Zone reactor incorporating reversible hydrogen halide capture and release

Information

  • Patent Grant
  • 7998438
  • Patent Number
    7,998,438
  • Date Filed
    Tuesday, May 27, 2008
    16 years ago
  • Date Issued
    Tuesday, August 16, 2011
    12 years ago
Abstract
An improved process and a zone reactor for converting a hydrocarbon feedstock into higher hydrocarbons is provided. A first zone in the reactor contains both a material capable of releasing hydrogen halide (HX) and a carbon-carbon coupling catalyst; a second zone is initially empty or contains a halogenation and/or oxyhalogenation catalyst; and a third zone contains both a carbon-carbon coupling catalyst and a material capable of capturing HX. Air or oxygen is introduced into the first zone, a feedstock is introduced into the second zone, and products are produced in the third zone. HX produced during the reaction is reversibly captured and released in zones 1 and 3.
Description
FIELD OF THE INVENTION

This invention relates to a process and apparatus for converting hydrocarbon feedstocks into higher hydrocarbons.


BACKGROUND OF THE INVENTION

U.S. Pat. No. 6,525,230 discloses a method of converting alkanes to alcohols and/or ethers, and a zone reactor comprised of a hollow, unsegregated interior defining first, second, and third zones. In a first embodiment, air or oxygen reacts with metal bromide in the first zone to provide bromine; bromine reacts with alkane(s) in the second zone to form alkyl bromides; and the alkyl bromides react with metal oxide in the third zone to form the corresponding product(s). Metal bromide from the third zone is transported through the vessel to the first zone, and metal oxide from the first zone is recycled to the third zone. A second embodiment differs from the first embodiment in that metal oxide is transported through the vessel from the first zone to the third zone, and metal bromide is recycled from the third zone to the first zone. In a third embodiment, the flow of gases through the vessel is reversed to convert the metal oxide back to metal bromide and to convert the metal bromide back to the metal oxide.


SUMMARY OF THE INVENTION

The present invention provides an improved zone reactor and a process for converting a hydrocarbon feedstock into one or more higher hydrocarbons. In one embodiment, an improved zone reactor comprises a vessel having first, second, and third zones, wherein the first zone contains both a material capable of releasing hydrogen halide (HX) and a carbon-carbon coupling catalyst; the second zone is initially empty (other than an ambient atmosphere) or contains a halogenation and/or oxyhalogenation catalyst; and the third zone contains both a carbon-carbon coupling catalyst and a material capable of capturing HX. Gases can flow through each of the first, second, and third zones. Preferably a gas inlet and/or outlet is provided in each of the first, second, and third zones, including an inlet in zone 2 for introducing a gaseous hydrocarbon feedstock.


In another aspect of the invention, an improved process for converting a hydrocarbon feedstock into higher hydrocarbons comprises forming HX by heating a material capable of releasing HX, in the presence of air or oxygen; optionally decoking a carbon-carbon coupling catalyst; forming alkyl halides by reacting a hydrocarbon feedstock with HX in the presence of air or oxygen; forming higher hydrocarbons and HX (and, less desirably, coke) by reacting the alkyl halides in the presence of a carbon-carbon coupling catalyst; and capturing HX by reacting it with a material capable of capturing HX. Preferably, the process is repeated multiple times, with alternating HX release and capture and alternating coking and decoking of the coupling catalyst. In one embodiment, HX is released by dehydrohalogenating a partially halogenated olefin or polyolefin, and captured by hydrohalogenating the olefin or polyolefin.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other aspects and features of the invention will become more clear when considering in light of the appended drawings, wherein:



FIG. 1 is a schematic diagram of a zone reactor according to one embodiment of the invention; and



FIG. 2 is a schematic diagram of zone 2 of an improved zone reactor according to another embodiment to the present invention.





DETAILED DESCRIPTION OF THE INVENTION

The present invention provides a process and an improved zone reactor for converting a hydrocarbon feedstock into one or more useful products, i.e., “higher hydrocarbons.” Generally, the process comprises forming a first stream or quantity of hydrogen halide (HX) by heating a material capable of releasing HX in air or oxygen; forming alkyl halides by reacting a hydrocarbon feedstock and the first stream of HX in air or oxygen; forming higher hydrocarbons and a second stream or quantity of HX by reacting the alkyl halides in the presence of a second carbon-carbon coupling catalyst; and capturing the second stream of HX by reacting it with a material capable of capturing HX.


The general features and mode of operation of one embodiment of an improved zone reactor are schematically depicted in FIGS. 1A and 1B. A zone reactor 10 in the form of a generally hollow vessel contains a first zone 1 which is further subdivided into two subzones, 1A and 1B; a second zone 2; and a third zone 3, which is further subdivided into zones 3A and 3B.


Initially, zone 1A contains a material capable of releasing HX, as described below. Zone 1B contains a carbon-carbon coupling catalyst, which catalyzes carbon-carbon bond formation and the generation of higher hydrocarbons. Although not bound by theory, it is believed that carbon-carbon bond formation proceeds via intermolecular—and possibly even intramolecular —metathesis reactions of alkyl halide molecules. In the drawing, the catalyst in zone 1B is also coated and/or impregnated with coke, as described below. When the reactor is loaded for its inaugural run, however, no coke is present. Zone 2 is either empty or contains a halogenation and/or oxyhalogenation catalyst or cataloreactant. Zone 3B also contains a carbon-carbon coupling catalyst, and zone 3A contains a material capable of capturing HX.


A first opening or inlet 4 in the left end of the reactor allows air or oxygen to be introduced into the vessel. A second opening or inlet 5 in the middle of the reactor allows a gaseous hydrocarbon feedstock to be introduced, and a third opening or inlet 6, in the right end of the vessel allows product(s) to be withdrawn. In addition, each of the zones and subzones meet at boundaries 7 that permit the flow of gases into adjoining zones. In one embodiment, the vessel has an unsegregated interior, and adjacent zones and subzones are not physically separated from one another. In another embodiment, adjacent zones and subzones are separated by a screen, or by a wall or other divider that has at least one opening provided therein to permit gases to flow from one zone or subzone to the next. Various heaters and/or coolers (not shown) are thermally coupled to the vessel, directly or indirectly, to facilitate temperature control at each zone and subzone.


As shown in FIG. 1A, initially the reactor operates from left to right, with air or oxygen being introduced through a gas inlet 4 into zone 1A, causing the material contained therein to release gaseous HX. Heated air or oxygen and HX from zone 1A pass into zone 1B and into contact with the carbon-carbon coupling catalyst. The air or oxygen reacts with any coke that has previously been deposited in or on the catalyst and converts it to CO2. In the presence of an excess of air or oxygen, any CO that is formed will also be converted to CO2.


In zone 2, a gaseous, hydrocarbon feedstock is introduced into the vessel through the second gas inlet 5 and allowed to react with HX in the presence of air or oxygen and, preferably, a halogenation and/or oxyhalogenation catalyst or cataloreactant. This results in the formation of one or more alkyl halides (RX) and steam, which are carried, along with any HX that is present, into zone 3B. There, the alkyl halide(s) react in the presence of a carbon-carbon coupling catalyst and are converted to higher hydrocarbons and HX. The reaction also can, and typically will, result in the formation of coke, with coke particles being deposited on the carbon-carbon coupling catalyst as a coating and/or within the interstitial voids of the catalyst. The HX that is formed then reacts with a material capable of capturing it in zone 3A. The gaseous hydrocarbon products, CO2, residual air (or its oxygen-depleted components), water, and possibly other species, are carried out of the reactor vessel through the third opening 6 and can be collected, separated and purified, further reacted, and/or processed in some other manner.



FIG. 1B illustrates the zone reactor ready for a run in the reverse direction, from right to left. The reactor 10 still contains zones 1-3 and subzones 1A, 1B, 3B, and 3A, but now the material in zone 3A is capable of releasing HX when heated in air or oxygen (having been hydrohalogenated when the reactor was run in the forward direction). Similarly, the catalyst in zone 3B is now coated and/or impregnated with coke, whereas the catalyst in zone 1B has little or (ideally) no coke. The material in zone 1A is ready to react with, and thereby capture and store, HX. Air or oxygen is introduced through the third inlet 6 in zone 3A and causes the material contained therein to release HX, which flows, along with air or oxygen, into zone 3B. The air or oxygen oxidizes the coke that has been deposited on the carbon-carbon coupling catalyst. HX and air or oxygen are carried downstream into zone 2, where they react with the hydrocarbon feedstock to form alkyl halides and steam, which pass into zone 1B. The alkyl halides react in zone 1B in the presence of the carbon-carbon coupling catalyst, and form hydrocarbon products, HX, and coke (which is deposited on and/or in the catalyst). HX, CO2, air or its components, steam, and possibly other gases then pass into zone 1A, and the HX reacts with and is captured by the material contained therein. Products and residual gases exit through the first opening 4. The reactor is again ready to be run in the forward direction. By cycling between the forward and reverse directions, the reactor can be operated continually.


In an alternate embodiment, the flow of gaseous reactants always maintains the same direction, and the reaction zones are stationary. However, the solids are continuously regenerated. As the halide contained within zone 1A is depleted, solid is withdrawn at a constant rate from that zone and transported into zone 3A. Similarly, fully regenerated solid is constantly withdrawn from zone 3A and transported back to zone 1A. The solid transport between zones 1A and 3A is facilitated by gravity, pneumatic transport, other mechanical means (e.g., conveyors), or a combination of methods. In a similar manner, regenerated carbon-carbon coupling catalyst in zone 1B is continuously withdrawn and transported to zone 3B, and coked carbon-carbon coupling catalyst is transported from Zone 3B to Zone 1B for regeneration. Transport of the coupling catalyst is facilitated by gravity, pneumatic transport, other mechanical means, or a combination of methods.


As used here and in the claims, the use of the singular or the plural in reference to a compound, catalyst, or other substance is not intended to limit the substance to a particular number of molecules or quantity, nor to a particular number of different types of the substance, unless otherwise indicated. For example, “higher hydrocarbons” can include a quantity of predominately one, or exactly one, compound (e.g., a quantity of isooctane) or two or more different compounds (e.g., butane, benzene, propylene, etc.). Similarly, “olefins” refers to a quantity of a single olefin, or two or more different olefins; “zeolites” refers to a quantity of one or more different zeolites; etc.


It is contemplated that any of a number of hydrocarbon feedstocks will be used in the practice of the present invention. Nonlimiting examples include one or more light alkanes and/or olefins, e.g., methane, ethane, propane, butane, ethylene, propylene, butenes; natural gas; and other mixtures of hydrocarbons. In most embodiments, the feedstock will be primarily aliphatic in nature. Certain oil refinery processes yield light hydrocarbon streams (so-called “light-ends,” typically a mixture of C1-C3 hydrocarbons), which can be used with or without added methane. In general, the feedstock is introduced into the reactor as a gas.


The products of the zone reactor—one or more “higher hydrocarbons”—will depend on the feedstock, the carbon-carbon coupling catalyst, and the reactor conditions, e.g., gas flow rates (which affects reactor residence time), temperature, and pressure. As used herein, the term “higher hydrocarbon” refers to a hydrocarbon having a higher carbon number (greater number of carbon atoms per molecule) and/or a higher bond order than one or more components of the hydrocarbon feedstock. For example, if the feedstock is pure methane (carbon number 1, bond order 1), the resulting higher hydrocarbons produced could be ethane, propane, ethylene, propylene, larger alkanes and olefins, possibly alkynes, and/or aromatic compounds. If the feedstock is pure ethane (carbon number 1; bond order 1), the resulting higher hydrocarbons could be propane (carbon number 3; bond order 1), ethylene (carbon number 2, bond order 2), etc. If the feedstock is natural gas—typically a mixture of light hydrocarbons, predominately methane, with lesser amounts of ethane, propane, and butane, and even smaller amounts of longer hydrocarbons such as pentane, hexane, etc.—the resulting higher hydrocarbons could include one or more C2 or higher alkanes (e.g., ethane, propane, butane, C5+ hydrocarbons and other light naphthas); olefins (e.g., ethylene, propylene, butylene, etc.); and/or aromatic hydrocarbons.


Certain classes of higher hydrocarbons are particularly desirable, including “gasoline range” hydrocarbons, e.g., C4-C12 alkanes, more preferably C5-C10 alkanes, with or without olefinic and/or aromatic components. C5+ alkanes with high aromatic content, but low benzene content are particularly desirable as gasolines or gasoline blending agents. Other desirable products include aromatic compounds—benzene, toluene, xylene (especially p-xylene), mesitylene, etc.—and especially aromatic products with low benzene content. In one embodiment, the product consists predominantly of benzene, or benzene-rich aromatics. In another embodiment, the product consists predominantly of toluene, or toluene-rich aromatics. In one embodiment, the aromatic content of the product is enriched by recycling non-aromatic components to the solid reactor. In the case of saturated aliphatic compounds, this entails re-bromination followed by carbon-carbon coupling in the presence of a coupling catalyst, whereas olefinic compounds may be coupled directly (in the presence of a coupling catalyst as described herein.


Representative hydrogen halides (HX) include hydrogen bromide (HBr) and hydrogen chloride (HCl). It is also contemplated that hydrogen fluoride (HF) and hydrogen iodide (HI) can be used, though not necessarily with equivalent results. Some of the problems associated with fluorine can likely be addressed by using dilute streams of HF (e.g., HF gas carried by helium, nitrogen, or other diluent). It is expected, however, that more vigorous reaction conditions will be required for alkyl fluorides to couple and form higher hydrocarbons, due to the strength of the fluorine-carbon bond. Similarly, problems associated with HI (such as the endothermic nature of certain iodine reactions) can likely be addressed by carrying out the halogenation and/or coupling reactions at higher temperatures and/or pressures. The use of HBr or HCl is preferred, with HBr being most preferred.


A number of materials are capable of reversibly capturing and releasing HX and, in particular, HCl and HBr. As a first example, such materials comprise medium- to long-chain olefins, i.e., olefins having 10-100, preferably 15-80, more preferably 20-50 carbon atoms per molecule. In general, such olefins will have more than one carbon-carbon double bond per molecule. Nonlimiting specific examples include 1-dodecene, 1,12-dodecadiene, and i-eicosane. Unsaturated olefins undergo addition reactions with HX to form partially halogenated olefins or alkanes, and thereby “reactively capture” HX. When the materials are heated, they release HX and revert to olefins.


As a second example, unsaturated organic polymers can capture HX to form partially halogenated organic polymers, which, in turn, can release HX. Nonlimiting examples include polyacetylene, polyethylene that has been partially dehydrogenated, polypropylene that has been partially dehydrogenated, and mixtures thereof. Polyethylene and polypropylene can be dehydrogenated according to methods well known to those skilled in the art, e.g., via halogenation followed by dehydrohalogenation. Polybutadiene is another example of an unsaturated organic polymer that may be used to capture, and then release, HX.


Olefins and unsaturated organic polymers capture HX by reacting with it to form partially halogenated compounds. The reaction can be reversed by heating the materials in the presence of air or oxygen. The following equations are nonlimiting examples of the basic scheme:




embedded image


In one embodiment, the unsaturated material is carried on a support, such as silica, titania, or a similar heat-resistant, inorganic, generally inert material. As one example, silica pellets are coated with polyethylene by combining the pellets and polyethylene, heating the mixture to a temperature above the glass transition temperature of the polyethylene, and then adding halogen to the pellets and exposing the combination to ultraviolet light, thereby halogenating the polymer.


In zone 2, alkyl halides are formed by reacting a hydrocarbon feedstock with HX and O2 (oxyhalogenation) and/or by reacting alkyl halides with X2 (halogenation). UV light and/or heat can drive the reaction. In a preferred embodiment, the reaction takes place in the presence of a halogenation and/or oxyhalogenation catalyst or cataloreactant. Nonlimiting examples include metal oxides, such as copper oxide (CuO), and metal halides, such as CuCl2, CuBr2, etc. Mixtures of catalysts can be used. The catalytic materials can be supported or unsupported.


In FIG. 1, the catalyst is located throughout zone 2. In an alternate embodiment shown in FIG. 2, the halogenation and/or oxyhalogenation catalyst is confined to downstream and upstream regions 8 of zone 2, leaving an empty central area 9.


In Zones 1B and 3B, a carbon-carbon coupling catalyst is utilized to facilitate the conversion of alkyl halides to higher hydrocarbons. As used herein, the term “carbon-carbon coupling catalyst” refers to a material capable of catalyzing carbon-carbon bond formation, and includes both “true” catalysts, which presumably participate in the reaction on a mechanistic level, but are not consumed in the process, as well as “cataloreactants,” which are chemically transformed in the course of the reaction, but can be returned to their original form via a regeneration reaction. For example, oxygen atoms in the cataloreactant could be replaced by halogen atoms during the carbon-carbon coupling reaction, and then regenerated (with halogen being replaced by oxygen) in a subsequent regeneration step, such as by the passage of air or oxygen over the initially transformed cataloreactant material. Carbon-carbon coupling catalysts are also referred to as “oligomerization catalysts,” or simply, “coupling catalysts.”


Nonlimiting examples of coupling catalysts include non-crystalline alumino silicates (amorphous solid acids), tungsten/zirconia super acids, sulfated zirconia, alumino phosphates such as SAPO-34 and its framework-substituted analogues (substituted with, e.g., Ni or Mn), Zeolites, such as ZSM-5 and its ion-exchanged analogs, and framework substituted ZSM-5 (substituted with Ti, Fe, Ti+Fe, B, or Ga). and other microporous minerals. The catalysts can be natural or synthetic, doped or undoped, supported or unsupported.


Preferred catalysts for producing liquid-at-room-temperature hydrocarbons include ion-exchanged ZSM-5 having a SiO2/Al2O3 ratio of less than 300:1, preferably less than 100:1, and most preferably 30:1 or less. Nonlimiting examples of preferred exchanged ions include ions of Ag, Ba, Bi, Ca, Fe, Li, Mg, Sr, K, Na, Rb, Mn, Co, Ni, Cu, Ru, Pb, Pd, Pt, and Ce. These ions can be exchanged as pure salts or as mixtures of salts. The preparation of doped zeolites and their use as carbon-carbon coupling catalysts is described in Patent Publication No. US 2005/0171393 A1, at pages 4-5, which is incorporated by reference herein in its entirety.


Zeolites are available from a variety of sources, including Zeolyst International (Valley Forge, Pa.). Specific examples include doped-ZSM-5 and doped mordenite (where, e.g., calcium and/or magnesium are the dopants). In one embodiment of the invention a Mn-exchanged ZSM-5 zeolite having a SiO2/Al2O3 ratio of 30 is used as the coupling catalyst. Under certain process conditions, it can produce a tailored selectivity of liquid hydrocarbon products.


Product distribution can be shifted in favor of more aromatic content, less aromatic content, gasoline grade materials by altering the properties of the zeolite or other catalyst. Pore size and acidity are expected to be important. Acidity may be used to control product chain length and functionality, and pore size may control chain length and functionality. Zeolites having a particular pore size may selectively produce benzene, toluene, para-xylene, ortho-xylene, meta-xylene, mixed xylenes, ethylbenzene, styrene, linear alkylbenzene, and/or other aromatic products. Pore size can also be expected to affect formation of non-aromatic products.


In various aspects of the invention, air or oxygen is used to accomplish a desired result, for example, decoking, oxyhalogenation, HX release, cataloreactant regeneration, etc. It is to be understood that the term “air or oxygen” in this context includes any of a number of oxygen-based or oxygen-containing gas streams. Nonlimiting examples include ordinary air, pure oxygen gas (O2), oxygen gas containing minor amounts of other gaseous components, dilute streams of oxygen gas in a carrier gas (e.g., helium), oxygen-enriched air, etc.


To facilitate the various steps of HX capture and release, catalyst decoking, halogenation and/or oxyhalogenation, and product formation, different zones of the reactor are operated at appropriate pressures and temperatures, taking into account the feedstock, catalysts, gas flow rates, and desired product(s). In one embodiment, the reactor is operated at, or slightly above, atmospheric pressure. Zone 1A or 3A is heated to a temperature of from 0 to 500° C., preferably 100 to 400° C., more preferably 200 to 300° C., to facilitate HX release. Zone 3A or 1A is heated to a slightly lower temperature, e.g., 0 to 400° C., preferably 100 to 300° C., more preferably 150 to 250° C., to facilitate HX capture. Decoking of the coupling catalyst is facilitated by heating zone 1B or 3B to a higher temperature, e.g., about 500° C. Halogenation and/or oxyhalogenation of the hydrocarbon feedstock occurs in zone 2, which is heated to a temperature of 150 to 600° C., preferably 400 to 600° C., more preferably 450 to 515° C. Product formation (carbon-carbon coupling) is facilitated by heating zone 3B or 1B to a temperature of 150 to 600° C., preferably 275 to 425° C.


There are a number of alternate embodiments for practicing the invention. For example, instead of a single vessel defining three zones, the zone reactor can comprise three separate vessels, each defining a separate zone, 1, 2, or 3. As another example, certain reactor designs offer the possibility of improved heat transfer. Thus, the reactor can be configured as a series of small tubes (inner diameter less than 6 inches, more preferably from 2 to 4 inches). As a third example, instead of an in-line configuration, the tubes can be arranged in parallel and enclosed in a larger vessel, in which a suitable heat transfer fluid is circulated. Alternatively, the bundle of tubes can have air or another inert gas directed across their surface to facilitate cooling and/or heating.


In some applications, where the outlet from zone 2 must be cooled before entering the product formation (metathesis) zone (zone 1B or 3B), a precooler can be used. In one embodiment, the precooler comprises an air-cooled bundle of tubes, or tubes enclosed in a shell in which a suitable heat transfer fluid is circulated around the tubes. The use of a precooler can decrease the required reactor volume in the metathesis zone. The requirement of heat removal during metathesis can strongly influence reactor design.


Another alternative is to use an inert heat carrier within the interior of the reactor itself. For example, an excess of alkane feedstock can be introduced to dissipate the heat, thereby allowing the reactor to be in a packed bed configuration instead of a tube-shell arrangement. The use of an internal heat carrier should allow the reactor to be operated adiabatically. An inert stream that can be separated easily from the reaction product stream can also be used as a heat carrier in this configuration. It is expected that an adiabatic packed bed scheme can significantly reduce reactor cost.


In still another embodiment of the invention, a zone reactor is used in combination with a post-reactor bed packed with ZSM-5 zeolites or other materials that facilitate production of gasoline-range hydrocarbons. For example, a zone reactor can be used to form light olefins, which are then fed into a zeolite bed to facilitate coupling of the light olefins into gasoline-range hydrocarbons.


A number of materials of construction may be employed to enhance the lifetime of the zone reactor. Nonlimiting examples include Hastelloy alloys, aluminum- and chromium-enriched metal alloys, titanium, zirconium, tantalum and nickel metal and their alloys, silica-, alumina-, and zirconia-coated metals, and heat conducting ceramic materials such as silicon carbide. Reactor vessels also can be constructed of insulating, corrosion-resistant materials, for example, alumina, silica, and zirconia, each lined with a corrosion-resistant, but not necessarily temperature-resistant, material, such as polytetrafluoroethylene. Under some conditions, the vessel can be operated isothermally, with heating and/or cooling provided by a heat transfer fluid passed through pipes constructed of the types of heat-conducting materials listed above. Alternatively, the reactor can be operated adiabatically.


EXAMPLES

The following are nonlimiting examples of the invention.


Preparation of Materials Capable of Releasing and Capturing HBr


Reagents A and B High surface area (>300 m2/g) silica pellets are coated with polyethylene by combining the pellets and polyethylene and heating to a temperature above the glass transition temperature of the polyethylene. Bromine is added to the pellets and the combination is exposed to UV light, resulting in bromination of the polymer. Half of the material is separated and heated to 225° C., resulting in the release of HBr and formation of a material, Reagent A, capable of capturing HBr. The other half of the material, Reagent B, is kept for use as a material capable of releasing HBr.


Reagents C and D


Formation of an adsorbent. High surface area (>300 m2/g) silica pellets are coated with polyethylene by combining the pellets and polyethylene and heating to a temperature above the glass transition temperature of the polyethylene. Chlorine is added to the pellets and the combination is exposed to UV light, resulting in chlorination of the polymer. Half of the material is separated and heated to 225° C., resulting in the release of HCl. The other half of the material is kept for use an HCl-containing adsorbent.


Example 1

A zone reactor as shown in FIG. 1 is loaded with the following materials:

  • Zone 1A: Reagent B.
  • Zone 1B: ZSM-5 coupling catalyst.
  • Zone 2: copper oxide catalyst.
  • Zone 3B: ZSM-5 coupling catalyst.
  • Zone 3A: Reagent A.
  • In step 1, air is passed through zone 1A at a temperature of 225° C., converting Reagent B to Reagent A and releasing HBr. The air and HBr from zone 1A pass first into zone 1B at a temperature of 500° C. (in subsequent runs this will regenerate (decoke) the coupling catalyst), and then into zone 2, where natural gas is oxybrominated at 400° C. The products of zone 2 pass over the coupling catalyst in zone 3B at 400° C., producing higher hydrocarbon and HBr. In zone 3A, HBr is captured by Reagent A (which is converted to Reagent B) at a temperature of 150° C.
  • In step 2, air is passed through zone 3A at a temperature of 225° C., converting Reagent B to Reagent A and releasing HBr. The air and HBr from zone 3A pass into zone 3B at a temperature of 500° C., regenerating (decoking) the coupling catalyst. In zone 2, natural gas is oxybrominated at 400 C. The products of zone 2 pass over the coupling catalyst in zone 1B at 400° C. producing higher hydrocarbons and HBr. In zone 1A, HBr is captured by Reagent A (which is converted to Reagent B) at a temperature of 150° C.


Example 2

The hydrocarbon products of Example 1 are passed over a ZSM-5 catalyst at a temperature of 350 to 450° C., so as to change the average molecular weight of the products.


Example 3

The procedure of example 1 is followed, but instead of ZSM-5, a mixture of tungsten oxide and zirconia (WZA) is used as the carbon-carbon coupling catalyst.


Example 4

The hydrocarbon products of Example 3 are passed over a ZSM-5 catalyst at a temperature of 350 to 450° C., so as to change the average molecular weight of the products.


Example 5

A zone reactor as shown in FIG. 1 is loaded with the following materials:

  • Zone 1A: Reagent D.
  • Zone 1B: ZSM-5 coupling catalyst.
  • Zone 2: copper oxide catalyst.
  • Zone 3B: ZSM-5 coupling catalyst.
  • Zone 3A: Reagent C.
  • In step 1, air is passed through zone 1A at a temperature of 225° C., converting Reagent D to Reagent C and releasing HCl. The air and HCl from zone 1A pass into zone 1B at a temperature of 500° C. (in subsequent runs, this will regenerate (decoke) the coupling catalyst), and then into zone 2, where natural gas is oxychlorinated at 400° C. The products of zone 2 pass over the coupling catalyst in zone 3B at 400° C., producing higher hydrocarbon and HCl. In zone 3A, HCl is captured by Reagent C (which is converted to Reagent D) at a temperature of 150° C.
  • In step 2, air is passed through zone 3A at a temperature of 225° C., converting Reagent D to Reagent C and releasing HCl. The air and HCl from zone 3A pass into zone 3B at a temperature of 500° C., regenerating (decoking) the coupling catalyst. In zone 2, natural gas is oxychlorinated at 400° C. The products of zone 2 pass over the coupling catalyst in zone 1B at 400° C., producing higher hydrocarbons and HCl. In zone 1A, HCl is captured by Reagent C (which is converted to Reagent D) at a temperature of 150° C.


Example 6

The hydrocarbon products of Example 5 are passed over a ZSM-5 catalyst at a temperature of 350 to 450° C., so as to change the average molecular weight of the product.


Example 7

The procedure of example 5 is followed, but instead of ZSM-5, a mixture of tungsten oxide and zirconia (WZA) is used as the carbon-carbon coupling catalyst.


Example 8

The hydrocarbon products of Example 7 are passed over a ZSM-5 catalyst at a temperature of 350 and 450° C., so as to change the average molecular weight of the products.


The invention has been described with reference to various embodiments, figures, and examples, but is not limited thereto. Persons having ordinary skill in the art will appreciate that the invention can be modified in a number of ways without departing from the invention, which is limited only by the appended claims and equivalents thereof.

Claims
  • 1. A reactor for converting a hydrocarbon feedstock into one or more products, comprising: one or more hollow vessels that define multiple zones in the reactor, wherein a first zone contains a material capable of releasing hydrogen halide and a carbon-carbon coupling catalyst, a second zone is coupled to the first zone, and a third zone is coupled to the second zone and contains a carbon-carbon coupling catalyst and a material capable of capturing hydrogen halide.
  • 2. A reactor as recited in claim 1, wherein the reactor comprises a single vessel and the first zone is located at a first end of the vessel, the second zone is located in the middle of the vessel, and the third zone is located at a second end of the vessel, and wherein gas can flow from the first zone to the second zone and from the second zone to the third zone.
  • 3. A reactor as recited in claim 1, wherein the first zone is located in a first vessel, the second zone is located in a second vessel, and the third zone is located in a third vessel, and wherein gas can flow from the first zone to the second zone and from the second zone to the third zone.
  • 4. A reactor as recited in claim 1, wherein the material capable of releasing hydrogen halide in the first zone is located in a first subzone in the first zone, the carbon-carbon coupling catalyst in the first zone is located in a second subzone in the first zone, the carbon-carbon coupling catalyst in the third zone is located in a first subzone in the third zone, and the material capable of capturing hydrogen halide in the third zone is located in a second subzone in the third zone.
  • 5. A reactor as recited in claim 1, wherein the material capable of releasing hydrogen halide in the first zone comprises partially halogenated olefins.
  • 6. A reactor as recited in claim 5, wherein the partially halogenated olefins have 10-100 carbon atoms per molecule.
  • 7. A reactor as recited in claim 5, wherein the partially halogenated olefins have 15-80 carbon atoms per molecule.
  • 8. A reactor as recited in claim 5, wherein the partially halogenated olefins have 20-50 carbon atoms per molecule.
  • 9. A reactor as recited in claim 5, wherein the partially halogenated olefins comprise at least one material selected from the group consisting of partially halogenated 1-dodecene, partially halogenated 1,12-dodecadiene, partially halogenated 1-eicosane, and mixtures thereof.
  • 10. A reactor as recited in claim 1, wherein the material capable of releasing hydrogen halide in the first zone comprises partially halogenated organic polymers.
  • 11. A reactor as recited in claim 10, wherein the partially halogenated organic polymers comprise at least one material selected from the group consisting of partially halogenated polyacetylene, polyethylene that has been partially dehydrogenated and partially halogenated, polypropylene that has been partially dehydrogenated and partially halogenated, and mixtures thereof.
  • 12. A reactor as recited in claim 10, wherein the partially halogenated organic polymers comprise partially halogenated polybutadiene.
  • 13. A reactor as recited in claim 1, wherein the material capable of capturing hydrogen halide in the third zone comprises olefins that have 10-100 carbon atoms per molecule.
  • 14. A reactor as recited in claim 13, wherein the olefins have 15-80 carbon atoms per molecule.
  • 15. A reactor as recited in claim 13, wherein the olefins have 20-50 carbon atoms per molecule.
  • 16. A reactor as recited in claim 1, wherein the material capable of capturing hydrogen halide in the third zone comprises unsaturated organic polymers.
  • 17. A reactor as recited in claim 16, wherein the unsaturated organic polymers comprise at least one material selected from the group consisting of polyacetylene, polyethylene that has been partially dehydrogenated, polypropylene that has been partially dehydrogenated, and mixtures thereof.
  • 18. A reactor as recited in claim 16, wherein the unsaturated organic polymers comprise polybutadiene.
  • 19. A reactor as recited in claim 1, wherein the second zone contains a halogenation catalyst, an oxyhalogenation catalyst, or a mixture thereof.
  • 20. A reactor as recited in claim 19, wherein the halogenation and/or oxyhalogenation catalyst comprises copper oxide.
  • 21. A reactor as recited in claim 19, wherein the halogenation and/or oxyhalogenation catalyst comprises a copper halide.
  • 22. A reactor as recited in claim 21, wherein the copper halide comprises copper bromide or copper chloride.
  • 23. A reactor as recited in claim 1, wherein the carbon-carbon coupling catalyst in the first zone or the carbon-carbon coupling catalyst in the third zone comprises a microporous material.
  • 24. A reactor as recited in claim 23, wherein the microporous material comprises supported or unsupported zeolites.
  • 25. A reactor as recited in claim 24, wherein the zeolites comprise doped zeolites.
  • 26. A reactor as recited in claim 24, wherein the zeolites comprise ZSM-5-type zeolites.
  • 27. A reactor as recited in claim 1, wherein the first, second, and third zones are located inside a single hollow vessel; the first and second zones are separated by a first divider having at least one opening therein; and the second and third zones are separated by a second divider having at least one opening therein.
  • 28. A reactor as recited in claim 27, wherein the first and second dividers comprise a screen.
  • 29. A reactor for converting a hydrocarbon feedstock into higher hydrocarbons, comprising: a hollow vessel having first, second, and third zones, wherein the first zone contains ZSM-5 zeolites and a material capable of releasing hydrogen halide selected from the group consisting of partially halogenated olefins, partially halogenated organic polymers, and a mixture thereof; the second zone is coupled to the first zone and contains a metal oxide; and the third zone is coupled to the second zone and contains a microporous carbon-carbon coupling catalyst and a material capable of capturing hydrogen halide selected from the group consisting of olefins, unsaturated organic polymers, and a mixture thereof.
  • 30. A reactor as recited in claim 29, wherein the metal oxide comprises copper oxide.
  • 31. A reactor as recited in claim 29, wherein the microporous carbon-carbon coupling catalyst comprises ZSM-5 zeolites.
  • 32. A reactor as recited in claim 29, wherein the material capable of releasing hydrogen halide in the first zone is located in a first subzone in the first zone; the ZSM-5 zeolites are located in a second subzone in the first zone; the microporous carbon-carbon coupling catalyst is located in a first subzone in the third zone; and the material capable of capturing hydrogen halide in the third zone is located in a second subzone in the third zone.
CROSS REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. Provisional Application No. 60/931,891, filed May 24, 2007, the entire contents of which are incorporated by reference herein.

US Referenced Citations (657)
Number Name Date Kind
2168260 Heisel et al. Aug 1939 A
2246082 Vaughan et al. Jun 1941 A
2488083 Gorin et al. Nov 1949 A
2677598 Crummett et al. May 1954 A
2941014 Rothweiler et al. Jun 1960 A
3076784 Huermann et al. Feb 1963 A
3172915 Borkowski et al. Mar 1965 A
3246043 Rosset et al. Apr 1966 A
3273964 Rosset Sep 1966 A
3294846 Livak et al. Dec 1966 A
3310380 Lester Mar 1967 A
3346340 Louver et al. Oct 1967 A
3353916 Lester Nov 1967 A
3353919 Stockman Nov 1967 A
3496242 Berkowitz et al. Feb 1970 A
3562321 Borkowski et al. Feb 1971 A
3598876 Bloch Aug 1971 A
3657367 Blake et al. Apr 1972 A
3670037 Dugan Jun 1972 A
3673264 Kuhn Jun 1972 A
3679758 Schneider Jul 1972 A
3702886 Argauer et al. Nov 1972 A
3705196 Turner Dec 1972 A
3799997 Schmerling Mar 1974 A
3865886 Schindler et al. Feb 1975 A
3876715 McNulty et al. Apr 1975 A
3879473 Stapp Apr 1975 A
3879480 Riegel et al. Apr 1975 A
3883651 Woitun et al. May 1975 A
3886287 Kobayashi et al. May 1975 A
3894103 Chang et al. Jul 1975 A
3894104 Chang et al. Jul 1975 A
3894105 Chang et al. Jul 1975 A
3894107 Butter et al. Jul 1975 A
3907917 Forth Sep 1975 A
3919336 Kurtz Nov 1975 A
3920764 Riegel et al. Nov 1975 A
3923913 Antonini et al. Dec 1975 A
3928483 Chang et al. Dec 1975 A
3965205 Garwood et al. Jun 1976 A
3974062 Owen et al. Aug 1976 A
3987119 Kurtz et al. Oct 1976 A
3992466 Plank et al. Nov 1976 A
4006169 Anderson et al. Feb 1977 A
4011278 Plank et al. Mar 1977 A
4025571 Lago May 1977 A
4025572 Lago May 1977 A
4025575 Chang et al. May 1977 A
4025576 Chang et al. May 1977 A
4035285 Owen et al. Jul 1977 A
4035430 Dwyer et al. Jul 1977 A
4039600 Chang Aug 1977 A
4044061 Chang et al. Aug 1977 A
4046825 Owen et al. Sep 1977 A
4049734 Garwood et al. Sep 1977 A
4052471 Pearsall Oct 1977 A
4052472 Givens et al. Oct 1977 A
4058576 Chang et al. Nov 1977 A
4060568 Rodewald Nov 1977 A
4071753 Fulenwider et al. Jan 1978 A
4072733 Hargis et al. Feb 1978 A
4087475 Jordan May 1978 A
4088706 Kaeding May 1978 A
4092368 Smith May 1978 A
4110180 Nidola et al. Aug 1978 A
4117251 Kaufhold et al. Sep 1978 A
4129604 Tsao Dec 1978 A
4133838 Pearson Jan 1979 A
4133966 Pretzer et al. Jan 1979 A
4138440 Chang et al. Feb 1979 A
4156698 Dwyer et al. May 1979 A
4169862 Eden Oct 1979 A
4172099 Severino Oct 1979 A
4187255 Dodd Feb 1980 A
4194990 Pieters et al. Mar 1980 A
4197420 Ferraris et al. Apr 1980 A
4219680 Konig et al. Aug 1980 A
4249031 Drent et al. Feb 1981 A
4270929 Dang Vu et al. Jun 1981 A
4272338 Lynch et al. Jun 1981 A
4282159 Davidson et al. Aug 1981 A
4300005 Li Nov 1981 A
4300009 Haag et al. Nov 1981 A
4301253 Warren Nov 1981 A
4302619 Gross et al. Nov 1981 A
4307261 Beard, Jr. et al. Dec 1981 A
4308403 Knifton Dec 1981 A
4311865 Chen et al. Jan 1982 A
4317800 Sloterdijk et al. Mar 1982 A
4317934 Seemuth Mar 1982 A
4317943 Knifton Mar 1982 A
4320241 Frankiewicz Mar 1982 A
4333852 Warren Jun 1982 A
4347391 Campbell Aug 1982 A
4350511 Holmes et al. Sep 1982 A
4371716 Paxson et al. Feb 1983 A
4373109 Olah Feb 1983 A
4376019 Gamlen et al. Mar 1983 A
4380682 Leitert et al. Apr 1983 A
4384159 Diesen May 1983 A
4389391 Dunn, Jr. Jun 1983 A
4410714 Apanel Oct 1983 A
4412086 Beard, Jr. et al. Oct 1983 A
4418236 Cornelius et al. Nov 1983 A
4431856 Daviduk et al. Feb 1984 A
4433189 Young Feb 1984 A
4433192 Olah Feb 1984 A
4439409 Puppe et al. Mar 1984 A
4440871 Lok et al. Apr 1984 A
4443620 Gelbein et al. Apr 1984 A
4462814 Holmes et al. Jul 1984 A
4465884 Degnan et al. Aug 1984 A
4465893 Olah Aug 1984 A
4467130 Olah Aug 1984 A
4467133 Chang et al. Aug 1984 A
4489210 Judat et al. Dec 1984 A
4489211 Ogura et al. Dec 1984 A
4492657 Heiss Jan 1985 A
4496752 Gelbein et al. Jan 1985 A
4497967 Wan Feb 1985 A
4499314 Seddon et al. Feb 1985 A
4506105 Kaufhold Mar 1985 A
4509955 Hayashi Apr 1985 A
4513092 Chu et al. Apr 1985 A
4513164 Olah Apr 1985 A
4523040 Olah Jun 1985 A
4524227 Fowles et al. Jun 1985 A
4524228 Fowles et al. Jun 1985 A
4524231 Fowles et al. Jun 1985 A
4538014 Miale et al. Aug 1985 A
4538015 Miale et al. Aug 1985 A
4540826 Banasiak et al. Sep 1985 A
4543434 Chang Sep 1985 A
4544781 Chao et al. Oct 1985 A
4547612 Tabak Oct 1985 A
4550217 Graziani et al. Oct 1985 A
4550218 Chu Oct 1985 A
4568660 Klosiewicz Feb 1986 A
4579977 Drake Apr 1986 A
4579992 Kaufhold et al. Apr 1986 A
4579996 Font Freide et al. Apr 1986 A
4587375 Debras et al. May 1986 A
4588835 Torii et al. May 1986 A
4590310 Townsend et al. May 1986 A
4599474 Devries et al. Jul 1986 A
4605796 Isogai et al. Aug 1986 A
4605803 Chang et al. Aug 1986 A
4621161 Shihabi Nov 1986 A
4621164 Chang et al. Nov 1986 A
4633027 Owen et al. Dec 1986 A
4634800 Withers, Jr. et al. Jan 1987 A
4642403 Hyde et al. Feb 1987 A
4642404 Shihabi Feb 1987 A
4652688 Brophy et al. Mar 1987 A
4654449 Chang et al. Mar 1987 A
4655893 Beale Apr 1987 A
4658073 Tabak Apr 1987 A
4658077 Kolts et al. Apr 1987 A
4665259 Brazdil et al. May 1987 A
4665267 Barri May 1987 A
4665270 Brophy et al. May 1987 A
4675410 Feitler et al. Jun 1987 A
4690903 Chen et al. Sep 1987 A
4695663 Hall et al. Sep 1987 A
4696985 Martin Sep 1987 A
4704488 Devries et al. Nov 1987 A
4704493 Devries et al. Nov 1987 A
4709108 Devries et al. Nov 1987 A
4720600 Beech, Jr. et al. Jan 1988 A
4720602 Chu Jan 1988 A
4724275 Hinnenkamp et al. Feb 1988 A
4735747 Ollivier et al. Apr 1988 A
4737594 Olah Apr 1988 A
4748013 Saito et al. May 1988 A
4769504 Noceti et al. Sep 1988 A
4774216 Kolts et al. Sep 1988 A
4775462 Imai et al. Oct 1988 A
4777321 Harandi et al. Oct 1988 A
4781733 Babcock et al. Nov 1988 A
4783566 Kocal et al. Nov 1988 A
4788369 Marsh et al. Nov 1988 A
4788377 Chang et al. Nov 1988 A
4792642 Rule et al. Dec 1988 A
4795732 Barri Jan 1989 A
4795737 Rule et al. Jan 1989 A
4795843 Imai et al. Jan 1989 A
4795848 Teller et al. Jan 1989 A
4804797 Minet et al. Feb 1989 A
4804800 Bortinger et al. Feb 1989 A
4808763 Shum Feb 1989 A
4814527 Diesen Mar 1989 A
4814532 Yoshida et al. Mar 1989 A
4814535 Yurchak Mar 1989 A
4814536 Yurchak Mar 1989 A
4849562 Buhs et al. Jul 1989 A
4849573 Kaeding Jul 1989 A
4851602 Harandi et al. Jul 1989 A
4851606 Ragonese et al. Jul 1989 A
4886925 Harandi Dec 1989 A
4886932 Leyshon Dec 1989 A
4891463 Chu Jan 1990 A
4895995 James, Jr. et al. Jan 1990 A
4899000 Stauffer Feb 1990 A
4899001 Kalnes et al. Feb 1990 A
4899002 Harandi et al. Feb 1990 A
4902842 Kalnes et al. Feb 1990 A
4925995 Robschlager May 1990 A
4929781 James, Jr. et al. May 1990 A
4939310 Wade Jul 1990 A
4939311 Washecheck et al. Jul 1990 A
4945175 Hobbs et al. Jul 1990 A
4950811 Doussain et al. Aug 1990 A
4950822 Dileo et al. Aug 1990 A
4956521 Volles Sep 1990 A
4962252 Wade Oct 1990 A
4973776 Allenger et al. Nov 1990 A
4973786 Karra Nov 1990 A
4982024 Lin et al. Jan 1991 A
4982041 Campbell Jan 1991 A
4988660 Campbell Jan 1991 A
4990696 Stauffer Feb 1991 A
4990711 Chen et al. Feb 1991 A
5001293 Nubel et al. Mar 1991 A
5004847 Beaver et al. Apr 1991 A
5013424 James, Jr. et al. May 1991 A
5013793 Wang et al. May 1991 A
5019652 Taylor et al. May 1991 A
5026934 Bains et al. Jun 1991 A
5026937 Bricker Jun 1991 A
5026944 Allenger et al. Jun 1991 A
5034566 Ishino et al. Jul 1991 A
5043502 Martindale et al. Aug 1991 A
5051477 Yu et al. Sep 1991 A
5055235 Brackenridge et al. Oct 1991 A
5055633 Volles Oct 1991 A
5055634 Volles Oct 1991 A
5059744 Harandi et al. Oct 1991 A
5068478 Miller et al. Nov 1991 A
5071449 Sircar Dec 1991 A
5071815 Wallace et al. Dec 1991 A
5073656 Chafin et al. Dec 1991 A
5073657 Warren Dec 1991 A
5082473 Keefer Jan 1992 A
5082816 Teller et al. Jan 1992 A
5085674 Leavitt Feb 1992 A
5087779 Nubel et al. Feb 1992 A
5087786 Nubel et al. Feb 1992 A
5087787 Kimble et al. Feb 1992 A
5093542 Gaffney Mar 1992 A
5096469 Keefer Mar 1992 A
5097083 Stauffer Mar 1992 A
5099084 Stauffer Mar 1992 A
5101657 Lahlouh et al. Apr 1992 A
5105045 Kimble et al. Apr 1992 A
5105046 Washecheck Apr 1992 A
5107032 Erb et al. Apr 1992 A
5107051 Pannell Apr 1992 A
5107061 Ou et al. Apr 1992 A
5108579 Casci Apr 1992 A
5118899 Kimble et al. Jun 1992 A
5120332 Wells Jun 1992 A
5132343 Zwecker et al. Jul 1992 A
5138112 Gosling et al. Aug 1992 A
5139991 Taylor et al. Aug 1992 A
5146027 Gaffney Sep 1992 A
5157189 Karra Oct 1992 A
5160502 Kimble et al. Nov 1992 A
5166452 Gradl et al. Nov 1992 A
5175382 Hebgen et al. Dec 1992 A
5178748 Casci et al. Jan 1993 A
5185479 Stauffer Feb 1993 A
5188725 Harandi Feb 1993 A
5191142 Marshall et al. Mar 1993 A
5194244 Brownscombe et al. Mar 1993 A
5202506 Kirchner et al. Apr 1993 A
5202511 Salinas, III et al. Apr 1993 A
5210357 Kolts et al. May 1993 A
5215648 Zones et al. Jun 1993 A
5223471 Washecheck Jun 1993 A
5228888 Gmelin et al. Jul 1993 A
5233113 Periana et al. Aug 1993 A
5237115 Makovec et al. Aug 1993 A
5243098 Miller et al. Sep 1993 A
5243114 Johnson et al. Sep 1993 A
5245109 Kaminsky et al. Sep 1993 A
5254772 Dukat et al. Oct 1993 A
5254790 Thomas et al. Oct 1993 A
5264635 Le et al. Nov 1993 A
5268518 West et al. Dec 1993 A
5276226 Horvath et al. Jan 1994 A
5276240 Timmons et al. Jan 1994 A
5276242 Wu Jan 1994 A
5284990 Peterson et al. Feb 1994 A
5300126 Brown et al. Apr 1994 A
5306855 Periana et al. Apr 1994 A
5316995 Kaminsky et al. May 1994 A
5319132 Ozawa et al. Jun 1994 A
5334777 Miller et al. Aug 1994 A
5345021 Casci et al. Sep 1994 A
5354916 Horvath et al. Oct 1994 A
5354931 Jan et al. Oct 1994 A
5366949 Schubert Nov 1994 A
5371313 Ostrowicki Dec 1994 A
5382704 Krespan et al. Jan 1995 A
5382743 Beech, Jr. et al. Jan 1995 A
5382744 Abbott et al. Jan 1995 A
5385718 Casci et al. Jan 1995 A
5395981 Marker Mar 1995 A
5399258 Fletcher et al. Mar 1995 A
5401890 Parks Mar 1995 A
5401894 Brasier et al. Mar 1995 A
5406017 Withers, Jr. Apr 1995 A
5414173 Garces et al. May 1995 A
5430210 Grasselli et al. Jul 1995 A
5430214 Smith et al. Jul 1995 A
5430219 Sanfilippo et al. Jul 1995 A
5436378 Masini et al. Jul 1995 A
5444168 Brown Aug 1995 A
5446234 Casci et al. Aug 1995 A
5453557 Harley et al. Sep 1995 A
5456822 Marcilly et al. Oct 1995 A
5457255 Kumata et al. Oct 1995 A
5464799 Casci et al. Nov 1995 A
5465699 Voigt Nov 1995 A
5470377 Whitlock Nov 1995 A
5480629 Thompson et al. Jan 1996 A
5486627 Quarderer et al. Jan 1996 A
5489719 Le et al. Feb 1996 A
5489727 Randolph et al. Feb 1996 A
5500297 Thompson et al. Mar 1996 A
5510525 Sen et al. Apr 1996 A
5523503 Funk et al. Jun 1996 A
5525230 Wrigley et al. Jun 1996 A
5538540 Whitlock Jul 1996 A
5563313 Chung et al. Oct 1996 A
5565092 Pannell et al. Oct 1996 A
5565616 Li et al. Oct 1996 A
5571762 Clerici et al. Nov 1996 A
5571885 Chung et al. Nov 1996 A
5599381 Whitlock Feb 1997 A
5600043 Johnston et al. Feb 1997 A
5600045 Van Der Aalst et al. Feb 1997 A
5609654 Le et al. Mar 1997 A
5633419 Spencer et al. May 1997 A
5639930 Penick Jun 1997 A
5653956 Zones Aug 1997 A
5656149 Zones et al. Aug 1997 A
5661097 Spencer et al. Aug 1997 A
5663465 Clegg et al. Sep 1997 A
5663474 Pham et al. Sep 1997 A
5675046 Ohno et al. Oct 1997 A
5675052 Menon et al. Oct 1997 A
5679134 Brugerolle et al. Oct 1997 A
5679879 Mercier et al. Oct 1997 A
5684213 Nemphos et al. Nov 1997 A
5693191 Pividal et al. Dec 1997 A
5695890 Thompson et al. Dec 1997 A
5698747 Godwin et al. Dec 1997 A
5705712 Frey et al. Jan 1998 A
5705728 Viswanathan et al. Jan 1998 A
5705729 Huang Jan 1998 A
5708246 Camaioni et al. Jan 1998 A
5720858 Noceti et al. Feb 1998 A
5728897 Buysch et al. Mar 1998 A
5728905 Clegg et al. Mar 1998 A
5734073 Chambers et al. Mar 1998 A
5741949 Mack Apr 1998 A
5744669 Kalnes et al. Apr 1998 A
5750801 Buysch et al. May 1998 A
5770175 Zones Jun 1998 A
5776871 Cothran et al. Jul 1998 A
5780703 Chang et al. Jul 1998 A
5798314 Spencer et al. Aug 1998 A
5814715 Chen et al. Sep 1998 A
5817904 Vic et al. Oct 1998 A
5821394 Schoebrechts et al. Oct 1998 A
5847224 Koga et al. Dec 1998 A
5849978 Benazzi et al. Dec 1998 A
5866735 Cheung et al. Feb 1999 A
5895831 Brasier et al. Apr 1999 A
5898086 Harris Apr 1999 A
5905169 Jacobson May 1999 A
5906892 Thompson et al. May 1999 A
5908963 Voss et al. Jun 1999 A
5952538 Vaughn et al. Sep 1999 A
5959170 Withers Sep 1999 A
5968236 Bassine Oct 1999 A
5969195 Stabel et al. Oct 1999 A
5977402 Sekiguchi et al. Nov 1999 A
5983476 Eshelman et al. Nov 1999 A
5986158 Van Broekhoven et al. Nov 1999 A
5994604 Reagen et al. Nov 1999 A
5998679 Miller Dec 1999 A
5998686 Clem et al. Dec 1999 A
6002059 Hellring et al. Dec 1999 A
6015867 Fushimi et al. Jan 2000 A
6018088 Olah Jan 2000 A
6022929 Chen et al. Feb 2000 A
6034288 Scott et al. Mar 2000 A
6056804 Keefer et al. May 2000 A
6068679 Zheng May 2000 A
6072091 Cosyns et al. Jun 2000 A
6087294 Klabunde et al. Jul 2000 A
6090312 Ziaka et al. Jul 2000 A
6096932 Subramanian Aug 2000 A
6096933 Cheung et al. Aug 2000 A
6103215 Zones et al. Aug 2000 A
6107561 Thompson Aug 2000 A
6117371 Mack Sep 2000 A
6124514 Emmrich et al. Sep 2000 A
6127588 Kimble et al. Oct 2000 A
6130260 Hall et al. Oct 2000 A
6143939 Farcasiu et al. Nov 2000 A
6169218 Hearn et al. Jan 2001 B1
6180841 Fatutto et al. Jan 2001 B1
6187871 Thompson et al. Feb 2001 B1
6187983 Sun Feb 2001 B1
6203712 Bronner et al. Mar 2001 B1
6207864 Henningsen et al. Mar 2001 B1
6225517 Nascimento et al. May 2001 B1
6248218 Linkous et al. Jun 2001 B1
6265505 McConville et al. Jul 2001 B1
6281405 Davis et al. Aug 2001 B1
6320085 Arvai et al. Nov 2001 B1
6337063 Rouleau et al. Jan 2002 B1
6337309 Watts Jan 2002 B1
6342200 Rouleau et al. Jan 2002 B1
6368490 Gestermann Apr 2002 B1
6369283 Guram et al. Apr 2002 B1
6372949 Brown et al. Apr 2002 B1
6376731 Evans et al. Apr 2002 B1
6380328 McConville et al. Apr 2002 B1
6380423 Banning et al. Apr 2002 B2
6380444 Bjerrum et al. Apr 2002 B1
6395945 Randolph May 2002 B1
6403840 Zhou et al. Jun 2002 B1
6406523 Connor et al. Jun 2002 B1
6423211 Randolph et al. Jul 2002 B1
6426441 Randolph et al. Jul 2002 B1
6426442 Ichikawa et al. Jul 2002 B1
6452058 Schweizer et al. Sep 2002 B1
6455650 Lipian et al. Sep 2002 B1
6462243 Zhou et al. Oct 2002 B1
6465696 Zhou et al. Oct 2002 B1
6465699 Grosso Oct 2002 B1
6472345 Hintermann et al. Oct 2002 B2
6472572 Zhou et al. Oct 2002 B1
6475463 Elomari et al. Nov 2002 B1
6475464 Rouleau et al. Nov 2002 B1
6479705 Murata et al. Nov 2002 B2
6482997 Petit-Clair et al. Nov 2002 B2
6486368 Zhou et al. Nov 2002 B1
6495484 Holtcamp Dec 2002 B1
6509485 Mul et al. Jan 2003 B2
6511526 Jagger et al. Jan 2003 B2
6514319 Keefer et al. Feb 2003 B2
6518474 Sanderson et al. Feb 2003 B1
6518476 Culp et al. Feb 2003 B1
6525228 Chauvin et al. Feb 2003 B2
6525230 Grosso Feb 2003 B2
6528693 Gandy et al. Mar 2003 B1
6538162 Chang et al. Mar 2003 B2
6540905 Elomari Apr 2003 B1
6545191 Stauffer Apr 2003 B1
6547958 Elomari Apr 2003 B1
6548040 Rouleau et al. Apr 2003 B1
6552241 Randolph et al. Apr 2003 B1
6566572 Okamoto et al. May 2003 B2
6572829 Linkous et al. Jun 2003 B2
6585953 Roberts et al. Jul 2003 B2
6616830 Elomari Sep 2003 B2
6620757 McConville et al. Sep 2003 B2
6632971 Brown et al. Oct 2003 B2
6635793 Mul et al. Oct 2003 B2
6641644 Jagger et al. Nov 2003 B2
6646102 Boriack et al. Nov 2003 B2
6669846 Perriello Dec 2003 B2
6672572 Werlen Jan 2004 B2
6679986 Da Silva et al. Jan 2004 B1
6680415 Gulotty, Jr. et al. Jan 2004 B1
6692626 Keefer et al. Feb 2004 B2
6692723 Rouleau et al. Feb 2004 B2
6710213 Aoki et al. Mar 2004 B2
6713087 Tracy et al. Mar 2004 B2
6713655 Yilmaz et al. Mar 2004 B2
RE38493 Keefer et al. Apr 2004 E
6723808 Holtcamp Apr 2004 B2
6727400 Messier et al. Apr 2004 B2
6740146 Simonds May 2004 B2
6753390 Ehrman et al. Jun 2004 B2
6765120 Weber et al. Jul 2004 B2
6797845 Hickman et al. Sep 2004 B1
6797851 Martens et al. Sep 2004 B2
6821924 Gulotty, Jr. et al. Nov 2004 B2
6822123 Stauffer Nov 2004 B2
6822125 Lee et al. Nov 2004 B2
6825307 Goodall Nov 2004 B2
6825383 Dewkar et al. Nov 2004 B1
6831032 Spaether Dec 2004 B2
6838576 Wicki et al. Jan 2005 B1
6841063 Elomari Jan 2005 B2
6852896 Stauffer Feb 2005 B2
6866950 Connor et al. Mar 2005 B2
6869903 Matsunaga Mar 2005 B2
6875339 Rangarajan et al. Apr 2005 B2
6878853 Tanaka et al. Apr 2005 B2
6888013 Paparatto et al. May 2005 B2
6900363 Harth et al. May 2005 B2
6902602 Keefer et al. Jun 2005 B2
6903171 Rhodes et al. Jun 2005 B2
6909024 Jones et al. Jun 2005 B1
6921597 Keefer et al. Jul 2005 B2
6933417 Henley et al. Aug 2005 B1
6946566 Yaegashi et al. Sep 2005 B2
6953868 Boaen et al. Oct 2005 B2
6953873 Cortright et al. Oct 2005 B2
6956140 Ehrenfeld Oct 2005 B2
6958306 Holtcamp Oct 2005 B2
6984763 Schweizer et al. Jan 2006 B2
7001872 Pyecroft et al. Feb 2006 B2
7002050 Santiago Fernandez et al. Feb 2006 B2
7011811 Elomari Mar 2006 B2
7019182 Grosso Mar 2006 B2
7026145 Mizrahi et al. Apr 2006 B2
7026519 Santiago Fernandez et al. Apr 2006 B2
7037358 Babicki et al. May 2006 B2
7045670 Johnson et al. May 2006 B2
7049388 Boriack et al. May 2006 B2
7053252 Boussand et al. May 2006 B2
7057081 Allison et al. Jun 2006 B2
7060865 Ding et al. Jun 2006 B2
7064238 Waycuilis Jun 2006 B2
7064240 Ohno et al. Jun 2006 B2
7067448 Weitkamp et al. Jun 2006 B1
7083714 Elomari Aug 2006 B2
7084308 Stauffer Aug 2006 B1
7091270 Zilberman et al. Aug 2006 B2
7091387 Fong et al. Aug 2006 B2
7091391 Stauffer Aug 2006 B2
7094936 Owens et al. Aug 2006 B1
7098371 Mack et al. Aug 2006 B2
7105710 Boons et al. Sep 2006 B2
7138534 Forlin et al. Nov 2006 B2
7141708 Marsella et al. Nov 2006 B2
7145045 Harmsen et al. Dec 2006 B2
7148356 Smith, III et al. Dec 2006 B2
7148390 Zhou et al. Dec 2006 B2
7151199 Martens et al. Dec 2006 B2
7161050 Sherman et al. Jan 2007 B2
7169730 Ma et al. Jan 2007 B2
7176340 Van Broekhoven et al. Feb 2007 B2
7176342 Bellussi et al. Feb 2007 B2
7182871 Perriello Feb 2007 B2
7193093 Murray et al. Mar 2007 B2
7196239 Van Egmond et al. Mar 2007 B2
7199083 Zevallos Apr 2007 B2
7199255 Murray et al. Apr 2007 B2
7208641 Nagasaki et al. Apr 2007 B2
7214750 McDonald et al. May 2007 B2
7220391 Huang et al. May 2007 B1
7226569 Elomari Jun 2007 B2
7226576 Elomari Jun 2007 B2
7230150 Grosso et al. Jun 2007 B2
7230151 Martens et al. Jun 2007 B2
7232872 Shaffer et al. Jun 2007 B2
7238846 Janssen et al. Jul 2007 B2
7244795 Agapiou et al. Jul 2007 B2
7244867 Waycuilis Jul 2007 B2
7250107 Benazzi et al. Jul 2007 B2
7250542 Smith, Jr. et al. Jul 2007 B2
7252920 Kurokawa et al. Aug 2007 B2
7253327 Janssens et al. Aug 2007 B2
7253328 Stauffer Aug 2007 B2
7265193 Weng et al. Sep 2007 B2
7267758 Benazzi et al. Sep 2007 B2
7268263 Frey et al. Sep 2007 B1
7271303 Sechrist et al. Sep 2007 B1
7273957 Bakshi et al. Sep 2007 B2
7282603 Richards Oct 2007 B2
7285698 Liu et al. Oct 2007 B2
7304193 Frey et al. Dec 2007 B1
7342144 Kaizik et al. Mar 2008 B2
7348295 Zones et al. Mar 2008 B2
7348464 Waycuilis Mar 2008 B2
7357904 Zones et al. Apr 2008 B2
7361794 Grosso Apr 2008 B2
7390395 Elomari Jun 2008 B2
7579510 Gadewar et al. Aug 2009 B2
7674941 Waycuilis et al. Mar 2010 B2
7812201 Miller et al. Oct 2010 B2
20020102672 Mizrahi Aug 2002 A1
20020198416 Zhou et al. Dec 2002 A1
20030004380 Grumann Jan 2003 A1
20030065239 Zhu Apr 2003 A1
20030069452 Sherman et al. Apr 2003 A1
20030078456 Yilmaz et al. Apr 2003 A1
20030120121 Sherman et al. Jun 2003 A1
20030125589 Grosso Jul 2003 A1
20030166973 Zhou et al. Sep 2003 A1
20040006246 Sherman Jan 2004 A1
20040062705 Leduc Apr 2004 A1
20040152929 Clarke Aug 2004 A1
20040158107 Aoki Aug 2004 A1
20040158108 Snoble Aug 2004 A1
20040187684 Elomari Sep 2004 A1
20050038310 Lorkovic et al. Feb 2005 A1
20050047927 Lee et al. Mar 2005 A1
20050148805 Jones Jul 2005 A1
20050171393 Lorkovic Aug 2005 A1
20050192468 Sherman et al. Sep 2005 A1
20050215837 Hoffpauir Sep 2005 A1
20050234276 Waycuilis Oct 2005 A1
20050245772 Fong Nov 2005 A1
20050245777 Fong Nov 2005 A1
20050267224 Herling Dec 2005 A1
20060025617 Begley Feb 2006 A1
20060100469 Waycuilis May 2006 A1
20060135823 Jun Jun 2006 A1
20060138025 Zones Jun 2006 A1
20060138026 Chen Jun 2006 A1
20060149116 Slaugh Jul 2006 A1
20060229228 Komon et al. Oct 2006 A1
20060229475 Weiss et al. Oct 2006 A1
20060270863 Reiling Nov 2006 A1
20060288690 Elomari Dec 2006 A1
20070004955 Kay Jan 2007 A1
20070078285 Dagle Apr 2007 A1
20070100189 Stauffer May 2007 A1
20070129584 Basset Jun 2007 A1
20070142680 Ayoub Jun 2007 A1
20070148067 Zones Jun 2007 A1
20070148086 Zones Jun 2007 A1
20070149778 Zones Jun 2007 A1
20070149789 Zones Jun 2007 A1
20070149819 Zones Jun 2007 A1
20070149824 Zones Jun 2007 A1
20070149837 Zones Jun 2007 A1
20070197801 Bolk Aug 2007 A1
20070197847 Liu Aug 2007 A1
20070213545 Bolk Sep 2007 A1
20070238905 Arredondo Oct 2007 A1
20070238909 Gadewar et al. Oct 2007 A1
20070251382 Gadewar Nov 2007 A1
20070276168 Garel Nov 2007 A1
20070284284 Zones Dec 2007 A1
20080171898 Waycuilis Jul 2008 A1
20080183022 Waycuilis Jul 2008 A1
20080188697 Lorkovic Aug 2008 A1
20080269534 Lorkovic Oct 2008 A1
20080314758 Grosso Dec 2008 A1
20090069606 Komon Mar 2009 A1
20100096588 Gadewar Apr 2010 A1
20100099928 Gadewar Apr 2010 A1
20100099929 Gadewar Apr 2010 A1
20100099930 Stoimenov Apr 2010 A1
20100105972 Lorkovic Apr 2010 A1
20100121119 Sherman May 2010 A1
Foreign Referenced Citations (172)
Number Date Country
0210054 Aug 2004 BR
1099656 Apr 1981 CA
1101441 May 1981 CA
1202610 Apr 1986 CA
2447761 Nov 2002 CA
2471295 Jul 2003 CA
2542857 May 2005 CA
2236126 Aug 2006 CA
2203115 Sep 2006 CA
2510093 Dec 2006 CA
0021497 Jan 1981 EP
0164798 Dec 1985 EP
0418971 Mar 1991 EP
0418974 Mar 1991 EP
0418975 Mar 1991 EP
0510238 Oct 1992 EP
0526908 Feb 1993 EP
0346612 Aug 1993 EP
0560546 Sep 1993 EP
0976705 Jul 1998 EP
1186591 Mar 2002 EP
1253126 Oct 2002 EP
1312411 May 2003 EP
1395536 Mar 2004 EP
1404636 Apr 2004 EP
1235769 May 2004 EP
1435349 Jul 2004 EP
1440939 Jul 2004 EP
1474371 Nov 2004 EP
1235772 Jan 2005 EP
1661620 May 2006 EP
1760057 Mar 2007 EP
1689728 Apr 2007 EP
1808227 Jul 2007 EP
1837320 Sep 2007 EP
5125 Feb 1912 GB
156122 Mar 1922 GB
294100 Jun 1929 GB
363009 Dec 1931 GB
402928 Dec 1933 GB
474922 Nov 1937 GB
536491 May 1941 GB
553950 Jun 1943 GB
586483 Mar 1947 GB
775590 May 1957 GB
793214 Apr 1958 GB
796048 Jun 1958 GB
796085 Jun 1958 GB
883256 Nov 1961 GB
950975 Mar 1964 GB
950976 Mar 1964 GB
991303 May 1965 GB
995960 Jun 1965 GB
1015033 Dec 1965 GB
1104294 Feb 1968 GB
1133752 Nov 1968 GB
1172002 Nov 1969 GB
1212240 Nov 1970 GB
1233299 May 1971 GB
1253618 Nov 1971 GB
1263806 Feb 1972 GB
1446803 Aug 1976 GB
1542112 Mar 1979 GB
2095243 Sep 1982 GB
2095245 Sep 1982 GB
2095249 Sep 1982 GB
2116546 Sep 1982 GB
2120249 Nov 1983 GB
2185754 Jul 1987 GB
2191214 Dec 1987 GB
2004-529189 Sep 2004 JP
8300859 Mar 1983 WO
8504863 Nov 1985 WO
8504867 Nov 1985 WO
9008120 Jul 1990 WO
9008752 Aug 1990 WO
9118856 Dec 1991 WO
9203401 Mar 1992 WO
9212946 Aug 1992 WO
9316798 Sep 1993 WO
9622263 Jul 1996 WO
9744302 Nov 1997 WO
9812165 Mar 1998 WO
9907443 Feb 1999 WO
0007718 Feb 2000 WO
0009261 Feb 2000 WO
0114300 Mar 2001 WO
0138275 May 2001 WO
0144149 Jun 2001 WO
02094749 Nov 2002 WO
02094750 Nov 2002 WO
02094751 Nov 2002 WO
02094752 Nov 2002 WO
03000635 Jan 2003 WO
03002251 Jan 2003 WO
03018524 Mar 2003 WO
03020676 Mar 2003 WO
03022827 Mar 2003 WO
03043575 May 2003 WO
03051813 Jun 2003 WO
03062143 Jul 2003 WO
03062172 Jul 2003 WO
03078366 Sep 2003 WO
2004018093 Mar 2004 WO
2004067487 Aug 2004 WO
2005014168 Feb 2005 WO
2005019143 Mar 2005 WO
2005021468 Mar 2005 WO
2005035121 Apr 2005 WO
2005037758 Apr 2005 WO
2005054120 Jun 2005 WO
2005056525 Jun 2005 WO
2005058782 Jun 2005 WO
2005090272 Sep 2005 WO
2005095310 Oct 2005 WO
2005105709 Nov 2005 WO
2005105715 Nov 2005 WO
2005110953 Nov 2005 WO
2005113437 Dec 2005 WO
2005113440 Dec 2005 WO
2006007093 Jan 2006 WO
2006015824 Feb 2006 WO
2006019399 Feb 2006 WO
2006019399 Feb 2006 WO
2006020234 Feb 2006 WO
2006036293 Apr 2006 WO
2006039213 Apr 2006 WO
2006039354 Apr 2006 WO
2006043075 Apr 2006 WO
2006053345 May 2006 WO
2006-067155 Jun 2006 WO
2006067188 Jun 2006 WO
2006067190 Jun 2006 WO
2006067191 Jun 2006 WO
2006067192 Jun 2006 WO
2006067193 Jun 2006 WO
2006069107 Jun 2006 WO
2006071354 Jul 2006 WO
2006076942 Jul 2006 WO
2006083427 Aug 2006 WO
2006-100312 Sep 2006 WO
2006104909 Oct 2006 WO
2006104914 Oct 2006 WO
2006111997 Oct 2006 WO
2006113205 Oct 2006 WO
2006118935 Nov 2006 WO
2007001934 Jan 2007 WO
2007017900 Feb 2007 WO
2007044139 Apr 2007 WO
2007046986 Apr 2007 WO
2007050745 May 2007 WO
2007071046 Jun 2007 WO
2007079038 Jul 2007 WO
2007091009 Aug 2007 WO
2007094995 Aug 2007 WO
2007107031 Sep 2007 WO
2007111997 Oct 2007 WO
2007114479 Oct 2007 WO
2007125332 Nov 2007 WO
2007130054 Nov 2007 WO
2007130055 Nov 2007 WO
2007141295 Dec 2007 WO
2007142745 Dec 2007 WO
2008036562 Mar 2008 WO
2008036563 Mar 2008 WO
2008106319 Sep 2008 WO
2008148113 Dec 2008 WO
2008157043 Dec 2008 WO
2008157044 Dec 2008 WO
2008157045 Dec 2008 WO
2008157046 Dec 2008 WO
2008157047 Dec 2008 WO
Related Publications (1)
Number Date Country
20090127163 A1 May 2009 US
Provisional Applications (1)
Number Date Country
60931891 May 2007 US