ZOOM LENS SYSTEM

Information

  • Patent Application
  • 20120063004
  • Publication Number
    20120063004
  • Date Filed
    July 22, 2011
    13 years ago
  • Date Published
    March 15, 2012
    12 years ago
Abstract
A zoom lens system includes a negative first lens group, a positive second lens group, and a positive third lens group, in that order from the object side. Upon zooming from the short to long focal length extremities, the first through third lens groups move along an optical axis direction so that the distance between the first and second lens groups decreases, and the distance between the second and third lens groups increases. The second lens group includes a positive glass lens element and at least two plastic lens elements, in that order from the object side, and wherein the following condition (1) is satisfied:
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention relates to a low-cost zoom lens system having a zoom ratio of approximately 6:1 for use in a compact, light-weight digital camera, etc.


2. Description of Related Art


Due to the rapid popularization of digital cameras in recent years, demands are being made for lower-cost digital cameras, and also there is a strong demand for a lower-cost photographic optical system therefor. In addition, there is a tendency for a compact digital camera to be desired to be highly compact, and hence further miniaturization and a further decrease in weight of the camera is desired. Whereas, the number of pixels of solid-state image sensors, such as a CCD, etc., has been increasing year after year, so that a high-quality photographic optical system which is compatible with such fineness of pixel pitch is in demand.


A positive-lead lens system is often used in zoom lens systems for compact digital cameras having a zoom ratio of approximately 6:1. Although a positive-lead lens system is advantageous for ensuring a high zoom ratio, there is the disadvantage of the number of lens elements thereof being large, easily incurring a high cost. Whereas, in a zoom lens system having a zoom ratio of approximately 3:1 through 4:1, a negative-lead lens system is often used. A negative-lead lens system has a small number of lens elements, which is advantageous in regard to providing a low-cost zoom lens system, and since the lens system can be miniaturized, especially the frontmost lens diameter, is suitable for application in a retractable zoom lens camera which decreases the distances between the lens groups thereof while being retracted to an accommodation position. However, it is difficult to increase the zoom ratio in such a negative-lead lens system.


Negative-lead zoom lens systems such as, for example, Japanese Unexamined Patent Publication Nos. 2010-91948, 2003-50352, and H09-21950 are known in art. In the above-mentioned Japanese Unexamined Patent Publication No. 2010-91948, a negative-lead zoom lens system is disclosed as achieving a zoom ratio of approximately 5:1, however, since a large number of glass lens elements are employed, the cost cannot be kept sufficiently low. Furthermore, in the above-mentioned Japanese Unexamined Patent Publication Nos. 2003-50352 and H09-21950, cost reduction is achieved by employing a large number of plastic lens elements, however, the zoom ratio is approximately 3:1, which is insufficient.


SUMMARY OF THE INVENTION

The present invention provides a zoom lens system having a negative-lead lens arrangement while achieving a zoom ratio of approximately 6:1 while also having an excellent cost performance.


According to an aspect of the present invention, a zoom lens system is provided, including a negative first lens group, a positive second lens group, and a positive third lens group, in that order from the object side. Upon zooming from the short focal length extremity to the long focal length extremity, the first through third lens groups move along an optical axis direction so that the distance between the first lens group and the second lens group decreases, and the distance between the second lens group and the third lens group increases. The second lens group includes a positive glass lens element and at least two plastic lens elements, in that order from the object side, and wherein the following condition (1) is satisfied:


−0.25<f2/f2pc<−0.05 . . . (1), wherein f2 designates the focal length of the second lens group, and f2pc designates the combined focal length of the plastic lens elements that are provided within the second lens group.


It is desirable for the following condition (2) to be satisfied:


ν21>80 . . . (2), wherein ν21 designates the Abbe number with respect to the d-line of the glass lens element which is provided closest to the object side within the second lens group.


It is desirable for the following condition (3) to be satisfied:


−0.005<Σ(φ2i/ν2i)<−0.002 . . . (3), wherein φ2i designates the refractive power (=1/f2i) of the ith lens element of the plastic lens elements which are provided in the second lens group, ν2i designates the Abbe number with respect to the d-line of the ith lens element of the plastic lens elements which are provided in the second lens group, and f2i designates the focal length of the ith lens element of the plastic lens elements which are provided in the second lens group.


It is desirable for the third lens group to be a single plastic lens element having a positive refractive power, and wherein the following condition (4) is satisfied:


−5.0<f2pc/f3<−2.0 . . . (4), wherein f2pc designates the combined focal length of the plastic lens elements which are provided in the second lens group, and f3 designates the focal length of the third lens group (which is the single plastic lens element).


It is desirable for the first lens group to include a negative glass lens element, and at least two plastic lens elements, in that order from the object side, and wherein the following condition (5) is satisfied:


|f1/f1pc|<0.04 . . . (5), wherein f1 designates the focal length of the first lens group, and flpc designates the combined focal length of the plastic lens elements which are provided within the first lens group.


It is desirable for the following condition (6) to be satisfied:


0.015<Σ(φ1i/ν1i)<0.025 . . . (6), wherein φ1i designates the refractive power (=1/f1i) of the ith lens element of the plastic lens elements which are provided in the first lens group, ν1i designates the Abbe number with respect to the d-line of the ith lens element of the plastic lens elements which are provided in the first lens group, and fli designates the focal length of the ith lens element of the plastic lens elements which are provided in the first lens group.


It is desirable for the first lens group to include a negative glass lens element, a negative plastic lens element, and a positive plastic lens element, in that order from the object side, wherein the following condition (7) is satisfied:


−8.0<R1/R2<−3.0 . . . (7), wherein R1 designates the radius of curvature of the surface on the object side of the glass lens element which is provided closest to the object side within the first lens group, and R2 designates the radius of curvature of the surface on the image side of the glass lens element which is provided closest to the object side within the first lens group.


In an embodiment, a zoom lens system is provided, including a negative first lens group, a positive second lens group, and a positive third lens group, in that order from the object side. Upon zooming from the short focal length extremity to the long focal length extremity, the first through third lens groups move along an optical axis direction so that the distance between the first lens group and the second lens group decreases, and the distance between the second lens group and the third lens group increases. The second lens group includes a positive glass lens element and at least two plastic lens elements, in that order from the object side, and wherein the following conditions (2) and (8) are satisfied:


ν21>80 . . . (2), and


−0.6<φ2pc/φ2<−0.3 . . . (8), wherein ν21 designates the Abbe number with respect to the d-line of the glass lens element which is provided closest to the object side within the second lens group, φ2pc designates the sum (=Σφ2ipc) of the refractive powers of the plastic lens elements which are provided in the second lens group, φ2ipc designates the refractive power (=1/f2ipc) of the ith lens element of the plastic lens elements provided within the second lens group, f2ipc designates the focal length of the ithlens element of the plastic lens elements provided within the second lens group, φ2 designates the refractive power (=1/f2) of the second lens group, and f2 designates the focal length of the second lens group.


It is desirable for the following condition (9) to be satisfied:


−1.5<φ3/φ2pc<−1.0 . . . (9), wherein φ3 designates the refractive power (=1/f3) of the third lens group, f3 designates the focal length of the third lens group, φ2pc designates the sum (=Σφ2ipc) of the refractive powers of the plastic lens elements which are provided in the second lens group, φ2ipc designates the refractive power (=1/f2ipc) of the ith lens element of the plastic lens elements provided within the second lens group, and f2ipc designates the focal length of the ith lens element of the plastic lens elements provided within the second lens group.


According to the present invention, a zoom lens system having a negative-lead lens arrangement while providing a zoom ratio of approximately 6: 1 while also having an excellent cost performance is achieved.


The present disclosure relates to subject matter contained in Japanese Patent Application No. 2010-204230 (filed on Sep. 13, 2010) which is expressly incorporated herein in its entirety.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be discussed below in detail with reference to the accompanying drawings, in which:



FIG. 1 shows a lens arrangement of a first numerical embodiment of a zoom lens system, according to the present invention, at the long focal length extremity when focused on an object at infinity;



FIGS. 2A, 2B, 2C and 2D show various aberrations that occurred in the lens arrangement shown in FIG. 1;



FIG. 3 shows a lens arrangement of the first numerical embodiment of the zoom lens system, according to the present invention, at the short focal length extremity when focused on an object at infinity;



FIGS. 4A, 4B, 4C and 4D show various aberrations that occurred in the lens arrangement shown in FIG. 3;



FIG. 5 shows a lens arrangement of a second numerical embodiment of a zoom lens system, according to the present invention, at the long focal length extremity when focused on an object at infinity;



FIGS. 6A, 6B, 6C and 6D show various aberrations that occurred in the lens arrangement shown in FIG. 5;



FIG. 7 shows a lens arrangement of the second numerical embodiment of the zoom lens system, according to the present invention, at the short focal length extremity when focused on an object at infinity;



FIGS. 8A, 8B, 8C and 8D show various aberrations that occurred in the lens arrangement shown in FIG. 7;



FIG. 9 shows a lens arrangement of a third numerical embodiment of a zoom lens system, according to the present invention, at the long focal length extremity when focused on an object at infinity;



FIGS. 10A, 10B, 10C and 10D show various aberrations that occurred in the lens arrangement shown in FIG. 9;



FIG. 11 shows a lens arrangement of the third numerical embodiment of the zoom lens system, according to the present invention, at the short focal length extremity when focused on an object at infinity;



FIGS. 12A, 12B, 12C and 12D show various aberrations that occurred in the lens arrangement shown in FIG. 11;



FIG. 13 shows a lens arrangement of a fourth numerical embodiment of a zoom lens system, according to the present invention, at the long focal length extremity when focused on an object at infinity;



FIGS. 14A, 14B, 14C and 14D show various aberrations that occurred in the lens arrangement shown in FIG. 13;



FIG. 15 shows a lens arrangement of the fourth numerical embodiment of the zoom lens system, according to the present invention, at the short focal length extremity when focused on an object at infinity;



FIGS. 16A, 16B, 16C and 16D show various aberrations that occurred in the lens arrangement shown in FIG. 15; and



FIG. 17 shows a zoom path of the zoom lens system according to the present invention.





DESCRIPTION OF THE EMBODIMENTS

The zoom lens system according to the present invention, as shown in the zoom path of FIG. 17, is configured of a negative first lens group G1, a positive second lens group G2 and a positive third lens group G3, in that order from the object side. A diaphragm S, which is positioned on an orthogonal plane (with respect to the optical axis) that is tangent to the surface on the object side of the second lens group G2 (the diaphragm S is illustrated in FIG. 17 at a position slightly away from the object side of the second lens group G2), integrally moves with the second lens group G2 along the optical axis during zooming. ‘I’ designates the imaging plane. The third lens group G3 constitutes a focusing lens group which is moved during a focusing operation (the third lens group G3 is advanced toward the object side upon carrying out a focusing operation on an object at infinity to an object at a finite distance).


The zoom lens system, upon zooming from the short focal length extremity (WIDE) to the long focal length extremity (TELE), moves the first through third lens groups G1 through G3 in the optical axis direction while reducing the distance between the first and second lens groups G1 and G2, and increasing the distance between the second and third lens groups G2 and G3.


More specifically, in each of the first through fourth numerical embodiments, upon zooming from the short focal length extremity to the long focal length extremity, the first lens group G1 moves, overall, toward the object side while plotting a convex moving path. In each of the first through fourth numerical embodiments, the second lens group G2, upon zooming from the short focal length extremity to the long focal length extremity, monotonically moves toward the object side. The third lens group G3, upon zooming from the short focal length extremity to the long focal length extremity, moves monotonically toward the image side in each of the first through third numerical embodiments, and moves, overall, toward the image side while plotting a convex moving path in the fourth numerical embodiment.


In each of the first through third numerical embodiments, the first lens group G1 is configured of a negative lens element 11, a negative lens element 12, and a positive lens element, in that order from the object side. The negative lens element 11 is formed from a glass lens material. The negative lens element 12 and the positive lens element 13 are each formed from a plastic lens material.


In the fourth numerical embodiment, the first lens group G1 is configured of a negative lens element 11′ and a positive lens element 12′, in that order from the object side. The negative lens element 11′ is a plastic lens element and the positive lens element 12′ is a glass lens element.


In the first numerical embodiment, the second lens group G2 is configured of a positive lens element 21, a positive lens element 22, and a negative lens element 23, in that order from the object side. The positive lens element is a glass lens element formed from a specialized low-dispersion glass (ED glass) having an Abbe number with respect to the d-line exceeding 80. The positive lens element 22 and the negative lens element 23 are plastic lens elements.


In each of the second through fourth numerical embodiments, the second lens group is configured of a positive lens element 21′, a cemented lens formed from a positive lens element 22′ and a negative lens element 23′, and a negative lens element 24′, in that order from the object side. The positive lens element 21′ is a glass lens element formed from a specialized low-dispersion glass (ED glass) having an Abbe number with respect to the d-line exceeding 80. The positive lens element 22′, the negative lens element 23′ and the negative lens element 24′ are plastic lens elements.


In each of the first through fourth numerical embodiments, the third lens group G3 is configured of a single plastic lens element 31 having a positive refractive power.


In order to increase the zoom ratio of a negative-lead zoom lens system configured of a negative lens group, a positive lens group and a positive lens group, like that of the present invention, it is necessary to strengthen (increase) the refractive power of the second lens group (G2) . However, if the zoom ratio is increased by strengthening the refractive power of the second lens group G2, a problem occurs with trying to ensure a sufficient optical quality, especially at the long focal length extremity.


Furthermore, if a large number of plastic lens elements are employed in order to reduce the cost and reduce the weight of the zoom lens system, it becomes more important to reduce the adverse influence (deterioration in the optical quality) of the change in optical quality due to a change in temperature, since plastic lens elements are susceptible to being influenced by temperature change (has an inferior environmental resistance).


Furthermore, the lens element (positive lens element 21) which is provided closest to the object side within the second lens group G2 is the most important lens element with regard to optical quality, and since physical stability, together with (of course) aberration corrections, are demanded in this lens element 21, it is desirable for this lens element 21 to be formed from a glass lens material.


Consequently, in the present invention, a glass lens element having a positive refractive power is provided closest to the object side within the second lens group G2, and at least two plastic lens elements are provided on the image side of this glass lens element (positive lens element 21).


Condition (1) specifies the ratio of the focal length of the second lens group G2 to the combined focal length of the plastic lens elements that are provided within the second lens group G2, and achieves correction of aberrations and reduces the influence of a change in temperature.


If the upper limit of condition (1) is exceeded, the combined negative refractive power of the plastic lens elements within the second lens group G2 becomes too weak, so that aberrations caused by the positive refractive power that occurs in the glass lens element 21, which is provided closest to the object side within the second lens group G2, cannot be favorably corrected.


If the lower limit of condition (1) is exceeded, the combined negative refractive power of the plastic lens elements that are provided within the second lens group G2 becomes too strong, so that the change in optical quality due to a change in temperature undesirably increases.


Condition (2) specifies the Abbe number with respect to the d-line of the glass lens element 21 which is provided closest to the object side within the second lens group G2, and achieves favorable correction of chromatic aberration, especially at the long focal length extremity.


If the lower limit of condition (2) is exceeded, since chromatic aberration, especially at the long focal length extremity, cannot be favorably corrected, it becomes difficult to achieve a high zoom ratio while ensuring an acceptable optical quality.


Condition (3) specifies the ratio of the refractive power of the plastic lens elements provided within the second lens group G2 and the Abbe number with respect to the d-line, and achieves favorable correction of chromatic aberration, especially at the long focal length extremity.


If the upper limit of condition (3) is exceeded, the chromatic aberration occurring in the glass lens element 21 which is provided closest to the object side within the second lens group G2 cannot be favorably corrected.


If the lower limit of condition (3) is exceeded, the chromatic aberration becomes overcorrected, which is undesirable.


As described above, in each of the first through fourth embodiments, the third lens group G3 is configured of a single plastic lens element 31 having a positive refractive power; therefore, the overall cost of the zoom lens system can be lowered.


Condition (4), with regard to the above-described configuration, specifies the ratio of the combined focal length of the plastic lens elements which are provided within the second lens group G2 to the focal length of the third lens group G3 (which is a single plastic lens element), and reduces the influence of a change in temperature.


If the upper limit of condition (4) is exceeded, the positive refractive power of the third lens group G3 becomes too weak, so that the influence (deterioration in the optical quality) due to the change in temperature that occurs in the plastic lens element which is provided within the second lens group G2 cannot be favorably corrected at the third lens group


G3.


If the lower limit of condition (4) is exceeded, the positive refractive power of the third lens group G3 becomes too strong, so that the influence (deterioration in the optical quality) of the change in temperature that occurs in the plastic lens elements provided within the second lens group G2 becomes overcorrected at the third lens group G3, which is undesirable.


As described above, in each of the first through third embodiments, the first lens group G1 is configured of a negative glass lens element, and at least two plastic lens elements, in that order from the object side.


Condition (5) specifies the ratio of the focal length of the first lens group G1 to the combined focal length of the plastic lens elements which are provided within the first lens group G1, and achieves correction of aberrations and reduces the influence of a change in temperature.


If the upper limit of condition (5) is exceeded, the combined refractive power of the plastic lens elements provided within the first lens group G1 becomes too strong, so that the change in optical quality due to a change in temperature undesirably increases.


Condition (6) specifies the ratio of the refractive power of the plastic lens elements which are provided within the first lens group G1 to the Abbe number with respect to the d-line, and achieves favorable correction of chromatic aberration.


If the upper limit of condition (6) is exceeded, chromatic aberration that occurs at the glass lens element 11 which is provided closest to the object side within the first lens group G1 cannot be favorably corrected.


If the lower limit of condition (6) is exceeded, the chromatic aberration become overcorrected, which is undesirable.


As mentioned above, in each of the first through third embodiments, the first lens group G1 is configured of a negative glass lens element 11, a negative plastic lens element 12, and a positive plastic lens element 13, in that order from the object side.


In regard to this configuration, condition (7) specifies the radius of curvature of the glass lens element 11, which is provided closest to the object side within the first lens group G1, and achieves reduction in the occurrence of aberrations.


If the upper limit of condition (7) is exceeded, the curvature of the surface on the object side of the glass lens element 11, which is provided closest to the object side within the first lens group G1, becomes too small (in other words, the radius of curvature thereof becomes too large), so that large amounts of distortion/astigmatism occur at the short focal length extremity.


If the lower limit of condition (7) is exceeded, the curvature of the surface on the image side of the glass lens element 11, which is provided closest to the object side within the first lens group G1, becomes too small (in other words, the radius of curvature thereof becomes too large), so that large amounts of spherical aberration/coma occur at the long focal length extremity.


In each of the first through fourth embodiments, the glass lens element 21, which is provided closest to the object side within the second lens group G2, is the only glass lens element that is provided in the second lens group G2. However, supposing that another glass lens element were to be disposed in between the plastic lens elements (22 and 23) of the second lens group G2, “the combined focal length of the plastic lens element which are provided within the second lens group G2” of conditions (1) and (4) could not be defined.


Conditions (8) and (9) suppose such a case, and substitute “the combined focal length of the plastic lens element which are provided within the second lens group G2” of conditions (1) and (4) with “the sum of the refractive powers of the plastic lens elements which are provided within the second lens group G2”.


If the upper limit of condition (8) is exceeded, the sum of the refractive powers of the plastic lens elements which are provided within the second lens group G2 becomes too small, so that the aberrations that occur due the positive refractive power in the glass lens element 21, which is provided closest to the object side within the second lens group G2, cannot be favorably corrected.


If the lower limit of condition (8) is exceeded, the sum of the refractive powers of the plastic lens elements which are provided within the second lens group G2 becomes too large, so that the change in optical quality due to a change in temperature undesirably increases.


If the upper limit of condition (9) is exceeded, the positive refractive power of the third lens group G3 becomes too weak, so that the influence (deterioration in the optical quality) due to the change in temperature occurring in the plastic lens elements within the second lens group G2 cannot be favorably corrected by the third lens group G3.


If the lower limit of condition (9) is exceeded, the positive refractive power of the third lens group G3 becomes too strong, so that the influence (deterioration in the optical quality) due to the change in temperature occurring in the plastic lens elements within the second lens group G2 becomes overcorrected by the third lens group G3, which is undesirable.


Embodiments

Specific numerical embodiments will be herein discussed. The following numerical embodiments are applied to a zoom lens system used in a compact digital camera. In the aberration diagrams and the tables, the d-line, the g-line and the C-line show aberrations at their respective wave-lengths; S designates the sagittal image, M designates the meridional image, FNO. designates the f-number, f designates the focal length of the entire optical system, W designates the half angle of view (°), Y designates the image height, fB designates the backfocus, L designates the overall length of the lens system, r designates the radius of curvature, d designates the lens thickness or distance between lenses, N(d) designates the refractive index at the d-line, and ν d designates the Abbe number with respect to the d-line. The values for the f-number, the focal length, the half angle-of-view, the image height, the backfocus, the overall length of the lens system, and the distance between lenses (which changes during zooming and according to the overall length of the lens system) are shown in the following order: short focal length extremity, intermediate focal length, and long focal length extremity.


An aspherical surface which is rotationally symmetrical about the optical axis is defined as: x=cy2/(1+[1−{1+K}c2y2]1/2)+A4y4+A6y6+A8y8+A10y10+A12y12 . . . wherein ‘x’ designates a distance from a tangent plane of the aspherical vertex, ‘c’ designates the curvature (1/r) of the aspherical vertex, ‘y’ designates the distance from the optical axis, ‘K’ designates the conic coefficient, A4 designates a fourth-order aspherical coefficient, A6 designates a sixth-order aspherical coefficient, A8 designates an eighth-order aspherical coefficient, A10 designates a tenth-order aspherical coefficient, and A12 designates a twelfth-order aspherical coefficient.


Embodiment 1


FIGS. 1 through 4D and Tables 1 through 4 show a first numerical embodiment of a zoom lens system according to the present invention. FIG. 1 shows a lens arrangement of the first numerical embodiment of the zoom lens system at the long focal length extremity when focused on an object at infinity. FIGS. 2A, 2B, 2C and 2D show various aberrations that occurred in the lens arrangement shown in FIG. 1. FIG. 3 shows a lens arrangement of the first numerical embodiment of the zoom lens system at the short focal length extremity when focussed on an object at infinity. FIGS. 4A, 4B, 4C and 4D show various aberrations that occurred in the lens arrangement shown in FIG. 3. Table 1 shows the lens surface data, Table 2 shows various zoom lens system data, Table 3 shows the aspherical surface data, and Table 4 shows the lens group data of the zoom lens system according to the first numerical embodiment.


The zoom lens system of the first numerical embodiment is configured of a negative first lens group G1, a positive second lens group G2, and a positive third lens group G3, in that order from the object side. The third lens group G3 constitutes a focusing lens group that is moved along the optical axis direction during a focusing operation (the third lens group G3 advances toward the object side when performing a focusing operation while focusing on an object at infinity to an object at a finite distance).


The first lens group G1 (surface Nos. 1 through 6) is configured of a biconcave negative lens element 11, a negative meniscus lens element 12 having a convex surface on the object side, and a positive meniscus lens element 13 having a convex surface on the object side, in that order from the object side. The biconcave negative lens element 11 is a glass lens element. The negative meniscus lens element 12 is a plastic aspherical lens element having an aspherical surface on each side thereof. The positive meniscus lens element 13 is a plastic aspherical lens element having an aspherical surface on the object side.


The second lens group G2 (surface Nos. 8 through 13) is configured of a positive meniscus lens element 21 having a convex surface on the object side, a positive meniscus lens element 22 having a convex surface on the object side, and a negative meniscus lens element 23 having a convex surface on the object side, in that order from the object side. The positive meniscus lens element 21 is a glass lens element formed from a specialized low-dispersion glass (ED glass) having an Abbe number with respect to the d-line exceeding 80. The positive meniscus lens element 22 and the negative meniscus lens element 23 are aspherical plastic lens elements having an aspherical surface on each side. A diaphragm S (surface No. 7) is provided so as to be positioned on an orthogonal plane, with respect to that optical axis, which is tangent to the surface on the object side of the second lens group G2 (positive meniscus lens element 21). The diaphragm S moves integrally with the second lens group G2 during zooming.


The third lens group G3 (surface Nos. 14 and 15) is configured of a single biconvex positive lens element 31. This biconvex positive lens element 31 is provided with an aspherical surface on each side thereof. An optical filter OP (surface Nos. 16 and 17) and a cover glass CG (surface Nos. 18 and 19) are provided behind (and in front of an imaging plane I) the third lens group G3 (biconvex positive lens element 31).









TABLE 1







SURFACE DATA











Surf.No.
r
d
Nd
νd














 1
−73.844
0.800
1.77250
49.6


 2
10.815
0.402




 3*
14.173
1.000
1.54358
55.7


 4*
5.453
1.851




 5*
8.881
2.465
1.63550
23.9


 6
34.224
d6




 7 (Diaphragm)

0.000




 8
6.072
1.780
1.49700
81.6


 9
1451.958
0.100




10*
6.317
1.516
1.54358
55.7


11*
53.810
0.190




12*
12.908
1.066
1.63550
23.9


13*
3.835
d13




14*
27.347
1.900
1.54358
55.7


15*
−18.404
d15




16

0.350
1.51633
64.1


17

0.510




18

0.500
1.51633
64.1


19









The asterisk (*) designates an aspherical surface which is rotationally symmetrical with respect to the optical axis.













TABLE 2





ZOOM LENS SYSTEM DATA
















Zoom Ratio
5.80














Short Focal Length
Intermediate
Long Focal Length



Extremity
Focal Length
Extremity





FNO.
3.4
5.6
6.5


f
4.18
11.40
24.23


W
44.5
18.8
9.1


Y
3.49
3.88
3.88


fB
0.59
0.59
0.60


L
42.02
36.29
46.01


d6
20.500
5.611
1.105


d13
2.589
12.363
27.875


d15
3.915
3.297
2.000
















TABLE 3







Aspherical Surface Data (the aspherical surface


coefficients not indicated are zero (0.00)):











Surf. No.
K
A4
A6
A8





 3
0.000
0.1182E−03
  0.3730E−05
0.4599E−07


 4
−0.553  
−0.6877E−04  
−0.2883E−04
0.7637E−06


 5
0.000
0.2414E−04
−0.1938E−04
0.3824E−06


10
0.000
−0.1016E−02  
−0.5030E−04



11
0.000
−0.1340E−02  
  0.3209E−05



12
0.000
0.3282E−04
−0.7353E−04



13
0.000
0.1661E−02
−0.1415E−03



14
0.000
0.4757E−03
−0.7039E−05
0.8467E−06


15
0.000
0.7664E−03
−0.2435E−04
0.1460E−05
















TABLE 4







LENS GROUP DATA









Lens Group
1st Surf.
Focal Length












1
1
−12.65


2
8
11.31


3
14
20.54









Embodiment 2


FIGS. 5 through 8D and Tables 5 through 8 show a second numerical embodiment of a zoom lens system according to the present invention. FIG. 5 shows a lens arrangement of the second numerical embodiment of the zoom lens system at the long focal length extremity when focused on an object at infinity. FIGS. 6A, 6B, 6C and 6D show various aberrations that occurred in the lens arrangement shown in FIG. 5. FIG. 7 shows a lens arrangement of the second numerical embodiment of the zoom lens system at the short focal length extremity when focussed on an object at infinity. FIGS. 8A, 8B, 8C and 8D show various aberrations that occurred in the lens arrangement shown in FIG. 7. Table 5 shows the lens surface data, Table 6 shows various zoom lens system data, Table 7 shows the aspherical surface data, and Table 8 shows the lens group data of the zoom lens system according to the second numerical embodiment.


The lens arrangement of the second numerical embodiment is the same as that of the first numerical embodiment except for the aspects mentioned hereinbelow. (1) The second lens group G2 is configured of a biconvex positive lens element 21′, a cemented lens formed from a positive meniscus lens element 22′ having a convex surface on the object side and a negative meniscus lens element 23′ having a convex surface on the object side, and a negative meniscus lens element 24′ having a convex surface on the object side, in that order from the object side. The biconvex positive lens element 21′ is a glass lens element formed from a specialized low-dispersion glass (ED glass) having an Abbe number exceeding with respect to the d-line 80. The positive meniscus lens element 22′ is a plastic aspherical lens element having an aspherical surface on the object side. The negative meniscus lens element 23′ is a plastic aspherical lens element having an aspherical surface on the image side. The negative meniscus lens element 24′ is a plastic aspherical lens element having an aspherical surface on the image side.


(2) The positive lens element 31 of the third lens group G3 is a positive meniscus lens element having a convex surface on the image side.









TABLE 5







SURFACE DATA











Surf. No.
r
d
Nd
νd














 1
−78.697
0.800
1.78338
48.2


 2
11.447
0.300




 3*
12.935
1.000
1.54358
55.7


 4*
5.549
2.118




 5*
10.089
2.412
1.63548
23.9


 6
42.275
d6




 7 (Diaphragm)

0.000




 8
6.831
1.826
1.49700
81.6


 9
−65.332
0.100




10*
7.812
1.488
1.54358
55.7


11
335.004
1.648
1.63548
23.9


12*
25.810
0.100




13
8.278
0.905
1.63548
23.9


14*
3.795
d14




15*
−153.249
1.900
1.54358
55.7


16*
−10.517
d16




17

0.350
1.51633
64.1


18

0.510




19

0.500
1.51633
64.1


20









The asterisk (*) designates an aspherical surface which is rotationally symmetrical with respect to the optical axis.













TABLE 6







ZOOM LENS SYSTEM DATA


Zoom Ratio 5.80











Short Focal Length
Intermediate
Long Focal Length



Extremity
Focal Length
Extremity













FNO.
3.4
4.3
6.5


f
4.40
11.40
25.52


W
43.0
18.8
8.7


Y
3.49
3.88
3.88


fB
0.59
0.59
0.59


L
44.30
36.80
46.01


d6
21.611
6.116
1.019


d14
2.418
10.642
26.433


d16
3.719
3.489
2.003
















TABLE 7







Aspherical Surface Data (the aspherical surface


coefficients not indicated are zero (0.00)):












Surf. No.
K
A4
A6
A8
A10





 3
0.000
−0.7517E−04
  0.5382E−05
0.1041E−07



 4
−0.613  
−0.1105E−03
−0.1666E−04
0.5306E−06



 5
0.000
  0.9689E−04
−0.1260E−04
0.2655E−06



10
0.000
−0.4139E−03
  0.8060E−05




12
0.000
  0.5767E−03
  0.6465E−04




14
0.000
−0.4594E−03
−0.1005E−03




15
0.000
−0.1260E−03
−0.7524E−05
0.1746E−06
−0.2086E−07


16
0.000
  0.2407E−03
−0.2441E−04
0.9061E−06
−0.2853E−07
















TABLE 8







LENS GROUP DATA









Lens Group
1st Surf.
Focal Length












1
1
−13.30


2
8
11.32


3
15
20.68









Embodiment 3


FIGS. 9 through 12D and Tables 9 through 12 show a third numerical embodiment of a zoom lens system according to the present invention. FIG. 9 shows a lens arrangement of the third numerical embodiment of the zoom lens system at the long focal length extremity when focused on an object at infinity. FIGS. 10A, 10B, 100 and 10D show various aberrations that occurred in the lens arrangement shown in FIG. 9. FIG. 11 shows a lens arrangement of the third numerical embodiment of the zoom lens system at the short focal length extremity when focused on an object at infinity. FIGS. 12A, 12B, 12C and 12D show various aberrations that occurred in the lens arrangement shown in FIG. 11. Table 9 shows the lens surface data, Table 10 shows various zoom lens system data, Table 11 shows the aspherical surface data, and Table 12 shows the lens group data of the zoom lens system according to the third numerical embodiment.


The lens arrangement of the third numerical embodiment is the same as that of the second numerical embodiment except for the aspects mentioned hereinbelow.

  • (1) The biconvex negative lens element 11 of the first lens group G1 is an aspherical lens element having an aspherical surface on the object side.
  • (2) The positive lens element 22′ of the second lens group G2 is a biconvex positive lens element and the negative lens element 23′ of the second lens group G2 is a biconcave negative lens element.









TABLE 9







SURFACE DATA











Surf. No.
r
d
Nd
νd














 1*
−46.303
0.800
1.70058
56.2


 2
11.179
0.300




 3*
10.738
1.000
1.54358
55.7


 4*
4.946
1.821




 5*
8.594
2.570
1.60641
27.2


 6
30.340
d6




 7 (Diaphragm)

0.000




 8
6.884
1.834
1.49700
81.6


 9
−53.334
0.100




10*
8.407
1.584
1.54358
55.7


11
−30.486
1.542
1.60641
27.2


12*
70.387
0.100




13
9.378
1.111
1.60641
27.2


14*
3.729
d14




15*
−44.902
1.900
1.54358
55.7


16*
−8.815
d16




17

0.350
1.51633
64.1


18

0.510




19

0.500
1.51633
64.1


20









The asterisk (*) designates an aspherical surface which is rotationally symmetrical with respect to the optical axis.













TABLE 10







ZOOM LENS SYSTEM DATA


Zoom Ratio 5.90











Short Focal Length
Intermediate
Long Focal Length



Extremity
Focal Length
Extremity













FNO.
3.4
5.4
6.5


f
4.40
11.40
25.96


W
43.0
18.7
8.6


Y
3.49
3.88
3.88


fB
0.59
0.59
0.59


L
43.27
36.44
46.00


d6
20.819
6.118
1.159


d14
2.175
10.329
26.231


d16
3.661
3.382
1.998
















TABLE 11







Aspherical Surface Data (the aspherical surface


coefficients not indicated are zero (0.00)):












Surf. No.
K
A4
A6
A8
A10





 1
0.000
  0.1682E−03
−0.2620E−05
−0.3736E−08  
  0.1209E−09


 3
0.000
−0.8204E−03
  0.1969E−04
0.2852E−07



 4
−1.000  
−0.2487E−03
−0.9045E−05
0.7841E−06



 5
0.000
  0.9730E−04
−0.1813E−04
0.3450E−06



10
0.000
−0.4935E−03
  0.9740E−05




12
0.000
  0.6607E−03
  0.4951E−04




14
0.000
−0.8768E−03
−0.9249E−04




15
0.000
−0.2057E−03
  0.1858E−05
0.2336E−07
−0.2414E−07


16
0.000
  0.2810E−03
−0.1547E−04
0.8145E−06
−0.3204E−07
















TABLE 12







LENS GROUP DATA









Lens Group
1st Surf.
Focal Length












1
1
−13.02


2
8
10.97


3
15
19.81









Embodiment 4


FIGS. 13 through 16D and Tables 13 through 16 show a fourth numerical embodiment of a zoom lens system according to the present invention. FIG. 13 shows a lens arrangement of the fourth numerical embodiment of the zoom lens system at the long focal length extremity when focused on an object at infinity. FIGS. 14A, 14B, 14C and 14D show various aberrations that occurred in the lens arrangement shown in FIG. 13. FIG. 15 shows a lens arrangement of the fourth numerical embodiment of the zoom lens system at the short focal length extremity when focussed on an object at infinity. FIGS. 16A, 16B, 16C and 16D show various aberrations that occurred in the lens arrangement shown in FIG. 15. Table 13 shows the lens surface data, Table 14 shows various zoom lens system data, Table 15 shows the aspherical surface data, and Table 16 shows the lens group data of the zoom lens system according to the fourth numerical embodiment.


The lens arrangement of the fourth numerical embodiment is the same as that of the third numerical embodiment except for the aspects mentioned hereinbelow.

  • (1) The first lens group G1 is configured of a negative meniscus lens element 11′ having a convex surface on the object side, and a positive meniscus lens element 12′ having a convex surface on the object side, in that order from the object side. The negative meniscus lens element 11′ is an aspherical plastic lens element having an aspherical surface on each side thereof. The positive meniscus lens element 12′ is a glass lens element.
  • (2) The positive lens element 31 of the third lens group G3 is a biconvex positive lens element.









TABLE 13







SURFACE DATA











Surf. No.
r
d
Nd
νd














 1*
82.793
0.800
1.85135
40.1


 2*
5.043
2.775




 3
11.168
2.086
1.92286
20.9


 4
29.209
d4




 5 (Diaphragm)

0.000




 6
6.487
1.826
1.49700
81.6


 7
−263.522
0.100




 8*
8.563
3.009
1.54358
55.7


 9
−11.000
0.700
1.60641
27.2


10*
220.173
0.100




11
8.257
0.700
1.60641
27.2


12*
3.757
d12




13*
37.456
1.900
1.54358
55.7


14*
−16.854
d14




15

0.350
1.51633
64.1


16

0.510




17

0.500
1.51633
64.1


18









The asterisk (*) designates an aspherical surface which is rotationally symmetrical with respect to the optical axis.













TABLE 14







ZOOM LENS SYSTEM DATA


Zoom Ratio 6.00











Short Focal Length
Intermediate
Long Focal Length



Extremity
Focal Length
Extremity













FNO.
3.4
4.4
6.5


f
4.00
11.40
24.01


W
45.7
18.6
9.2


Y
3.49
3.88
3.88


fB
0.59
0.59
0.59


L
42.25
35.66
46.00


d4
20.708
4.995
1.189


d12
2.389
10.953
26.867


d14
3.212
3.766
1.998
















TABLE 15







Aspherical Surface Data (the aspherical surface


coefficients not indicated are zero (0.00)):












Surf. No.
K
A4
A6
A8
A10





 1
0.000
−0.7642E−04  
0.1569E−05
−0.3890E−07
  0.2099E−09


 2
−1.000  
0.9165E−04
0.7401E−05
−0.2313E−06



 8
0.000
−0.4675E−03  
0.1375E−04




10
0.000
0.1027E−02
0.1292E−03




12
0.000
−0.8777E−03  
−0.1942E−03  




13
0.000
0.8690E−03
−0.5235E−04  
  0.1309E−05
−0.1035E−07


14
0.000
0.1272E−02
−0.7440E−04  
  0.1713E−05
−0.1024E−07
















TABLE 16







LENS GROUP DATA









Lens Group
1st Surf.
Focal Length












1
1
−11.63


2
6
10.80


3
13
21.65









The numerical values of each condition for each embodiment are shown in Table 17. Note that in regard to numerical embodiment 4, since the configuration of the first lens group G1 differs from those of the other embodiments (i.e., the lens element provided closest to the object side therein is a plastic lens element) , values corresponding to conditions (5) through (7) cannot be calculated.













TABLE 17






Embod. 1
Embod. 2
Embod. 3
Embod. 4



















Cond. (1)
−0.17
−0.21
−0.19
−0.11


Cond. (2)
81.61
81.61
81.61
81.61


Cond. (3)
−0.0038
−0.0032
−0.0029
−0.0033


Cond. (4)
−3.24
−2.60
−2.92
−4.67


Cond. (5)
0.01
0.01
0.01



Cond. (6)
0.0227
0.0217
0.0207



Cond. (7)
−6.83
−6.87
−4.14



Cond. (8)
−0.52
−0.43
−0.42
−0.37


Cond. (9)
−1.06
−1.27
−1.33
−1.36









As can be understood from Table 17, the first through fourth numerical embodiments satisfy conditions (1) through (9) (expect for conditions (5) through (7) with respect to the fourth numerical embodiment). Furthermore, as can be understood from the aberration diagrams, the various aberrations are favorably corrected.


Obvious changes may be made in the specific embodiments of the present invention described herein, such modifications being within the spirit and scope of the invention claimed. It is indicated that all matter contained herein is illustrative and does not limit the scope of the present invention.

Claims
  • 1. A zoom lens system comprising a negative first lens group, a positive second lens group, and a positive third lens group, in that order from the object side, wherein, upon zooming from the short focal length extremity to the long focal length extremity, the first through third lens groups move along an optical axis direction so that the distance between said first lens group and said second lens group decreases, and the distance between said second lens group and said third lens group increases,wherein said second lens group includes a positive glass lens element and at least two plastic lens elements, in that order from the object side, and wherein the following condition (1) is satisfied:−0.25<f2/f2pc<−0.05 . . . (1), wherein f2 designates the focal length of said second lens group, andf2pc designates the combined focal length of said plastic lens elements that are provided within said second lens group.
  • 2. The zoom lens system according to claim 1, wherein the following condition (2) is satisfied: ν21>80 . . . (2), whereinν21 designates the Abbe number with respect to the d-line of the glass lens element which is provided closest to the object side within said second lens group.
  • 3. The zoom lens system according to claim 1, wherein the following condition (3) is satisfied: −0.005<Σ(φ2i/v2i)<−0.002 . . . (3), whereinφ2i designates the refractive power (=1/f2i) of the ith lens element of the plastic lens elements which are provided in said second lens group,ν2i designates the Abbe number with respect to the d-line of the ith lens element of the plastic lens elements which are provided in said second lens group, andf2i designates the focal length of the ith lens element of the plastic lens elements which are provided in said second lens group.
  • 4. The zoom lens system according to claim 1, wherein said third lens group comprises a single plastic lens element having a positive refractive power, and wherein the following condition (4) is satisfied: −5.0<f2pc/f3<−2.0 . . . (4), whereinf2pc designates the combined focal length of the plastic lens elements which are provided in said second lens group, andf3 designates the focal length of said third lens group.
  • 5. The zoom lens system according to claim 1, wherein said first lens group comprises a negative glass lens element, and at least two plastic lens elements, in that order from the object side, and wherein the following condition (5) is satisfied: |f1/f1pc|<0.04 . . . (5), whereinf1 designates the focal length of said first lens group, andf1pc designates the combined focal length of the plastic lens elements which are provided within said first lens group.
  • 6. The zoom lens system according to claim 5, wherein the following condition (6) is satisfied: 0.015<Σ(φ1i/v1i)<0.025 . . . (6), whereinφ1i designates the refractive power (=1/f1i) of the ith lens element of the plastic lens elements which are provided in said first lens group,ν1i designates the Abbe number with respect to the d-line of the ith lens element of the plastic lens elements which are provided in said first lens group, andf1i designates the focal length of the ith lens element of the plastic lens elements which are provided in said first lens group.
  • 7. The zoom lens system according to claim 5, wherein said first lens group comprises a negative glass lens element, a negative plastic lens element, and a positive plastic lens element, in that order from the object side, wherein the following condition (7) is satisfied: −8.0<R1/R2<−3.0 . . . (7), whereinR1 designates the radius of curvature of the surface on the object side of the glass lens element which is provided closest to the object side within said first lens group, andR2 designates the radius of curvature of the surface on the image side of the glass lens element which is provided closest to the object side within said first lens group.
  • 8. A zoom lens system comprising a negative first lens group, a positive second lens group, and a positive third lens group, in that order from the object side, wherein, upon zooming from the short focal length extremity to the long focal length extremity, the first through third lens groups move along an optical axis direction so that the distance between said first lens group and said second lens group decreases, and the distance between said second lens group and said third lens group increases,wherein said second lens group includes a positive glass lens element and at least two plastic lens elements, in that order from the object side, and wherein the following conditions (2) and (8) are satisfied:ν21>80 . . . (2), and−0.6<φ2pc/φ2<−0.3 . . . (8), whereinν21 designates the Abbe number with respect to the d-line of the glass lens element which is provided closest to the object side within said second lens group,φ2pc designates the sum (=Σφ2ipc) of the refractive powers of the plastic lens elements which are provided in said second lens group,φ2ipc designates the refractive power (=1/f2ipc) of the ith lens element of the plastic lens elements provided within said second lens group,f2ipc designates the focal length of the ith lens element of the plastic lens elements provided within said second lens group,φ2 designates the refractive power (=1/f2) of said second lens group, andf2 designates the focal length of said second lens group.
  • 9. The zoom lens system according to claim 8, wherein the following condition (9) is satisfied: −1.5<φ3/φ2pc<−1.0 . . . (9), whereinφ3 designates the refractive power (=1/f3) of the third lens group,f3 designates the focal length of said third lens group,φ2pc designates the sum (=Σφ2ipc) of the refractive powers of the plastic lens elements which are provided in said second lens group,φ2ipc designates the refractive power (=1/f2ipc) of the ith lens element of the plastic lens elements provided within said second lens group, andf2ipc designates the focal length of the ith lens element of the plastic lens elements provided within said second lens group.
Priority Claims (1)
Number Date Country Kind
2010-204230 Sep 2010 JP national