1. Field of the Invention
The present invention relates generally to circuits for converting phase to voltage, and particularly to a 555 timer-based phase-to-voltage converter that uses a 555 timer operating in a monostable multivibrator mode.
2. Description of the Related Art
Phase-to-voltage converters are widely used in many instrumentation and measurement applications. Over the years many techniques have been developed for converting the phase angles between two pulse trains into voltage. In this regard, phase-to-voltage converters based on the “EXCLUSIVE OR” digital gate and the R-S flip-flop are two of the simplest techniques used. Despite its simplicity, the EXCLUSIVE OR based phase-to-voltage converter can provide a voltage linearly changing with phase angle for phase angles between 0 and π only. While the R-S flip-flop based phase-to-voltage converter can provide a voltage that is linearly changing with the phase angle, by virtue of its operation, it cannot convert very small phase angles approaching 0°, or very large phase angles, approaching 2π.
A simple phase-to-voltage circuit operable over the entire range of phase angles between 0° and 360° would be desirable. Thus, a 555 timer-based phase-to-voltage converter solving the aforementioned problems is proposed.
The 555 timer-based phase-to-voltage converter is a circuit that can be used for phase-to-voltage conversion for phase angles in the range between 0 and 2π. A first input signal triggers the 555 timer. A second input signal resets the 555 timer, and thus an output signal having a width proportional to the phase difference between the first and second input signals is formed at the output of the 555 timer. A low pass filter may be placed at the output to pass a DC voltage of magnitude proportional to the phase difference between the first and second input signals for phase angles between 0 and 2π.
These and other features of the present invention will become readily apparent upon further review of the following specification and drawings.
Similar reference characters denote corresponding features consistently throughout the attached drawings.
The 555 timer-based phase-to-voltage converter 10, as shown in
However, the phase-to-voltage converter 10 is configured to convert the phase angle between waveforms A and B, shown in plot 200 of
However, at the negative going edge of the voltage waveform B, the voltage at pin 4 is pulled down sufficiently to reset the 555 timer integrated circuit 15 and stop the charging process of capacitor C before capacitor C charges to ⅔VCC. Thus, the period of the resulting pulse at pin 3 (the output pin) is determined by the phase angle between the negative going edges or trailing edges of two consecutive pulses of the waveforms A and B. The preferred value of the RC time constant times the natural log of 3 (τ=R*C*ln3) is always larger than the period of the pulse trains A and B. This is to guarantee that the width of the pulse at pin 3 is determined only by the phase angle between the two pulse trains A and B. A low pass filter (an RC circuit with the resistor in series with the output and a capacitor connected to ground) connected to pin 3 will produce a DC voltage that is linearly proportional to the phase angle between pulse trains A and B for values of phase angle between 0 and 2π, since the capacitor in the low pass filter charges to a voltage proportional to the width of the pulse at output pin 3 of the 555 timer integrated circuit 15. A small capacitor, e.g., about 0.01 may connect the control pin (pin 5) to ground to eliminate noise. The 555 timer integrated circuit 15 is triggered and reset again by successive pulses of waveforms A and B to generate a periodic sequence of output pulses.
In
Although the 555 timer-based phase-to-voltage converter 10 has been illustrated with square waveform input signals A and B, the converter 10 may also be configured to work with input waveforms of negative polarity, in which case the phase angle is measured between the leading edges of the waveform inputs, and the trigger and reset pulses are supplied by the leading edges of the waveform inputs. Although the phase-to-voltage converter 10 has been illustrated with square waveform input signals A and B, the converter 10 may also be configured to work with sine wave or triangular wave input signals with suitable wave-shaper circuits to generate the trigger and reset signals.
It is to be understood that the present invention is not limited to the embodiments described above, but encompasses any and all embodiments within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
4170747 | Holmes | Oct 1979 | A |
7336113 | Laletin | Feb 2008 | B2 |
7466176 | Huard et al. | Dec 2008 | B2 |
7489975 | Motomiya et al. | Feb 2009 | B2 |
20070139102 | Laletin | Jun 2007 | A1 |
Number | Date | Country |
---|---|---|
58-182318 | Oct 1983 | JP |