The present invention relates generally to inflatable cushions, mattresses and pads. In some embodiments, the invention can have alternately inflatable or expandable cells or bladders actuated by a pressure system.
The present invention can be used with various types of bladders (or cells) used in inflatable cushions, mattresses or pads. In many cases these cushions, mattresses and pads are therapeutic and used by hospitals, businesses, and residences.
There are various types of cushions, mattresses or pads (collectively referred to as mattresses). Some of these variations are disclosed in commonly assigned U.S. Pat. No. 5,901,393 (Pepe et al.; title: Alternating Pressure Support Pad), and U.S. Pat. No. 6,079,070 (Flick; title: Disposable Inflatable Inclinable Cushion), which are hereby incorporated by reference. Obviously, these patents fail to disclose every type of inflatable mattresses but it does provide a representative sample.
In synopsis, every inflatable mattress has at least one bladder. That bladder can be made of polymeric materials having a top surface capable of receiving an object, a bottom surface that is opposite the top surface, and at least one side positioned between the top and bottom surfaces. In addition, every inflatable bladder is capable of receiving through an inlet a fluid, normally air or an aqueous solution, from a fluid source, normally a pump. From this fundamental understanding of inflatable bladders, the variations of bladders become evident. For example, some bladders (1) have the inlet of the fluid removed to become a self-contained device and (2) retain an inlet to receive fluid to become a dynamic device.
In the latter embodiment, the fluid exits the bladder through at least one outlet. In one version, the fluid exits the outlet through a conduit to return to the fluid source. In other versions the fluid exits the outlet through a conduit to a receiving unit, distinct from the fluid source. Another version has the surface of the bladder having a plurality of apertures designed to release at least a portion of the fluid toward the object lying on the inflatable bladder. Some bladders may have a CPR dump system to release the fluid expeditiously from the bladder.
Obviously, there may be alternative embodiments to these generic descriptions of bladders. In addition, the bladders may have alterations to (1) generate desired fluid flow patterns, (2) obtain desired mattress firmness and (3) allow the bladder adaptability for the mattress system. To obtain such results and others like it, the bladders have predetermined button welds, welds, and slits along welds. In addition, many of these alternative embodiments are embodied in numerous patent applications and patents, and product configurations.
As previously stated, numerous, if not all, inflatable bladders are constructed of some type of film material. The film material can be, for example, vinyl, polyethylene, or combinations thereof. When such film materials are used, the applicants have determined that the ability of the bladder to support loads for extended periods of time is greatly affected by creep of the material.
Creep occurs when an object, like a human, is placed on the mattress and displaces the air, at least immediately below the object, to the extremities of the bladder. Over time, creeping of the mattresses allows the object to bottom out on the inflatable mattress. Such results are undesirable and need to be minimized.
The present invention is directed to diminish the material's creep problem found in inflatable bladders. This is accomplished by positioning an anti-creep zone within a bladder. The anti-creep zone is separated from the remainder of the bladder by a fluid barrier. The fluid barrier can have various embodiments that prevent and/or allow predetermined amounts of fluid into the anti-creep zone.
a-d illustrates alternative embodiments to expel a fluid from the anti-creep zone.
The present invention is directed to a modification of bladders used in inflatable mattresses. Applicants admit that the bladder described in the Background of the Present Invention is a generic description of many bladders. This application, however, is not directed to bladders per se, but to what is within the bladders. Excluding fluids, welds, button welds and the like, the interior of a bladder is empty. It is empty because it is designed to have a fluid contained therein. Such designs, as described, above can result in creeping which in turn can result in bottoming out of the object on the mattress. Bottoming out and thus creeping are undesired. Therefore, applicants have modified the bladder design to diminish the possibility of such creeping and bottoming out.
The present invention is directed to inserting at least one anti-creep zone 100 into a bladder 102 as shown in FIG. 1. At least one fluid barrier 104 separates the anti-creep zone 100 from the remainder of the bladder 106.
The embodiment illustrated in
Alternatively, the fluid barrier can be attached to at least one of the sides 114 positioned between the top surface 110 and the bottom surface 112, as illustrated in FIG. 5. In addition, the anti-creep zone 100, or a combination of anti-creep zones 100, 100a, 100b can be positioned within the bladder 102, as illustrated in
As illustrated in
Alternatively,
Once the bladders 102 are filled to a desired pressure, the exterior inlets 130, 132 can be sealed off. That way, the bladders illustrated in
Alternatively, the bladders illustrated in
a illustrates an outlet valve 170 that allows the fluid contained in the anti-creep zone 100 to exit into the remainder of the bladder 106. Preferably, the outlet valve 170 will only allow the fluid to exit the anti-creep zone when the fluid within the anti-creep zone exceeds a predetermined pressure. Obviously, the predetermined pressure can be any value determined by the user and/or manufacturer by selecting certain outlet valves 170.
b illustrates that the anti-creep zone 100 can alternatively have an exterior outlet 180. The exterior outlet allows the fluid to exit the anti-creep zone into the fluid source 134, 134a, or a reservoir 140.
c illustrates interconnected anti-creep zones 100, 100a, 100b. At least one valve 172 interconnects each zone 100, 100a, 100b to at least another zone, and possibly more. The valve 172 allows a fluid in the anti-creep zones 100, 100a, 100b to flow between different zones. In one embodiment, the valve 172 will only allow the fluid to flow to another zone if the fluid exceeds a predetermined pressure in the zone the fluid is leaving from.
d illustrates that the anti-creep zone 100 can have a plurality of apertures 160a. If such apertures are utilized, the fluid should exit the anti-creep zone 100 through the top surface 110.
Obviously, the embodiments illustrated in
It is desired that the anti-creep zone be positioned in the mattress in a position that receives the greatest weight of the object. For example, if the bladder was being used as a mattress, the anti-creep zone would be positioned preferably under at least the pelvic region of a human being, if the human was the object. In addition, there can be additional anti-creep zones positioned throughout the bladder, and mattress. These anti-creep zones can be individual zones or interconnected zones.
It has been determined that having at least one creep zone positioned in a bladder decreases the chances of the bladder creeping and the object bottoming out on the bladder. The more anti-creep zones used in a bladder and/or the proper positioning of the zones to receive the greatest weight of the object, diminishes the chances of creeping and bottoming out.
Even though they are not illustrated, the bladders illustrated in the figures can have button welds, welds and/or splits therein. These embodiments can be in the remainder of the bladder 106, the anti-creep zone and/or the seal between the fluid barrier 104 and the bladder 102.
The top surface can become the bottom surface by merely flipping the bladder over. Flipping the bladder is standard practice in the industry and does not deviate from the invention.
It should be understood that, while the invention has been described in detail herein, the invention can be embodied otherwise without departing from the principles thereof, and such other embodiments are meant to come within the scope of the present invention as defined by the appended claims.
This application claims priority to U.S. provisional patent application Ser. No. 60/381,187, filed on May 16, 2002.
Number | Name | Date | Kind |
---|---|---|---|
3705429 | Nail | Dec 1972 | A |
4882800 | Schueler | Nov 1989 | A |
5412822 | Kelly | May 1995 | A |
5901393 | Pepe et al. | May 1999 | A |
6079070 | Flick | Jun 2000 | A |
6253401 | Boyd | Jul 2001 | B1 |
Number | Date | Country |
---|---|---|
2707874 | Jan 1995 | FR |
WO 9324088 | Dec 1993 | WO |
WO 02065878 | Aug 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20030213067 A1 | Nov 2003 | US |
Number | Date | Country | |
---|---|---|---|
60381187 | May 2002 | US |