56294 and 56629, novel human metalloproteases and uses thereof

Information

  • Patent Application
  • 20030017572
  • Publication Number
    20030017572
  • Date Filed
    September 24, 2001
    23 years ago
  • Date Published
    January 23, 2003
    22 years ago
Abstract
The invention provides isolated nucleic acids molecules, designated 56294 and 56229 nucleic acid molecules, which encode novel metalloprotease family members. The invention also provides antisense nucleic acid molecules, recombinant expression vectors containing 56294 or 56629nucleic acid molecules, host cells into which the expression vectors have been introduced, and nonhuman transgenic animals in which a 56294 or 56629 gene has been introduced or disrupted. The invention still further provides isolated 56294 or 56629 proteins, fusion proteins, antigenic peptides and anti-56294, anti-56629 antibodies. Diagnostic methods utilizing compositions of the invention are also provided.
Description


BACKGROUND OF THE INVENTION

[0002] Metalloproteases are a group of highly diverse, widely distributed proteolytic enzymes that depend on bound Ca2+ or Zn2+ for activity. Certain metalloproteases can readily utilize Mn2+ and Mg2+ as well. About 30 families of metallopeptidases are recognized, about half of which comprise enzymes containing the HEXXH motif (Rawlings et al. (1995) Meth Enzymol 248:183-228). The most thoroughly characterized of the metalloproteases is thermolysin, a member of the M4 metalloprotease family.


[0003] The M12 family contains the reprolysin (M12B) subfamily, which contains the snake venom metalloproteases and adamalysins family (ADAMs). The known members of the reprolysin subfamily mostly lack essential peptidase active sites, but typically contain C-terminal disintegrin-like, EGF-like, and transmembrane domains (Rawlings et al. (1995) Meth Enzymol 248:183-228). These include BRCA1, a human breast cancer-associated protein, and mammalian fertilin.


[0004] ADAMs comprise a broad family of multifunctional proteins, characterized as having a disintegrin and metalloprotease domain (Wolfsberg et al. (1995) Developmental Biol 169:378-383; Wolfsberg et al. (1995) J Cell Biol 131:275-278; Hurskainen et al. J Biol Chem (1999) 274:25555-25563). Most ADAM members are similar in domain organization, having from amino to carboxyl termini, a signal peptide, a proregion, a zinc-metalloprotease catalytic domain with the typical reprolysin signature HEX1X2HX3X1GX1XHD (SEQ ID NO:12) (X is typically: a hydrophobic residue (superscript 1), glycine or a hydrophobic residue (superscript 2), asparagine (superscript 3)), a disintegrin domain, a cysteine-rich domain, an epidermal growth factor-like domain, and in many cases a membrane-spanning region and a cytoplasmic domain with signaling potential. Members of the ADAM family of proteins include, but are not limited to, MDC (ADAM1), fertilin (ADAM2), cryitestin (ADAM3), epididymal apical protein I, meltrin, MS2, TNF-a converting enzyme, Kuzbanian and metargidin.


[0005] ADAMs participate in a variety of roles associated with disintegrin and TSP function, including cell-cell and cell-matrix interactions and polypeptide processing. Examples of ADAM functions include tumor cell adhesion (Iba et al. (1999) Am J Pathol 154:1489-1501), tumor suppression (Emi et al. (1993) Nature Genet 5:151-157), spermatogenesis and mediation of fusion of gamete membranes (Evans et al. (1999) Biol Reprod 59:145-152), blastocyst implantation (Olson et al. (1998) Cell Tissue Res 293:489-498), myotube formation and myoblast fusion (Gilpin et al. (1998) J Biol Chem 273:157-166), immunity (Higuchi et al. (1999) Immunol Today 20:278-284), proteolytic processing of ligands that activate epidermal growth factor metalloprotease (Dong et al. (1999) Proc Natl Acad Sci USA 96:6235-6240), proteolytic cleavage of Alzheimer's amyloid precursor protein (Lammich et al (1999) Proc Natl Acad Sci USA 96:3922-3927; Buxbaum et al. (1998) J Biol Chem 273:27765-27767), processing of Notch ligands (Qi et al. (1999) Science 283:91-94), and neurogenesis (Rooke et al. (1996) Science 273:1227-1231). The cell-cell interactions are thought to be mediated by the disintegrin domain.


[0006] The M20 family of metalloproteases are typically glutamate carboxypeptidases or aminoacylase. Members of the M25 and M40 family are grouped in this family as well (Rawlings et al. (1995) Meth Enzymol 248:183-228). Metal ligands for the enzymes are not known. Other enzymes with activities related to that of aminoacylase are also distant members of family M20.


[0007] Biological functions of metalloproteases include protein maturation, degradation of proteins, such as extracellular matrix proteins, tumor growth, metastasis and angiogenesis. As such, they are likely to play important roles in a wide range of diseases including, but not limited to, cancer, arthritis, Alzheimer's disease, and a variety of inflammatory conditions. Accordingly, metalloproteases are a major target for drug action and development. Therefore, it is valuable to the field of pharmaceutical development to identify and characterize previously unknown metalloproteases.



SUMMARY OF THE INVENTION

[0008] The present invention is based, in part, on the discovery of novel metalloprotease family members, referred to herein as “56294” and “56629.” The nucleotide sequence of a cDNA encoding 56294 is shown in SEQ ID NO:1, and the amino acid sequence of a 56294 polypeptide is shown in SEQ ID NO:2. In addition, the nucleotide sequences of the coding region are depicted in SEQ ID NO:3. The nucleotide sequence of a cDNA encoding 56629 is shown in SEQ ID NO:4, and the amino acid sequence of a 56629 polypeptide is shown in SEQ ID NO:5. In addition, the nucleotide sequences of the coding region of 56629 are depicted in SEQ ID NO:6.


[0009] Accordingly, in one aspect, the invention features a nucleic acid molecule which encodes a 56294 or 56629 protein or polypeptide, e.g., a biologically active portion of a 56294 or 56629 protein. In a preferred embodiment the isolated nucleic acid molecule encodes a polypeptide having the amino acid sequence of SEQ ID NO:2 or SEQ ID NO:5. In other embodiments, the invention provides isolated 56294 or 56629 nucleic acid molecules having the nucleotide sequence shown in SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:6, the sequence of the DNA insert of the plasmid deposited with ATCC Accession Number ______, the sequence of the DNA insert of the plasmid deposited with ATCC Accession Number ______. In still other embodiments, the invention provides nucleic acid molecules that are substantially identical (e.g., naturally occurring allelic variants) to the nucleotide sequence shown in SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:6, the sequence of the DNA insert of the plasmid deposited with ATCC Accession Number ______, or the sequence of the DNA insert of the plasmid deposited with ATCC Accession Number ______. In other embodiments, the invention provides a nucleic acid molecule which hybridizes under a stringent hybridization condition described herein to a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:6, the sequence of the DNA insert of the plasmid deposited with ATCC Accession Number ______, or the sequence of the DNA insert of the plasmid deposited with ATCC Accession Number ______, wherein the nucleic acid encodes a full length 56294 or 56629 protein or an active fragment thereof.


[0010] In a related aspect, the invention further provides nucleic acid constructs that include a 56294 or 56629 nucleic acid molecule described herein. In certain embodiments, the nucleic acid molecules of the invention are operatively linked to native or heterologous regulatory sequences. Also included, are vectors and host cells containing the 56294 or 56629 nucleic acid molecules of the invention e.g., vectors and host cells suitable for producing 56294 or 56629 nucleic acid molecules and polypeptides. The invention thus also provides vectors and host cells that express the 56294 metalloprotease nucleic acid molecules and polypeptides of the invention. Transgenic animals expressing 56294 or 56629 metalloprotease nucleic acid molecules and polypeptides of the invention also are provided.


[0011] In another related aspect, the invention provides nucleic acid fragments suitable as primers or hybridization probes for the detection of 56294 or 56629-encoding nucleic acids.


[0012] In still another related aspect, isolated nucleic acid molecules that are antisense to a 56294 or 56629 encoding nucleic acid molecule are provided.


[0013] In another embodiment, the invention provides 56294 or 56629 polypeptides. Preferred polypeptides are 56294 or 56629 proteins having a 56294 or 56629 activity, e.g., a 56294 or 56629 activity as described herein, e.g., a metalloprotease activity. In another aspect, the invention features, 56294 or 56629 polypeptides, and biologically active or antigenic fragments thereof that are useful, e.g., as reagents or targets in assays applicable to treatment and diagnosis of 56294 or 56629 metalloprotease mediated or related disorders.


[0014] In other embodiments, the invention provides 56294 or 56629 polypeptides, e.g., a 56294 or 56629 polypeptide having the amino acid sequence shown in SEQ ID NO:2 or SEQ ID NO:5; the amino acid sequence encoded by the cDNA insert of the plasmid deposited with ATCC Accession Number ______; or the amino acid sequence encoded by the cDNA insert of the plasmid deposited with ATCC Accession Number ______; an amino acid sequence that is substantially identical to the amino acid sequence shown in SEQ ID NO:2 or SEQ ID NO:5; or an amino acid sequence encoded by a nucleic acid molecule having a nucleotide sequence which hybridizes under stringent hybridization conditions to a nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1, SEQ ID NO:3, SEQ ID NO:4, SEQ ID NO:6, the sequence of the DNA insert of the plasmid deposited with ATCC Accession Number ______, or the sequence of the DNA insert of the plasmid deposited with ATCC Accession Number ______, wherein the nucleic acid encodes a full length 56294 or 56629 protein or an active fragment thereof.


[0015] The 56294 or 56629 metalloprotease polypeptides are useful as reagents or targets in 56294 or 56629 metalloprotease activity assays and are applicable to treatment and diagnosis of 56294 or 56629 metalloprotease-related disorders. The invention therefore also provides methods of treating a subject having or at risk of having a 56294 or 56629 metalloprotease disorder. In one embodiment, a method of the invention includes administering a 56294 or 56629 metalloprotease polypeptide, subsequence or variant sequence thereof, or a nucleic acid encoding the same, to a subject in an amount effective to treat or ameliorate one or more symptoms of the disorder. In one aspect, the disorder is associated with or results from undesirable or aberrant 56294 or 56629 metalloprotease expression or an activity. In another embodiment, the disorder is associated with or results from insufficient 56294 or 56629 metalloprotease expression or activity.


[0016] In a related aspect, the invention provides 56294 or 56629 polypeptides or fragments operatively linked to non-56294 or 56629 polypeptides to form fusion proteins.


[0017] In another aspect, the invention features antibodies and antigen-binding fragments thereof, that react with, or more preferably specifically bind 56294 or 56629 polypeptides.


[0018] In another aspect, the invention provides methods of screening for compounds that modulate the expression or activity of the 56294 or 56629 polypeptides or nucleic acids. In yet another aspect, the invention provides antibodies or antigen-binding fragments thereof that selectively bind the 56294 or 56629 metalloprotease polypeptides and subsequences. Such antibodies and antigen binding fragments have use in the detection of a 56294 or 56629 metalloprotease polypeptide, and in prevention, diagnosis and treatment of 56294 or 56629 metalloprotease related disorders. Thus, an antibody that binds a 56294 or 56629 metalloprotease polypeptide and modulates expression or an activity of 56294 or 56629 metalloprotease polypeptide can be used for treating a disease treatable by modulating expression or the particular activity of 56294 or 56629 metalloprotease polypeptide.


[0019] In still another aspect, the invention provides a process for modulating 56294 or 56629 polypeptide or nucleic acid expression or activity, e.g. using the screened compounds. In certain embodiments, the methods involve treatment of conditions related to aberrant activity or expression of the 56294 or 56629 polypeptides or nucleic acids, such as e.g., conditions involving aberrant or metalloprotease activity.


[0020] The invention also provides assays for determining the activity of or the presence or absence of 56294 or 56629 polypeptides or nucleic acid molecules in a biological sample, including for disease diagnosis. In addition, the invention provides assays for determining the presence of a mutation in the polypeptides or nucleic acid molecules, such mutations including those that increase or decrease expression or an activity of 56294 or 56629 metalloprotease polypeptide. Such assays are useful, for example, in disease diagnosis, in particular, where the disease causes or results in altered expression or activity of 56294 or 56629 metalloprotease polypeptide.


[0021] In further aspect the invention provides assays for determining the presence or absence of a genetic alteration in a 56294 or 56629 polypeptide or nucleic acid molecule, including for disease diagnosis.


[0022] In another aspect, the invention features a two dimensional array having a plurality of addresses, each address of the plurality being positionally distinguishable from each other address of the plurality, and each address of the plurality having a unique capture probe, e.g., a nucleic acid or peptide sequence. At least one address of the plurality has a capture probe that recognizes a 56294 or 56629 molecule. In one embodiment, the capture probe is a nucleic acid, e.g., a probe complementary to a 56294 or 56629 nucleic acid sequence. In another embodiment, the capture probe is a polypeptide, e.g., an antibody specific for 56294 or 56629 polypeptides. Also featured is a method of analyzing a sample by contacting the sample to the aforementioned array and detecting binding of the sample to the array.


[0023] Other features and advantages of the invention will be apparent from the following detailed description, and from the claims.







BRIEF DESCRIPTION OF THE DRAWINGS

[0024]
FIG. 1 is a hydropathy plot of 56294 metalloprotease. Relative hydrophobic residues are shown above the dashed horizontal line, and relative hydrophilic residues are below the dashed horizontal line. The location of extracellular and intracellular loops is also indicated. Cysteine residues (cys) and N-glycosylation sites (Ngly) are indicated by short vertical lines just below the trace. The numbers corresponding to the amino acid sequence of human 56294 are indicated. Polypeptides of the invention include fragments which include: all or part of a hydrophobic sequence, i.e., a sequence above the dashed line, e.g., the sequence of 345-360 of SEQ ID NO:2; all or part of a hydrophilic sequence, i.e., a sequence below the dashed line, e.g., the sequence of 110-135 of SEQ ID NO:2; a sequence which includes a Cys or a glycosylation site.


[0025] FIGS. 2A-2D depict alignments of structural and functional domains of the amino acid sequence of human 56294 (the lower amino acid sequences) with consensus amino acid sequences derived from a hidden Markov model (HMM) from PFAM (the upper amino acid sequences).


[0026]
FIG. 2A is an alignment of a peptidase M12B propeptide domain (SEQ ID NO:7) with amino acids 96-209 of SEQ ID NO:2;


[0027]
FIG. 2B is an alignment of a reprolysin domain (SEQ ID NO:8) with amino acids 219-416 of SEQ ID NO:2;


[0028]
FIG. 2C is an alignment of a disintegrin domain (SEQ ID NO:9) with amino acids 433-504 of SEQ ID NO:2; and


[0029]
FIG. 2D is an alignment of an EGF-like domain (SEQ ID NO:10) with amino acids 659-686 of SEQ ID NO:2.


[0030]
FIG. 3 is a hydropathy plot of 56629 metalloprotease. Relative hydrophobic residues are shown above the dashed horizontal line, and relative hydrophilic residues are below the dashed horizontal line. The location of extracellular and intracellular loops is also indicated. Cysteine residues (cys) and N-glycosylation sites (Ngly) are indicated by short vertical lines just below the trace. The numbers corresponding to the amino acid sequence of human 56629 are indicated. Polypeptides of the invention include fragments which include: all or part of a hydrophobic sequence, i.e., a sequence above the dashed line, e.g., the sequence of 90-110 of SEQ ID NO:5; all or part of a hydrophilic sequence, i.e., a sequence below the dashed line, e.g., the sequence of 65-85 of SEQ ID NO:5; a sequence which includes a Cys or a glycosylation site.


[0031]
FIG. 4 depicts an alignment of a domain of human 56629 with a consensus amino acid sequence derived from ProdomId 2224, (ProDomain Release 2000.1;


[0032] http://protein.toulouse.inra.fr/prodom.html). The upper sequence corresponds to amino acids 152-256 of SEQ ID NO:5, while the lower sequence is the consensus amino acid sequence (SEQ 2″ ID NO:11). The Prodom Id 2224 consensus sequence (Q93332(3)) is a protein aminopeptidase with homology to the M20 family of metalloproteases.







DETAILED DESCRIPTION OF THE INVENTION

[0033] Human 56294


[0034] The human 56294 sequence (Examples below, SEQ ID NO:1), which is approximately 2967 nucleotides long including untranslated regions, contains a predicted methionine-initiated coding sequence of about 2463 nucleotides. The coding sequence encodes an 820 amino acid protein (SEQ ID NO:2). The human 56294 protein of SEQ ID NO:2 includes an amino-terminal hydrophobic amino acid sequence, consistent with a signal sequence, of about 49 amino acids (from amino acid 1 to about amino acid 49 of SEQ ID NO:2) (See FIG. 2), which upon cleavage results in the production of a mature protein form. This mature protein form is approximately 771 amino acid residues in length (from about amino acid 50 to amino acid 820 of SEQ ID NO:2).


[0035] Human 56294 sequence contains the following regions or other structural features: a peptidase M12B propeptide (reprolysin family propeptide) (PF01562) from about amino acid 96 to 209 of SEQ ID NO:2; a reprolysin M12B family zinc metalloprotease domain (PF01421) from about amino acid 219 to 416 of SEQ ID NO:2; a disintegrin signature pattern (PF00200) from about amino acid 433 to 504 of SEQ ID NO:2; an EGF-like domain (PF00008) from about amino acid 659 to 687 of SEQ ID NO:2; and two transmembrane domains at about amino acid 347 to 364 and 716 to 736 of SEQ ID NO:2.


[0036] The human 56294 sequence can additionally include: five N-glycosylation sites (PS0001) located from about amino acid 72 to 75, from about amino acid 158 to 161, from about amino acid 414 to 417, from about amino acid 498 to 501, and from about amino acid 631 to 634, of SEQ ID NO:2; one glycosaminoglycan attachment site (PS00002) from about amino acid 664 to 667 of SEQ ID NO:2; eleven protein kinase C phosphorylation sites (PS00005) from about amino acid 193 to 195, from about amino acid 206 to 208, from about amino acid 243 to 245, from about amino acid 396 to 398, from about amino acid 422 to 424, from about amino acid 515 to 517, from about amino acid 558 to 560, from about amino acid 591 to 593, from about amino acid 709 to 711, from about amino acid 791 to 793, and from about amino acid 804 to 806, of SEQ ID NO:2; nineteen casein kinase II phosphorylation sites (PS00006) from about amino acid 75 to 78, from about amino acid 168 to 171, from about amino acid 193 to 196, from about amino acid 230 to 233, from about amino acid 267 to 270, from about amino acid 280 to 283, from about amino acid 363 to 366, from about amino acid 450 to 453, from about amino acid 479 to 482, from about amino acid 500 to 503, from about amino acid 556 to 559, from about amino acid 622 to 625, from about amino acid 633 to 636, from about amino acid 703 to 706, from about amino acid 755 to 758, from about amino acid 768 to 771, from about amino acid 781 to 784, from about amino acid 787 to 790, and from about amino acid 794 to 797, of SEQ ID NO:2; one tyrosine kinase phosphorylation site (PS00007) from about amino acid 302-308 of SEQ ID NO:2 ; eight N-myristoylation sites (PS00008) from about amino acid 46 to 51, from about amino acid 115 to 120, from about amino acid 132 to 137, from about amino acid 251 to 256, from about amino acid 434 to 439, from about amino acid 667 to 672, from about amino acid 759 to 764, and from about amino acid 772 to 777 of SEQ ID NO:2.


[0037] For general information regarding PFAM identifiers, PS prefix and PF prefix domain identification numbers, refer to Sonnhammer et al. (1997) Protein 28:405-420 and http://www.psc.edu/general/software/packages/pfam/pfam.html.


[0038] A plasmid containing the 56294 metalloprotease cDNA insert (clone “Fbh56294FL”) was deposited with the Patent Depository of the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, Va., on ______, and assigned Patent Deposit Number ______. This deposit will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure. This deposit was made merely as a convenience for those of skill in the art and is not an admission that a deposit is required under 35 U.S.C. 112.


[0039] The 56294 polypeptide belongs to the M12B metalloprotease family of molecules having conserved structural and functional features. The term “family” when referring to the proteins and nucleic acid molecules of the invention is intended to mean two or more proteins or nucleic acid molecules having sufficient amino acid or nucleotide sequence identity as defined herein to provide a specific function. Such family members can be naturally occurring and can be from either the same or different species. For example, a family can contain a first protein of murine origin and an ortholog of that protein of human origin, as well as a second, distinct protein of human origin and a murine ortholog homolog of that protein.


[0040] A 56294 metalloprotease is a predicted M12B family metalloprotease (reprolysin family) based on the presence of a peptidase M12B propeptide sequence from about amino acid 96 to 209 of SEQ ID NO:2, a reprolysin family zinc metalloprotease domain from about amino acid 219 to 416 of SEQ ID NO:2, a disintegrin signature pattern from about amino acid 433 to 504 of SEQ ID NO:2, and an EGF-like domain from about amino acid 658 to 687 of SEQ ID NO:2 (see FIG. 3). Most members of the M12B family of metalloproteases lack a peptidase active site, but contain other typical signatures, including a reprolysin domain, a disintegrin signature sequence (which is found in snake venom proteins which inhibit fibrinogen interaction with platelet receptors expressed on the glycoprotein IIb-IIa complex), an EGF-like domain, and a transmembrane domain. Other members of the M12B subfamily include human breast cancer-associated protein BRCA1 (EMBL: D17390) and fertilin. Therefore, a 56294 metalloprotease, subsequence, or variants, can include a domain or regions homologous with a transmembrane domain, a peptidase M12B propeptide sequence, a reprolysin domain, a disintegrin signature pattern, or an EGF-like domain.


[0041] As used herein, a peptidase M12 propeptide sequence includes an amino acid sequence of about 75 to 150 amino acid residues in length and having a bit score for the alignment of the sequence to the peptidase M12 propeptide sequence (HMM) of at least 75. Preferably, a peptidase M12 propeptide sequence includes at least about 50 to 150 amino acids, MOre preferably about 80 to 140 amino acid residues, or about 100 to 120 amino acids and has a bit score for the alignment of the sequence to the peptidase M12 propeptide sequence (HMM) of at least 75, preferably 100, MOre preferably 140 or greater. An alignment of the peptidase M12 propeptide sequence (amino acids 96 to 209 of SEQ ID NO:2) of 56294 metalloprotease with a consensus amino acid sequence derived from a hidden Markov model is depicted in FIG. 2A.


[0042] In a preferred embodiment 56294 metalloprotease polypeptide or protein has a “peptidase M12B propeptide” or a region which includes at least about 50 to 150, MOre preferably about 80 to 140 or 100 to 120 amino acid residues and has at least about 50%, 60%, 70% 80% 90% 95%, 99%, or 100% homology with a “peptidase M12B propeptide,” e.g., the peptidase M12B propeptide domain of 56294 metalloprotease (e.g., residues 96 to 209 of SEQ ID NO:2).


[0043] As used herein, a reprolysin family zinc metalloprotease domain “reprolysin domain” includes an amino acid sequence of about 100 to 300 amino acid residues in length and having a bit score for the alignment of the sequence to the reprolysin domain (HMM) of at least 100. Preferably, a reprolysin domain includes at least about 100 to 300 amino acids, MOre preferably about 150 to 250 amino acid residues, or about 180 to 220 amino acids and has a bit score for the alignment of the sequence to the reprolysin family propeptide domain (HMM) of 100, preferably 150, MOre preferably 200, even more preferably 250 or greater. An alignment of the reprolysin domain (amino acids 219 to 416 of SEQ ID NO:2) of 56294 metalloprotease with a consensus amino acid sequence derived from a hidden Markov model is depicted in FIG. 2B.


[0044] In another embodiment, a 56294 metalloprotease polypeptide or protein has a “reprolysin family zinc metalloprotease domain” or a region which includes at least about 100 to 300, MOre preferably about 150 to 250 or 180 to 220 amino acid residues and has at least about 50%, 60%, 70% 80% 90% 95%, 99%, or 100% homology with a “reprolysin family zinc metalloprotease domain,” e.g., the reprolysin family zinc metalloprotease domain of 56294 metalloprotease (e.g., residues 219-416 of SEQ ID NO:2).


[0045] As used herein, a disintegrin signature sequence includes an amino acid sequence of about 50 to 100 amino acid residues in length and having a bit score for the alignment of the sequence to the a disintegrin signature sequence (HMM) of at least 20. Preferably, a disintegrin signature sequence includes at least about 50 to 100 amino acids, MOre preferably about 60 to 90 amino acid residues, or about 71 amino acids and has a bit score for the alignment of the sequence to the disintegrin signature sequence (HMM) of at least 20, MOre preferably 30 or greater. An alignment of the disintegrin signature sequence (amino acids 433 to 504 of SEQ ID NO:2) of 56294 metalloprotease with a consensus amino acid sequence derived from a hidden Markov model is depicted in FIG. 2C.


[0046] In another embodiment, a 56294 metalloprotease polypeptide or protein has a “disintegrin signature sequence” or a region which includes at least about 50 to 100, MOre preferably about 60 to 90 or 65 to 85 amino acid residues and has at least about 40%, 50%, 60%, 70% 80% 90% 95%, 99%, or 100% homology with a “disintegrin signature sequence,” e.g., the disintegrin signature sequence of 56294 metalloprotease (e.g., residues 433 to 504 of SEQ ID NO:2).


[0047] An EGF-like domain includes an amino acid sequence of about 10-50 amino acid residues in length and having a bit score for the alignment of the sequence to the EGF-like domain (HMM) of at least 10. Preferably, an EGF-like domain includes at least about 10 to 50 amino acids, MOre preferably about 20 to 40 amino acid residues, or about 27 amino acids and has a bit score for the alignment of the sequence to the disintegrin domain (HMM) of at least 10 or greater. An alignment of the EGF-like domain of 56294 metalloprotease (amino acids 659 to 686 of SEQ ID NO:2) with a consensus amino acid sequence derived from a hidden Markov model is depicted in FIG. 2D.


[0048] In yet another embodiment, a 56294 metalloprotease polypeptide or protein has an “EGF-like domain” or a region which includes at least about 10 to 50, MOre preferably about 20 to 40 amino acid residues and has at least about 40%, 50%, 60%, 70% 80% 90% 95%, 99%, or 100% homology with an “EGF-like domain,” e.g., the EGF domain of 56294 metalloprotease (e.g., residues 659 to 686 of SEQ ID NO:2).


[0049] To identify the presence of a “reprolysin domain,” “peptidase M12B propeptide,” “disintegrin signature sequence,” or “EGF-like” domain in a 56294 metalloprotease protein sequence, and make the determination that a polypeptide or protein of interest has a particular profile, the amino acid sequence of the protein can be searched against a database of HMMs (e.g., the Pfam database, release 2.1) using the default parameters (http://www.sanger.ac.uklSoftware/Pfam/HMM_search). For example, the hmmsf program, which is available as part of the HMMER package of search programs, is a family specific default program for MILPAT0063 and a score of 15 is the default threshold score for determining a hit. Alternatively, the threshold score for determining a hit can be lowered (e.g., to 8 bits). A description of the Pfam database can be found in Sonhammer et al. (1997) Proteins 28(3):405-420 and a detailed description of HMMs can be found, for example, in Gribskov et al.(1990) Meth. Enzymol. 183:146-159; Gribskov et al.(1987) Proc. Natl. Acad. Sci. USA 84:4355-4358; Krogh et al.(1994) J. Mol. Biol. 235:1501-1531; and Stultz et al.(1993) Protein Sci. 2:305-314, the contents of which are incorporated herein by reference.


[0050] A 56294 protein can further include at least one transmembrane domain. As used herein, the term “transmembrane domain” includes an amino acid sequence of about 15 amino acid residues in length that spans the plasma membrane. More preferably, a transmembrane domain includes about at least 20, 25, 30, 35, 40, or 45 amino acid residues and spans the plasma membrane. Transmembrane domains are rich in hydrophobic residues, and typically have an alpha-helical structure. In a preferred embodiment, at least 50%, 60%, 70%, 80%, 90%, 95% or more of the amino acids of a transmembrane domain are hydrophobic, e.g., leucines, isoleucines, tyrosines, or tryptophans. Transmembrane domains are described in, for example, Zagotta W. N. et al., (1996) Annual Rev. Neurosci. 19: 235-263, the contents of which are incorporated herein by reference. Amino acid residues 347 to 354 and 716 to 736 of the 56294 protein (SEQ ID NO:2) are predicted to be transmembrane domains (see FIG. 1). Accordingly, 56294 proteins having at least 50-60% homology, preferably about 60-70%, MOre preferably about 70-80%, or about 80-90% homology with at least one transmembrane domain of human 56294 are within the scope of the invention.


[0051] In a preferred embodiment 56294 metalloprotease polypeptide or protein has a “transmembrane domain” or a region which includes at least about 10, MOre preferably at least about 15 amino acid residues and has at least about 50%, 60%, 70% 80% 90% 95%, 99%, or 100% homology with a “transmembrane domain,” e.g., the transmembrane domain of 56294 metalloprotease (e.g., residues 347-354 and 716-736 of SEQ ID NO:2).


[0052] A 56294 protein can further include a signal sequence. As used herein, a “signal peptide” or “signal sequence” refers to a peptide of about 30 to 60, preferably about 40 to 55, MOre preferably, 49 amino acid residues in length which occurs at the N-terminus of secretory and integral membrane proteins and which contains a majority of hydrophobic amino acid residues. For example, a signal sequence contains at least about 30 to 60, preferably about 40 to 55, MOre preferably, 49 amino acid residues, and has at least about 40-70%, preferably about 50-65%, and more preferably about 55-60% hydrophobic amino acid residues (e.g., alanine, valine, leucine, isoleucine, phenylalanine, tyrosine, tryptophan, or proline). Such a “signal sequence”, also referred to in the art as a “signal peptide”, serves to direct a protein containing such a sequence to a lipid bilayer. For example, in one embodiment, a 56294 protein contains a signal sequence of about amino acids 1 to 49 of SEQ ID NO:2. The “signal sequence” is cleaved during processing of the mature protein. The mature 56294 protein corresponds to amino acids 50 to 820 of SEQ ID NO:2.


[0053] 56294 mRNA is highly expressed in the brain cortex and hypothalamus (Table 1), with lower levels of expression in endothelial cells and the pancreas. Accordingly, the molecules of the invention, e.g., 56294 molecules, are likely to mediate activities and processes involving the cells in which they are expressed, e.g., disorders or conditions of the brain and CNS, endothelial cells, or pancreatic cells, e.g., neurological, cardiovascular (e.g., heart and blood vessel), or pancreatic disorders and conditions described herein.


[0054] Human 56629


[0055] The human 56629 sequence (Examples below, SEQ ID NO:4), which is approximately 3779 nucleotides long including untranslated regions, contains a predicted methionine-initiated coding sequence of about 1602 nucleotides. The coding sequence encodes a 533 amino acid protein (SEQ ID NO:5).


[0056] Human 56629 sequence contains the following regions or other structural features: a region of homology from about amino acid 152-256 of SEQ ID NO:5 to the protein aminopeptidase Q93332(3) based on a ProDom consensus sequence (http://protein.toulouse.inra.fr/prodom.html). Q93332(3) is a member of the metallopeptidase M20 family sequence (derived from ProDom family PD001808).


[0057] The human 56629 sequence can additionally include: six N-glycosylation sites (PS00001) located from about amino acid 13 to 16, from about amino acid 91 to 94, from about amino acid 252 to 255, from about amino acid 274 to 277, from about amino acid 285 to 288, and from about amino acid 477 to 480, of SEQ ID NO:5; five protein kinase C phosphorylation sites (PS00005) from about amino acid 84 to 86, from about amino acid 111 to 113, from about amino acid 276 to 278, from about amino acid 329 to 331, and from about amino acid 458 to 460 of SEQ ID NO:5; eight casein kinase II phosphorylation sites (PS00006) from about amino acid 33 to 36, from about amino acid 80 to 83, from about amino acid 116 to 119, from about amino acid 122 to 125, from about amino acid 158 to 161, from about amino acid 333 to 336, from about amino acid 479 to 482, and from about amino acid 507 to 510 of SEQ ID NO:5; three N-myristoylation sites (PS00008) from about amino acid 70 to 75, from about amino acid 178 to 183, and from about amino acid 216 to 221 of SEQ ID NO:5.


[0058] A plasmid containing the 56629 cDNA insert (clone “Fbh56629FL”) was deposited with the Patent Depository of the American Type Culture Collection (ATCC), 10801 University Boulevard, Manassas, Va., on ______, and assigned Patent Deposit Number ______. This deposit will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure. This deposit was made merely as a convenience for those of skill in the art and is not an admission that a deposit is required under 35 U.S.C. 112.


[0059] A 56629 metalloprotease is predicted to be an M20/M25/M40 family member based on homology to a peptidase M20 sequence from about amino acid 152-256 of SEQ ID NO:5. The M20 family of protein aminopeptidases includes a diverse range of metallopeptidases. Therefore, a 56629 sequence, subsequence, or variants, can include a domain or regions homologous with an peptidase M20 sequence.


[0060] An M20 sequence domain includes an amino acid sequence of about 50 to 170 amino acid residues in length and having a percent positive homology of at least 35%. Preferably, an M20 domain includes at least about 50 to 170 amino acids, MOre preferably about 75 to 145 amino acid residues, or about 100 to 130 amino acids and has a percent positive homology of at least 35%. An alignment of the M20 domain of 56629 metalloprotease (amino acids 152-256 of SEQ ID NO:5) with a consensus amino acid sequence derived from Prodom is depicted in FIG. 7.


[0061] In a preferred embodiment 56629 polypeptide or protein has a region which includes at least about 50 to 170, MOre preferably about 75 to 145 or 100 to 130 amino acid residues and has at least about 60%, 70% 80% 90% 95%, 99%, or 100% homology with an M20 “protein aminopeptidase” e.g., the M20 protein aminopeptidase domain of 56629 (e.g., residues 152-256 of SEQ ID NO:5).


[0062] To identify the presence of an “M20 protein aminopeptidase” domain in a 56629 protein sequence, and make the determination that a polypeptide or protein of interest has a particular profile, the amino acid sequence of the protein can be searched against a database of HMMs (e.g., the Pfam database, release 2.1) using the default parameters (http://www.sanger.ac.uk/Software/Pfam/HMM_search), as described above.


[0063] Based on the above-described sequence similarities, the 56294 or 56229 molecules of the present invention are predicted to have similar biological activities as metalloprotease family members. Thus, in accordance with the invention, a 56294 or 56229 metalloprotease or subsequence or variant polypeptide may have one or more domains and, therefore, one or more activities or functions characteristic of a metalloprotease family member, including, but not limited to, a peptidase M12B propeptide, a reprolysin domain, a disintegrin signature, an EGF-like domain, or a peptidase M20 sequence homology. Thus, the 56294 or 56229 molecules can act as novel diagnostic targets and therapeutic agents for controlling metalloprotease associated disorders, e.g., cancer.


[0064] As used herein, a “metalloprotease associated disorder” includes a disorder, disease or condition which is characterized by a misregulation of a metalloprotease mediated activity. Biological functions of metalloproteases include cellular proliferation and differentiation, degradation of proteins, such as extracellular matrix proteins, tumor growth, metastasis and angiogenesis, brain function, and pain modulation. As such, they are likely to play important roles in a wide range of disorders including, but not limited to, cancer, brain disorders, and pain or pain related disorders, e.g., disorders described herein below. Accordingly, metalloproteases are a major target for drug action and development in these disorders.


[0065] As used herein, the terms “56294 or 56229 activity,” or “56294 or 56229 function,” when used in reference to a 56294 or 56229 metalloprotease molecule means an activity or function exerted by a 56294 or 56229 metalloprotease molecule on another molecule (e.g., a target substrate or binding partner) or a cell, a tissue or an organism that responds to the particular 56294 or 56229 activity or function, as determined in vivo or in vitro. Activities or functions can be direct, e.g., through binding or modification of a target substrate or binding partner, providing a signal, etc., or indirect, e.g., through binding or modification of a substrate by 56294 or 56229 metalloprotease which, in turn, directly or indirectly (through one or more intermediates) confers a signal that results in effecting 56294 or 56229 metalloprotease molecule activity or function.


[0066] As used herein, the term “metalloprotease activity,” or “protease activity” when used in reference to a protein, means a protein having the ability to cleave a protein substrate by hydrolysis of an amide bond that likely depends upon the presence of a metal ion, such as zinc.


[0067] Thus, a 56294 or 56229 metalloprotease or subsequence or variant having metalloprotease activity is capable of cleaving one or more protein substrates in the presence of zinc.


[0068] Activity assays for the family of metalloprotease family members, such as 56294 or 56229 polypeptides, involve any of the known metalloprotease, reprolysin, disintegrin, or EGF-like activity or functions, as well as activities/functions that may not typically be found in other metalloproteases. These assays include, but are not limited to, binding extracellular matrix, binding integrin, binding zinc or other metals, binding α2-macroglobulin, cleaving specific peptide substrates to produce fragments, affecting cell adhesion, binding heparin or other sulfated glycosaminoglycan, such as heparan sulfate, MOdulating vascularization or vascular endothelial growth, breaking down cartilage, inducing apoptosis of endothelial cells, suppressing tumor growth, MOdulating angiogenesis, affecting cellular chemotaxis, affecting cell-cell adhesion or cell-matrix interaction, binding integrin, and any of the other biological or functional properties of these proteins, including, but not limited to, those disclosed herein, and in the references cited herein. Further, assays may relate to changes in the protein, per se, and on the effects of these changes, for example, cleavage of the substrate, activation of the protein following cleavage, etc.


[0069] Such assays include are disclosed in Tang et al. (FEBS Letters 445:223-225 (1999)) (for example, induction by interleukin I in vitro and by intravenous administration of lipopolysaccharide in vivo, as well as effects on cell adhesion, MOtility, and growth); Abbaszade et al., supra (for example, products resulting from cleavage at the Glu-Ala site in cartilage explants and chondrocyte cultures treated with interleukin I and retinoic acid, determination of aggrecan cleaving activity with and without hydroxamate inhibitors); Kuno et al. (1998), supra (binding to the extracellular matrix, binding to sulfated glycosaminoglycans, binding to heparan sulfate); Kuno et al. (1999) (proteinase trapping of a2-macroglobulin, furin processing); Tortorella et al. (1999), supra (detection of aggrecan fragments, especially by neoepitope antibodies, inhibition of cleavage by ADAM-TS inhibitors, inhibition of pro-MMP activation); Vasquez et al., supra (suppression of fibroblast growth factor-2-induced vascularization in the cornea pocket assay and inhibition of vascular endothelial growth factor-induced angiogenesis in the chorioallantoic membrane assay, inhibition of endothelial cell proliferation, competitive inhibition with endostatin, proliferation of human dermal endothelial cells, use of the antiangiogenic region of the TSP-1 motif as bait); Kuno et al. (1997), supra (heparin binding, induction of expression in vitro by interleukin I, induction of expression in vivo by LPS); Wolfsberg et al., supra (degradation of basement membrane, binding of integrin, and fusogenic activity); Guilpin et al. (1988) J. Biol. Chem. 273:157-166 (α2-macroglobulin trapping, cleavage of prodomain at the furin site to generate active metalloprotease); Rosendahl et al., (J. Biol. Chem. 272:24588-24593 (1997)) (TNF α processing); Wolfsberg et al., Developmental Biology 169:378-383 (1995) (adhesion by integrin binding in the disintegrin domain, antiadhesive function by zinc-dependent metalloprotease domain). Recombinant assay systems include, but are not limited to, those described in Abbaszade et al., supra; Kuno et al. (1998), supra; Kuno et al. (1999), supra; Tortorella et al., supra; Vasquez et al., supra, Kuno et al. (1997), supra; and Wolfsberg et al. (Developmental Biology), supra.


[0070] A “target molecule” or “binding partner” is a molecule (e.g., substrate) with which a 56294 or 56229 metalloprotease binds or interacts with in nature. In one embodiment, a 56294 or 56229 metalloprotease target molecule is a protein substrate. Activities resulting from binding therefore may include cleavage of a protein substrate. Additional 56294 or 56229 activities may include indirect activities, e.g., a cellular signaling activity mediated by binding or interaction of 56294 or 56229 metalloprotease protein with a 56294 or 56229 binding partner (e.g., via the EGF-like domain of 56294) or modification of the substrate (e.g., cleavage). For example, 56294 or 56229 proteins of the present invention may modulate, directly or indirectly, one or more of the following activities: (1) cell proliferation; (2) cell adhesion; (3) cell motility/migration, e.g., developmental or neoplastic motility or migration; (4) inflammatory response; (5) erythroid cell activity; (6) gene expression; (7) angiogenesis/vascularization; (8) neural development and/or maintenance; (9) cell-cell (e.g., neuron-neuron, or neuron-glia) recognition events or adhesion; (10) synaptogenesis; (12) membrane excitability; (13) neurite outgrowth; (14) signal transduction; or (15) cell (e.g., neural or a cancer cell) proliferation, growth, differentiation, or migration.


[0071] The 56294 or 56229 metalloprotease molecules find use in modulating 56294 or 56229 metalloprotease function, activity, or expression, or related responses to metalloprotease function, activity or expression. As used herein, the term “modulate” or grammatical variations thereof means increasing or decreasing an activity, function, signal or response. That is, the 56294 or 56229 metalloprotease molecules of the invention affect the targeted activity in either a positive or negative fashion (e.g., increase or decrease activity, function, or signal).


[0072] Thus, the metalloprotease molecules are useful in treating disorders treatable by modulating one or more 56294 or 56229 metalloprotease activities, function, expression, or a pathway associated with 56294 or 56229 activity, function or expression.


[0073] In one embodiment, the invention provides methods and compositions for the treatment or control of 56294 or 56229 metalloprotease related disorders in cells/tissues that do not normally express 56294 or 56229 metalloprotease.


[0074] The 56294 or 56229 metalloprotease molecules also find use in diagnosis of disorders involving an increase or decrease in 56294 or 56229 metalloprotease expression relative to normal expression, such as a proliferative disorder, a differentiative disorder (e.g., cancer), an immune disorder, a motility disorder, a vascular disorder, a bleeding or clotting disorder, or a developmental disorder. Thus, where expression or activity of 56294 or 56229 metalloprotease is greater or less than normal, this may indicate the presence of or a predisposition towards a 56294 or 56229 metalloprotease disorder. The presence of 56294 or 56229 metalloprotease RNA or protein, e.g., by hybridization of a 56294 or 56229 specific probe or with a 56294 or 56229 specific antibody, can be used to identify the amount of 56294 or 56229 present in a particular cell or tissue, or other biological sample. 56294 or 56229 activity (protease activity assays, adhesion assays, binding assays, MOtility/migration assays, vascularization assays, etc.) can be assessed using the various techniques described herein or otherwise known in the art. Thus, in another embodiment, the invention provides methods and compositions for detection of 56294 or 56229 metalloprotease in tissues that normally or do not normally express 56294 or 56229 metalloprotease.


[0075] As the 56294 mRNA is highly expressed in normal brain cortex and hypothalamus, 56924 is likely to play a role in brain and CNS function, e.g., by regulating one or more of: neurotransmitter acitivity; synaptogenesis; neural (e.g., neuritic) migration; cell-cell (e.g., neuron-neuron, or neuron-glia) recognition events and/or adhesion; membrane excitability; neurite outgrowth; signal transduction; or neural cell. Disorders involving the brain include, but are not limited to, disorders involving metabolism or regulation of neurotransmitter function, neurons, and disorders involving glia, such as astrocytes, oligodendrocytes, ependymal cells, and microglia; cerebral edema, raised intracranial pressure and herniation, and hydrocephalus; malformations and developmental diseases, such as neural tube defects, forebrain anomalies, posterior fossa anomalies, and syringomyelia and hydromyelia; perinatal brain injury; cerebrovascular diseases, such as those related to hypoxia, ischemia, and infarction, including hypotension, hypoperfusion, and low-flow states—global cerebral ischemia and focal cerebral ischemia—infarction from obstruction of local blood supply, intracranial hemorrhage, including intracerebral (intraparenchymal) hemorrhage, subarachnoid hemorrhage and ruptured berry aneurysms, and vascular malformations, hypertensive cerebrovascular disease, including lacunar infarcts, slit hemorrhages, and hypertensive encephalopathy; infections, such as acute meningitis, including acute pyogenic (bacterial) meningitis and acute aseptic (viral) meningitis, acute focal suppurative infections, including brain abscess, subdural empyema, and extradural abscess, chronic bacterial meningoencephalitis, including tuberculosis and mycobacterioses, neurosyphilis, and neuroborreliosis (Lyme disease), viral meningoencephalitis, including arthropod-borne (Arbo) viral encephalitis, Herpes simplex virus Type 1, Herpes simplex virus Type 2, Varicalla-zoster virus (Herpes zoster), cytomegalovirus, poliomyelitis, rabies, and human immunodeficiency virus 1, including HIV-1 meningoencephalitis (subacute encephalitis), vacuolar myelopathy, AIDS-associated myopathy, peripheral neuropathy, and AIDS in children, progressive multifocal leukoencephalopathy, subacute sclerosing panencephalitis, fungal meningoencephalitis, other infectious diseases of the nervous system; transmissible spongiform encephalopathies (prion diseases); demyelinating diseases, including multiple sclerosis, multiple sclerosis variants, acute disseminated encephalomyelitis and acute necrotizing hemorrhagic encephalomyelitis, and other diseases with demyelination; degenerative diseases, such as degenerative diseases affecting the cerebral cortex, including Alzheimer disease and Pick disease, degenerative diseases of basal ganglia and brain stem, including Parkinsonism, idiopathic Parkinson disease (paralysis agitans), progressive supranuclear palsy, corticobasal degenration, multiple system atrophy, including striatonigral degenration, Shy-Drager syndrome, and olivopontocerebellar atrophy, and Huntington disease; spinocerebellar degenerations, including spinocerebellar ataxias, including Friedreich ataxia, and ataxia-telanglectasia, degenerative diseases affecting motor neurons, including amyotrophic lateral sclerosis (motor neuron disease), bulbospinal atrophy (Kennedy syndrome), and spinal muscular atrophy; inborn errors of metabolism, such as leukodystrophies, including Krabbe disease, metachromatic leukodystrophy, adrenoleukodystrophy, Pelizaeus-Merzbacher disease, and Canavan disease, mitochondrial encephalomyopathies, including Leigh disease and other mitochondrial encephalomyopathies; toxic and acquired metabolic diseases, including vitamin deficiencies such as thiamine (vitamin BI) deficiency and vitamin B12 deficiency, neurologic sequelae of metabolic disturbances, including hypoglycemia, hyperglycemia, and hepatic encephatopathy, toxic disorders, including carbon monoxide, methanol, ethanol, and radiation, including combined methotrexate and radiation-induced injury; tumors, such as gliomas, including astrocytoma, including fibrillary (diffuse) astrocytoma and glioblastoma multiforme, pilocytic astrocytoma, pleomorphic xanthoastrocytoma, and brain stem glioma, oligodendroglioma, and ependymoma and related paraventricular mass lesions, neuronal tumors, poorly differentiated neoplasms, including medulloblastoma, other parenchymal tumors, including primary brain lymphoma, germ cell tumors, and pineal parenchymal tumors, meningiomas, metastatic tumors, paraneoplastic syndromes, peripheral nerve sheath tumors, including schwannoma, neurofibroma, and malignant peripheral nerve sheath tumor (malignant schwannoma), and neurocutaneous syndromes (phakomatoses), including neurofibromotosis, including Type 1 neurofibromatosis (NF1) and TYPE 2 neurofibromatosis (NF2), tuberous sclerosis, and Von Hippel-Lindau disease.


[0076] 56294 mRNA is also expressed, albeit at lower levels, in endothelial cells (e.g., human vascular endothelial cells (HUVEC)) and the pancreas. Accordingly, the modulation of 56294 polypeptide expression or activity can be used to treat or prevent cardiovascular (e.g., heart and blood vessel) and/or pancreatic disorders.


[0077] Additionally, 56294 or 56629 may play an important role in the regulation of pain or pain-related disorders. Examples of pain conditions include, but are not limited to, pain elicited during various forms of tissue injury, e.g., inflammation, infection, and ischemia; pain associated with musculoskeletal disorders, e.g., joint pain, or arthritis; tooth pain; headaches, e.g., migrane; pain associated with surgery; pain related to inflammation, e.g., irritable bowel syndrome; chest pain; or hyperalgesia, e.g., excessive sensitivity to pain (described in, for example, Fields (1987) Pain, New York:McGraw-Hill). Other examples of pain disorders or pain syndromes include, but are not limited to, complex regional pain syndrome (CRPS), reflex sympathetic dystrophy (RSD), causalgia, neuralgia, central pain and dysesthesia syndrome, carotidynia, neurogenic pain, refractory cervicobrachial pain syndrome, myofascial pain syndrome, craniomandibular pain dysfunction syndrome, chronic idiopathic pain syndrome, Costen's pain-dysfunction, acute chest pain syndrome, nonulcer dyspepsia, interstitial cystitis, gynecologic pain syndrome, patellofemoral pain syndrome, anterior knee pain syndrome, recurrent abdominal pain in children, colic, low back pain syndrome, neuropathic pain, phantom pain from amputation, phantom tooth pain, or pain asymbolia (the inability to feel pain). Other examples of pain conditions include pain induced by parturition, or post partum pain.


[0078] The compositions of the invention include, inter alia, 56294 or 56229 metalloprotease polypeptides, variants and subsequences thereof, referred to as “polypeptides or proteins of the invention” or “56294 or 56229 metalloprotease polypeptides or proteins;” nucleic acids that encode 56294 or 56229 metalloprotease variants and subsequences thereof, or that hybridize to such sequences, referred to as “nucleic acids of the invention” or “56294 or 56229 metalloprotease nucleic acids;” antibodies that bind metalloprotease polypeptides, variants and subsequences thereof; vectors including 56294 or 56229 metalloprotease nucleic acids, variants and subsequences thereof, referred to as “antibodies of the invention” or “56294 or 56229 metalloprotease antibodies;” and compounds that modulate expression or activity of the 56294 or 56229 metalloprotease polypeptides and polynucleotides, referred to as “compounds of the invention.” Collectively, these 56294 or 56229 metalloprotease related compositions are referred to as “56294 or 56229 metalloprotease molecules” or “molecules of the invention.


[0079] As used herein, the terms “nucleic acid,” “polynucleotides” or “oligonucleotides” include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., an mRNA) and analogs of the DNA or RNA generated, e.g., by the use of nucleotide analogs. The nucleic acid molecule can be single- or double-stranded, linear or circular.


[0080] The term “isolated or purified nucleic acid molecule” includes nucleic acid molecules which are separated from other nucleic acid molecules which are present in the natural source of the nucleic acid. For example, with regards to genomic DNA, the term “isolated” includes nucleic acid molecules that are separated from the chromosome with which the genomic DNA is naturally associated. Preferably, an “isolated” nucleic acid is free of sequences which naturally flank the nucleic acid (i.e., sequences located at the 5′ and/or 3′ ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated nucleic acid molecule can contain less than about 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of 5′ and/or 3′ nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived. Moreover, an “isolated” nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material, or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized.


[0081] As used herein, the term “hybridizes under low stringency, medium stringency, high stringency, or very high stringency conditions” describes conditions for hybridization and washing. Guidance for performing hybridization reactions can be found in Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989), 6.3.1-6.3.6, which is incorporated by reference. Aqueous and nonaqueous methods are described in that reference and either can be used. Specific hybridization conditions referred to herein are as follows: 1) low stringency hybridization conditions in 6× sodium chloride/sodium citrate (SSC) at about 45° C., followed by two washes in 0.2× SSC, 0.1% SDS at least at 50° C. (the temperature of the washes can be increased to 55° C. for low stringency conditions); 2) medium stringency hybridization conditions in 6× SSC at about 45° C., followed by one or more washes in 0.2× SSC, 0.1% SDS at 60° C.; 3) high stringency hybridization conditions in 6× SSC at about 45° C., followed by one or more washes in 0.2× SSC, 0.1% SDS at 65° C.; and preferably 4) very high stringency hybridization conditions are 0.5M sodium phosphate, 7% SDS at 65° C., followed by one or more washes at 0.2× SSC, 1% SDS at 65° C. Very high stringency conditions (4) are the preferred conditions and the ones that should be used unless otherwise specified.


[0082] Preferably, an isolated nucleic acid molecule of the invention that hybridizes under a stringency condition described herein to the sequence of SEQ ID NO:1, 3, 4, or 6, corresponds to a naturally-occurring nucleic acid molecule.


[0083] As used herein, a “naturally-occurring” nucleic acid molecule refers to an RNA or DNA molecule having a nucleotide sequence that occurs in nature (e.g., encodes a natural protein).


[0084] As used herein, the terms “gene” and “recombinant gene” refer to nucleic acid molecules which include an open reading frame encoding a 56294 or 56229 protein, preferably a mammalian 56294 or 56229 protein, and can further include non-coding regulatory sequences, and introns.


[0085] An “isolated” or “purified” polypeptide or protein is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the protein is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized.


[0086] In one embodiment, the language “substantially free” means preparation of 56294 or 56229 protein having less than about 30%, 20%, 10% and more preferably 5% (by dry weight), of non-56294 or 56229 protein (also referred to herein as a “contaminating protein”), or of chemical precursors or non-56294 or 56229 chemicals. When the 56294 or 56229 protein or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, MOre preferably less than about 10%, and most preferably less than about 5% of the volume of the protein preparation. The invention includes isolated or purified preparations of at least 0.01, 0.1, 1.0, and 10 milligrams in dry weight.


[0087] A “non-essential” amino acid residue is a residue that can be altered from the wild-type sequence of 56294 or 56229 (e.g., the sequence of SEQ ID NO:1, 3, 4 or 6) without abolishing or more preferably, without substantially altering a biological activity, whereas an “essential” amino acid residue results in such a change. For example, amino acid residues that are conserved among the polypeptides of the present invention, e.g., those present in the reprolysin domain, are predicted to be particularly unamenable to alteration.


[0088] A “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Thus, a predicted nonessential amino acid residue in a 56294 or 56229 protein is preferably replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of a 56294 or 56229 coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for 56294 or 56229 biological activity to identify mutants that retain activity. Following mutagenesis of SEQ ID NO:1 or SEQ ID NO:3, the encoded protein can be expressed recombinantly and the activity of the protein can be determined.


[0089] As used herein, a “biologically active portion” of a 56294 or 56229 protein includes a fragment of a 56294 or 56229 protein which participates in an interaction between a 56294 or 56229 molecule and a non-56294 or 56229 molecule. Biologically active portions of a 56294 or 56229 protein include peptides comprising amino acid sequences sufficiently homologous to or derived from the amino acid sequence of the 56294 or 56229 protein, e.g., the amino acid sequence shown in SEQ ID NO:2 or 5, which include fewer amino acids than the full length 56294 or 56229 proteins, and exhibit at least one activity of a 56294 or 56229 protein. Typically, biologically active portions comprise a domain or motif with at least one activity of the 56294 or 56229 protein, e.g., metalloprotease activity e.g., the ability to cleave a substrate in the presence of a metal. A biologically active portion of a 56294 or 56229 protein can be a polypeptide which is, for example, 10, 25, 50, 100, 200 or more amino acids in length. Biologically active portions of a 56294 or 56229 protein can be used as targets for developing agents that modulate a 56294 or 56229-mediated activity, e.g., a metalloprotease activity.


[0090] Particularly preferred 56294 or 56229 polypeptides of the present invention have an amino acid sequence substantially identical to the amino acid sequence of SEQ ID NO:2 or 5. In the context of an amino acid sequence, the term “substantially identical” is used herein to refer to a first amino acid that contains a sufficient or minimum number of amino acid residues that are i) identical to, or ii) conservative substitutions of aligned amino acid residues in a second amino acid sequence such that the first and second amino acid sequences can have a common structural domain and/or common functional activity. For example, amino acid sequences that contain a common structural domain having at least about 60%, or 65% identity, likely 75% identity, MOre likely 85%, 90%. 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity to SEQ ID NO:2 or 5 are termed substantially identical.


[0091] In the context of nucleotide sequence, the term “substantially identical” is used herein to refer to a first nucleic acid sequence that contains a sufficient or minimum number of nucleotides that are identical to aligned nucleotides in a second nucleic acid sequence such that the first and second nucleotide sequences encode a polypeptide having common functional activity, or encode a common structural polypeptide domain or a common functional polypeptide activity. For example, nucleotide sequences having at least about 60%, or 65% identity, likely 75% identity, more likely 85%, 90%. 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% identity to SEQ ID NO:1, 3, 4 or 6 are termed substantially identical.


[0092] Calculations of homology or sequence identity between sequences (the terms are used interchangeably herein) are performed as follows.


[0093] To determine the percent identity of two amino acid sequences, or of two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). In a preferred embodiment, the length of a reference sequence aligned for comparison purposes is at least 20%, 30%, preferably at least 40%, MOre preferably at least 50%, even more preferably at least 60%, and even more preferably at least 70%, 80%, 90%, 100% of the length of the reference sequence (e.g., when aligning a second sequence to the 56294 amino acid sequence of SEQ ID NO:2 having approximately 200 amino acid residues (the reprolysin domain), at least 40, 60, preferably at least 80, MOre preferably at least 100, even more preferably at least 120, and even more preferably at least 140, 160, or 180 amino acid residues are aligned). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position (as used herein amino acid or nucleic acid “identity” is equivalent to amino acid or nucleic acid “homology”). The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.


[0094] The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. In a preferred embodiment, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch ((1970) J Mol Biol (48):444-453) algorithm which has been incorporated into the GAP program in the GCG software package (available at http://www.gcg.com), using either a Blossum 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1, 2, 3, 4, 5, or 6. In yet another preferred embodiment, the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (available at http://www.gcg.com), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. A particularly preferred set of parameters (and the one that should be used if the practitioner is uncertain about what parameters should be applied to determine if a molecule is within a sequence identity or homology limitation of the invention) are a Blossum 62 scoring matrix with a gap penalty of 12, a gap extend penalty of 4, and a frameshift gap penalty of 5.


[0095] The percent identity between two amino acid or nucleotide sequences can be determined using the algorithm of E. Meyers and W. Miller ((1989) CABIOS 4:11-17) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.


[0096] The nucleic acid and protein sequences described herein can be used as a “query sequence” to perform a search against public databases to, for example, identify other family members or related sequences. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul et al. (1990) J Mol Biol 215:403-10. BLAST nucleotide searches can be performed with the NBLAST program, score=100, wordlength=12 to obtain nucleotide sequences homologous to 56294 or 56229 nucleic acid molecules of the invention. BLAST protein searches can be performed with the XBLAST program, score=50, wordlength=3 to obtain amino acid sequences homologous to 56294 or 56229 protein molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al. (1997) Nucleic Acids Res 25(17):3389-3402. When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used. See http://www.ncbi.nlm.nih.gov.


[0097] “Misexpression or aberrant expression,” as used herein, refers to a non-wild type pattern of gene expression, at the RNA or protein level. It includes: expression at non-wild type levels, i.e., over or under expression; a pattern of expression that differs from wild type in terms of the time or stage at which the gene is expressed, e.g., increased or decreased expression (as compared with wild type) at a predetermined developmental period or stage; a pattern of expression that differs from wild type in terms of decreased expression (as compared with wild type) in a predetermined cell type or tissue type; a pattern of expression that differs from wild type in terms of the splicing size, amino acid sequence, post-transitional modification, or biological activity of the expressed polypeptide; a pattern of expression that differs from wild type in terms of the effect of an environmental stimulus or extracellular stimulus on expression of the gene, e.g., a pattern of increased or decreased expression (as compared with wild type) in the presence of an increase or decrease in the strength of the stimulus.


[0098] “Subject,” as used herein, can refer to a mammal, e.g., a human, or to an experimental or animal or disease model, e.g., a rodent model of pain, e.g., an arthritic rat, a CCI rodent, or an axotomized rodent. The subject can also be a non-human animal, e.g., a horse, cow, goat, or other domestic animal.


[0099] A “purified preparation of cells,” as used herein, refers to, in the case of plant or animal cells, an in vitro preparation of cells and not an entire intact plant or animal. In the case of cultured cells or microbial cells, it consists of a preparation of at least 10% and more preferably 50% of the subject cells.


[0100] Various aspects of the invention are described in further detail below.


[0101] Nucleic Acid Molecules


[0102] The invention provides isolated or purified nucleic acid molecules that encode a 56294 or 56629 metalloprotease described herein, e.g., a full length 56294 or 56629 metalloprotease or fragment of SEQ ID NO:2 or 5 or SEQ ID NO:5, e.g., a biologically active portion of 56294 or 56629 metalloprotease. Also included are nucleic acid fragments suitable for use as a hybridization probe, which can be used, e.g., to identify a nucleic acid molecule encoding a polypeptide of the invention, such as 56294 or 56629 metalloprotease mRNA, and fragments suitable for use as primers, e.g., PCR primers for the amplification or mutation of nucleic acid molecules. The term “56294 or 56629 metalloprotease nucleic acid” or “56294 or 56629 metalloprotease polynucleotide” includes variants and subsequences or fragments of 56294 or 56629 metalloprotease polynucleotides.


[0103] The specifically disclosed cDNA of 56294 or 56629 comprises the coding region and 5′ and 3′ untranslated sequences in SEQ ID NO:1, and SEQ ID NO:4, respectively. The coding region of 56294 or 56629 begins with ATG and is shown as SEQ ID NO:3, SEQ ID NO:6, respectively. Thus, in one embodiment, an isolated nucleic acid molecule of the invention includes the nucleotide sequence shown in SEQ ID NO:1, 4, or the nucleotide sequence of the DNA insert of the plasmid deposited with ATCC as Accession Number ______, or Accession Number _______, or a portion of any of these nucleotide sequences. In another embodiment, the nucleic acid molecule includes sequences encoding the 56294 or 56629 metalloprotease protein (i.e., “the coding region”, SEQ ID NO:3, or 6), as well as 5′ untranslated sequences. Alternatively, the nucleic acid molecule can include only the coding region of SEQ ID NO:1 (e.g., SEQ ID NO:3 or 6) and, e.g., no flanking sequences which normally accompany the subject sequence.


[0104] Thus, 56294 or 56629 metalloprotease polynucleotides include, but are not limited to, the sequence encoding the mature polypeptide alone, the sequence encoding the mature polypeptide and additional coding sequences, such as a leader or secretory sequence (e.g., a pre-pro or pro-protein sequence), the sequence encoding the mature polypeptide, with or without the additional coding sequences, plus additional non-coding sequences, for example introns and non-coding 5′ and 3′ sequences such as transcribed but non-translated sequences that play a role in transcription, RNA processing (including splicing and polyadenylation signals), ribosome binding and stability of mRNA. In addition, the polynucleotide may be fused to a marker sequence encoding, for example, a peptide that facilitates purification.


[0105] In yet another embodiment, an isolated nucleic acid molecule of the invention includes a nucleic acid molecule which is a complement of the nucleotide sequence shown in SEQ ID NO:1, 3, 4 or 6, or the nucleotide sequence of the DNA insert of the plasmid deposited with ATCC as Accession Number ______, or Accession Number ______, or a portion of any of these nucleotide sequences. In still other embodiments, the nucleic acid molecule of the invention is sufficiently complementary to the nucleotide sequence shown in SEQ ID NO:1, 3, 4 or 6, or the nucleotide sequence of the DNA insert of the plasmid deposited with ATCC as Accession Number ______, or Accession Number ______, such that it can hybridize to the nucleotide sequence shown in SEQ ID NO:1, 3, 4 or 6, or the nucleotide sequence of the DNA insert of the plasmid deposited with ATCC as Accession Number ______, or Accession Number ______, thereby forming a stable duplex.


[0106] In a further embodiment, an isolated nucleic acid molecule of the present invention includes a nucleotide sequence which is at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more homologous to the entire length of the nucleotide sequence shown in SEQ ID NO:1, 3, 4 or 6, or the entire length of the nucleotide sequence of the DNA insert of the plasmid deposited with ATCC as Accession Number ______, Accession Number ______, or a portion, preferably of the same length, of any of these nucleotide sequences.


[0107] Nucleic Acid Fragments


[0108] A nucleic acid of the invention can include a portion of the nucleic acid sequence of SEQ ID NO:1, 3, 4 or 6, or the nucleotide sequence of the DNA insert of the plasmid deposited with ATCC as Accession Number ______, or Accession Number ______. Such a nucleic acid molecule can include a fragment which can be used as a probe or primer or a fragment encoding a portion of a 56294 or 56629 metalloprotease protein, e.g., an immunogenic or biologically active portion of 56294 or 56629 metalloprotease protein. The nucleotide sequence determined from the cloning of the 56294 or 56629 metalloprotease gene allows for the generation of probes and primers designed for use in identifying and/or cloning other 56294 or 56629 metalloprotease family members, or fragments thereof, as well as 56294 or 56629 metalloprotease homologues, or fragments thereof, from other species.


[0109] Thus, the present invention provides isolated nucleic acids that contain a single or double stranded subsequence or portion that hybridizes under stringent conditions to the nucleotide sequence of SEQ ID NO:1, 3, 4 or 6, or the complement of SEQ ID NO:1, 3, 4 or 6. In one embodiment, the nucleic acid consists of a portion of the nucleotide sequence of SEQ ID NO:1, 4, or the complement of SEQ ID NO:1 or 4. Other subsequences include nucleotide sequences encoding the amino acid subsequences described herein up to along the entire length of the gene encoding the 56294 or 56629 metalloprotease polypeptide, including any 5′ or 3′ untranslated region. Accordingly, it could be derived from 5′ noncoding regions, the coding region, and 3′ noncoding regions. Nucleic acid subsequences, according to the invention, should not be construed as encompassing those fragments that may have been disclosed prior to the invention.


[0110] Thus, 56294 or 56629 metalloprotease nucleic acid subsequences further include sequences encoding the regions of 56294 or 56629 metalloprotease polypeptide described herein, subregions thereof, and sites having particular activity or function. 56294 or 56629 metalloprotease nucleic acid fragments also include combinations of the regions, segments, motifs, and other functional sites described above. It is understood that a 56294 or 56629 metalloprotease subsequence includes any nucleic acid sequence that does not include the entire gene. A person of ordinary skill in the art would be aware of the many permutations that are possible.


[0111] The nucleic acid subsequences of the invention are at least about 15, likely at least about 16, 17, 18, 19, 20, 23 or 25 contiguous nucleotides, and can be 30, 33, 35, 40, 50, 60, 70, 75, 80, 90, 100, 200, 500 or more nucleotides in length. Longer fragments, for example, 600, 700, 800 or more nucleotides in length, which encode antigenic proteins or polypeptides described herein are also useful.


[0112] In a preferred embodiment, the nucleic acid subsequence includes at least 1, preferably at least 2, 5, 10, 20, 50 or more, nucleotides from any of: nucleotides 1-441, 566-642, 940-1946, or 2933-2967 of SEQ ID NO:1. In a preferred embodiment, the nucleic acid subsequence includes at least 1, preferably at least 2, 5, 10, 20, 50 or more, nucleotides from any of: nucleotides 1-979, 1779-3092, or 3606-3779 of SEQ ID NO:4.


[0113] In preferred embodiments, the nucleic acid subsequence is at least 125, 300, 375, 475, 500, 575, 660 or 700 nucleotides.


[0114] In preferred embodiments, the nucleic acid sequence differs by at least one nucleotide, preferably by 2, 5, 10, 20, 50 or more nucleotides, from the sequence of Gen Bank Accession Numbers N73388, AW511202, AW629054, AA889599, AW820691, AC008180, A1589206, or A1783597. E.g., a nucleic acid fragment can: include one or more nucleotides from SEQ ID NO: 1 or SEQ ID NO:3 outside the region of nucleotides 442-565, 643-939, 1947-2932 (e.g., 1947-2627, 2269-2923, 2359-2932, 2461-2932) of SEQ ID NO:1; not include all of the nucleotides of N73388, AW511202, AW629054, AA889599, AW820691, AC008180, A1589206, or A1783597, e.g., can be one or more nucleotides shorter (at one or both ends) than the sequence of N73388, AW511202, AW629054, AA889599, AW820691, AC008180, A1589206, or A1783597; or can differ by one or more nucleotides in the region of overlap.


[0115] 56294 or 56629 metalloprotease probes and primers are provided. Typically a probe/primer is an isolated or purified oligonucleotide. The oligonucleotide typically includes a region of nucleotide sequence that hybridizes under stringent conditions to at least about 7, 12 or 15, preferably about 20 or 25, MOre preferably about 30, 35, 40, 45, 50, 55, 60, 65, 75 or more consecutive nucleotides of a sense or antisense sequence of SEQ ID NO:1, 3, 4 or 6 or the nucleotide sequence of the DNA insert of the plasmid deposited with ATCC as Accession Number ______, Accession Number ______, or of an allelic variant or mutant of SEQ ID NO:1, 3, 4 or 6, or the nucleotide sequence of the DNA insert of the plasmid deposited with ATCC as Accession Number ______, or Accession Number ______.


[0116] In a particular embodiment, the nucleic acid probe is at least 5 or 10, and less than 200, more likely less than 100, or less than 75, 50, 40, or 30 base pairs in length. It should be identical, or differ by 1, or less than in 5 or 10 bases, from a sequence disclosed herein. If alignment is needed for this comparison the sequences should be aligned for maximum homology. “Looped” out sequences from deletions or insertions, or mismatches, are considered differences.


[0117] As used herein, the term “primer” refers to a single-stranded oligonucleotide which acts as a point of initiation of template-directed DNA polymerization using well-known methods (e.g., PCR, LCR) including, but not limited to those described herein. “Probes” are oligonucleotides that hybridize to a complementary strand of nucleic acid. Such probes include polypeptide nucleic acids (PNAs), as described in Nielsen et al. (1991) Science 254:1497-1500. Typically, a probe comprises a nucleotide sequence region that hybridizes under highly stringent conditions to consecutive nucleotides of the nucleic acid sequence or a complement thereof. More typically, a probe further comprises a label, e.g., radioisotope, fluorescent or luminescent compound, enzyme, or enzyme co-factor.


[0118] A probe or primer can be derived from the sense or anti-sense strand of a nucleic acid which encodes, inter alia, a transmembrane domain from about amino acid 347-364 of SEQ ID NO:2, a transmembrane domain from about amino acid 716-736 of SEQ ID NO:2, a peptidase M12B propeptide domain from about amino acids 96-209 of SEQ ID NO:2, a reprolysin domain from about amino acids 219-416 of SEQ ID NO:2, a disintegrin-like domain from about amino acids 433-504 of SEQ ID NO:2, an EGF-like domain from about amino acids 659-686 of SEQ ID NO:2, a peptidase M20 sequence from about amino acids 152-256 of SEQ ID NO:5. In another embodiment a set of primers is provided, e.g., primers suitable for use in a PCR, which can be used to amplify a selected region of a 56294 or 56629 metalloprotease sequence, e.g., a domain, region, site or other sequence described herein. For example, a primer can be hybridized to any portion of an mRNA and a larger or full-length cDNA can be produced. The term “primer set” refers to a set of primers including a 5′ (upstream) primer that hybridizes with the 5′ end of the nucleic acid sequence to be amplified and a 3′ (downstream) primer that hybridizes with the complement of the sequence to be amplified. Template directed polymerization produces a double strand polymerization product of the intervening sequence including the primer set.


[0119] The appropriate length of the primer depends on the particular use, but typically ranges from about 10, 15, 25 to 50 base pairs in length and less than 100, or less than 200, base pairs in length. The primers should be identical, or differ by one or a few bases from a sequence disclosed herein or from a naturally occurring variant. E.g., primers suitable for amplifying all or a portion of any of the following regions are provided: a transmembrane domain from about amino acid 347-364 of SEQ ID NO:2, a transmembrane domain from about amino acid 716-736 of SEQ ID NO:2, a peptidase M12B propeptide domain from about amino acids 96-209 of SEQ ID NO:2, a reprolysin domain from about amino acids 219-416 of SEQ ID NO:2, a disintegrin-like domain from about amino acids 433-504 of SEQ ID NO:2, an EGF-like domain from about amino acids 659-686 of SEQ ID NO:2, a peptidase M20 sequence from about amino acids 152-256 of SEQ ID NO:5.


[0120] A nucleic acid fragment can encode an epitope bearing region of a polypeptide described herein.


[0121] A nucleic acid fragment encoding a “biologically active portion of a 56294 or 56629 metalloprotease polypeptide” can be prepared by isolating a portion of the nucleotide sequence of SEQ ID NO:1, 3, 4 or 6, or the nucleotide sequence of the DNA insert of the plasmid deposited with ATCC as Accession Number ______, or Accession Number ______, which encodes a polypeptide having a 56294 or 56629 metalloprotease biological activity (e.g., several of the biological activities of 56294 or 56629 metalloprotease proteins are described herein), expressing the encoded portion of the 56294 or 56629 metalloprotease protein (e.g., by recombinant expression in vitro) and assessing the activity of the encoded portion of the 56294 or 56629 metalloprotease protein. For example, a nucleic acid fragment encoding a biologically active portion of 56294 includes a transmembrane domain from about amino acid 347-364 of SEQ ID NO:2, a transmembrane domain from about amino acid 716-736 of SEQ ID NO:2, a peptidase M12B propeptide domain from about amino acids 96-209 of SEQ ID NO:2, a reprolysin domain from about amino acids 219-416 of SEQ ID NO:2, a disintegrin-like domain from about amino acids 433-504 of SEQ ID NO:2, or an EGF-like domain from about amino acids 659-686 of SEQ ID NO:2. A nucleic acid fragment encoding a biologically active portion of 56629 includes a peptidase M20 sequence from about amino acids 152-256 of SEQ ID NO:5.


[0122] A nucleic acid subsequence encoding a biologically active portion of a 56294 or 56629 metalloprotease polypeptide, may comprise a nucleotide sequence which is greater than 9, 12 or 15, likely about 21 or 24, MOre likely about 30, 36, 45, 51, 60, 75, 90, 105, 120, 135, 150, 175, 190, 205, 220, 235, 250 or more nucleotides in length.


[0123] In preferred embodiments, nucleic acids include a nucleotide sequence which is about 300, 400, 500, 600, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2100, 2200, 2300, 2400, or 2500 nucleotides in length and hybridizes under stringent hybridization conditions to a nucleic acid molecule of SEQ ID NO:1 or 3, SEQ ID NO:4 or 6, or the nucleotide sequence of the DNA insert of the plasmid deposited with ATCC as Accession Number ______, or Accession Number ______.


[0124] Nucleic Acid Variants


[0125] The invention further provides variant 56294 or 56629 metalloprotease polynucleotides, and subsequences thereof, i.e., sequences that differ from the nucleotide sequence shown in SEQ ID NO:1, 3, 4 or 6, or the nucleotide sequence of the DNA insert of the plasmid deposited with ATCC as Accession Number ______, or Accession Number ______. Such differences can be due to degeneracy of the genetic code and thus encode the same protein as that encoded by the nucleotide sequence shown in SEQ ID NO:3, SEQ ID NO:6.


[0126] In another embodiment, an isolated nucleic acid molecule of the invention has a nucleotide sequence encoding a protein having an amino acid sequence which differs, by at least 1, but less than 5, 10, 20, 50, or 100 amino acid residues that shown in SEQ ID NO:2 or SEQ ID NO:5. If alignment is needed for this comparison the sequences should be aligned for maximum homology. “Looped” out sequences from deletions or insertions, or mismatches, are considered differences.


[0127] Thus, the invention also provides 56294 or 56629 metalloprotease nucleic acid molecules encoding the variant polypeptides described herein. Such polynucleotides may be naturally occurring, such as allelic variants (same locus), homologs (different locus), and orthologs (different organism), or may be constructed by recombinant DNA methods or by chemical synthesis. Such non-naturally occurring variants may be made by mutagenesis techniques, including those applied to polynucleotides, cells, or organisms. Accordingly, as discussed above, the variants can contain nucleotide substitutions, deletions, and additions.


[0128] Typically, variants have a substantial identity with a nucleic acid molecules of SEQ ID NO:1, SEQ ID NO:4, and the complements thereof. Variation can occur in either or both the coding and non-coding regions. The variations can encode a protein having a conservative or non-conservative amino acid substitution of an essential or non-essential amino acid.


[0129] In one embodiment, the nucleic acid differs from that of SEQ ID NO:1, 3, 4 or 6 or the sequence in ATCC Accession Number ______, or ATCC Accession Number ______, e.g., as follows: by at least one but less than 10, 20, 30, or 40 nucleotides; at least one but less than 1%, 5%, 10% or 20% of the in the subject nucleic acid. If necessary for this analysis the sequences should be aligned for maximum homology. “Looped” out sequences from deletions or insertions, or mismatches, are considered differences.


[0130] Orthologs, homologs, and allelic variants can be identified using methods known in the art. These variants comprise a nucleotide sequence encoding a 56294 or 56629 metalloprotease that is typically at least about 50%, 60-65%, 65-70%, 70-75%, MOre typically at least about 80-85%, and most typically at least about 90-95% or more homologous to the nucleotide sequence shown in SEQ ID NO:3, SEQ ID NO:6, or a subsequence of this sequence. Such nucleic acid molecules can readily be identified as being able to hybridize under stringent conditions, to the nucleotide sequence shown in SEQ ID NO:1, 3, 4 or 6, or a subsequence of the sequence. Nucleic acid molecules corresponding to orthologs, homologs, and allelic variants of 56294 or 56629 metalloprotease cDNAs of the invention can further be isolated by mapping to the same chromosome or locus as the 56294 or 56629 metalloprotease gene.


[0131] Preferred variants include those that are correlated with protease activity, adhesion, cell motility, substrate binding, etc.


[0132] It is understood that stringent hybridization does not indicate substantial homology where it is due to general homology, such as polyA+ sequences, or sequences common to all or most proteins, metalloproteases, zinc binding proteins, disintegrins, EGF's, proteins in the reprolysin family, or even all proteins in specific metalloprotease subfamilies, such as M12B, or M20, etc. Moreover, it is understood that variants do not include any of the nucleic acid sequences that may have been disclosed prior to the invention.


[0133] Allelic variants of 56294 or 56629 metalloprotease, e.g., human 56294 or 56629 metalloprotease, include both functional and non-functional proteins. Functional allelic variants are naturally occurring amino acid sequence variants of the 56294 or 56629 metalloprotease protein within a population that maintain the ability to bind or hydrolyze substrate, for example. Functional allelic variants will typically contain a conservative substitution of one or more amino acids of SEQ ID NO:2 or 5, or substitution, deletion or addition of non-critical residues in non-critical regions of the protein. Non-functional allelic variants are naturally-occurring amino acid sequence variants of the 56294 or 56629 metalloprotease, e.g., human 56294 or 56629 metalloprotease, protein within a population that do not have the ability to bind or hydrolyze substrate, for example. Non-functional allelic variants will typically contain one or more non-conservative substitutions, a deletion, or an addition, or premature truncation of the amino acid sequence of SEQ ID NO:2 or SEQ ID NO:5, or a substitution, addition, or deletion in critical residues or critical regions of the protein.


[0134] Moreover, nucleic acid molecules encoding other 56294 or 56629 metalloprotease family members and, thus, which have a nucleotide sequence which differs from the 56294 or 56629 metalloprotease sequences of SEQ ID NO:1, 3, 4 or 6, or the nucleotide sequence of the DNA insert of the plasmid deposited with ATCC as Accession Number ______,or Accession Number ______ are intended to be within the scope of the invention.


[0135] Antisense Nucleic Acid Molecules, Ribozymes and Modified 56294 or 56629 Nucleic Acid Molecules


[0136] In another aspect, the invention features, an isolated nucleic acid molecule that is antisense to 56294 or 56629. An “antisense” nucleic acid can include a nucleotide sequence that is complementary to a “sense” nucleic acid encoding a protein, e.g., complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence. The antisense nucleic acid can be complementary to an entire 56294 or 56629 coding strand, or to only a portion thereof (e.g., the coding region of 56294 or 56629 corresponding to SEQ ID NO:3 or 6). In another embodiment, the antisense nucleic acid molecule is antisense to a “noncoding region” of the coding strand of a nucleotide sequence encoding 56294 or 56629 (e.g., the 5′ and 3′ untranslated regions).


[0137] An antisense nucleic acid can be designed such that it is complementary to the entire coding region of 56294 or 56629 mRNA, but more preferably is an oligonucleotide that is antisense to only a portion of the coding or noncoding region of 56294 or 56629 mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of 56294 or 56629 mRNA, e.g., between the −10 and +10 regions of the target gene nucleotide sequence. An antisense oligonucleotide can be, for example, about 7, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, or more nucleotides in length.


[0138] An antisense nucleic acid of the invention can be constructed using chemical synthesis and enzymatic ligation reactions with procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used. The antisense nucleic acid also can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).


[0139] The antisense nucleic acid molecules of the invention are typically administered to a subject (e.g., by direct injection at a tissue site), or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a 56294 or 56629 protein to thereby inhibit expression of the protein, e.g., by inhibiting transcription and/or translation. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies that bind to cell surface receptors or antigens. The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong polymerase II or polymerase III promoter are preferred.


[0140] In yet another embodiment, the antisense nucleic acid molecule of the invention is an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β-units, the strands run parallel to each other (Gaultier et al. (1987) Nucleic Acids. Res. 15:6625-6641). The antisense nucleic acid molecule can also comprise a 2′-o-methylribonucleotide (Inoue et al. (1987) Nucleic Acids Res. 15:6131-6148) or a chimeric RNA-DNA analogue (Inoue et al. (1987) FEBS Lett. 215:327-330).


[0141] In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. A ribozyme having specificity for a 56294 or 56629-encoding nucleic acid can include one or more sequences complementary to the nucleotide sequence of a 56294 or 56629 cDNA disclosed herein (i.e., SEQ ID NO:1, or 3), and a sequence having known catalytic sequence responsible for mRNA cleavage (see U.S. Pat. No. 5,093,246 or Haselhoff and Gerlach (1988) Nature 334:585-591). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a 56294 or 56629-encoding mRNA. See, e.g., Cech et al. U.S. Pat. No. 4,987,071; and Cech et al. U.S. Pat. No. 5,116,742. Alternatively, 56294 or 56629 mRNA can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules. See, e.g., Bartel and Szostak (1993) Science 261:1411-1418.


[0142] 56294 or 56629 gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the 56294 or 56629 (e.g., the 56294 or 56629 promoter and/or enhancers) to form triple helical structures that prevent transcription of the 56294 or 56629 gene in target cells. See generally, Helene, C. (1991) Anticancer Drug Des. 6(6):569-84; Helene, C. et al. (1992) Ann. N.Y. Acad. Sci. 660:27-36; and Maher, L. J. (1992) Bioassays 14(12):807-15. The potential sequences that can be targeted for triple helix formation can be increased by creating a “switchback” nucleic acid molecule. Switchback molecules are synthesized in an alternating 5′-3′, 3′-5′ manner, such that they base pair with first one strand of a duplex and then the other, eliminating the necessity for a sizeable stretch of either purines or pyrimidines to be present on one strand of a duplex.


[0143] The invention also provides detectably labeled oligonucleotide primer and probe molecules. Typically, such labels are chemiluminescent, fluorescent, radioactive, or calorimetric.


[0144] A 56294 or 56629 nucleic acid molecule can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acid molecules can be modified to generate peptide nucleic acids (see Hyrup B. et al. (1996) Bioorganic & Medicinal Chemistry 4 (1): 5-23). As used herein, the terms “peptide nucleic acid” or “PNA” refers to a nucleic acid mimic, e.g., a DNA mimic in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of a PNA can allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup B. et al. (1996) supra; Perry-O'Keefe et al. Proc. Natl. Acad. Sci. 93: 14670-675.


[0145] PNAs of 56294 or 56629 nucleic acid molecules can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, for example, inducing transcription or translation arrest or inhibiting replication. PNAs of 56294 or 56629 nucleic acid molecules can also be used in the analysis of single base pair mutations in a gene, (e.g., by PNA-directed PCR clamping); as ‘artificial restriction enzymes’ when used in combination with other enzymes, (e.g., S1 nucleases (Hyrup B. (1996) supra)); or as probes or primers for DNA sequencing or hybridization (Hyrup B. et al. (1996) supra; Perry-O'Keefe supra).


[0146] In other embodiments, the oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al. (1989) Proc. Natl. Acad. Sci. USA 86:6553-6556; Lemaitre et al. (1987) Proc. Natl. Acad. Sci. USA 84:648-652; PCT Publication No. W088/09810) or the blood-brain barrier (see, e.g., PCT Publication No. W089/10134). In addition, oligonucleotides can be modified with hybridization-triggered cleavage agents (see, e.g., Krol et al. (1988) Bio-Techniques 6:958-976) or intercalating agents (see, e.g., Zon (1988) Pharm. Res. 5:539-549). To this end, the oligonucleotide may be conjugated to another molecule, (e.g., a peptide, hybridization triggered cross-linking agent, transport agent, or hybridization-triggered cleavage agent).


[0147] The invention also includes molecular beacon oligonucleotide primer and probe molecules having at least one region that is complementary to a 56294 or 56629 nucleic acid of the invention. The molecular beacon primer and probe molecules also have two complementary regions, one having a fluorophore and one having a quencher, such that the molecular beacon is useful for quantitating the presence of a 56294 or 56629 nucleic acid of the invention in a sample. Molecular beacon nucleic acids are described, for example, in Lizardi et al., U.S. Pat. No. 5,854,033; Nazarenko et al., U.S. Pat. No. 5,866,336, and Livak et al., U.S. Pat. No. 5,876,930.


[0148] Isolated Polypeptides


[0149] In another aspect, the invention features, an isolated 56294 or 56629 metalloprotease protein, or fragment, e.g., a biologically active portion, for use as immunogens or antigens to raise or test (or more generally to bind) anti 56294 or 56629 metalloprotease antibodies. 56294 or 56629 metalloprotease protein can be isolated from cells or a tissue source using standard protein purification techniques. 56294 or 56629 metalloprotease protein or subsequences thereof can be produced by recombinant DNA techniques or synthesized chemically using known protein synthesis methods. In one embodiment, the protein is produced by recombinant DNA techniques. For example, a nucleic acid molecule encoding the 56294 or 56629 metalloprotease polypeptide is cloned into an expression vector, the expression vector introduced into a host cell and the protein expressed in the host cell. The protein can then be isolated from the cells by an appropriate purification scheme using standard protein purification techniques.


[0150] Polypeptides of the invention include those which arise as a result of the existence of multiple genes, alternative transcripts (e.g., due to different initiation sites), alternative RNA splicing events, and alternative translational and postranslational events. The polypeptide can be expressed in systems, e.g., cultured cells, which result in substantially the same postranslational modifications present when the polypeptide is expressed in a native cell, or in systems which result in the alteration or omission of postranslational modifications, e.g., gylcosylation or cleavage, present when expressed in a native cell.


[0151] In one embodiment, a 56294 or 56629 metalloprotease polypeptide has one or more of the following characteristics:


[0152] (i) it has the ability to hydrolyze a protein substrate;


[0153] (ii) it has an overall sequence similarity of at least 60%, preferably at least 70, 80, 90, or 95%, with a polypeptide of a 56294 or 56629 polypeptide, e.g., a polypeptide of SEQ ID NO:2 or 5;


[0154] (iv) it has a transmembrane domain which is preferably about 70%, 80%, 90% or 95% homologous with amino acid residues from about amino acid 716-736 of SEQ ID NO:2;


[0155] (v) it has a peptidase M12B propeptide domain which is preferably about 70%, 80%, 90% or 95% homologous with amino acid residues from about amino acid 96-209 of SEQ ID NO:2;


[0156] (vi) it has a reprolysin domain which is preferably about 70%, 80%, 90% or 95% homologous with amino acid residues from about amino acid 219-416 of SEQ ID NO:2;


[0157] (vii) it has a disintegrin-like domain which is preferably about 70%, 80%, 90% or 95% homologous with amino acid residues from about amino acid 433-504 of SEQ ID NO:2;


[0158] (viii) it has an EGF-like domain which is preferably about 70%, 80%, 90% or 95% homologous with amino acid residues from about amino acids 659-686 of SEQ ID NO:2; or


[0159] (ix) it has a peptidase M20 sequence which is preferably about 70%, 80%, 90% or 95% homologous with amino acid residues from about amino acid 152-256 of SEQ ID NO:5.


[0160] In one embodiment, the 56294 or 56629 metalloprotease protein or subsequence thereof, differs from the corresponding sequence in SEQ ID NO:2 or 5. In another embodiment, the 56294 or 56629 metalloprotease protein or subsequence thereof differs by at least one but by less than 15, 10 or 5 amino acid residues. In yet another embodiment, the 56294 or 56629 metalloprotease protein or subsequence thereof differs from the corresponding sequence in SEQ ID NO:2 or 5 by at least one residue but less than 20%, 15%, 10% or 5% of the total residues in it differ from the corresponding sequence in SEQ ID NO:2 or 5 (If this comparison requires alignment the sequences should be aligned for maximum homology. “Looped” out sequences from deletions or insertions, or mismatches, are considered differences.). The differences may be differences or changes at a non-essential residue or alternatively, conservative substitution. Thus, in one embodiment, one or more differences are in the 56294 peptidase M12B propeptide sequence from about amino acid 96 to 209 of SEQ ID NO:2; or in the reprolysin domain, from about amino acid residues 219 to 416 of SEQ ID NO:2.


[0161] In a preferred embodiment, the isolated polypeptide includes at least 1, preferably at least 2, 5, 10, 20, 50 or more, amino acids from any of: amino acids 1-501 of SEQ ID NO:2. In a preferred embodiment, the isolated polypeptide includes at least 1, preferably at least 2, 5, 10, 20, 50 or more, amino acids from any of: amino acids 1-3 or 271-533 of SEQ ID NO:5.


[0162] In a preferred embodiment, the 56294 polypeptide is at least 319 amino acids in length. In a preferred embodiment, the 56629 polypeptide is at least 167 amino acids in length. In another preferred embodiment, the 56629 polypeptide is at least 190 amino acids in length.


[0163] Other embodiments include a protein that contains one or more changes in amino acid sequence, e.g., a change in an amino acid residue that is not essential for activity. Such 56294 or 56629 metalloprotease proteins differ in amino acid sequence from SEQ ID NO:2 or 5 yet retain biological activity.


[0164] In one embodiment, the protein includes an amino acid sequence at least about 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 98% or more homologous to SEQ ID NO:2 or 5.


[0165] A 56294 metalloprotease protein or subsequence is provided which varies from the sequence of SEQ ID NO:2 in a region from about amino acid residues 1-95, 210-218, 417-432, 505-658, or 687-820 of SEQ ID NO:2 by at least one but by less than 25, 15, 10 or 5 amino acid residues in the protein or fragment but which does not differ from SEQ ID NO:2 in a region from about amino acid residues 96 to 209, 219 to 416, 433 to 504, or 659 to 686 (If this comparison requires alignment the sequences should be aligned for maximum homology. “Looped” out sequences from deletions or insertions, or mismatches, are considered differences.). In some embodiments the difference is at a non essential residue or is a conservative substitution, while in other embodiments the difference is at an essential residue or is a non conservative substitution.


[0166] A 56629 metalloprotease protein or subsequence is provided which varies from the sequence of SEQ ID NO:5 in a region from about amino acid residues 1 to 151 and 268 to 533 by at least one but by less than 25, 15, 10 or 5 amino acid residues in the protein or fragment but which does not differ from SEQ ID NO:5 in a region from about amino acid residues 152-256 (If this comparison requires alignment the sequences should be aligned for maximum homology. “Looped” out sequences from deletions or insertions, or mismatches, are considered differences.). In some embodiments the difference is at a non essential residue or is a conservative substitution, while in other embodiments the difference is at an essential residue or is a non conservative substitution.


[0167] In one embodiment, a biologically active portion or subsequence of a 56294 metalloprotease protein includes a peptidase M12B propeptide domain, a reprolysin domain, a disintegrin domain, or an EGF-like domain. In another embodiment, a biologically active portion or subsequence of a 56629 metalloprotease protein includes a peptidase M20 domain. Moreover, other biologically active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the functions or activities of a 56294 or 56629 metalloprotease sequence protein.


[0168] In another embodiment, a 56294 or 56629 metalloprotease protein has an amino acid sequence shown in SEQ ID NO:2 or 5. In other embodiments, a 56294 or 56629 metalloprotease protein is substantially homologous to SEQ ID NO:2 or 5. In yet another embodiment, a 56294 or 56629 metalloprotease protein is substantially homologous to SEQ ID NO:2 or 5 and retains the functional activity of the protein of SEQ ID NO:2 or 5, as described in detail above.


[0169] As used herein, two proteins (or a region of the proteins) are substantially homologous when the amino acid sequences are at least about 60-65%, 65-70%, 70-75%, typically at least about 80-85%, and most typically at least about 90-95% or more homologous.


[0170] 56294 or 56629 Chimeric or Fusion Proteins


[0171] In another aspect, the invention provides 56294 or 56629 chimeric or fusion proteins. As used herein, a 56294 or 56629 “chimeric protein” or “fusion protein” includes a 56294 or 56629 polypeptide linked to a non-56294 or 56629 polypeptide. A “non-56294 or 56629 polypeptide” refers to a polypeptide having an amino acid sequence corresponding to a protein which is not substantially homologous to the 56294 or 56629 protein, e.g., a protein which is different from the 56294 or 56629 protein and which is derived from the same or a different organism. The 56294 or 56629 polypeptide of the fusion protein can correspond to all or a portion e.g., a fragment described herein of a 56294 or 56629 amino acid sequence. In a preferred embodiment, a 56294 or 56629 fusion protein includes at least one (or two) biologically active portion of a 56294 or 56629 protein. The non-56294 or 56629 polypeptide can be fused to the N-terminus or C-terminus of the 56294 or 56629 polypeptide.


[0172] The fusion protein can include a moiety which has a high affinity for a ligand. For example, the fusion protein can be a GST-56294 or 56629 fusion protein in which the 56294 or 56629 sequences are fused to the C-terminus of the GST sequences. Such fusion proteins can facilitate the purification of recombinant 56294 or 56629. Alternatively, the fusion protein can be a 56294 or 56629 protein containing a heterologous signal sequence at its N-terminus. In certain host cells (e.g., mammalian host cells), expression and/or secretion of 56294 or 56629 can be increased through use of a heterologous signal sequence.


[0173] Fusion proteins can include all or a part of a serum protein, e.g., an IgG constant region, or human serum albumin.


[0174] The 56294 or 56629 fusion proteins of the invention can be incorporated into pharmaceutical compositions and administered to a subject in vivo. The 56294 or 56629 fusion proteins can be used to affect the bioavailability of a 56294 or 56629 substrate. 56294 or 56629 fusion proteins may be useful therapeutically for the treatment of disorders caused by, for example, (i) aberrant modification or mutation of a gene encoding a 56294 or 56629 protein; (ii) mis-regulation of the 56294 or 56629 gene; and (iii) aberrant post-translational modification of a 56294 or 56629 protein.


[0175] Moreover, the 56294 or 56629-fusion proteins of the invention can be used as immunogens to produce anti-56294 or 56629 antibodies in a subject, to purify 56294 or 56629 ligands and in screening assays to identify molecules that inhibit the interaction of 56294 or 56629 with a 56294 or 56629 substrate.


[0176] Expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). A 56294 or 56629-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the 56294 or 56629 protein.


[0177] Variants of 56294 or 56629 Proteins


[0178] In another aspect, the invention also features a variant of a 56294 or 56629 polypeptide, e.g., which functions as an agonist (mimetics) or as an antagonist. Variants of the 56294 or 56629 proteins can be generated by mutagenesis, e.g., discrete point mutation, the insertion or deletion of sequences or the truncation of a 56294 or 56629 protein. An agonist of the 56294 or 56629 proteins can retain substantially the same, or a subset, of the biological activities of the naturally occurring form of a 56294 or 56629 protein. An antagonist of a 56294 or 56629 protein can inhibit one or more of the activities of the naturally occurring form of the 56294 or 56629 protein by, for example, competitively modulating a 56294 or 56629-mediated activity of a 56294 or 56629 protein. Thus, specific biological effects can be elicited by treatment with a variant of limited function. Preferably, treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the protein has fewer side effects in a subject relative to treatment with the naturally occurring form of the 56294 or 56629 protein.


[0179] Variants of a 56294 or 56629 protein can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, of a 56294 or 56629 protein for agonist or antagonist activity.


[0180] Libraries of fragments e.g., N terminal, C terminal, or internal fragments, of a 56294 or 56629 protein coding sequence can be used to generate a variegated population of fragments for screening and subsequent selection of variants of a 56294 or 56629 protein.


[0181] Variants in which a cysteine residues is added or deleted or in which a residue which is glycosylated is added or deleted are particularly preferred.


[0182] Methods for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property are known in the art. Recursive ensemble mutagenesis (REM), a new technique which enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify 56294 or 56629 variants (Arkin and Yourvan (1992) Proc. Natl. Acad. Sci. USA 89:7811-7815; Delgrave et al. (1993) Protein Engineering 6(3):327-331).


[0183] Cell based assays can be exploited to analyze a variegated 56294 or 56629 library. For example, a library of expression vectors can be transfected into a cell line, e.g., a cell line, which ordinarily responds to 56294 or 56629 in a substrate-dependent manner. The transfected cells are then contacted with 56294 or 56629 and the effect of the expression of the mutant on signaling by the 56294 or 56629 substrate can be detected, e.g., by measuring metalloprotease activity. Plasmid DNA can then be recovered from the cells that score for inhibition, or alternatively, potentiation of signaling by the 56294 or 56629 substrate, and the individual clones further characterized.


[0184] In another aspect, the invention features a method of making a 56294 or 56629 polypeptide, e.g., a peptide having a non-wild type activity, e.g., an antagonist, agonist, or super agonist of a naturally occurring 56294 or 56629 polypeptide, e.g., a naturally occurring 56294 or 56629 polypeptide. The method includes: altering the sequence of a 56294 or 56629 polypeptide, e.g., altering the sequence, e.g., by substitution or deletion of one or more residues of a non-conserved region, a domain or residue disclosed herein, and testing the altered polypeptide for the desired activity.


[0185] In another aspect, the invention features a method of making a fragment or analog of a 56294 or 56629 polypeptide having a biological activity of a naturally occurring 56294 or 56629 polypeptide. The method includes: altering the sequence, e.g., by substitution or deletion of one or more residues, of a 56294 or 56629 polypeptide, e.g., altering the sequence of a non-conserved region, or a domain or residue described herein, and testing the altered polypeptide for the desired activity.


[0186] Anti-56294 or 56629 Antibodies


[0187] In another aspect, the invention provides an anti-56294 or 56629 antibody, or a fragment thereof (e.g., an antigen-binding fragment thereof). The term “antibody” as used herein refers to an immunoglobulin molecule or immunologically active portion thereof, i.e., an antigen-binding portion. As used herein, the term “antibody” refers to a protein comprising at least one, and preferably two, heavy (H) chain variable regions (abbreviated herein as VH), and at least one and preferably two light (L) chain variable regions (abbreviated herein as VL). The VH and VL regions can be further subdivided into regions of hypervariability, termed “complementarity determining regions” (“CDR”), interspersed with regions that are more conserved, termed “framework regions” (FR). The extent of the framework region and CDR's has been precisely defined (see, Kabat et al. (1991) Sequences of Proteins of Immunological Interest, Fifth Edition, U.S. Department of Health and Human Services, NIH Publication No. 91-3242, and Chothia et al. (1987) J. Mol. Biol. 196:901-917, which are incorporated herein by reference). Each VH and VL is composed of three CDR's and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4.


[0188] The anti-56294 or 56629 antibody can further include a heavy and light chain constant region, to thereby form a heavy and light immunoglobulin chain, respectively. In one embodiment, the antibody is a tetramer of two heavy immunoglobulin chains and two light immunoglobulin chains, wherein the heavy and light immunoglobulin chains are inter-connected by, e.g., disulfide bonds. The heavy chain constant region is comprised of three domains, CH1, CH2 and CH3. The light chain constant region is comprised of one domain, CL. The variable region of the heavy and light chains contains a binding domain that interacts with an antigen. The constant regions of the antibodies typically mediate the binding of the antibody to host tissues or factors, including various cells of the immune system (e.g., effector cells) and the first component (Clq) of the classical complement system.


[0189] As used herein, the term “immunoglobulin” refers to a protein consisting of one or more polypeptides substantially encoded by immunoglobulin genes. The recognized human immunoglobulin genes include the kappa, lambda, alpha (IgA1 and IgA2), gamma (IgG1, IgG2, IgG3, IgG4), delta, epsilon and mu constant region genes, as well as the myriad immunoglobulin variable region genes. Full-length immunoglobulin “light chains” (about 25 Kd or 214 amino acids) are encoded by a variable region gene at the NH2-terminus (about 110 amino acids) and a kappa or lambda constant region gene at the COOH—terminus. Full-length immunoglobulin “heavy chains” (about 50 Kd or 446 amino acids), are similarly encoded by a variable region gene (about 116 amino acids) and one of the other aforementioned constant region genes, e.g., gamma (encoding about 330 amino acids).


[0190] The term “antigen-binding fragment” of an antibody (or simply “antibody portion,” or “fragment”), as used herein, refers to one or more fragments of a full-length antibody that retain the ability to specifically bind to the antigen, e.g., 56294 or 56629 polypeptide or fragment thereof. Examples of antigen-binding fragments of the anti-56294 or 56629 antibody include, but are not limited to: (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CH1 domains; (ii) a F(ab′)2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CH1 domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a dAb fragment (Ward et al., (1989) Nature 341:544-546), which consists of a VH domain; and (vi) an isolated complementarity determining region (CDR). Furthermore, although the two domains of the Fv fragment, VL and VH, are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the VL and VH regions pair to form monovalent molecules (known as single chain Fv (scFv); see e.g., Bird et al. (1988) Science 242:423-426; and Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85:5879-5883). Such single chain antibodies are also encompassed within the term “antigen-binding fragment” of an antibody. These antibody fragments are obtained using conventional techniques known to those with skill in the art, and the fragments are screened for utility in the same manner as are intact antibodies.


[0191] The anti-56294 or 56629 antibody can be a polyclonal or a monoclonal antibody. In other embodiments, the antibody can be recombinantly produced, e.g., produced by phage display or by combinatorial methods.


[0192] Phage display and combinatorial methods for generating anti-56294 or 56629 antibodies are known in the art (as described in, e.g., Ladner et al. U.S. Pat. No. 5,223,409; Kang et al. International Publication No. WO 92/18619; Dower et al. International Publication No. WO 91/17271; Winter et al. International Publication WO 92/20791; Markland et al. International Publication No. WO 92/15679; Breitling et al. International Publication WO 93/01288; McCafferty et al. International Publication No. WO 92/01047; Garrard et al. International Publication No. WO 92/09690; Ladner et al. International Publication No. WO 90/02809; Fuchs et al. (1991) Bio/Technology 9:1370-1372; Hay et al. (1992) Hum Antibod Hybridomas 3:81-85; Huse et al. (1989) Science 246:1275-1281; Griffths et al. (1993) EMBO J 12:725-734; Hawkins et al. (1992) J Mol Biol 226:889-896; Clackson et al. (1991) Nature 352:624-628; Gram et al. (1992) PNAS 89:3576-3580; Garrad et al. (1991) Bio/Technology 9:1373-1377; Hoogenboom et al. (1991) Nuc Acid Res 19:4133-4137; and Barbas et al. (1991) PNAS 88:7978-7982, the contents of all of which are incorporated by reference herein).


[0193] In one embodiment, the anti-56294 or 56629 antibody is a fully human antibody (e.g., an antibody made in a mouse which has been genetically engineered to produce an antibody from a human immunoglobulin sequence), or a non-human antibody, e.g., a rodent (mouse or rat), goat, primate (e.g., MOnkey), camel antibody. Preferably, the non-human antibody is a rodent (mouse or rat antibody). Methods of producing rodent antibodies are known in the art.


[0194] Human monoclonal antibodies can be generated using transgenic mice carrying the human immunoglobulin genes rather than the mouse system. Splenocytes from these transgenic mice immunized with the antigen of interest are used to produce hybridomas that secrete human mAbs with specific affinities for epitopes from a human protein (see, e.g., Wood et al. International Application WO 91/00906, Kucherlapati et al. PCT publication WO 91/10741; Lonberg et al. International Application WO 92/03918; Kay et al. International Application 92/03917; Lonberg, N. et al. 1994 Nature 368:856-859; Green, L. L. et al. 1994 Nature Genet. 7:13-21; Morrison, S. L. et al. 1994 Proc. Natl. Acad. Sci. USA 81:6851-6855; Bruggeman et al. 1993 Year Immunol 7:33-40; Tuaillon et al. 1993 PNAS 90:3720-3724; Bruggeman et al. 1991 Eur J Immunol 21:1323-1326).


[0195] An anti-56294 or 56629 antibody can be one in which the variable region, or a portion thereof, e.g., the CDR's, are generated in a non-human organism, e.g., a rat or mouse. Chimeric, CDR-grafted, and humanized antibodies are within the invention. Antibodies generated in a non-human organism, e.g., a rat or mouse, and then modified, e.g., in the variable framework or constant region, to decrease antigenicity in a human are within the invention.


[0196] Chimeric antibodies can be produced by recombinant DNA techniques known in the art.


[0197] For example, a gene encoding the Fe constant region of a murine (or other species) monoclonal antibody molecule is digested with restriction enzymes to remove the region encoding the murine Fe, and the equivalent portion of a gene encoding a human Fe constant region is substituted (see Robinson et al., International Patent Publication PCT/US86/02269; Akira, et al., European Patent Application 184,187; Taniguchi, M., European Patent Application 171,496; Morrison et al., European Patent Application 173,494; Neuberger et al., International Application WO 86/01533; Cabilly et al. U.S. Pat. No. 4,816,567; Cabilly et al., European Patent Application 125,023; Better et al. (1988 Science 240:1041-1043); Liu et al. (1987) PNAS 84:3439-3443; Liu et al., 1987, J. Immunol. 139:3521-3526; Sun et al. (1987) PNAS 84:214-218; Nishimura et al., 1987, Canc. Res. 47:999-1005; Wood et al. (1985) Nature 314:446-449; and Shaw et al., 1988, J. Natl Cancer Inst. 80:1553-1559).


[0198] A humanized or CDR-grafted antibody will have at least one or two but generally all three recipient CDR's (of heavy and or light immuoglobulin chains) replaced with a donor CDR. The antibody may be replaced with at least a portion of a non-human CDR or only some of the CDR's may be replaced with non-human CDR's. It is only necessary to replace the number of CDR's required for binding of the humanized antibody to a 56294 or 56629 or a fragment thereof. Preferably, the donor will be a rodent antibody, e.g., a rat or mouse antibody, and the recipient will be a human framework or a human consensus framework. Typically, the immunoglobulin providing the CDR's is called the “donor” and the immunoglobulin providing the framework is called the “acceptor.” In one embodiment, the donor immunoglobulin is a non-human (e.g., rodent). The acceptor framework is a naturally-occurring (e.g., a human) framework or a consensus framework, or a sequence about 85% or higher, preferably 90%, 95%, 99% or higher identical thereto.


[0199] As used herein, the term “consensus sequence” refers to the sequence formed from the most frequently occurring amino acids (or nucleotides) in a family of related sequences (See e.g., Winnaker, From Genes to Clones (Verlagsgesellschaft, Weinheim, Germany 1987). In a family of proteins, each position in the consensus sequence is occupied by the amino acid occurring most frequently at that position in the family. If two amino acids occur equally frequently, either can be included in the consensus sequence. A “consensus framework” refers to the framework region in the consensus immunoglobulin sequence.


[0200] An antibody can be humanized by methods known in the art. Humanized antibodies can be generated by replacing sequences of the Fv variable region which are not directly involved in antigen binding with equivalent sequences from human Fv variable regions. General methods for generating humanized antibodies are provided by Morrison, S. L., 1985, Science 229:1202-1207, by Oi et al., 1986, BioTechniques 4:214, and by Queen et al. U.S. Pat. No. 5,585,089, U.S. Pat. No. 5,693,761 and U.S. Pat. No. 5,693,762, the contents of all of which are hereby incorporated by reference. Those methods include isolating, manipulating, and expressing the nucleic acid sequences that encode all or part of immunoglobulin Fv variable regions from at least one of a heavy or light chain. Sources of such nucleic acid are well known to those skilled in the art and, for example, may be obtained from a hybridoma producing an antibody against a 56294 or 56629 polypeptide or fragment thereof. The recombinant DNA encoding the humanized antibody, or fragment thereof, can then be cloned into an appropriate expression vector.


[0201] Humanized or CDR-grafted antibodies can be produced by CDR-grafting or CDR substitution, wherein one, two, or all CDR's of an immunoglobulin chain can be replaced. See e.g., U.S. Pat. No. 5,225,539; Jones et al. 1986 Nature 321:552-525; Verhoeyan et al. 1988 Science 239:1534; Beidler et al. 1988 J. Immunol. 141:4053-4060; Winter U.S. Pat. No. 5,225,539, the contents of all of which are hereby expressly incorporated by reference. Winter describes a CDR-grafting method which may be used to prepare the humanized antibodies of the present invention (UK Patent Application GB 2188638A, filed on Mar. 26, 1987; Winter U.S. Pat. No. 5,225,539), the contents of which is expressly incorporated by reference.


[0202] Also within the scope of the invention are humanized antibodies in which specific amino acids have been substituted, deleted or added. Preferred humanized antibodies have amino acid substitutions in the framework region, such as to improve binding to the antigen. For example, a humanized antibody will have framework residues identical to the donor framework residue or to another amino acid other than the recipient framework residue. To generate such antibodies, a selected, small number of acceptor framework residues of the humanized immunoglobulin chain can be replaced by the corresponding donor amino acids. Preferred locations of the substitutions include amino acid residues adjacent to the CDR, or which are capable of interacting with a CDR (see e.g., U.S. Pat. No. 5,585,089). Criteria for selecting amino acids from the donor are described in U.S. Pat. No. 5,585,089, e.g., columns 12-16 of U.S. Pat. No. 5,585,089, the e.g., columns 12-16 of U.S. Pat. No. 5,585,089, the contents of which are hereby incorporated by reference. Other techniques for humanizing antibodies are described in Padlan et al. EP 519596 A1, published on Dec. 23, 1992.


[0203] In preferred embodiments an antibody can be made by immunizing with purified 56294 or 56629 antigen, or a fragment thereof, e.g., a fragment described herein.


[0204] A full-length 56294 or 56629 protein or, antigenic peptide fragment of 56294 or 56629 can be used as an immunogen or can be used to identify anti-56294 or 56629 antibodies made with other immunogens, e.g., cells, membrane preparations, and the like. The antigenic peptide of 56294 or 56629 should include at least 8 amino acid residues of the amino acid sequence shown in SEQ ID NO:2 or SEQ ID NO:5 and encompass an epitope of 56294 or 56629. Preferably, the antigenic peptide includes at least 10 amino acid residues, MOre preferably at least 15 amino acid residues, even more preferably at least 20 amino acid residues, and most preferably at least 30 amino acid residues.


[0205] Fragments of 56294 or 56629 which include residues 110-135 of SEQ ID NO:2, 65-85 of SEQ ID NO:5 can be used to make, e.g., used as immunogens or used to characterize the specificity of an antibody, antibodies against hydrophilic regions of the 56294 or 56629 protein. Similarly, a fragment which includes residues 345-360 of SEQ ID NO:2 or 90-110 of SEQ ID NO:5 can be used to make an antibody against a hydrophobic region of the 56294 or 56629 protein. Residues 96-209 of SEQ ID NO:2 (or a fragment thereof, e.g., 96-110, 110-120, 120-130, 130-140, 140-150, 150-160, 160-170, 170-180, 180-190, 190-200, and 200-209 of SEQ ID NO:2, can be used to make an antibody against an M12 domain of a 56294 polypeptide; residues 219-416 of SEQ ID NO:2 (or a fragment thereof, e.g., 219-230, 230-240, 240-250, 250-260, 260-270, 270-280, 280-290, 290-300, 300-310, 310-320, 320-330, 330-340, 340-350, 350-360, 360-370, 370-380, 380-390, and 390-400, 400-410, and 410-419) can be used to make an antibody against a reprolysin domain of a 56294 polypeptide; residues 433-504 of SEQ ID NO:2 (or a fragment thereof, e.g., 433-440, 440-450, 450-460, 460-470, 470-480, 480-504) can be used to make an antibody against a disintegrin domain of a 56294 polypeptide; and residues 659-686 of SEQ ID NO:2 (or a fragment thereof, e.g., 659-670 and 670-686) can be used to make an antibody against an EGF-like domain of a 56294 polypeptide. Residues 152-256 of SEQ ID NO:5 (or a fragment thereof, e.g., 152-160, 160-170, 170-180, 180-190, 190-200, 200-210, 210-220, 220-230, 230-240 and 240-256) can be used to make an antibody against an M20-like domain of a 56629 polypeptide. Residues 50-346, 365-715, and 737-820 of SEQ ID NO:2 (or a fragment thereof) can be used to make an antibody against a non-transmembrane domain, e.g., a cytoplasmic or extracellular domain, of a 56629 polypeptide.


[0206] Antibodies reactive with, or specific for, any of these regions, or other regions or domains described herein are provided.


[0207] Antibodies which bind only native 56294 or 56629 protein, only denatured or otherwise non-native 56294 or 56629 protein, or which bind both, are with in the invention. Antibodies with linear or conformational epitopes are within the invention. Conformational epitopes can sometimes be identified by identifying antibodies which bind to native but not denatured 56294 or 56629 protein.


[0208] Preferred epitopes encompassed by the antigenic peptide are regions of 56294 or 56629 are located on the surface of the protein, e.g., hydrophilic regions, as well as regions with high antigenicity. For example, an Emini surface probability analysis of the human 56294 or 56629 protein sequence can be used to indicate the regions that have a particularly high probability of being localized to the surface of the 56294 or 56629 protein and are thus likely to constitute surface residues useful for targeting antibody production.


[0209] In preferred embodiments antibodies can bind one or more of purified antigen; tissue, e.g., tissue sections; whole cells, preferably living cells; lysed cells; cell fractions.


[0210] The anti-56294 or 56629 antibody can be a single chain antibody. A single-chain antibody (scFV) may be engineered (see, for example, Colcher et al. (1999) Ann NY Acad Sci 880:263-80; and Reiter (1996) Clin Cancer Res 2:245-52). The single chain antibody can be dimerized or multimerized to generate multivalent antibodies having specificities for different epitopes of the same target 56294 or 56629 protein.


[0211] In a preferred embodiment the antibody has: effector function; and can fix complement. In other embodiments the antibody does not; recruit effector cells; or fix complement.


[0212] In a preferred embodiment, the antibody has reduced or no ability to bind an Fc receptor. For example., it is a isotype or subtype, fragment or other mutant, which does not support binding to an Fc receptor, e.g., it has a mutagenized or deleted Fc receptor binding region.


[0213] The antibody can be coupled to a toxin, e.g., a polypeptide toxin, e.g. ricin or diptheria toxin or active fragment hereof, or a radionuclide, or imaging agent, e.g. a radioactive, enzymatic, or other, e.g., imaging agent, e.g., a NMR contrast agent. Labels which produce detectable radioactive emissions or fluorescence are preferred.


[0214] An anti-56294 or 56629 antibody (e.g., MOnoclonal antibody) can be used to isolate 56294 or 56629 by standard techniques, such as affinity chromatography or immunoprecipitation. Moreover, an anti-56294 or 56629 antibody can be used to detect 56294 or 56629 protein (e.g., in a cellular lysate or cell supernatant) in order to evaluate the abundance and pattern of expression of the protein. Anti-56294 or 56629 antibodies can be used diagnostically to monitor protein levels in tissue as part of a clinical testing procedure, e.g., to determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling (i.e., physically linking) the antibody to a detectable substance (i.e., antibody labelling). Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, and radioactive materials. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, β-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin, and examples of suitable radioactive material include 125I, 131I, 35S or 3H.


[0215] The invention also includes a nucleic acid that encodes an anti-56294 or 56629 antibody, e.g., an anti-56294 or 56629 antibody described herein. Also included are vectors which include the nucleic acid and cells transformed with the nucleic acid, particularly cells which are useful for producing an antibody, e.g., mammalian cells, e.g. CHO or lymphatic cells.


[0216] The invention also includes cell lines, e.g., hybridomas, which make an anti-56294 or 56629 antibody, e.g., and antibody described herein, and method of using said cells to make a 56294 or 56629 antibody.


[0217] Recombinant Expression Vectors, Host Cells and Genetically Engineered Cells


[0218] In another aspect, the invention includes, vectors, preferably expression vectors, containing a nucleic acid encoding a polypeptide described herein. As used herein, the term “vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked and can include a plasmid, cosmid or viral vector. The vector can be capable of autonomous replication or it can integrate into a host DNA. Viral vectors include, e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses.


[0219] A vector can include a 56294 or 56629 nucleic acid in a form suitable for expression of the nucleic acid in a host cell. Preferably the recombinant expression vector includes one or more regulatory sequences operatively linked to the nucleic acid sequence to be expressed. The term “regulatory sequence” includes promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Regulatory sequences include those which direct constitutive expression of a nucleotide sequence, as well as tissue-specific regulatory and/or inducible sequences. The design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, and the like. The expression vectors of the invention can be introduced into host cells to thereby produce proteins or polypeptides, including fusion proteins or polypeptides, encoded by nucleic acids as described herein (e.g., 56294 or 56629 proteins, mutant forms of 56294 or 56629 proteins, fusion proteins, and the like).


[0220] The recombinant expression vectors of the invention can be designed for expression of 56294 or 56629 proteins in prokaryotic or eukaryotic cells. For example, polypeptides of the invention can be expressed in E. coli, insect cells (e.g., using baculovirus expression vectors), yeast cells or mammalian cells. Suitable host cells are discussed further in Goeddel, Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990). Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.


[0221] Expression of proteins in prokaryotes is most often carried out in E. coli with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein. Such fusion vectors typically serve three purposes: 1) to increase expression of recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase. Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith, D. B. and Johnson, K. S. (1988) Gene 67:31-40), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, N.J.) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein.


[0222] Purified fusion proteins can be used in 56294 or 56629 activity assays, (e.g., direct assays or competitive assays described in detail below), or to generate antibodies specific for 56294 or 56629 proteins. In a preferred embodiment, a fusion protein expressed in a retroviral expression vector of the present invention can be used to infect bone marrow cells that are subsequently transplanted into irradiated recipients. The pathology of the subject recipient is then examined after sufficient time has passed (e.g., six (6) weeks).


[0223] To maximize recombinant protein expression in E. coli is to express the protein in a host bacteria with an impaired capacity to proteolytically cleave the recombinant protein (Gottesman, S., Gene Expression Technology: Methods in Enzymology 185, Academic Press, San Diego, Calif. (1990) 119-128). Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in E. coli (Wada et al., (1992) Nucleic Acids Res. 20:2111-2118). Such alteration of nucleic acid sequences of the invention can be carried out by standard DNA synthesis techniques.


[0224] The 56294 or 56629 expression vector can be a yeast expression vector, a vector for expression in insect cells, e.g., a baculovirus expression vector or a vector suitable for expression in mammalian cells.


[0225] When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40.


[0226] In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al. (1987) Genes Dev. 1:268-277), lymphoid-specific promoters (Calame and Eaton (1988) Adv. Immunol. 43:235-275), in particular promoters of T cell receptors (Winoto and Baltimore (1989) EMBO J 8:729-733) and immunoglobulins (Banerji et al. (1983) Cell 33:729-740; Queen and Baltimore (1983) Cell 33:741-748), neuron-specific promoters (e.g., the neurofilament promoter; Byrne and Ruddle (1989) Proc. Natl. Acad. Sci. USA 86:5473-5477), pancreas-specific promoters (Edlund et al. (1985) Science 230:912-916), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Pat. No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, for example, the murine hox promoters (Kessel and Gruss (1990) Science 249:374-379) and the α-fetoprotein promoter (Campes and Tilghman (1989) Genes Dev. 3:537-546).


[0227] The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. Regulatory sequences (e.g., viral promoters and/or enhancers) operatively linked to a nucleic acid cloned in the antisense orientation can be chosen which direct the constitutive, tissue specific or cell type specific expression of antisense RNA in a variety of cell types. The antisense expression vector can be in the form of a recombinant plasmid, phagemid or attenuated virus. For a discussion of the regulation of gene expression using antisense genes see Weintraub, H. et al., Antisense RNA as a molecular tool for genetic analysis, Reviews—Trends in Genetics, Vol. 1(1) 1986.


[0228] Another aspect the invention provides a host cell which includes a nucleic acid molecule described herein, e.g., a 56294 or 56629 nucleic acid molecule within a recombinant expression vector or a 56294 or 56629 nucleic acid molecule containing sequences which allow it to homologously recombine into a specific site of the host cell's genome. The terms “host cell” and “recombinant host cell” are used interchangeably herein. Such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.


[0229] A host cell can be any prokaryotic or eukaryotic cell. For example, a 56294 or 56629 protein can be expressed in bacterial cells such as E. coli, insect cells, yeast or mammalian cells (such as Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those skilled in the art.


[0230] Vector DNA can be introduced into host cells via conventional transformation or transfection techniques. As used herein, the terms “transformation” and “transfection” are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid (e.g., DNA) into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation.


[0231] A host cell of the invention can be used to produce (i.e., express) a 56294 or 56629 protein. Accordingly, the invention further provides methods for producing a 56294 or 56629 protein using the host cells of the invention. In one embodiment, the method includes culturing the host cell of the invention (into which a recombinant expression vector encoding a 56294 or 56629 protein has been introduced) in a suitable medium such that a 56294 or 56629 protein is produced. In another embodiment, the method further includes isolating a 56294 or 56629 protein from the medium or the host cell.


[0232] In another aspect, the invention features, a cell or purified preparation of cells which include a 56294 or 56629 transgene, or which otherwise misexpress 56294 or 56629. The cell preparation can consist of human or non-human cells, e.g., rodent cells, e.g., MOuse or rat cells, rabbit cells, or pig cells. In preferred embodiments, the cell or cells include a 56294 or 56629 transgene, e.g., a heterologous form of a 56294 or 56629, e.g., a gene derived from humans (in the case of a non-human cell). The 56294 or 56629 transgene can be misexpressed, e.g., overexpressed or underexpressed. In other preferred embodiments, the cell or cells include a gene which misexpress an endogenous 56294 or 56629, e.g., a gene the expression of which is disrupted, e.g., a knockout. Such cells can serve as a model for studying disorders which are related to mutated or mis-expressed 56294 or 56629 alleles or for use in drug screening.


[0233] In another aspect, the invention features, a human cell, e.g., a human hematopoietic or fibroblast cell, transformed with nucleic acid which encodes a subject 56294 or 56629 polypeptide.


[0234] Also provided are cells, preferably human cells, e.g., human hematopoietic or fibroblast cells, in which an endogenous 56294 or 56629 is under the control of a regulatory sequence that does not normally control the expression of the endogenous 56294 or 56629 gene. The expression characteristics of an endogenous gene within a cell, e.g., a cell line or microorganism, can be modified by inserting a heterologous DNA regulatory element into the genome of the cell such that the inserted regulatory element is operably linked to the endogenous 56294 or 56629 gene. For example, an endogenous 56294 or 56629 gene which is “transcriptionally silent,” e.g., not normally expressed, or expressed only at very low levels, may be activated by inserting a regulatory element which is capable of promoting the expression of a normally expressed gene product in that cell. Techniques such as targeted homologous recombinations, can be used to insert the heterologous DNA as described in, e.g., Chappel, U.S. Pat. No. 5,272,071; WO 91/06667, published in May 16, 1991.


[0235] Transgenic Animals


[0236] The invention provides non-human transgenic animals. Such animals are useful for studying the function and/or activity of a 56294 or 56629 protein and for identifying and/or evaluating modulators of 56294 or 56629 activity. As used herein, a “transgenic animal” is a non-human animal, preferably a mammal, MOre preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene. Other examples of transgenic animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, and the like. A transgene is exogenous DNA or a rearrangement, e.g., a deletion of endogenous chromosomal DNA, which preferably is integrated into or occurs in the genome of the cells of a transgenic animal. A transgene can direct the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal, other transgenes, e.g., a knockout, reduce expression. Thus, a transgenic animal can be one in which an endogenous 56294 or 56629 gene has been altered by, e.g., by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, e.g., an embryonic cell of the animal, prior to development of the animal.


[0237] Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene. A tissue-specific regulatory sequence(s) can be operably linked to a transgene of the invention to direct expression of a 56294 or 56629 protein to particular cells. A transgenic founder animal can be identified based upon the presence of a 56294 or 56629 transgene in its genome and/or expression of 56294 or 56629 mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying the transgene. Moreover, transgenic animals carrying a transgene encoding a 56294 or 56629 protein can further be bred to other transgenic animals carrying other transgenes.


[0238] 56294 or 56629 proteins or polypeptides can be expressed in transgenic animals or plants, e.g., a nucleic acid encoding the protein or polypeptide can be introduced into the genome of an animal. In preferred embodiments the nucleic acid is placed under the control of a tissue specific promoter, e.g., a milk or egg specific promoter, and recovered from the milk or eggs produced by the animal. Suitable animals are mice, pigs, cows, goats, and sheep.


[0239] The invention also includes a population of cells from a transgenic animal, as discussed, e.g., below.


[0240] Uses


[0241] The nucleic acid molecules, proteins, protein homologues, and antibodies described herein can be used in one or more of the following methods: (a) screening assays; (b) predictive medicine (e.g., diagnostic assays, prognostic assays, MOnitoring clinical trials, and pharmacogenetics); and (c) methods of treatment (e.g., therapeutic and prophylactic). The isolated nucleic acid molecules of the invention can be used, for example, to express a 56294 or 56629 protein (e.g., via a recombinant expression vector in a host cell in gene therapy applications), to detect a 56294 or 56629 mRNA (e.g., in a biological sample) or a genetic alteration in a 56294 or 56629 gene, and to modulate 56294 or 56629 activity, as described further below. The 56294 or 56629 proteins can be used to treat disorders characterized by insufficient or excessive production of a 56294 or 56629 substrate or production of 56294 or 56629 inhibitors. In addition, the 56294 or 56629 proteins can be used to screen for naturally occurring 56294 or 56629 substrates, to screen for drugs or compounds that modulate 56294 or 56629 activity, as well as to treat disorders characterized by insufficient or excessive production of 56294 or 56629 protein or production of 56294 or 56629 protein forms which have decreased, aberrant or unwanted activity compared to 56294 or 56629 wild type protein (e.g., imbalance of metalloprotease activity, leading to an increase or decrease in cell proliferation, differentiation, or neoplastic transformation). Moreover, the anti-56294 or 56629 antibodies of the invention can be used to detect and isolate 56294 or 56629 proteins, regulate the bioavailability of 56294 or 56629 proteins, and modulate 56294 or 56629 activity.


[0242] A method of evaluating a compound for the ability to interact with, e.g., bind, a subject 56294 or 56629 polypeptide is provided. The method includes: contacting the compound with the subject 56294 or 56629 polypeptide; and evaluating ability of the compound to interact with, e.g., to bind, to form a complex with, or to enzymatically act upon, the subject 56294 or 56629 polypeptide. This method can be performed in vitro, e.g., in a cell free system, or in vivo, e.g., in a two-hybrid interaction trap assay. This method can be used to identify naturally occurring molecules that interact with a subject 56294 or 56629 polypeptide. It can also be used to find natural or synthetic inhibitors of a subject 56294 or 56629 polypeptide. Screening methods are discussed in more detail below.


[0243] Screening Assays:


[0244] The invention provides methods (also referred to herein as “screening assays”) for identifying modulators, i.e., candidate or test compounds or agents (e.g., proteins, peptides, peptidomimetics, peptoids, small molecules or other drugs) that bind to 56294 or 56629 proteins, have a stimulatory or inhibitory effect on, for example, 56294 or 56629 expression or 56294 or 56629 activity, or have a stimulatory or inhibitory effect on, for example, the expression or activity of a 56294 or 56629 substrate. Compounds thus identified can be used to modulate the activity of target gene products (e.g., 56294 or 56629 genes) in a therapeutic protocol, to elaborate the biological function of the target gene product, or to identify compounds that disrupt normal target gene interactions.


[0245] In one embodiment, the invention provides assays for screening candidate or test compounds that are substrates of a 56294 or 56629 protein or polypeptide or a biologically active portion thereof. In another embodiment, the invention provides assays for screening candidate or test compounds that bind to or modulate the activity of a 56294 or 56629 protein or polypeptide or a biologically active portion thereof.


[0246] In any screening assay, a 56294 or 56629 polypeptide that may have, e.g., metalloprotease activity, can be used.


[0247] The test compounds of the present invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; peptoid libraries [libraries of molecules having the functionalities of peptides, but with a novel, non-peptide backbone which are resistant to enzymatic degradation but which nevertheless remain bioactive] (see, e.g., Zuckermann, R. N. et al. J. Med. Chem. 1994, 37: 2678-85); spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the ‘one-bead one-compound’ library method; and synthetic library methods using affinity chromatography selection. The biological library and peptoid library approaches are limited to peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomer or small molecule libraries of compounds (Lam, K. S. (1997) Anticancer Drug Des. 12:145).


[0248] Examples of methods for the synthesis of molecular libraries can be found in the art, for example in: DeWitt et al. (1993) Proc. Natl. Acad. Sci. U S.A. 90:6909; Erb et al. (1994) Proc. Natl. Acad. Sci. USA 91:11422; Zuckernann etal. (1994). J. Med. Chem. 37:2678; Cho et al. (1993) Science 261:1303; Carrell et al. (1994) Angew. Chem. Int. Ed. Engl. 33:2059; Carell et al. (1994) Angew. Chem. Int. Ed. Engl. 33:2061; and in Gallop et al. (1994) J. Med. Chem. 37:1233.


[0249] Libraries of compounds may be presented in solution (e.g., Houghten (1992) Biotechniques 13:412-421), or on beads (Lam (1991) Nature 354:82-84), chips (Fodor (1993) Nature 364:555-556), bacteria or spores (Ladner U.S. Pat. No. 5,223,409), plasmids (Cull et al. (1992) Proc Natl Acad Sci USA 89:1865-1869) or on phage (Scott and Smith (1990) Science 249:386-390); (Devlin (1990) Science 249:404-406); (Cwirla etal. (1990) Proc. Natl. Acad. Sci. 87:6378-6382); (Felici (1991) J. Mol. Biol. 222:301-310); (Ladner supra.).


[0250] In one embodiment, an assay is a cell-based assay in which a cell that expresses a 56294 or 56629 protein or biologically active portion thereof is contacted with a test compound, and the ability of the test compound to modulate 56294 or 56629 activity is determined. Determining the ability of the test compound to modulate 56294 or 56629 activity can be accomplished by monitoring, for example, a metalloprotease activity, e.g., a metalloprotease activity described herein. The cell, for example, can be of mammalian origin, e.g., human.


[0251] The ability of the test compound to modulate 56294 or 56629 binding to a compound, e.g., a 56294 or 56629 substrate, or to bind to 56294 or 56629 can also be evaluated. This can be accomplished, for example, by coupling the compound, e.g., the substrate with a radioisotope or enzymatic label such that binding of the compound, e.g., the substrate, to 56294 or 56629 can be determined by detecting the labeled compound, e.g., substrate, in a complex. Alternatively, 56294 or 56629 can be coupled with a radioisotope or enzymatic label to monitor the ability of a test compound to modulate 56294 or 56629 binding to a 56294 or 56629 substrate in a complex. For example, compounds (e.g., 56294 or 56629 substrates) can be labeled with 125I, 35S, 14C, or 3H, either directly or indirectly, and the radioisotope detected by direct counting of radioemission or by scintillation counting. Alternatively, compounds can be enzymatically labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product.


[0252] The ability of a compound (e.g., a 56294 or 56629 substrate or modulator) to interact with 56294 or 56629 with or without the labeling of any of the interactants can be evaluated. For example, a microphysiometer can be used to detect the interaction of a compound with 56294 or 56629 without the labeling of either the compound or 56294 or 56629. McConnell, H. M. et al. (1992) Science 257:1906-1912. As used herein, a “microphysiometer” (e.g., Cytosensor) is an analytical instrument that measures the rate at which a cell acidifies its environment using a light-addressable potentiometric sensor (LAPS). Changes in this acidification rate can be used as an indicator of the interaction between a compound and 56294 or 56629.


[0253] In yet another embodiment, a cell-free assay is provided in which a 56294 or 56629 protein or biologically active portion thereof is contacted with a test compound and the ability of the test compound to bind to the 56294 or 56629 protein or biologically active portion thereof is evaluated. Preferred biologically active portions of the 56294 or 56629 proteins to be used in assays of the present invention include fragments that participate in interactions with non-56294 or 56629 molecules, e.g., fragments with high surface probability scores.


[0254] Soluble and/or membrane-bound forms of isolated proteins (e.g., 56294 or 56629 proteins or biologically active portions thereof) can be used in the cell-free assays of the invention. When membrane-bound forms of the protein are used, it may be desirable to utilize a solubilizing agent. Examples of such solubilizing agents include non-ionic detergents such as n-octylglucoside, n-dodecylglucoside, n-dodecylmaltoside, octanoyl-N-methylglucamide, decanoyl-N-methylglucamide, Triton® X-100, Triton® X-114, Thesit®, Isotridecypoly(ethylene glycol ether)n, 3-[(3-cholamidopropyl)dimethylamminio]-1-propane sulfonate (CHAPS), 3-[(3-cholamidopropyl)dimethylamminio]-2-hydroxy-1-propane sulfonate (CHAPSO), or N-dodecyl=N,N-dimethyl-3-ammonio-1-propane sulfonate.


[0255] Cell-free assays involve preparing a reaction mixture of the target gene protein and the test compound under conditions and for a time sufficient to allow the two components to interact and bind, thus forming a complex that can be removed and/or detected.


[0256] Assays where ability of agent to block metalloprotease activity within a cell is evaluated.


[0257] The interaction between two molecules can also be detected, e.g., using fluorescence energy transfer (FET) (see, for example, Lakowicz et al., U.S. Pat. No. 5,631,169; Stavrianopoulos, et al., U.S. Pat. No. 4,868,103). A fluorophore label on the first, ‘donor’ molecule is selected such that its emitted fluorescent energy will be absorbed by a fluorescent label on a second, ‘acceptor’ molecule, which in turn is able to fluoresce due to the absorbed energy. Alternately, the ‘donor’ protein molecule may simply utilize the natural fluorescent energy of tryptophan residues. Labels are chosen that emit different wavelengths of light, such that the ‘acceptor’ molecule label may be differentiated from that of the ‘donor’. Since the efficiency of energy transfer between the labels is related to the distance separating the molecules, the spatial relationship between the molecules can be assessed. In a situation in which binding occurs between the molecules, the fluorescent emission of the ‘acceptor’ molecule label in the assay should be maximal. An FET binding event can be conveniently measured through standard fluorometric detection means well known in the art (e.g., using a fluorimeter).


[0258] In another embodiment, determining the ability of the 56294 or 56629 protein to bind to a target molecule can be accomplished using real-time Biomolecular Interaction Analysis (BIA) (see, e.g., Sjolander, S. and Urbaniczky, C. (1991) Anal. Chem. 63:2338-2345 and Szabo et al. (1995) Curr. Opin. Struct. Biol. 5:699-705). “Surface plasmon resonance” or “BIA” detects biospecific interactions in real time, without labeling any of the interactants (e.g., BIAcore). Changes in the mass at the binding surface (indicative of a binding event) result in alterations of the refractive index of light near the surface (the optical phenomenon of surface plasmon resonance (SPR)), resulting in a detectable signal that can be used as an indication of real-time reactions between biological molecules.


[0259] In one embodiment, the target gene product or the test substance is anchored onto a solid phase. The target gene product/test compound complexes anchored on the solid phase can be detected at the end of the reaction. Preferably, the target gene product can be anchored onto a solid surface, and the test compound (which is not anchored), can be labeled, either directly or indirectly, with detectable labels discussed herein.


[0260] It may be desirable to immobilize either 56294 or 56629, an anti 56294 or 56629 antibody or its target molecule to facilitate separation of complexed from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay. Binding of a test compound to a 56294 or 56629 protein, or interaction of a 56294 or 56629 protein with a target molecule in the presence and absence of a candidate compound, can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtiter plates, test tubes, and micro-centrifuge tubes. In one embodiment, a fusion protein can be provided which adds a domain that allows one or both of the proteins to be bound to a matrix. For example, glutathione-S-transferase/56294 or 56629 fusion proteins or glutathione-S-transferase/target fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, Mo.) or glutathione derivatized microtiter plates, which are then combined with the test compound or the test compound and either the non-adsorbed target protein or 56294 or 56629 protein, and the mixture incubated under conditions conducive to complex formation (e.g., at physiological conditions for salt and pH). Following incubation, the beads or microtiter plate wells are washed to remove any unbound components, the matrix immobilized in the case of beads, complex determined either directly or indirectly, for example, as described above. Alternatively, the complexes can be dissociated from the matrix, and the level of 56294 or 56629 binding or activity determined using standard techniques.


[0261] Other techniques for immobilizing either a 56294 or 56629 protein or a target molecule on matrices include using conjugation of biotin and streptavidin. Biotinylated 56294 or 56629 protein or target molecules can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques known in the art (e.g., biotinylation kit, Pierce Chemicals, Rockford, Ill.), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical).


[0262] In order to conduct the assay, the non-immobilized component is added to the coated surface containing the anchored component. After the reaction is complete, unreacted components are removed (e.g., by washing) under conditions such that any complexes formed will remain immobilized on the solid surface. The detection of complexes anchored on the solid surface can be accomplished in a number of ways. Where the previously non-immobilized component is pre-labeled, the detection of label immobilized on the surface indicates that complexes were formed. Where the previously non-immobilized component is not pre-labeled, an indirect label can be used to detect complexes anchored on the surface; e.g., using a labeled antibody specific for the immobilized component (the antibody, in turn, can be directly labeled or indirectly labeled with, e.g., a labeled anti-Ig antibody).


[0263] In one embodiment, this assay is performed utilizing antibodies reactive with 56294 or 56629 protein or target molecules but which do not interfere with binding of the 56294 or 56629 protein to its target molecule. Such antibodies can be derivatized to the wells of the plate, and unbound target or 56294 or 56629 protein is trapped in the wells by antibody conjugation. Methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive with the 56294 or 56629 protein or target molecule, as well as enzyme-linked assays which rely on detecting an enzymatic activity associated with the 56294 or 56629 protein or target molecule.


[0264] Alternatively, cell free assays can be conducted in a liquid phase. In such an assay, the reaction products are separated from unreacted components by any of a number of standard techniques, including but not limited to: differential centrifugation (see, for example, Rivas, G., and Minton, A. P., (1993) Trends Biochem Sci August;18(8):284-7); chromatography (gel filtration chromatography, ion-exchange chromatography); electrophoresis (see, e.g., Ausubel, F. et al., eds. Current Protocols in Molecular Biology 1999, J. Wiley: New York.); and immunoprecipitation (see, for example, Ausubel, F. et al., eds. Current Protocols in Molecular Biology 1999, J. Wiley: New York). Such resins and chromatographic techniques are known to one skilled in the art (see, e.g., Heegaard, N. H., (1998) J Mol Recognit Winter;11(1-6):141-8; Hage, D. S., and Tweed, S. A. (1997) J. Chromatogr B. Biomed Sci Appl October 10;699(1-2):499-525). Further, fluorescence energy transfer may also be conveniently utilized, as described herein, to detect binding without further purification of the complex from solution.


[0265] In a preferred embodiment, the assay includes contacting the 56294 or 56629 protein or biologically active portion thereof with a known compound which binds 56294 or 56629 to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a 56294 or 56629 protein, wherein determining the ability of the test compound to interact with a 56294 or 56629 protein includes determining the ability of the test compound to preferentially bind to 56294 or 56629 or biologically active portion thereof, or to modulate the activity of a target molecule, as compared to the known compound.


[0266] The target gene products of the invention can, in vivo, interact with one or more cellular or extracellular macromolecules, such as proteins. For the purposes of this discussion, such cellular and extracellular macromolecules are referred to herein as “binding partners.” Compounds that disrupt such interactions can be useful in regulating the activity of the target gene product. Such compounds can include, but are not limited to molecules such as antibodies, peptides, and small molecules. The preferred target genes/products for use in this embodiment are the 56294 or 56629 genes herein identified. In an alternative embodiment, the invention provides methods for determining the ability of the test compound to modulate the activity of a 56294 or 56629 protein through modulation of the activity of a downstream effector of a 56294 or 56629 target molecule. For example, the activity of the effector molecule on an appropriate target can be determined, or the binding of the effector to an appropriate target can be determined, as previously described.


[0267] To identify compounds that interfere with the interaction between the target gene product and its cellular or extracellular binding partner(s), e.g., a substrate, a reaction mixture containing the target gene product and the binding partner is prepared, under conditions and for a time sufficient, to allow the two products to form complex. In order to test an inhibitory agent, the reaction mixture is provided in the presence and absence of the test compound. The test compound can be initially included in the reaction mixture, or can be added at a time subsequent to the addition of the target gene and its cellular or extracellular binding partner. Control reaction mixtures are incubated without the test compound or with a placebo. The formation of any complexes between the target gene product and the cellular or extracellular binding partner is then detected. The formation of a complex in the control reaction, but not in the reaction mixture containing the test compound, indicates that the compound interferes with the interaction of the target gene product and the interactive binding partner. Additionally, complex formation within reaction mixtures containing the test compound and normal target gene product can also be compared to complex formation within reaction mixtures containing the test compound and mutant target gene product. This comparison can be important in those cases wherein it is desirable to identify compounds that disrupt interactions of mutant but not normal target gene products.


[0268] These assays can be conducted in a heterogeneous or homogeneous format. Heterogeneous assays involve anchoring either the target gene product or the binding partner onto a solid phase, and detecting complexes anchored on the solid phase at the end of the reaction. In homogeneous assays, the entire reaction is carried out in a liquid phase. In either approach, the order of addition of reactants can be varied to obtain different information about the compounds being tested. For example, test compounds that interfere with the interaction between the target gene products and the binding partners, e.g., by competition, can be identified by conducting the reaction in the presence of the test substance. Alternatively, test compounds that disrupt preformed complexes, e.g., compounds with higher binding constants that displace one of the components from the complex, can be tested by adding the test compound to the reaction mixture after complexes have been formed. The various formats are briefly described below.


[0269] In a heterogeneous assay system, either the target gene product or the interactive cellular or extracellular binding partners, is anchored onto a solid surface (e.g., a microtiter plate), while the non-anchored species is labeled either directly or indirectly. The anchored species can be immobilized by non-covalent or covalent attachments. Alternatively, an immobilized antibody specific for the species to be anchored can be used to anchor the species to the solid surface.


[0270] In order to conduct the assay, the partner of the immobilized species is exposed to the coated surface with or without the test compound. After the reaction is complete, unreacted components are removed (e.g., by washing) and any complexes that have formed remain immobilized on the solid surface. In assays where the non-immobilized species is pre-labeled, the detection of label immobilized on the surface indicates that complexes were formed. In assays where the non-immobilized species is not pre-labeled, an indirect label can be used to detect complexes anchored on the surface; e.g., using a labeled antibody specific for the initially non-immobilized species (the antibody, in turn, can be directly labeled or indirectly labeled with, e.g., a labeled anti-Ig antibody). Depending upon the order of addition of reaction components, test compounds that inhibit complex formation or that disrupt preformed complexes can be detected.


[0271] Alternatively, the reaction can be conducted in a liquid phase in the presence or absence of the test compound. Reaction products are separated from unreacted components and complexes detected using, for example, an immobilized antibody specific for one of the binding components to anchor any complexes formed in solution and a labeled antibody specific for the other partner to detect anchored complexes. Again, depending upon the order of addition of reactants to the liquid phase, test compounds that inhibit complex formation or that disrupt preformed complexes can be identified.


[0272] In an alternate embodiment of the invention, a homogeneous assay can be used. For example, a preformed complex of the target gene product and the interactive cellular or extracellular binding partner product is prepared in which either the target gene products or their binding partners are labeled, but the signal generated by the label is quenched due to complex formation (see, e.g., U.S. Pat. No. 4,109,496 that utilizes this approach for immunoassays). The addition of a test substance that competes with and displaces one of the species from the preformed complex will result in the generation of a signal above background. In this way, test substances that disrupt target gene product-binding partner interaction can be identified.


[0273] In yet another aspect, the 56294 or 56629 proteins can be used as “bait proteins” in a two-hybrid assay or three-hybrid assay (see, e.g., U.S. Pat. No. 5,283,317; Zervos et al. (1993) Cell 72:223-232; Madura et al. (1993) J. Biol. Chem. 268:12046-12054; Bartel et al. (1993) Biotechniques 14:920-924; Iwabuchi et al. (1993) Oncogene 8:1693-1696; and Brent WO94/10300), to identify other proteins, which bind to or interact with 56294 or 56629 (“56294 or 56629-binding proteins” or “56294 or 56629-bp”) and are involved in 56294 or 56629 activity. Such 56294 or 56629-bps can be activators or inhibitors of signals by the 56294 or 56629 proteins or 56294 or 56629 targets as, for example, downstream elements of a 56294 or 56629-mediated signaling pathway.


[0274] The two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains. Briefly, the assay utilizes two different DNA constructs. In one construct, the gene that codes for a 56294 or 56629 protein is fused to a gene encoding the DNA binding domain of a known transcription factor (e.g., GAL-4). In the other construct, a DNA sequence from a library of DNA sequences that encodes an unidentified protein (“prey” or “sample”) is fused to a gene that codes for the activation domain of the known transcription factor. (Alternatively the 56294 or 56629 protein can be fused to the activator domain.) If the “bait” and the “prey” proteins are able to interact in vivo and form a 56294 or 56629-dependent complex, the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (e.g., LacZ) that is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene that encodes the protein that interacts with the 56294 or 56629 protein.


[0275] In another embodiment, modulators of 56294 or 56629 expression are identified. For example, a cell or cell free mixture is contacted with a candidate compound and the expression of 56294 or 56629 mRNA or protein evaluated relative to the level of expression of 56294 or 56629 mRNA or protein in the absence of the candidate compound. When expression of 56294 or 56629 mRNA or protein is greater in the presence of the candidate compound than in its absence, the candidate compound is identified as a stimulator of 56294 or 56629 mRNA or protein expression. Alternatively, when expression of 56294 or 56629 mRNA or protein is less (statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of 56294 or 56629 mRNA or protein expression. The level of 56294 or 56629 mRNA or protein expression can be determined by methods described herein for detecting 56294 or 56629 mRNA or protein.


[0276] In another aspect, the invention pertains to a combination of two or more of the assays described herein. For example, a modulating agent can be identified using a cell-based or a cell free assay, and the ability of the agent to modulate the activity of a 56294 or 56629 protein can be confirmed in vivo, e.g., in an animal model.


[0277] This invention further pertains to novel agents identified by the above-described screening assays. Accordingly, it is within the scope of this invention to further use an agent identified as described herein (e.g., a 56294 or 56629 modulating agent, an antisense 56294 or 56629 nucleic acid molecule, a 56294 or 56629-specific antibody, or a 56294 or 56629-binding partner) in an appropriate animal model to determine the efficacy, toxicity, side effects, or mechanism of action, of treatment with such an agent. Furthermore, novel agents identified by the above-described screening assays can be used for treatments as described herein.


[0278] Detection Assays


[0279] Portions or fragments of the nucleic acid sequences identified herein can be used as polynucleotide reagents. For example, these sequences can be used to: (i) map their respective genes on a chromosome e.g., to locate gene regions associated with genetic disease or to associate 56294 or 56629 with a disease; (ii) identify an individual from a minute biological sample (tissue typing); and (iii) aid in forensic identification of a biological sample. These applications are described in the subsections below.


[0280] Chromosome Mapping


[0281] The 56294 or 56629 nucleotide sequences or portions thereof can be used to map the location of the 56294 or 56629 genes on a chromosome. This process is called chromosome mapping. Chromosome mapping is useful in correlating the 56294 or 56629 sequences with genes associated with disease.


[0282] Briefly, 56294 or 56629 genes can be mapped to chromosomes by preparing PCR primers (preferably 15-25 bp in length) from the 56294 or 56629 nucleotide sequences. These primers can then be used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to the 56294 or 56629 sequences will yield an amplified fragment.


[0283] A panel of somatic cell hybrids in which each cell line contains either a single human chromosome or a small number of human chromosomes and a full set of mouse chromosomes, allows easy mapping of individual genes to specific human chromosomes. (D'Eustachio P. et al. (1983) Science 220:919-924).


[0284] Other mapping strategies e.g., in situ hybridization (described in Fan, Y. et al. (1990) Proc. Natl. Acad. Sci. USA, 87:6223-27), pre-screening with labeled flow-sorted chromosomes, and pre-selection by hybridization to chromosome specific cDNA libraries can be used to map 56294 or 56629 to a chromosomal location.


[0285] Fluorescence in situ hybridization (FISH) of a DNA sequence to a metaphase chromosomal spread can further be used to provide a precise chromosomal location in one step. The FISH technique can be used with a DNA sequence as short as 500 or 600 bases. However, clones larger than 1,000 bases have a higher likelihood of binding to a unique chromosomal location with sufficient signal intensity for simple detection. Preferably 1,000 bases, and more preferably 2,000 bases will suffice to get good results at a reasonable amount of time. For a review of this technique, see Verma et al., Human Chromosomes: A Manual of Basic Techniques (Pergamon Press, New York 1988).


[0286] Reagents for chromosome mapping can be used individually to mark a single chromosome or a single site on that chromosome, or panels of reagents can be used for marking multiple sites and/or multiple chromosomes. Reagents corresponding to noncoding regions of the genes actually are preferred for mapping purposes. Coding sequences are more likely to be conserved within gene families, thus increasing the chance of cross hybridizations during chromosomal mapping.


[0287] Once a sequence has been mapped to a precise chromosomal location, the physical position of the sequence on the chromosome can be correlated with genetic map data. (Such data are found, for example, in V. McKusick, Mendelian Inheritance in Man, available on-line through Johns Hopkins University Welch Medical Library). The relationship between a gene and a disease, mapped to the same chromosomal region, can then be identified through linkage analysis (co-inheritance of physically adjacent genes), described in, for example, Egeland, J. et al. (1987) Nature, 325:783-787.


[0288] Moreover, differences in the DNA sequences between individuals affected and unaffected with a disease associated with the 56294 or 56629 gene, can be determined. If a mutation is observed in some or all of the affected individuals but not in any unaffected individuals, then the mutation is likely to be the causative agent of the particular disease. Comparison of affected and unaffected individuals generally involves first looking for structural alterations in the chromosomes, such as deletions or translocations that are visible from chromosome spreads or detectable using PCR based on that DNA sequence. Ultimately, complete sequencing of genes from several individuals can be performed to confirm the presence of a mutation and to distinguish mutations from polymorphisms.


[0289] Tissue Typing


[0290] 56294 or 56629 sequences can be used to identify individuals from biological samples using, e.g., restriction fragment length polymorphism (RFLP). In this technique, an individual's genomic DNA is digested with one or more restriction enzymes, the fragments separated, e.g., by electrophoresis and Southern blotted, and probed to yield bands for identification. The sequences of the present invention are useful as additional DNA markers for RFLP (described in U.S. Pat. No. 5,272,057).


[0291] Furthermore, the sequences of the present invention can also be used to determine the actual base-by-base DNA sequence of selected portions of an individual's genome. Thus, the 56294 or 56629 nucleotide sequences described herein can be used to prepare two PCR primers from the 5′ and 3′ ends of the sequences. These primers can then be used to amplify an individual's DNA and subsequently sequence it. Panels of corresponding DNA sequences from individuals, prepared in this manner, can provide unique individual identifications, as each individual will have a unique set of such DNA sequences due to allelic differences.


[0292] Allelic variation occurs to some degree in the coding regions of these sequences, and to a greater degree in the noncoding regions. Each of the sequences described herein can, to some degree, be used as a standard against which DNA from an individual can be compared for identification purposes. Because greater numbers of polymorphisms occur in the noncoding regions, fewer sequences are necessary to differentiate individuals. The noncoding sequences of SEQ ID NO:1 can provide positive individual identification with a panel of perhaps 10 to 1,000 primers, which each yield a noncoding amplified sequence of 100 bases. If predicted coding sequences, such as those in SEQ ID NO:3 are used, a more appropriate number of primers for positive individual identification would be 500-2,000.


[0293] If a panel of reagents from 56294 or 56629 nucleotide sequences described herein is used to generate a unique identification database for an individual, those same reagents can later be used to identify tissue from that individual. Using the unique identification database, positive identification of the individual, living or dead, can be made from extremely small tissue samples.


[0294] Use of Partial 56294 or 56629 Sequences in Forensic Biology


[0295] DNA-based identification techniques can also be used in forensic biology. To make such an identification, PCR technology can be used to amplify DNA sequences taken from very small biological samples such as tissues, e.g., hair or skin, or body fluids, e.g., blood, saliva, or semen, found at a crime scene. The amplified sequence can then be compared to a standard, thereby allowing identification of the origin of the biological sample.


[0296] The sequences of the present invention can be used to provide polynucleotide reagents, e.g., PCR primers, targeted to specific loci in the human genome, which can enhance the reliability of DNA-based forensic identifications by, for example, providing another “identification marker” (i.e., another DNA sequence that is unique to a particular individual). As mentioned above, actual base sequence information can be used for identification as an accurate alternative to patterns formed by restriction enzyme generated fragments. Sequences targeted to noncoding regions of SEQ ID NO:1 (e.g., fragments derived from the noncoding regions of SEQ ID NO:1 and having a length of at least 20 bases, preferably at least 30 bases) are particularly appropriate for this use.


[0297] The 56294 or 56629 nucleotide sequences described herein can further be used to provide polynucleotide reagents, e.g., labeled or labelable probes which can be used in, for example, an in situ hybridization technique, to identify a specific tissue, e.g., a tissue containing 56294 or 56629 metalloprotease activity. This can be very useful in cases where a forensic pathologist is presented with a tissue of unknown origin. Panels of such 56294 or 56629 probes can be used to identify tissue by species and/or by organ type.


[0298] In a similar fashion, these reagents, e.g., 56294 or 56629 primers or probes can be used to screen tissue culture for contamination (i.e., screen for the presence of a mixture of different types of cells in a culture).


[0299] Predictive Medicine


[0300] The present invention also pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, and monitoring clinical trials are used for prognostic (predictive) purposes to thereby treat an individual.


[0301] Generally, the invention provides, a method of determining if a subject is at risk for a disorder related to a lesion in or the misexpression of a gene that encodes 56294 or 56629. Such disorders include, e.g., a disorder associated with the misexpression of 56294 or 56629.


[0302] The method includes one or more of the following:


[0303] detecting, in a tissue of the subject, the presence or absence of a mutation which affects the expression of the 56294 or 56629 gene, or detecting the presence or absence of a mutation in a region which controls the expression of the gene, e.g., a mutation in the 5′ control region;


[0304] detecting, in a tissue of the subject, the presence or absence of a mutation which alters the structure of the 56294 or 56629 gene;


[0305] detecting, in a tissue of the subject, the misexpression of the 56294 or 56629 gene at the mRNA level, e.g., detecting a non-wild type level of a mRNA;


[0306] detecting, in a tissue of the subject, the misexpression of the gene at the protein level, e.g., detecting a non-wild type level of a 56294 or 56629 polypeptide.


[0307] In preferred embodiments the method includes: ascertaining the existence of at least one of: a deletion of one or more nucleotides from the 56294 or 56629 gene; an insertion of one or more nucleotides into the gene, a point mutation, e.g., a substitution of one or more nucleotides of the gene, or a gross chromosomal rearrangement of the gene, e.g., a translocation, inversion, or deletion.


[0308] For example, detecting the genetic lesion can include: (i) providing a probe/primer including an oligonucleotide containing a region of nucleotide sequence that hybridizes to a sense or antisense sequence from SEQ ID NO:1, 3, or naturally occurring mutants thereof or 5′ or 3′ flanking sequences naturally associated with the 56294 or 56629 gene; (ii) exposing the probe/primer to nucleic acid of the tissue; and (iii) detecting, by hybridization, e.g., in situ hybridization, of the probe/primer to the nucleic acid, the presence or absence of the genetic lesion.


[0309] In preferred embodiments detecting the misexpression includes ascertaining the existence of at least one of: an alteration in the level of a messenger RNA transcript of the 56294 or 56629 gene; the presence of a non-wild type splicing pattern of a messenger RNA transcript of the gene; or a non-wild type level of 56294 or 56629.


[0310] Methods of the invention can be used prenatally or to determine if a subject's offspring will be at risk for a disorder.


[0311] In preferred embodiments the method includes determining the structure of a 56294 or 56629 gene, an abnormal structure being indicative of risk for the disorder.


[0312] In preferred embodiments the method includes contacting a sample form the subject with an antibody to the 56294 or 56629 protein or a nucleic acid, which hybridizes specifically with the gene. This and other embodiments are discussed below.


[0313] Diagnostic and Prognostic Assays


[0314] Diagnostic and prognostic assays of the invention include method for assessing the expression level of 56294 or 56629 molecules and for identifying variations and mutations in the sequence of 56294 or 56629 molecules.


[0315] Expression Monitoring and Profiling.


[0316] The presence, level, or absence of 56294 or 56629 protein or nucleic acid in a biological sample can be evaluated by obtaining a biological sample from a test subject and contacting the biological sample with a compound or an agent capable of detecting 56294 or 56629 protein or nucleic acid (e.g., mRNA, genomic DNA) that encodes 56294 or 56629 protein such that the presence of 56294 or 56629 protein or nucleic acid is detected in the biological sample. The term “biological sample” includes tissues, cells and biological fluids isolated from a subject, as well as tissues, cells and fluids present within a subject. A preferred biological sample is serum. The level of expression of the 56294 or 56629 gene can be measured in a number of ways, including, but not limited to: measuring the mRNA encoded by the 56294 or 56629 genes; measuring the amount of protein encoded by the 56294 or 56629 genes; or measuring the activity of the protein encoded by the 56294 or 56629 genes.


[0317] The level of mRNA corresponding to the 56294 or 56629 gene in a cell can be determined both by in situ and by in vitro formats.


[0318] The isolated mRNA can be used in hybridization or amplification assays that include, but are not limited to, Southern or Northern analyses, polymerase chain reaction analyses and probe arrays. One preferred diagnostic method for the detection of mRNA levels involves contacting the isolated mRNA with a nucleic acid molecule (probe) that can hybridize to the mRNA encoded by the gene being detected. The nucleic acid probe can be, for example, a full-length 56294 or 56629 nucleic acid, such as the nucleic acid of SEQ ID NO:1 or 3, or a portion thereof, such as an oligonucleotide of at least 7, 15, 30, 50, 100, 250 or 500 nucleotides in length and sufficient to specifically hybridize under stringent conditions to 56294 or 56629 mRNA or genomic DNA. The probe can be disposed on an address of an array, e.g., an array described below. Other suitable probes for use in the diagnostic assays are described herein.


[0319] In one format, mRNA (or cDNA) is immobilized on a surface and contacted with the probes, for example by running the isolated mRNA on an agarose gel and transferring the mRNA from the gel to a membrane, such as nitrocellulose. In an alternative format, the probes are immobilized on a surface and the mRNA (or cDNA) is contacted with the probes, for example, in a two-dimensional gene chip array described below. A skilled artisan can adapt known mRNA detection methods for use in detecting the level of mRNA encoded by the 56294 or 56629 genes.


[0320] The level of mRNA in a sample that is encoded by one of 56294 or 56629 can be evaluated with nucleic acid amplification, e.g., by rtPCR (Mullis (1987) U.S. Pat. No. 4,683,202), ligase chain reaction (Barany (1991) Proc. Natl. Acad. Sci. USA 88:189-193), self sustained sequence replication (Guatelli et al., (1990) Proc. Natl. Acad. Sci. USA 87:1874-1878), transcriptional amplification system (Kwoh et al., (1989), Proc. Natl. Acad. Sci. USA 86:1173-1177), Q-Beta Replicase (Lizardi et al., (1988) Bio/Technology 6:1197), rolling circle replication (Lizardi et al., U.S. Pat. No. 5,854,033) or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques known in the art. As used herein, amplification primers are defined as being a pair of nucleic acid molecules that can anneal to 5′ or 3′ regions of a gene (plus and minus strands, respectively, or vice-versa) and contain a short region in between. In general, amplification primers are from about 10 to 30 nucleotides in length and flank a region from about 50 to 200 nucleotides in length. Under appropriate conditions and with appropriate reagents, such primers permit the amplification of a nucleic acid molecule comprising the nucleotide sequence flanked by the primers.


[0321] For in situ methods, a cell or tissue sample can be prepared/processed and immobilized on a support, typically a glass slide, and then contacted with a probe that can hybridize to mRNA that encodes the 56294 or 56629 gene being analyzed.


[0322] In another embodiment, the methods further contacting a control sample with a compound or agent capable of detecting 56294 or 56629 mRNA, or genomic DNA, and comparing the presence of 56294 or 56629 mRNA or genomic DNA in the control sample with the presence of 56294 or 56629 mRNA or genomic DNA in the test sample. In still another embodiment, serial analysis of gene expression, as described in U.S. Pat. No. 5,695,937, is used to detect 56294 or 56629 transcript levels.


[0323] A variety of methods can be used to determine the level of protein encoded by 56294 or 56629. In general, these methods include contacting an agent that selectively binds to the protein, such as an antibody with a sample, to evaluate the level of protein in the sample. In a preferred embodiment, the antibody bears a detectable label. Antibodies can be polyclonal, or more preferably, monoclonal. An intact antibody, or a fragment thereof (e.g., Fab or F(ab′)2) can be used. The term “labeled”, with regard to the probe or antibody, is intended to encompass direct labeling of the probe or antibody by coupling (i.e., physically linking) a detectable substance to the probe or antibody, as well as indirect labeling of the probe or antibody by reactivity with a detectable substance. Examples of detectable substances are provided herein.


[0324] The detection methods can be used to detect 56294 or 56629 protein in a biological sample in vitro as well as in vivo. In vitro techniques for detection of 56294 or 56629 protein include enzyme linked immunosorbent assays (ELISAs), immunoprecipitations, immunofluorescence, enzyme immunoassay (EIA), radioimmunoassay (RIA), and Western blot analysis. In vivo techniques for detection of 56294 or 56629 protein include introducing into a subject a labeled anti-56294 or 56629 antibody. For example, the antibody can be labeled with a radioactive marker whose presence and location in a subject can be detected by standard imaging techniques. In another embodiment, the sample is labeled, e.g., biotinylated and then contacted to the antibody, e.g., an anti-56294 or 56629 antibody positioned on an antibody array (as described below). The sample can be detected, e.g., with avidin coupled to a fluorescent label.


[0325] In another embodiment, the methods further include contacting the control sample with a compound or agent capable of detecting 56294 or 56629 protein, and comparing the presence of 56294 or 56629 protein in the control sample with the presence of 56294 or 56629 protein in the test sample.


[0326] The invention also includes kits for detecting the presence of 56294 or 56629 in a biological sample. For example, the kit can include a compound or agent capable of detecting 56294 or 56629 protein or mRNA in a biological sample; and a standard. The compound or agent can be packaged in a suitable container. The kit can further comprise instructions for using the kit to detect 56294 or 56629 protein or nucleic acid.


[0327] For antibody-based kits, the kit can include: (1) a first antibody (e.g., attached to a solid support) which binds to a polypeptide corresponding to a marker of the invention; and, optionally, (2) a second, different antibody which binds to either the polypeptide or the first antibody and is conjugated to a detectable agent.


[0328] For oligonucleotide-based kits, the kit can include: (1) an oligonucleotide, e.g., a detectably labeled oligonucleotide, which hybridizes to a nucleic acid sequence encoding a polypeptide corresponding to a marker of the invention or (2) a pair of primers useful for amplifying a nucleic acid molecule corresponding to a marker of the invention. The kit can also includes a buffering agent, a preservative, or a protein stabilizing agent. The kit can also includes components necessary for detecting the detectable agent (e.g., an enzyme or a substrate). The kit can also contain a control sample or a series of control samples which can be assayed and compared to the test sample contained. Each component of the kit can be enclosed within an individual container and all of the various containers can be within a single package, along with instructions for interpreting the results of the assays performed using the kit.


[0329] The diagnostic methods described herein can identify subjects having, or at risk of developing, a disease or disorder associated with misexpressed or aberrant or unwanted 56294 or 56629 expression or activity. As used herein, the term “unwanted” includes an unwanted phenomenon involved in a biological response such as deregulated cell proliferation.


[0330] In one embodiment, a disease or disorder associated with aberrant or unwanted 56294 or 56629 expression or activity is identified. A test sample is obtained from a subject and 56294 or 56629 protein or nucleic acid (e.g., mRNA or genomic DNA) is evaluated, wherein the level, e.g., the presence or absence, of 56294 or 56629 protein or nucleic acid is diagnostic for a subject having or at risk of developing a disease or disorder associated with aberrant or unwanted 56294 or 56629 expression or activity. As used herein, a “test sample” refers to a biological sample obtained from a subject of interest, including a biological fluid (e.g., serum), cell sample, or tissue.


[0331] The prognostic assays described herein can be used to determine whether a subject can be administered an agent (e.g., an agonist, antagonist, peptidomimetic, protein, peptide, nucleic acid, small molecule, or other drug candidate) to treat a disease or disorder associated with aberrant or unwanted 56294 or 56629 expression or activity. For example, such methods can be used to determine whether a subject can be effectively treated with an agent for a cell proliferation or differentiation disorder, e.g., cancer, or another cell proliferation or differentiation disorder as described herein.


[0332] In another aspect, the invention features a computer medium having a plurality of digitally encoded data records. Each data record includes a value representing the level of expression of 56294 or 56629 in a sample, and a descriptor of the sample. The descriptor of the sample can be an identifier of the sample, a subject from which the sample was derived (e.g., a patient), a diagnosis, or a treatment (e.g., a preferred treatment). In a preferred embodiment, the data record further includes values representing the level of expression of genes other than 56294 or 56629 (e.g., other genes associated with a 56294 or 56629-disorder, or other genes on an array). The data record can be structured as a table, e.g., a table that is part of a database such as a relational database (e.g., a SQL database of the Oracle or Sybase database environments).


[0333] Also featured is a method of evaluating a sample. The method includes providing a sample, e.g., from the subject, and determining a gene expression profile of the sample, wherein the profile includes a value representing the level of 56294 or 56629 expression. The method can further include comparing the value or the profile (i.e., multiple values) to a reference value or reference profile. The gene expression profile of the sample can be obtained by any of the methods described herein (e.g., by providing a nucleic acid from the sample and contacting the nucleic acid to an array). The method can be used to diagnose a cell proliferation or differentiation disorder, e.g., cancer, in a subject wherein altered 56294 or 56629 expression is an indication that the subject has or is disposed to having a cell proliferation or differentiation disorder as described herein. The method can be used to monitor a treatment for a cell proliferation or differentiation disorder, e.g., cancer, or another cell proliferation or differentiation disorder as described herein. For example, the gene expression profile can be determined for a sample from a subject undergoing treatment. The profile can be compared to a reference profile or to a profile obtained from the subject prior to treatment or prior to onset of the disorder (see, e.g., Golub et al. (1999) Science 286:531).


[0334] In yet another aspect, the invention features a method of evaluating a test compound (see also, “Screening Assays”, above). The method includes providing a cell and a test compound; contacting the test compound to the cell; obtaining a subject expression profile for the contacted cell; and comparing the subject expression profile to one or more reference profiles. The profiles include a value representing the level of 56294 or 56629 expression. In a preferred embodiment, the subject expression profile is compared to a target profile, e.g., a profile for a normal cell or for desired condition of a cell. The test compound is evaluated favorably if the subject expression profile is more similar to the target profile than an expression profile obtained from an uncontacted cell.


[0335] In another aspect, the invention features, a method of evaluating a subject. The method includes: a) obtaining a sample from a subject, e.g., from a caregiver, e.g., a caregiver who obtains the sample from the subject; b) determining a subject expression profile for the sample. Optionally, the method further includes either or both of steps: c) comparing the subject expression profile to one or more reference expression profiles; and d) selecting the reference profile most similar to the subject reference profile. The subject expression profile and the reference profiles include a value representing the level of 56294 or 56629 expression. A variety of routine statistical measures can be used to compare two reference profiles. One possible metric is the length of the distance vector that is the difference between the two profiles. Each of the subject and reference profile is represented as a multi-dimensional vector, wherein each dimension is a value in the profile.


[0336] The method can further include transmitting a result to a caregiver. The result can be the subject expression profile, a result of a comparison of the subject expression profile with another profile, a most similar reference profile, or a descriptor of any of the aforementioned. The result can be transmitted across a computer network, e.g., the result can be in the form of a computer transmission, e.g., a computer data signal embedded in a carrier wave.


[0337] Also featured is a computer medium having executable code for effecting the following steps: receive a subject expression profile; access a database of reference expression profiles; and either i) select a matching reference profile most similar to the subject expression profile or ii) determine at least one comparison score for the similarity of the subject expression profile to at least one reference profile. The subject expression profile, and the reference expression profiles each include a value representing the level of 56294 or 56629 expression.


[0338] Arrays and Uses Thereof


[0339] In another aspect, the invention features an array that includes a substrate having a plurality of addresses. At least one address of the plurality includes a capture probe that binds specifically to a 56294 or 56629 molecule (e.g., a 56294 or 56629 nucleic acid or a 56294 or 56629 polypeptide). The array can have a density of at least than 10, 50, 100, 200, 500, 1,000, 2,000, or 10,000 or more addresses/cm2, and ranges between. In a preferred embodiment, the plurality of addresses includes at least 10, 100, 500, 1,000, 5,000, 10,000, 50,000 addresses. In a preferred embodiment, the plurality of addresses includes equal to or less than 10, 100, 500, 1,000, 5,000, 10,000, or 50,000 addresses. The substrate can be a two-dimensional substrate such as a glass slide, a wafer (e.g., silica or plastic), a mass spectroscopy plate, or a three-dimensional substrate such as a gel pad. Addresses in addition to address of the plurality can be disposed on the array.


[0340] In a preferred embodiment, at least one address of the plurality includes a nucleic acid capture probe that hybridizes specifically to a 56294 or 56629 nucleic acid, e.g., the sense or anti-sense strand. In one preferred embodiment, a subset of addresses of the plurality of addresses has a nucleic acid capture probe for 56294 or 56629. Each address of the subset can include a capture probe that hybridizes to a different region of a 56294 or 56629 nucleic acid. In another preferred embodiment, addresses of the subset include a capture probe for a 56294 or 56629 nucleic acid. Each address of the subset is unique, overlapping, and complementary to a different variant of 56294 or 56629 (e.g., an allelic variant, or all possible hypothetical variants). The array can be used to sequence 56294 or 56629 by hybridization (see, e.g., U.S. Pat. No. 5,695,940).


[0341] An array can be generated by various methods, e.g., by photolithographic methods (see, e.g., U.S. Pat. Nos. 5,143,854; 5,510,270; and 5,527,681), mechanical methods (e.g., directed-flow methods as described in U.S. Pat. No. 5,384,261), pin-based methods (e.g., as described in U.S. Pat. No. 5,288,514), and bead-based techniques (e.g., as described in PCT US/93/04145).


[0342] In another preferred embodiment, at least one address of the plurality includes a polypeptide capture probe that binds specifically to a 56294 or 56629 polypeptide or fragment thereof. The polypeptide can be a naturally-occurring interaction partner of 56294 or 56629 polypeptide. Preferably, the polypeptide is an antibody, e.g., an antibody described herein (see “Anti-56294 or 56629 Antibodies,” above), such as a monoclonal antibody or a single-chain antibody.


[0343] In another aspect, the invention features a method of analyzing the expression of 56294 or 56629. The method includes providing an array as described above; contacting the array with a sample and detecting binding of a 56294 or 56629-molecule (e.g., nucleic acid or polypeptide) to the array. In a preferred embodiment, the array is a nucleic acid array. Optionally the method further includes amplifying nucleic acid from the sample prior or during contact with the array.


[0344] In another embodiment, the array can be used to assay gene expression in a tissue to ascertain tissue specificity of genes in the array, particularly the expression of 56294 or 56629.


[0345] If a sufficient number of diverse samples is analyzed, clustering (e.g., hierarchical clustering, k-means clustering, Bayesian clustering and the like) can be used to identify other genes which are co-regulated with 56294 or 56629. For example, the array can be used for the quantitation of the expression of multiple genes. Thus, not only tissue specificity, but also the level of expression of a battery of genes in the tissue is ascertained. Quantitative data can be used to group (e.g., cluster) genes on the basis of their tissue expression per se and level of expression in that tissue.


[0346] For example, array analysis of gene expression can be used to assess the effect of cell-cell interactions on 56294 or 56629 expression. A first tissue can be perturbed and nucleic acid from a second tissue that interacts with the first tissue can be analyzed. In this context, the effect of one cell type on another cell type in response to a biological stimulus can be determined, e.g., to monitor the effect of cell-cell interaction at the level of gene expression.


[0347] In another embodiment, cells are contacted with a therapeutic agent. The expression profile of the cells is determined using the array, and the expression profile is compared to the profile of like cells not contacted with the agent. For example, the assay can be used to determine or analyze the molecular basis of an undesirable effect of the therapeutic agent. If an agent is administered therapeutically to treat one cell type but has an undesirable effect on another cell type, the invention provides an assay to determine the molecular basis of the undesirable effect and thus provides the opportunity to co-administer a counteracting agent or otherwise treat the undesired effect. Similarly, even within a single cell type, undesirable biological effects can be determined at the molecular level. Thus, the effects of an agent on expression of other than the target gene can be ascertained and counteracted.


[0348] In another embodiment, the array can be used to monitor expression of one or more genes in the array with respect to time. For example, samples obtained from different time points can be probed with the array. Such analysis can identify and/or characterize the development of a 56294 or 56629-associated disease or disorder; and processes, such as a cellular transformation associated with a 56294 or 56629-associated disease or disorder. The method can also evaluate the treatment and/or progression of a 56294 or 56629-associated disease or disorder The array is also useful for ascertaining differential expression patterns of one or more genes in normal and abnormal cells. This provides a battery of genes (e.g., including 56294 or 56629) that could serve as a molecular target for diagnosis or therapeutic intervention.


[0349] In another aspect, the invention features an array having a plurality of addresses. Each address of the plurality includes a unique polypeptide. At least one address of the plurality has disposed thereon a 56294 or 56629 polypeptide or fragment thereof. Methods of producing polypeptide arrays are described in the art, e.g., in De Wildt et al. (2000). Nature Biotech. 18, 989-994; Lueking et al. (1999). Anal. Biochem. 270, 103-111; Ge, H. (2000). Nucleic Acids Res. 28, e3, I-VII; MacBeath, G., and Schreiber, S. L. (2000). Science 289, 1760-1763; and WO 99/51773A1. In a preferred embodiment, each addresses of the plurality has disposed thereon a polypeptide at least 60, 70, 80,85, 90, 95 or 99% identical to a 56294 or 56629 polypeptide or fragment thereof. For example, multiple variants of a 56294 or 56629 polypeptide (e.g., encoded by allelic variants, site-directed mutants, random mutants, or combinatorial mutants) can be disposed at individual addresses of the plurality. Addresses in addition to the address of the plurality can be disposed on the array.


[0350] The polypeptide array can be used to detect a 56294 or 56629 binding compound, e.g., an antibody in a sample from a subject with specificity for a 56294 or 56629 polypeptide or the presence of a 56294 or 56629-binding protein or ligand.


[0351] The array is also useful for ascertaining the effect of the expression of a gene on the expression of other genes in the same cell or in different cells (e.g., ascertaining the effect of 56294 or 56629 expression on the expression of other genes). This provides, for example, for a selection of alternate molecular targets for therapeutic intervention if the ultimate or downstream target cannot be regulated.


[0352] In another aspect, the invention features a method of analyzing a plurality of probes. The method is useful, e.g., for analyzing gene expression. The method includes: providing a two dimensional array having a plurality of addresses, each address of the plurality being positionally distinguishable from each other address of the plurality having a unique capture probe, e.g., wherein the capture probes are from a cell or subject which express 56294 or 56629 or from a cell or subject in which a 56294 or 56629 mediated response has been elicited, e.g., by contact of the cell with 56294 or 56629 nucleic acid or protein, or administration to the cell or subject 56294 or 56629 nucleic acid or protein; providing a two dimensional array having a plurality of addresses, each address of the plurality being positionally distinguishable from each other address of the plurality, and each address of the plurality having a unique capture probe, e.g., wherein the capture probes are from a cell or subject which does not express 56294 or 56629 (or does not express as highly as in the case of the 56294 or 56629 positive plurality of capture probes) or from a cell or subject which in which a 56294 or 56629 mediated response has not been elicited (or has been elicited to a lesser extent than in the first sample); contacting the array with one or more inquiry probes (which is preferably other than a 56294 or 56629 nucleic acid, polypeptide, or antibody), and thereby evaluating the plurality of capture probes. Binding, e.g., in the case of a nucleic acid, hybridization with a capture probe at an address of the plurality, is detected, e.g., by signal generated from a label attached to the nucleic acid, polypeptide, or antibody.


[0353] In another aspect, the invention features a method of analyzing a plurality of probes or a sample. The method is useful, e.g., for analyzing gene expression. The method includes: providing a two dimensional array having a plurality of addresses, each address of the plurality being positionally distinguishable from each other address of the plurality having a unique capture probe, contacting the array with a first sample from a cell or subject which express or mis-express 56294 or 56629 or from a cell or subject in which a 56294 or 56629-mediated response has been elicited, e.g., by contact of the cell with 56294 or 56629 nucleic acid or protein, or administration to the cell or subject 56294 or 56629 nucleic acid or protein; providing a two dimensional array having a plurality of addresses, each address of the plurality being positionally distinguishable from each other address of the plurality, and each address of the plurality having a unique capture probe, and contacting the array with a second sample from a cell or subject which does not express 56294 or 56629 (or does not express as highly as in the case of the 56294 or 56629 positive plurality of capture probes) or from a cell or subject which in which a 56294 or 56629 mediated response has not been elicited (or has been elicited to a lesser extent than in the first sample); and comparing the binding of the first sample with the binding of the second sample. Binding, e.g., in the case of a nucleic acid, hybridization with a capture probe at an address of the plurality, is detected, e.g., by signal generated from a label attached to the nucleic acid, polypeptide, or antibody. The same array can be used for both samples or different arrays can be used. If different arrays are used the plurality of addresses with capture probes should be present on both arrays.


[0354] In another aspect, the invention features a method of analyzing 56294 or 56629, e.g., analyzing structure, function, or relatedness to other nucleic acid or amino acid sequences. The method includes: providing a 56294 or 56629 nucleic acid or amino acid sequence; comparing the 56294 or 56629 sequence with one or more preferably a plurality of sequences from a collection of sequences, e.g., a nucleic acid or protein sequence database; to thereby analyze 56294 or 56629.


[0355] Detection of Variations or Mutations


[0356] The methods of the invention can also be used to detect genetic alterations in a 56294 or 56629 gene, thereby determining if a subject with the altered gene is at risk for a disorder characterized by misregulation in 56294 or 56629 protein activity or nucleic acid expression, such as a cell proliferation or differentiation disorder, e.g., cancer, or another cell proliferation or differentiation disorder as described herein. In preferred embodiments, the methods include detecting, in a sample from the subject, the presence or absence of a genetic alteration characterized by at least one of an alteration affecting the integrity of a gene encoding a 56294 or 56629-protein, or the mis-expression of the 56294 or 56629 gene. For example, such genetic alterations can be detected by ascertaining the existence of at least one of 1) a deletion of one or more nucleotides from a 56294 or 56629 gene; 2) an addition of one or more nucleotides to a


[0357]

56294
or 56629 gene; 3) a substitution of one or more nucleotides of a 56294 or 56629 gene, 4) a chromosomal rearrangement of a 56294 or 56629 gene; 5) an alteration in the level of a messenger RNA transcript of a 56294 or 56629 gene, 6) aberrant modification of a 56294 or 56629 gene, such as of the methylation pattern of the genomic DNA, 7) the presence of a non-wild type splicing pattern of a messenger RNA transcript of a 56294 or 56629 gene, 8) a non-wild type level of a 56294 or 56629-protein, 9) allelic loss of a 56294 or 56629 gene, and 10) inappropriate post-translational modification of a 56294 or 56629-protein.


[0358] An alteration can be detected without a probe/primer in a polymerase chain reaction, such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR), the latter of which can be particularly useful for detecting point mutations in the 56294 or 56629-gene. This method can include the steps of collecting a sample of cells from a subject, isolating nucleic acid (e.g., genomic, mRNA or both) from the sample, contacting the nucleic acid sample with one or more primers which specifically hybridize to a 56294 or 56629 gene under conditions such that hybridization and amplification of the 56294 or 56629-gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. It is anticipated that PCR and/or LCR may be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein. Alternatively, other amplification methods described herein or known in the art can be used.


[0359] In another embodiment, mutations in a 56294 or 56629 gene from a sample cell can be identified by detecting alterations in restriction enzyme cleavage patterns. For example, sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and fragment length sizes are determined, e.g., by gel electrophoresis and compared. Differences in fragment length sizes between sample and control DNA indicates mutations in the sample DNA. Moreover, the use of sequence specific ribozymes (see, for example, U.S. Pat. No. 5,498,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site.


[0360] In other embodiments, genetic mutations in 56294 or 56629 can be identified by hybridizing a sample and control nucleic acids, e.g., DNA or RNA, two-dimensional arrays, e.g., chip based arrays. Such arrays include a plurality of addresses, each of which is positionally distinguishable from the other. A different probe is located at each address of the plurality. A probe can be complementary to a region of a 56294 or 56629 nucleic acid or a putative variant (e.g., allelic variant) thereof. A probe can have one or more mismatches to a region of a 56294 or 56629 nucleic acid (e.g., a destabilizing mismatch). The arrays can have a high density of addresses, e.g., can contain hundreds or thousands of oligonucleotides probes (Cronin, M. T. et al. (1996) Human Mutation 7: 244-255; Kozal, M. J. et al. (1996) Nature Medicine 2: 753-759). For example, genetic mutations in 56294 or 56629 can be identified in two-dimensional arrays containing light-generated DNA probes as described in Cronin, M. T. et al. supra. Briefly, a first hybridization array of probes can be used to scan through long stretches of DNA in a sample and control to identify base changes between the sequences by making linear arrays of sequential overlapping probes. This step allows the identification of point mutations. This step is followed by a second hybridization array that allows the characterization of specific mutations by using smaller, specialized probe arrays complementary to all variants or mutations detected. Each mutation array is composed of parallel probe sets, one complementary to the wild-type gene and the other complementary to the mutant gene.


[0361] In yet another embodiment, any of a variety of sequencing reactions known in the art can be used to directly sequence the 56294 or 56629 gene and detect mutations by comparing the sequence of the sample 56294 or 56629 with the corresponding wild-type (control) sequence. Automated sequencing procedures can be utilized when performing the diagnostic assays ((1995) Biotechniques 19:448), including sequencing by mass spectrometry.


[0362] Other methods for detecting mutations in the 56294 or 56629 gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA heteroduplexes (Myers et al. (1985) Science 230:1242; Cotton et al. (1988) Proc. Natl Acad Sci USA 85:4397; Saleeba et al. (1992) Methods Enzymol. 217:286-295).


[0363] In still another embodiment, the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA (so called “DNA mismatch repair” enzymes) in defined systems for detecting and mapping point mutations in 56294 or 56629 cDNAs obtained from samples of cells. For example, the mutY enzyme of E. coli cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells cleaves T at G/T mismatches (Hsu et al. (1994) Carcinogenesis 15:1657-1662; U.S. Pat. No. 5,459,039).


[0364] In other embodiments, alterations in electrophoretic mobility will be used to identify mutations in 56294 or 56629 genes. For example, single strand conformation polymorphism (SSCP) may be used to detect differences in electrophoretic mobility between mutant and wild type nucleic acids (Orita et al. (1989) Proc Natl. Acad. Sci USA: 86:2766, see also Cotton (1993) Mutat. Res. 285:125-144; and Hayashi (1992) Genet. Anal. Tech. Appl. 9:73-79). Single-stranded DNA fragments of sample and control 56294 or 56629 nucleic acids will be denatured and allowed to renature. The secondary structure of single-stranded nucleic acids varies according to sequence, the resulting alteration in electrophoretic mobility enables the detection of even a single base change. The DNA fragments may be labeled or detected with labeled probes. The sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence. In a preferred embodiment, the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility (Keen et al. (1991) Trends Genet 7:5).


[0365] In yet another embodiment, the movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE) (Myers et al. (1985) Nature 313:495). When DGGE is used as the method of analysis, DNA will be modified to insure that it does not completely denature, for example by adding a GC clamp of approximately 40 bp of high-melting GC-rich DNA by PCR. In a further embodiment, a temperature gradient is used in place of a denaturing gradient to identify differences in the mobility of control and sample DNA (Rosenbaum and Reissner (1987) Biophys Chem 265:12753).


[0366] Examples of other techniques for detecting point mutations include, but are not limited to, selective oligonucleotide hybridization, selective amplification, or selective primer extension (Saiki et al. (1986) Nature 324:163); Saiki et al. (1989) Proc. Natl Acad. Sci USA 86:6230). A further method of detecting point mutations is the chemical ligation of oligonucleotides as described in Xu et al. (2001) Nature Biotechnol. 19:148. Adjacent oligonucleotides, one of which selectively anneals to the query site, are ligated together if the nucleotide at the query site of the sample nucleic acid is complementary to the query oligonucleotide; ligation can be monitored, e.g., by fluorescent dyes coupled to the oligonucleotides.


[0367] Alternatively, allele specific amplification technology that depends on selective PCR amplification may be used in conjunction with the instant invention. Oligonucleotides used as primers for specific amplification may carry the mutation of interest in the center of the molecule (so that amplification depends on differential hybridization) (Gibbs et al. (1989) Nucleic Acids Res. 17:2437-2448) or at the extreme 3′ end of one primer where, under appropriate conditions, mismatch can prevent, or reduce polymerase extension (Prossner (1993) Tibtech 11:238). In addition it may be desirable to introduce a novel restriction site in the region of the mutation to create cleavage-based detection (Gasparini et al. (1992) Mol. Cell Probes 6:1). It is anticipated that in certain embodiments amplification may also be performed using Taq ligase for amplification (Barany (1991) Proc. Natl. Acad. Sci USA 88:189). In such cases, ligation will occur only if there is a perfect match at the 3′ end of the 5′ sequence making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.


[0368] In another aspect, the invention features a set of oligonucleotides. The set includes a plurality of oligonucleotides, each of which is at least partially complementary (e.g., at least 50%, 60%, 70%, 80%, 90%, 92%, 95%, 97%, 98%, or 99% complementary) to a 56294 or 56629 nucleic acid.


[0369] In a preferred embodiment the set includes a first and a second oligonucleotide. The first and second oligonucleotide can hybridize to the same or to different locations of SEQ ID NO: 1 or 3, or the complement of SEQ ID NO:1 or 3. Different locations can be different but overlapping or or nonoverlapping on the same strand. The first and second oligonucleotide can hybridize to sites on the same or on different strands.


[0370] The set can be useful, e.g., for identifying SNP's, or identifying specific alleles of 56294 or 56629. In a preferred embodiment, each oligonucleotide of the set has a different nucleotide at an interrogation position. In one embodiment, the set includes two oligonucleotides, each complementary to a different allele at a locus, e.g., a biallelic or polymorphic locus.


[0371] In another embodiment, the set includes four oligonucleotides, each having a different nucleotide (e.g., adenine, guanine, cytosine, or thymidine) at the interrogation position. The interrogation position can be a SNP or the site of a mutation. In another preferred embodiment, the oligonucleotides of the plurality are identical in sequence to one another (except for differences in length). The oligonucleotides can be provided with differential labels, such that an oligonucleotide that hybridizes to one allele provides a signal that is distinguishable from an oligonucleotide that hybridizes to a second allele. In still another embodiment, at least one of the oligonucleotides of the set has a nucleotide change at a position in addition to a query position, e.g., a destabilizing mutation to decrease the Tm of the oligonucleotide. In another embodiment, at least one oligonucleotide of the set has a non-natural nucleotide, e.g., inosine. In a preferred embodiment, the oligonucleotides are attached to a solid support, e.g., to different addresses of an array or to different beads or nanoparticles.


[0372] In a preferred embodiment the set of oligo nucleotides can be used to specifically amplify, e.g., by PCR, or detect, a 56294 or 56629 nucleic acid.


[0373] The methods described herein may be performed, for example, by utilizing pre-packaged diagnostic kits comprising at least one probe nucleic acid or antibody reagent described herein, which may be conveniently used, e.g., in clinical settings to diagnose patients exhibiting symptoms or family history of a disease or illness involving a 56294 or 56629 gene.


[0374] Use of 56294 or 56629 Molecules as Surrogate Markers


[0375] The 56294 or 56629 molecules of the invention are also useful as markers of disorders or disease states, as markers for precursors of disease states, as markers for predisposition of disease states, as markers of drug activity, or as markers of the pharmacogenomic profile of a subject. Using the methods described herein, the presence, absence and/or quantity of the 56294 or 56629 molecules of the invention may be detected, and may be correlated with one or more biological states in vivo. For example, the 56294 or 56629 molecules of the invention may serve as surrogate markers for one or more disorders or disease states or for conditions leading up to disease states. As used herein, a “surrogate marker” is an objective biochemical marker which correlates with the absence or presence of a disease or disorder, or with the progression of a disease or disorder (e.g., with the presence or absence of a tumor). The presence or quantity of such markers is independent of the disease. Therefore, these markers may serve to indicate whether a particular course of treatment is effective in lessening a disease state or disorder. Surrogate markers are of particular use when the presence or extent of a disease state or disorder is difficult to assess through standard methodologies (e.g., early stage tumors), or when an assessment of disease progression is desired before a potentially dangerous clinical endpoint is reached (e.g., an assessment of cardiovascular disease may be made using cholesterol levels as a surrogate marker, and an analysis of HIV infection may be made using HIV RNA levels as a surrogate marker, well in advance of the undesirable clinical outcomes of myocardial infarction or fully-developed AIDS). Examples of the use of surrogate markers in the art include: Koomen et al. (2000) J. Mass. Spectrom. 35: 258-264; and James (1994) AIDS Treatment News Archive 209.


[0376] The 56294 or 56629 molecules of the invention are also useful as pharmacodynamic markers. As used herein, a “pharmacodynamic marker” is an objective biochemical marker which correlates specifically with drug effects. The presence or quantity of a pharmacodynamic marker is not related to the disease state or disorder for which the drug is being administered; therefore, the presence or quantity of the marker is indicative of the presence or activity of the drug in a subject. For example, a pharmacodynamic marker may be indicative of the concentration of the drug in a biological tissue, in that the marker is either expressed or transcribed or not expressed or transcribed in that tissue in relationship to the level of the drug. In this fashion, the distribution or uptake of the drug may be monitored by the pharmacodynamic marker. Similarly, the presence or quantity of the pharmacodynamic marker may be related to the presence or quantity of the metabolic product of a drug, such that the presence or quantity of the marker is indicative of the relative breakdown rate of the drug in vivo. Pharmacodynamic markers are of particular use in increasing the sensitivity of detection of drug effects, particularly when the drug is administered in low doses. Since even a small amount of a drug may be sufficient to activate multiple rounds of marker (e.g., a 56294 or 56629 marker) transcription or expression, the amplified marker may be in a quantity which is more readily detectable than the drug itself. Also, the marker may be more easily detected due to the nature of the marker itself; for example, using the methods described herein, anti-56294 or 56629 antibodies may be employed in an immune-based detection system for a 56294 or 56629 protein marker, or 56294 or 56629-specific radiolabeled probes may be used to detect a 56294 or 56629 mRNA marker. Furthermore, the use of a pharmacodynamic marker may offer mechanism-based prediction of risk due to drug treatment beyond the range of possible direct observations. Examples of the use of pharmacodynamic markers in the art include: Matsuda et al. U.S. Pat. No. 6,033,862; Hattis et al. (1991) Env. Health Perspect. 90: 229-238; Schentag (1999) Am. J. Health-Syst. Pharm. 56 Suppl. 3: S21-S24; and Nicolau (1999) Am, J. Health-Syst. Pharm. 56 Suppl. 3: S16-S20.


[0377] The 56294 or 56629 molecules of the invention are also useful as pharmacogenomic markers. As used herein, a “pharmacogenomic marker” is an objective biochemical marker which correlates with a specific clinical drug response or susceptibility in a subject (see, e.g., McLeod et al. (1999) Eur. J. Cancer 35:1650-1652). The presence or quantity of the pharmacogenomic marker is related to the predicted response of the subject to a specific drug or class of drugs prior to administration of the drug. By assessing the presence or quantity of one or more pharmacogenomic markers in a subject, a drug therapy which is most appropriate for the subject, or which is predicted to have a greater degree of success, may be selected. For example, based on the presence or quantity of RNA, or protein (e.g., 56294 or 56629 protein or RNA) for specific tumor markers in a subject, a drug or course of treatment may be selected that is optimized for the treatment of the specific tumor likely to be present in the subject. Similarly, the presence or absence of a specific sequence mutation in 56294 or 56629 DNA may correlate 56294 or 56629 drug response. The use of pharmacogenomic markers therefore permits the application of the most appropriate treatment for each subject without having to administer the therapy.


[0378] Pharmaceutical Compositions


[0379] The nucleic acid and polypeptides, fragments thereof, as well as anti-56294 or 56629 antibodies (also referred to herein as “active compounds”) of the invention can be incorporated into pharmaceutical compositions. Such compositions typically include the nucleic acid molecule, protein, or antibody and a pharmaceutically acceptable carrier. As used herein the language “pharmaceutically acceptable carrier” includes solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. Supplementary active compounds can also be incorporated into the compositions.


[0380] A pharmaceutical composition is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, e.g., intravenous, intradermal, subcutaneous, oral (e.g., inhalation), transdermal (topical), transmucosal, and rectal administration. Solutions or suspensions used for parenteral, intradermal, or subcutaneous application can include the following components: a sterile diluent such as water for injection, saline solution, fixed oils, polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl parabens; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. pH can be adjusted with acids or bases, such as hydrochloric acid or sodium hydroxide. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic.


[0381] Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion. For intravenous administration, suitable carriers include physiological saline, bacteriostatic water, Cremophor EL™ (BASF, Parsippany, N.J.) or phosphate buffered saline (PBS). In all cases, the composition must be sterile and should be fluid to the extent that easy syringability exists. It should be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier can be a solvent or dispersion medium containing, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, and liquid polyetheylene glycol, and the like), and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the use of a coating such as lecithin, by the maintenance of the required particle size in the case of dispersion and by the use of surfactants. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, ascorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, polyalcohols such as manitol, sorbitol, sodium chloride in the composition. Prolonged absorption of the injectable compositions can be brought about by including in the composition an agent which delays absorption, for example, aluminum monostearate and gelatin.


[0382] Sterile injectable solutions can be prepared by incorporating the active compound in the required amount in an appropriate solvent with one or a combination of ingredients enumerated above, as required, followed by filtered sterilization. Generally, dispersions are prepared by incorporating the active compound into a sterile vehicle that contains a basic dispersion medium and the required other ingredients from those enumerated above. In the case of sterile powders for the preparation of sterile injectable solutions, the preferred methods of preparation are vacuum drying and freeze-drying, which yield a powder of the active ingredient plus any additional desired ingredient from a previously sterile-filtered solution thereof.


[0383] Oral compositions generally include an inert diluent or an edible carrier. For the purpose of oral therapeutic administration, the active compound can be incorporated with excipients and used in the form of tablets, troches, or capsules, e.g., gelatin capsules. Oral compositions can also be prepared using a fluid carrier for use as a mouthwash. Pharmaceutically compatible binding agents, and/or adjuvant materials can be included as part of the composition. The tablets, pills, capsules, troches and the like can contain any of the following ingredients, or compounds of a similar nature: a binder such as microcrystalline cellulose, gum tragacanth or gelatin; an excipient such as starch or lactose, a disintegrating agent such as alginic acid, Primogel, or corn starch; a lubricant such as magnesium stearate or Sterotes; a glidant such as colloidal silicon dioxide; a sweetening agent such as sucrose or saccharin; or a flavoring agent such as peppermint, methyl salicylate, or orange flavoring.


[0384] For administration by inhalation, the compounds are delivered in the form of an aerosol spray from pressured container or dispenser that contains a suitable propellant, e.g., a gas such as carbon dioxide, or a nebulizer.


[0385] Systemic administration can also be by transmucosal or transdermal means. For transmucosal or transdermal administration, penetrants appropriate to the barrier to be permeated are used in the formulation. Such penetrants are generally known in the art, and include, for example, for transmucosal administration, detergents, bile salts, and fusidic acid derivatives. Transmucosal administration can be accomplished through the use of nasal sprays or suppositories. For transdermal administration, the active compounds are formulated into ointments, salves, gels, or creams as generally known in the art.


[0386] The compounds can also be prepared in the form of suppositories (e.g., with conventional suppository bases such as cocoa butter and other glycerides) or retention enemas for rectal delivery.


[0387] In one embodiment, the active compounds are prepared with carriers that will protect the compound against rapid elimination from the body, such as a controlled release formulation, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, such as ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collagen, polyorthoesters, and polylactic acid. Methods for preparation of such formulations will be apparent to those skilled in the art. The materials can also be obtained commercially from Alza Corporation and Nova Pharmaceuticals, Inc. Liposomal suspensions (including liposomes targeted to infected cells with monoclonal antibodies to viral antigens) can also be used as pharmaceutically acceptable carriers. These can be prepared according to methods known to those skilled in the art, for example, as described in U.S. Pat. No. 4,522,811.


[0388] It is advantageous to formulate oral or parenteral compositions in dosage unit form for ease of administration and uniformity of dosage. Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier.


[0389] Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 (the dose lethal to 50% of the population) and the ED50 (the dose therapeutically effective in 50% of the population). The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be expressed as the ratio LD50/ED50. Compounds that exhibit high therapeutic indices are preferred. While compounds that exhibit toxic side effects may be used, care should be taken to design a delivery system that targets such compounds to the site of affected tissue in order to minimize potential damage to uninfected cells and, thereby, reduce side effects.


[0390] The data obtained from the cell culture assays and animal studies can be used in formulating a range of dosage for use in humans. The dosage of such compounds lies preferably within a range of circulating concentrations that include the ED50 with little or no toxicity. The dosage may vary within this range depending upon the dosage form employed and the route of administration utilized. For any compound used in the method of the invention, the therapeutically effective dose can be estimated initially from cell culture assays. A dose may be formulated in animal models to achieve a circulating plasma concentration range that includes the IC50 (i.e., the concentration of the test compound which achieves a half-maximal inhibition of symptoms) as determined in cell culture. Such information can be used to more accurately determine useful doses in humans. Levels in plasma may be measured, for example, by high performance liquid chromatography.


[0391] As defined herein, a therapeutically effective amount of protein or polypeptide (i.e., an effective dosage) ranges from about 0.001 to 30 mg/kg body weight, preferably about 0.01 to 25 mg/kg body weight, more preferably about 0.1 to 20 mg/kg body weight, and even more preferably about 1 to 10 mg/kg, 2 to 9 mg/kg, 3 to 8 mg/kg, 4 to 7 mg/kg, or 5 to 6 mg/kg body weight. The protein or polypeptide can be administered one time per week for between about 1 to 10 weeks, preferably between 2 to 8 weeks, more preferably between about 3 to 7 weeks, and even more preferably for about 4, 5, or 6 weeks. The skilled artisan will appreciate that certain factors may influence the dosage and timing required to effectively treat a subject, including but not limited to the severity of the disease or disorder, previous treatments, the general health and/or age of the subject, and other diseases present. Moreover, treatment of a subject with a therapeutically effective amount of a protein, polypeptide, or antibody can include a single treatment or, preferably, can include a series of treatments.


[0392] For antibodies, the preferred dosage is 0.1 mg/kg of body weight (generally 10 mg/kg to 20 mg/kg). If the antibody is to act in the brain, a dosage of 50 mg/kg to 100 mg/kg is usually appropriate. Generally, partially human antibodies and fully human antibodies have a longer half-life within the human body than other antibodies. Accordingly, lower dosages and less frequent administration is often possible. Modifications such as lipidation can be used to stabilize antibodies and to enhance uptake and tissue penetration (e.g., into the brain). A method for lipidation of antibodies is described by Cruikshank et al. ((1997) J. Acquired Immune Deficiency Syndromes and Human Retrovirology 14:193).


[0393] The present invention encompasses agents that modulate expression or activity. An agent may, for example, be a small molecule. For example, such small molecules include, but are not limited to, peptides, peptidomimetics (e.g., peptoids), amino acids, amino acid analogs, polynucleotides, polynucleotide analogs, nucleotides, nucleotide analogs, organic or inorganic compounds (i.e., including heteroorganic and organometallic compounds) having a molecular weight less than about 10,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 5,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 1,000 grams per mole, organic or inorganic compounds having a molecular weight less than about 500 grams per mole, and salts, esters, and other pharmaceutically acceptable forms of such compounds.


[0394] Exemplary doses include milligram or microgram amounts of the small molecule per kilogram of subject or sample weight (e.g., about 1 kg/kg to about 500mg/kg, about 100 μg/kg to about 5 mg/kg, or about 1 μg/kg to about 50 μg/kg. It is furthermore understood that appropriate doses of a small molecule depend upon the potency of the small molecule with respect to the expression or activity to be modulated. When one or more of these small molecules is to be administered to an animal (e.g., a human) in order to modulate expression or activity of a polypeptide or nucleic acid of the invention, a physician, veterinarian, or researcher may, for example, prescribe a relatively low dose at first, subsequently increasing the dose until an appropriate response is obtained. In addition, it is understood that the specific dose level for any particular animal subject will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, gender, and diet of the subject, the time of administration, the route of administration, the rate of excretion, any drug combination, and the degree of expression or activity to be modulated.


[0395] An antibody (or fragment thereof) may be conjugated to a therapeutic moiety such as a is cytotoxin, a therapeutic agent or a radioactive ion. A cytotoxin or cytotoxic agent includes any agent that is detrimental to cells. Examples include taxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, puromycin, maytansinoids, e.g., maytansinol (see U.S. Pat. No. 5,208,020), CC-1065 (see U.S. Pat. Nos. 5,475,092, 5,585,499, 5,846,545) and analogs or homologs thereof. Therapeutic agents include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, CC-1065, melphalan, carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin, mitomycin C, and cis-dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g., vincristine, vinblastine, taxol and maytansinoids). Radioactive ions include, but are not limited to iodine, yttrium and praseodymium.


[0396] The conjugates of the invention can be used for modifying a given biological response. The drug moiety is not to be construed as limited to classical chemical therapeutic agents. For example, the drug moiety may be a protein or polypeptide possessing a desired biological activity. Such proteins may include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor, α-interferon, β-interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator; or, biological response modifiers such as, for example, lymphokines, interleukin-1 (“IL-1”), interleukin-2 (“IL-2”), interleukin-6 (“IL-6”), granulocyte macrophase colony stimulating factor (“GM-CSF”), granulocyte colony stimulating factor (“G-CSF”), or other growth factors.


[0397] Alternatively, an antibody can be conjugated to a second antibody to form an antibody heteroconjugate as described by Segal in U.S. Pat. No. 4,676,980.


[0398] The nucleic acid molecules of the invention can be inserted into vectors and used as gene therapy vectors. Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (see U.S. Pat. No. 5,328,470) or by stereotactic injection (see e.g., Chen et al (1994) Proc. Natl. Acad. Sci. USA 91:3054-3057). The pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells, e.g., retroviral vectors, the pharmaceutical preparation can include one or more cells which produce the gene delivery system.


[0399] The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.


[0400] Methods of Treatment


[0401] The present invention provides for both prophylactic and therapeutic methods of treating a subject at risk of (or susceptible to) a disorder or having a disorder associated with aberrant or unwanted 56294 or 56629 expression or activity. As used herein, the term “treatment” is defined as the application or administration of a therapeutic agent to a patient, or application or administration of a therapeutic agent to an isolated tissue or cell line from a patient, who has a disease, a symptom of disease or a predisposition toward a disease, with the purpose to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve or affect the disease, the symptoms of disease or the predisposition toward disease. A therapeutic agent includes, but is not limited to, small molecules, peptides, antibodies, ribozymes and antisense oligonucleotides.


[0402] It is possible that some 56294 or 56629 disorders can be caused, at least in part, by an abnormal level of gene product, or by the presence of a gene product exhibiting abnormal activity. As such, the reduction in the level and/or activity of such gene products would bring about the amelioration of disorder symptoms. Relevant disorders can include cell proliferation or differentiation disorders, e.g., cancer, or another cell proliferation or differentiation disorder as described herein above, or a metabolic, immunological, or neurological disorder, e.g., as described herein.


[0403] With regards to both prophylactic and therapeutic methods of treatment, such treatments may be specifically tailored or modified, based on knowledge obtained from the field of pharmacogenomics as described below.


[0404] Examples of cellular proliferative and/or differentiative disorders include cancer, e.g., carcinoma, sarcoma, metastatic disorders or hematopoietic neoplastic disorders, e.g., leukemias. A metastatic tumor can arise from a multitude of primary tumor types, including but not limited to those of prostate, colon, lung, breast and liver origin.


[0405] As used herein, the terms “cancer”, “hyperproliferative” and “neoplastic” refer to cells having the capacity for autonomous growth, i.e., an abnormal state or condition characterized by rapidly proliferating cell growth. Hyperproliferative and neoplastic disease states may be categorized as pathologic, i.e., characterizing or constituting a disease state, or may be categorized as non-pathologic, i.e., a deviation from normal but not associated with a disease state. The term is meant to include all types of cancerous growths or oncogenic processes, metastatic tissues or malignantly transformed cells, tissues, or organs, irrespective of histopathologic type or stage of invasiveness. “Pathologic hyperproliferative” cells occur in disease states characterized by malignant tumor growth. Examples of non-pathologic hyperproliferative cells include proliferation of cells associated with wound repair.


[0406] The terms “cancer” or “neoplasms” include malignancies of the various organ systems, such as affecting lung, breast, thyroid, lymphoid, gastrointestinal, and genito-urinary tract, as well as adenocarcinomas which include malignancies such as most colon cancers, renal-cell carcinoma, prostate cancer and/or testicular tumors, non-small cell carcinoma of the lung, cancer of the small intestine and cancer of the esophagus.


[0407] The term “carcinoma” is art recognized and refers to malignancies of epithelial or endocrine tissues including respiratory system carcinomas, gastrointestinal system carcinomas, genitourinary system carcinomas, testicular carcinomas, breast carcinomas, prostatic carcinomas, endocrine system carcinomas, and melanomas. Exemplary carcinomas include those forming from tissue of the cervix, lung, prostate, breast, head and neck, colon and ovary. The term also includes carcinosarcomas, e.g., which include malignant tumors composed of carcinomatous and sarcomatous tissues. An “adenocarcinoma” refers to a carcinoma derived from glandular tissue or in which the tumor cells form recognizable glandular structures.


[0408] The term “sarcoma” is art recognized and refers to malignant tumors of mesenchymal derivation.


[0409] Additional examples of proliferative disorders include hematopoietic neoplastic disorders. As used herein, the term “hematopoietic neoplastic disorders” includes diseases involving hyperplastic/neoplastic cells of hematopoietic origin, e.g., arising from myeloid, lymphoid or erythroid lineages, or precursor cells thereof. Preferably, the diseases arise from poorly differentiated acute leukemias, e.g., erythroblastic leukemia and acute megakaryoblastic leukemia. Additional exemplary myeloid disorders include, but are not limited to, acute promyeloid leukemia (APML), acute myelogenous leukemia (AML) and chronic myelogenous leukemia (CML) (reviewed in Vaickus, L. (1991) Crit Rev. in Oncol./Hemotol. 11:267-97); lymphoid malignancies include, but are not limited to acute lymphoblastic leukemia (ALL) which includes B-lineage ALL and T-lineage ALL, chronic lymphocytic leukemia (CLL), prolymphocytic leukemia (PLL), hairy cell leukemia (HLL) and Waldenstrom's macroglobulinemia (WM). Additional forms of malignant lymphomas include, but are not limited to non-Hodgkin lymphoma and variants thereof, peripheral T-cell lymphomas, adult T cell leukemia/lymphoma (ATL), cutaneous T-cell lymphoma (CTCL), large granular lymphocytic leukemia (LGF), Hodgkin's disease and Reed-Sternberg disease.


[0410] Disorders involving the pancreas include those of the exocrine pancreas such as congenital anomalies, including but not limited to, ectopic pancreas; pancreatitis, including but not limited to, acute pancreatitis; cysts, including but not limited to, pseudocysts; tumors, including but not limited to, cystic tumors and carcinoma of the pancreas; and disorders of the endocrine pancreas such as, diabetes mellitus; islet cell tumors, including but not limited to, insulinomas, gastrinomas, and other rare islet cell tumors.


[0411] Disorders involving blood vessels include, but are not limited to, responses of vascular cell walls to injury, such as endothelial dysfunction and endothelial activation and intimal thickening; vascular diseases including, but not limited to, congenital anomalies, such as arteriovenous fistula, atherosclerosis, and hypertensive vascular disease, such as hypertension; inflammatory disease—the vasculitides, such as giant cell (temporal) arteritis, Takayasu arteritis, polyarteritis nodosa (classic), Kawasaki syndrome (mucocutaneous lymph node syndrome), microscopic polyanglitis (microscopic polyarteritis, hypersensitivity or leukocytoclastic anglitis), Wegener granulomatosis, thromboanglitis obliterans (Buerger disease), vasculitis associated with other disorders, and infectious arteritis; Raynaud disease; aneurysms and dissection, such as abdominal aortic aneurysms, syphilitic (luetic) aneurysms, and aortic dissection (dissecting hematoma); disorders of veins and lymphatics, such as varicose veins, thrombophlebitis and phlebothrombosis, obstruction of superior vena cava (superior vena cava syndrome), obstruction of inferior vena cava (inferior vena cava syndrome), and lymphangitis and lymphedema; tumors, including benign tumors and tumor-like conditions, such as hemangioma, lymphangioma, glomus tumor (glomangioma), vascular ectasias, and bacillary angiomatosis, and intermediate-grade (borderline low-grade malignant) tumors, such as Kaposi sarcoma and hemangloendothelioma, and malignant tumors, such as angiosarcoma and hemangiopericytoma; and pathology of therapeutic interventions in vascular disease, such as balloon angioplasty and related techniques and vascular replacement, such as coronary artery bypass graft surgery.


[0412] As used herein, an “endothelial cell disorder” includes a disorder characterized by aberrant, unregulated, or unwanted endothelial cell activity, e.g., proliferation, migration, angiogenesis, or vascularization; or aberrant expression of cell surface adhesion molecules or genes associated with angiogenesis, e.g., TIE-2, FLT and FLK. Endothelial cell disorders include tumorigenesis, tumor metastasis, psoriasis, diabetic retinopathy, endometriosis, Grave's disease, ischemic disease (e.g., atherosclerosis), and chronic inflammatory diseases (e.g., rheumatoid arthritis).


[0413] As used herein, disorders involving the heart, or “cardiovascular disease” or a “cardiovascular disorder” includes a disease or disorder which affects the cardiovascular system, e.g., the heart, the blood vessels, and/or the blood. A cardiovascular disorder can be caused by an imbalance in arterial pressure, a malfunction of the heart, or an occlusion of a blood vessel, e.g., by a thrombus. A cardiovascular disorder includes, but is not limited to disorders such as arteriosclerosis, atherosclerosis, cardiac hypertrophy, ischemia reperfusion injury, restenosis, arterial inflammation, vascular wall remodeling, ventricular remodeling, rapid ventricular pacing, coronary microembolism, tachycardia, bradycardia, pressure overload, aortic bending, coronary artery ligation, vascular heart disease, valvular disease, including but not limited to, valvular degeneration caused by calcification, rheumatic heart disease, endocarditis, or complications of artificial valves; atrial fibrillation, long-QT syndrome, congestive heart failure, sinus node dysfunction, angina, heart failure, hypertension, atrial fibrillation, atrial flutter, pericardial disease, including but not limited to, pericardial effusion and pericarditis; cardiomyopathies, e.g., dilated cardiomyopathy or idiopathic cardiomyopathy, myocardial infarction, coronary artery disease, coronary artery spasm, ischemic disease, arrhythmia, sudden cardiac death, and cardiovascular developmental disorders (e.g., arteriovenous malformations, arteriovenous fistulae, raynaud's syndrome, neurogenic thoracic outlet syndrome, causalgia/reflex sympathetic dystrophy, hemangioma, aneurysm, cavernous angioma, aortic valve stenosis, atrial septal defects, atrioventricular canal, coarctation of the aorta, ebsteins anomaly, hypoplastic left heart syndrome, interruption of the aortic arch, mitral valve prolapse, ductus arteriosus, patent foramen ovale, partial anomalous pulmonary venous return, pulmonary atresia with ventricular septal defect, pulmonary atresia without ventricular septal defect, persistance


[0414] In one aspect, the invention provides a method for preventing in a subject, a disease or condition associated with an aberrant or unwanted 56294 or 56629 expression or activity, by administering to the subject 56294 or 56629 or an agent that modulates 56294 or 56629 expression or at least one 56294 or 56629 activity. Subjects at risk for a disease that is caused or contributed to by aberrant or unwanted 56294 or 56629 expression or activity can be identified by, for example, any or a combination of diagnostic or prognostic assays as described herein. Administration of a prophylactic agent can occur prior to the manifestation of symptoms characteristic of the 56294 or 56629 aberrance, such that a disease or disorder is prevented or, alternatively, delayed in its progression. Depending on the type of 56294 or 56629 aberrance, for example, a 56294 or 56629 agonist or 56294 or 56629 antagonist agent can be used for treating the subject. The appropriate agent can be determined based on screening assays described herein.


[0415] It is possible that some 56294 or 56629 disorders can be caused, at least in part, by an abnormal level of gene product, or by the presence of a gene product exhibiting abnormal activity. As such, the reduction in the level and/or activity of such gene products would bring about the amelioration of disorder symptoms.


[0416] As discussed above, successful treatment of 56294 or 56629 disorders can be brought about by techniques that serve to inhibit the expression or activity of target gene products. For example, compounds, e.g., an agent identified using assays described above, that exhibits negative modulatory activities, can be used in accordance with the invention to prevent and/or ameliorate symptoms of 56294 or 56629 disorders. Such molecules can include, but are not limited to peptides, phosphopeptides, small organic or inorganic molecules, or antibodies (including, for example, polyclonal, monoclonal, humanized, anti-idiotypic, chimeric or single chain antibodies, and Fab, F(ab′)2 and FAb expression library fragments, scFV molecules, and epitope-binding fragments thereof).


[0417] Further, antisense and ribozyme molecules that inhibit expression of the target gene can also be used in accordance with the invention to reduce the level of target gene expression, thus effectively reducing the level of target gene activity. Still further, triple helix molecules can be utilized in reducing the level of target gene activity. Antisense, ribozyme and triple helix molecules are discussed above.


[0418] It is possible that the use of antisense, ribozyme, and/or triple helix molecules to reduce or inhibit mutant gene expression can also reduce or inhibit the transcription (triple helix) and/or translation (antisense, ribozyme) of mRNA produced by normal target gene alleles, such that the concentration of normal target gene product present can be lower than is necessary for a normal phenotype. In such cases, nucleic acid molecules that encode and express target gene polypeptides exhibiting normal target gene activity can be introduced into cells via gene therapy method. Alternatively, in instances in which the target gene encodes an extracellular protein, it can be preferable to co-administer normal target gene protein into the cell or tissue in order to maintain the requisite level of cellular or tissue target gene activity.


[0419] Another method by which nucleic acid molecules may be utilized in treating or preventing a disease characterized by 56294 or 56629 expression is through the use of aptamer molecules specific for 56294 or 56629 protein. Aptamers are nucleic acid molecules having a tertiary structure that permits them to specifically bind to protein ligands (see, e.g., Osborne, et al. 1997 Curr. Opin. Chem Biol. 1(1): 5-9; and Patel, D. J. 1997 Curr Opin Chem Biol June;1(1):32-46). Since nucleic acid molecules may in many cases, be more conveniently introduced into target cells than therapeutic protein molecules, aptamers offer a method by which 56294 or 56629 protein activity may be specifically decreased without the introduction of drugs or other molecules which may have pluripotent effects.


[0420] Antibodies can be generated that are both specific for target gene products and that reduce target gene product activity. Such antibodies may, therefore, by administered in instances whereby negative modulatory techniques are appropriate for the treatment of 56294 or 56629 disorders. For a description of antibodies, see the Antibody section above.


[0421] In circumstances wherein injection of an animal or a human subject with a 56294 or 56629 protein or epitope for stimulating antibody production is harmful to the subject, it is possible to generate an immune response against 56294 or 56629 through the use of anti-idiotypic antibodies (see, for example, Herlyn, D. 1999 Ann Med 31(1):66-78; and Bhattacharya-Chatterjee, M., and Foon, K. A. 1998 Cancer Treat Res 94:51-68). If an anti-idiotypic antibody is introduced into a mammal or human subject, it should stimulate the production of anti-anti-idiotypic antibodies, which should be specific to the 56294 or 56629 protein. Vaccines directed to a disease characterized by 56294 or 56629 expression may also be generated in this fashion.


[0422] In instances where the target antigen is intracellular and whole antibodies are used, internalizing antibodies may be preferred. Lipofectin or liposomes can be used to deliver the antibody or a fragment of the Fab region that binds to the target antigen into cells. Where fragments of the antibody are used, the smallest inhibitory fragment that binds to the target antigen is preferred. For example, peptides having an amino acid sequence corresponding to the Fv region of the antibody can be used. Alternatively, single chain neutralizing antibodies that bind to intracellular target antigens can also be administered. Such single chain antibodies can be administered, for example, by expressing nucleotide sequences encoding single-chain antibodies within the target cell population (see e.g., Marasco et al. (1993) Proc. Natl. Acad. Sci. USA 90:7889-7893).


[0423] The identified compounds that inhibit target gene expression, synthesis and/or activity can be administered to a patient at therapeutically effective doses to prevent, treat or ameliorate 56294 or 56629 disorders. A therapeutically effective dose refers to that amount of the compound sufficient to result in amelioration of symptoms of the disorders.


[0424] Toxicity and therapeutic efficacy of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 and the ED50 as described above in the Pharmaceutical Composition section.


[0425] Another example of determination of effective dose for an individual is the ability to directly assay levels of “free” and “bound” compound in the serum of the test subject. Such assays may utilize antibody mimics and/or “biosensors” that have been created through molecular imprinting techniques. A compound that is able to modulate 56294 or 56629 activity is used as a template or “imprinting molecule,” to spatially organize polymerizable monomers prior to their polymerization with catalytic reagents. The subsequent removal of the imprinted molecule leaves a polymer matrix that contains a repeated “negative image” of the compound and is able to selectively rebind the molecule under biological assay conditions. A detailed review of this technique can be seen in Ansell, R. J. et al (1996) Current Opinion in Biotechnology 7:89-94 and in Shea, K. J. (1994) Trends in Polymer Science 2:166-173. Such “imprinted” affinity matrixes are amenable to ligand-binding assays, whereby the immobilized monoclonal antibody component is replaced by an appropriately imprinted matrix. An example of the use of such matrixes in this way can be seen in Vlatakis, G. et al (1993) Nature 361:645-647. Through the use of isotope-labeling, the “free” concentration of compound which modulates the expression or activity of 56294 or 56629 can be readily monitored and used in calculations of IC50.


[0426] Such “imprinted” affinity matrixes can also be designed to include fluorescent groups whose photon-emitting properties measurably change upon local and selective binding of target compound. These changes can be readily assayed in real time using appropriate fiberoptic devices, in turn allowing the dose in a test subject to be quickly optimized based on its individual IC50. A rudimentary example of such a “biosensor” is discussed in Kriz, D. et al (1995) Analytical Chemistry 67:2142-2144.


[0427] Another aspect of the invention pertains to methods of modulating 56294 or 56629 expression or activity for therapeutic purposes. Accordingly, in an exemplary embodiment, the modulatory method of the invention involves contacting a cell with 56294 or 56629 or agent that modulates one or more of the activities of 56294 or 56629 protein activity associated with the cell. An agent that modulates 56294 or 56629 protein activity can be an agent as described herein, such as a nucleic acid or a protein, a naturally-occurring target molecule of a 56294 or 56629 protein (e.g., a 56294 or 56629 substrate or receptor), a 56294 or 56629 antibody, a 56294 or 56629 agonist or antagonist, a peptidomimetic of a 56294 or 56629 agonist or antagonist, or other small molecule.


[0428] In one embodiment, the agent stimulates one or more 56294 or 56629 activities. Examples of such stimulatory agents include active 56294 or 56629 protein and a nucleic acid molecule encoding 56294 or 56629. In another embodiment, the agent inhibits one or more 56294 or 56629 activities. Examples of such inhibitory agents include antisense 56294 or 56629 nucleic acid molecules, anti-56294 or 56629 antibodies, and 56294 or 56629 inhibitors. These modulatory methods can be performed in vitro (e.g., by culturing the cell with the agent) or, alternatively, in vivo (e.g., by administering the agent to a subject). As such, the present invention provides methods of treating an individual afflicted with a disease or disorder characterized by aberrant or unwanted expression or activity of a 56294 or 56629 protein or nucleic acid molecule. In one embodiment, the method involves administering an agent (e.g., an agent identified by a screening assay described herein), or combination of agents that modulates (e.g., up-regulates or down-regulates) 56294 or 56629 expression or activity. In another embodiment, the method involves administering a 56294 or 56629 protein or nucleic acid molecule as therapy to compensate for reduced, aberrant, or unwanted 56294 or 56629 expression or activity.


[0429] Stimulation of 56294 or 56629 activity is desirable in situations in which 56294 or 56629 is abnormally down-regulated and/or in which increased 56294 or 56629 activity is likely to have a beneficial effect. For example, stimulation of 56294 or 56629 activity is desirable in situations in which a 56294 or 56629 is down-regulated and/or in which increased 56294 or 56629 activity is likely to have a beneficial effect. Likewise, inhibition of 56294 or 56629 activity is desirable in situations in which 56294 or 56629 is abnormally up-regulated and/or in which decreased 56294 or 56629 activity is likely to have a beneficial effect.


[0430] Pharmacogenomics


[0431] The 56294 or 56629 molecules of the present invention, as well as agents, or modulators which have a stimulatory or inhibitory effect on 56294 or 56629 activity (e.g., 56294 or 56629 gene expression) as identified by a screening assay described herein can be administered to individuals to treat (prophylactically or therapeutically) 56294 or 56629-associated disorders associated with aberrant or unwanted 56294 or 56629 activity (e.g., hyperproliferative disorders, e.g., cancer). In conjunction with such treatment, pharmacogenomics may be considered. “Pharmacogenomics,” as used herein, refers to the application of genomics technologies such as gene sequencing, statistical genetics, and gene expression analysis to drugs in clinical development and on the market. More specifically, the term refers the study of how a patient's genes determine his or her response to a drug (e.g., a patient's “drug response phenotype,” or “drug response genotype.”) Thus, another aspect of the invention provides methods for tailoring an individual's prophylactic or therapeutic treatment with either the 56294 or 56629 molecules of the present invention or 56294 or 56629 modulators according to that individual's drug response genotype.


[0432] Pharmacogenomics deals with clinically significant hereditary variations in the response to drugs due to altered drug disposition and abnormal action in affected persons. See, for example, Eichelbaum, M. et al. (1996) Clin. Exp. Pharmacol. Physiol. 23(10-11):983-985 and Linder, M. W. et al. (1997) Clin. Chem. 43(2):254-266. In general, two types of pharmacogenetic conditions can be differentiated. Genetic conditions transmitted as a single factor altering the way drugs act on the body (altered drug action) or genetic conditions transmitted as single factors altering the way the body acts on drugs (altered drug metabolism). These pharmacogenetic conditions can occur either as rare genetic defects or as naturally occurring polymorphisms.


[0433] Differences in metabolism of therapeutics can lead to severe toxicity or therapeutic failure by altering the relation between dose and blood concentration of the pharmacologically active drug. Thus, a physician or clinician may consider applying knowledge obtained in relevant pharmacogenomics studies in determining whether to administer a 44576 molecule or 44576 modulator as well as tailoring the dosage and/or therapeutic regimen of treatment with a 44576 molecule or 44576 modulator.


[0434] One pharmacogenomics approach to identifying genes that predict drug response, known as “a genome-wide association,” relies primarily on a high-resolution map of the human genome consisting of already known gene-related markers (e.g., a “bi-allelic” gene marker map which consists of 60,000-100,000 polymorphic or variable sites on the human genome, each of which has two variants.) Such a high-resolution genetic map can be compared to a map of the genome of each of a statistically significant number of patients taking part in a Phase II/III drug trial to identify markers associated with a particular observed drug response or side effect. Alternatively, such a high-resolution map can be generated from a combination of some ten-million known single nucleotide polymorphisms (SNPs) in the human genome. As used herein, a “SNP” is a common alteration that occurs in a single nucleotide base in a stretch of DNA. For example, a SNP may occur once per every 1000 bases of DNA. A SNP may be involved in a disease process, however, the vast majority may not be disease-associated. Given a genetic map based on the occurrence of such SNPs, individuals can be grouped into genetic categories depending on a particular pattern of SNPs in their individual genome. In such a manner, treatment regimens can be tailored to groups of genetically similar individuals, taking into account traits that may be common among such genetically similar individuals.


[0435] Alternatively, a method termed the “candidate gene approach,” can be utilized to identify genes that predict drug response. According to this method, if a gene that encodes a drug's target is known (e.g., a 56294 or 56629 protein of the present invention), all common variants of that gene can be fairly easily identified in the population and it can be determined if having one version of the gene versus another is associated with a particular drug response.


[0436] Alternatively, a method termed “gene expression profiling,” can be utilized to identify genes that predict drug response. For example, the gene expression of an animal dosed with a drug (e.g., a 56294 or 56629 molecule or 56294 or 56629 modulator of the present invention) can give an indication whether gene pathways related to toxicity have been turned on.


[0437] Information generated from more than one of the above pharmacogenomics approaches can be used to determine appropriate dosage and treatment regimens for prophylactic or therapeutic treatment of an individual. This knowledge, when applied to dosing or drug selection, can avoid adverse reactions or therapeutic failure and thus enhance therapeutic or prophylactic efficiency when treating a subject with a 56294 or 56629 molecule or 56294 or 56629 modulator, such as a modulator identified by one of the exemplary screening assays described herein.


[0438] The present invention further provides methods for identifying new agents, or combinations, that are based on identifying agents that modulate the activity of one or more of the gene products encoded by one or more of the 56294 or 56629 genes of the present invention, wherein these products may be associated with resistance of the cells to a therapeutic agent. Specifically, the activity of the proteins encoded by the 56294 or 56629 genes of the present invention can be used as a basis for identifying agents for overcoming agent resistance. By blocking the activity of one or more of the resistance proteins, target cells, e.g., cancer cells, will become sensitive to treatment with an agent that the unmodified target cells were resistant to.


[0439] Monitoring the influence of agents (e.g., drugs) on the expression or activity of a 56294 or 56629 protein can be applied in clinical trials. For example, the effectiveness of an agent determined by a screening assay as described herein to increase 56294 or 56629 gene expression, protein levels, or up-regulate 56294 or 56629 activity, can be monitored in clinical trials of subjects exhibiting decreased 56294 or 56629 gene expression, protein levels, or down-regulated 56294 or 56629 activity. Alternatively, the effectiveness of an agent determined by a screening assay to decrease 56294 or 56629 gene expression, protein levels, or down-regulate 56294 or 56629 activity, can be monitored in clinical trials of subjects exhibiting increased 56294 or 56629 gene expression, protein levels, or upregulated 56294 or 56629 activity. In such clinical trials, the expression or activity of a 56294 or 56629 gene, and preferably, other genes that have been implicated in, for example, a 56294 or 56629-associated disorder can be used as a “read out” or markers of the phenotype of a particular cell.


[0440] 56294 or 56629 Informatics


[0441] The sequence of a 56294 or 56629 molecule is provided in a variety of media to facilitate use thereof. A sequence can be provided as a manufacture, other than an isolated nucleic acid or amino acid molecule, which contains a 56294 or 56629. Such a manufacture can provide a nucleotide or amino acid sequence, e.g., an open reading frame, in a form which allows examination of the manufacture using means not directly applicable to examining the nucleotide or amino acid sequences, or a subset thereof, as they exists in nature or in purified form. The sequence information can include, but is not limited to, 56294 or 56629 full-length nucleotide and/or amino acid sequences, partial nucleotide and/or amino acid sequences, polymorphic sequences including single nucleotide polymorphisms (SNPs), epitope sequence, and the like. In a preferred embodiment, the manufacture is a machine-readable medium, e.g., a magnetic, optical, chemical or mechanical information storage device.


[0442] As used herein, “machine-readable media” refers to any medium that can be read and accessed directly by a machine, e.g., a digital computer or analogue computer. Non-limiting examples of a computer include a desktop PC, laptop, mainframe, server (e.g., a web server, network server, or server farm), handheld digital assistant, pager, mobile telephone, and the like. The computer can be stand-alone or connected to a communications network, e.g., a local area network (such as a VPN or intranet), a wide area network (e.g., an Extranet or the Internet), or a telephone network (e.g., a wireless, DSL, or ISDN network). Machine-readable media include, but are not limited to: magnetic storage media, such as floppy discs, hard disc storage medium, and magnetic tape; optical storage media such as CD-ROM; electrical storage media such as RAM, ROM, EPROM, EEPROM, flash memory, and the like; and hybrids of these categories such as magnetic/optical storage media.


[0443] A variety of data storage structures are available to a skilled artisan for creating a machine-readable medium having recorded thereon a nucleotide or amino acid sequence of the present invention. The choice of the data storage structure will generally be based on the means chosen to access the stored information. In addition, a variety of data processor programs and formats can be used to store the nucleotide sequence information of the present invention on computer readable medium. The sequence information can be represented in a word processing text file, formatted in commercially-available software such as WordPerfect and Microsoft Word, or represented in the form of an ASCII file, stored in a database application, such as DB2, Sybase, Oracle, or the like. The skilled artisan can readily adapt any number of data processor structuring formats (e.g., text file or database) in order to obtain computer readable medium having recorded thereon the nucleotide sequence information of the present invention.


[0444] In a preferred embodiment, the sequence information is stored in a relational database (such as Sybase or Oracle). The database can have a first table for storing sequence (nucleic acid and/or amino acid sequence) information. The sequence information can be stored in one field (e.g., a first column) of a table row and an identifier for the sequence can be store in another field (e.g., a second column) of the table row. The database can have a second table, e.g., storing annotations. The second table can have a field for the sequence identifier, a field for a descriptor or annotation text (e.g., the descriptor can refer to a functionality of the sequence, a field for the initial position in the sequence to which the annotation refers, and a field for the ultimate position in the sequence to which the annotation refers. Non-limiting examples for annotation to nucleic acid sequences include polymorphisms (e.g., SNP's) translational regulatory sites and splice junctions. Non-limiting examples for annotations to amino acid sequence include polypeptide domains, e.g., a domain described herein; active sites and other functional amino acids; and modification sites.


[0445] By providing the nucleotide or amino acid sequences of the invention in computer readable form, the skilled artisan can routinely access the sequence information for a variety of purposes. For example, one skilled in the art can use the nucleotide or amino acid sequences of the invention in computer readable form to compare a target sequence or target structural motif with the sequence information stored within the data storage means. A search is used to identify fragments or regions of the sequences of the invention which match a particular target sequence or target motif. The search can be a BLAST search or other routine sequence comparison, e.g., a search described herein.


[0446] Thus, in one aspect, the invention features a method of analyzing 56294 or 56629, e.g., analyzing structure, function, or relatedness to one or more other nucleic acid or amino acid sequences. The method includes: providing a 56294 or 56629 nucleic acid or amino acid sequence; comparing the 56294 or 56629 sequence with a second sequence, e.g., one or more preferably a plurality of sequences from a collection of sequences, e.g., a nucleic acid or protein sequence database to thereby analyze 56294 or 56629. The method can be performed in a machine, e.g., a computer, or manually by a skilled artisan.


[0447] The method can include evaluating the sequence identity between a 56294 or 56629 sequence and a database sequence. The method can be performed by accessing the database at a second site, e.g., over the Internet.


[0448] As used herein, a “target sequence” can be any DNA or amino acid sequence of six or more nucleotides or two or more amino acids. A skilled artisan can readily recognize that the longer a target sequence is, the less likely a target sequence will be present as a random occurrence in the database. Typical sequence lengths of a target sequence are from about 10 to 100 amino acids or from about 30 to 300 nucleotide residues. However, it is well recognized that commercially important fragments, such as sequence fragments involved in gene expression and protein processing, may be of shorter length.


[0449] Computer software is publicly available which allows a skilled artisan to access sequence information provided in a computer readable medium for analysis and comparison to other sequences. A variety of known algorithms are disclosed publicly and a variety of commercially available software for conducting search means are and can be used in the computer-based systems of the present invention. Examples of such software include, but are not limited to, MacPattern (EMBL), BLASTN and BLASTX (NCBI).


[0450] Thus, the invention features a method of making a computer readable record of a sequence of a 56294 or 56629 sequence which includes recording the sequence on a computer readable matrix. In a preferred embodiment the record includes one or more of the following: identification of an ORF; identification of a domain, region, or site; identification of the start of transcription; identification of the transcription terminator; the full length amino acid sequence of the protein, or a mature form thereof; the 5′ end of the translated region.


[0451] In another aspect, the invention features, a method of analyzing a sequence. The method includes: providing a 56294 or 56629 sequence, or record, in machine-readable form; comparing a second sequence to the 56294 or 56629 sequence; thereby analyzing a sequence. Comparison can include comparing to sequences for sequence identity or determining if one sequence is included within the other, e.g., determining if the 56294 or 56629 sequence includes a sequence being compared. In a preferred embodiment the 56294 or 56629 or second sequence is stored on a first computer, e.g., at a first site and the comparison is performed, read, or recorded on a second computer, e.g., at a second site. E.g., the 56294 or 56629 or second sequence can be stored in a public or proprietary database in one computer, and the results of the comparison performed, read, or recorded on a second computer. In a preferred embodiment the record includes one or more of the following: identification of an ORF; identification of a domain, region, or site; identification of the start of transcription; identification of the transcription terminator; the full length amino acid sequence of the protein, or a mature form thereof; the 5′ end of the translated region.


[0452] In another aspect, the invention provides a machine-readable medium for holding instructions for performing a method for determining whether a subject has a 56294 or 56629-associated disease or disorder or a pre-disposition to a 56294 or 56629-associated disease or disorder, wherein the method comprises the steps of determining 56294 or 56629 sequence information associated with the subject and based on the 56294 or 56629 sequence information, determining whether the subject has a 56294 or 56629-associated disease or disorder or a pre-disposition to a 56294 or 56629-associated disease or disorder and/or recommending a particular treatment for the disease, disorder or pre-disease condition.


[0453] The invention further provides in an electronic system and/or in a network, a method for determining whether a subject has a 56294 or 56629-associated disease or disorder or a pre-disposition to a disease associated with a 56294 or 56629 wherein the method comprises the steps of determining 56294 or 56629 sequence information associated with the subject, and based on the 56294 or 56629 sequence information, determining whether the subject has a 56294 or 56629-associated disease or disorder or a pre-disposition to a 56294 or 56629-associated disease or disorder, and/or recommending a particular treatment for the disease, disorder or pre-disease condition. In a preferred embodiment, the method further includes the step of receiving information, e.g., phenotypic or genotypic information, associated with the subject and/or acquiring from a network phenotypic information associated with the subject. The information can be stored in a database, e.g., a relational database. In another embodiment, the method further includes accessing the database, e.g., for records relating to other subjects, comparing the 56294 or 56629 sequence of the subject to the 56294 or 56629 sequences in the database to thereby determine whether the subject as a 56294 or 56629-associated disease or disorder, or a pre-disposition for such.


[0454] The present invention also provides in a network, a method for determining whether a subject has a 56294 or 56629 associated disease or disorder or a pre-disposition to a 56294 or 56629-associated disease or disorder associated with 56294 or 56629, said method comprising the steps of receiving 56294 or 56629 sequence information from the subject and/or information related thereto, receiving phenotypic information associated with the subject, acquiring information from the network corresponding to 56294 or 56629 and/or corresponding to a 56294 or 56629-associated disease or disorder (e.g., a cell proliferation or differentiation disorder, e.g., cancer, or another cell proliferation or differentiation disorder as described herein), and based on one or more of the phenotypic information, the 56294 or 56629 information (e.g., sequence information and/or information related thereto), and the acquired information, determining whether the subject has a 56294 or 56629-associated disease or disorder or a pre-disposition to a 56294 or 56629-associated disease or disorder. The method may further comprise the step of recommending a particular treatment for the disease, disorder or pre-disease condition.


[0455] The present invention also provides a method for determining whether a subject has a 56294 or 56629-associated disease or disorder or a pre-disposition to a 56294 or 56629-associated disease or disorder, said method comprising the steps of receiving information related 10448-092002 to 56294 or 56629 (e.g., sequence information and/or information related thereto), receiving phenotypic information associated with the subject, acquiring information from the network related to 56294 or 56629 and/or related to a 56294 or 56629-associated disease or disorder, and based on one or more of the phenotypic information, the 56294 or 56629 information, and the acquired information, determining whether the subject has a 56294 or 56629-associated disease or disorder or a pre-disposition to a 56294 or 56629-associated disease or disorder. The method may further comprise the step of recommending a particular treatment for the disease, disorder or pre-disease condition.


[0456] This invention is further illustrated by the following examples that should not be construed as limiting. The contents of all references, patents and published patent applications cited throughout this application are incorporated herein by reference.



EXAMPLES


Example 1


Identification and Characterization of Human 56294 or 56629 cDNA 56294

[0457] The human 56294 nucleic acid sequence is recited as follows.
1GCAGAATTCGGCTCAGAGCACGTGCTGAGTGTGACCATGGAATCTGGATATCCTTCAATA(SEQ ID NO:1)TTTCCTTGATAGTAGCATTGAGTCTGAATATCTGAAGAATAAGTATTCATAGATCCTTGATTGTACAAATAGATCATAAAATTATCTGCTAAAAAATATCTTTGTTTAAGGTGCACAGTGTACAGTTTCTCATCTATTGGAATAATATAGGATATTTGTTCATATTCTATTTCTGAACTGTCATTTGTATTTGTTTGGATTTTCTCTGGAATTACGATCTGTAGAAGTGAATTTTGAAAACCGGGTCTTGACGCCAGGAGGCCGCAGAGCCCGGCCAGCAGCAACCAGAGGCGGAACATGGTGCGGCTTCGGCGGACGCGTGGACCCACGCGTCCGCCCACGCGTCCGCGGACGCGTGGGCGGACGCGTGGGTGCTGGCAGCCCCGAAGCCGCACCATGTTCCGCCTCTGGTTGCTGCTGGCCGGGCTCTGCGGCCTCCTGGCGTCAAGACCCGGTTTTCAAAATTCACTTCTACAGATCGTAATTCCAGAGAAAATCCAAACAAATACAAATGACAGTTCAGAAATAGAATATGAACAAATATCCTATATTATTCCAATAGATGAGAAACTGTACACTGTGCACCTTAAACAAAGATATTTTTTAGCAGATAATTTTATGATCTATTTGTACAATCAAGGATCTATGAATACTTATTCTTCAGATATTCAGACTCAATGCTACTATCAAGGAAATATTGAAGGATATCCAGATTCCATGGTCACACTCAGCACGTGCTCTGGACTAAGAGGAATACTGCAATTTGAAAATGTTTCTTATGGAATTGAGCCTCTGGAATCTGCAGTTGAATTTCAGCATGTTCTTTACAAATTAAAGAATGAAGACAATGATATTGCAATTTTTATTGACAGAAGCCTGAAAGAACAACCAATGGATGACAACATTTTTATAAGTGAAAAATCAGAACCAGCTGTTCCAGATTTATTTCCTCTTTATCTAGAAATGCATATTGTGGTGGACAAAACTTTGTATGATTACTGGGGCTCTGATAGCATGATAGTAACAAATAAAGTCATCGAAATTGTTGGCCTTGCAAATTCAATGTTCACCCAATTTAAAGTTACTATTGTGCTGTCATCATTGGAGTTATGGTCAGATGAAAATAAGATTTCTACAGTTGGTGAGGCAGATGAATTATTGCAAAAATTTTTAGAATGGAAACAATCTTATCTTAACCTAAGGCCTCATGATATTGCATATCTACTAATTTATATGGATTATCCTCGTTATTTGGGAGCAGTGTTTCCTGGAACAATGTGTATTACTCGTTATTCTGCAGGAGTTGCATTGTACCCCAAGGAGATAACTCTGGAGGCATTTGCAGTTATTGTCACCCAGATGCTGGCACTCAGTCTGGGAATATCATATGACGACCCAAAGAAATGTCAATGTTCAGAATCCACCTGTATAATGAATCCAGAAGTTGTGCAATCCAATGGTGTGAAGACTTTTAGCAGTTGCAGTTTGAGGAGCTTTCAAAATTTCATTTCAAATGTGGGTGTCAAATGTCTTCAGAATAACACGCGTCCGCAAAAAAAATCTCCGAAACCAGTCTGTGGCAATGGCAGATTGGAGGGAAATGAAATCTGTGATTGTGGTACTGAGGCTCAATGTGGACCTGCAAGCTGTTGTGATTTTCGAACTTGTGTACTGAAAGACGGAGCAAAATGTTATAAAGGACTGTGCTGCAAAGACTGTCAAATTTTACAATCAGGCGTTGAATGTAGGCCGAAAGCACATCCTGAATGTGACATCGCTGAAAATTGTAATGGAAGCTCACCAGAATGTGGTCCTGACATAACTTTAATCAATGGACTTTCATGCAAAAATAATAAGTTTATTTGTTATGACGGAGACTGCCATGATCTCGATGCACGTTGTGAGAGTGTATTTGGAAAAGGTTCAAGAAATGCTCCATTTGCCTGCTATGAAGAAATACAATCTCAATCAGACAGATTTGGGAACTGTGGTAGGGATAGAAATAACAAATATGTGTTCTGTGGATGGAGGAATCTTATATGTGGAAGATTAGTTTGTACCTACCCTACTCGAAAGCCTTTCCATCAAGAAAATGGTGATGTGATTTATGCTTTCGTACGAGATTCTGTATGCATAACTGTAGACTACAAATTGCCTCGAACAGTTCCAGATCCACTGGCTGTCAAAAATGGCTCTCAGTGTGATATTGGGAGGGTTTGTGTAAATCGTGAATGTGTAGAATCAAGGATAATTAAGGCTTCAGCACATGTTTGTTCACAACAGTGTTCTGGACATGGAGTGTGTGATTCCAGAAACAAGTGCCATTGTTCGCCAGGCTATAAGCCTCCAAACTGCCAAATACGTTCCAAAGGATTTTCCATATTTCCTGAGGAAGATATGGGTTCAATCATGGAAAGAGCATCTGGGAAGACTGAAAACACCTGGCTTCTAGGTTTCCTCATTGCTCTTCCTATTCTCATTGTAACAACCGCAATAGTTTTGGCAAGGAAACAGTTGAAAAAGTGGTTCGCCAAGGAAGAGGAATTCCCAAGTAGCGAATCTAAATCGGAAGGTAGCACACAGACATATGCCAGCCAATCCAGCTCAGAAGGCAGCACTCAGACATATGCCAGCCAAACAAGATCAGAAAGCAGCAGTCAAGCTGATACTAGCAAATCCAAATCAGAAGATAGTGCTGAAGCATATACTAGCAGATCCAAATCACAGGACAGTACCCAAACACAAAGCAGTAGTAACTAGTGATTCCTTCAGAAGGCAACGGATAACATCGAGAGTCTCGCTAAGAAATGAAAATTCTGTCTTTCCTTCCGTGGTCACAGCTGAAAGAAACAATAAATTGAGTGTGGATCAATTTGAAAAAAAAAAAAAAAAGGCGGCCGCTAGAC


[0458] The human 56294 sequence (SEQ ID NO:1), is approximately 2967 nucleotides long including untranslated regions. The nucleic acid sequence includes a preferred initiation codon (ATG) and a termination codon (TAG) which are double underlined and bolded above. Other methionine residues may also be used as initiation codons. The region between and inclusive of the preferred initiation codon and the termination codon is a methionine-initiated coding sequence designated as SEQ ID NO:3 (nucleotides 358-2817 of SEQ ID NO:1). The coding sequence encodes an 820 amino acid protein as follows.
2MVRLRRTRGPTRPPTRPRTRGRTRGCWQPRSRTMFRLWLLLAGLCGLLASRPGFQNSLLQ(SEQ ID NO:2).IVIPEKIQTNTNDSSEIEYEQISYIIPIDEKLYTVHLKQRYFLADNFMIYLYNQGSMNTYSSDIQTQCYYQGNIEGYPDSMVTLSTCSGLRGILQFENVSYGIEPLESAVEFQHVLYKLKNEDNDTATFIDRSLKEQPMDDNIFISEKSEPAVPDLFPLYLEMHIVVDKTLYDYWGSDSMIVTNKVIEIVGLANSMFTQFKVTIVLSSLELWSDENKISTVGEADELLQKFLEWKQSYLNLRPHDIAYLLIYMDYPRYLGAVFFGTNCITRYSAGVALYPKEITLEAFAVIVTQMLALSLGISYDDPKKCQCSESTCIMNPEVVQSNGVKTFSSCSLRSFQNFISNVGVKCLQNNTRPQKKSPKPVCGNCRLEGNEICDCGTEAQCGPASCCDFRTCVLKDGAKCYKGLCCKDCQILQSGVECRPKAHPECDIAENCNGSSPECGPDITLINGLSCKNWKFICYDGDCHDLDARCESVFGKGSRNAPFACYEEIQSQSDRFGNCGRDRNNKYVFCGWRNLICGRLVCTYPTRKPFHQENGDVIYAFVRDSVCITVDYKLPRTVPDPLAVKNGSQCDIGRVCVNRECVESRIIKASAHVCSQQCSGHGVCDSRNKCHCSPGYKPPNCQIRSKGFSIFPEEDMGSIMEPASGKTENTWLLGFLIALPILIVTTAIVLARKQLKKWFAKEEEFPSSESKSEGSTQTYASQSSSEGSTQTYASQTRSESSSQADTSKSKSEDSAEAYTSRSKSQDSTQTQSSSN


[0459] 56629


[0460] The human 56629 nucleic acid sequence is recited as follows.
3ACTATAGGGGCGAATNGGAGCTCCCCGCGGTGGCGGCCGCCCGGGCAGGTACCATTATGA(SEQ ID NO:4)AGAGTATGCCAATTTTATTAAGGTCCCACAAACTCAGTGTTACCTGACTTAAGGTATTTTCTCTCTAAAGAAATAAGGGCATAAATATATTGTTCTTAAATATCTTAAATTAAAATGTTCTAATGTGGAAAAGCCATCTTTCTGTGACACTCTCTGCCTCTCTTTCTTCCTCTCCCCTTCTCTCTCACACACCTATATGCACACACACTCCACACTCACAAAAGCATATAATTCCAACAAAACAAGGCAAAATATTGACCAAACCACTGAATAACATTCACTCGACCAACCTTATAAAGCAGTGGCAATTTTCCTAATTTCAGGAGTGCGATCTGATTTGTTACGTTTTTTATTTTCCTAATCCTTTTTAAATCATCTGCCATTCCATAACTCACATCGATGACTTCAGCCTTGAGAGTTCCTTTGGCAGAATAGGCTGCATATGAATAGAGCAGGTCTTGGCTGCTATCTTTTCTGGCTTCTTCACTGCAAGGCTGGCCATTAGGATGAAAGCATTGACCACTGCTGCTCAGAGTCACAGTGCTGQGAGAAGGGCCTGGCAGATCAAGCAGCACAGAGTAATTTACAAACTGTACATCTTCTAGGCCCAAAGAGGTCCACTGAGTCTTAATCCCCACGCGTCCGCGGACGCGTGGGGATTAAGACTCAGTGGACCTYTTTGGGCCTAGAAGATGTACAGTTTGTAAATTACTCTGTGCTGCTTGATCTGCCAGGCCCTTCTCCCAGCACTGTGACTCTGAGCAGCAGTGGTCAATGCTTTCATCCTAATGGCCAGCCTTGCAGTGAAGAAGCCAGAAAAGATAGCAGCCAAGACCTGCTCTATTCATATGCAGCCTATTCTGCCAAAGGAACTCTCAAGGCTGAAGTCATCGATGTGAGTTATGGAATGGCAGATGATTTAAAAAGGATTAGGAAAATAAAAAACGTAACAAATCAGATCGCACTCCTGAAATTAGGAAAATTGCCACTGCTTTATAAGCTTTCCTCATTGGAAAAGGCTGGATTTGGAGGTGTTCTTCTGTATATCGATCCTTGTGATTTGCCAAAGACTGTGAATCCTAGCCATGATACCTTCATGGTGTCACTGAATCCAGGAGGAGACCCTTCTACGCCTGGTTACCCAAGTGTCGATGAAAGTTTTAGACAAAGCCGATCAAACCTCACCTCTCTATTAGTGCAGCCCATCTCTGCATCCCTCGTTGCAAAACTGATCTCTTCGCCAAAAGCTAGAACCAAAAATGAAGCGTGTAGCTCTCTAGAGCTTCCAAATAATGAAATAAGAGTCGTCAGCATGCAAGTTCAGACAGTCACAAAATTGAAAACAGTTACTAATGTTGTTGGATTTGTAATGGGCTTGACATCTCCAGACCGGTATATCATAGTTGGCAGCCATCATCACACTGCACACAGTTACAATGGACAAGAATGGGCCAGTAGTACTGCAATAATCACAGCGTTTATCCGTGCCTTGATGTCAAAAGTTAAGAGAGGGTGGAGACCAGACCGAACTATTGTTTTCTGTTCTTGGGGAGGAACAGCTTTTGGCAATATTGGCTCATATGAATGGGGAGAGGATTTCAAGAAGGTTCTTCAAAAAAATGTTGTGGCTTATATTAGCCTCCACAGTCCCATAAGGGGGAACTCTAGTCTGTATCCTGTAGCATCACCATCTCTTCAGCAACTGGTAGTAGAGAAAAATAATTTCAACTGTACCAGAAGAGCCCAGTGCCCAGAAACCAATATCAGTTCTATACAGATACAAGGTGATGCTGATTATTTCATCAACCATCTTGGAGTTCCCATCGTGCAGTTTGCTTACGAGGACATCAAAACATTAGAGGGTCCAAGTTTTCTCTCCGAGGCCCGTTTTTCTACACGAGCAACAAAAATTGAAGAAATGGATCCCTCTTTCAACCTTCATGAAACCATTACTAAGCTCTCAGGAGAAGTGATTTTGCAAATTGCCAACGAACCTGTTCTGCCCTTTAATGCACTTGATATAGCTTTAGAAGTTCAAAACAACCTTAAAGGTGATCAACCCAACACTCATCAACTGTTAGCCATGGCGTCACGCCTGCGGGAGAGTGCTGAACTTTTTCAGTCTGATGAGATGCGACCTGCTAATGATCCCAAGGAGAGAGCACCCATCCGCATCCGGATGCTGAATGACATTCTCCAAGACATGGAGAAAAGCTTTCTGGTAAAGCAGGCACCACCAGGTTTTTATAGAAACATCCTCTACCACCPTGATGAAAAGACAAGCCGGTTTTCAATACTTATAGAGGCTTGGGAACACTGCAAACCCCTTGCATCAAATGAGACCCTTCAAGAAGCCCTGTCAGAGGTGTTGAACAGCATTAATTCAGCTCAGGTTTACTTCAAAGCAGGACTTGATGTGTTCAAGAGTGTCTTGGATGGAAGAATTGAGAACAGTCTGAGCATTTTTAAAAGTTTGCTTACAATTCCACAAGCAAAAGCTCTAATTTAACCAGATTTTCTGACATTGAAGGCTTATTTTCCCCCATGGCTTTTTGACAAGTATAAAGCTATTATTACATTATATTTTTTAAATGTAAATATAAAAAGAACATTTTGCACATTTAATATTTTTTGTATCTACATTTCTGACTATGTAAAGCAAGTTATTGAAATAGGACTTAAGAATTACCTATTAAAAAGAAATCTGATATTTTATATATAAATACACACACACACACATACACACACACTATTTTAAGGAAAAATTTCCAAGAAGTTCTGGACTATCTTTGTTCCTATGGGGAGGGCATATAGGAACACAGTTTATTCTCTCTGATAGAGCTATTAATGACTTAGTTTCTGTAAAAGAAATGGAGAGTTGATATGGTTCAGATTAACTTCACTATTAAGTGTTCAATATGAAGAATTCAAGTATTCTGACTGAGTGATTGGTTGACCTAAACCACTTTGAATGTTTCTATTTTATGAAATGAAGTTTCTCTTCTTAACACAACTAGATGTAGTAATACACTGGTTATGAAATTGTATTTTTTTAAGTATTAATGAAAAAAGAGCCATAAGCATTCCAGGAGAAAATCTCAAGGGAGCTACATAGAGCAATTTAAATGCAAATTTTTTTCCTAACAACTTACAAGGTGACTAGCTTTGAAACCCCTAATTTGCCTCAGTTGATTTTCTAAGAATTTCAOGAGTGATGTATGTCTTAAGAGGGAGAAAAAAATATTTCTTATTACTTTTTCTCTTGTTTCTGTTGGAAACACTGAAGCAGGGACTCTAAAATGAAAGCATCTCACATTGGTTTTCTTTCTTGTATCTTTTCTGAAACTCCTTGCTGTAAGGCAGCTTTCTCAGAGTACTATATATTTTCAACAGTAAAGTAGCAGAGTTTCTCTTTGAAACCCAAAATGTCTTCTAAAGAATCAAATTTCTATTTCTGCCTCTGACAAAAAGAACTTACTATGAAAGAAATAGTTGTTTTATCAATAAAAGCCCCTTAATATTATGAAAAAAAAAAAAAAAAAAAA


[0461] The human 56629 sequence (SEQ ID NO:4), which is approximately 3605 nucleotides long including untranslated regions. The nucleic acid sequence includes a preferred initiation codon (ATG) and a termination codon (TAA) which are double underlined and bolded above. Other methionine residues may also be used as initiation codons. The region between and inclusive of the preferred initiation codon is a methionine-initiated coding sequence designated as SEQ ID NO:6 (nucleotides 968-2566 of SEQ ID NO:4). The coding sequence encodes a 533 amino acid protein (SEQ ID NO:5), as follows.
4MADDLKRIRKIKNVTNQIALLKLGKLPLLYKLSSLEKAGFGGVLLYIDPCDLPKTVNPSH(SEQ ID NO:5)DTFMVSLNPGGDPSTPGYPSVDESFRQSRSNLTSLLVQPISASLVAKLISSPKARTKNEACSSLELPNNEIRVVSMQVQTVTKLKTVTNVVGFVMGLTSPDRYIIVGSHHHTAHSYNGQEWASSTAIITAFIRALMSKVKRGWRPDRTIVFCSWGGTAFGNIGSYEWGEDFKKVLQKNVVAYISLHSPIRGNSSLYPVASPSLQQLVVEKNNFNCTRRAQCPETNISSIQIQGDADYFINHLGVPIVQFAYEDIKTLEGPSFLSEARFSTRATKIEEMDRSFNLHETITKLSGEVILQIANEPVLPFNALDIALEVQNNLKGDQPNTHQLLAMASRLRESAELFQSDEMRPANDPKERAPIRIRMLNDILQDNBKSFLVKQAPPGFYRNILYHLDEKTSRFSILIEAWEHCKPLASNETLQEALSEVLNSINSAQVYFKAGLDVFKSVLDGRIENSLSIFKSLLTIPQAKALI



Example 2


Tissue Distribution of 56294 or 56629 mRNA

[0462] Endogenous human 56294 gene expression was determined using the Perkin-Elmer/ABI 7700 Sequence Detection System which employs TaqMan technology. Briefly, TaqMan technology relies on standard RT-PCR with the addition of a third gene-specific oligonucleotide (referred to as a probe) which has a fluorescent dye coupled to its 5′ end (typically 6-FAM) and a quenching dye at the 3′ end (typically TAMRA). When the fluorescently tagged oligonucleotide is intact, the fluorescent signal from the 5′ dye is quenched. As PCR proceeds, the 5′ to 3′ nucleolytic activity of Taq polymerase digests the labeled primer, producing a free nucleotide labeled with 6-FAM, which is now detected as a fluorescent signal. The PCR cycle where fluorescence is first released and detected is directly proportional to the starting amount of the gene of interest in the test sample, thus providing a way of quantitating the initial template concentration. Samples can be internally controlled by the addition of a second set of primers/probe specific for a housekeeping gene such as GAPDH which has been labeled with a different fluorophore on the 5′ end (typically VIC).


[0463] To determine the level of 56294 in various human tissues a primer/probe set was designed using Primer Express (Perkin-Elmer) software and primary cDNA sequence information. Total RNA was prepared from a series of human tissues using an RNeasy kit from Qiagen. First strand cDNA was prepared from 1 μg total RNA using an oligo-dT primer and Superscript II reverse transcriptase (Gibco/BRL). cDNA obtained from approximately 50 ng total RNA was used per TaqMan reaction.


[0464] Table 1 shows relative 56294 mRNA expression on mRNA derived from human tissue samples, both normal and tumor. The highest 56294 mRNA expression was observed in normal brain cortex and normal hypothalamus. Lower levels of expression were detected in cardiovascular tissues, e.g., endothelial cells, pancreas, and normal and cancerous breast.
5TABLE 1Tissue distribution of 56294 mRNATissue TypeExpressionArtery normal7.8396Aorta diseased5.1187Vein normal6.1296Coronary SMC10.0268HUVEC29.5643Hemangioma7.5464Heart normal4.7265Heart CHF3.472Kidney3.4006Skeletal Muscle0Adipose normal4.8426Pancreas16.12primary osteoblasts0.6095Osteoclasts (diff)0.0427Skin normal3.0121Spinal cord normal7.5989Brain Cortex normal146.6044Brain Hypothalamus normal43.8889Nerve4.4253DRG (Dorsal Root Ganglion)6.1084Breast normal16.4018Breast tumor12.5602Ovary normal5.6796Ovary Tumor11.3986Prostate Normal4.2157Prostate Tumor5.2082Salivary glands4.4253Colon normal0.9698Colon Tumor22.4056Lung normal1.1025Lung tumor2.1225Lung COPD0.2536Colon IBD0.3513Liver normal0Liver fibrosis0.5648Spleen normal4.0161Tonsil normal0.0543Lymph node normal0.3016Small intestine normal0.1969Macrophages0Synovium0.8955BM-MNC0Activated PBMC0Neutrophils0Megakaryocytes0.1492Erythroid0


[0465] Taqman and Northern blot hybridizations with various RNA samples can be performed for either 56294 or 56629 under standard conditions and washed under stringent conditions, i.e., 0.2× SSC at 65° C. A DNA probe corresponding to all or a portion of the 56638 cDNA (SEQ ID NO:1) can be used. The DNA can be radioactively labeled with 32P-dCTP using the Prime-It Kit (Stratagene, La Jolla, Calif.) according to the instructions of the supplier. Filters containing mRNA from mouse hematopoietic and endocrine tissues, and cancer cell lines (Clontech, Palo Alto, Calif.) can be probed in ExpressHyb hybridization solution (Clontech) and washed at high stringency according to manufacturer's recommendations.



Example 3


Recombinant Expression of 56294 or 56629 in Bacterial Cells

[0466] In this example, 56294 or 56629 is expressed as a recombinant glutathione-S-transferase (GST) fusion polypeptide in E. coli and the fusion polypeptide is isolated and characterized. Specifically, 56294 or 56629 is fused to GST and this fusion polypeptide is expressed in E. coli, e.g., strain PEBl99. Expression of the GST-56294 or 56629 fusion protein in PEB199 is induced with IPTG. The recombinant fusion polypeptide is purified from crude bacterial lysates of the induced PEB199 strain by affinity chromatography on glutathione beads. Using polyacrylamide gel electrophoretic analysis of the polypeptide purified from the bacterial lysates, the molecular weight of the resultant fusion polypeptide is determined.



Example 4


Expression of Recombinant 56294 or 56629 Protein in COS Cells

[0467] To express the 56294 or 56629 gene in COS cells, the pcDNA/Amp vector by Invitrogen Corporation (San Diego, Calif.) is used. This vector contains an SV40 origin of replication, an ampicillin resistance gene, an E. coli replication origin, a CMV promoter followed by a polylinker region, and an SV40 intron and polyadenylation site. A DNA fragment encoding the entire 56294 or 56629 protein and an HA tag (Wilson et al. (1984) Cell 37:767) or a FLAG tag fused in-frame to its 3′ end of the fragment is cloned into the polylinker region of the vector, thereby placing the expression of the recombinant protein under the control of the CMV promoter.


[0468] To construct the plasmid, the 56294 or 56629 DNA sequence is amplified by PCR using two primers. The 5′ primer contains the restriction site of interest followed by approximately twenty nucleotides of the 56294 or 56629 coding sequence starting from the initiation codon; the 3′ end sequence contains complementary sequences to the other restriction site of interest, a translation stop codon, the HA tag or FLAG tag and the last 20 nucleotides of the 56294 or 56629 coding sequence. The PCR amplified fragment and the pCDNA/Amp vector are digested with the appropriate restriction enzymes and the vector is dephosphorylated using the CIAP enzyme (New England Biolabs, Beverly, Mass.). Preferably the two restriction sites chosen are different so that the 56294 or 56629 gene is inserted in the correct orientation. The ligation mixture is transformed into E. coli cells (strains HB101, DH5 a, SURE, available from Stratagene Cloning Systems, La Jolla, Calif., can be used), the transformed culture is plated on ampicillin media plates, and resistant colonies are selected. Plasmid DNA is isolated from transformants and examined by restriction analysis for the presence of the correct fragment.


[0469] COS cells are subsequently transfected with the 56294 or 56629-pcDNA/Amp plasmid DNA using the calcium phosphate or calcium chloride co-precipitation methods, DEAE-dextran-mediated transfection, lipofection, or electroporation. Other suitable methods for transfecting host cells can be found in Sambrook, J., Fritsh, E. F., and Maniatis, T. Molecular Cloning: A Laboratory Manual. 2nd, ed., Cold Spring Harbor Laboratory, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989. The expression of the 56294, 56629, and 56294 or 56229 polypeptide is detected by radiolabelling (35S-methionine or 35S-cysteine available from NEN, Boston, MA, can be used) and immunoprecipitation (Harlow, E. and Lane, D. Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1988) using an HA specific monoclonal antibody. Briefly, the cells are labeled for 8 hours with 35S-methionine (or 35S-cysteine). The culture media are then collected and the cells are lysed using detergents (RIPA buffer, 150 mM NaCl, 1% NP-40, 0.1% SDS, 0.5% DOC, 50 mM Tris, pH 7.5). Both the cell lysate and the culture media are precipitated with an HA specific monoclonal antibody. Precipitated polypeptides are then analyzed by SDS-PAGE.


[0470] Alternatively, DNA containing the 56294 or 56629 coding sequence is cloned directly into the polylinker of the pCDNA/Amp vector using the appropriate restriction sites. The resulting plasmid is transfected into COS cells in the manner described above, and the expression of the 56294 or 56629 polypeptide is detected by radiolabelling and immunoprecipitation using a 56294 or 56629 specific monoclonal antibody.


[0471] Equivalents


[0472] Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims.


Claims
  • 1. An isolated nucleic acid molecule selected from the group consisting of: a) a nucleic acid comprising the nucleotide sequence of SEQ ID NO: 1, 3, 4 or 6; and b) a nucleic acid molecule which encodes a polypeptide comprising the amino acid sequence of SEQ ID NO:2 or 5.
  • 2. The nucleic acid molecule of claim 1 further comprising vector nucleic acid sequences.
  • 3. The nucleic acid molecule of claim 1 further comprising nucleic acid sequences encoding a heterologous polypeptide.
  • 4. A host cell which contains the nucleic acid molecule of claim 1.
  • 5. An isolated polypeptide comprising the amino acid sequence of SEQ ID NO:2 or 5.
  • 6. The polypeptide of claim 5 further comprising heterologous amino acid sequences.
  • 7. An antibody or antigen-binding fragment thereof which selectively binds to a polypeptide of claim 5.
  • 8. A method for producing a polypeptide comprising the amino acid sequence of SEQ ID NO:2 or 5, the method comprising culturing the host cell of claim 4 under conditions in which the nucleic acid molecule is expressed.
  • 9. A method for detecting the presence of a polypeptide of claim 5 in a sample, comprising: a) contacting the sample with a compound which selectively binds to a polypeptide of claim 8; and b) determining whether the compound binds to the polypeptide in the sample.
  • 10. The method of claim 9, wherein the compound which binds to the polypeptide is an antibody.
  • 11. A kit comprising a compound which selectively binds to a polypeptide of claim 5 and instructions for use.
  • 12. A method for detecting the presence of a nucleic acid molecule of claim 1 in a sample, comprising the steps of: a) contacting the sample with a nucleic acid probe or primer which selectively hybridizes to the nucleic acid molecule; and b) determining whether the nucleic acid probe or primer binds to a nucleic acid molecule in the sample.
  • 13. The method of claim 12, wherein the sample comprises mRNA molecules and is contacted with a nucleic acid probe.
  • 14. A kit comprising a compound which selectively hybridizes to a nucleic acid molecule of claim 1 and instructions for use.
  • 15. A method for identifying a compound which binds to a polypeptide of claim 5 comprising the steps of: a) contacting a polypeptide, or a cell expressing a polypeptide of claim 5 with a test compound; and b) determining whether the polypeptide binds to the test compound.
  • 16. A method for modulating the activity of a polypeptide of claim 5, comprising contacting a polypeptide or a cell expressing a polypeptide of claim 5 with a compound which binds to the polypeptide in a sufficient concentration to modulate the activity of the polypeptide.
  • 17. A method of inhibiting aberrant activity of a 56294 or 56629-expressing cell, comprising contacting a 56294 or 56629-expressing cell with a compound that modulates the activity or expression of a polypeptide of claim 5, in an amount which is effective to reduce or inhibit the aberrant activity of the cell.
  • 18. The method of claim 17, wherein the compound is selected from the group consisting of a peptide, a phosphopeptide, a small organic molecule, and an antibody.
  • 19. The method of claim 17, wherein the cell is located in a cancerous or pre-cancerous tissue.
  • 20. A method of treating or preventing a disorder characterized by aberrant activity of a 56294 or 56629-expressing cell, in a subject, comprising: administering to the subject an effective amount of a compound that modulates the activity or expression of a nucleic acid molecule of claim 1, such that the aberrant activity of the 56294 or 56629-expressing cell is reduced or inhibited.
RELATED APPLICATIONS

[0001] This application claims priority to U.S. provisional application No. 60/235,035 filed on Sep. 25, 2000, the contents of which are incorporated herein by reference.

Provisional Applications (1)
Number Date Country
60235035 Sep 2000 US