Zinc battery electrolyte additive

Information

  • Patent Grant
  • 11424484
  • Patent Number
    11,424,484
  • Date Filed
    Friday, January 24, 2020
    5 years ago
  • Date Issued
    Tuesday, August 23, 2022
    3 years ago
Abstract
An electrolyte additive is provided. The additive is a quaternary ammonium or phosphonium salt effective to suppress hydrogen evolution and metal dendrite formation during operation of a zinc electrochemical cell such as a zinc-air battery. A zinc battery cell is also provided, which contains an effective amount of the electrolyte additive.
Description
I. BACKGROUND OF THE INVENTION
A. Field of Invention

The invention generally relates to chemical additives for zinc battery electrolytes.


B. Description of the Related Art

Despite their attractive cost and safety, batteries that utilize zinc as their anode material suffer from several problems intrinsic to this metal. Among these are 1) the formation of dendrites during recharging and 2) parasitic side reactions such as the evolution of hydrogen gas from the electrolyte reacting at the zinc surface. These problems have contributed to both limit the penetration of zinc batteries into certain markets and to prevent the emergence of otherwise promising zinc battery chemistries such as Zinc-Air. Dendrite formation reduces battery efficiency and can lead to cell failure. Hydrogen evolution can cause reduced shelf life due to self-discharge as well as mechanical damage due to pressure buildup.


It is known to use additives to suppress dendrite formation and hydrogen evolution; however, few known additives are effective at suppressing dendrite formation and hydrogen evolution. Moreover, known additives exhibit certain negative properties such as loss of cell efficiency. Some embodiments of the present invention may provide one or more benefits or advantages over the prior art.


II. SUMMARY OF THE INVENTION

Embodiments of the invention may relate to electrolyte additives for partially or fully suppressing dendrite formation and hydrogen evolution in zinc batteries. Embodiments include a zinc electrochemical battery cell incorporating the additives. Embodiments also include electrolyte additive chemical compositions comprising quaternary ammonium or phosphonium salts.


As used herein the terms “embodiment”, “embodiments”, “some embodiments”, “other embodiments” and so on are not exclusive of one another. Except where there is an explicit statement to the contrary, all descriptions of the features and elements of the various embodiments disclosed herein may be combined in all operable combinations thereof.


Language used herein to describe process steps may include words such as “then” which suggest an order of operations; however, one skilled in the art will appreciate that the use of such terms is often a matter of convenience and does not necessarily limit the process being described to a particular order of steps.


Conjunctions and combinations of conjunctions (e.g. “and/or”) are used herein when reciting elements and characteristics of embodiments; however, unless specifically stated to the contrary or required by context, “and”, “or” and “and/or” are interchangeable and do not necessarily require every element of a list or only one element of a list to the exclusion of others.


Terms of degree, terms of approximation, and/or subjective terms may be used herein to describe certain features or elements of the invention. In each case sufficient disclosure is provided to inform the person having ordinary skill in the art in accordance with the written description requirement and the definiteness requirement of 35 U.S.C. 112.


The term “effective amount” is used herein to indicate an amount of an electrolyte additive dissolved in a liquid electrolyte that reduces dendrite formation and hydrogen evolution by a measurable and/or visually perceptible amount under the stated test conditions, or where no conditions are stated in 4M potassium hydroxide, 0.1M zinc oxide, and water at −1.6V relative to a Hg/HgO reference electrode for 1500 seconds. However, this is not intended to limit the invention to the stated test conditions. The person having ordinary skill in the art would readily understand that a wide variety of electrolytes and concentrations of electrolytes, for instance, may be appropriate or desirable for a given application. It is well within the skill in the art to select from known electrolytes.





III. BRIEF DESCRIPTION OF THE DRAWINGS

The invention may take physical form in certain parts and arrangement of parts, embodiments of which will be described in detail in this specification and illustrated in the accompanying drawings which form a part hereof, wherein like reference numerals indicate like structure, and wherein:



FIG. 1 is a photograph of electrodeposited zinc in a control cell containing no additive after operating the cell for 1500 s;



FIG. 2 is a photograph of electrodeposited zinc in a cell containing 1.0 wt % Benzyltrimethylammonium Hydroxide after operating the cell for 1500 s;



FIG. 3 is a photograph of electrodeposited zinc in a cell containing 1.0 wt % Benzyltributylammonium Chloride after operating the cell for 1500 s;



FIG. 4 is a photograph of electrodeposited zinc in a cell containing 1.0 wt % Dibenzyldimethylammonium Chloride after operating the cell for 1500 s;



FIG. 5 is a photograph of electrodeposited zinc in a cell containing 0.01 wt % Dibenzyldimethylammonium Chloride after operating the cell for 1500 s;



FIG. 6 is a photograph of electrodeposited zinc in a cell containing 0.1 wt % Dibenzyldimethylammonium Chloride after operating the cell for 1500 s;



FIG. 7 is 1H NMR data for 1-(Trimethylammonium methyl)naphthalene chloride in D2O with an inlay photograph of electrodeposited zinc in a cell containing 1.0 wt % 1-(Trimethylammonium methyl)naphthalene chloride after operating the cell for 1500 s;



FIG. 8 is 1H NMR data for 4-(Trimethylammonium methyl)benzonitrile Chloride in D2O with an inlay photograph of electrodeposited zinc in a cell containing 1.0 wt % 4-(Trimethylammonium methyl)benzonitrile Chloride after operating the cell for 1500 s;



FIG. 9 is a photograph of electrodeposited zinc in a cell containing 1.0 wt % 4-(Trimethylammonium methyl)anisole Chloride after operating the cell for 1500 s;



FIG. 10 is a photograph of electrodeposited zinc in a cell containing 0.5 wt % 4-(Trimethylammonium methyl)anisole Chloride after operating the cell for 1500 s;



FIG. 11 is a photograph of electrodeposited zinc in a cell containing 0.1 wt % 4-(Trimethylammonium methyl)anisole Chloride after operating the cell for 1500 s;



FIG. 12 is a photograph of electrodeposited zinc in a cell containing 1.0 wt % 4-(Trimethylammonium methyl)-1,2,6-trimethoxybenzene after operating the cell for 1500 s;



FIG. 13 is a photograph of electrodeposited zinc in a cell containing 1.0 wt % (4-Methylbenzyl)trimethylammonium Chloride after operating the cell for 1500 s;



FIG. 14 is 1H NMR data for (2-Methylbenzyl)trimethylammonium Chloride in D2O with an inlay photograph of electrodeposited zinc in a cell containing 1.0 wt % (2-Methylbenzyl)trimethylammonium Chloride after operating the cell for 1500 s;



FIG. 15 is a photograph of electrodeposited zinc in a cell containing 1.0 wt % (4-Chlorobenzyl)trimethylammonium Chloride after operating the cell for 1500 s;



FIG. 16 is 1H NMR data for (2-Chlorobenzyl)trimethylammonium Chloride in D2O with an inlay photograph of electrodeposited zinc in a cell containing 1.0 wt % (2-Chlorobenzyl)trimethylammonium Chloride after operating the cell for 1500 s;



FIG. 17 is 1H NMR data for (4-Bromobenzyl)trimethylammonium Bromide in D2O with an inlay photograph of electrodeposited zinc in a cell containing 1.0 wt % (4-Bromobenzyl)trimethylammonium Bromide after operating the cell for 1500 s;



FIG. 18 is 1H NMR data for Benzyltrimethylphosphonium Chloride in D2O with an inlay photograph of electrodeposited zinc in a cell containing 1.0 wt % Benzyltrimethylphosphonium Chloride after operating the cell for 1500 s;



FIG. 19 is a photograph of electrodeposited zinc in a cell containing 1.0 wt % (2-Hydroxybenzyl)trimethylammonium Iodide after operating the cell for 1500 s;



FIG. 20 is 1H NMR data for (3-Methylbenzyl)trimethylammonium Chloride in D2O with an inlay photograph of electrodeposited zinc in a cell containing 1.0 wt % (3-Methylbenzyl)trimethylammonium Chloride after operating the cell for 1500 s;



FIG. 21 is 1H NMR data for 4-(Trimethylammonium)benzoic acid Bromide in D2O with an inlay photograph of electrodeposited zinc in a cell containing 1.0 wt % 4-(Trimethylammonium methyl)benzoic acid Bromide after operating the cell for 1500 s;



FIG. 22 is a photograph of electrodeposited zinc in a cell containing 1.0 wt % 3-(Trimethylammonium methyl)anisole Chloride after operating the cell for 1500 s;



FIG. 23 is a photograph of electrodeposited zinc in a cell containing 1.0 wt % Benzalkonium Chloride after operating the cell for 1500 s;



FIG. 24 is 1H NMR data for (2,6-Dimethylbenzyl)trimethylammonium Chloride in D2O with an inlay photograph of electrodeposited zinc in a cell containing 1.0 wt % (2,6-Dimethylbenzyl)trimethylammonium;



FIG. 25 is a photograph of electrodeposited zinc in a cell containing 25 wt % Benzyltrimethylammonium chloride after operating the cell for 1500 s;



FIG. 26 is 1H NMR data for (2,6-Dichlorobenzyl)trimethylammonium chloride in D2O;



FIG. 27 is 1H NMR data for (3,4-Dimethylbenzyl)trimethylammonium chloride in D2O with an inlay photograph of electrodeposited zinc in a cell containing 1.0 wt % (3,4-Dimethylbenzyl)trimethylammonium chloride after operating the cell for 1500 s;



FIG. 28 is 1H NMR data for (4-Hydroxybenzyl)trimethylammonium Iodide in D2O;



FIG. 29 is a photograph of electrodeposited zinc in a cell containing 15 wt % 4-(Trimethylammoniummethyl)anisole chloride after operating the cell for 1500 s;



FIG. 30 is a photograph of electrodeposited zinc in a cell containing 15 wt % (4-Methylbenzyl)trimethylammonium chloride after operating the cell for 1500 s;



FIG. 31 is a photograph of electrodeposited zinc in a cell containing 0.1 wt % (4-Methylbenzyl)trimethylammonium chloride after operating the cell for 1500 s; and



FIG. 32 is a schematic view of a general zinc-based battery in accordance with one or more embodiments of the invention.





IV. DETAILED DESCRIPTION OF THE INVENTION

Embodiments of the invention include organic electrolyte additives that improve zinc battery performance by both selectively preventing dendrite formation and preventing hydrogen evolution side reactions without hindering cell efficiency. Embodiments may include quaternary nitrogen and/or quaternary phosphorous compounds substituted with a variety of linear and/or cyclic organic groups.


Formula I illustrates an embodiment of the invention comprising a central nitrogen or phosphorous atom with a charge of +1, denoted herein as “N/P+” or as an “N/P+ center”. The N/P+ center is bonded to four R groups R1, R2, R3, and R4. The structure shown in Formula I is not intended to illustrate isomers or stereochemical structures, but rather is intended to encompass all isomeric forms with the same atom-to-atom connectivity.




embedded image


R1 is selected from the following radicals, where “yl” or “methylene” refers to the position of the radical electron available for bonding with an N/P+ center: methyl benzene, 4-methylene-toluene, 3-methylene-toluene, 2-methylene-toluene, 4-methylene-chlorobenzene, 3-methylene-chlorobenzene, 2-methylene-chlorobenzene, 4-methylene-bromobenzene, 3-methylene-bromobenzene, 2-methylene-bromobenzene, 4-methylene-iodobenzene, 3-methylene-iodobenzene, 2-methylene-iodobenzene, 4-methylene-cyanobenzene, 3-methylene-cyanobenzene, 2-methylene-cyanobenzene, 4-methylene-anisole, 3-methylene-anisole, 2-methylene-anisole, 1-methylnaphthalene, 1-methylene-2,6-dimethylbenzene, 1-methylene-2,4-dimethylebenzene, 1-methylene-3,4-dimethylbenzene, 1-methylene-2,5-dimethylbenzene, 1-methylene-3,5-dimethylbenzene, 1-methylene-2,4,6-trimethylbenzene, 1-methylene-3,4,5-trimethoxybenzene, 1-methylene-2,6-dichlorobenzene, 4-methylene-nitrobenzene, 4-methylene-benzoic acid, 3-methylene-benzoic acid, 2-methylene-benzoic acid, 2-methylene-phenol, 3-methylene-phenol, and 4-methylene-phenol.


With continuing reference to Formula I, the radicals R2, R3, and R4 may be independently selected from R1, methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-octyl, n-decyl, n-dodecyl, n-tetradecyl, n-hexadecyl, or n-octadecyl. Radicals R2, R3, and R4 may be independently selected from linear and non-linear alkyls from C1 to C25.


Embodiments conforming to Formula I may include a sufficient amount of counter anion [An] to produce a neutral species. The anion [An] may be, for example and without limitation, chloride, bromide, iodide, fluoride, hydroxide, nitrate, nitrite, sulphate, sulphite, phosphate, perchlorate, or any combination thereof. The person having ordinary skill in the art will readily appreciate that the anion has less or no influence on performance of the electrolyte additives of the present invention. Accordingly, a wide variety of anions are within the scope of the invention, and the foregoing list is meant only to be illustrative.


Referring now to the drawings wherein the showings are for purposes of illustrating embodiments of the invention only and not for purposes of limiting the same, FIG. 1 is a photograph showing dendrite growth using 4M KOH, 0.1M ZnO, and water with no additives suppressing dendrite growth. Plating was conducted at −1.6V relative to a Hg/HgO reference electrode for 1500 seconds. FIG. 1 shows dendrite growth after 1500 seconds. This serves as a control against which dendrite suppression additives are compared in subsequent tests. Each experimental run is conducted under the same conditions as the control run, namely, in 4M KOH electrolyte, 0.1M ZnO, and water at −1.6V relative to a Hg/HgO reference electrode for 1500 seconds. The results are summarized in Table I.


With respect to the control results shown in FIG. 1, prominent dendrite growth is clearly visible. Although the control rapidly evolves hydrogen, the bubbles form so quickly over the entire surface that they do not adhere to the dendrites. Accordingly, very few if any hydrogen bubbles are visible in FIG. 1. In contrast FIGS. 2-18 all show suppression of hydrogen evolution to some degree, which may be complete hydrogen suppression or partial hydrogen suppression. Where hydrogen suppression is complete, no bubbles form on the plated zinc surface so the associated figure shows no hydrogen bubbles. However, where hydrogen evolution is partially suppressed large slow-forming hydrogen bubbles are visible in the associated figure adhering to the plated zinc.









TABLE I







Suppression of Dendrite Formation by Additives












Amount
Hydrogen
Dendrite



Additive
(wt %)
Suppressed
Suppressed
Figure














No additive (control)
0
No
No
FIG. 1







embedded image


1.0
Partial
Yes
FIG. 2







embedded image


1.0
Partial
Yes
FIG. 3







embedded image


1.0
Partial
Yes
FIG. 4





Dibenzyldimethylammonium Chloride
0.01
No
Partial
FIG. 5


(DBDMAC)






Dibenzyldimethylammonium Chloride
0.1
Partial
Yes
FIG. 6


(DBDMAC)











embedded image


1.0
No
Partial
FIG. 7







embedded image


1.0
Yes
Partial
FIG. 8







embedded image


1.0
Yes
Yes
FIG. 9





4-(Trimethylammoniummethyl)anisole
0.5
Partial
Yes
FIG. 10


Chloride






4-(Trimethylammoniummethyl)anisole
0.1
Partial
Partial
FIG. 11


Chloride











embedded image


1.0
Partial
Yes
FIG. 12







embedded image


1.0
Partial
Yes
FIG. 13





(4-Methylbenzyl)trimethylammonium
15
Yes
Yes
FIG. 30


chloride






(4-Methylbenzyl)trimethylammonium
0.1
Partial
Partial
FIG. 31


chloride











embedded image


1.0
Partial
Yes
FIG. 14







embedded image


1.0
Partial
Partial
FIG. 15







embedded image


1.0
No
Partial
FIG. 16







embedded image


1.0
Partial
Yes
FIG. 17







embedded image


1.0
No
Partial
FIG. 18







embedded image


1.0
Partial
Partial
FIG. 19







embedded image


1.0
Partial
Yes
FIG. 20







embedded image


1.0
Partial
Partial
FIG. 21







embedded image


1.0
Partial
Partial
FIG. 22







embedded image


1.0
Partial
Yes
FIG. 23







embedded image


1.0
No
Partial
FIG. 24







embedded image


25
Yes
Yes
FIG. 25







embedded image


1.0
Partial
No
FIG. 26







embedded image


1.0
Yes
Yes
FIG. 27







embedded image


1.0
Partial
Partial
FIG. 28







embedded image


15
Yes
Yes
FIG. 29









Dibenzyldimethylammonium chloride (DBDMAC) preparation and performance.


N,N-dimethylbenzylamine (2 g, 14.8 mmol) is diluted into 10 mL of acetonitrile and stirred under air. Benzylchloride (2.06 g, 1.87 mL, 16.3 mmol) is added at once and the reaction is heated to 78° C. to reflux for 3 hours. The solution is concentrated under reduced pressure to a colorless viscous oil. The desired product is recrystallized from acetone. A white/colorless crystal solid of 3.50 g is collected (90.4% yield) and its structure is confirmed by 1H NMR. The dendrite suppressive effect of this additive is shown in FIGS. 4-6. Full dendrite suppression occurs at 1 wt % and 0.1 wt %, and partial suppression is observed at 0.01 wt %. Hydrogen evolution is partially suppressed at 1 wt % and 0.1 wt %. No hydrogen suppression is observed at 0.01 wt %.


1-(Trimethylammonium methyl)naphthalene Chloride Preparation and Performance.


To a 100 mL flask is added 10 mL of a 13% solution of trimethylamine in tetrahydrofuran (1.16 g, 19.7 mmol). The solution is stirred under air at room temperature. 1-(Chloromethyl)naphthalene (3.80 g, 3.22 mL, 21.5 mmol) is added in four quick portions and the reaction is heated to 60° C. for 3 hours. The reaction is then cooled to room temperature and white precipitates are collected by suction filtration and washed with additional tetrahydrofuran. About 3.10 g of white fluffy powder is collected (67% yield), and the desired product structure is confirmed by 1H NMR. The partial dendrite suppressive effect of this additive is shown in FIG. 7. 1-(Trimethylammonium methyl)naphthalene chloride promotes, rather than suppresses, hydrogen evolution.


4-(Trimethylammoniummethyl)benzonitrile Chloride Preparation and Performance.


To a 100 mL flask is added 10 mL of a 13% solution of trimethylamine in tetrahydrofuran (1.16 g, 19.7 mmol). The solution is stirred under air at room temperature. 4-(Chloromethyl)benzonitrile (2.70 g, 17.8 mmol) is added in quick portions and the reaction is heated to 60° C. for 2 hours. The reaction is then cooled to room temperature and white precipitates are collected by suction filtration and washed with additional tetrahydrofuran. About 2.80 g of white fluffy powder is collected (75% yield), and the desired product structure is confirmed by 1H NMR. The partial dendrite suppressive effect of this additive is shown in FIG. 8. This additive strongly suppresses hydrogen evolution.


4-(Trimethylammoniummethyl)anisole Chloride Preparation and Performance.


To a 100 mL flask is added 20 mL of a 13% solution of trimethylamine in tetrahydrofuran (2.32 g, 39.4 mmol) and this is stirred under air at room temperature. (4-Methoxybenzyl)chloride (5.59 g, 4.84 mL, 35.7 mmol) is added in quick portions and the reaction is heated to 60° C. for 3 hours. The reaction is then cooled to room temperature and white precipitates are collected by suction filtration and washed with additional tetrahydrofuran. About 7.08 g of white fluffy powder is collected (92% yield) and the desired product structure is confirmed by 1H NMR. The dendrite suppressive effect of this additive is shown in FIGS. 9-11. Dendrite suppression is complete under the test conditions at 1 wt % and 0.5 wt %, and partial at 0.1 wt %. Hydrogen evolution is fully suppressed at 1.0 wt % and partially suppressed at 0.5 wt % and 0.01 wt %.


An analogous method is used to synthesize 3-(trimethylammoniummethyl)anisole chloride, as well as similar 4-(trimethylammoniummethyl)-1,2,6-trimethoxybenzene. FIG. 12 shows that 4-(trimethylammoniummethyl)-1,2,6-trimethoxybenzene fully suppresses dendrite formation under the test conditions at 1.0 wt %, and partially suppresses hydrogen evolution. FIG. 22 shows that 3-(trimethylammoniummethyl)anisole chloride fully suppresses hydrogen evolution and dendrite formation.


(4-Methylbenzyl)trimethylammonium Chloride Preparation and Performance.


To a 100 mL flask is added 10 mL of a 13% solution of trimethylamine in tetrahydrofuran (1.16 g, 19.7 mmol). The solution is stirred under air at room temperature. 4-Methylbenzyl chloride (2.75 g, 2.6 ml, 19.5 mmol) is added in quick portions and the reaction is heated to 60° C. for 3 hours. The reaction is then cooled to room temperature and white precipitates are collected by suction filtration and washed with additional tetrahydrofuran. About 2.92 g of white fluffy powder is collected (75% yield) and the desired product structure is confirmed by 1H NMR. FIG. 13 shows that 1 wt % (4-methylbenzyl)trimethylammonium chloride fully suppresses dendrite formation under the test conditions, and partially suppresses hydrogen evolution. FIG. 30 shows that 15 wt % (4-methylbenzyl)trimethylammonium chloride fully suppresses dendrite formation and hydrogen evolution under the test conditions. FIG. 31 shows that 0.1 wt % (4-methylbenzyl)trimethylammonium chloride partially suppresses dendrite formation, and less effective in suppressing hydrogen evolution than higher tested concentrations of this additive.


(3,4-dimethylbenzyl)trimethylammonium Chloride Preparation and Performance.


To a 100 mL flask is added 10.0 ml of a 13% solution of trimethylamine in tetrahydrofuran (1.16 g, 19.6 mmol). The solution is stirred under air at room temperature. 3,4-Dimethylbenzyl chloride (2.75 g, 17.8 mmol) is added in quick portions and the reaction is heated to 60° C. for 4 hrs. The reaction is then cooled to room temperature and white precipitates are collected by suction filtration and washed with additional tetrahydrofuran. About 2.75 g of white fluffy powder are collected (73% yield) and the desired product structure is confirmed by 1H NMR as shown in FIG. 27. Also shown in FIG. 27 is an inlay photo showing that 1.0 wt % (3,4-dimethylbenzyl)trimethylammonium chloride fully suppresses dendrite formation and fully suppresses hydrogen evolution under the test conditions.


An analogous method is used to synthesize other isomers of this product, namely, (2-methylbenzyl)trimethylammonium chloride and (3-methylbenzyl)trimethylammonium chloride, as well as (2,4-dimethylbenzyl)trimethylammonium chloride, (2,5-dimethylbenzyl)trimethylammonium chloride, (2,6-dimethylbenzyl)trimethylammonium chloride, (3,5-dimethylbenzyl)trimethylammonium chloride, and (2,4,6-trimethylbenzyl)trimethylammonium chloride. FIG. 14 shows that 1 wt % (2-methylbenzyl)trimethylammonium chloride fully suppresses dendrite formation, and partially suppresses hydrogen evolution. FIG. 20 shows that 1 wt % (3-methylbenzyl)trimethylammonium chloride partially suppresses dendrite formation, and partially suppresses hydrogen evolution, under the test conditions.


(4-Chlorobenzyl)trimethylammonium Chloride Preparation and Performance.


To a 100 mL flask is added 10 mL of a 13% solution of trimethylamine in tetrahydrofuran (1.16 g, 19.7 mmol). The solution is stirred under air at room temperature. 4-Chlorobenzyl chloride (2.86 g, 17.8 mmol) is added in quick portions and the reaction is heated to 60° C. for 3 hours. The reaction is then cooled to room temperature and the white precipitates are collected by suction filtration and washed with additional tetrahydrofuran. About 3.17 g of white fluffy powder are collected (82% yield) and the desired product structure is confirmed by 1H NMR. FIG. 15 shows that 1 wt % (4-chlorobenzyl)trimethylammonium chloride partially suppresses dendrite formation, and hydrogen evolution, under the test conditions.


An analogous method is used to synthesize (2-chlorobenzyl)trimethylammonium chloride, (3-chlorobenzyl)trimethylammonium chloride, (2-bromobenzyl)trimethylammonium bromide, (3-bromobenzyl)trimethylammonium bromide, and (4-bromobenzyl)trimethylammonium bromide, with the later three using reagent bromobenzyl bromide in place of chlorobenzyl chloride. Similarly, iodobenzyl chlorides are used in an analogous method to produce (2-iodobenzyl)trimethylammonium chloride, (3-bromobenzyl)trimethylammonium chloride, and (4-iodobenzyl)trimethylammonium chloride. FIG. 16 shows that (2-chlorobenzyl)trimethylammonium chloride does not suppress dendrite formation under the test conditions, but does partially suppress hydrogen evolution. FIG. 17 shows that 1 wt % (4-bromobenzyl)trimethylammonium bromide fully suppresses dendrite formation under the test conditions, and partially suppress hydrogen evolution.


Benzyltrimethylphosphonium Chloride Preparation and Performance.


To a 100 mL flask is added 10 mL of a 1M solution of trimethylphosphine in tetrahydrofuran (1.52 g, 20, ml, 20 mmol). The solution is stirred under nitrogen at room temperature. Benzylchloride (2.52 g, 2.3 ml, 20.0 mmol) is added in quick portions and the reaction is heated to 60° C. for 3 hours. The reaction is then cooled to room temperature and white precipitates are collected by brief suction filtration. About 1.80 g of white fluffy powder is collected (44% yield) and the desired product structure is confirmed by 1H NMR. FIG. 18 shows that 1 wt % benzyltrimethylphosphonium chloride partially suppresses dendrite formation, but does not suppress hydrogen evolution, under the test conditions.


(2-Hydroxybenzyl)trimethylammonium Iodide Preparation and Performance.


To a 100 mL flask is added 2-[(Dimethylamino)methyl]phenol (2.45 g, 16.2 mmol) and tetrahydrofuran (25 mL). The clear solution is cooled to 0° C. by an ice bath under air and with magnetic stirring. To this solution iodomethane (3.45 g, 24.3 mmol) is added dropwise. After stirring for 20 minutes the ice bath is removed and the reaction proceeds at room temperature for 3 hours as a viscous oil forms at the bottom of the flask. The solvents are removed from the reaction by reduced pressure (Rotavap) to a mass of orange/brown amorphous solid measuring 4.6 g (94% yield). The desired product structure is confirmed by 1H NMR. FIG. 19 shows that 1 wt % (2-hydroxybenzyl)trimethylammonium iodide partially suppresses dendrite formation, and partially suppresses hydrogen evolution, under the test conditions.


4-(Trimethylammoniummethyl)benzoic Acid Bromide Preparation.


To a 100 mL flask is added 8.0 mL of a 13% solution of trimethylamine in tetrahydrofuran (0.92 g, 15.6 mmol) is diluted in 30 mL acetonitrile. The solution is stirred under air at room temperature. Then, 4-(bromomethyl)benzoic Acid (3.36 g, 15.6 mmol) is added in quick portions and the reaction is heated to 80° C. for 3 hrs. The reaction is then cooled to room temperature and white precipitates are collected by suction filtration and washed with additional tetrahydrofuran. About 4.10 g of white solids are collected (95.6% yield) and the desired product structure is confirmed by 1H NMR. FIG. 21 shows that 1 wt % 4-(Trimethylammoniummethyl)benzoic acid bromide partially suppresses dendrite formation, and partially suppresses hydrogen evolution, under the test conditions.


(2,6-Dimethylbenzyl)trimethylammonium Chloride Preparation.


To a 100 mL flask is added 9.1 mL of a 13% solution of trimethylamine in tetrahydrofuran (1.05 g, 17.8 mmol). The solution is stirred under air at room temperature. 2,6-Dimethylbenzyl chloride (2.5 g, 16.2 mmol) is added in quick portions and the reaction is heated to 60° C. for 3 hrs. The reaction is then cooled to room temperature and the white precipitates are collected by suction filtration and washed with additional tetrahydrofuran. About 3.05 g of white fluffy powder are collected (88% yield) and the desired product structure is confirmed by 1H NMR. FIG. 24 shows that 1.0 wt % (2,6-Dimethylbenzyl)trimethylammonium chloride partially suppresses dendrite formation, but does not suppress hydrogen evolution, under the test conditions.



FIG. 23 shows that 1.0 wt % Benzalkonium Chloride is effective in fully suppressing dendrite formation and hydrogen evolution under the test condition. The tested additive is a mixture having the following formula, where R5=CnH2n+1 where 8<n<18:




embedded image



FIG. 32 shows a schematic view of a zinc-battery cell 100. The cell includes a zinc anode 102 in communication with a cathode 108 through an electrolyte 104. A porous separator 110 such as a membrane may be interposed between the cathode 108 and the electrolyte 104. The person having ordinary skill in the art will readily appreciate that the cathode may comprise a wide variety of known materials such as without limitation, air and carbon.


It will be apparent to those skilled in the art that the above methods and apparatuses may be changed or modified without departing from the general scope of the invention. The invention is intended to include all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.


Having thus described the invention, it is now claimed:

Claims
  • 1. A zinc battery cell, comprising:
  • 2. The zinc battery cell of claim 1, wherein the electrolyte additive is present in a concentration between 0.01 wt % and 25.0 wt %.
  • 3. The zinc battery of claim 1, wherein the counter anion is selected from chloride, bromide, iodide, fluoride, hydroxide, nitrate, nitrite, sulphate, sulphite, phosphate, perchlorate, or any combination thereof.
  • 4. The zinc battery of claim 1, wherein R2, R3, and R4 are independently selected from methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-octyl, n-decyl, n-dodecyl, n-tetradecyl, n-hexadecyl, or n-octadecyl.
Government Interests

This invention was made with government support under contract number NSF 1746210 awarded by the National Science Foundation. The government has certain rights in the invention.

US Referenced Citations (80)
Number Name Date Kind
3519631 Ost et al. Jul 1970 A
4029854 Walsh et al. Jun 1977 A
4034107 King et al. Jul 1977 A
4132837 Soffer Jan 1979 A
4407907 Takamura et al. Oct 1983 A
4482616 Connolly et al. Nov 1984 A
5041194 Mori et al. Aug 1991 A
5130211 Wilkinson et al. Jul 1992 A
5264131 Ishida et al. Nov 1993 A
6027827 Gan et al. Feb 2000 A
6083647 Noda et al. Jul 2000 A
6153328 Colborn Nov 2000 A
6558838 Noda et al. May 2003 B1
7722988 Webber May 2010 B2
8168337 Friesen et al. May 2012 B2
8309259 Friesen et al. Nov 2012 B2
8481207 Friesen et al. Jul 2013 B2
8741491 Wolfe et al. Jun 2014 B2
9147919 Friesen et al. Sep 2015 B2
9312572 Trimble et al. Apr 2016 B2
9768472 Friesen et al. Sep 2017 B2
20010038937 Suzuki et al. Nov 2001 A1
20020127475 Marchionni et al. Sep 2002 A1
20030065037 Mattison et al. Apr 2003 A1
20040241537 Okuyama et al. Dec 2004 A1
20050171355 Kuwabara et al. Aug 2005 A1
20050189231 Capper et al. Sep 2005 A1
20050194561 Davis, Jr. Sep 2005 A1
20070243449 Sotomura et al. Oct 2007 A1
20080021037 Beylin et al. Jan 2008 A1
20080096061 Burchardt Apr 2008 A1
20080251759 Kalb et al. Oct 2008 A1
20090239132 Johnson Sep 2009 A1
20090242414 Welz-Biermann et al. Nov 2009 A1
20100016603 Sonoda et al. Jan 2010 A1
20100119883 Friesen et al. May 2010 A1
20100119895 Friesen et al. May 2010 A1
20100137460 Bert et al. Jun 2010 A1
20100266907 Yazami Oct 2010 A1
20100285375 Friesen et al. Nov 2010 A1
20100316935 Friesen et al. Dec 2010 A1
20100323249 Fujiwara et al. Dec 2010 A1
20110027664 Burchardt et al. Feb 2011 A1
20110039181 Friesen et al. Feb 2011 A1
20110059355 Zhang et al. Mar 2011 A1
20110065018 Kim et al. Mar 2011 A1
20110070506 Friesen et al. Mar 2011 A1
20110086278 Friesen et al. Apr 2011 A1
20110091777 Mizuno et al. Apr 2011 A1
20110152292 Rayner-Branes et al. Jun 2011 A1
20110177428 Dai et al. Jul 2011 A1
20110189551 Friesen et al. Aug 2011 A1
20110200893 Friesen et al. Aug 2011 A1
20110250512 Friesen et al. Oct 2011 A1
20110281184 Friesen et al. Nov 2011 A1
20110305959 Friesen et al. Dec 2011 A1
20110316485 Krishnan et al. Dec 2011 A1
20120009491 Friesen et al. Jan 2012 A1
20120015264 Friesen et al. Jan 2012 A1
20120052404 Friesen et al. Mar 2012 A1
20120068667 Friesen et al. Mar 2012 A1
20120098499 Friesen et al. Apr 2012 A1
20120121992 Friesen et al. May 2012 A1
20120139496 Krishnan et al. Jun 2012 A1
20120202127 Friesen et al. Aug 2012 A1
20120321967 Wolfe et al. Dec 2012 A1
20120321969 Friesen et al. Dec 2012 A1
20120321970 Friesen et al. Dec 2012 A1
20120323004 Friesen et al. Dec 2012 A1
20130022881 Friesen et al. Jan 2013 A1
20130095393 Friesen et al. Apr 2013 A1
20130115523 Friesen et al. May 2013 A1
20130115525 Friesen et al. May 2013 A1
20130115526 Friesen et al. May 2013 A1
20130115532 Friesen et al. May 2013 A1
20130115533 Friesen et al. May 2013 A1
20130157148 Friesen et al. Jun 2013 A1
20130230524 Burgess Sep 2013 A1
20140072886 Urban et al. Mar 2014 A1
20180316064 Wei et al. Nov 2018 A1
Foreign Referenced Citations (33)
Number Date Country
1581567 Feb 2005 CN
1627554 Jun 2005 CN
1946673 Apr 2007 CN
101137436 Mar 2008 CN
101174698 May 2008 CN
102050788 May 2011 CN
102299389 Dec 2011 CN
104752777 Jul 2015 CN
1182196 Feb 2002 EP
1398318 Mar 2004 EP
1297955 Nov 1972 GB
50091728 Jul 1975 JP
H06293991 Oct 1994 JP
2001266961 Sep 2001 JP
2002509528 Mar 2002 JP
2002184472 Jun 2002 JP
2003-151569 May 2003 JP
2005026023 Jan 2005 JP
2007087939 Apr 2007 JP
2007518772 Jul 2007 JP
2010146851 Jul 2010 JP
2010-176930 Aug 2010 JP
2005003108 Jan 2005 WO
2006072785 Jul 2006 WO
2008013095 Jan 2008 WO
2010000396 Jan 2010 WO
2010132357 Nov 2010 WO
2010136783 Dec 2010 WO
2011049184 Apr 2011 WO
2012111101 Aug 2012 WO
2012174564 Dec 2012 WO
2015136860 Sep 2015 WO
2017070340 Apr 2017 WO
Non-Patent Literature Citations (6)
Entry
Liu et al. ‘Experimental and Modeling Studies of the Hysteresis Behavior and Dendrite 1-7, 9 ., Suppression Efficacy of an Electrolyte Additive in Zinc Electrodaposition’ Aug. 16, 2019 Journal of Electrochemical Society, 166 (13) D583-D588. Entirety of document especially p. D583 para 1; p. D583 col. 1 para 2; p. D583 col. 2 para 3-4; p. D584 col. 1 para 2-3; Figure 1.
WikipedIa ‘Zinc-air battery’ Jan. 31, 2019 (Jan. 31, 2019). Retrieved from <https://en.wikipedia.org/w/index.php?title=ZInc%E2%80%93air_battery&oldid=881000599>entirety of document especially p. 1 para 1.
Website, https://nantenergy.com/zinc-air/ ‘Zinc-air Storage, Rugged, long-duration, pollution-free energy storage systems for use in any location’ © 2019 NantEnergy Inc., accessed Jan. 12, 2021.
Eric Wesoff, Fluidic Energy Is the Biggest Zinc-Air Battery Startup You Haven't Heard Of, Article, Nov. 16, 2015, https://www.greentechmedia.com/articles/read/fluidic-energy-is-the-biggest-zinc-air-battery-startup-you-havent-heard-of#gs.w6i91Po, Greentech Media, Inc., Massachusetts, United States., accessed Jan. 12, 2021.
Eric Wesoff, Fluidic Energy Is the Biggest Zinc-Air Battery Startup You Haven't Heard Of, Article, Nov. 16, 2015, https://www.greentechmedia.com/articles/read/fluidic-energy-is-the-biggest-zinc-air-battery-startup-you-havent-heard-of#gs.w6i91Po, Greentech Media, Inc., Massachusetts, United States.
Fluidic Energy, Inc., Website, http://fluidicenergy.com/, Scottsdale, Arizona, United States.
Related Publications (1)
Number Date Country
20200243909 A1 Jul 2020 US
Provisional Applications (1)
Number Date Country
62796296 Jan 2019 US