This invention relates to locks and, more particularly, to a zipper lock with a dual locking system.
Numerous padlock constructions have been developed and are widely employed by individuals to prevent unauthorized persons from gaining access to any particular item or area which has been closed and locked. Although many locks are constructed to be opened by a key, numerous combination lock constructions have been developed which are opened by knowledge of a particular combination.
One particular type of combination lock that has become very popular due to its ease and convenience of use is a combination lock which employs a plurality of rotatable independent dials, each of which forms one of the indicia, usually numerals or letters, which make the combination for releasing the lock. Typically, the combination lock has one mode or position in which the user is able to set or reset the desired combination sequence.
One common problem which has consistently plagued lock constructions is the cost of construction for producing and assembling padlocks, whether the padlock is key operated or combination operated. In order to attain a padlock which provides all of the features desired by consumers, prior art constructions typically incorporate numerous small components, each of which require expensive assembly procedures to produce the final product. As a result, these lock constructions are expensive to produce.
The present invention provides a padlock system having a fully integrated dual locking construction which is configured for securing the zipper pulls of a suitcase thereto. The dual locking, zipper pull padlock is easily produced in a cost effective manner.
The present invention is an integrated zipper padlock which is designed to be mounted on a zipper case via zipper pullers, and the padlock can be opened by a combination (open lock combination) and by a key overriding mechanism. The combination locking system is partially similar to that described in U.S. Pat. No. 8,661,861 which is assigned to The Sun Lock Company Ltd., the assignee of the present invention and is hereby incorporated by reference in its entirety. In particular, both the present invention and U.S. Pat. No. 8,661,861 use a control plate having a plurality of protrusions for engagement with a plurality of clutches to operate the padlock in a locked mode or an unlocked mode. Also, both the present invention and U.S. Pat. No. 8,661,861 use a disc tumbler cylinder in the key overriding mechanism.
Thus, an aspect of the present invention is a lock at least operable in a locked mode and an unlocked mode, comprising:
a lock body;
a pole formed in the lock body;
a cover plate movable in a first movement direction between a first plate position to block the pole and a second plate position to clear the pole;
a latch engageable with the cover plate for movement together in the first movement direction; and
a control plate movable in a second movement direction between a first plate position and a second plate position, wherein
when the control plate is located in the first plate position, the control plate is configured to restrict movement of the latch and the cover plate, and
when the control plate is located in the second plate position, the cover plate is allowed to move from the first cover position to the second cover position together with the latch so as to change the lock from the locked mode to the unlocked mode, wherein the second movement direction is substantially perpendicular to the first movement direction.
According to embodiments of the present invention, the latch comprises a latch plate and a latch finger extended from the latch plate, and the cover plate comprises a blocking wall and a release slot, the release slot dimensioned to receive the latch finger, wherein
when the control plate is located in the first plate position, the block wall is configured to contact with the latch finger, preventing the latch from moving in the first movement direction, and
when the control plate is located in the second plate position, the blocking wall is spaced from the latch finger and the release slot is aligned with the latch finger so as to allow the latch to move in the first movement direction.
According to embodiments of the present invention, the control plate comprises a plate spring and a plurality of plate protrusions, and the lock further comprises:
a plurality of rotatable clutches, each associated with one of the plate protrusions, each clutch having a notch formed therein configured to receive the associated plate protrusion, wherein
when the notch in each of the clutches is aligned with the associated plate protrusion, the plate spring is configured to urge the control plate to move from the first plate position to the second plate position, and
when the notch in any one of the clutches is misaligned with the associated plate protrusion, the control plate is prevented from movement.
According to embodiments of the present invention, the lock further comprises:
an anchoring block movably engaged with the latch, the anchoring block having a block surface and a surface protrusion extended from the block surface, wherein the latch plate has a groove formed therein configured to engage with the surface protrusion so as to restrict movement of the anchoring block relative to the latch in the first movement direction, the groove configured to allow the anchoring block to move relative to the latch in the second direction while the groove is engaged with the surface protrusion.
According to embodiments of the present invention, the lock further comprises:
two guiding pins fixedly formed in the lock body in relationship to the pole, and
two sliding plates, each sliding plate having a slot formed therein dimensioned to slidably engage with a different one of the guiding pins for movement in the second movement direction, each of the sliding plates further having a first sliding edge and a second sliding edge, wherein the cover plate comprises two locking-slope surfaces, each locking-sloping surface arranged to contact with the first sliding edge of a different one of the sliding plates, and wherein when the cover plate is caused to move in the first direction away from the pole, the sliding plates are caused to move closer to each other in the second direction, and wherein the anchoring block comprises two slope edges, each slope edge arranged to contact with the second sliding edge of a different one of the sliding plates and when the sliding plates are caused to move closer to each in the second direction, the anchoring block is also caused to move in the first direction away from the pole.
According to embodiments of the present invention, when the control plate is located in the first plate position, the latch is prevented from moving in the first movement direction together with the anchoring block, and the sliding plates are prevented from moving closer to each other in the second direction so as to prevent cover plate from moving away from the pole in the first movement direction, and when the control plate is located in the second plate position, the latch is allowed to move in the first movement direction together with the anchoring block, and the sliding plates are allowed to move closer to each other in the second direction so as to cause the cover plate to move from the first pate position to the second plate position to clear the pole.
According to embodiments of the present invention, the lock further comprises a spring arranged to urge the anchoring block against movement in the first movement direction so as to keep the cover plate in the first plate position when the lock is operated in the unlocked mode.
According to embodiments of the present invention, the control plate further comprises a further release slot dimensioned to receive the latch finger, the lock further comprising:
a key overriding mechanism configured to move the latch plate in the second movement direction relative to the control plate when the lock is operated in the locked mode so as to move the latch finger away from the blocking wall and into alignment with the further release slot, allowing the latch to move in the first movement direction.
According to embodiments of the present invention, the key overriding mechanism comprises a tumbler cylinder and a linking plate movably connected to the tumbler cylinder, the linking plate comprising a cutout formed therein configured to receive the latch plate, the tumbler cylinder rotatable between a first cylinder position and a second cylinder position, wherein
when the tumbler cylinder is maintained in the first cylinder position, the latch finger is positioned to contact with the blocking wall, and
when the tumbler cylinder is caused to move from the first cylinder position to the second cylinder position, the linking plate is configured to move the latch plate into alignment with the further release slot.
According to embodiments of the present invention, the tumbler cylinder has a tumbler surface and a pin fixedly formed on the surface, and the linking plate further comprises a slot configured to movably engage with the pin, and wherein when the tumbler cylinder is caused to move from the first cylinder position to the second cylinder position, the pin is configured to move the linking plate in the second movement direction together with the latch plate.
According to embodiments of the present invention, the lock further comprises:
a plurality of clutch springs; and
a plurality of dials, each of the dials associated with a different one of the clutches, wherein the clutch springs are configured to urge the clutches against the associated dials so that a rotational movement of the dial is transferred to the associated clutch when the lock is operated in the locked mode, wherein each of the dials comprises a substantially circular disc having indicia thereon and the indicia on the dials are arranged to a combination code for operating the lock in the unlocked mode.
According to embodiments of the present invention, the lock is configured to securely retain at least one zipper pull tab of a zipper case, wherein the at least one zipper pull tab comprises an opening formed therein, the opening dimensioned for insertion onto the pole when the cover plate is located in the second plate position to clear the pole, and wherein when the cover plate is located in the first plate position, the cover plate is configured to securely retain the at least one zipper pull tab to the lock.
For a fuller understanding of the nature and object of the present invention, reference is made to the following detailed description in connection with the following drawings, in which:
The present invention will be described more fully hereinafter with reference to the accompanying figures, in which exemplary embodiments of the invention are shown. The invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Like reference numerals refer to like elements throughout.
The present invention is an integrated zipper padlock that can be used to lock a zipper case. The lock has a combination locking system and a key overriding mechanism. The combination locking system uses a plurality of dial/clutch pairs to keep the lock in the locked mode. The key overriding mechanism uses a disc tumbler cylinder which can be turned by a correct key to unlock the lock. The lock has a fixture pole dimensioned to receive one or more zipper pulls of the zipper case. The lock has a cover plate having a blocking area to block the fixture pole so that the zipper pulls placed onto the fixture pole cannot be removed in order to secure the zipper case when the lock is operated in a locked mode. When the dial/clutch pairs are set to a correct combination or when a correct key is used on the disc tumbler cylinder, the cover plate can be pulled away to clear the fixture pole, changing the lock from the locked mode to an unlocked mode.
As seen in
As seen in
As seen in
When the dials 30 are set to the open-lock combination (the correct combination code), the notch 41 of each of the clutches 40 faces a plate protrusion 51 of the control plate 50. The alignment between the notches 41 and the plate protrusions 51 allows the control plate 50, under the urge of the spring 160, to move in the second movement direction relative to the latch 90. The displacement of the control plate 50 allows the latch finger 91 to move into the first release slot 54 of the control plate 50. Thus, the latch 90, along with the anchoring block 110, can be moved in the first movement direction. As such, the cover plate 120 can be moved in the first movement direction away from the fixture pole 24. As the cover plate 120 moves in the first movement direction, through the sliding contact between the locking slope surface 121 and the first sliding slopes 103 of the sliding plates 100, the sliding plates 100 are forced to move toward each other while they are engaged with guide pins 23. As the sliding plates 100 are moved toward each other, through the sliding contact between the second sliding slopes 102 of the sliding plates 100 and the slope edges 114 of the anchoring block 110, the anchoring block 110 is caused to move in the first movement direction along with the latch 90. The movement of the anchoring block 110 in the first movement direction pushes the latch finger 91 of the latch 90 into the first release slot 54 of the control plate 50. As the cover plate 120 is moved in the first movement direction, the blocking area 122 is moved along to clear the fixture pole 24 so as to change the lock 10 from the locked mode to the unlocked mode. This allows the zipper pulls 230 to be slotted onto the exposed fixture pole 24 or to be taken off from the fixture pole 24.
It should be noted that when the control plate 50 is caused to move in the second movement direction so that the first release slot 54 is aligned with the latch finger 91 of the latch 90, the spring 180 keeps urging the anchoring block 110 against the movement in the first movement direction. As such, the blocking area 122 of the cover plate 120 remains in the blocking position. In order to unlock the lock 10, the user must push the cover plate 120 away from the fixture pole 24 so that the blocking area 122 can clear the fixture pole 24. Once the user releases the cover plate 120, the spring 180 is configured to push the cover plate 120 toward the fixture pole 24 so that the blocking area 122 can move back to the blocking position. Subsequently, the latch finger 91 of the latch 90 is caused to move out of the first release slot 54 of the control plate 50. To re-lock the lock 10, the user must rotate at least one of the dials 30. As the rotational movement of the dial 30 is transferred to the associated clutch 40, the rotational movement of the clutch 40 causes the disengagement of the associated plate protrusion 51 of the control plate 50 from the notch 41. As a result, the control plate 50 is caused to move to the locking position where the blocking wall 56 is in contact with the latch finger 91 of the latch 90.
As seen in
As seen in
While the lock 10 is operated in the locked mode, the latch finger 91 of the latch 90 is in contact with the blocking wall 56 of the control plate 50 (see
As seen in
As seen in
Once the reset button 130 is released, the reset spring 190 in the interior chamber of the plug 140 urges the tip 132 of the reset button 130 to disengage from the reset hole 52 of the control plate 50. After being reset, the lock 10 remains in the unlocked mode until one or more dials 30 are rotated. As the pointer 131 is always located in the pointer slot 141 of the plug 140, the rotational movement of the reset button 130 relative of the plug 140 can be restricted.
In summary, the lock 10 has a fixture pole 24 dimensioned to receive one or more zipper pullers 230 of a zipper case. The lock 10 has a cover plate 120 positioned to block the fixture pole 24 when the lock 10 is operated in the locked mode. The lock 10 has a lock body 20 to house a plurality of dials 30 and a plurality of clutches 40, each clutch 40 associated with a dial 30. A plurality of clutch springs 170 are used to urge the clutches 40 against the dials 30 so that the rotational movement of the dials 30 can be transferred to the associated clutches 40. Each of the clutches 40 has a notch 41. The lock 10 has a control plate 50 positioned in relationship to the clutches 40. The control plate 50 has a plurality of protrusions 51 dimensioned to engage with the notches 41 for movement relative to the clutches 40. The control plate 50 has a first release slot 54, a second release slot 55 and a blocking wall 56 located between the first release slot 54 and the second release slot 55. A latch 90 has a latch plate 93 with a groove 92 formed therein and a latch finger 91 extended from the latch plate 93. The lock 10 has an anchoring block 110 having a surface protrusion 113 dimensioned to engage with the groove 92 of the latch 90. The engagement of the surface protrusion 113 with the groove 92 causes the movement of the latch 90 together with the anchoring block 110 in the first movement direction while allowing the latch 90 to move relative to the anchoring block 110 in the second movement direction. The anchoring block 110 is engaged with the cover plate 120. When the dials 40 are set to the correct combination, the protrusions 51 of the control plate 50 are aligned with the notches 41 of the clutches 40, allowing the control plate 50 to move in the second movement direction and causing the latch finger 91 of the latch 90 to align with the first release slot 54. As such, the latch 90, along with the anchoring block 110, can be moved in the first movement direction and the cover plate 120 can be moved away from the fixture pole 24. The lock 10 has a key overriding mechanism with a disc tumbler cylinder 60 which is moveably connected to a linking plate 80. The linking plate 80 is linked to the latch 90. When the tumbler cylinder 60 is turned by a correct key 240, the linking plate 80 causes the latch 90 to move such that the latch finger 91 is aligned with the second release slot. The alignment allows the anchoring block 110 together with the latch 90 to move in the first movement direction and also allows the cover plate 120 to move away from fixture pole 24.
Although the present invention has been described with respect to one or more embodiments thereof, it will be understood by those skilled in the art that the foregoing and various other changes, omissions and deviations in the form and detail thereof may be made without departing from the scope of this invention.
This application claims priority to U.S. Provisional Application No. 62/315,164, filed Mar. 30, 2016, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3319743 | Pelavin | May 1967 | A |
3597945 | Feinberg | Aug 1971 | A |
3965706 | Davis | Jun 1976 | A |
4366684 | Bako | Jan 1983 | A |
5485734 | Yang | Jan 1996 | A |
5927113 | Yu | Jul 1999 | A |
6408660 | Lai | Jun 2002 | B1 |
6513356 | Yang | Feb 2003 | B1 |
6912880 | Ling et al. | Jul 2005 | B2 |
7415853 | Yu | Aug 2008 | B2 |
7562545 | Lai et al. | Jul 2009 | B2 |
8096150 | Lai et al. | Jan 2012 | B2 |
8113024 | Yang | Feb 2012 | B2 |
8161778 | Ma | Apr 2012 | B1 |
8661861 | Lai | Mar 2014 | B2 |
20040237605 | Lin et al. | Dec 2004 | A1 |
20050072196 | Ling et al. | Apr 2005 | A1 |
20080087049 | Lai et al. | Apr 2008 | A1 |
20080236212 | Ma | Oct 2008 | A1 |
Number | Date | Country |
---|---|---|
1183506 | Jun 1998 | CN |
2408191 | Nov 2000 | CN |
2980322 | Jun 2000 | DE |
Entry |
---|
Combined Search and Examination Report GB Patent Application No. 1704247.4 Completed: Jul. 28, 2017 6 pages. |
Number | Date | Country | |
---|---|---|---|
20170284127 A1 | Oct 2017 | US |
Number | Date | Country | |
---|---|---|---|
62315164 | Mar 2016 | US |