Preferred embodiments of the present invention will be described in detail based on the following figures, wherein:
The best mode for carrying out the invention is described below with reference to the drawings.
In the preferred embodiment, the first lens group G1 focuses light rays with a positive refractive power. The second lens group G2, with a negative refractive power, then enlarges the object image formed by the first lens group G1. The third lens group G3 and the fourth lens group G4 share a function for converging light rays enlarged by the second lens group G2, and both therefore have a positive refractive power. When zooming from a wide angle view to a telephoto view, that is, when varying the focal length from the wide angle end to the telephoto end, as shown in
The third lens group G3 and the fourth lens group G4 converge light beams by their positive refractive power and share an imaging function. A light amount controlling mechanism IR including a diaphragm function for adjusting the amount of light and a shutter function for opening or closing an optical path is provided on the object side of the third lens group G3. An image stabilizing (vibration dampening) mechanism (not shown) in which the fourth lens group G4 is moved substantially perpendicularly to the optical axis to move the image in a direction opposite to a direction to which the image is moved by external factors such as camera shake is provided in the vicinity of the fourth lens group G4.
In the preferred embodiment, the light amount controlling mechanism IR is provided near the third lens group G3 and the vibration-proof mechanism is provided near the fourth lens group G4. That is to say, the light amount controlling mechanism IR and the vibration-proof mechanism are provided in the vicinity of the lens groups different from each other. As a result, restrictions on space for arranging the light amount controlling mechanism IR and the vibration-proof mechanism are loosened, and a more compact zoom lens can be realized.
In the preferred embodiment, the space between the third lens group G3 and the fourth lens group G4 is varied when zooming from the wide angle end to the telephoto end, to simultaneously correct aberration caused by the vibration control of the fourth lens group G4, curvature of image plane, coma aberration caused by a high zoom ratio, and image plane movement caused at the time of zoom operation, at each zoom ratio range.
Furthermore, each lens group is moved to reduce the space between the third lens group G3 and the fourth lens group G4 at the time of zooming from the wide angle end to the telephoto end to refract off-axis light beams at the periphery of the fourth lens group G4 performing a vibration control. At the telephoto end, off-axis light beams are refracted near the optical axis to satisfactorily correct a curvature of image plane in the focal length range at the wide angle side. Each lens group is further moved so as to reduce the space between the third lens group G3 and the fourth lens group G4, allowing suppressing the occurrence of coma aberration caused by the fourth lens group G4's decentering at the time of the vibration control in the focal length range at the telephoto side.
Furthermore, the fifth lens group G5 has functions to move the position of an exit pupil to the object side so that a solid-state imaging device such as a CCD having directivity in an optical sensitivity properly outputs video signals and to supplementally correct image plane movement caused by zooming. The fifth lens group G5 may be structured to be fixed at the time of zooming.
Still furthermore, it is preferable that the zoom lens 10 satisfies the following conditions in order to maintain high zoom ratio and high optical performance over the entire zoom range.
First, if surface distances on the optical axis between the third lens group G3 and the fourth lens group G4 at the wide angle end and the telephoto end are taken as T34w and T34t respectively, the zoom lens 10 preferably satisfies the following Conditional Expression (1):
2.0<T34w/T34t<7.0 (1)
This Conditional Expression (1) defines the ratio of the surface distance on the optical axis between the third lens group G3 and the fourth lens group G4 at the wide angle end and the telephoto end. If T34w/T34t is not less than 7.0, which is the upper limit of the Conditional Expression (1), the lens diameter of the fourth lens group G4 performing a vibration control must be increased because light passing through the fourth lens group G4 is excessively dispersed beyond the optical axis toward the outer periphery at the wide angle end. On the other hand, when T34w/T34t is not less than 7.0, which is the upper limit of the Conditional Expression (1), the variation of the surface distance between the third lens group G3 and the fourth lens group G4 is comparatively larger. For this reason, if T34w/T34t is not less than 7.0 Conditional Expression (1), it is necessary to provide movement space between the third lens group G3 and the fourth lens group G4, resulting in increasing the size of the entire system of the zoom lens. In addition, if T34w/T34t is not greater than 2.0, which is the lower limit of the Conditional Expression (1), the variation of the surface distance between the third lens group G3 and the fourth lens group G4 is significantly smaller. In this case, it is often not possible to correct both off-axis aberrations such as astigmatism and field curvature caused by the fourth lens group G4 at the wide angle end, and coma aberration caused by the fourth lens group G4's decentering on the axis at the time of vibration control at the telephoto end. As described above, according to the preferred embodiment, if the ratio of the surface distance on the optical axis between the third lens group G3 and the fourth lens group G4 satisfies the Conditional Expression (1), a field curvature occurred at the wide angle end and a coma aberration caused at the time of vibration control of the fourth lens group G4 at the telephoto side can be satisfactorily corrected, thereby realizing a compact five-group zoom lens capable of high zoom ratio.
In addition, if the composite focal length of the third lens group G3 and the fourth lens group G4 at the wide angle end and the telephoto end is taken as f34w and f34t respectively, the focal length of the third lens group G3 and the fourth lens group G4 is taken as f3 and f4 respectively, and the focal length of the entire system of the zoom lens 10 at the wide angle end and the telephoto end is taken as fw and ft respectively, the zoom lens 10 preferably satisfies the following Conditional Expressions (2), (3), (4) and (5):
2.7<f34w/fw<4.0 (2)
0.15<f34t/ft<0.36 (3)
3.3<f3/fw<fw<5.5 (4)
0.2<f4/ft<0.6 (5)
Conditional Expression (2) defines the composite focal length of the third lens group G3 and the fourth lens group G4 at the wide angle end. If f34w/fw is not less than 4.0, which is the upper limit of the Conditional Expression (2), the refractive power of the third lens group G3 and the fourth lens group G4 with respect to the overall system becomes excessively weak at the wide angle end, hampering or limiting attempts to increase the zoom ratio. If, on the other hand, f34w/fw is not greater than 2.7, which is the lower limit of the Conditional Expression (2), the refractive power of the third lens group G3 and the fourth lens group G4 at the wide angle end becomes excessively strong, hampering attempts to secure space for arranging the fifth lens group G5 nearer to the image plane than the fourth lens group G4 and arranging optical equivalent members such as an optical low pass filter and the like.
The Conditional Expression (3) defines the composite focal length of the third lens group G3 and the fourth lens group G4 at the telephoto end. If f34t/ft is not less than 0.36, which is the upper limit of the Conditional Expression (3), the refractive power of the third lens group G3 and the fourth lens group G4 with respect to the entire system at the telephoto end becomes excessively weak, making it necessary to lengthen the overall system of the zoom lens in the direction of the optical axis. If f34t/ft is not greater than 0.15, which is the lower limit of the Conditional Expression (3), the refractive power of the third lens group G3 and the fourth lens group G4 with respect to the entire system at the telephoto end becomes excessively strong, which increases coma aberration caused by the fourth lens group G4's decentering at the time of vibration control, which in turn makes correction difficult.
The Conditional Expression (4) defines an appropriate range for the focal length of the third lens group G3 at the wide angle end. If f3/fw is not less than 5.5, which is the upper limit of the Conditional Expression (4), the refractive power of the third lens group G3 with respect to the overall system becomes excessively weak, which makes it difficult to increase the zoom ratio, as well as making it necessary to enlarge the lens diameter of the fourth lens group G4 arranged nearer to the image plane than the third lens group G3, which may in turn increasing both the size and power consumption of the image stabilizing mechanism provided on the fourth lens group G4. Furthermore, if f3/fw is not greater than 3.3, which is the lower limit of the Conditional Expression (4), the refractive power of the third lens group G3 with respect to the entire system becomes excessively strong, which makes it difficult to satisfactorily correct a spherical aberration or an axial chromatic aberration.
The Conditional Expression (5) defines an appropriate range for the focal length of the fourth lens group G4 at the telephoto end. If f4/fw is not less than 0.6, which is the upper limit of the Conditional Expression (5), the refractive power of the fourth lens group G4 with respect to the overall system is weak, such that the effect of the fourth lens group G4 is insufficient, such that elongation of the overall system of the zoom lens in the direction of the optical axis is required. If, on the other hand, f4/ft is not greater than 0.2, which is the lower limit of the Conditional Expression (5), the refractive power of the fourth lens group G4 with respect to the entire system becomes excessively strong, which makes it difficult to satisfactorily correct astigmatism and lateral chromatic aberration caused at the time of vibration control of the fourth lens group G4 in a the focal length region at the telephoto side.
As stated above, ensuring that the Conditional Expressions (2) to (5) are satisfied makes it possible to realize a compact five-group zoom lens of high zoom ratio capable of satisfactorily correcting various aberrations at each zoom range and reducing variation in aberration at the time of vibration control.
In addition, when the focal length of the first lens group G1 and the second lens group G2 are f1 and f2, respectively, and the focal length of the entire system of the zoom lens at the wide angle end and at the telephoto end is taken as fw and ft respectively, the zoom lens 10 preferably satisfies the following Conditional Expressions (6) and (7):
6.7<f1/fw<14.0 (6)
0.08<|f2/ft|<0.16 (7)
Conditional Expression (6) defines an appropriate range for the focal length of the first lens group G1 at the wide angle end. If f1/fw is not less than 14.0, which is the upper limit of the Conditional Expression (6), the refractive power of the first lens group G1 with respect to the entire system becomes excessively weak, which hampers efforts to increase the zoom ratio. If, on the other hand, f1/fw is not greater than 6.7, which is the lower limit of the Conditional Expression (6), the refractive power of the first lens group G1 with respect to the entire system becomes excessively strong, which makes it difficult to satisfactorily correct a spherical aberration or an axial chromatic aberration at the wide angle end.
The Conditional Expression (7) defines an appropriate range for the focal length of the second lens group G2 at the telephoto end. If f2/ft is less than 0.16, which is the upper limit of the Conditional Expression (7), the refractive power of the second lens group G2 with respect to the overall system becomes excessively weak, which hampers attempts to increase the zoom ratio of the zoom lens. If, on the other hand, f2/fw is not greater than 0.08, which is the lower limit of the Conditional Expression (7), the refractive power of the second lens group G2 with respect to the entire system becomes excessively strong, which making it difficult to satisfactorily correct a spherical aberration or an axial chromatic aberration at the telephoto end.
Furthermore, in the preferred embodiment, the lens face of the fourth lens group G4 positioned nearest to the image plane has a convex shape facing the image plane. If the radius of curvature is taken as Ra, it is desirable to satisfy the following Conditional Expression (8):
|Ra/fw|<5.5 (8)
Conditional Expression (8) defines an appropriate shape of lens face of the fourth lens group G4, which performs vibration control, positioned nearest to the image plane. If |Ra/fw| is not greater than 5.5, which is the lower limit of the Conditional Expression (8), the angle of incidence of light upon the surface of the lens in the fourth lens group G4 positioned nearest to the image plane becomes large, which makes it difficult to satisfactorily correct aberration at the time of vibration control.
In addition, in the preferred embodiment, it is preferable that the fourth lens group G4 is constituted by a cemented lens in which a negative meniscus lens with its convex surface facing the object side and a positive lens with its convex surface facing back to back are sequentially arranged in this order from the object side and joined together. Constituting the fourth lens group G4 in this manner makes it possible to minimize the occurrence of a chromatic aberration at the time of vibration control and downsizing the vibration-proof mechanism provided near the fourth lens group G4.
In the preferred embodiment, the fifth lens group G5 is moved to focus an image. If the focal length of the fifth lens group G5 is taken as f5, it is preferable that the following Conditional Expression (9) be satisfied:
0.24<f5/ft<0.80 (9)
Conditional Expression (9) defines an appropriate range for the focal length of the fifth lens group G5 in the overall system of the zoom lens at the telephoto end. If f5/ft is not less than 0.80, which is the upper limit of the Conditional Expression (9), the overall refractive power of the fifth lens group G5 is reduced, reducing the efficiency of that lens group and making it necessary to lengthen the overall system of the zoom lens along the direction of the optical axis. If, on the other hand, f5/ft is not more than 0.24, which is the lower limit of the Conditional Expression (9), the refractive power of the fifth lens group G5 with respect to the entire system becomes excessively strong, which makes it difficult to satisfactorily correct an astigmatism and a lateralchromatic aberration.
In addition, in the preferred embodiment, the use of an aspherical lens instead of at least some of the lenses constituting the second lens group G2 and the third lens group G3 makes it possible to effectively correct aberration and to realize the zoom lens 10 with a higher zoom ratio and a wider angle. Further, constituting some component of the second lens group G2 with an aspherical lens makes it possible to satisfactorily correct distortion aberration and astigmatism at the wide angle range. Still furthermore, constituting a part of the third lens group G3 with an aspherical lens makes it possible to satisfactorily correct spherical aberration, especially at the telephoto end.
Constituting the lens groups so as to simultaneously satisfy all of the above conditions makes it possible to provide zoom lens 10 which is compact, has a zoom ratio as high as 11× to 17×, and is suited for use in conjunction with a high-resolution solid-state imaging device having a relatively larger number of pixels. Because a zoom lens 10 which satisfies each of the conditions defined above can provide high performance imaging and suppresses change in aberration during vibration dampening, aberration can be satisfactorily corrected image stabilization. Thus, an imaging apparatus equipped with the zoom lens 10 can simultaneously attain reduction in size, high zoom ratio, and include an image stabilization function.
In the following, first, second, third, and fourth preferred embodiments of the present invention are described with reference to the drawings.
First, items common among the embodiments will be described.
In the following description, “Si” denotes the i-th surface numbered from an object side, “Ri” a radius of curvature on a surface Si, “Ti” a surface space on the optical axis between the i-th and the i+1-th surface from the object side, “ndLi” a refractive index of the lens Li for d-line (wavelength of 587.6 nm), “vdLi” the Abbe number of the lens Li for d-line, “f” the focal length of the entire lens system, “Fno” an open aperture f-number, and “ω” a value equal to one half the viewing angle.
Lenses used in the embodiments include lenses constituted by an aspheric surface lens.
If the distance from the apex of a lens toward the optical axis is “x”, the distance from the apex of a lens to the direction perpendicular to the optical axis is “y”, the paraxial radius of curvature is R, and an aspheric surface coefficient is k, A, B, C and D, the aspheric surface shape can be expressed by the following equation:
As shown in
The light amount controlling mechanism IR functioning as a diaphragm and a shutter is arranged between the second lens group G2 and the third lens group G3. In addition, an optical equivalent member L15 is arranged between the fifth lens group G5 and the image plane IMG. The optical equivalent member L15 may be constituted by a low pass filter, an infrared cut filter, and a cover glass for a solid-state imaging device, for example, with the components being sequentially arranged in that order from the object side.
The second lens group G2 is composed of a negative meniscus lens L4, a biconcave lens L5, and a cemented lens in which a biconvex lens L6 and a biconcave lens L7 are joined together, sequentially arranged in that order from the object side. As a unit, the second lens group G2 has a negative refractive power.
The third lens group G3 is composed of a biconvex lens L8 and a cemented lens in which a biconvex lens L9 and a biconcave lens L10 are joined together, sequentially arranged in that order from the object side. As a unit, the second lens group G3 has a positive refractive power. The light amount controlling mechanism IR is provided adjacent to the third lens group G3 on the object side.
The fourth lens group G4 is constituted by a cemented lens in which a negative meniscus lens L11 and a biconvex lens L12 are sequentially arranged, in that order from the object side, and joined together. As a unit, the fourth lens group G4 has a positive refractive power. The vibration-proof mechanism is provided in the vicinity of the fourth lens group G4 to move the fourth lens group G4 substantially perpendicularly to the optical axis thereof to compensate for vibration of images caused by camera shake.
The fifth lens group G5 is constituted by a cemented lens in which a biconvex lens L13 and a negative meniscus lens L14 are sequentially arranged, in that order from the object side, and joined together. As a whole, the fifth lens group G5 has a positive refractive power.
Table 1 shows the focal length, F number and half viewing angle of the zoom lens according to the first example for short, intermediate, and long focal lengths. Length “f” is measured in mm, and angle “ω” in degrees.
Table 2 shows numerical data of a zoom lens according to the first example. Lengths R and T are measured in mm, and INF in the table indicates infinity.
Table 3 shows the values of surface intervals T5, T12, T18, T21 and T24 which can be varied by zooming at the short, intermediate, and long focal lengths.
Table 4 shows parameters of Conditional Expressions (1) to (9) according to the first example.
As shown in
Next, a second example of the present invention will be described. As shown in
The third lens group G3 is composed a biconvex lens L8, a biconvex lens L9, and a biconcave lens L10, which are sequentially arranged, in that order, from the object side. As a unit, the third lens group G3 has a positive refractive power. The light amount controlling mechanism IR is provided adjacent to the third lens group G3 on the object side as is the case with the first example.
The fourth lens group G4 has the same structure as that of the first example. The fifth lens group G5 is composed of a biconvex lens L13 and a biconcave lens L14, which are sequentially arranged in that order from the object side. As a whole, the fifth lens group G5 has a positive refractive power.
Table 5 shows the focal length, F number, and half viewing angle of the zoom lens according to the second example for short, intermediate. and long focal lengths.
Table 6 shows numerical data of a zoom lens according to the second example.
Table 7 shows the values of surface intervals T5, T12, T19, T22, and T26, which according to the second example can be varied by zooming at the short, intermediate, and long focal lengths.
Table 8 shows parameters of the Conditional Expressions (1) to (9) according to the second example.
The surface S8 of the biconcave lens L5 constituting the second lens group G2 is aspherical on the object side. Table 9 shows aspheric surface coefficients on the surface S8.
The “E” in Table 9 and below denotes an exponential representation with 10 as a base.
Next, a third example of the present invention will be described. As shown in
The third lens group G3 is composed of a biconvex lens L8, a positive meniscus lens L9 with its convex surface facing the object side, and a biconcave lens L10, which are sequentially arranged, in that order, from the object side. As a unit, the third lens group G3 has a positive refractive power. The light amount controlling mechanism IR is provided adjacent to the third lens group G3 on the object side.
The fourth lens group G4 has the same structure as that of the first and the second example. The fifth lens group G5 is constituted by a cemented lens in which a positive meniscus lens L13 with its convex surface facing the object side and a negative meniscus lens L14 are sequentially arranged in that order from the object side and joined together. As a unit, the fifth lens group G5 has a positive refractive power.
Table 10 shows the focal length, F number and half viewing angle of the zoom lens according to the third example at the short, intermediate and long focal length ends.
Table 11 shows numerical data or a zoom lens according to the third example.
Table 12 shows values of surface intervals T5, T12, T19, T22, and T25 which according to the third example can be varied by zooming at short, intermediate, and long focal lengths.
Table 13 shows the parameters of the Conditional Expressions (1) to (9) in the third example.
The surface S8 of the biconcave lens L5 constituting the second lens group G2 is aspherical on the object side. Table 14 shows aspheric surface coefficients on the surface S8.
Next, a fourth example of the present invention will be described. As shown in
The third lens group G3 is composed of a biconvex lens L8 and a cemented lens in which a positive meniscus lens L9 with its convex surface facing the object side and a negative meniscus lens L10 are joined together, and in which these lenses are sequentially arranged in that order from the object side. As a unit, the third lens group G3 has a positive refractive power. The surface S13 of the biconvex lens L8 is aspherical on the side of an object. In addition, the light amount controlling mechanism IR is provided adjacent to the third lens group G3 on the object side.
The fourth lens group G4 has the same structure as that of the first to the third example. The fifth lens group G5 is constituted by a cemented lens in which a biconvex lens L13 and a biconcave lens L14 are sequentially arranged, in that order, from the object side and joined together. As a unit, the fifth lens group G5 has a positive refractive power.
Table 15 shows the focal length, F number and half viewing angle of the zoom lens according to the fourth example at short, intermediate, and long focal lengths.
Table 16 shows numerical data of a zoom lens according to the fourth example.
Table 17 shows values of surface intervals T5, T12, T18, T21 and T24 which, according to the fourth example, can be varied by zooming at short, intermediate, and long focal lengths.
Table 18 shows the parameters of the Conditional Expressions (1) to (9) in the fourth example.
The surface S8 of the biconcave lens L5 constituting the second lens group G2 and the surface S13 of the biconvex lens L8 constituting the third lens group G3 are aspherical on the object side. Table 19 shows aspheric surface coefficients on the surfaces S8 and S13.
Next, an example imaging apparatus equipped with the zoom lens 10 will be described.
A controlling section 24 in the main unit 200 executes various processes based on user instructions input through an operating section 26. A signal processing section 28 subjects the image data output from the solid-state imaging device 12 to various signal processings such as A/D conversion and noise reduction. The signal-processed image data are output to a display section 30 or a recording medium 32. The recording medium 32 may be a data recording medium such as a memory card and the like. Captured image data is recorded in this recording medium. A display section 30 is a display device such as an LCD or the like on which users may view captured images. A lens drive controlling section 22 outputs a driving signal to a lens moving mechanism equipped with the zoom lens when focusing or zooming is required and to instruct the move of the lens groups. A motor for the lens moving mechanism equipped with the zoom lens is driven in response to an instruction to move the lens groups.
Number | Date | Country | Kind |
---|---|---|---|
2006-115055 | Apr 2006 | JP | national |