1. Field of the Invention
The present invention relates to fibre channel systems, and more particularly to zone management in fibre channel fabrics.
2. Description of Related Art
Fibre channel is a set of American National Standard Institute (ANSI) standards which provide a serial transmission protocol for storage and network protocols such as HIPPI, SCSI, IP, ATM and others. Fibre channel provides an input/output interface to meet the requirements of both channel and network users.
Fibre channel supports three different topologies: point-to-point, arbitrated loop and fibre channel fabric. The point-to-point topology attaches two devices directly. The arbitrated loop topology attaches devices in a loop. The fibre channel fabric topology attaches host systems directly to a fabric, which are then connected to multiple devices. The fibre channel fabric topology allows several media types to be interconnected.
Fibre channel is a closed system that relies on multiple ports to exchange information on attributes and characteristics to determine if the ports can operate together. If the ports can work together, they define the criteria under which they communicate.
In fibre channel, a path is established between two nodes where the path's primary task is to transport data from one point to another at high speed with low latency, performing only simple error detection in hardware. The fibre channel switch provides circuit/packet switched topology by establishing multiple simultaneous point-to-point connections.
Fibre channel fabric devices include a node port or “N_Port” that manages fabric connections. The N_port establishes a connection to a fabric element (e.g., a switch) having a fabric port or F_port. Fabric elements include the intelligence to handle routing, error detection, recovery, and similar management functions.
A fibre channel switch is a multi-port device where each port manages a simple point-to-point connection between itself and its attached system. Each port can be attached to a server, peripheral, I/O subsystem, bridge, hub, router, or even another switch. A switch receives a message from one port and automatically routes it to another port. Multiple calls or data transfers happen concurrently through the multi-port fibre channel switch.
Fibre channel switches may use multiple modules (also referred to as “blades”) connected by fibre channel ports. Conventionally, a multi-module switch is integrated as a single switch and appears to other devices in the fibre channel fabric as a single switch.
Fibre channel standard FC-GS-3, published Nov. 28, 2000, incorporated herein by reference in its entirety, describes fabric zones using fibre channel address identifiers. Typically, a network administrator (or a management module) creates a zone. Zoning is used to limit visibility of certain devices in the fabric so that subsets of end-user devices can communicate with each other. Section 8 of the FC-GS-3 standard describes how zones are created.
Conventional zone management techniques as provided by current fibre channel standards (FC-SW-2 and FC-GS-3) do not provide any solution or guidance for zone management in a multi-module switch. Multi-module switches are being extensively used today without efficient zone management.
Therefore, what is required is a process and system for zone management in multi-module fibre channel switches.
One embodiment of the present zone management in a multi-module fibre channel switch comprises a method for loading zoning data from a management module to a plurality of switch modules of a multi-module switch, after initial start-up or after a zone merge request is received from a neighboring switch. The method comprises the steps of sending a Zone Merge Data Start message from the management module to the switch modules, sending new zone data from the management module to the switch modules, and initiating a zone merge with a neighboring switch after the switch modules have received the zone data from the management module. The zone merge is initiated by one of the switch modules.
Another embodiment of the present zone management in a multi-module fibre channel switch comprises a method for processing a zone merge request sent by an external fibre channel switch to a switch module in a multi-module switch. The method comprises the steps of sending a Zone Merge Data Start message from the switch module to a management module, sending new zone data to the management module, and comparing the new zone data with current zone data.
Another embodiment of the present zone management in a multi-module fibre channel switch comprises a method for handling zone changes based on commands sent from an external switch and received by a switch module of a multi-module switch in a fibre channel fabric. The method comprises the steps of the switch module receiving an ACA message from the external switch, the switch module determining whether a zone management operation is already in process, and the switch module forwarding the ACA message to a management module.
Another embodiment of the present zone management in a multi-module fibre channel switch comprises a method for downloading zoning data from a management module to a first switch module in a multi-module fibre channel switch. The method comprises the steps of a management module sending an ACA message to the first switch module, and the switch module sending the ACA message to at least a second switch module and to at least one external switch.
In one aspect of the present invention, a method is provided for loading zoning data to a multi-module switch from a management module, either for initial startup or after zone merge request from a neighboring switch. The method includes, sending Zone Merge Data Start message from the management module to switch modules; and sending new zone data, to the switch modules. The switch modules initiate zone merge request with any neighboring switches after receiving the zone data.
In another aspect of the present invention, a method for a multi-module switch to handle zone merge request from a neighboring switch is provided. The method includes sending received zone data from a switch module to the management module; comparing received zone data with current zone data, and creating a reply to send to the neighboring switch. This may result in isolation of the link with the neighboring switch because of incompatible zoning (as described in FC-SW-2), a change in zoning data or no change in zoning data. If zoning data is changed, the management module loads the new zone data to the switch modules as described above.
In yet another aspect of the present invention, a method for changing zoning by a management module in a fibre channel fabric is provided. The method includes receiving management commands, wherein the management module receives the commands and selects a switch module for the process; sending an ACA message to the switch module; and determining if the Fabric is locked by checking replies to the ACA message. If the ACA is successful, the management module downloads the new zone data and the selected switch module sends it to the other switch modules and to external switches using the SFC, UFC, RCA protocol described in FC-SW-2.
In yet another aspect of the present invention, a method for handling zone changes originated from external switches is provided. When an ACA is received from another switch, the switch module forwards it to the management module and the other switch modules. If the replies to these are all successful, the switch module sends an affirmative reply to the original external switch. The switch module then processes the SFC, UFC, RCA messages (defined below in FC-SW-2) and forwards the data to the management module and the other switch modules.
In one aspect of the present invention, the management module provides a central point of control to synchronize all the switch modules in the multi-module switch. This prevents different switch modules from trying to make separate zone changes at the same time. This allows multiple switch modules to appear as one switch to external switches while keeping zone management operations consistent.
This brief summary has been provided so that the nature of the invention may be understood quickly. A more complete understanding of the invention can be obtained by reference to the following detailed description of the preferred embodiments thereof concerning the attached drawings.
The foregoing features and other features of the present invention will now be described with reference to the drawings of a preferred embodiment. In the drawings, the same components have the same reference numerals. The illustrated embodiment is intended to illustrate, but not to limit the invention. The drawings include the following Figures:
The following definitions are provided as they are typically (but not exclusively) used in the fibre channel environment, implementing the various adaptive aspects of the present invention.
“ACA”: Accept Change Authorization message defined by FC-SW-2 in section 10.6.1 provides a mechanism to lock a fabric to distribute zoning data among switches (not modules, as described below in the present invention).
“Blade”: A module in a fibre channel switch.
“Blade_Id”: A unique identifier for identifying a switch module.
“EBP”: Exchange Blade Parameters, created by Multi-Blade Protocol
“Fibre channel ANSI Standard”: The standard describes the physical interface, transmission and signaling protocol of a high performance serial link for support of other high level protocols associated with IPI, SCSI, IP, ATM and others.
“FC-1”: Fibre channel transmission protocol, which includes serial encoding, decoding and error control.
“FC-2”: Fibre channel signaling protocol that includes frame structure and byte sequences.
“FC-3”: Defines a set of fibre channel services that are common across plural ports of a node.
“FC-4”: Provides mapping between lower levels of fibre channel, IPI and SCSI command sets, HIPPI data framing, IP and other upper level protocols.
“Fabric”: A system which interconnects various ports attached to it and is capable of routing fibre channel frames by using destination identifiers provided in FC-2 frame headers.
“Fabric Topology”: This is a topology where a device is directly attached to a fibre channel fabric that uses destination identifiers embedded in frame headers to route frames through a fibre channel fabric to a desired destination.
“MR”: Merge Request as defined by FC-SW-2 in Section 10.4.3 requests the recipient to merge any active zoning data with the zoning data supplied in the MR payload.
“Multi Blade protocol”: A protocol that operates on internal switch module ports to assign a primary blade.
“Port”: A general reference to N. Sub.-Port or F.Sub.-Port.
“RCA”: Request change authorization, as defined by FC-SW-2 in section 10.6.2, request release of Local Change Authorization is each switch.
“SFC”: Stage Fabric Configuration as defined by FC-SW-2 in section 10.6.3, includes, request messages to stage Zoning Configuration change in a switch.
“UFC”: Update Fabric Configuration request messages as defined by FC-SW-2 in Section 10.6.4, update Zoning configuration in a switch.
The Fibre Channel Specification used to build one embodiment of the present invention includes:
FC-SW-2 standard; and
FC-GS-3, as published by the American National Standard Institute, both incorporated herein by reference in their entirety.
To facilitate an understanding of the preferred embodiment, the general architecture and operation of a fibre channel system will be described. The specific architecture and operation of the preferred embodiment will then be described with reference to the general architecture of the fibre channel system.
The devices of
Switch 101 includes an E_Port that enables a path to another switch 102. An inter-switch link (“ISL”) enables N_Ports to operationally couple to other N-Ports in a fabric.
Also shown in
Management module 201 is connected to all the switch modules 102A-102F in switch 200. Management module 201 provides an interface so that a switch 200 user can configure the switch.
Changes to zoning if any, as described below, may be initiated either by a switch module (e.g. 102A) or management module 201.
Blade 102A also includes processor 302 to execute the process steps described below. Processor 302 may be a Pentium™ class processor marketed by Intel Corp.™; or any other processor. Processor 302 is operationally coupled to a bus 302A and to memory 303. It is noteworthy that zoning data 202 may also be stored in memory 303.
Zoning in a fibre channel fabric may change due to the following events:
(a) At System startup—Management module 201 may transmit any saved zoning data to switch modules 102A-102F, upon system 200 start-up. Switch modules 102A-102F then initiate a Merge Request (“MR”) message to neighboring modules on external E-port connections (see FC-SW-2).
(b) By Zone MR: Neighboring switches may send MR messages to an E-port on a switch module. If the zones change, management module 201 and other switch modules are updated. If the zone merge request fails because the zones are incompatible (per zone merge rules in FC-SW-2) or insufficient resources are available for the received zone set, the 6-port that received the MR message is isolated.
(c) By Management commands to management module 201: New zoning data is sent to switch modules 102A-102F, and to other switches in Fabric 200A. Management module 201 allows a user to define zone data. When management module 201 changes zone data in Fabric 200A, it selects a switch module (e.g. 102A) to change zone data. Management module 201 sends an ACA message to the selected switch module (102A). Switch module 102A then sends the ACA to all the other switch modules (102B-102F) and to all external switches. If all switch modules (102B-102F) and external switches accept the ACA message, then switch module 102A sends an accept reply to management module 201. Management module 201 then sends the “Change Zone Data Start” message to indicate the start of the zone data, followed by the new zone data. Switch module 102A then executes SFC, UFC, and RCA protocol based messages as described by FC-SW-2 to send zoning data to other switch modules and to external switches.
(d) By Fabric Zone Server Commands: Fabric Zone Server commands (per FC-GS-3) are received on Fibre Channel ports from N-ports attached to a switch. Commands that might change zoning data are sent to management module 201. If needed, management module 201 updates Fabric 200A zoning using the same method used for management commands described in section (c) above.
(e) Zone Change request from another switch: Management commands from another switch may use the zone change protocol described in FC-SW-2 to update Management module 201 and other switch modules.
Management module 201 and switch modules 102A-102F use the following commands to execute the process steps described below:
“Activate”:
This command indicates that current Zone data became the active zone data set.
“Zone Merge Data Start”:
This command indicates that zone merge data from another switch, or zone data stored with management module 201, will be transferred.
“Zone Change Data Start”:
This command indicates that zone change data from another switch, or changed zone data from management module 201, is being transferred.
“Zone data”:
This command allows transfer of zoning data 202 to/or from management module 201.
“ACA, SFC, UFC, RCA”:
These are messages derived from zoning management messages described in FC-SW-2 and used by a switch for changing zoning in an operating Fabric.
Turning in detail to
If zone merge data has not been received from management module 201, then in step S402, the process determines if a MR message has been received from a neighboring switch. If a MR message has been received, then the process moves to step 403, described below with respect to
If an MR message is not received in step S402, then the process moves to step S404, where it determines if an ACA message has been received from an external switch. If an ACA message has been received, then zone change occurs in step S405, described below with respect to
If an ACA message is not received in step S404, the process moves to step S406. In step S406, the process determines if a fabric zone server message has been received from a N-port. If the fabric zone server message has been received, then in step S407, the fabric zone server message is sent to management module 201 and management module 201 initiates zone changes, as described below.
If fabric zone server message is not received in step S406, then in step S408, the process determines if an ACA message has been received from management module 201.
If an ACA message is received, then in step S409, zone change occurs, as described below with respect to
If an ACA message is not received in step S408, then in step S410, the process determines if an ACA message is received from another module in the same switch. If an ACA message is received in step S410, then in step S411, zone change occurs, as described below with respect to
It is noteworthy that the invention is not limited to the foregoing sequence of events, zone change may occur due to the foregoing events in any order.
Turning in detail to
In step S502, switch modules 102A-102F wait for an “Activate” zone data set.
In step S503, a switch module, e.g., 102A receives Activate zone data set from management module 201. A MR message is then sent to all neighboring external switches thereafter, the process ends in step S504.
In step S601, a switch module receives (receiving switch) a zone MR from another external switch (sending switch). For example, switch module 102A may receive a MR from an external switch.
In step S602, a Zone Merge Data Start command is sent to management module 201 by switch module 102A, which initiates zone merge data transfer. Zone data 202 is sent by switch module 102A to management module 201. The received zone data is compared with current zone data by management module 201.
In step S603, based on the comparison in step S602, management module 201 sends a reply message to switch module 102A. Switch module 102A uses the reply to send a message for the Merge Request to the sending switch. If the reply indicates incompatible zones, the link to the sending switch is isolated.
In step S604, the process ends. If management module 201 determines that zone data has changed, it sends zone data to other switch modules (102B-102F) using the process in
Turning in detail to
If a previous zone management operation is not in process in step S701, then in step S702, switch module 102A sends an ACA message to management module 201.
In step S703, management module 201 either accepts or rejects the ACA message. If the ACA message is rejected by management module 201 then the process moves to step S704.
If the ACA message is accepted by management module 201, then in step S705, switch module 102A sends the ACA message to all switch modules (e.g., 102B-102F) in the switch.
In step S706, the process determines if the other switch modules have accepted the ACA message. If the ACA message is not accepted by other switch modules, then the process moves to step S704.
If the switch modules (102B-102F) accept the ACA message, then in step S707, a reply message indicating the acceptance is sent by switch module 102A to the external switch, and switch module 102A waits for SFC data.
In step S708, switch module 102A receives the SFC message containing new zoning data from the external switch. Switch module 102A sends the SFC message to all other local switch modules (102B-102F) and management module 201.
In step S709, switch module 102A waits for UFC data from the external switch.
In step S710, switch module 102A sends Activate zone set message to management module 201.
In S711, switch module 102A sends UFC data to all other switch modules and the zone set is activated.
In step S712, switch module 102A waits for RCA from the external switch.
In step S713, switch modules 102A sends a RCA message to other switch modules (102B-102F) in the switch (e.g. 200) and to management module 201, and in step S714, the process ends.
Turning in detail to
In step S802, the process determines if all ACAs are accepted. If the ACA messages are not accepted, then in step S803, a reply regarding the rejection is sent to management module 201 by switch module 102A.
If the ACA messages are accepted, then in step S804, management module 201 sends zone data to switch module 102A.
In step S805, switch module 102A sends SFC message with zone data to all external switches and switch modules 102B-102F.
In step S806, after SFC messages are accepted, switch module 102A sends an acceptance message to management module 201. Switch module 102A then waits for Activate Zone Set command from management module 201.
In step S807, after Activate Zone command is received from management module 201, switch module 102A sends UFC command to all other switch modules 102B-102F and to all external switches.
In step S808, switch modules 102A sends an acceptance messages to management module 201 and waits for RCA from management module 201.
In step S809, switch module 102A, after receiving the RCA message from management module 201 sends RCA messages to all other switch modules 102B-102F and to external switches, and in step S810, the zone change process ends.
Turning in detail to
If switch module 102B is not performing a zone management operation, then in step S903, switch module 102B accepts the ACA message from switch module 102A, and waits for the SFC message.
In step S904, switch module 102B accepts SFC data and saves zone data from the SFC data at memory 201 and waits for a UFC message.
In step S905, switch module 102B accepts the UFC message and activates the zone set and then waits for RCA message sent by switch module 102A.
In step S906, the RCA message is sent by switch module 102A and accepted by switch module 102B.
In step S907, the process ends.
It is noteworthy that the foregoing process steps showing operation various switch modules, e.g., switch modules 102A, and/or 102B, are to illustrate the adaptive aspects of the present invention and not to limit the invention to any specific switch module.
In one aspect of the present invention, the management module provides a central point of control to synchronize all the switch modules in the multi-module switch. This prevents different switch modules from trying to make zone separate changes at the same time. This allows multiple switch modules to appear as one switch to external switches while keeping zone management operations consistent.
Although the present invention has been described with reference to specific embodiments, these embodiments are illustrative only and not limiting. Many other applications and embodiments of the present invention will be apparent in light of this disclosure and the following claims.
This application is a continuation of application Ser. No. 10/241,153, filed on Sep. 11, 2002, now U.S. Pat. No. 7,397,768 the entire contents of which are hereby incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
4081612 | Hafner | Mar 1978 | A |
4162375 | Schlichte | Jul 1979 | A |
4200929 | Davidjuk et al. | Apr 1980 | A |
4258418 | Heath | Mar 1981 | A |
4268906 | Bourke et al. | May 1981 | A |
4333143 | Calder | Jun 1982 | A |
4344132 | Dixon et al. | Aug 1982 | A |
4382159 | Bowditch | May 1983 | A |
4425640 | Philip et al. | Jan 1984 | A |
4449182 | Rubinson et al. | May 1984 | A |
4546468 | Christmas et al. | Oct 1985 | A |
4549263 | Calder | Oct 1985 | A |
4569043 | Simmons et al. | Feb 1986 | A |
4691296 | Struger | Sep 1987 | A |
4716561 | Angell et al. | Dec 1987 | A |
4725835 | Schreiner et al. | Feb 1988 | A |
4777595 | Strecker et al. | Oct 1988 | A |
4783730 | Fischer et al. | Nov 1988 | A |
4783739 | Calder | Nov 1988 | A |
4803622 | Bain, Jr. et al. | Feb 1989 | A |
4821034 | Anderson et al. | Apr 1989 | A |
4860193 | Bentley et al. | Aug 1989 | A |
4964119 | Endo et al. | Oct 1990 | A |
4980857 | Walter et al. | Dec 1990 | A |
5025370 | Koegel et al. | Jun 1991 | A |
5051742 | Hullett et al. | Sep 1991 | A |
5090011 | Fukuta et al. | Feb 1992 | A |
5115430 | Hahne et al. | May 1992 | A |
5129064 | Fogg, Jr. et al. | Jul 1992 | A |
5144622 | Takiyasu et al. | Sep 1992 | A |
5212795 | Hendry | May 1993 | A |
5249279 | Schmenk et al. | Sep 1993 | A |
5258751 | DeLuca et al. | Nov 1993 | A |
5260933 | Rouse | Nov 1993 | A |
5260935 | Turner | Nov 1993 | A |
5276807 | Kodama et al. | Jan 1994 | A |
5280483 | Kamoi et al. | Jan 1994 | A |
5291481 | Doshi et al. | Mar 1994 | A |
5321816 | Rogan et al. | Jun 1994 | A |
5339311 | Turner | Aug 1994 | A |
5347638 | Desai et al. | Sep 1994 | A |
5367520 | Cordell | Nov 1994 | A |
5371861 | Keener et al. | Dec 1994 | A |
5390173 | Spinney et al. | Feb 1995 | A |
5425022 | Clark et al. | Jun 1995 | A |
5448702 | Garcia, Jr. et al. | Sep 1995 | A |
5537400 | Diaz et al. | Jul 1996 | A |
5568165 | Kimura | Oct 1996 | A |
5568167 | Galbi et al. | Oct 1996 | A |
5568614 | Mendelson et al. | Oct 1996 | A |
5579443 | Tatematsu et al. | Nov 1996 | A |
5590125 | Acampora et al. | Dec 1996 | A |
5594672 | Hicks | Jan 1997 | A |
5598541 | Malladi et al. | Jan 1997 | A |
5610745 | Bennett | Mar 1997 | A |
5623492 | Teraslinna | Apr 1997 | A |
5638518 | Malladi | Jun 1997 | A |
5647057 | Roden et al. | Jul 1997 | A |
5664197 | Kardach et al. | Sep 1997 | A |
5666483 | McClary | Sep 1997 | A |
5671365 | Binford et al. | Sep 1997 | A |
5677909 | Heide | Oct 1997 | A |
5687172 | Cloonan et al. | Nov 1997 | A |
5701416 | Thorson et al. | Dec 1997 | A |
5706279 | Teraslinna | Jan 1998 | A |
5729762 | Kardach et al. | Mar 1998 | A |
5732206 | Mendel | Mar 1998 | A |
5740467 | Chmielecki et al. | Apr 1998 | A |
5748612 | Stoevhase et al. | May 1998 | A |
5751710 | Crowther et al. | May 1998 | A |
5757771 | Li et al. | May 1998 | A |
5758187 | Young | May 1998 | A |
5761427 | Shah et al. | Jun 1998 | A |
5764927 | Murphy et al. | Jun 1998 | A |
5768271 | Seid et al. | Jun 1998 | A |
5768533 | Ran | Jun 1998 | A |
5784358 | Smith et al. | Jul 1998 | A |
5790545 | Holt et al. | Aug 1998 | A |
5790840 | Bulka et al. | Aug 1998 | A |
5812525 | Teraslinna | Sep 1998 | A |
5818842 | Burwell et al. | Oct 1998 | A |
5821875 | Lee et al. | Oct 1998 | A |
5822300 | Johnson et al. | Oct 1998 | A |
5825748 | Barkey et al. | Oct 1998 | A |
5828475 | Bennett et al. | Oct 1998 | A |
5828903 | Sethuram et al. | Oct 1998 | A |
5835748 | Orenstein et al. | Nov 1998 | A |
5835752 | Chiang et al. | Nov 1998 | A |
5850386 | Anderson et al. | Dec 1998 | A |
5875343 | Binford et al. | Feb 1999 | A |
5881296 | Williams et al. | Mar 1999 | A |
5892604 | Yamanaka et al. | Apr 1999 | A |
5892969 | Young | Apr 1999 | A |
5894560 | Carmichael et al. | Apr 1999 | A |
5905905 | Dailey et al. | May 1999 | A |
5917723 | Binford | Jun 1999 | A |
5925119 | Maroney | Jul 1999 | A |
5936442 | Liu et al. | Aug 1999 | A |
5937169 | Connery et al. | Aug 1999 | A |
5954796 | McCarty et al. | Sep 1999 | A |
5968143 | Chisholm et al. | Oct 1999 | A |
5974547 | Klimenko | Oct 1999 | A |
5978359 | Caldara et al. | Nov 1999 | A |
5978379 | Chan et al. | Nov 1999 | A |
5983292 | Nordstrom et al. | Nov 1999 | A |
5987028 | Yang et al. | Nov 1999 | A |
5999528 | Chow et al. | Dec 1999 | A |
6006340 | O'Connell | Dec 1999 | A |
6009226 | Tsuji et al. | Dec 1999 | A |
6011779 | Wills | Jan 2000 | A |
6014383 | McCarty | Jan 2000 | A |
6021128 | Hosoya et al. | Feb 2000 | A |
6026092 | Abu-Amara et al. | Feb 2000 | A |
6031842 | Trevitt et al. | Feb 2000 | A |
6046979 | Bauman | Apr 2000 | A |
6047323 | Krause | Apr 2000 | A |
6049802 | Waggener, Jr. et al. | Apr 2000 | A |
6055603 | Ofer et al. | Apr 2000 | A |
6055618 | Thorson | Apr 2000 | A |
6061360 | Miller et al. | May 2000 | A |
6078970 | Nordstrom | Jun 2000 | A |
6081512 | Muller et al. | Jun 2000 | A |
6085277 | Nordstrom et al. | Jul 2000 | A |
6108738 | Chambers et al. | Aug 2000 | A |
6108778 | LaBerge | Aug 2000 | A |
6115761 | Daniel et al. | Sep 2000 | A |
6118776 | Berman | Sep 2000 | A |
6118791 | Fichou et al. | Sep 2000 | A |
6128292 | Kim et al. | Oct 2000 | A |
6131123 | Hurst et al. | Oct 2000 | A |
6134127 | Kirchberg | Oct 2000 | A |
6138176 | McDonald et al. | Oct 2000 | A |
6144668 | Bass et al. | Nov 2000 | A |
6147976 | Shand et al. | Nov 2000 | A |
6148421 | Hoese et al. | Nov 2000 | A |
6151644 | Wu | Nov 2000 | A |
6158014 | Henson | Dec 2000 | A |
6160813 | Banks et al. | Dec 2000 | A |
6185203 | Berman | Feb 2001 | B1 |
6185620 | Weber et al. | Feb 2001 | B1 |
6201787 | Baldwin et al. | Mar 2001 | B1 |
6209089 | Selitrennikoff et al. | Mar 2001 | B1 |
6229822 | Chow et al. | May 2001 | B1 |
6230276 | Hayden | May 2001 | B1 |
6233244 | Runaldue et al. | May 2001 | B1 |
6240096 | Book | May 2001 | B1 |
6246683 | Connery et al. | Jun 2001 | B1 |
6247060 | Boucher et al. | Jun 2001 | B1 |
6252891 | Perches | Jun 2001 | B1 |
6253267 | Kim et al. | Jun 2001 | B1 |
6269413 | Sherlock | Jul 2001 | B1 |
6278708 | Von Hammerstein et al. | Aug 2001 | B1 |
6286011 | Velamuri et al. | Sep 2001 | B1 |
6289002 | Henson et al. | Sep 2001 | B1 |
6301612 | Selitrennikoff et al. | Oct 2001 | B1 |
6307857 | Yokoyama et al. | Oct 2001 | B1 |
6308220 | Mathur | Oct 2001 | B1 |
6311204 | Mills | Oct 2001 | B1 |
6324181 | Wong et al. | Nov 2001 | B1 |
6330236 | Ofek et al. | Dec 2001 | B1 |
6333932 | Kobayasi et al. | Dec 2001 | B1 |
6334153 | Boucher et al. | Dec 2001 | B2 |
6335935 | Kadambi et al. | Jan 2002 | B2 |
6343324 | Hubis et al. | Jan 2002 | B1 |
6353612 | Zhu et al. | Mar 2002 | B1 |
6370605 | Chong | Apr 2002 | B1 |
6389479 | Boucher et al. | May 2002 | B1 |
6393487 | Boucher et al. | May 2002 | B2 |
6397360 | Bruns | May 2002 | B1 |
6401128 | Stai et al. | Jun 2002 | B1 |
6404749 | Falk | Jun 2002 | B1 |
6411599 | Blanc et al. | Jun 2002 | B1 |
6411627 | Hullett et al. | Jun 2002 | B1 |
6418477 | Verma | Jul 2002 | B1 |
6421342 | Schwartz et al. | Jul 2002 | B1 |
6421711 | Blumenau et al. | Jul 2002 | B1 |
6424658 | Mathur | Jul 2002 | B1 |
6425021 | Ghodrat et al. | Jul 2002 | B1 |
6425034 | Steinmetz et al. | Jul 2002 | B1 |
6427171 | Craft et al. | Jul 2002 | B1 |
6427173 | Boucher et al. | Jul 2002 | B1 |
6434620 | Boucher et al. | Aug 2002 | B1 |
6434630 | Micalizzi, Jr. et al. | Aug 2002 | B1 |
6438628 | Messerly et al. | Aug 2002 | B1 |
6449274 | Holden et al. | Sep 2002 | B1 |
6452915 | Jorgensen | Sep 2002 | B1 |
6457090 | Young | Sep 2002 | B1 |
6463032 | Lau et al. | Oct 2002 | B1 |
6467008 | Gentry et al. | Oct 2002 | B1 |
6470026 | Pearson et al. | Oct 2002 | B1 |
6470173 | Okada et al. | Oct 2002 | B1 |
6470415 | Starr et al. | Oct 2002 | B1 |
6480500 | Erimli et al. | Nov 2002 | B1 |
6502189 | Westby | Dec 2002 | B1 |
6504846 | Yu et al. | Jan 2003 | B1 |
6509988 | Saito | Jan 2003 | B1 |
6522656 | Gridley | Feb 2003 | B1 |
6532212 | Soloway et al. | Mar 2003 | B1 |
6546010 | Merchant et al. | Apr 2003 | B1 |
6553036 | Miller et al. | Apr 2003 | B1 |
6563796 | Saito | May 2003 | B1 |
6564271 | Micalizzi et al. | May 2003 | B2 |
6570850 | Gutierrez et al. | May 2003 | B1 |
6570853 | Johnson et al. | May 2003 | B1 |
6591302 | Boucher et al. | Jul 2003 | B2 |
6594231 | Byham et al. | Jul 2003 | B1 |
6594329 | Susnow | Jul 2003 | B1 |
6597691 | Anderson et al. | Jul 2003 | B1 |
6597777 | Ho | Jul 2003 | B1 |
6606690 | Padovano | Aug 2003 | B2 |
6614796 | Black et al. | Sep 2003 | B1 |
6622206 | Kanamaru et al. | Sep 2003 | B1 |
6625157 | Niu et al. | Sep 2003 | B2 |
6629161 | Matsuki et al. | Sep 2003 | B2 |
6643298 | Brunheroto et al. | Nov 2003 | B1 |
6657962 | Barri et al. | Dec 2003 | B1 |
6684209 | Ito et al. | Jan 2004 | B1 |
6697359 | George | Feb 2004 | B1 |
6697368 | Chang et al. | Feb 2004 | B2 |
6697914 | Hospodor et al. | Feb 2004 | B1 |
6700877 | Lorenz et al. | Mar 2004 | B1 |
6718497 | Whitby-Strevens | Apr 2004 | B1 |
6721799 | Slivkoff | Apr 2004 | B1 |
6725388 | Susnow | Apr 2004 | B1 |
6738381 | Agnevik et al. | May 2004 | B1 |
6744772 | Eneboe et al. | Jun 2004 | B1 |
6760302 | Ellinas et al. | Jul 2004 | B1 |
6765871 | Knobel et al. | Jul 2004 | B1 |
6775693 | Adams | Aug 2004 | B1 |
6779083 | Ito et al. | Aug 2004 | B2 |
6785241 | Lu et al. | Aug 2004 | B1 |
6807181 | Weschler | Oct 2004 | B1 |
6810440 | Micalizzi, Jr. et al. | Oct 2004 | B2 |
6810442 | Lin | Oct 2004 | B1 |
6816492 | Turner et al. | Nov 2004 | B1 |
6816750 | Klaas | Nov 2004 | B1 |
6859435 | Lee et al. | Feb 2005 | B1 |
6865155 | Wong et al. | Mar 2005 | B1 |
6865157 | Scott et al. | Mar 2005 | B1 |
6886141 | Kunz et al. | Apr 2005 | B1 |
6888831 | Hospodor et al. | May 2005 | B1 |
6901072 | Wong | May 2005 | B1 |
6904507 | Gil | Jun 2005 | B2 |
6922408 | Bloch et al. | Jul 2005 | B2 |
6928470 | Hamlin | Aug 2005 | B1 |
6934799 | Acharya et al. | Aug 2005 | B2 |
6941357 | Nguyen et al. | Sep 2005 | B2 |
6941482 | Strong | Sep 2005 | B2 |
6947393 | Hooper, III | Sep 2005 | B2 |
6952659 | King et al. | Oct 2005 | B2 |
6968463 | Pherson et al. | Nov 2005 | B2 |
6975627 | Parry et al. | Dec 2005 | B1 |
6983342 | Helenic et al. | Jan 2006 | B2 |
6987768 | Kojima et al. | Jan 2006 | B1 |
6988130 | Blumenau et al. | Jan 2006 | B2 |
6988149 | Odenwald | Jan 2006 | B2 |
7000025 | Wilson | Feb 2006 | B1 |
7002926 | Eneboe et al. | Feb 2006 | B1 |
7010607 | Bunton | Mar 2006 | B1 |
7024410 | Ito et al. | Apr 2006 | B2 |
7031615 | Genrile | Apr 2006 | B2 |
7039070 | Kawakatsu | May 2006 | B2 |
7039870 | Takaoka et al. | May 2006 | B2 |
7047326 | Crosbie et al. | May 2006 | B1 |
7050392 | Valdevit | May 2006 | B2 |
7051182 | Blumenau et al. | May 2006 | B2 |
7055068 | Riedl | May 2006 | B2 |
7061862 | Horiguchi et al. | Jun 2006 | B2 |
7061871 | Sheldon et al. | Jun 2006 | B2 |
7076569 | Bailey et al. | Jul 2006 | B1 |
7082126 | Ain et al. | Jul 2006 | B2 |
7092374 | Gubbi | Aug 2006 | B1 |
7110394 | Chamdani et al. | Sep 2006 | B1 |
7120728 | Krakirian et al. | Oct 2006 | B2 |
7123306 | Goto et al. | Oct 2006 | B1 |
7124169 | Shimozono et al. | Oct 2006 | B2 |
7150021 | Vajjhala et al. | Dec 2006 | B1 |
7151778 | Zhu et al. | Dec 2006 | B2 |
7171050 | Kim | Jan 2007 | B2 |
7185062 | Lolayekar et al. | Feb 2007 | B2 |
7187688 | Garmire et al. | Mar 2007 | B2 |
7188364 | Volpano | Mar 2007 | B2 |
7190667 | Susnow et al. | Mar 2007 | B2 |
7194538 | Rabe et al. | Mar 2007 | B1 |
7200108 | Beer et al. | Apr 2007 | B2 |
7200610 | Prawdiuk et al. | Apr 2007 | B1 |
7209478 | Rojas et al. | Apr 2007 | B2 |
7215680 | Mullendore et al. | May 2007 | B2 |
7221650 | Cooper et al. | May 2007 | B1 |
7230929 | Betker et al | Jun 2007 | B2 |
7233570 | Gregg | Jun 2007 | B2 |
7233985 | Hahn et al. | Jun 2007 | B2 |
7239641 | Banks et al. | Jul 2007 | B1 |
7245613 | Winkles et al. | Jul 2007 | B1 |
7245627 | Goldenberg et al. | Jul 2007 | B2 |
7248580 | George et al. | Jul 2007 | B2 |
7263593 | Honda et al. | Aug 2007 | B2 |
7266286 | Tanizawa et al. | Sep 2007 | B2 |
7269131 | Cashman et al. | Sep 2007 | B2 |
7269168 | Roy et al. | Sep 2007 | B2 |
7275103 | Thrasher et al. | Sep 2007 | B1 |
7277431 | Walter et al. | Oct 2007 | B2 |
7287063 | Baldwin et al. | Oct 2007 | B2 |
7292593 | Winkles et al. | Nov 2007 | B1 |
7315511 | Morita et al. | Jan 2008 | B2 |
7319669 | Kunz et al. | Jan 2008 | B1 |
7327680 | Kloth | Feb 2008 | B1 |
7334046 | Betker | Feb 2008 | B1 |
7346707 | Erimli | Mar 2008 | B1 |
7352701 | Kunz | Apr 2008 | B1 |
7352740 | Hammons et al. | Apr 2008 | B2 |
7362702 | Terrell et al. | Apr 2008 | B2 |
7397788 | Mies et al. | Jul 2008 | B2 |
7406034 | Cometto et al. | Jul 2008 | B1 |
7406092 | Dropps et al. | Jul 2008 | B2 |
7424533 | Di Benedetto et al. | Sep 2008 | B1 |
7443794 | George et al. | Oct 2008 | B2 |
7460534 | Ballenger | Dec 2008 | B1 |
7466700 | Dropps et al. | Dec 2008 | B2 |
7471691 | Black et al. | Dec 2008 | B2 |
7492780 | Goolsby | Feb 2009 | B1 |
20010011357 | Mori | Aug 2001 | A1 |
20010022823 | Renaud | Sep 2001 | A1 |
20010033552 | Barrack et al. | Oct 2001 | A1 |
20010038628 | Ofek et al. | Nov 2001 | A1 |
20010043564 | Bloch et al. | Nov 2001 | A1 |
20010047460 | Kobayashi et al. | Nov 2001 | A1 |
20020016838 | Geluc et al. | Feb 2002 | A1 |
20020034178 | Schmidt et al. | Mar 2002 | A1 |
20020071387 | Horiguchi et al. | Jun 2002 | A1 |
20020103913 | Tawil et al. | Aug 2002 | A1 |
20020104039 | DeRolf et al. | Aug 2002 | A1 |
20020118692 | Oberman et al. | Aug 2002 | A1 |
20020122428 | Fan et al. | Sep 2002 | A1 |
20020124102 | Kramer et al. | Sep 2002 | A1 |
20020124124 | Matsumoto et al. | Sep 2002 | A1 |
20020147560 | Devins et al. | Oct 2002 | A1 |
20020147843 | Rao | Oct 2002 | A1 |
20020156918 | Valdevit et al. | Oct 2002 | A1 |
20020159385 | Susnow et al. | Oct 2002 | A1 |
20020172195 | Pekkala et al. | Nov 2002 | A1 |
20020174197 | Schimke et al. | Nov 2002 | A1 |
20020191602 | Woodring et al. | Dec 2002 | A1 |
20020194294 | Blumenau et al. | Dec 2002 | A1 |
20020196773 | Berman | Dec 2002 | A1 |
20030002503 | Brewer et al. | Jan 2003 | A1 |
20030002516 | Boock et al. | Jan 2003 | A1 |
20030016683 | George et al. | Jan 2003 | A1 |
20030021239 | Mullendore et al. | Jan 2003 | A1 |
20030026267 | Oberman et al. | Feb 2003 | A1 |
20030026287 | Mullendore et al. | Feb 2003 | A1 |
20030033487 | Pfister et al. | Feb 2003 | A1 |
20030035433 | Craddock et al. | Feb 2003 | A1 |
20030037159 | Zhao et al. | Feb 2003 | A1 |
20030046396 | Richter et al. | Mar 2003 | A1 |
20030056000 | Mullendore et al. | Mar 2003 | A1 |
20030056032 | Micalizzi, Jr. et al. | Mar 2003 | A1 |
20030063567 | Dehart | Apr 2003 | A1 |
20030072316 | Niu et al. | Apr 2003 | A1 |
20030076788 | Grabauskas et al. | Apr 2003 | A1 |
20030079019 | Lolayekar et al. | Apr 2003 | A1 |
20030084219 | Yao et al. | May 2003 | A1 |
20030086377 | Berman | May 2003 | A1 |
20030091062 | Lay et al. | May 2003 | A1 |
20030093607 | Main et al. | May 2003 | A1 |
20030103451 | Lutgen et al. | Jun 2003 | A1 |
20030112819 | Kofoed et al. | Jun 2003 | A1 |
20030115355 | Cometto et al. | Jun 2003 | A1 |
20030117961 | Chuah et al. | Jun 2003 | A1 |
20030118053 | Edsall et al. | Jun 2003 | A1 |
20030120743 | Coatney et al. | Jun 2003 | A1 |
20030120791 | Weber et al. | Jun 2003 | A1 |
20030120983 | Vieregge et al. | Jun 2003 | A1 |
20030126223 | Jenne et al. | Jul 2003 | A1 |
20030126242 | Chang | Jul 2003 | A1 |
20030126320 | Liu et al. | Jul 2003 | A1 |
20030131105 | Czeiger et al. | Jul 2003 | A1 |
20030137941 | Kaushik et al. | Jul 2003 | A1 |
20030139900 | Robison | Jul 2003 | A1 |
20030152076 | Lee et al. | Aug 2003 | A1 |
20030172149 | Edsall et al. | Sep 2003 | A1 |
20030172239 | Swank | Sep 2003 | A1 |
20030174652 | Ebata | Sep 2003 | A1 |
20030174721 | Black et al. | Sep 2003 | A1 |
20030174789 | Waschura et al. | Sep 2003 | A1 |
20030179709 | Huff | Sep 2003 | A1 |
20030179748 | George et al. | Sep 2003 | A1 |
20030179755 | Fraser | Sep 2003 | A1 |
20030189930 | Terrell et al. | Oct 2003 | A1 |
20030189935 | Warden et al. | Oct 2003 | A1 |
20030191857 | Terrell et al. | Oct 2003 | A1 |
20030191883 | April | Oct 2003 | A1 |
20030195983 | Krause | Oct 2003 | A1 |
20030198238 | Westby | Oct 2003 | A1 |
20030200315 | Goldenberg et al. | Oct 2003 | A1 |
20030218986 | DeSanti et al. | Nov 2003 | A1 |
20030229808 | Heintz et al. | Dec 2003 | A1 |
20030236953 | Grieff et al. | Dec 2003 | A1 |
20040013088 | Gregg | Jan 2004 | A1 |
20040013092 | Betker et al. | Jan 2004 | A1 |
20040013113 | Singh et al. | Jan 2004 | A1 |
20040013125 | Betker et al. | Jan 2004 | A1 |
20040015638 | Forbes | Jan 2004 | A1 |
20040024831 | Yang et al. | Feb 2004 | A1 |
20040027989 | Martin et al. | Feb 2004 | A1 |
20040028038 | Anderson et al. | Feb 2004 | A1 |
20040054776 | Klotz et al. | Mar 2004 | A1 |
20040054866 | Blumenau et al. | Mar 2004 | A1 |
20040057389 | Klotz et al. | Mar 2004 | A1 |
20040064664 | Gil | Apr 2004 | A1 |
20040081186 | Warren et al. | Apr 2004 | A1 |
20040081196 | Elliott | Apr 2004 | A1 |
20040081394 | Biren et al. | Apr 2004 | A1 |
20040085955 | Walter et al. | May 2004 | A1 |
20040085974 | Mies et al. | May 2004 | A1 |
20040085994 | Warren et al. | May 2004 | A1 |
20040092278 | Diepstraten et al. | May 2004 | A1 |
20040100944 | Richmond et al. | May 2004 | A1 |
20040109418 | Fedorkow et al. | Jun 2004 | A1 |
20040123181 | Moon et al. | Jun 2004 | A1 |
20040125799 | Buer | Jul 2004 | A1 |
20040141518 | Milligan et al. | Jul 2004 | A1 |
20040141521 | George et al. | Jul 2004 | A1 |
20040151188 | Maveli et al. | Aug 2004 | A1 |
20040153526 | Haun et al. | Aug 2004 | A1 |
20040153566 | Lalsangi et al. | Aug 2004 | A1 |
20040153863 | Klotz et al. | Aug 2004 | A1 |
20040153914 | El-Batal | Aug 2004 | A1 |
20040174813 | Kasper et al. | Sep 2004 | A1 |
20040202189 | Arndt et al. | Oct 2004 | A1 |
20040208201 | Otake | Oct 2004 | A1 |
20040218531 | Cherian et al. | Nov 2004 | A1 |
20040267982 | Jackson et al. | Dec 2004 | A1 |
20050018673 | Dropps et al. | Jan 2005 | A1 |
20050023656 | Leedy | Feb 2005 | A1 |
20050036485 | Eilers et al. | Feb 2005 | A1 |
20050036499 | Dutt et al. | Feb 2005 | A1 |
20050036763 | Kato et al. | Feb 2005 | A1 |
20050047334 | Paul et al. | Mar 2005 | A1 |
20050058148 | Castellano et al. | Mar 2005 | A1 |
20050073956 | Moores et al. | Apr 2005 | A1 |
20050076113 | Klotz et al. | Apr 2005 | A1 |
20050088969 | Carlsen et al. | Apr 2005 | A1 |
20050099970 | Halliday | May 2005 | A1 |
20050108444 | Flauaus et al. | May 2005 | A1 |
20050111845 | Nelson et al. | May 2005 | A1 |
20050117522 | Basavaiah et al. | Jun 2005 | A1 |
20050177641 | Yamagami | Aug 2005 | A1 |
20050198523 | Shanbhag et al. | Sep 2005 | A1 |
20060013248 | Mujeeb et al. | Jan 2006 | A1 |
20060034192 | Hurley et al. | Feb 2006 | A1 |
20060034302 | Peterson | Feb 2006 | A1 |
20060047852 | Shah et al. | Mar 2006 | A1 |
20060074927 | Sullivan et al. | Apr 2006 | A1 |
20060107260 | Motta | May 2006 | A1 |
20060143300 | See et al. | Jun 2006 | A1 |
20060156083 | Jang et al. | Jul 2006 | A1 |
20060184711 | Pettey | Aug 2006 | A1 |
20060203725 | Paul et al. | Sep 2006 | A1 |
20060274744 | Nagai et al. | Dec 2006 | A1 |
20070206502 | Martin et al. | Sep 2007 | A1 |
Number | Date | Country |
---|---|---|
0649098 | Apr 1995 | EP |
0738978 | Oct 1996 | EP |
0856969 | Aug 1998 | EP |
1059588 | Dec 2000 | EP |
WO-9506286 | Mar 1995 | WO |
WO-9836537 | Aug 1998 | WO |
WO-0058843 | Oct 2000 | WO |
WO-0195566 | Dec 2001 | WO |
WO-03088050 | Oct 2003 | WO |
Number | Date | Country | |
---|---|---|---|
Parent | 10241153 | Sep 2002 | US |
Child | 11682199 | US |