911 data messaging

Information

  • Patent Grant
  • 9408046
  • Patent Number
    9,408,046
  • Date Filed
    Wednesday, June 20, 2007
    17 years ago
  • Date Issued
    Tuesday, August 2, 2016
    8 years ago
Abstract
A short messaging system (SMS) emergency services 911 system (SMS E911). Excess non-voice capacity is used to establish a Short Message Service (SMS) capability for generating an emergency 911 “equivalent” call, together with location information required by emergency services and to meet Federal 911 requirements. 911 requests for emergency assistance are delivered using non-voice centric sources such as SMS, email, and/or autonomous data/message generation devices. SMS 911 capability enables SMS savvy consumers to generate requests for emergency assistance to the local Public Safety Answering Point (PSAP). The SMS 911 emergency services request can be understood by an otherwise conventional PSAP, including provision of location information, and translated to provide first responders with the emergency services information they need to offer timely assistance.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


This invention relates generally to telecommunications. More particularly, it relates to location based services (LBS) and wireless emergency services such as E911, and short messaging system (SMS) messaging.


2. Background of the Related Art


9-1-1 is a phone number widely recognized in North America as an emergency phone number that is used to contact emergency dispatch personnel. Enhanced 9-1-1 (E9-1-1) is defined by an emergency call being selectively routed to an appropriate PSAP, based on a special identifier (P-ANI, or “Pseudo Automatic Number Identifier”, also referred to as “ESxK”), and includes the transmission of callback number and location information when 9-1-1 is used. E9-1-1 may be implemented for landline, cellular or VoIP networks. A Public Service Answering Point (PSAP) is a dispatch office that receives 9-1-1 calls from the public. A PSAP may be a local, fire or police department, an ambulance service or a regional office covering all services. As used herein, the term “PSAP” refers to either a public safety access point (PSAP), or to an Emergency Call Center (ECC), a VoIP term.


Regardless of the network type, a 9-1-1 service becomes E-9-1-1 when automatic number identification and automatic location information related to the call is provided to the 9-1-1 operator at the PSAP. A primary challenge results from the fact that calls may arrive at the PSAP without the caller's actual callback number or location information displayed at the emergency operator's terminal.


The current 911 infrastructure is designed to route a live voice call to a local public safety answering point (PSAP). This requires that voice circuits be available. The result of an E911 call is a direct circuit switched voice connection between an emergency service requester and a suitable responder. 911 is further enhanced with the ability to deliver location over a data channel in parallel to the call. The location data is typically staged in a database that is queried by the PSAP to determine location information.



FIG. 7 shows a conventional landline public safety access point (PSAP) to automatic location identifier (ALI) connection.


In particular, FIG. 7 shows a PSAP 400 connected to one Automatic Location Identifier (ALI) database 401. Upon receiving a 9-1-1 call, the PSAP 400 queries the ALI 401 for location data. The ALI database 401 accepts the query from the PSAP 400 for location. The query includes the telephone number of an emergency caller. The ALI database 401 relates the received telephone number to a physical street address and provides that street address (location information) back to the PSAP 400 in a manner that works for the customer premise equipment (CPE) display at the PSAP 400.


An ALI is typically owned by a local exchange carrier (LEC) or a PSAP, and may be regional (i.e. connected to many PSAPs) or standalone (i.e. connected to only one PSAP). There is currently no one single standard interface protocol for PSAP-ALI connection/communication.



FIG. 8 shows a context diagram for a conventional non-landline positioning center (e.g., an Internet based voice over Internet Protocol (VoIP) positioning center).


In particular, the ALI database 401 includes a conventional emergency services key (ESQK or ESRK) in a location request sent to an appropriate positioning center 402 (XPC). The emergency services key (ESQK or ESRK) is used by the positioning center 402 as a key to look up the location and other call information associated with the emergency call.


In non-landline telephony, the PSAPs 400 query the ALI 401 for location information. However, the ALI 401 is not pre-provisioned with location data for non-landline calls (e.g. cellular, VoIP etc) and must communicate with other network entities to obtain and deliver location data to the PSAP 400.


Non-landline telephony standards (e.g. cellular, VoIP etc) have mandated that ALIs 401 maintain connectivity to a positioning center 402 that is able to provide current location data for a non-landline call. In the current state of technology, the positioning center 402 provides the caller's location and the callback number to the ALI, which passes it to the requesting PSAP. As can be seen in FIG. 8, an ALI may maintain connectivity to more than one positioning center via multiple interface types—both standard and non-standard (e.g. NENA-02, E2/E2+N-E2(ESP), PAM, etc.).


As used herein, the generic term “XPC” refers interchangeably to any standards-based positioning center. As examples, a positioning center 402 may be any one of the following types used in non-landline networks:

    • GMLC (Gateway Mobile Location Center): The positioning center that retrieves, forwards, stores and controls emergency position data within the GSM location network.
    • MPC (Mobile Position Center): The positioning center that retrieves, forwards, stores and controls emergency position data within the ANSI location network.
    • VPC (VoIP Positioning Center): The positioning center which retrieves, forwards, stores and controls emergency position data within the VoIP location network.


The term “XPC network” is used herein when appropriate to refer to any non-landline network where a positioning center 402 responds to ALI queries including an emergency services key for location, e.g., cellular, VoIP etc.


911 calls require voice circuits to be available to complete the voice call to a PSAP. For the most part, PSAPs are capable of receiving only voice calls. Connectivity with a PSAP, established either through the existing time division multiplexed (TDM)-based emergency services network (ESN), or directly over the public switched telephone network (PSTN) to the PSAP, is managed through dedicated telephone switches that cannot be directly dialed.


The present inventors have appreciated that during times of regional crises, such as during a hurricane, the local wireless infrastructure can become overloaded by call volume. This was experienced during the Sep. 11, 2001, terrorist attacks during which voice telecommunications along the east coast was subjected to service failures.


There is a long-felt need for improving emergency communications to provide a system that is more rugged and reliable during times of regional crisis.


SUMMARY OF THE INVENTION

In accordance with the principles of the present invention, a method of providing text message E911 emergency services comprises receiving a text message E911 emergency data request from an end user requiring emergency assistance. A geographic location of a sender of the text message E911 emergency data request is associated with the text message E911 emergency data request. The geographic location of the sender of the text message E911 emergency data request is staged in a database for access by emergency services.





BRIEF DESCRIPTION OF THE DRAWINGS

Features and advantages of the present invention will become apparent to those skilled in the art from the following description with reference to the drawings:



FIG. 1 shows an exemplary process of providing 911 data messaging services, in accordance with the principles of the present invention.



FIG. 2 shows a quick overview of conventional enhanced 9-1-1 (E911) call flow with respect to a conventional voice 911 emergency call.



FIG. 3 shows message flow for a 911 emergency services text message, providing data (non-voice) initiated E9-1-1 emergency services data requests, in accordance with the principles of the present invention.



FIG. 4 depicts a high level view of the service interaction between messaging and location based systems, in accordance with the principles of the present invention.



FIG. 5 depicts E911 emergency services data initiated message flow, in accordance with the principles of the present invention.



FIG. 6 shows replacement of a wireless MSC shown in FIG. 5 with an Serving GPRS Support Node (SGSN) and Gateway GPRS Support Node (GGSN) pair for delivery to an S911 application server for a data stream emergency services request, as opposed to an SMS text-based emergency services request.



FIG. 7 shows a conventional landline public safety access point (PSAP) to automatic location identifier (ALI) connection.



FIG. 8 shows a context diagram for a conventional non-landline positioning center (e.g., an Internet based voice over Internet Protocol (VoIP) positioning center).



FIG. 9 shows an exemplary structure of an SMS network.



FIG. 10 shows an exemplary flow of a short message through a conventional SMS network.





DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

The present invention provides a short messaging system (SMS) emergency services 911 system (SMS E911).


The inventors herein have appreciated that voice telecommunications networks tend to overload during wide scale emergencies. The inventors have also appreciated that during exemplary times of circuit overload, the Signaling System Number 7 (SS7) signaling network has had excess capacity available to carry short message traffic. They also appreciated that SMS packet-based (i.e., not switched or persistent connection) technology bandwidth remained available to generate traffic from a handset and deliver a message to another handset or to an Internet Address.


An alternative technology is provided for emergency contact with a public safety answering point (PSAP), useful particularly for getting emergency information routed when voice networks become overloaded. The alternative technology disclosed herein creates the ability of non-voice communications to include emergency 911 support. The invention enables use of this excess non-voice capacity by establishing a Short Message Service (SMS) capability for generating an emergency 911 “equivalent” call, together with location information required by emergency services and to meet Federal 911 requirements.


This invention offers a solution architecture and method for delivery of 911 requests for emergency assistance using non-voice centric sources such as SMS, email, and/or autonomous data/message generation devices.


SMS 911 capability in accordance with the principles of the present invention enables SMS savvy consumers to generate requests for emergency assistance to the local Public Safety Answering Point (PSAP). The SMS 911 emergency services request can be understood by an otherwise conventional PSAP, including provision of location information, and translated to provide first responders with the emergency services information they need to offer timely assistance.


In the early 1990s, as a result of the growing popularity of digital wireless technology, a standard for digital wireless networks was introduced in Europe. That standard, now known as the global standard for mobiles (GSM), included a service called short messaging service (SMS). An SMS allows transmission of short messages, typically up to 160 characters, to and from communication devices, e.g., cellular telephone handsets, telephones or computers with appropriate modems. In North America, the SMS is currently implemented on digital wireless/mobile networks, such as a PCS network based on the GSM standard, code division multiple access (CDMA) and/or time division multiple access (TDMA) methods.


Each SMS network typically includes a short message service center (SMSC) which acts as a store-and-forward mechanism providing guaranteed delivery of short messages to a subscriber.


Short message services are advantageous over text based paging services because of the capability of bi-directional communication. Such bi-directional communication allows, for example, notification to the originating device of the success or failure of the short message delivery.


A variety of services have been introduced using SMS networks including, for example, integrated electronic mail and fax, integrated paging, interactive banking, and information services such as stock quotes and airline schedule delivery. A mobile originated-to-HTTP gateway (co-owned by the owner of the present patent application) has been patented in U.S. Pat. No. 6,891,811, the entirety of which is expressly incorporated herein by reference.



FIG. 9 shows an exemplary structure of an SMS network 500. Although the following example is described using terms and protocols mainly as defined by the North American standard IS-41, it will be apparent to one skilled in the art that the example is applicable to any networks that offer a store-and-forward type short message service.


A smaller SMS network 500 typically includes one short message service center (SMSC) 501. The SMSC 501 typically includes various interfaces (not shown) to receive short messages originating from various sources and protocols, such as a Voice Mail System (VMS) 508, paging networks using, e.g., Telocator Numeric Paging Protocol (TNPP) 509, devices using the Short Message Peer-to-Peer (SMPP) protocol 510 via TCP/IP, e-mail systems using the Simple Mail Transport Protocol (SMTP) 511, and/or devices using the Telocator Alphanumeric Protocol (TAP) 512. Some of the various sources of the short messages may be gateways to other networks.


The SMSC 501 may further include a gateway/interworking block (not shown) that enables the SMSC 501 to communicate with the rest of the SMS network 500, such as a Home Location Register (HLR) 503 or a Mobile Switching Center (MSC) 505, using the Signaling System No. 7 (SS7) 502.


The methods and mechanism of communication in the SMS network 500 are defined by the mobile application part (MAP) layer, which uses the services of the SS7 transaction capabilities application part (TCAP) as the signaling infrastructure of the SMS network 500. The protocol for the signaling is referred to as the IS-41 protocol under the American standard as published by the Telecommunication Industry Association (TIA) or as the GSM MAP under the European standard published by European Telecommunication Standards Institute (ETSI).


The Home Location Register (HLR) 503 includes a database that permanently stores and manages subscriptions and service profiles of users having a subscription to the SMS network 500. Although only one HLR 503 is shown, the SMS network 500 may include two or more HLRs. The SMS network 500 also typically includes several visitor location registers (VLR) 504. A VLR 504 is a database temporarily holding information about visiting subscribers who move into its service area. Thus, a VLR 504 contains information regarding routing information for all subscribers within its service area, and informs the relevant HLR 503 of the availability and routing information regarding its subscribers. The mobile switching center (MSC) 505 obtains subscriber information from the VLR 504 to service visiting subscribers.


The mobile switching center (MSC) 505 performs switching and call control functions, and receives short messages from the SMSC 501 for delivery to the appropriate mobile subscriber 507 (shown, e.g., as a cellular phone handset). It is to be understood that, although only one MSC 505 is shown, the wireless network 500 may include two or more MSCs.


The base station subsystem (BSS) 506 handles the wireless communications, e.g., RF transmission and reception of voice and data traffic, to and from the mobile subscriber 507.



FIG. 10 shows an exemplary flow of a short message through a conventional SMS network. Although FIG. 10 shows only an example of short message delivery to a mobile subscriber, it is to be understood that a mobile subscriber or any other source may originate a short message. The flow of a mobile subscriber originated short message would involve similar processes as in the following mobile subscriber terminated short message example, and would be apparent to one of ordinary skill in the art.


The SMSC 601 receives a short message intended for a subscriber 604 from a source of short message 605 which may be any one or more of the aforementioned sources of short messages, e.g., 508-512 of FIG. 9. Upon receiving a short message, the SMSC 601 sends a request for routing information, i.e., an SMS request (SMSREQ), to the HLR 602. The HLR 602 maintains information regarding the availability of the intended subscriber 604 and the appropriate MSC 603 that services the intended subscriber, and sends the information as routing information 608 back to the SMSC 601. The SMSC 601 forwards the short message to the appropriate MSC 603 using the routing information 608 received from the HLR 602, for example, in accordance with the short message delivery point-to-point (SMDPP) mechanism of IS-41 standard. The MSC 603 queries the VLR (not shown) for subscriber information. The VLR may perform a paging and authentication process, and sends the subscriber information to the MSC 603. The MSC 603, using the information received from the VLR, delivers the short message to the intended subscriber 604, and sends a delivery report 612 to the SMSC 601. The SMSC 601 may send the result of the delivery, i.e., the status report 613, to the source of the short message 605 if requested.


The present invention enables the use of short messaging services to communicate with emergency services such as a PSAP, particularly useful during times of a large regional emergency.



FIG. 1 shows an exemplary process of providing 911 data messaging services, in accordance with the principles of the present invention.


In particular, as shown in step 1101 of FIG. 1, a 911 emergency services data request is generated from a source device. The 911 emergency services data request is preferably a text message. Exemplary text messages include a short messaging system (SMS) text message, an email, or other non-live-voice packet based data message technology. The inventive technology is also applicable to use of multi-media system (MMS) message to make a 911 emergency services data request.


In step 1103, the 911 emergency services data request is associated with a geographic location (i.e., “geo-location”), civic location (e.g., street address, placename), or a location identifier (e.g., a MSC/Cell-Site indicator, URI, or URL which point to a location). The association of location with the device initiating the 911 emergency services data request is performed in a same way as is known for providing location to a cellular phone or other wireless device.


In step 1105, the location associated with a 911 emergency services data request for emergency services is mapped to a PSAP identifier (e.g., emergency services number (ESN)), using a table lookup, or geo-coding procedure such as would transform a geo-location to a physical address. Exemplary physical addresses include a postal address or a validated address from a master street address guide (MSAG).


In step 1107, the 911 emergency services data request is delivered in a useable format to a public services access point (PSAP), or other emergency services monitoring location. An exemplary useable format includes, e.g., plain text. Another non-voice data request includes a pre-recorded voice message digitized and packetized. A pre-recorded voice message may be delivered to a call center that translates data to voice, i.e., text to speech.


In step 1109, the location of the emergency caller, and/or other suitable information relating to the emergency services 911 call, may be staged for use by the PSAP (or other monitoring service location), e.g., in a location center.



FIG. 2 shows a quick overview of conventional enhanced 9-1-1 (E911) call flow with respect to a conventional voice 911 emergency call.


In particular, as shown in step 1 of FIG. 2, an end user dials 911 on their voice phone. The emergency voice 911 call is delivered from the relevant handset, through a radio tower and base station, to a mobile switching center (MSC).


In step 2, the MSC queries a location platform (e.g., the XYPOINT™ location platform commercially available from TeleCommunication Systems, Inc. in Annapolis, Md.) for location retrieval and call routing. Typically, the location platform immediately returns call setup information to the MSC (step 5), based on gross location (e.g., Serving Cell ID), or alternatively, the emergency voice 911 call may be held, (based on configuration), until more precise location information is delivered to a location center (step 3).


In step 3, the location platform sends a request for precise position information to the position determining entity (e.g., PDE), and retrieves location coordinates (may include “fast” and subsequent “normal” (higher granularity) position coordinates) from the position determining entity (e.g., PDE).


In step 4, the location platform finds matching address, and stages location and callback information.


In step 5, after the location center triggers a request for precise location, the location center responds to the mobile switching center (MSC) with call routing information.


Note that call setup, i.e., “PSAP routing”, today is almost exclusively done based on gross (Serving Cell ID) location information. No carrier wants to hold up an emergency call. However, call routing based on precise location is certainly configurable, and may be a better fit for SMS-based 911 requests as it plays out. While the disclosed embodiments relate to the typical scenario used today for making emergency calls, the invention relates equally to future scenarios for making emergency calls.


In step 6, the MSC then releases the emergency voice 911 call, and routes it to the correct public safety answering point (PSAP) through a selective router based on information provided from the location center.


The location center then stages a record for subsequent delivery to an automatic location information (ALI) database.


In step 7, the PSAP queries the ALI database, which queries the location platform for location and callback information.


When the precise location of the data emergency services source, or ‘caller’, is returned to the location center from a position determining entity (PDE), this location coordinate information may be transcoded into a civic (street address) location, and is staged, along with call back information for retrieval by the ALI database.



FIG. 3 shows message flow for a 911 emergency services text message, providing data (non-voice) initiated E9-1-1 emergency services data requests, in accordance with the principles of the present invention.


In particular, as shown in FIG. 3, an end user wireless device 507 enters an SMS text message E911 emergency data request, and sends the same, destined for the appropriate PSAP 400 via a mobile switching center (MSC) 505, a Signaling System No. 7 (SS7) network 502, e.g., the public switched telephone network (PSTN), and a selective router 417.


Note that SMS-originated messages are delivered primarily as text, instant message (IM), or optionally as voice. The case of delivering voice, as in a pre-recorded message, may be done, e.g., either as an attachment, a multi-media protocol/application, or via the existing legacy TDM/SR network (as shown) if something like a reverse IVR is used. While the present embodiment refers to a delivery mechanism to the PSAP as being across the legacy emergency services network through a selective router, delivery to the PSAP may be via any of a multitude of methods, e.g., text, email, voice-recording, etc.


Importantly, location information relating to the SMS text message E911 emergency data request is queried through an ANI/ALI controller 433 at the PSAP, an automatic location identification (ALI) database 401, obtained by a position determining entity 402, and staged by an appropriate location platform 304.


In step 301 of FIG. 3, an SMS data E9-1-1 emergency data request is generated by an end user device 507, with location for delivery to an appropriate PSAP 400. In this embodiment, the source of the emergency SMS text message E911 emergency data request is a handset device 507 that sends a text (i.e., non-voice) message to an appropriate data services address, URI, URN, or URL, (e.g., SMS to address of “911” or Service Identifier of urn:service:sos, etc.) Texting to 911 is distinctive from dialing a 911 phone number via the SS7 network 502.


The SMS text message E911 emergency data request traverses the radio network and the base station controller, and then is delivered to the MSC 505.


In step 302, the MSC 505 routes the SMS text message E911 emergency data request to a carrier's appropriate location based services (LBS) proxy, or short messaging service (SMS) platform 441. An exemplary SMS platform 441 embodying the present invention is known as an smsExpress™ platform now commercially available from TeleCommunication Systems, Inc. of Annapolis, Md.


The SMS platform 411 recognizes the message type of the incoming SMS text message E911 emergency data request as an E911 text message, and activates the appropriate process as shown and described generally with respect to FIG. 1.


The SMS platform 411 processes the incoming SMS text message E911 emergency data request to determine the originator of that SMS text message, and to extract the content or payload of the emergency text message. The SMS platform 411 (e.g., the smsExpress™ platform) logs this information for future reference for use to establish a two-way communication channel if necessary.


In step 303, “precise” location data relating to the sender of the SMS text message E911 emergency data request is retrieved. Note that in some cases, the “gross” location data is not available, but can be dealt with, e.g., using a return query, home location register (HLR) query, or other source address comparison query, as is otherwise known with respect to locating a wireless caller. The location platform 445 retrieves location coordinates from either SMDPP message or operator location based services.


In step 304, the “gross” location is translated to a civic location e.g., street address. The location platform determines “gross” and “precise” location for the SMS-originated message, and optionally translates it to a civic location (e.g., street address), and stages the location and callback information for use by a querying PSAP 400.


The associated location of the SMS text message E911 emergency data request is used to determine the serving PSAP identifier.


A standard, pre-recorded or synthesized voice message may be generated for the PSAP operator to alert them to the SMS text message E911 emergency data request. For example, the audible message generated by the SMS text message E911 emergency data request may state “This is an emergency 9-1-1 text message”.


As depicted in step 305, the SMS platform 411 may send a received message response to the end user 507 that initially sent the SMS text message E911 emergency data request.


In step 306, the SMS platform 441 establishes a proxy 9-1-1 call to the Emergency Services Gateway (ESG) 513 that then routes it to the appropriate PSAP, optionally, via a selective router 417. Note that other routing approaches are possible to get the canned audio message to the PSAP 400.


In step 307, the PSAP 307 queries the ALI database 401, which queries the SMS platform 411 for location and callback information. In step 308 the location information (and optionally at least the payload of the SMS text message E911 emergency data request itself arrives at the appropriate PSAP 400.


Note that the SMS text message E911 emergency data request itself may be staged as a record in the ALI database 401. Alternatively, a unique pointer or key to the actual SMS text message E911 emergency data request (or other real-time packetized data message requesting emergency services) could be staged in the ALI database 401.


In the disclosed embodiments, the SMS platform 441 generates a request to a location based services (LBS) proxy to query precise location from a position determining entity 402.


The LBS proxy receives precise location information, and geo-codes this information using a coordinate routing database 442. The geo-coded information is staged (optionally along with the payload of the SMS text message E911 emergency data request) in the ALI database 401.



FIG. 4 depicts a high level view of the service interaction between messaging and location based systems, in accordance with the principles of the present invention.


In particular, as shown in step 1 of FIG. 4, the mobile user 507 initiates an SMS text message E911 emergency data request, and sends the same through their carrier's SMS network.


In step 2, the SMS text message E911 emergency data request is passed by the SMS network, using SS7 (or SMPP) protocols, to an SMS platform 411.


In step 3, the SMS platform 411 passes a source ID such as the phone number of the mobile user 507, and the payload of the SMS text message E911 emergency data request itself, to a wireless Intelligent Gateway.


In step 4, the wireless Intelligent gateway requests location with the phone number of the source as input, and gets location coordinates in return.


In step 5, the location entity attempts to obtain actual location of the mobile user 507 directly from the mobile user 507 (or uses any of a number of known alternative methods for finding actual location).


In step 6, the location of the mobile user 507 is returned to the wireless Intelligent gateway.


In step 7, the wireless Intelligent gateway provides the location of the mobile user 507 to an E911 gateway 917. The E911 gateway searches a PSAP routing database 919 for the appropriate PSAP serving the current location of the mobile user 507, and in step 8 provides the identity of the appropriate PSAP 400 back to the wireless Intelligent gateway.


In step 9, notification of the SMS text message E911 emergency data request, along with delivery of location relating to the sender, is provided to the appropriate PSAP 400.



FIG. 5 depicts E911 emergency services data initiated message flow, in accordance with the principles of the present invention.


In particular, as shown in FIG. 5, a more generic view of SMS text message E911 emergency data request flow is depicted showing the message flow of a packet data emergency services message of any non-voice data type, not just SMS, e.g., email, multi-media services (MMS), etc.



FIG. 5 shows the original SMS text message E911 emergency data request passed from a 911 source 507 to a wireless mobile switching center (MSC) 505. The SMS text message E911 emergency data request is passed from the wireless MSC 505 to the SMSC 706, and then to the 911 application server 708. An alternate route from the MSC 505 to the 911 application server 708 may be taken, bypassing the SMSC 706.


The 911 application server initiates a location request from an appropriate location based services (LBS) platform 411, and receives a response back. The LBS platform 411 locates the 911 source 507 via any appropriate location method.


The 911 application server 708 queries a PSAP database for routing information to an appropriate PSAP servicing the current location of the 911 source 507.


The 911 application server 708 stages location data or a routing key in the ALI database 401, making it available for query by the PSAP 400.


An audible notification of the pending SMS text message E911 emergency data request may be passed by the 911 application server 708 to an emergency services gateway 710, and passed to the PSAP 400.



FIG. 6 shows replacement of a wireless MSC shown in FIG. 5 with an SGSN and GGSN pair for delivery to an S911 application server for a data stream emergency services request, as opposed to an SMS text-based emergency services request.


In particular, FIG. 6 shows an example of third generation (3 G) wireless data E911 message flow for an E911 message in 2.5 generation (2.5 G) and third generation (3 G) networks, in accordance with the principles of the present invention.



FIG. 6 shows the applicability of the principles of the present invention, embodied with an SMS text message E911 emergency data request, to a more general wireless data (non-voice) E911 emergency data request (e.g., email, etc.)


The invention enables a PSAP to receive, process, and act upon a wide variety of data based (non-voice) packetized emergency services messages, ranging from simple text-based messages such as a traditional SMS message, to complex images either contained within or attached as payload to a data initiated E911 emergency services, packetized (e.g., Internet Protocol (IP) based) message.


The invention can be used to enable automated systems to provide warnings or notifications to operator monitored services that have a specific geographic regional coverage. The invention has specific applicability to wireless carriers, but is applicable in a larger sense to the broader telecommunication market, including broadband, wireline, voice over Internet Protocol (VoIP), etc.


While the invention has been described with reference to the exemplary embodiments thereof, those skilled in the art will be able to make various modifications to the described embodiments of the invention without departing from the true spirit and scope of the invention.

Claims
  • 1. A method of providing text message E911 emergency services, comprising: receiving a connectionless packet switched network based E911 emergency text message received from an end user emergency messaging device;determining an originator of said E911 emergency text message;establishing an ongoing two-way text communication channel with said originator of said E911 emergency text message;staging a payload of said E911 emergency text message as a record in an automatic location identification (ALI) database; andusing SMDPP message to provide a location associated with said connectionless packet-switched network based E911 emergency text message to said PSAP.
  • 2. The method of providing text message E911 emergency services according to claim 1, wherein said location comprises: a geographic location.
  • 3. The method of providing text message E911 emergency services according to claim 1, wherein said location comprises: a civic location.
  • 4. The method of providing text message E911 emergency services according to claim 3, wherein said civic location comprises at least one of: a street address; anda place name.
  • 5. The method of providing text message E911 emergency services according to claim 4, wherein said location comprises: a MSC/Serving Cell ID.
  • 6. The method of providing text message E911 emergency services according to claim 1, wherein said location comprises: a geo-location.
  • 7. The method of providing text message E911 emergency services according to claim 6, wherein said staged location comprises at least one of: a URI; anda URL.
  • 8. The method of providing text message E911 emergency services according to claim 1, further comprising: providing said staged E911 emergency text message together with said location of said end user emergency messaging device, to said public safety access point (PSAP).
  • 9. The method of providing text message E911 emergency services according to claim 8, further comprising: providing a notification to said public safety access point of receipt of said E911 emergency text message.
  • 10. The method of providing text message E911 emergency services according to claim 9, wherein: said notification is an audible notification.
  • 11. The method of providing text message E911 emergency services according to claim 1, further comprising: determining an originator of said E911 emergency text message; andlogging said originator of said E911 emergency text message to establish a two-way communication channel.
  • 12. The method of providing text message E911 emergency services according to claim 1, wherein said E911 emergency text message comprises: a short messaging system (SMS) message.
  • 13. The method of providing text message E911 emergency services according to claim 1, wherein said E911 emergency text message comprises: an email.
  • 14. The method of providing text message E911 emergency services according to claim 1, wherein said E911 emergency text message comprises: an Internet chat message (XMPP).
  • 15. The method of providing text message E911 emergency services according to claim 1, wherein said E911 emergency text message comprises: an XML post message (HTTP).
  • 16. The method of providing text message E911 emergency services according to claim 1, wherein said E911 emergency text message comprises: a multimedia message service (MMS) image.
  • 17. Apparatus for providing text message E911 emergency services, comprising: means for receiving a connectionless packet switched network based E911 emergency text message received from an end user emergency messaging device;means for staging a payload of said E911 emergency text message as a record in an automatic location identification (ALI) database;means for determining an originator of said E911 emergency text message;means for establishing an ongoing two-way text communication channel with said originator of said E911 emergency text message; andmeans for using SMDPP message to provide a location associated with said connectionless packet-switched network based E911 emergency text message to said PSAP.
  • 18. The apparatus for providing text message E911 emergency services according to claim 17, wherein said location comprises: a geographic location.
  • 19. The apparatus for providing text message E911 emergency services according to claim 17, wherein said location comprises: a civic location.
  • 20. The apparatus for providing text message E911 emergency services according to claim 19, wherein said civic location comprises at least one of: a street address; anda place name.
  • 21. The apparatus for providing text message E911 emergency services according to claim 20, wherein said location comprises: a MSC/Serving Cell ID.
  • 22. The apparatus for providing text message E911 emergency services according to claim 17, wherein said location comprises: a geo-location.
  • 23. The apparatus for providing text message E911 emergency services according to claim 22, wherein said staged location comprises at least one of: a URI; anda URL.
  • 24. The apparatus for providing text message E911 emergency services according to claim 17, further comprising: means for providing said staged E911 emergency text message together with said location of said end user emergency messaging device, to said public safety access point (PSAP).
  • 25. The apparatus for providing text message E911 emergency services according to claim 17, further comprising: means for providing a notification to said public safety access point of receipt of said E911 emergency text message.
  • 26. The apparatus for providing text message E911 emergency services according to claim 25, wherein: said notification is an audible notification.
  • 27. The apparatus for providing text message E911 emergency services according to claim 17, wherein said E911 emergency text message comprises: a short messaging system (SMS) message.
  • 28. The apparatus for providing text message E911 emergency services according to claim 17, wherein said E911 emergency text message comprises: an email.
Parent Case Info

This application claims priority from U.S. Provisional Application No. 60/848,655, filed Oct. 3, 2006, entitled “911 Data Messaging”, to Morin et al., the entirety of which is expressly incorporated herein by reference.

US Referenced Citations (323)
Number Name Date Kind
1103073 O'Connel Jul 1914 A
3400222 Nightingale Sep 1968 A
4494119 Wimbush Jan 1985 A
4651156 Martinez Mar 1987 A
4706275 Kamil Nov 1987 A
4891638 Davis Jan 1990 A
4891650 Sheffer Jan 1990 A
4952928 Carroll et al. Aug 1990 A
5014206 Scribner et al. May 1991 A
5043736 Darnell et al. Aug 1991 A
5055851 Sheffer Oct 1991 A
5068656 Sutherland Nov 1991 A
5068891 Marshall Nov 1991 A
5070329 Jasinami Dec 1991 A
5081667 Drori et al. Jan 1992 A
5119104 Heller Jun 1992 A
5144283 Arenas et al. Sep 1992 A
5161180 Chavous Nov 1992 A
5177478 Wagai et al. Jan 1993 A
5193215 Olmer Mar 1993 A
5208756 Song May 1993 A
5214789 George May 1993 A
5218367 Sheffer Jun 1993 A
5223844 Mansell et al. Jun 1993 A
5235630 Moody et al. Aug 1993 A
5239570 Koster et al. Aug 1993 A
5266944 Carroll et al. Nov 1993 A
5289527 Tiedemann, Jr. Feb 1994 A
5293642 Lo Mar 1994 A
5299132 Wortham Mar 1994 A
5325302 Izidon et al. Jun 1994 A
5334974 Simms et al. Aug 1994 A
5343493 Karimullah Aug 1994 A
5347568 Moody et al. Sep 1994 A
5351235 Lahtinen Sep 1994 A
5361212 Class et al. Nov 1994 A
5363425 Mufti et al. Nov 1994 A
5374936 Feng Dec 1994 A
5379451 Nakagoshi et al. Jan 1995 A
5381338 Wysocki et al. Jan 1995 A
5387993 Heller Feb 1995 A
5388147 Grimes Feb 1995 A
5390339 Bruckert et al. Feb 1995 A
5394158 Chia Feb 1995 A
5396227 Carroll et al. Mar 1995 A
5398190 Wortham Mar 1995 A
5406614 Hara Apr 1995 A
5418537 Bird May 1995 A
5423076 Westergren et al. Jun 1995 A
5432841 Rimer Jul 1995 A
5434789 Fraker et al. Jul 1995 A
5454024 Lebowitz Sep 1995 A
5461390 Hoshen Oct 1995 A
5470233 Fruchterman et al. Nov 1995 A
5479408 Will Dec 1995 A
5479482 Grimes Dec 1995 A
5485161 Vaughn Jan 1996 A
5485163 Singere et al. Jan 1996 A
5488563 Chazelle et al. Jan 1996 A
5497149 Fast Mar 1996 A
5508931 Snider Apr 1996 A
5513243 Kage Apr 1996 A
5515287 Hakoyama et al. May 1996 A
5519403 Bickley et al. May 1996 A
5532690 Hertel Jul 1996 A
5535434 Siddoway et al. Jul 1996 A
5539398 Hall et al. Jul 1996 A
5543776 L'Esperance et al. Aug 1996 A
5552772 Janky et al. Sep 1996 A
5555286 Tendler Sep 1996 A
5568119 Schipper et al. Oct 1996 A
5574648 Pilley Nov 1996 A
5579372 Astrom Nov 1996 A
5588009 Will Dec 1996 A
5590417 Rydbeck Dec 1996 A
5592535 Klotz Jan 1997 A
5604486 Lauro et al. Feb 1997 A
5606313 Allen et al. Feb 1997 A
5606850 Nakamura Mar 1997 A
5610815 Gudat et al. Mar 1997 A
5614890 Fox Mar 1997 A
5615116 Gudat et al. Mar 1997 A
5621793 Bednarek et al. Apr 1997 A
5628051 Salin May 1997 A
5633912 Tsoi May 1997 A
5673306 Amadon et al. Sep 1997 A
5682600 Salin Oct 1997 A
5692037 Friend Nov 1997 A
5724667 Furuno Mar 1998 A
5740534 Ayerst et al. Apr 1998 A
5761618 Lynch et al. Jun 1998 A
5767795 Schaphorst Jun 1998 A
5768509 Gunluk Jun 1998 A
5774533 Patel Jun 1998 A
5787357 Salin Jul 1998 A
5794142 Vanttila et al. Aug 1998 A
5797091 Clise et al. Aug 1998 A
5797094 Houde et al. Aug 1998 A
5797096 Lupien et al. Aug 1998 A
5802492 Delorme et al. Sep 1998 A
5806000 Vo et al. Sep 1998 A
5822700 Hult et al. Oct 1998 A
5825283 Camhi Oct 1998 A
5828740 Khuc et al. Oct 1998 A
5905736 Ronen et al. May 1999 A
5920820 Qureshi Jul 1999 A
5920821 Seazholtz et al. Jul 1999 A
5930701 Skog Jul 1999 A
5943399 Bannister et al. Aug 1999 A
5946629 Sawyer et al. Aug 1999 A
5946630 Willars et al. Aug 1999 A
5950130 Coursey Sep 1999 A
5953398 Hill Sep 1999 A
5974054 Couts et al. Oct 1999 A
5978685 Laiho Nov 1999 A
5987323 Huotari Nov 1999 A
5999811 Molne Dec 1999 A
6026292 Coppinger Feb 2000 A
6035025 Hanson Mar 2000 A
6049710 Nilsson Apr 2000 A
6058300 Hanson May 2000 A
6064875 Morgan May 2000 A
6070067 Nguyen et al. May 2000 A
6073004 Balachandran Jun 2000 A
6073015 Berggren Jun 2000 A
6075982 Donovan et al. Jun 2000 A
6081508 West et al. Jun 2000 A
6101378 Barabash et al. Aug 2000 A
6122503 Daly Sep 2000 A
6122520 Want et al. Sep 2000 A
6138158 Boyle et al. Oct 2000 A
6148197 Bridges et al. Nov 2000 A
6148198 Anderson et al. Nov 2000 A
6149353 Nilsson Nov 2000 A
6169891 Gorham et al. Jan 2001 B1
6173181 Losh Jan 2001 B1
6181935 Gossman et al. Jan 2001 B1
6188752 Lesley Feb 2001 B1
6198431 Gibson Mar 2001 B1
6199045 Giniger et al. Mar 2001 B1
6205330 Winbladh Mar 2001 B1
6208854 Roberts et al. Mar 2001 B1
6219669 Haff Apr 2001 B1
6223046 Hamill-Keays et al. Apr 2001 B1
6226529 Bruno et al. May 2001 B1
6249680 Wax et al. Jun 2001 B1
6249744 Morita Jun 2001 B1
6266614 Alumbaugh et al. Jul 2001 B1
6289373 Dezonno Sep 2001 B1
6314108 Ramasubramani et al. Nov 2001 B1
6317594 Gossman et al. Nov 2001 B1
6321257 Kotola et al. Nov 2001 B1
6327479 Mikkola Dec 2001 B1
6353621 Boland Mar 2002 B1
6370242 Speers Apr 2002 B1
6373930 McConnell et al. Apr 2002 B1
6393014 Daly et al. May 2002 B1
6396913 Perkins et al. May 2002 B1
6397064 Bridges May 2002 B1
6473622 Meuronen Oct 2002 B1
6480710 Laybourn Nov 2002 B1
6507589 Ramasubramani et al. Jan 2003 B1
6512930 Sandegren Jan 2003 B2
6526335 Treyz Feb 2003 B1
6529722 Heinrich Mar 2003 B1
6654786 Fox et al. Nov 2003 B1
6667688 Menard et al. Dec 2003 B1
6675017 Zellner et al. Jan 2004 B1
6677894 Sheynblat et al. Jan 2004 B2
6690940 Brown Feb 2004 B1
6721396 Chin Apr 2004 B2
6728353 Espejo Apr 2004 B1
6731943 McCormick May 2004 B1
6744858 Ryan Jun 2004 B1
6771742 McCalmont et al. Aug 2004 B2
6799049 Zellner Sep 2004 B1
6868074 Hanson Mar 2005 B1
6898633 Lyndersay May 2005 B1
6915138 Kraft Jul 2005 B2
6937597 Rosenberg Aug 2005 B1
6970869 Slaughter et al. Nov 2005 B1
6970871 Rayburn Nov 2005 B1
6993325 Waesterlid Jan 2006 B1
7020480 Coskun et al. Mar 2006 B2
7054659 Gioscia May 2006 B2
7092385 Gallant Aug 2006 B2
7110773 Wallace Sep 2006 B1
7120418 Herajarvi Oct 2006 B2
7123874 Brennan Oct 2006 B1
7127264 Hronek Oct 2006 B2
7130383 Naidoo et al. Oct 2006 B2
7145462 Dewing Dec 2006 B2
7180415 Bankert Feb 2007 B2
7184418 Baba Feb 2007 B1
7245216 Burkley Jul 2007 B2
7260186 Zhu Aug 2007 B2
7317705 Hanson Jan 2008 B2
D562808 Gwee et al. Feb 2008 S
7328031 Kraft Feb 2008 B2
7356328 Espejo Apr 2008 B1
7366157 Valentine Apr 2008 B1
7386588 Mousseau Jun 2008 B2
7437348 Wyett Oct 2008 B1
7440442 Grabelsky Oct 2008 B2
7522182 Bang Apr 2009 B2
7522581 Acharya Apr 2009 B2
7603148 Michalak Oct 2009 B2
7693546 Gioscia Apr 2010 B1
7702081 Klesper Apr 2010 B1
7792989 Toebes Sep 2010 B2
7822391 Delker Oct 2010 B1
7826818 Gollnick Nov 2010 B2
7864927 Loizeaux Jan 2011 B2
7895263 Kirchmeier Feb 2011 B1
8014945 Cooper Sep 2011 B2
8200291 Steinmetz Jun 2012 B2
8265326 Singh Sep 2012 B2
8284980 Parker Oct 2012 B2
20010006889 Kraft Jul 2001 A1
20010031641 Ung et al. Oct 2001 A1
20010034224 McDowell Oct 2001 A1
20020058515 Holler May 2002 A1
20020086659 Lauper Jul 2002 A1
20020133568 Smith et al. Sep 2002 A1
20020155844 Rankin Oct 2002 A1
20020174073 Nordman Nov 2002 A1
20020181681 Mani Dec 2002 A1
20030003909 Keronen Jan 2003 A1
20030058096 Shteyn Mar 2003 A1
20030060214 Hendrey Mar 2003 A1
20030063730 Woodring Apr 2003 A1
20030086539 McCalmont May 2003 A1
20030125045 Riley Jul 2003 A1
20030157942 Osmo Aug 2003 A1
20030163483 Zingher Aug 2003 A1
20030169881 Niedermeyer Sep 2003 A1
20030186709 Rhodes et al. Oct 2003 A1
20030186710 Muhonen Oct 2003 A1
20030187803 Pitt Oct 2003 A1
20030220835 Barnes, Jr. Nov 2003 A1
20040043773 Lee et al. Mar 2004 A1
20040077359 Bernas Apr 2004 A1
20040137921 Valloppillil Jul 2004 A1
20040176123 Chin et al. Sep 2004 A1
20040198386 Dupray Oct 2004 A1
20040198389 Alcock Oct 2004 A1
20040203732 Brusilovsky Oct 2004 A1
20040203863 Huomo Oct 2004 A1
20040203900 Cedervall et al. Oct 2004 A1
20040209594 Naboulsi Oct 2004 A1
20040215687 Klemba Oct 2004 A1
20040225740 Klemba Nov 2004 A1
20050003803 Buckley Jan 2005 A1
20050020242 Holland Jan 2005 A1
20050021769 Kim Jan 2005 A1
20050031095 Pietrowicz Feb 2005 A1
20050053209 D'Evelyn Mar 2005 A1
20050079877 Ichimura Apr 2005 A1
20050101338 Kraft May 2005 A1
20050111630 Potorny May 2005 A1
20050119012 Merheb Jun 2005 A1
20050135569 Dickinson Jun 2005 A1
20050149430 Williams Jul 2005 A1
20050176445 Qu Aug 2005 A1
20050190892 Dawson Sep 2005 A1
20050197775 Smith Sep 2005 A1
20050201358 Nelson Sep 2005 A1
20050201528 Meer Sep 2005 A1
20050201529 Nelson Sep 2005 A1
20050213716 Zhu Sep 2005 A1
20050261012 Weiser Nov 2005 A1
20050265536 Smith Dec 2005 A1
20050277432 Viana et al. Dec 2005 A1
20050282518 D'Evelyn Dec 2005 A1
20050287979 Rollender Dec 2005 A1
20060003775 Bull et al. Jan 2006 A1
20060020965 Steelberg Jan 2006 A1
20060028995 Canoy Feb 2006 A1
20060058102 Nguyen Mar 2006 A1
20060058951 Cooper Mar 2006 A1
20060109960 D'Evelyn May 2006 A1
20060116138 Simsek et al. Jun 2006 A1
20060142027 Krishnamurthi et al. Jun 2006 A1
20060183460 Srinivasan et al. Aug 2006 A1
20060223549 Chang Oct 2006 A1
20060233317 Coster Oct 2006 A1
20060239205 Warren Oct 2006 A1
20060276168 Fuller Dec 2006 A1
20060281470 Shi Dec 2006 A1
20060293024 Benco et al. Dec 2006 A1
20060293066 Edge Dec 2006 A1
20070004424 Sheen Jan 2007 A1
20070010248 Dravida Jan 2007 A1
20070021098 Rhodes et al. Jan 2007 A1
20070026871 Wager Feb 2007 A1
20070060097 Edge Mar 2007 A1
20070110076 Brouwer May 2007 A1
20070117574 Watanabe May 2007 A1
20070117577 Harris May 2007 A1
20070136132 Weiser Jun 2007 A1
20070149208 Syrbe Jun 2007 A1
20070149213 Lamba Jun 2007 A1
20070201623 Hines Aug 2007 A1
20070253429 James Nov 2007 A1
20080014964 Sudit Jan 2008 A1
20080045250 Hwang Feb 2008 A1
20080137624 Silverstrim Jun 2008 A1
20080192731 Dickinson Aug 2008 A1
20080268769 Brown Oct 2008 A1
20090003535 Grabelsky Jan 2009 A1
20090029675 Steinmetz Jan 2009 A1
20090128404 Martino May 2009 A1
20090221263 Titus et al. Sep 2009 A1
20090237210 Ciesla Sep 2009 A1
20090323636 Dillon Dec 2009 A1
20100076767 Vieri et al. Mar 2010 A1
20100120412 Tang May 2010 A1
20100167691 Howarter Jul 2010 A1
20100198933 Smith Aug 2010 A1
20100233991 Crawford Sep 2010 A1
20100262668 Piett Oct 2010 A1
20110109468 Hirschfeld May 2011 A1
20110207429 Maier Aug 2011 A1
Foreign Referenced Citations (2)
Number Date Country
WO 0211407 Jul 2001 WO
WO2007025227 Mar 2007 WO
Non-Patent Literature Citations (26)
Entry
47 Code of Federal Regulations (Oct. 1, 2005 Edition).
PCT Search Report issued in PCT/US008/13690 and mailed on Jan. 29, 2009.
PCT International Search Report (PCTUS2007/16138) and Written Opinion of International Searching Authority, Feb. 7, 2008.
International Search Report in PCT/US2007/20207 dated Apr. 1, 2008.
PCT International Search Report received in PCT/US2007/21133 dated Apr. 21, 2008.
Intrado Inc., Qwest Detailed SR/ALI to MPC/GMLC Interface Specification to TCP/IP Implementation of TIA/EIA/J-STD-036 E2 with Phase I Location Description Addition, Intrado Informed Response; Apr. 2004; Issue 1.11; pp. 1-57.
PCT International Search Report received in PCT/US2007/21133 dated Oct. 31, 2008..
Newsletter “Sonera Bill Warning” Digital Cellular Report. Stevenage: Jun. 17, 1998. vol. 4, Iss.; p. 1.
“Technology Rides Control Network to Support Short Package Applications”; Advanced Intelligent Network New. Washington, DC: Mar. 19, 1997. vol. 7, Iss. 6; p. 1.
Cellular Mobile Pricing Structures and Trends; Dr. Sam Paltridge of the OECD's Directorate for Science, Technology and Industry; Dist.: May 19, 2000 (Nov. 1999).
Schulzrinne et al., Emergency Services for Internet Telephony Systems draft-schulzrinne-sipping-emergency-arch, IETF Standard Working Draft, Feb. 4, 2004, 1-22.
Kim, J.Y., et al., “An Enhanced VoIP Emergency Services Prototype,” Proceedings of the 3rd International ISCRAM Conference, Newark, NJ, May 2006.
International Search Report received in PCT/US11/01971 dated Feb. 28, 2013.
International Search Report received in PCT/US2012/067857 dated Feb. 20, 2013.
International Search Report received in PCT/US2012/67689 dated Feb. 22, 2013.
International Search Report received in PCT/US2012/066313 dated Feb. 4, 2013.
The Power of Mobile Unified Messaging: Siemans and Comverse to Demonstrate WAP-Based Messaging Applications on Live GPRS System, Comverse, Feb. 2000.
ETSI/3Gpp, 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; General Packet Radio Service (GPRS); Service description; Stage 2; (3G TS 23.060 version 3.2.1), Jan. 2000, pp. 138-142.
ETSI,3GPP, 3rd Generation Partnership Project; Technical Specification Group Core Network; Customized Applications for Mobile network Enhanced Logic; (CAMEL) Phase 3—Stage 2 (3G TS 23.078 version 3.3.0), Dec. 199, pp. 300-329.
Bond, “Cellular Carriers Use Prepaid Programs to Reach Untapped Markets,” Billing World, Mar. 1997, pp. 14-17.
Freedom Wireless, “The Freedom to Chose! Get Pre-Pay Cellular,” sales pamphlet, undated.
MultiMedia Publishing Corp., “Prepaid Cellular and Prepaid Wireless Market Report and Forecast 1997-2002,” sales literature, undated.
NEXTLINK, “Introducing a New Prepaid Telephone Service from NEXTLINK,” sales literature, undated.
Open Development Corp., “openMedia Cellular Prepaid,” sales literature, undated.
Intrado Inc., Qwest Detailed SR/ALI to MPC/GMLC Interface Specification for TCP/IP Implementation of TIA/EIA/J-STD-036 E2 with Phase I Location Description Addition, Intrado Informed Response; Apr. 2004; Issue 1.11; pp. 1-57.
Tecore, Inc., “Pre-Paid Cellular,” sales literature, Mar. 25, 1997, pp. 1-4.
Related Publications (1)
Number Date Country
20080081646 A1 Apr 2008 US
Provisional Applications (1)
Number Date Country
60848655 Oct 2006 US