tcgcagcttg tctgacaaag 





gctggaaaac gggtcataca gctcagcaga aagacttttg agacagagtt ccagaaaaca 





aaacatcaag agtgggactt tgtcgtgaca actgacattt cagagatggg cgccaacttt 





aaagctgacc gtgtcataga ttccaggaga tgcctaaagc cggtcatact tgatggcgag 





agagtcattc tggctggacc catgcctgtc acacatgcca gcgctgccca gaggaggggg 





cgcataggca ggaatcccaa caaacctgga gatgagtatc tgtctggagg tgggtgcgca 





gagactgacg aagaccatgc acactggctt gaagcaagaa tgctccttga caatatttac 





ctccaagatg gcctcatagc ctcgctctat cgacctgagg ccgacaaagt agcagccatt 





gagggagagt tcaagcttag gacggagcaa aggaagacct ttgtggaact catgaaaaga 





ggagatcttc ctgtttggct ggcctatcag gttgcatctg ccggaataac ctacacagat 





agaagatggt gctttgatgg cacgaccaac aacaccataa tggaagacag tgtgccggca 





gaggtgtgga ccagacacgg agagaaaaga gtgctcaaac cgaggtggat ggacgccaga 





gtttgttcag atcacgcggc cctgaagtca ttcaaggagt ttgccgctgg gaaaagagga 





gcggcttttg gagtgatgga agccttggga acactgccag gacacatgac agagagattc 





caggaagcca ttgacaacct cgctgtgctc atgcgggcag agactggaag caggccttac 





aaagccgcgg cggcccaatt gccggagacc ctagagacca ttatgctttt ggggttgctg 





ggaacagtct cgctgggaat ctttttcgtc ttgatgagga acaaccgcat accgaagatg 





ggctttggaa tggtgactct tcccgccagc gcatggctca tgtggctctc ggaaattgag 





ccagccagaa ttgcatgtgt cctcattgtt gtgttcctat tgctggtggt gctcatacct 





gagccagaaa agcaaagatc tccccaggac aaccaaatgg caatcatcat catggtagca 





gtaggtcttc tgggcttgat taccgccaat gaactcggat ggttggagag aacaaagagt 





gacctaagcc atctaatggg aaggagagag gagggggcaa ccataggatt ctcaatggac 





attgacctgc ggccagcctc agcttgggcc atctacgctg ccttgacaac tttcattacc 





ccagccgtcc aacatgcagt gaccacttca tacaacaact actccttaat ggcgatggcc 





acgcaagctg gagtgttgtt tggtatgggc aaagggatgc cattctacgc atgggacttt 





ggagtcccgc tgctaatgat aggttgctac tcacaattaa cacccctgac cctaatagta 





gccatcattt tgctcgtggc gcactacatg tacttgatcc cagggctgca ggcagcagct 





gcgcgtgctg cccagaagag aacggcagct ggcatcatga agaaccctgt tgtggatgga 





atagtggtga ctgacattgd cacaatgaca attgaccccc aagtggagaa aaagatggga 





caggtgctac tcatagcagt agccgtctcc agcgccatac tgtcgcggac cgcctggggg 





tggggggagg ctggggccct gatcacagct gcaacttcca ctttgtggga aggctctccg 





aacaagtact ggaactcctc tacagccact tcactgtgta acatttttag gggaagttac 





ttggctggag cttctctaat ctacacagta acaagaaacg ctggcttggt caagagacgt 





gggggtggaa caggagagac cctgggagag aaatggaagg cccgcttgaa ccagatgtcg 





gccctggagt tctactccta caaaaagtca ggcatcaccg aggtgtgcag agaagaggcc





cgccgcgccc tcaaggacgg tgtggcaacg ggaggccatg ctgtgtcccg aggaagtgca 





aagctgagat ggttggtgga gcggggatac ctgcagccct atggaaaggt cattgatctt 





ggatgtggca gagggggctg gagttactac gccgccacca tccgcaaagt tcaagaagtg 





aaaggataca caaaaggagg ccctggtcat gaagaaccca tgttggtgca aagctatggg 





tggaacatag tccgtcttaa gagtggggtg gacgtctttc atatggcggc tgagccgtgt 





gacacgttgc tgtgtgacat aggtgagtca tcatctagtc ctgaagtgga agaagcacgg 





acgctcagag tcctttccat ggtgggggat tggcttgaaa aaagaccagg agccttttgt 





ataaaagtgt tgtgtccata caccagcact atgatggaaa ccctggagog actgcagcgt 





aggtatgggg gaggactggt cagagtgcca ctctcccgca actctacaca tgagatgtac 





tgggtctctg gagcgaaaag caacaccata aaaagtgtgt ccaccacgag ccagctcctc 





ttggggcgca tggacgggcc caggaggcca gtgaaatatg aggaggatgt gaatctcggc 





tctggcacgc gggctgtggt aagctgcgct gaagctccca acatgaagat cattggtaac 





cgcattgaaa ggatccgcag tgagcacgcg gaaacgtggt tctttgacga gaaccaccca 





tataggacat gggcttacca tggaagctat gaggccccca cacaagggtc agcgtcctct 





ctaataaacg gggttgtcag gctcctgtca aaaccctggg atgtggtgac tggagtcaca 





ggaatagcca tgaccgacac cacaccgtat ggtcagcaaa gagttttcaa ggaaaaagtg 





gacactaggg tgccagatcc ccaagaaggc actcgtcagg ttatgagcat ggtctcttcc 





tggttgtgga aagagctagg caaacacaaa cggccacgag tctgtaccaa agaagagttc 





atcaacaagg ttcgtagcaa tgcagcatta ggggcaatat ttgaagagga aaaagagtgg 





aagactgcag tggaagctgt gaacgatcca aggttctggg ctctagtgga caaggaaaga 





gagcaccacc tgagaggaga gtgccagagt tgtgtgtaca acatgatggg aaaaagagaa 





aagaaacaag gggaatttgg aaaggccaag ggcagccgcg ccatctggta tatgtggcta 





ggggctagat ttctagagtt cgaagccctt ggattcttga acgaggatca ctggatgggg 





agagagaact caggaggtgg tgttgaaggg ctgggattac aaagactcgg atatgtccta 





gaagagatga gtcgcatacc aggaggaagg atgtatgcag atgacactgc tggctgggac 





acccgcatca gcaggtttga tctggagaat gaagctctaa tcaccaacca aatggagaaa 





gggcacaggg ccttggcatt ggccataatc aagtacacat accaaaacaa agtggtaaag 





gtccttagac cagctgaaaa agggaagaca gttatggaca ttatttcgag acaagaccaa 





agggggagcg gacaagttgt cacttacgct cttaacacat ttaccaacct agtggtgcaa 





ctcattcgga gtatggaggc tgaggaagtt ctagagatgc aagacttgtg gctgctgcgg 





aggtcagaga aagtgaccaa ctggctgcag agcaacggat gggataggct caaacgaatg 





gcagtcagtg gagatgattg cgttgtgagg ccaattgatg ataggtttgc acatgccctc 





aggttcttga atgatatggg gaaagttagg aaggacacac aagagtggaa accctcaact 





ggatgggaoa actgggagga agttccgttt tgctcccacc acttcaacaa gctccatctc 





aaggacggga ggtccattgt ggttccctgc cgccaccaag atgaactgat tggccgggcc 





cgcgtctctc caggggcggg atggagcatc cgggagactg cttgcctagc aaaatcatat 





gcgcaaatgt ggcagctcct ttatttccac agaagggacc tccgactgat ggccaatgoc 





atttgttcat ctgtgccagt tgactgggtt ccaactggga gaactacctg gtcaatccat 





ggaaagggag aatggatgac cactgaagac atgcttgtgg tgtggaacag agtgtggatt 





gaggagaacg accacatgga agacaagacc ccagttacga aatggacaga cattccctat 





ttgggaaaaa gggaagactt gtggtgtgga tctctcatag ggcacagacc gcgcaccacc 





tgggctgaga acattaaaaa cacagtcaac atggtgcgca ggatcatagg tgatgaagaa 





aagtacatgg actacctatc cacccaagtt cgctacttgg gtgaagaagg gtctacacct 





ggagtgctgt aa 










prM/E proteins include those having at least 80%, 82%, 85%, 87%, 90%, 92%, 95%, 97%, 99% or more amino acid sequence identity to the prM/E proteins encoded by SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:5, SEQ ID NO:11, SEQ ID NO:12, or SEQ II) NO:13.


Capsid proteins include those having at least 80%, 82%, 85%, 87%, 90%, 92%, 95%, 97%, 99% or more amino acid sequence identity to the proteins encoded by one or more of SEQ ID NO:1, SEQ ID NO:2, SEQ ID NO:3, SEQ ID NO:5, SEQ NO:11, SEQ ID NO:12, or SEQ NO:13,


An exemplary intron/enhancer sequences useful in a vector include:











atcgcctggagacgccatccacgctgttttgacct






ccatagaagacaccgggaccgatccagcctccgcg






gccgggaacggtgcattggaacgcggattccccgt






gccaagagtgactcaccgtccggatctcagcaagc






aggtatgtactctccagggtgggcctggcttcccc






agtcaagactccagggatttgagggacgctgtggg






ctcttctcttacatgtaccttttgcttgcctcaac






cctgactatcttccaggtcaggatcccagagtcag






gggtctgtattttcctgctggtggctccagttcag






gaacagtaaaccctgctccgaatattgcctctcac






atctcgtcaatctccgcgaggactggggaccctgt






gacgaac







(SEQ ID NO:4), or a nucleotide sequence having at least 80%, 82%, 85%, 87%, 90%, 92%, 95%, 97%, 99% or more nucleotide sequence identity to SEQ ID NO:4.


An exemplary vector sequence useful to produce VLPs is shown in FIG. 6 (SEQ ID NO:5).


An exemplary African lineage Zika isolate has the following nucleotide sequence (SEQ ID NO:11 which encodes SEQ NO:14; see Accession No. HQ234500 which is incorporated by reference herein):











atgaaaaacc caaagaagaa atccggagga ttccggattg






tcaatatgct aaaacgcgga gtagcccgtg taaacccctt






ggggggtttg aagaggctgc cggccggact cctgctgggc






catggaccca tcagaatggt ttcggcgata ctagccttct






tgagattcac agcaatcaag ccatcactgg gcctcatcaa






tagatggggt tccgtgggga agaaggaggc tatggaaata






ataaaaaagt tcaagaaaga tcttgctgcc atgttgagaa






taatcaatgc taggaaggag aggaagagac gtggagctga






tgccagcatc ggaatcgtca gcctcctgct gactacagtc






atggcagcag agatcactag acgcgggagt gcatactaca






tgtacttgga caggagcgat gctggtaagg ccatttcttt






cgttaccaca ctgggggtga acaaatgcca tgtgcagatc






atggacctcg ggcatatgtg tgacgccacc atgagttatg






agtgccccat gctggacgag ggagtggagc cagatgacgt






cgattgctgg tgcaacacga catcaacttg ggttgtgtac






ggaacctgtc atcataaaaa aggtgaagca cgacgatcca






gaagagccgt gacgcttcct tctcactcta caaggaagtt






gcaaacgcga tcgcagactt ggctagaatc aagagaatac






acaaagcacc tgatcaaggt tgagaattgg atattcagga






accccgggtt tgcgctagtg gctgtagcta ttgcctggct






cctgggaagc tcgacgagcc aaaaagtcat acacttggtc






atgatattgt tgattgcccc ggcatacagt atcaggtgca






taggagttag caatagagac ttcgtggagg gcatgtcagg






tgggacctgg gttgatgttg tcttggaaca tggaggttgt






gtcaccgtga tggcacagga caagccaaca gttgacatag






agttggtcac gacaacggtt agcaacatgg ccgaggtgag






atcctactgc tacgaggcat caatatcgga catggcttcg






gacagtcgct gcccaacaca aggtgaagcc taccttgaca






agcagtcaga cactcaatat gtctgtaaaa gaacattggt






ggacagaggt tggggaaatg ggtgtggact ttttggcaag






gggagcttgg tgacgtgtgc caagtttaca tgctccaaga






aaatgacagg gaagagcatc cagccggaga acttggagta






ccggataatg ctatcagtgc atggatccca gcacagtggg






atgattgtga atgacgaaaa cagagcaaaa gtcgaggtta






cacccaattc accaagagca gaagcaacct tgggaggttt






tggaagcctg ggacttgatt gtgaaccaag gacaggcctt






gacttttcag atctgtatta cctgaccatg aacaataagc






attggttggt gcacaaagag tggtctcatg acatcccatt






accttggcat tctggtgcag acactgaaac tccacactgg






aacaacaaag aggcactggt ggagttcaag gacgcccacg






ccaagaggca aactgttgtg gttctgggga gccaagaagg






agccgttcac acggctctcg ctggagctct ggaggctgag






atggatggtg cgaagggaag gctatcctca ggccatttga






aatgccgcct aaaaatggac aagcttaggt tgaagggtgt






gtcatattcc ctgtgtaccg cagcgttcac attcaccaag






gttccagctg aaacattgca tggaacagtc acagtggagg






tgcagtatgc agggagggat ggaccctgca aggtcccagc






ccagatggcg gtggacatgc agaccctgac cccagttgga






aggctgataa cggctaaccc tgtgatcact gaaagcactg






agaattcaaa gatgatgttg gagctcgacc caccatttgg






ggattcttac attgtcatag gagtcgggga caagaaaatc






acccatcact ggcatcggag tggtagcatc atcggaaagg






catttgaagc cactgtgaga ggcgccaaga gaatggcagt






cttgggagac acagcctggg actttggatc agttgggggt






gtgtttaact cattgggcaa gggtattcac cagatctttg






gagcagcttt caaatcactg ttcggaggaa tgtcctggtt






ctcacagatc ctcataggca cactgttggt gtggttgggt






ctgaacacaa agaatggatc tatctccctc acatgcttgg






ccttgggagg agtgatgatc ttcctttcca cggctgtttc






tgctgatgtg gggtgttcgg tggacttctc aaaaaaggaa






acgagatgtg gcacgggggt gttcatctac aatgacgttg






aagcctggag ggatcgatac agataccatc ctgactcccc






ccgcagattg gcagcagctg ctaagcaggc ttgggaagag






gggatttgtg ggatctcctc cgtttcgaga atggaaaaca






ccatgtggaa atcagtggaa ggggagctta atgcgatcct






agaggagaat ggagtccaac tgacagttgt agtggggtct






gtaaaaaacc ccatgtggag aggtccacga agattgccag






tgcccgtaaa tgagctgccc catggctgga aagcctgggg






gaaatcgtac tttgttaggg cggcaaagac caacaacagt






tttgttgtcg acggtgacac actgaaggaa tgtccgctca






aacatagagc atggaatagc ttccttgtgg aggatcacgg






gtttggggtc ttccacacca gtgtttggct gaaggtcaga






gaggactatt cattagagtg tgacccagcc gtcataggaa






cagctgtcaa gggaaaggag gctgcacaca gtgatctagg






ctattggatt gagagtgaaa agaatgacac atggaggctg






aagagggctc atctgattga gatgaagaca tgtgagtggc






caaagtctca cacactgtgg acagatggag tggaagaaag






tgatctgatc atacccaagt ccttagctgg tccactcagc






caccacaaca ccagagaggg ttatagaact caagtgaaag






ggccatggca tagtgaagag ctgaaatccc ggtttgagga






atgcccaggc accaaggttc atgtggagga gacatgcgga






actagaggac catctctaag atcaaccact gcaagtggaa






gggccataga ggaatggtgc tgtagggaat gcacaatgcc






tccactatcg ttccgggcaa aagacggctg ctggtatgga






atggagataa ggcccagaaa ggaaccagag agcaacttag






tgaggtctat ggtgacagca ggatcaaccg atcacatgga






tcacttctct cttggagtgc ttgtgattct actcatggtg






caggaaggtt tgaagaagag aatgaccaca aagatatcaa






tgagcacacc aatggcaatg ctggtagcca tggtcttggg






aggattctca atgagtgacc tggctaagct tgtgatcctg






atgggtgcca ctttcgcaga aatgaacact ggaggagatg






tggctcactt ggcattggta gcggcattta aagtcagacc






agccttgttg gtttccttca tcttcagagc caactggaca






ccccgtgaga gcatgctgct agccctggct tcgtgtctcc






tgcagactgc gatttccgct cttgaaggcg agctgatggt






cctcgttaat ggatttgctt tggcctggtt ggcaatacga






gcaatggccg tgccacgcac tgataacatc gctctagcaa






ttctggccgc tctaacacca ttagccagag gcacactgct






tgtggcatgg agagcgggcc tgccactctg tggagggttc






atgctcattt ccctgaaagg gaaaggtagt gtgaagaaga






acctgccact tgtcatggcc ttggggttga ccgctgtgag






gatagtggac cccattaatg tggtaggact actgttactg






acaaggagtg ggaaacggag ctggccccct agtgaagtgc






ttacagctgt cggcctgata tgtgcactgg ccggagggtt






tgccaaggca gacatagaga tggctgggcc catggctgca






gtaggcctgc taattgtcag ttatgtggtc acgggaaaga






gtgtggacat gtacattgaa agagcaggtg atattacatg






ggaaaaagac gcggaagtca ctggaaacag tcctcggctt






gacgtggcac tagatgagag tggtgatttc tctttggtag






aggaggatgg cccacccatg agagagatca tactcaaggt






ggtcctgatg gccatctgtg gcatgaaccc aatagccata






cccttcgctg caggagcgtg gtatgtgtat gtaaagactg






ggaaaaggag cggtgccctc tgggacgtgc ctgctcccaa






agaagtaaaa aagggagaga ctacagatgg agtgtacaga






gttatgactc gcagactgct gggttcaaca caggttggag






tgggagtcat gcaagaggga gtcttccata ccatgtggca






cgtcacaaaa ggagccgcat tgaggagcgg tgaaggaaga






cttgatccat actgggggga cgtcaagcag gacctggtgt






catattgtgg gccgtggaag ttggatgcag cctgggatgg






actaagtgag gtgcagcttt tggccgtacc ccccggagag






agggctaaaa acattcagac tctgcctgga atatttaaga






caaaggatgg ggacatcgga gcagttgctc tagactaccc






tgcaggaacc tcaggatctc cgatcctaga caaatgcgga






agagtgatag gactttatgg caatggggtt gtgatcaaga






atggaagcta tgttagtgcc ataacccagg gaaaaaggga






ggaggagact ccggttgagt gctttgaacc ctcgatgctg






aggaagaagc agctaacagt cttggatctg catccaggag






ccgggaaaac caggagggtt cttcctgaaa tagtccgtga






agccataaag aagagacttc gcacagtgat cttagcacca






accagggttg ttgctgctga gatggaggaa gccctaagag






gacttccggt gcgttacatg acaacagcag tcaacgtcac






ccattctggg acagaaatcg ttgatttgat gtgccatgcc






accttcactt cacgcctact acaaccaatc agagtcccca






actacaacct ttatatcatg gatgaggctc atttcacaga






tccttcaagc atagctgcaa gaggatacat atcaacaagg






gttgaaatgg gcgaggcggc tgctatcttc atgactgcta






caccaccagg aacccgcgat gcgtttccag attccaactc






accaatcatg gacacagaag tggaagtccc agagagagcc






tggagctcag gctttgactg ggtgacggac cattctggaa






aaacaatttg gtttgttcca agtgtgagaa acggaaatga






aatcgcagcc tgtctgacaa aggctggaaa gcgggttata






cagctcagca ggaagacttt tgagacagag tttcagaaga






caaaaaatca agagtgggac tttgtcataa caactgacat






ttcagagatg ggtgccaact tcaaggctga ccgggtcata






gattccagga gatgcctaaa gccagtcata cttgatggtg






agagagtcat cctggctggg cctatgcccg tcacgcacgc






cagtgctgct cagaggagag gacgtatagg caggaacccc






aacaaacctg gagatgagta tatgtatgga ggtgggtgtg






cagagactga tgaagaccat gcacactggc ttgaagcaag






aatgcttctc gacaacattt acctccagga tggccccata






gcctcgctct atcggcctga ggctgacaag gttgccgcca






ttgagggaga gttcaagctg aggacagagc aaaggaagac






ctttgtggaa ctcatgaaga gaggagacct tcccgtttgg






ctggcctatc aagtagcatc tgccggaata acttacacag






acagaagatg gtgctttgat ggcactacca acaacaccat






aatggaagac agtgtaccag cagaggtgtg gaccaagtat






ggagagaaga gagtgctcaa accgaggtgg atggatgcca






gggtctgttc agatcatgcg gctttgaagt cgttcaaaga






atttgccgct gggaagagag gagcggcttt gggagtaatg






gatgccctag gaacattgcc aggacacatg acagagaggt






ttcaggaagc cattgacaat ctcgctgtgc tcatgcgagc






agagactgga agtaggccct acaaagcagc ggcagctcaa






ctgccggaga ccctagagac cattatgctc ttgggtttat






tgggaacagt ttcgctaggg atcttctttg tcttgatgcg






gaacaagggc atcgggaaga tgggcttcgg aatggtaacc






cttggggcca gcgcatggct catgtggctt tcggaaattg






aaccagccag aatcgcatgt gtcctcattg tcgtgtttct






gttactggtg gtgctcatac ctgagccaga gaagcaaaga






tctccccagg acaatcaaat ggcaatcatc atcatggtgg






cagtgggcct tctgggtttg ataactgcaa acgaactcgg






atggctggaa agaacaaaaa gtgatatagc tcatctaatg






ggaaggaaag aagaggggac aaccgtagga ttctcaatgg






atattgatct gcggccagcc tccgcctggg ctatttatgc






cgcattgaca actctcatca ccccagccgt ccaacatgcg






gtgaccacct catacaacaa ctactccctg atggcgatgg






ccacacaagc tggagtgctg tttggcatgg gcaaagggat






gccattttat gcatgggact ttggagtccc gctgctaatg






atgggttgtt actcacaatt aacacccctg accctgatag






tggccatcat tctgcttgtg gcacactaca tgtatttgat






cccaggtttg caggcagcag cagcacgtgc cgcccagaag






aggacagcag ctggcatcat gaagaatccc gttgttgatg






gaatagtggt gactgacatt gacacaatga caattgaccc






ccaagtggag aagaagatgg gacaagtgtt actcatagca






gtagctgcct ccagtgccgt gctgctgcgg accgcttggg






gatgggggga ggctggggct ctgatcacag cagcaacctc






caccttatgg gaaggctctc caaacaaata ctggaactcc






tctacagcca cttcactgtg caatatcttc agaggaagtt






atttggcagg ggcttccctt atttacacag tgacaagaaa






tgccggtctg gttaagagac gtggaggtgg aacgggagag






actctgggag agaagtggaa agcccgcctg aaccagatgt






cggctttgga gttctattct tacaaaaagt caggcatcac






cgaagtgtgt agggaggagg cacgccgcgc cctcaaggat






ggagtggcca caggaggaca tgctgtatcc cggggaagcg






caaagcttag atggttggta gagagaggat acctgcagcc






ccatggaaag gttgttgacc tcggatgtgg cagagggggc






tggagttatt acgctgccac catccgtaaa gtgcaggagg






tcagaggata cacaaaggga ggtcctggtc atgaagaacc






catgctggtg caaagctatg ggtggaacat agttcgcctc






aagagtggag tggacgtctt tcacatggcg gctgagccgt






gtgacacctt gctgtgtgac attggcgagt catcgtccag






tcctgaagtg gaagagacgc gaacactcag agtgctctcc






atggtgggag actggctcga gaaaagacca ggggccttct






gcataaaggt gctgtgccca tacaccagta ctatgatgga






gaccatggag cgactgcaac gtaggtatqq gggaggattg






gtcagagtgc cattgccccg caactccaca catgagatgt






attgggtctc tggagccaaa agtaacatca taaagagtgt






gtccaccaca agtcagctcc tcttgggacg catggatggg






cctaggaggc cagtgaaata tgaagaggat gtgaacctcg






gctcaggcac acgagctgtg gcaagctgtq ctgaggctcc






caacatgaag atcattggta ggcgcattga gagaatccgc






aatgaacatg cagagacacg gttctttgat gaaaaccacc






catacaggac atgggcctac catgggagct acgaagcccc






cacgcagggg tcagcgtcat ccctcgtgaa cggggttgtt






agactcctgt caaagccctg ggatgtggtg actggagtca






caggaatagc tatgactgac accacgccat acggccaaca






aagagtcttc aaagaaaagg tggacactag ggtgccagac






ccccaagaag gcacccgccg agtaatgaac atggtctcgt






cttggctatg gaaggagctg ggaaaacgca agcggccacg






tgtctgcacc aaagaagagt tcatcaataa ggtgcgcagc






aatgcagcac tgggagcaat atttgaagag gaaaaagaat






ggaagacagc tgtagaagct gtgaatgatc cgagattttg






ggctctagtg gacaaggaaa gagaacacca cctgagagga






gagtgtcaca gctgtgtgta caacatgatg ggaaaaagag






aaaagaagca aggagaattc gggaaagcaa aaggcagccg






cgcaatctgg tacatgtggt tgggagccag atttctggag






tttgaggctc ttggattctt gaatgaggac cattggatgg






gaagagaaaa ctcaggaggt ggcgttgaag ggctaggact






gcaaaggctt ggatacattc tagaagaaat gaaccgggcg






ccaggaggaa agatgtatgc agatgacacc gctggctggg






atacccgtat tagcaggttt gatctggaga atgaagccct






gatcactaac cagatggaag aagggcacag agctctggcg






ttggccgtga ttaaatacac ataccaaaac aaagtggtga






aggttctcag accagctgaa ggagggaaaa cagtcatgga






catcatctca agacaagacc agagagggag cggacaagtt






gttacttatg ccctcaacac attcaccaac ctggtggtgc






agcttatccg gaacatggag gctgaggagg tgctagagat






gcatgatcta tggctgttga ggaagccaga gaaagtgacc






agatggttgc agagcaatgg atgggacaga ctcaaacgaa






tggcagtcag tggagatgac tgcgttgtaa agccaattga






tgataggttt gcacatgccc tcaggttctt gaatgacatg






ggaaaagtta ggaaagacac acaggaatgg aaaccctcga






ctggatggag caattgggaa gaagtcccgt tctgttccca






ccacttcaac aagctgcacc tcaaggatgg gagatccatt






gtggtcccct gccgccacca agatgaactg attggccgag






cccgtgtctc accaggggca ggatggagca tccgggagac






tgcctgtctt gcaaaatcat atgcccagat gtggcagctt






ctttatttcc acagaagaga cctccgactg atggccaatg






ccatctgttc ggccgtgcca gccgactggg tcccaactgg






gagaaccacc tggtcaatcc atggaaaggg agaatggatg






actaatgagg acatgctcat ggtgtggaat agagtgtgga






ttgaggagaa cgaccacatg ggggacaaga cccctgtaac






aaaatggaca gacattccct atttgggaaa aagggaggac






ttatggtgtg gatcccttat agggcacaga cttcgcacca






cttgggctga gaacatcaaa gacacagcca acatggtgcg






taggatcata ggtgatgaag aaaggtacat ggactaccta






tccacccagg tacgctactt gggtgaggag gggtccacac






ctggagtgct g






An exemplary Asian lineage Zika isolate has the following sequence (SEQ ID NO:12 which encodes SEQ ID NO:15; see Accession No. HQ234499 which is incorporated by reference herein):











ATGAAAAACC AAAAAAGAA TCCGGAGGA TCCGGATTG






TCAATATGCT AAACGCGGA TAGCCCGTG GAGCCCCTT






TGGGGGCTTG AGAGGCTAC AGCTGGACT CTGCTGGGT






CATGGACCCA CAGGATGGT TTGGCGATA TAGCCTTCT






TGAGATTCAC GCAATCAAG CATCACTGG TCTCATCAA






TAGATGGGGT CCGTGGGGA AAAAGAGGC ATGGAAATA






ATAAAGAAGT CAAGAAAGA CTGGCTGCC TGCTGAGAA






TAATCAATGC AGGAAGGAG AGAAGAGAC TGGCGCAGA






CACCAGTGTC GAATTGTTG CCTCCTGCT ACCACAGCC






ATGGCAGTGG GGTCACCAG CGTGGGAGT CATACTATA






TGTACTTAGA AGAAGCGAT CTGGGGAGG CATATCTTT






TCCAACCACA TGGGGGTGA TAAGTGTTA ATACAGATC






ATGGATCTTG ACACATGTG GATGCCACA TGAGCTATG






AATGCCCTAT TTGGATGAG GGGTAGAAC AGATGACGT






CGATTGCTGG GCAACACGA ATCGACTTG GTTGTGTAC






GGAACCTGCC TCACAAAAA GGTGAGGCA GGAGATCTA






GAAGAGCTGT ACGCTCCCC CTCATTCCA TAGGAAGCT






GCAAACGCGG CGCAGACCT GTTGGAATC AGAGAATAC






ACAAAGCACT GATCAGAGT GAAAATTGG TATTCAGGA






ACCCTGGCTT GCGTTGGCA CAGCTGCCA TGCTTGGCT






TTTGGGAAGC CAACGAGCC AAAAGTCAT TACTTGGTC






ATGATACTGT GATTGCCCC GCATACAGT TCAGGTGCA






TAGGAGTCAG AATAGGGAT TTGTGGAAG TATGTCAGG






TGGGACCTGG TTGATGTTG CTTGGAACA GGAGGTTGT






GTTACCGTAA GGCACAGGA AAGCCAACT TTGATATAG






AGTTGGTCAC ACAACGGTT GCAACATGG GGAGGTAAG






ATCCTACTGC ACGAGGCAT AATATCGGA ATGGCTTCG






GACAGCCGCT CCCAACACA GGTGAAGCC ACCTTGACA






AGCAGTCAGA ACTCAATAT TTTGCAAAA AACGTTAGT






GGACAGAGGT GGGGAAATG ATGTGGACT TTTGGCAAA






GGGAGCCTGG GACATGCGC AAGTTTGCA GCTCCAAGA






AAATGACTGG AAGAGCATC AGCCAGAGA CCTGGAGTA






CCGGATAATG TGTCAGTTC TGGCTCCCA CACAGTGGG






ATGATTGTTA TGACANAGG CATGAAACT ATGAGAATA






GAGCGAAGGT GAGATAACG CCAATTCAC AAGAGCCGA






AGCCACCCTG GAGGTTTTG AAGCCTAGG CTTGATTGT






GAACCGAGGA AGGCCTTGA TTTTCAGAT TGTATTACT






TGACTATGAA AACAAGCAT GGTTGGTGC CAAGGAGTG






GTTCCATGAC TTCCACTAC TTGGCATGC GGGGCAGAC






ACCGGAACTC ACATTGGAA AACAAAGAA CATTGGTAG






AGTTCAAGGA GCACATGCC AAAGGCAAA TGTCGTGGT






TCTAGGGAGT AAGAAGGAG CGTTCACAC GCTCTTGCT






GGAGCCCTGG GGCTGAGAT GATGGTGCA AGGGAAGGC






TGTCCTCTGG CACTTGAAA GTCGCTTGA AATGGACAA






ACTTAGATTG AGGGCGTGT ATACTCCTT TGTACCGCG






GCGrrCACAT CACCAAGAT CCGGCTGAA CGCTGCATG






GGACAGTCAC GTGGAGGTA AGTATGCAG GACAGATGG






ACCCTGCAAG TTCCAGCTC GATGGCGGT GATATGCAA






ACTCTGACCC AGTTGGGAG TTGATAACC CTAACCCTG






TGATCACTGA AGCACTGAG ATTCAAAGA GATGTTGGA






ACTTGACCCA CATTTGGGG TTCTTACAT GTCATAGGA






GTTGGGGATA GAAGATCAC CACCACTGG ACAGGAGTG






GCAGCACCAT GGAAAAGCA TTGAAGCCA TGTGAGAGG






CGCCAAGAGA TGGCAGTCT GGGAGACAC GCCTGGGAC






TTTGGATCAG CGGAGGTGC CTCAACTCA TGGGGAAGG






GCATCCATCA ATTTTTGGA CAGCTTTCA ATCATTGTT






TGGAGGAATG CCTGGTTCT ACAAATCCT ATAGGAACG






TTGCTGGTGT GTTGGGTCT AACACAAAG ATGGATCTA






TTTCCCTTAC TGCTTGGCC TAGGGGGAG GTTGATCTT






CCTATCTACA CCGTCTCTG TGATGTGGG TGTTCGGTG






GACTTCTCAA GAAGGAAAC AGATGCGGT CGGGGGTGT






TCGTCTATAA GACGTTGAA CCTGGAGGG CAGGTACAA






GTACCATCCT ACTCCCCTC TAGATTGGC GCAGCAGTC






AAGCAGGCCT GGAAGATGG ATCTGTGGG TCTCCTCTG






TTTGAAGAAT GAAAACATT TGTGGAGAT AGTAGAAGG






GGAGCTCAAC CAATTCTGG AGAGAATGG GTTCAACTG






ACGGTCGTTG GGGATCTGT AAAAACCCC TGTGGAGAG






GTCCGCAGAG TTGCCTGTG CTGTGAATG GCTGCCCCA






CGGTTGGAAG CCTGGGGGA ATGGTACTT GTCAGGGCA






GCAAAGACCA CAACAGCTT GTTGTGGAT GTGACACAC






TGAAGGAATG CCGCTCAAA ACAGAGCAT GAACAGCTT






TCTTGTGGAG ATCACGGGT CGGGGTATT CACACTAGT






GTCTGGCTTA AGTCAGAGA GATTACTCA TAGAGTGTG






ATCCAGCCGT ATAGGAACA CTGCTAAGG AAAGGAGGC






CGTGCACAGT ATCTAGGCT CTGGATTGA AGTGAAAAG






AACGACACAT GAGGCTGAA AGGGCTCAC TGATCGAGA






TGAAAACATG GAATGGCCA AGTCCCACA ACTGTGGAC






AGATGGAATA AAGAAAGTG TCTGATCAT CCTAAGTCT






TTAGCTGGGC ACTCAGCCA CACAACACC GAGAGGGCT






ACAGGACTCA GTGAAAGGG CGTGGCATA TGAAGAGCT






TGAAATCCGG TTGAGGAAT TCCAGGCAC AAGGTCCAC






GTGGAGGAAA ATGTGGAAC AGAGGACCG CCCTGAGAT






CAACCACTGC AGCGGAAGG TGATCGAGG ATGGTGCTG






CAGGGAATGC CAATGCCCC ATTGTCGTT CGGGCAAAA






GATGGCTGTT GTATGGAAT GAGATAAGG CCAGGAAGG






AACCAGAGAG AACCTAGTA GGTCAATGG GACTGCAGG






ATCAACTGAT ACATGGATC CTTCTCCCT GGAGTGCTT






GTGATTCTGC CATGGTGCA GAAGGGCTG AGAAGAGAA






TGACCACAAA ATCATCATA GCACATCAA GGCAGTGTT






GGTAGCTATG TCCTGGGAG ATTTTCAAT AGTGACTTG






GCTAAGCTTG AATTCTGAT GGTGCCACC TCGCGGAAA






TGAACACTGG GGAGATGTA CTCATCTGG GCTGATAGC






GGCATTCAAA TCAGACCCG GTTGCTGGT TCTTTCATC






TTCAGAGCCA TTGGACACC CGTGAGAGC TGCTGCTGG






CCTTGGCCTC TGCCTTCTG AAACTGNGA CTCCGCCCT






GGAAGGCGAC TGATGGTTC CATCAATGG TTTGCTTTG






GCCTGGTTGG AATACGAGC ATGGCTGTT CACGCACTG






ACAACATCAC TTGGCAATC TGGCTGCTC GACACCACT






GGCCCGAGGC CACTGCTTG AGCGTGGAG GCAGGCCTT






GCTACTTGTG GGGGTTCAT CTCCTCTCT TGAAGGGGA






AAGGTAGTGT AAGAAGAAC TACCATTTG CATGGCCTT






GGGACTAACC CTGTGAGGC GGTTGACCC ATCAACGTG






GTGGGACTGC GTTGCTCAC AGGAGTGGG AGCGGAGCT






GGCCCCCTAG GAAGTACTC CAGCTGTTG CCTGATATG






TGCACTGGCC GAGGGTTCG CAAAGCAGA ATAGAGATG






GCTGGGCCCA GGCTGCAGT GGCCTGCTA TTGTTAGTT






ACGTGGTCTC GGAAAGAGT TGGACATGT CATTGAAAG






AGCAGGTGAC TCACATGGG AAAAGATGC GAAGTTACT






GGAAACAGCC CCGGCTCGA GTGGCACTA ATGAGAGTG






GTGATTTCTC CTGGTGGAG ATGATGGTC CCCCATGAG






AGAGATCATA TCAAGGTGG CCTGATGAC ATCTGTGGC






ATGAACCCAA AGCCATACC TTTGCAGCT GAGCGTGGT






ATGTGTATGT AAGACTGGA AGAGGAGTG TGCTCTATG






GGATGTGCCT CTCCCAAGG AGTAAAAAA GGGGAGACC






ACAGATGGAG GTATAGAGT ATGACTCGC GACTGCTAG






GTTCAACACA GTTGGAGTG GAGTCATGC AGAGGGGGT






CTTCCACACT TGTGGCACG CACAAAAGG TCCGCGCTG






AGGAGCGGTG AGGGAGACT GATCCATAC GGGGAGATG






TTAAGCAGGA CTGGTGTCA ACTGTGGCC GTGGAAGCT






AGATGCCGCT GGGACGGAC CAGCGAGGT CAGCTTTTG






GCCGTGCCCC CGGAGAGAG GCGAGGAAC TCCAGACTC






TGCCCGGAAT TTCAAGACA AGGATGGGG CATCGGAGC






AGTTGCTCTG CTTACCCAG AGGAACTTC GGATCTCCG






ATCCTAGACA GTGTGGGAG GTGATAGGA TCTATGGCA






ATGGGGTCGT ATCAAAAAT GAAGTTATG TAGTGCCAT






CACCCAAGGG GGAGGGAGG AGAGACTCC GTTGAATGC






TTCGAACCTT GATGCTGAA AAGAAGCAG TAACTGTCT






TGGATCTGCA CCTGGAGCT GGAAAACCA GAGAGTTCT






TCCTGAAATA TCCGTGAAG CATAAAAAC AGACTCCGC






ACGGTGATCC GGCTCCAAC AGGGTTGTC CTGCTGAAA






TGGAGGAAGC CTTAGAGGG TTCCAGTGC TTACATGAC






AACAGCAGTT ATGTCACCC CTCTGGGAC GAAATCGTT






GATTTAATGT CCATGCCAC TTCACTTCA GCCTACTAC






AACCCATTAG GTCCCCAAC ACAATCTTT CATTATGGA






TGAGGCCCAC TCACAGATC CTCAAGTAT GCAGCAAGA






GGATACATAT AACAAGGGT GAGATGGGC AGGCGGCTG






CCATCTTCAT ACCGCCACA CACCAGGAA CCGCGACGC






ATTTCCGGAC CTAACTCAC AATCATGGA ACAGAAGTG






GAAGTCCCAG GAGAGCCTG AGCTCAGGC TTGATTGGG






TGACGGATCA TCTGGAAAA CAGTTTGGT TGTTCCAAG






CGTGAGGAAC GCAACGAGA CGCGGCTTG CTGACAAAA






GCTGGAAAAC GGTCATACA CTCAGCAGA AGACTTTTG






AGACAGAGTT CAGAAAACA AAAATCAAG GTGGGACTT






CGTCGTAACA CTGACATCT AGAGATGGG GCCAACTTC






AAAGCTGACC GGTCATAGA TCCAGGAGA GCCTGAAGC






CGGTCATACT GATGGCGAG GAGTCATTC GGCTGGACC






CATGCCTGTC CACATGCCA CGCTGCCCA AGGAGGGGG






CGCATAGGCA GAATCCCAA AAACCTGGA ATGAGTATA






TGTATGGAGG GGGTGCGCA AGACTGATG AGACCATGC






ACACTGGCTT AAGCAAGAA GCTTCTTGA AACATTTAC






CTCCAAGATG CCTCATAGC TCGCTCTAT GACCTGAGG






CCGATAAGGT GCAGCCATT AGGGAGAGT CAAGCTTAG






GACGGAGCAA GGAAGACCT TGTGGAACT ATGAAAAGA






GGAGATCTTC TGTTTGGCT GCCTATCAG TTGCATCTC






CCGGAATAAC TACACAGAT GAAGATGGT TTTTGATGG






CACGACCAAC ACACCATAA GGAAGACAG GTGCCGGCA






GAGGTGTGGA CAGATACGG GAGAAAAGA TGCTCAAAC






CGAGGTGGAT GACGCCAGA TTTGTTCAG TCATGCGGC






CCTGAAGTCA TCAAAGAAT TGCCGCTGG AAAAGAGGA






GCGGCCTTTG AGTGATGGA GCCCTGGGA CACTGCCAG






GACACATGAC GAGAGGTTT AGGAAGCCA TGACAACCT






CGCTGTGCTC TGCGGGCAG GACTGGAAG AGGCCCTAC






AAAGCCGCGG GGCCCAATT CCGGAGACC TAGAGACCA






TCATGCTTTT GGTTTGCTG GAACAGTCT GCTGGGAAT






CTTCTTTGTC TGATGCGGA CAAGGGCAT GGGAAGATG






GGCTTTGGAA GGTGACCCT GGGGCTAGT CATGGCTTA






TGTGGCTCTC GAAATTGAG CAGCCAGAA TGCATGTGT






CCTCATTGTC TGTTTCTAT GCTGGTGGT CTCATACCT






GAGCCAGAAA GCAGAGATC CCCCAGGAC ACCAAATGG






CAATTATCAT ATGGTAGCA TGGGTCTTC GGGCTTGAT






AACCGCCAAT AACTCGGAT GTTGGAGAG ACAAAAAGT






GACCTAGGCC TCTAATGGG AGGAGAGAG AGGGGGCAA






CCATGGGATT TCAATGGAC TTGACTTGC GCCAGCCTC






AGCTTGGGCT TCTATGCCG TCTGACAAC CTCATCACC






CCAGCCGTCC ACATGCGGT ACCACTTCA ACAACAACT






ACTCCTTAAT GCGATGGCC CGCAAGCCG AGTGTTGTT






TGGCATGGGC AAGGGATGC ATTCTATGC TGGGACTTC






GGAGTCCCGC GCTAATGAT GGTTGCTAC CACAATTAA






CACCCTTGAC TTAATAGTG CCATCATTC GCTCGTGGC






GCACTACATG ACTTGATCC AGGTCTACA GCAGCAGCG






GCGCGCGCTG CCAGAAGAG ACGGCAGCT GCATCATGA






AGAACCCTGT GTGGATGGA TAGTGGTGA TGACATTGA






CACAATGACA TTGACCCCC AGTGGAGAA AAGATGGGA






CAAGTGCTAC CATAGCAGT GCCATCTCC GTGCCGTTC






TGCTGCGCAC GCCTGGGGG GGGGGGAGG TGGGGCCCT






GATCACAGCC CAACTTCCA TTTGTGGGA GGCTCTCCG






AATAAATACT GAACTCCTC ACAGCCACT CACTGTGTA






ACATTTTTAG GGAAGTTAC TGGCTGGAG TTCTCTTAT






TTACACAGTA CAAGAAACG TGGCCTGGT AAGAGACGT






GGAGGTGGAA GGGAGAGAC CTGGGGGAG AATGGAAGG






CCCGCCTGAA CAGATGTCG CCCTGGAGT TTACTCCTA






CAAAAAGTCA GCATCACCG AGTGTGCAG GAAGAAGCC






CGCCGCGCCC CAAGGACGG GTGGCAACA GAGGCCATG






CTGTGTCCCG GGAAGCGCA AGCTTAGAT GTTGGTGGA






GAGAGGATAC TGCAGCCCT TGGAAAGGT ATTGATCTT






GGATGTGGCA AGGGGGCTG AGTTACTAC CCGCCACCA






TCCGCAAAGT CAAGAGGTG AAGGATACA AAAGGGAGG






CCCTGGTCAT AAGAACCCA GTTGGTGCA AGCTATGGA






TGGAACATAG CCGTCTTAA AGTGGGGTG ACGTCTTTC






ACATGGCGGC GAGTCGTGT ACACTTTGC GTGTGACAT






AGGTGAGTCA CATCTAGTC TGAAGTGGA GAAGCACGG






ACGCTCAGAG ACTCTCCAT GTGGGGGAT GGCTTGAAA






AAAGACCAGG GCCTTTTGT TAAAGGTGT GTGCCCATA






CACCAGCACC TGATGGAAA CCTAGAGCG CTGCAGCGT






AGGTATGGGG AGGACTGGT AGAGTGCCA TCTCCCGCA






ACTCTACACA GAGATGTAC GGGTCTCTG AGCGAAAAG






CAACATCATA AAAGTGTGT CACCACGAG CAGCTCCTC






TTGGGACGCA GGACGGGCC AGGAGGCCA TGAAATATG






AGGAGGATGT AATCTCGGC CCGGCACGC AGCTGTGGC






AAGCTGCGCC AAGCTCCCA CCTGAAGAT ATTGGTAAC






CGCGTTGAGA GATCCGCAG GAGCATGCG AAACGTGGT






TCTTTGATGA AACCACCCA ACAGGACAT GGCTTACCA






TGGGAGCTAC AGGCCCCTA ACAAGGGTC GCGTCTTCT






CTCATAAACG GGTTGTCAG CTCCTGTCA AGCCCTGGG






ATGTGGTGAC GGAGTCACA GAATAGCCA GACCGACAC






CACACCGTAT GCCAGCAAA AGTTTTCAA GAAAAAGTG






GACACTAGGG GCCAGACCC CAGGAAGGC CTCGTCAGG






TGATGAACAT GTCTCTTCC GGCTATGGA GGAGCTAGG






TAAACACAAA GGCCACGAG TTGCACCAA GAAGAGTTC






ATCAATAAGG TCGCAGCAA GCAGCACTG GGGCAATAT






TTGAAGAGGA AAAGAATGG AGACTGCAG GGAAGCTGT






GAACGATCCA GGTTCTGGG CCTAGTGGA AAGGAAAGA






GAGCACCACT GAGAGGAGA TGTCAGAGC GTGTGTACA






ACATGATGGG AAAAGAGAA AGAAGCAAG GGAATTTGG






AAAGGCCAAG GCAGCCGCG CATTTGGTA ATGTGGCTA






GGGGCTAGAT TCTAGAGTT GAAGCCCTT GATTCTTGA






ACGAGGATCA TGGATGGGG GAGAGAATT AGGAGGTGG






TGTTGAAGGG TGGGATTAC AAGACTTGG TATGTTCTA






GAAGAAATGA CCGCACACC GGAGGAAAG TGTATGCAG






ATGATACCGC GGCTGGGAC CCCGCATCA TAGGTTTGA






TCTGGAGAAT AAGCTCTGA CACCAACCA ATGGAGAAA






GGGCACAGGG CTTGGCGTT GCCATAATC AGTACACAT






ACCAAAACAA GTGGTAAAG TCCTTAGAC AGCTGAAAG






AGGGAAGACA TTATGGACA CATCTCAAG CAAGACCAA






AGAGGGAGCG ACAAGTTGT ACTTACGCT TTAATACAT






TCACCAACCT GTGGTGCAG TCATTCGGA CATGGAGGC






TGAGGAAGTT TAGAGATGG AGACTTGTG CTGTTGAGG






AGGCCAGAGA GGTGACCAG TGGTTGCAG GCAACGGAT






GGGATAGGCT AAACGAATG CAGTCAGTG AGATGATTG






TGTTGTGAAA CAATTGATG TAGGTTTGC CATGCCCTC






AGGTTTTTGA TGACATGGG AAAGTTAGG AGGACACAC






AGGAGTGGAA CCCTCAACT GATGGAGCA CTGGGAAGA






AGTTCCGTTT GCTCCCATC CTTCAACAA CTTTACCTC






AAGGACGGGA GTCCATTGT GTCCCCTGT GCCACCAAG






ATGAACTGAT GGCCGAGCC GCGTCTCAC AGGGGCGGG






ATGGAGCATC GGGAGACTG TTGCCTAGC AAATCATAT






GCACAAATGT GCAGCTTCT TATTTCCAC GAAGGGACC






TCCGACTGAT GCCAACGCC TTTGTTCAT TGTGCCAGT






TGACTGGGTT CAACTGGGA AACCACCTG TCAATCCAT






GGAAAGGGAG ATGGATGAC ACTGAGGAC TGCTTGTGG






TGTGGAACAG GTGTGGATT AGGAGAACG CCACATGGA






GGACAAGACC CAGTCACGA ATGGACAGA ATTCCCTAT






TTGGGAAAAA GGAAGACTT TGGTGTGGA CTCTTATAG






GGCACAGACC CGCACTACT GGGCTGAGA CATTAAAGA






CACAGTCAAC TGGTGCGCA GATCATAGG GATGAAGAA






AAGTACATGG CTACCTATC ACTCAAGTT GCTACTTGG






GTGAAGAAGG TCCACACCT GAGTGTTA






An exemplary Spodweni virus lineage has the following nucleotide sequence (SEQ ID NO:13 which encodes SEQ ID NO:16; see Accession No. DQ859064, which is incorporated by reference herein:











atgaaaaacc caaaaagagc cggtagcagc cggcttgtca






atatgctaag acgcggtgca gcccgtgtca tccctccagg






aggagggctc aagaggctgc ctgtaggatt gctgttgggt






cggggtccga tcaaaatgat cctggccata ctggcattcc






tacgatttac agcaataaaa ccgtccactg gcctcatcaa






cagatgggga aaagtgggca aaaaagaggc catcaaaatc






ctcacaaaat tcaaggctga cgtgggcacc atgctgcgta






ccatcaacaa tcggaagaca aaaaagagag gagtcgaaac






tggaattgtg ttcctggcat tgctggtgtc tattgttgct






gtggaagtca caaaaaaggg ggacacctat tacatgtttg






cggacaagaa ggacgccgga aaggtggtga cctttgagac






tgaatctgga cccaaccgtt gctccatcca agcaatggac






attggacata tgtgtccagc tacaatgagc tatgaatgtc






ccgtgctgga accacagtat gagccagagg atgtcgactg






ttggtgcaac tcgacagcag catggattgt gtatggcaca






tgcacccaca agacaacggg agagacaaga cgttccagac






gttcaatcac cctgccatct catgcctcac aaaagttgga






gaccagatca tcgacgtggc ttgaatcccg cgaatactcc






aaatatctaa taaaggtgga aaactggatc ctccgcaatc






caggatatgc gttggtggct gcagtgattg gatggactct






gggcagcagt cgcagccaga agatcatctt tgtcactctg






ctcatgttgg tagcccccgc atacagcatc agatgcattg






gaattggaaa cagagacttc attgagggaa tgtccggtgg






cacctgggtg gacattgtcc tggaacatgg tggttgtgtg






acagtaatgt caaacgacaa acccacattg gactttgaac






tggtgacaac gaccgcaagt aacatggctg aggtcaggtc






ctactgctat gaagctaaca tatccgagat ggcatcggac






agcaggtgcc ccacacaggg ggaagcttat cttgacaaaa






tggccgactc ccagtttgtg tgcaagcgtg ggtacgttga






caggggctgg ggaaacggat gtggactctt tggaaaagga






agcattgtca cttgcgctaa gttcacgtgt gtgaaaaagc






tcacagggaa aagcattcaa ccggagaatc tcgagtaccg






ggtccttgtt tcggtgcacg cttcccaaca tggaggaatg






attaacaatg acaccaatca ccaacacgac aaggagaaca






gagcgcgcat tgatatcaca gctagcgctc cccgtgttga






ggtggaactt ggctcctttg gatccttctc gatggagtgt






gaaccccggt caggattgaa ctttggtgac ctgtattacc






tcaccatgaa caacaagcat tggctggtta atagagattg






gtttcacgat ctttccttgc catggcatac aggagccaca






tcaaacaatc atcactggaa caacaaggag gcgctggtag






aattcagaga agcccacgca aagaagcaga cggctgtggt






cctgggaagt caggaaggag ctgttcacgc agcactggcc






ggcgcactgg aggctgagtc tgatggacac aaagcgacta






tctactctgg acacttgaag cgtcgcttga agctagacaa






actgcgcctg aagggaatgt catatgcact ctgcacagga






gcattcacct tcgctcgcac cccctctgaa acaattcacg






gcaccgccac agtggagctg caatatgcag gtgaagatgg






gccgtgcaaa gttcccatag taattaccag tgacaccaat






agcatggcct cgacaggcag gctgatcaca gcgaatccgg






tggtcacgga aagtggagca aactcaaaga tgatggtcga






gattgaccct ccgtttggtg attcttacat tattgtgggc






actggcacaa caaaaattac ccaccattgg cacagagccg






gtagttcaat tggacgtgca tttgaggcta ccatgagagg






agcaaaacgg atggcggtcc tcggcgacac cgcttgggac






tttggctctg ttgggggcat gttcaactcc gttggaaagt






ttgtccacca ggtgtttgga tcagcattta aggcattgtt






tggaggcatg tcctggttca cacagctcct gataggattt






ctgctcatat ggatgggttt gaacgcacgc ggtggaaccg






tggccatgag cttcatgggc attggggcta tgctgatttt






cccagccacc tcggtgtcag gagacacagg atgctcggtt






gacatatcca gaagggaaat gcggtgcggg agcggcatat






tcgtgtacaa tgacgttgac gcatggcgaa gccgctacaa






ataccatcct gaaaccccca gagctttggc cgctgccgtg






aaaacggctt gggaagaagg gacctgtggc attacctcag






tgagcagaat ggaaaacctg atgtggagct ctgtggctgg






agagttgaat gcaatccttg aggacaattc agtgccattg






acagtcgtcg ttggcgagcc aaaatatcca ctgtacaatg






ctccaaagag gctgaaacca ccagcatcag agttaccgca






ggggtggaag tcctggggaa agtcatactt tgtctcagcc






gcaaaaaaca acaactcctt tgtggtagat ggtgacacca






tgaaggaatg cccaagacag aagcgagcat ggaacagctt






gagaatagag gatcatgggt tcggagtctt ccacactagc






atctggctga aattccatga ggacaactcc accgaatgtg






acacagctat cataggaacg gcggttcgcg ggaaggaagc






cgttcatagt gacttgggct actggataga gagtgagcgc






aatgacacat ggaggctctc tcgagcgcac ctgatcgaag






caaagacatg tgaatggcca cggtcgcaca cactgtggac






ggacggagtg gaagagagcg agctgatcat tccacgtggc






ttagccggtc ctttcagcca tcataacacg cgtgctggct






acaagactca gaataaaggt ccctggcatt taggtgatgt






tgaaattcag ttcgccacgt gccccggaac aaccgtggtc






caggaccaag agtgcaggga caggggcgct tctctacgca






cgaccacagc tagtggaagg gtaatcaatg aatggtgctg






caggtcgtgc accatgcctc cactcagttt caagacaaaa






gatggatgtt ggtatgcaat ggagatacgt cctgtgaaag






aacaagagtc aaacctcgtg cgatcgcacg tcactgccgg






aagcacagac cacatggacc atttctctct cggattagta






gtggtcatgt tgatggtgca agaaggtatg aagaagagaa






tgacatcaaa agcaataatc acctcagcgg cctttctcct






ggcggttatg atagtgggag gtttcacgta ccaggatttt






gggaggctgg tggtattggt gggtgctgca tttgctgaga






tgaacactgg aggtgacgtt gcgcacctgg cgctggtggc






agcgtttaaa gtgaggccag cgatgctggt ctcattcatg






ttcagagcct tgtggacccc cagggagtca ctgcttttag






ctctggctgc ctgcctcctg caggtgtcag tgacaccact






ggatcattcc atcatgatcg tggttgatgg gattgcgctg






tcctggttgt gtctgaaagc catcttggtg ccgcgtaccc






caaacatagc ccttcctctt ctcgctatgc tgtcacccat






gctccaaggt accaccattg tggcatggcg agctatgatg






gcggccctgg ctgtcataac cttggcttcc atgaagcatg






gaaggggtgt aaaaaagacg tttccctaca ccatcggatg






catccttggc agcatgggct tagttgaaaa cttggggttg






gttggcctcc tcttgttgac agcctcaaaa aagaggagtt






ggcctccgag tgaggtgatg acggctgtcg gactgatctg






tgcaattgtg ggcggactaa ccaagaccga cattgacatg






gcgggaccca tggcagccat aggactgctg gtggtgagct






atgtggtttc tggcaagagt gtggacatgt acattgaaaa






ggtgtgtgac atatcatggg acaaggacgc tgaaataaca






ggcacaagtc cgcggctgga tgtggctctc gacgacagtg






gagatttctc acttatccag gatgacgggc cccccactcg






agagattgtg ttgaaggtgt ttctgatgtg tgtttgcggt






gtcagcccca tagccatccc ctttgcagcc gctgcttggt






tcgtgtacat taaatcaggg aaaagaagcg gcgccatgtg






ggacattcca tccccaagag aagtgaaaaa aggggaaaca






acggctggag tgtacagaat catgacgcgt aaattgctgg






gcagcacaca ggtgggagcc ggagtaatgc atgaaggtgt






ttttcacaca atgtggcacg tcacaaaagg ttcggccctt






cggagtggtg agggacgcct agatccatac tggggaaacg






tgaagcagga tttgatctct tactgcggac catggaaacc






ggatgggaaa tgggacggcg tgtcggaagt ccaactgata






gcggtcgccc caggtgagcg cgccagaaat gtgcagacaa






aaccaggagt gttcaagacc actgatgggg aaatcggggc






cttggccctt gacttcccag gcggaagttc aggctccccg






ataattgaca aaaatggaca tgtaattggc ctgtatggaa






atggtgtcgt ggtcaggagt ggaagctacg tgagtgccat






catgcagaca gagaagatgg aggaacccgc agttgactgc






tttgaggagg acatgctgag aaaaaagaag ctgacggtgc






tcgacctcca tccaggagct ggaaaaactc gaagagtgct






ccctcagatc gtcaaggctg caattaagaa acgcctacgc






acggtaatcc tggcacccac ccgagtggtg gcagctgaga






tggctgaggc actaaaagac cttccaataa ggtacatgac






tccggcagtt tcagccaccc atgatggcaa tgagattgtt






gaccttatgt gccacgccac ttttacatca aggctaatgc






aaccaattag ggtgcctaat tacaatctat atataatgga






tgaggcccac ttcacagatc ctgcaagcat cgctgcaaga






gggtacatag caacaagagt ggacatggga gacgccgcgg






ccatcttcat gacggccacc cctcctggca gcactgaagc






tttcccggat tcaaacgccc ccatcacaga tgttgaaaca






gaggttcctg acaaggcgtg gaattctgga tttgaatgga






tcactgatta cccagggaaa accgtttggt ttgtccctag






tgtcagaatg ggcaatgaga tctcggcctg cctcacaaaa






gccggcaaat cggttatcca actcagccgg aaaacctttg






aaacagagta ccagaagaca aagaatggtg agtgggactt






tgtcgtgacc actgacatct cagaaatggg agccaacttc






aaggccgaca gagtcataga ctcacggaaa tgcttgaagc






cagtgattct ggatgacatg gaagagagag ttgttcttgc






cgggccgatg gcagtaacac catccagcgc agctcaacgc






agaggaagaa ttggaagaaa ccccaacaaa actggagatg






agttctatta cggggggggc tgtgccgcaa cggatgatga






ccatgctcat tgggtagagg ctagcatgct gcttgacaac






atctacctcc aggacaacct cgttgcatct ctgtacaagc






cagaacaagg aaaggtctcg gcaatagaag gggagttcaa






actgagagga gaacagagga aaaccttcgt ggagctgatg






aagagagggg acttgccagt gtggttgtca tatcaagtgg






cggcctccgg actcagctat actgaccggc gctggtgctt






tgatggaaaa aacaacaaca ccatcctgga ggactgcgtc






cccgtcgagg tgtggacaaa atttggagag aaaaagattc






tgaagcccag atggatggac gctcggatct gctctgatca






tgcctctttg aagtctttca aggagtttgc tgcaggaaag






agaacaatag ccactggctt aattgaggct tttgggatgc






ttcccgggca catgactgag agattccagg aggccgtcga






caatttggcc gtgttgatga gggccgaggc aggctctagg






gcacacagaa tggctgcagc acagctccct gagacaatgg






aaaccatcct gctcctcagc ctgctggcat tcgtgtcact






tggtgtattt tttgtactga tgagggcaaa agggttagga






aaaatggggt ccggcatgat cgtgctggca ggaagtggct






ggctcatgtg gatgtctgag gtggaaccag cccgcatagc






ttgtgtggtg atcatagtgt ttctgctaat ggtcgttctg






attccggaac cggagaagca gcgctctccc caggacaatc






agctggctct aattatcttg atcgcgacgg gcctcatcac






gctcatcgcg gccaatgagc tgggttggtt agaaagaaca






aagagtgacc tcaccaggcc gttttggaga gaacacgctg






agccaacagg agggagaggg ttttccttct cgctggacat






tgacctgcgg ccggcatcgg cctgggcaat atatgccgct






atgacaaccc tgatcacacc gacagtccaa cacgctgtga






ccacatcgta caacaactac tctctcatgg ctatggccac






tcaggccgga gttctttttg gcatgggacg gggggtgcct






ttttacaaat gggactttgg cgtgccactc ettatgetgg






gctgctactc acaacttacc ccactcaccc tgatcgtggc






tctcgtgatg ctagccgctc actatctcta tctcatcccc






gggctccagg caacggccgc cagggccgcc caacgaagga






cggctgctgg aataatgaaa aacccagcgg tggatggaat






tgtggtaact gacatagacc caatccaaat cgatccaaat






gtcgaaaaga agatgggcca ggtcatgctc atctttgtgg






etttggegag cgcggttctc atgagaacgg catggggttg






gggagaggct ggtgcccttg catcggcagc agctgccacc






ctatgggaag gggctcccaa caagtactgg aattcatcaa






cggctacatc cttgtgcaac atatttcggg gaagttatct






ggcaggtccc tccctcatct acaccgtcac acgcaatgca






ggtatcatga agaaaagggg cggtggaaat ggagaaaegg






tgggcgagaa atggaaggag cgcttgaatc ggatgaccgc






gcttgaattc tacgcctaca agcggtcagg aataactgaa






gtgtgcagag aacccgccag aagagccttg aaggatggag






tcgtcacagg aggacacgct gtctcccgcg gaagcgcaaa






gctgcgatgg atggtggaac gtggccacgt caatctagtg






ggacgcgttg tcgacctcgg atgtggaagg ggtggctgga






gttactacgc cgcatctcaa aagcaagtcc tcgaggtgag






aggctacaca aaagggggag cgggccacga ggagcccatg






aatgtccaaa gttatggttg gaacatagtg cgactcaaga






gtggagtgga cgttttttat ctaccatcag aaccatgtga






cacgctgctc tgtgacattg gagagtcatc ctcgagccca






gcagtggaag aagcccggac tctgagagtg ctcgggatgg






ttgaaacctg getggaaegg ggcgtaaaga acttctgcat






caaagtgctc tgcccgtaca ccagtgccat gattgagcgg






ctggaagccc tccagcgteg ctacggagga ggcctggtga






gggttccact ctccagaaat tccacccacg aaatgtactg






ggtctctgga gcaaaatcaa acatcatcag gagtgtgaat






gccaccagcc agctgctcat gcacagaatg gacatcccca






cgcggaaaac aaagtttgaa gaagacgtca atctggggac






cggaaccagg gcagttgaaa gcagagctga ccctcccgac






atgaaaaaac taggcagccg gattgagcgg ttgagaaagg






aatatggatc cacttggcac cacgatgaaa accaccccta






caggacatgg cattaccacg gcagttatga ggctgacacg






caaggctccg cctcctcaat ggtcaacggc gtggtgcgtc






tcctctcaaa accatgggat gcattgagct cggtcaccaa






cattgctatg acggacacaa ctccgtttgg acagcagcgg






gtgttcaagg agaaagtgga cacccggact ccagacccca






agcagggcac gcaaagagtc atggccataa catcacaatg






gctgtgggac cgcctagcaa gaaacaagac ccctcggatg






tgcacgcgac aggaattcat aaacaaggtc aacagtcacg






cggcgttggg acccgttttt agagaacagc agggatgggg






ttcagcggcc gaagcggtgg tagatcctag gttttgggag






ctcgttgaca atgaaagaga agcccatttg agaggggagt






gcttgacctg tgtctacaac atgatgggga aaagagaaaa






gaagctcggt gaattcggga aggcaaaagg cagcagagcc






atttggtaca tgtggctggg agcccgcttc ctcgagttcg






aggccctggg cttcctcaat gaagaccact ggttaagcag






agagaactct ggagggggag ttgagggctt gggcctccaa






aaacttggat acatccttga agagatcagc aggaggccag






gaggcaaaat gtatgccgat gacacggctg gctgggacac






ccgcatcacg aaatgcgacc tagaaaatga ggcgcgcatt






ttggaaaaaa tggacgggat ccacaaaaaa ctcgcacggg






ccgtcatcga gttgacatac aagcataagg ttgtgagagt






cttgagacca gcaccacaag ggaaggtcgt tatggacatc






atctccaggc cagaccaaag ggggagtggg caggtggtta






cttatgccct caacacctat acaaacttgg tggtgcagct






gatccgtaac atggaagcag aggctgtcat caatgaaaga






gacatggagg agctccaaaa cccatggaaa gtcatcaatt






ggctagaagg aaatggatgg gacagactcc gctcgatggc






agtgagtgga gatgactgtg tcgtgaaacc aatggatgat






aggttcgcct atgcactgaa tttcctcaat gacatgggca






aggtcagaaa agatgtccag gaatggaagc cctcgccggg






gtggacaaac tgggaagaag tgcccttttg ctcccaccac






ttcaacaagc tcccgatgaa ggatggaaga acaataatag






ttccctgccg gcaccaagat gagttgatag gcagggctag






agtttctcca ggaaaaggct ggtcactcag tgaaacagca






tgcttgggca agtcttatgc ccagatgtgg ctactgttgt






actttcacag gagagatctc cgactcatgg caaacgcaat






ctgctctgct gtaccggtga gttgggtgcc cacggggaga






acaacctggt ccatccatgg gcgtggagag tggatgacaa






cagaggacat gctagaggta tggaacagag tgtggatcat






agagaatgag tacatggagg acaagacccc tgtcacagag






tggaccgatg ttccacactt gggaaagaga gaagacttgt






ggtgcggctc ccttattgga cacaggccaa gaagcacatg






ggcagagaac atctgggctg ccatttatca agtgcgccga






gcaatcggcg aaactgaaga atatagagac tacatgagca






cacaggtccg ctatggctcg gaggaagggc caagcgctgg






tgtgttgtaa






EXAMPLE 3

Exemplary vectors expressing CFP were transfected into HEK293 cells and expression was assessed (FIGS. 7-8). prM/E sequences were also expressed from the two vectors in HEK cells and supernatants and cells analyzed 48 hours later (FIG. 9). Supernatants were concentrated by centrifugation at 100,000 g for 60 minutes. Western blots were analyzed using University of Texas Medical Branch (UTMB) mouse ascites. More VLPs were secreted from pCMV-FP transfected cells (lane 11 in FIG. 9) than pTriex transfected cells (lane 13). Sucrose purified fractions were subjected to Western blot (FIGS. 10-11). pCMV-prM/E SC purified pellet (pt) appeared to contain high levels of E protein while pCMV-GFP pt did not, indicating that staining was specific to expression of prM and E genes. In summary, a pCMVvector expressed more protein than a pTriex vector. VLPs collected at days 3-10 provided for about 60 μg total protein from about 100 mL. On day 3 the productivity of the cells was about 50 μg per 15 mL (3.3 μg per mL, or 3.3 mg/L). For stably transfected cells, a marker, e.g., a Zeocin resistance gene, may be introduced into the vector that expresses prM/E.


ZIKV VLPS (ZIKVLPs) formulated with alum were injected into 6-8-week-old interferon deficient A129 and AG129 mice. Control mice received PBS/alum. Animals were challenged with 200 PFU (>400 LD50s) of ZIKV strain H/PF/2013. All vaccinated mice survived with no morbidity or weight loss while control animals either died at 9 days post challenge (AG129) or had increased viremia (A129). Neutralizing antibodies were observed in all ZIKVLP vaccinated mice.


EXAMPLE 4
Materials and Methods
Cells and Viruses

African Green Monkey kidney cells (Vero) and Human embryonic kidney 293 (HEK293) were obtained from ATCC (ATCC; Manassas, Va. USA) and grown in Dulbecco's modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS; Hyclone, Logan, Utah), 2 mM L-glutamine, 1.5 g/l sodium bicarbonate, 100 U/ml of penicillin, 100 μg/ml of streptomycin, and incubated at 37° C. in 5% CO2. ZIKV strain H/PF/2013 (GenBank:KJ776791), was obtained from Xavier de Lamballerie (European Virus Archive, Marseille France). Virus stocks were prepared by inoculation onto a confluent monolayer of Vero cells.


Animals

Mice of the 129/Sv background deficient in alphalbeta interferon alpha/beta/gamma (IFN-α/β/IFN-γ) receptors (AG129 mice) were obtained from B&K Universal Limited (Hull, England) and were bred in the pathogen-free animal facilities of the University of Wisconsin-Madison School of Veterinary Medicine. 5-week-old BALB/c mice (Tire Jackson Laboratory, Maine, USA) were used for wild-type vaccination studies. Groups of mixed sex mice were used for all experiments.


Production and Purification of ZIKV VLPs

The prM and E genes of ZIKV strain H/PF/2013 with nascent signal sequence were cloned into a pCMV expression vector under the control of a cytomegalovirus (CMV) promoter and CMV polyadenylation signal (pCMV-prM/E, FIG. 1), Endotoxin free, transfection grade DNA was prepared using Maxiprep kit (Zymo Research, Irvine, Calif.). VLPs were expressed by transfecting 90% confluent monolayers of HEK293 cells in a T-75 flasks with 15 μg of pCMV-prM/E using Eugene HD (Promega, Madison, Wis.) transfection reagent according to manufacturer protocol. The 10 ml supernatant was harvested 72. hr after transfection, and clarified by centrifugation at 15,000 RCF for 30 min at 4° C. Clarified supernatants were layered onto a 20% sucrose cushion and ultra-centrifuged in a SW-28 rotor at 112,000 RCF for 3.5 hours at 4° C. Pellet (PT) and supernatant (SUP.) fractions at each step were saved for analysis by SDS-PAGE and Western blot, Post sucrose cushion PT were resuspended in Phosphate Buffered Saline (PBS) pH 7.2. Total protein in VLP preparations was quantified by Bradford assay. VLP specific protein was determined by comparing Zika specific bands on SDS-PAGE gels to known concentrations of BSA using IntageJ software.


Western Blot

VLP fractions were boiled in Laemmli sample buffer (BioRad, Hercules, Calif., USA) and resolved. on a 4-20% SDS-PAGE gel (Biorad) by electrophoresis using a Mini-PROTEAN 3 system (BIO-RAD, Calif.). Gels were electroblotted onto nitrocellulose membranes using a Turboblot® system. Membranes were blocked in 5% (W/V) skim milk and probed with mouse hyper immune ascites fluid primary antibody (1:5000) and goat anti-mouse HRP conjugated secondary antibody (1:5000). Membranes were developed using a solid phase 3,3′,5,5′-tetramethylbenzidine (TMB) substrate system.


Transmission Electron Microscopy

Samples were negatively stained for electron microscopy using the drop method. A drop of sample was placed on a Pioloform™ (Ted Pella, Inc.) carbon-coated 300 Mesh Cu grid, allowed to adsorb for 30 seconds, and the excess removed with filter paper. Next, a drop of methylamine tungstate or uranyl acetate (Nano-W, Nanoprobes Inc.) was placed on the still wet grid, and the excess removed. The negatively stained sample was allowed to dry, and was documented in a Philips CM120 (Eindhoven, The Netherlands) transmission electron microscope at 80 kV. Images were obtained using a SIS MegaView Ill digital camera (Soft Imaging Systems, Lakewood. Colo.).


Vaccination and Viral Challenge

Each of the following animal studies was performed as one biological replicate. For VLP formulations, the indicated dose of sucrose cushion purified 2.5 VLPs was mixed with 0.2% Inject Alum (Thermo Scientific) according to manufacturer's protocol. Groups of AG129 mice were injected intramuscularly (IM) with VLPs mixed with alum (n=5) or PBS mixed with alum (n=6) at 6 weeks of age, and again at 8 weeks of age. Sub-mandibular blood draws were performed pre boost and pre challenge to collect serum for analysis by neutralization assays and for passive transfer studies. AG129 mice were challenged with 200 PFU of ZIKV strain H/PF/2013 in 25 volumes by intradermal (ID) injection into the right hind footpad at 11 weeks of age. Barbie mice were vaccinated once at 5 weeks of age as above, and challenged at 13 weeks of age with 200 PFU of H/PF/2013 in 50 μL by retro orbital injection (IV route).


Following infection, mice were monitored daily for the duration of the study. Mice that were moribund or that lost greater than 20% of starting weight were humanely euthanized. Sub-mandibular blood draws were performed on day two post challenge (PC) and serum collected to measure viremia.


Eight week old AG129 mice were used for passive transfer studies Five naive mice were injected intraperitoneally (IP) with 500 μL of pooled serum from VLP vaccinated, diluted serum (1:5 n=4, 1:10, n=4), or serum from PBS/alum (n=5) treated mice. At 12 h post transfer, mice were challenged with 20 PFU in 25 μl as above.


Viremia Assays

Viremia was determined by TCID50 assay. Briefly, serum was serially diluted ten-fold in microtiter plates and added to duplicate wells of Vero cells in 96-well plates, incubated at 37° C. for 5 days, then fixed and stained with 10% (W/V) crystal violet in 10% (V/V) formalin. Plates were observed under a light microscope to determine the 50% tissue culture infective doses (TCID50s). Serum samples were also tested for viral RNA copies by qRT-PCR. RNA was extracted from 0.02 ml of serum using the ZR Viral RNA Kit (Zymo Research, Irvine, Calif.). Viral RNA was quantified by qRT-PCR using the primers and probe designed by Lanciotti et. al (Lanciotti et al., 2008). The qRT-PCR was performed using the iTaq Universal Probes One-Step Kit (BioRad, Hercules, Calif.) on an iCycler instrument (BioRad, Hercules, Calif.). Primers and probe were used at final concentrations of 500 nM and 250 nM respectively. Cycling conditions were as follows: 50° C. for 10 min and 95° C. for 2 min, followed by 40 cycles of 95° C. for 15 sec and 60° C. for 30 sec. Virus concentration was determined by interpolation onto an internal standard curve made up of a 5-point dilution series of in vitro transcribed RNA, with the lowest copies per reaction being 100.


Neutralization Assay

Serum antibody titers were determined by microneutralization assay. Briefly, serum was incubated at 56° C. for 30 min to inactivate complement and then serially diluted two-fold in microtiter plates. 200 PFUs of virus were added to each well and incubated at 37° C. for 1 h. The virus-serum mixture was added to duplicate wells of Vero cells in 96-well plates, incubated at 37° C. for 5 days, then fixed and stained with 10% (W/V) crystal violet in 10% (V/V) formalin, then observed under a light microscope. The titer was determined as the serum dilution resulting in the complete neutralization of the virus.


Plaque Reduction Neutralization Test

Serum samples were serially diluted, mixed with 200 PFU of the ZIKV H/PF/2013 strain and incubated for 1 hr at 37° C. This serum/virus mixture was added to confluent layers of Vero cells in 96 well plates and incubated for 1 hr at 37° C., after which the serum/virus mixture was removed and overlay solution (3% CMC, 1× DMEM, 2% FBS and 1× Anti/Anti) was added. After 48 hrs of infection, the monolayers were fixed with 4% PFA, washed twice with PBS, and then incubated with ZIKV hyperimmune mouse ascitic fluid (1:2000, UTMB) diluted in blocking solution (1× PBS, 0.01% Tween-20 and 5% Milk) and incubated overnight at 4° C. Plates were washed three times with PBS-T and then peroxidase-labeled goat anti-mouse secondary antibody (1:2000) was incubated on monolayers for 2 hours at 37° C. Following incubation, cells were washed a final three times with PBS-T and developed using 3-amino-9-ethylcarbazole (AEC)-peroxidase substrate. The amount of formed foci were counted using an ELISPOT plate reader (ImmunoSPOT-Cellular Technology); quality control was performed to each scanned well to ensure accurate counting. Neutralization percentages (Nx) were calculated per sample/replicate/dilution as follows:






Nx


{

100
-

[

100


(

A
Control

)









Where A corresponds to the amount of foci counted in the sample and Control is the geometric mean of foci counted from wells treated with cells and virus only. Data of corresponding transformed dilutions (Log(1/Dilution)) against neutralization percentages per sample was plotted and fitted to a sigmoidal dose-response curve to interpolate PRNT50 and PRNT90 values (GraphPad Prism software).


Results
Expression and Purification of Soluble, Zika VLPs

To generate Zika VLPs (ZIKVLPs), we cloned the prM/E genes with native signal sequence into a pCMV expression vector (pCMV-prM/E) (FIG. 1A), transfected HEK293 cells and harvested supernatants (supe.) 3 days post transfection. 78 μg total protein was recovered from post sucrose purification of which 21.6 μg was ZIKVLP protein. Western blot analysis of this pCMV-prM/E supe. revealed expression of an about 50 kDa size band (FIG. 1B, lane 2) that corresponded in size to the predicted size of the Zika virus E gene, and additionally matched positive control Zika virus stocks (FIG. 1B, lane 3). To test the hypothesis that expression of Zika prM and E genes spontaneously form extracellular particles, supernatants from pCMV-prM/E and pCMV-GFP (negative control) transfected cells were centrifuged on a sucrose cushion (SC) sufficient for pelleting of flavi virus particles from cell culture proteins (Merino-Ramos et al., 2014). pCMV-prM/E SC purified pellet (pt.) appeared to contain high levels of protein, indicating that staining was specific to expression of prM and E genes. To determine if the immune reactive extracellular particles were virus like in nature, we performed transmission electron microscopy (TEM) on pCMV-prMiE SC pt. material. TEM revealed virus like particles with a size that ranged from 30-60 nm, and a typical size of about 50 nm (FIGS. 1C-E).


Administration of ZIKVLPs is Immunogenic and Protects Highly ZIKV Susceptible α/β/γ Interferon Deficient (AG129) Mice

First, the LD50 of the H/PF/2013 strain in 12 week-old mixed sex AG129 mice was determined. Groups of mice (n=5) were infected with 5-fold serial dilutions from 2 PFU to 0.02PFU of ZIKV and monitored for 4 weeks following the last mortality. All mice infected with 2 or 0.4 PFU died within the first week of challenge (FIG. 4), while lower doses killed only 1 to 2 mice within the first two weeks. Interestingly, 2 mice infected with 0.2 PFU ZIKV became ill and were eutlianized due to weight loss and paralysis 4.5 weeks following challenge. The resultant LD50 value in PFUs was calculated to be 0.19 PFU by the Reed-Muench (REED and MUENCH, 1938) method.


To determine if ZIKVLPs are immunogenic and protective in highly susceptible AG129 mice, groups of mice received a prime and boost of 450 ng ZIKVLPs. AG129 mice that received ZIKVLPs developed low levels (GMT=1:9.2) of neutralizing antibodies (nAbs) at two weeks post administration (FIG. 2A), that increased two weeks after boost (GMT=1:32). Five weeks after primary vaccination, all mice were challenged with 200 PFU (>1000 LD50s) of ZIKV by the ID route. Mice administered. ZIKVLPs maintained weight, while mice that received PBS/alum experienced significant morbidity throughout the challenge period (FIG. 20B). All control mice (survival 0/6) died 9 days after ZIKV challenge and had significantly lower survival (p=0.0016) than mice administered ZIKVLPs (survival 5/5, FIGS. 2B and C). Finally, ZIKVLPs vaccinated mice had significantly lower levels of viremia on day 2 post challenge than control mice detected by qRT-PCR (ZIKVLP=1.3−104 RNA copies, PBS/alum 9.6×107 RNA copies, p=0.0356, FIG. 2D) and TCID50 assay (ZIKVLP=1.3×102 TCID50s, PBS/alum 2.8×105 TCID50s p=0.0493, FIG. 2E).


ZIKVLPs Elicit Plaque Reducing Neutralizing Antibody Titers in Mice that can be Passively Transferred to Naïve Mice.


The plaque reduction neutralization test (PRNT) assay is widely considered to be the “gold standard” for characterizing and quantifying circulating levels of anti-dengue and other flaviviral neutralizing antibodies (nAb) (Thomas et al., 2009). A PRNT assay was developed for rapidly measuring ZIKV specific neutralizing antibodies. Pooled serum samples collected from mice pre-challenge, as well as individual serum samples collected from mice post-challenge were tested by this PRNT assay. Pre challenge, pooled serum from mice administered ZIKVLPs had a calculated 50% plaque reduction (PRNT50) titer of 1:157. The PRNT50 titer increased 2 weeks post challenge (GMT=5122) (FIG. 2F).


To test the role of anti-ZIKV antibodies in protection against challenge, groups of mice received ZIKVLP antiserum (pooled pre challenge serum, titer in FIG. 2F), undiluted (n=5), diluted 1:5 (n=4), or 1:10 (n=4). As a negative control, mice (n=5) were transferred serum from mice previously vaccinated with PBS alum. Negative control mice rapidly lost weight starting after day 7 and all died day 9 post challenge (FIGS. 3A-B). Mice that received undiluted serum maintained weight throughout the 14 day period post challenge, and showed no signs of infection. Mice that received diluted anti-ZIKV antibodies were not protected from challenge, although survival and weight loss were slightly extended relative to negative control mice (FIGS. 3A-B).


A Single Dose of ZIKVLPs can Protect Highly Susceptible AG129 Mice

To determine if a single dose could protect AG129 mice, groups of 6-week old AG129 mice were vaccinated with 3 μg ZIKVLPs adjuvanted with alum. An additional group of mice (n=5) was vaccinated with a prime and boost of 0.45 μg adjuvanted with alum for comparison. Negative control mice (n=5) received a prime and boost of PBS/alum. Vaccinated mice developed neutralizing antibodies measured by PRNT assay prior to challenge (FIG. 17A). Eight weeks following primary vaccination mice were challenged with 200 PFU (>1000 LD50s) of ZIKV by the ID route. All mice administered a prime of 3 μg or a prime and boost of 0.45 μg ZIKVLPs survived throughout the 6 week challenge period (FIG. 17C) and maintained weight throughout the challenge period. Pre challenge neutralizing antibody titers in both single (GMT PRNT50=288, PRNT90=81) and double dose (GMT PRNT50=235, PRNT90=50) groups increased significantly (p<0.005) in all animals measured at 3 weeks post challenge (FIGS. 17A-B).


ZIKVLPS Protect Wildtype BALB/c Mice

To determine if ZIKVLPs can protect wildtype BALB/c mice against non-lethal ZIKV challenge, a group (n=6) was vaccinated with a single dose of 3 μg ZIKVLPS adjuvanted with alum. Negative control mice (n=5) were administered PBS/alum. Eight weeks after vaccination mice were challenged with 200 PFU ZIKV by the IV route. A single dose of ZIKVLPs elicited high titers of neutralizing antibodies (PRNT50=381, PRNT90=75) detected immediately prior to challenge (FIG. 22A). Mice vaccinated with ZIKVLPS were completely protected from viremia on day 2 post challenge (FIG. 18B), and maintained weight throughout the challenge period (FIG. 18C). Negative control animals lost minor amounts of weight beginning at day 2 post challenge, had high levels of viremia and recovered by 2 weeks post challenge. Neutralizing antibodies were undetectable in negative control mice prior to challenge, but increased significantly after challenge (FIG. 18A). Antibody titers in vaccinated mice decreased, but were not significantly different than before ZIKV challenge (FIG. 18A).


Discussion

Most experts and public health workers agree that a Zika vaccine is urgently needed. In February 2016, the World Health Organization declared that the recent clusters of microcephaly and other neurological disorders in Brazil constitute a public health emergency of international concern. Their recommendations included enhanced surveillance and research, as well as aggressive measures to reduce infection with Zika virus, particularly amongst pregnant women and women of childbearing age. ZIKV is now receiving considerable attention due to its rapid spread in the Americas, and its association with microcephaly (Mlakar et al., 2016) and Guillain-Barre syndrome (Pinto Junior et al., 2015). In these studies, a ZIKV-virus-like particle (VLP) vaccine was designed and it was expressed in vitro as shown by western blot and transmission electron microscopy, and its protective efficacy and role of antibodies in protection in the AG129 mouse model tested. An overall yield of 2.2 mg/L was calculated for the VLP tested. Similar expression levels have been reported for other flavivirus VLP expression strategies (Pijiman, 2015). Future work will optimize VLP production and purification parameters, which should significantly increase both yield and purity. Stably transfected HEK cells that continuously express VLPs allow for scalable production to help meet global demand for a ZIKV vaccine, which is estimated to be 100 million doses a year.


ZIKV-VLPs, formulated with alum, induced detectable neutralizing antibodies and protected animals against lethal challenge (>400 LD50s) with no morbidity or mortality. Pre-challenge GMT neutralizing titers were 1:32, and pooled pre-challenge serum PRNT90 and PRNT50 titers were 1:34 and 1:157 respectively. At a relatively low dose of 450 ng, our results indicate that our ZIKVLPs are highly immunogenic. The antibody titers obtained are consistent with those reported for other highly immunogenic flavivirus VLP vaccines (Ohtaki et al., 2010; Pijlman, 2015). Previous work has shown a direct correlation between dose of VLPs and neutralizing antibody titers. For ZIKV, questions remain about the quantitative relationship between dose of VLPs and their effect on neutralizing antibody titers and protection from ZIKV challenge in vivo.


In the above-described studies, mice were vaccinated with ZIKVLPS and challenged with a homologous strain of ZIKV (H/PF/2013), which raises the question of ZIKVLP specific antibody cross reactivity to heterologous viruses currently circulating in the Americas. Although the H/PF/2013 virus was isolated well before the current outbreak from a patient infected in French Polynesia, there is a high degree of amino acid similarity (about 99%) to endemic South American strains of ZIKV (Faria et al., 2016; Zanluca et al., 2015). Some experts agree that the high serological cross-reactivity among ZIKV strains would allow for a monovalent vaccine (Lazear and Diamond, 2016). Nevertheless, care must be taken to empirically determine if antibody responses elicited by ZIKVLPs cross-react and protect against South American strains. Finally, any future ZIKV vaccination programs should incorporate careful surveillance of circulating strains to help suppress immunological escape, and ensure efficacy of vaccines in human populations.


Vaccinated AG129 mice challenged with >1000 LD50s had low levels of viremia (1.3×102 TCID50s, FIG. 2E) detected after challenge. Copies of RNA ZIKV genomes in serum of mice were significantly higher than levels of viremia. However, the disparity between viral genome copies and viremia has been observed for other flaviviruses including dengue (Bae et al, 2003). Since AG129 mice are highly susceptible to viral challenge, it is possible that the challenge dose given for the active vaccination study was artificially high. Methods for challenging mice from infected mosquito bite should be developed to most accurately mimic natural infection. The most important criteria for any ZIKV vaccine is its ability to prevent placental and fetal pathology in ZIKV infected pregnant women. Recently developed IFN deficient pregnant mouse models can provide an opportunity to assess if vaccination of pregnant animals can protect the fetus from ZIKV-induced pathology. (Miner et al., 2016). Although models for ZIKV infection in pregnant non-human primates (NHP) are still being developed, ZIKV vaccines should be tested in NHP translational models which most accurately mimics human immune responses to vaccination.


A VLP vaccine approach against ZIKV has significant advantages over other technologies as it will eliminate concerns of live attenuated vaccines and insufficient inactivation of killed vaccines for pregnant women and other populations at high risk of suffering the devastating effects of ZIKV infections. Production of inactivated vaccines requires high titer growth of infectious virus which may pose a safety concern for workers. Additionally, the production of both attenuated and inactivated ZIKV vaccines is limited to “batch” production, whereas flavirus VILPs can continuously expressed from stable cell lines. In recent years, recombinant virus-like particle (VLP)-based vaccine strategies have been frequently used for vaccine design. VLPs are known to be highly immunogenic and elicit higher titer neutralizing antibody responses than subunit vaccines based on individual proteins (Ariano et al., 2010).


The role of neutralizing antibodies in protecting against ZIKV was demonstrated by antibody passive transfer studies as naive AG129 mice receiving pooled serum from VLP vaccinated animals were fully protected. These results are consistent with previous findings that indicate the important role of antibodies in protecting against many insect-borne flaviviruses, such as Japanese encephalitis, west Nile virus, and tick borne encephalitis (Chiba et al., 1999; Kimura-Kuroda and Yasui, 1988; Tesh et al., 2002), even at low levels of circulating antibodies. In this study, full protection was observed when animals received undiluted serum (PRNT50 1:157), with no weight loss or other clinical signs observed. While these studies highlight the importance of serum antibodies in ZIKV protection, there are still many important questions related to ZIKV immunology. What is the minimum antibody titer needed for protection, do ZIKVLPs elicit CD8+ responses and are these responses involved in protection, and what is the overall role of cellular immunity in protection? It is also important to determine if anti-ZIKV antibodies, particularly those elicited by ZIKVLPs, play any role in dengue protection or disease enhancement.


In this study AG129 IFN receptor-deficient mice were used. This mouse models are commonly used for the evaluation of arboviral vaccines, including dengue, chikungunya and yellow fever virus (Meier et al., 2009; Partidos et al., 2011; Prestwood et al., 2012). We recently documented the suitability of mice deficient in IFN-α/β and -γreceptors as an animal model for ZIKV, as they are highly susceptible to ZIKV infection and disease, developing rapid viremic dissemination in visceral organs and brain and dying 7-8 days post-infection (Aliota et al., 2016), and evaluated doses as low as 1 PFU. In our current studies we observed consistent lethality at doses below 1 PFU, indicating that there are viral subpopulations refractory for the formation of CPE in cell culture, but still capable of establishing a lethal infection in highly susceptible mice. It is of great interest is that at a very low dose (0.2 PFU) two of five mice became ill more than 1 month after infection, as infection with ZIKV typically produces rapid lethality in AG129 mice.


The current studies challenged mice with 200 PFU at 11 weeks of age. All control mice lost 20% weight, were moribund, and succumbed to by challenge by day 9. ZIKV challenge therefore appears to be completely lethal in both juvenile and adult AG129 mice. The AG129 mouse model exhibits an intact adaptive immune system, despite the lack of an IFN response, and it has been used extensively to evaluate vaccines and antivirals for DENV (Brewoo et al., 2012; Fuchs et al., 2014; Johnson and Roehrig, 1999; Sarathy et al., 2015). In our studies WT BALB/c mice did not succumb to infection with ZIKV consistent with previous studies where BALB/c mice were experimentally inoculated with 200 PFU of ZIKV (Larocca et al., 2016). Mice also developed high levels of viremia following IV inoculation. A single dose of VLPs prevented detection of viral RNA copies in serum of vaccinated mice at 2 days post infection—when viremia levels typically peak in the BALB/c model. It is possible that viral replication was completely inhibited, as there was no “boost” response in neutralizing antibodies observed following challenge. Finally, in repeat AG129, and Balb/c mice mouse studies, animals were protected from ZIKV challenge 8 weeks after vaccination. ZIKVLP therefore appear to elicit a potent “memory” response.


In the present study, aluminum hydroxide (commonly known as alum) was used as the adjuvant for ZIKV-VLP preparations. Since its first use in 1932, vaccines containing aluminum-based adjuvants have been successfully administered in humans demonstrating excellent safety. Adjuvant formulations of ZIKV-VLP may facilitate antigen dose sparing, enhanced immunogenicity, and broadened pathogen protection.


In summary, a vaccine against ZIKV is currently unavailable, nor is there any specific prophylactic treatment. A VLP based Zika vaccine that elicits protective antibodies in mice, and is safe, suitable for scalable production, and highly immunogenic, is disclosed herein. Fast-tracking development of this ZIKV vaccine is a public health priority and is crucial for restoring confidence and security to people who wish to have children or reside in, or visit areas in which ZIKV is endemic.


REFERENCES

Akahata et al., Nat. Med., 16:334 (2010).


Aliota et al., PLoS Negl. Trop. Dis., 10:e0004682 (2016).


Ariano et al., CMAJ, 182:357 (2010).


Rae et al., J. Virol. Methods, 110:185 (2003).


Brewoo et al., Vaccine. 30:1513 (2012).


Butler, Nature, 531:153 (2016).


Cao-Lormeau et al., Emerg. Infect. Dis., 20:1085 (2014).


Chiba et al., Vaccine, 17:1532 (1999).


Duffy et al., N. Engl. J. Med., 360:2536 (2009).


Dyer, BMJ, 351:h6983 (2015).


Etna et al., Science. 352:345 (2016).


Faye et al., PLoS Negl. Trop. Dis., 8:e2636 (2014).


Fuchs et al., Vaccine, 32:6537 (2014).


Gaskell et al., Emerg. Infect. Dis., 23:137 (2017).


Guliand, BMJ, 352:i657 (2016).


Hennessey et al. Am. J. Trop. Med. Hyg., 95:212. (2016).


Honibach et at, Bmj. 355:i5923 (2016).


Honein et al., Jama. 317:59 (2017).


Ioos et al., Med. Mal. Infect., 44:302 (2014).


Johnson et al., J. Virol., 73:783 (1999).


Kimura-Kuroda et al., J. Immunol., 141:3606 (1988).


Lanciotti et al., Emerg. Infect. Dis., 14:1232 (2008).


Larocca et al., Nature, ______:______ (2016).


Lazear et at, J. Virol., 90:4864 (2016).


Li et al., Neuron., 92:949 (2016).


Meier et al., PLoS Pathog., 5:e1000614 (2009).


Merino-Ramos et al., PLoS One, 9:e108056 (2014).


Metz et al., Methods Mol. Biol., 1426:297 (2016).


Miner et al., Cell. 165:1081 (2016).


Mlakar et al., N. Engl. J. Med., 374:951 (2016).


Musso, Emerg. Infect. Dis., 21:1887 (2015).


Ohtaki et al., Vaccine, 28:6588 (2010).


Oliveira Melo et al., Ultrasound Obstet. Gynecol., 47:6 (2016).


Partidos et al., Vaccine, 29:3067 (2011).


Pijlman, Biotechnol. J., 10:659 (2015).


Pinto Junior et al., Acta Med. Port., 28:760 (2015).


Prestwood et al., J. Virol., 86:12561 (2012).


Reed et at, Am. J. Epid., 27:493 (1938).


Sarathv et al., J. Gen. Virol., 96:3035 (2015).


Shawan et al., Nat. Sci., ______:37 (2015).


Spohn et al., Virol. J., 7:146 (2010).


Tesh et, al., Emerg. Infect. Dis., 8:1392 (2002).


Thomas et al., Am. J. Trop. Med. Hyg., 81:825 (2009).


Ticconi et al., Pathog, Glob. Health, 110:262 (2016).


Wang et al. Vaccine, 30:2125 (2012).


Wang et al., Biomed. Res. Int., 2013:686549 (2013).


Zanluca et al., Mem. Inst. Oswaldo Cruz, 110:569 (2015).


All publications, patents and patent applications are incorporated herein by reference. While in the foregoing specification, this invention has been described in relation to certain preferred embodiments thereof, and many details have been set forth for purposes of illustration, it will be apparent to those skilled in the art that the invention is susceptible to additional embodiments and that certain of the details herein may be varied considerably without departing from the basic principles of the invention.

Claims
  • 1. A recombinant nucleic acid vector comprising a heterologous promoter operably linked to a nucleotide sequence encoding flavivirus prM/E, which vector lacks nucleic acid sequences encoding one or more of flavivirus NS1, NS2A, NS2B, NS3, NS4A, NS4B or NS5 and optionally lacks nucleic acid sequences encoding functional flavivirus capsid.
  • 2. The recombinant vector of claim 1 wherein the heterologous promoter is a heterologous viral promoter.
  • 3. The recombinant vector of claim 1 which includes a portion of flavivirus capsid sequences.
  • 4. The recombinant vector of claim 1 wherein the capsid sequence includes amino acids 98 to 112 of the capsid protein encoded by SEQ ID NO:1 or a protein having at least 80% amino acid sequence identity thereto.
  • 5. The recombinant vector of claim 1 wherein the flavivirus is a Zika virus.
  • 6. The recombinant vector of claim 1 wherein the prM/E sequences have at least 80% amino acid sequence identity to the prM/E sequences encoded by any one of SEQ ID Nos. 1-3 or 5.
  • 7. The recombinant, vector of claim 1 wherein the prM/E sequences are operably linked to a heterologous secretion signal.
  • 8. The recombinant vector of claim 7 wherein the heterologous secretion signal is a TPA, IL-2, IgG kappa light chain, CD33, or Oikosin secretion signal.
  • 9. A vaccine comprising an effective amount of a flavivirus like particle comprising a lipid bilayer comprising flavivirus prM/E but which particle lacks one or more of flavivirus NS1, NS2A, NS2B, NS3, NS4A, NS4B NS5 and optionally lacks functional flavivirus capsid.
  • 10. The vaccine of claim 9 further comprising one or more adjuvants.
  • 11. The vaccine of claim 10 wherein the adjuvant comprises alum, monophosphoryl lipid A (MPLA), squalene, aluminum hydroxide absorbed TLR4 agonist, dimethyldioctadecylammonium, tripalmitoyl-S-glyceryl cysteine, trehalose dibehenate, saponin, MF59, AS03, virosomes, AS04, CpG, imidazoquinoline, poly I:C, flagellin, or any combination thereof.
  • 12. The vaccine of claim 9 wherein the flavivirus is a Zika virus.
  • 13. The vaccine of claim 9 wherein the prM/E sequences have at least 80% amino acid sequence identity to the prM/E sequences encoded by any one of SEQ II) Nos. 1-3 or 5.
  • 14. A method to prevent, inhibit or treat flavivirus infection in a mammal, comprising: administering to the mammal a composition comprising an effective amount of a flavivirus like particle comprising a lipid bilayer comprising flavivirus prM/E but which particle lacks one or more of flavivirus NS1, NS2A, NS2B, NS3, NS4A, NS4B or NS5 and optionally lacks functional flavivirus capsid, or a composition comprising an effective amount of anti-flavivirus antibodies.
  • 15. The method of claim 14 wherein the malmnal is a female mammal.
  • 16. The method of claim 14 wherein the mammal is a human.
  • 17. The method of claim 14 wherein the flavivirus is a Zika virus.
  • 18. The method of claim 17 wherein the prM/E sequences have at least 80% amino acid sequence identity to the prM/E sequences encoded by any one of SEQ ID Nos. 1-3 or 5.
  • 19. The method of claim 14 wherein the composition comprising the flavivirus like particle is administered intramuscularly, subcutaneously or intranasally.
  • 20. The method of claim 14 wherein the composition inhibits flavivirus infection.
  • 21. (canceled)
  • 22. (canceled)
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 15/629,503, filed Jun. 21, 2017, which claims the benefit of the filing date of U.S. application Ser. No. 62/352,904, filed on Jun. 21, 2016, and U.S. application Ser. No. 62/384,967, filed on Sep. 8, 2016, the disclosure of which are incorporated by reference herein.

Provisional Applications (2)
Number Date Country
62352904 Jun 2016 US
62384967 Sep 2016 US
Continuations (1)
Number Date Country
Parent 15629503 Jun 2017 US
Child 17477077 US