AAV2 Rep protein fusions

Abstract
This invention pertains to methods for promoting stable and site-specific integration of rep deleted recombinant adeno-associated virus vectors which result in less variable transgene expression and increased safety. These vectors are useful for delivery of a functional gene product to the desired intracellular location.
Description
BACKGROUND OF THE INVENTION

1. Technical Field


This invention relates to the field of molecular biology. In particular, the invention relates to methods and compositions of matter for promoting stable, site-specific integration of Rep-deleted recombinant adeno-associated virus (rAAV) vectors via delivery of a functional AAV Rep gene product to the necessary location by fusing it to an intercellular trafficking “cargo” protein such as herpes simplex virus (HSV) tegument protein, VP22 or fragment thereof.


2. Description of the Background Art


Recombinant adeno-associated virus vectors have recently emerged as promising vehicles for gene transfer for a variety of reasons, including their lack of pathogenicity, wide host range, ability to transduce nonproliferating target cells, stable genomic integration, and comparatively low intrinsic immunogenicity. Genetic and sequence analyses of wild type AAV2 have demonstrated two primary open reading frames (ORFs). The left ORF is necessary for virus DNA replication, and contains two promoters at map positions 5 (p5) and 19 (p19). These promoters control expression from colinear, overlapping reading frames that arise from unspliced and spliced transcripts which produce Rep proteins of 78, 68, 52, and 40 kDa respectively. The right ORF, which is necessary for virion encapsulation, contains a single promoter at map position 40 (p40), and encodes three overlapping proteins (VP1, VP2, and VP3) with alternative translational initiation sites. The AAV coding regions are flanked by inverted terminal repeats (ITRs) which possess weak intrinsic promoter activity and are critical for DNA replication, encapsulation and host cell integration. See Berns, in “The Parvoviridae: The Viruses and Their Replication,” Fields Virology, Fields, Knipe and Howley, Eds., 3rd edition, Lippincott-Raven, 1996, pp. 2173-2197; Chatterjee and Wong, “Adeno-associated virus vectors for transduction of genes encoding ribozymes,” in Intracellular Ribozyme Applications: Principles and Protocols, Rossi and Couture (Eds.), Horizon Scientific Press, 1999; Wong and Chatterjee, “Parvovirus Vectors for Cancer Gene Therapy,” in Cancer Gene Therapy, Lattine and Gershon, Eds., Academic Press, 2000.


One of the most interesting features of wild type AAV is its ability to integrate into a specific region in human chromosome 19 termed AAVS1. Kotin et al., Proc. Natl. Acad. Sci. USA, 87:2211-2215, 1990; Samulski et al., EMBO J. 10:3941-3950, 1991. Mutational and deletion analyses have demonstrated that this property is mediated by Rep68/78, the product of the p5 promoter. Surosky et al., J. Virol. 71(10):7951-7959, 1997. Theoretically, the capacity to integrate site-specifically would be highly advantageous for rAAV vectors for several reasons. From a safety standpoint, nonrandom integration would lessen the likelihood of insertional mutagenesis. Kung et al., Curr. Top. Microbiol. Immunol. 171:1-25, 1991. In addition, cellular sequence flanking inserts are known to affect trans gene expression, resulting in varying levels of expression depending upon the location of insertion. Lacy et al., Cell 34(2):343-358, 1983. Targeted vector integration could minimize this variability of expression.


The rep gene has been removed from essentially all currently used rAAV vectors, both to provide a larger space for insertion of recombinant transgenes and to minimize the risks of recombinational events generating wild type AAV during the encapsulation process. Thus, although some studies indicate that integration is not totally random, rep-minus, wild type free rAAV stocks no longer integrate site specifically into AAVS1. Fisher-Adams et al., Blood 88:492-504, 1996; Rivadeneira et al., Int. J. Oncol. 12(4):805-810, 1998.


There is a need in the art for methods to improve the potential safety of rAAV vectors and to modify gene expression from rAAV vectors, in particular, methods which would allow site specific integration of rep-deleted rAAV vectors. Delivery of a functional AAV rep gene product to the necessary location would be of great value in achieving safer gene transfer with less unpredictable expression levels. Restoration of site-specific integration of rAAV vectors could significantly impact upon the safety and utility of rAAV vectors for gene transfer and potential gene therapy.


SUMMARY OF THE INVENTION

Accordingly this invention provides a method for mediating site-specific integration of a rep-deleted rAAV vector in a cell, which comprises contacting the cell or expressing on the cell a fusion polypeptide which comprises an AAV2 Rep protein sequence of the left open reading frame of the rep gene that lacks a functional nuclear localization signal (NLS) and a VP22 polypeptide sequence that confers intercellular trafficking on the fusion polypeptide. The Rep protein may be fused at the carboxyl or amino terminus of the VP22 polypeptide and may be fused to it directly or indirectly, via a spacer of one or several amino acids. The AAV Rep protein preferably is truncated to remove amino acid residues 489, 490, 491 or 492 and the remaining carboxyl terminus of the translated Rep protein. The truncation most preferably is located at amino acid 490 or 491. DNA constructs and fusion proteins as described also form part of this invention. The invention also provides, in another embodiment, a method of increasing the level of integration of a rAAV vector in a cell comprising contacting the cell with a Rep fusion protein having a mutation in the AAV2 NLS.




BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a cartoon showing construction of VP22-AAV REP.



FIG. 2 is a cartoon showing construction of AAV REP-VP22.



FIG. 3 is a cartoon showing progressive carboxyl terminal deletions into the AAV2 Rep nuclear localization signal constructed using polymerase chain reaction and fused to the amino terminal portion (3A) or carboxyl terminal portion (3B) of VP22.



FIG. 4 shows a western blot demonstrating expression of the AAVRep490VP22 fusion protein following transfection.



FIG. 5 is a series of immunofluorescence stains for fusion protein (A and B) and for DAPI (C and D).



FIG. 6 is a flow chart showing the scheme for the analysis of intercellular protein trafficking using flow cytometry.



FIG. 7 presents FACS analysis of trafficking of the AAVRep490VP22 fusion protein.



FIG. 8 is a pair of photomicrographs of 293 cells stained with a fluorescein isotriocyanate (FITC)-conjugated antibody directed against the recombinant VP22(Gly)7AAV2Rep491 protein showing VP22(Gly)7AAV2Rep491 trafficking (A) and a DAPI stain to show all cells in the field (B).



FIG. 9 is a Southern blot probed with an rAAV-specific probe (lane 1: 293 only; lane 2: Apap+VP22(Gly)7AAV2Rep491, #2; lane 3: Apap+VP22(Gly)7AAV2Rep491, #13; lane 4: Apap+VP22(Gly)7AAV2Rep491, #16; lane 5: Apap+VP22(Gly)7AAV2Rep491, #33; lane 6: 7374).



FIG. 10 is a Southern blot probed with an AAVS1-specific probe (lane 1: 293 only; lane 2: Apap+VP22(Gly)7AAV2Rep491, #2; lane 3: Apap+VP22(Gly)7AAV2Rep491, #13; lane 4: Apap+VP22(Gly)7AAV2Rep491, #16; lane 5: Apap+VP22(Gly)7AAV2Rep491, #33; lane 6: 7374).



FIG. 11 presents preliminary DNA sequence alignment analysis of a cell-vector junction sequence isolated following TA cloning of the junction fragment (SEQ ID NOS: 1-8).



FIG. 12 shows a map of CWRHIVAPAP.




DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Recently, a variety of peptides and proteins, such as the herpes simplex virus tegument protein VP22, have been shown to traffic intercellularly, both as native forms and as fusions with other proteins. See, for example, U.S. Pat. No. 6,251,398. This invention takes advantage of this ability to deliver a functional AAV gene product to cells to promote site specific RAAV integration and gene delivery.


Several peptides and proteins, collectively termed “cargo” proteins, which are capable of trafficking intercellularly have been described. These include the Drosophila antennaepedia protein, the HIV-1 tat protein and herpes simplex virus (HSV) tegument protein, VP22. See Schwarze and Dowdy, Trends Pharmacol. Sci. 21(2):45-48, 2000. Any known cargo protein is contemplated for use in the invention. Peptides and proteins fused in frame to these cargo proteins also are transported intercellularly, and, most importantly, can retain function. Intercellular transport and nuclear accumulation in vitro have been described with VP22 fused to green fluorescent protein (GFP), the tumor suppressor protein p53, and the herpes simplex virus thymidine kinase suicide gene. Elliott and O'Hare, Cell 88(2):223-233, 1997; Phelan et al., Nat. Biotechnol. 16(5):440-443, 1998; Dilber et al., Gene Ther. 6(1):12-21, 1999. Analogous studies have been reported for HIV-1 tat fusions with several cell cycle regulatory proteins, including p27Kipl and pl6lNK4a. Nagahara et al., Nat. Med. 4(12):1449-1452, 1998; Gius et al., Cancer Res. 59(11):2577-2580, 1999. P-galactosidase fused to HIV-1 tat trafficked widely in an in vivo mouse model. Schwarze et al., Science 285(5433):1569-1572, 1999). The exact mechanisms by which these proteins mediate intercellular transport have been difficult to elucidate, although transport mediated by HIV-1 tat appears to be receptor independent, and is more efficient when the tat fusion protein is denatured.


The ability of these cargo proteins to deliver functional genes was used in the present invention to promote site-specific rAAV integration and to increase the level of integration, to significantly enhance the potential safety of the gene delivery and to provide an improved method for expression. A variety of exemplary RepVP22 fusion constructs were constructed in which AAV rep or fragments thereof were linked in frame to the N- or C-terminus of VP22 within an expression plasmid (Invitrogen). These constructs were transfected into 293 cells, where protein expression, intercellular trafficking, and Rep function were monitored. These fusion constructs, for example AAV2Rep490VP22, VP22(Gly4)-AAV2Rep491 and VP22(Gly7)-AAV2Rep491, are considered part of the present invention. See Tables I and III-IV below and FIG. 3.


Fusion constructs according to this invention are designed to traffic intercellularly by eliminating interference by the NLS present in AAV2 Rep. The AAV2 Rep NLS extends from amino acids 485-519 of the translated Rep ORF. A mutation in or truncation of the gene which deletes all or part of the NLS such that the NLS function is lost restores trafficking ability. Thus, according to the invention, genes truncated or otherwise mutated to remove the protein's ability to signal for nuclear localization are useful to deliver any desired gene and to promote high levels of site-specific integration of the gene and improve expression qualitatively and quantitatively. Therefore, any fusion polypeptide or DNA construct encoding such polypeptide having these properties may be used in the present invention.


Any polypeptide sequence that confers nuclear localization on the fusion polypeptide, as known in the art, may be used with the inventive compositions and methods. For example, VP22 polypeptides or fragments or variants thereof which retain the desired nuclear localization function are preferred. Other polypeptides suitable for use in these inventive fusion polypeptides include Drosophila antennaepedia protein, HIV-1 tat protein and functional fragments or variants thereof. Functional segments of the polypeptide, whether truncated at the carboxyl or amino terminus, or both or internal deletions are included in the term fragment. The term variant includes polypeptides containing amino acid substitutions, whether conservative or not, which are at least 80% homologous and preferably 90%, 95% or 99% homologous to the native sequence and which retain the desired nuclear localization function. Persons of skill in the art are well aware of methods of constructing or purifying such molecules and of manipulating them by molecular biological techniques to construct the desired DNA and protein fusions.


Rep protein sequences encoded by the left open reading frame of the AAV2 rep gene that lack a functional nuclear localization signal sequence are suitable for use with the invention. Any such Rep protein sequence may be used, including sequences having a mutation in the NLS which disturbs the NLS function sufficiently to restore trafficking ability. Persons of skill in the art are aware of known methods for determining whether this trafficking ability or the NLS function is present, absent, or sufficiently reduced to allow the inventive methods to operate in the system of choice, using known or routinely modified assays and other techniques. Therefore, any AAV2 Rep protein sequence in which NLS function is absent or severely curtailed (i.e. not detectable or at a level which does not interfere with the functioning of the inventive method) compared to the activity of full-length native Rep protein is contemplated for use with this invention.


Specifically, Rep protein sequences in which the NLS is deleted may be used, for example by deletion of amino acids 485-519 of the native sequence or by truncation of the carboxyl terminal portion of the Rep protein at amino acid 485, amino acid 486, amino acid 487, amino acid 488, amino acid 489, amino acid 490, amino acid 491, amino acid 492, amino acid 493 or amino acid 494. By truncation at an amino acid residue, it is indicated that the amino acids carboxyl terminal to the named amino acid are removed. For example, in a protein truncated at amino acid 491, the carboxyl terminal residue of such a protein would be amino acid 491. Any deletions of the NLS which disturb function as described above may be used. For example deletion of amino acids 485-519 or 486-518 or 489-492 are suitable. Persons of skill in the art consider it routine to construct a variety of such deletion mutants and/or truncations of proteins. Therefore, such variations are considered part of the inventive compositions and methods. Rep protein mutants having point mutations in the NLS also may be used, as well as Rep protein sequences in which all or part of the NLS sequence has been removed and replaced with non-functional spacer amino acid residues.

TABLE IDescription of Exemplary RepVP22 DNA Constructs.CONSTRUCTDESCRIPTIONAAV2Rep490VP22AAV2Rep truncated at amino acid 490 andfused in frame to the amino terminal end ofVP22VP22(Gly)4AAVRep491AAV2Rep truncated at amino acid 491 andfused in frame to the carboxyl terminal endof VP22 with DNA encoding 4 glycine residuesseparating the two open reading framesVP22(Gly)7AAVRep491AAV2Rep truncated at amino acid 491 andfused in frame to the carboxyl terminal endof VP22 with DNA encoding 7 glycine residueseparating the two open reading frames


Western analysis demonstrated that all RepVP22 constructs were expressed as stable protein products of expected size. Full length rep fused to VP22 did not traffic intercellularly (data not shown). A fusion gene truncated at nucleotide 490 of the AAV2 rep gene sequence did traffic intercellularly as assessed by immunofluorescence microscopy and flow cytometry. See, for example, FIG. 7. In this construct, Rep490-VP22, the Rep open reading frame, truncated at amino acid residue 490 of the translated Rep protein, was fused in frame to the amino terminal end of VP22. Interestingly, an analogous VP22-Rep491 fusion protein did not traffic. Insertion of 4 and 7 glycine spacers to separate the VP22 and Rep491 domains and circumvent potential steric hindrance to intercellular trafficking restored the ability to traffic intercellularly. See FIG. 5. One of skill in the art will readily recognize that any amino acid residue may be used as a spacer provided that the goal of reducing steric hindrance can be achieved. Therefore, spacer amino acids with small side groups are preferred.


A PCR assay which specifically detects vector integration into AAVS1, coupled with Southern analyses, suggested that all three constructs described in Table I promoted site specific rAAV2 vector integration. See FIGS. 8-10. These types of constructs therefore form the basis of a strategy to improve both the safety and efficacy of rAAV vectors.


To confirm rAAV integration into the AAVS1 site by Rep490VP22, PCR products containing vector-cell junction fragments were cloned and sequenced. See FIG. 11. Fusion proteins were constructed with His tags to facilitate their isolation and purification. The fusion proteins were assessed for their ability to promote site specific rAAV integration by simply applying them to cells in the form of purified Rep-VP22 fusion proteins.


To exploit the ability of the fusion cargo proteins to deliver functional protein domains intercellularly, the wild type and several modified AAV2 Rep gene constructs were fused in frame to the VP22 ORF both in amino- and carboxyl-terminal orientations. The fusion proteins were expressed using the highly active CMV IE promoter. Although fusions of VP22 with full length AAV2 Rep did not appear to traffic, specific Rep fusion proteins in which the NLS was truncated, for example VP22(Gly7)-AAV2Rep491, trafficked intercellularly and were capable of promoting site specific integration of recombinant RAAV vectors. See FIG. 8.


Fusion proteins according to the invention can be expressed by plasmid DNA transfection according to any method known in the art, including calcium phosphate coprecipitation, for example. Once expressed, the fusion proteins traffic to surrounding cells via the VP22 or other intercellular trafficking protein moiety, and can mediate rAAV vector site specific integration via the AAV Rep moiety. Those of ordinary skill in the art are familiar with such methods and are able to make modifications as desired depending on the protein fusion and cell type(s) involved. Alternatively, fusion proteins can be expressed within cells by introducing expression plasmid DNA via physical methods (lipofection, electroporation, etc.) or by using a viral vector. In addition, purified fusion protein may be applied directly to cells to promote site-specific rAAV integration. Because the constructs preferably express fusion proteins with His tags (which allow easy purification by nickel column chromatography) the proteins may be purified after production in bacteria or eukaryotic cells, and then applied directly to cells at the time of rAAV vector transduction. This increases the frequency of rAAV vector integration.


REFERENCES

The references listed below are hereby incorporated into the specification by reference.

  • 1. Aints et al., “Intercellular spread of GFP-VP22.” J. Gene Med. 1(4):275-9, 1999.
  • 2. Berns, in “The Parvoviridae: The Viruses and Their Replication,” Fields Virology, Fields, Knipe and Howley (Eds) 3d Edition, Lippincott-Raven, 1996. pp 2173-2197.
  • 3. Brewis et al., “Evaluation of VP22 spread in tissue culture.” J. Virol. 74(2):1051-6, 2000.
  • 4. Chatterjee et al., “Dual target inhibition of HIV-1 in vitro by means of an adena-associated virus antisense vector.” Science 258:1485-1488, 1992.
  • 5. Chatterjee et al., “Transduction of primitive human marrow and cord blood-derived hematopoietic progenitor cells with adeno-associated virus vector.” Blood 93:1882-94, 1999.
  • 6. Chatterjee and Wong, “Adeno-associated Virus Vectors for Transduction of Genes Encoding Ribozymes,” Intracellular Ribozyme Applications: Principles and Protocols, Rossi and Couture (Eds.), Horizon Scientific Press, 1999.
  • 7. Derer et al., “Direct protein transfer to terminally differentiated muscle cells.” J. Mol. Med. 77(8):609-13, 1999.
  • 8. Dilber et al., “Intercellular delivery of thymidine kinase prodrug activating enzyme by the herpes simplex virus protein, VP22.” Gene Ther. 6(1):12-21, 1999.
  • 9. Elliott and O'Hare, “Intercellular trafficking and delivery by a herpesvirus structural protein.” Cell 88(2):223-233, 1997.
  • 10. Elliott and O'Hare, “Intercellular trafficking of VP22-GFP fusion proteins.” Gene Ther. 6(1):149-251, 1999.
  • 11. Elliott and O'Hare, “Herpes simplex virus type I tegument protein VP22 induces the stabilization and hyperacetylation of microtubules.” J. Virol. 72(8):6448-6455, 1998.
  • 12. Elliott and O'Hare, “Cytoplasm-to-nucleus translocation of a herpesvirus tegument protein during cell division.” J. Virol. 74(5):2131-2141, 2000.
  • 13. Fang et al., “Intercellular trafficking of VP22-GFP fusion proteins is not observed in cultured mammalian cells.” Gene Ther. 5(10):1420-4, 1998.
  • 14. Fisher-Adams et al., “Integration of adeno-associated virus vector genomes in Human CD34 cells following transduction.” Blood 88:492-504, 1996.
  • 15. Gius et al., “Transduced pl6lNK4a peptides inhibit hypophosphorylation of the retinoblastoma protein and cell cycle progression prior to activation of Cdk2 complexes in late G1.” Cancer Res. 59(11):2577-2580, 1999.
  • 16. Kotin and Berns, “Organization of adeno-associated virus DNA in latently infected Detroit 6 cells.” Virology 170(2): 460-7, 1989.
  • 17. Kotin et al., “Site-specific integration by adeno-associated virus.” Proc. Natl. Acad. Sci. USA 87:2211-2215, 1990.
  • 18. Kung et al., “Retroviral mutagenesis of cellular oncogenes: a review with insights into the mechanisms of insertional activation.” Curr. Top. Microbiol. Immunol. 171:1-25, 1991.
  • 19. Lacy et al., “A foreign beta-globin gene in transgenic mice: integration at abnormal chromosomal positions and expression in inappropriate tissues.” Cell 34(2):343-358, 1983.
  • 20. Nagahara et al., “Transduction of full-length TAT fusion proteins into mammalian cells: TAT-p27Kipl induces cell migration.” Nat. Med. 4(12):1449-1452, 1998.
  • 21. Phelan et al., “Intercellular delivery of functional p53 by the herpesvirus protein VP22.” Nat. Biotechnol. 16(5):440-443, 1998.
  • 22. Podsakoff et al., “Stable and efficient gene transfer into non-dividing cells by adeno-associated virus (AAV)-based vectors.” J. Virol. 68:5656-5666, 1994.
  • 23. Rivadeneira et al., “Sites of recombinant adeno-associated virus integration.” Int. J. Oncol 12(4):805-810, 1998.
  • 24. Rinaudo et al., “Conditional Site-Specific Integration into Human Chromosome 19 by Using a Ligand-Dependent Chimeric Adena-Associated Virus/Rep Protein.” J. Virol. 74:281-294, 2000.
  • 25. Samulski et al., “Targeted integration of adeno-associated virus (AAV) into human chromosome 19.” EMBO J. 10:3941-3950, 1991.
  • 26. Schwarze et al., “In vivo protein transduction: delivery of a biologically active protein into the mouse.” Science 285(5433):1569-1572, 1999.
  • 27. Schwarze and Dowdy, “In vivo protein transduction: intracellular delivery of biologically active proteins, compounds and DNA.” Trends Pharmacol. Sci. 21(2):45-48, 2000.
  • 28. Surosky et al., “Adeno-associated virus Rep proteins target DNA sequences to a unique locus in the human genome.” J. Virol. 71(10):7951-7959, 1997.
  • 29. Wong and Chatterjee, “Parovirus Vectors for the Cancer Gene Therapy,” Cancer Gene Therapy, Lattime and Gershon (Eds.), Academic Press, 2000.


EXAMPLES
Example 1

AAVS1 Site Specific Integration of rAAV.


Plasmids pVP22/myc-His and pVP22/myc-His-2 were obtained from Invitrogen (Carlsbad, Calif.). See FIGS. 1 and 2. The full length AAV2 rep gene product was amplified by PCR and inserted into the pVP22/myc-His vector as an EcoRV and Xbal fragment. The AAV2 Rep68/78 open reading frame was amplified from pTZAAV, a pUC-based phagemid containing the full length, infectious AAV2 genome inserted as a Bgl II fragment.


To construct a VP22-Rep fusion with the full length AAV2 Rep, see FIGS. 1 and 2, the rep gene was amplified as a 1.9 kb fragment using the sense primer 5′GGGAGGTTTGATATCGCAGCCGCCATGCCGGGG 3′(SEQ ID NO:1) with incorporation of an Xba I site (bold) and the antisense primer 5′GATTTAATCTAGATATTGTTCAAAGATGCAG 3′(SEQ ID NO:2) with incorporation of an Xba I site (bold). The rep stop codon was modified from TAA to TAT as a part of the Xba I site to permit read-through incorporation of myc and His tags at the 3′ end of the fusion protein.


The 5′-PCR primer used for the construction of the full length Rep-VP22 fusion was 5′GGTTTGAACGCGCAGATATCATGCCGGGG 3′ (SEQ ID NO: 3) which incorporated an EcoRV site (bold). Two different full length Rep-VP22 constructs were made: (1) RepVP22cys, in which the stop codon of Rep was modified to a Cysteine residue to allow read-through of VP22 and (2) RepVP22phe, in which amino acids 620 and 621 were eliminated and residue 619 was modified from a phenylalanine to a cysteine to allow for read-through of VP22. The downstream primer for the RepVP22cys construct was 5′GCCATACCTGATTTAGCGGCCGCATTGTTCAAAGATG 3′ (SEQ ID NO: 4), while the downstream primer used to generate RepVP22phe was 5′ GATTAAAATCATTTAGCGGCCGCAGATGCAGTCATCCAAA 3′ (SEQ ID NO: 5). Both primers incorporated a Not I site (bold) for cloning purposes. See FIG. 3.


Progressive carboxyl terminal deletions into the AAV2 NLS were constructed using polymerase chain reaction and fused to the amino terminal portion (FIG. 3A) or the carboxyl terminal portion (FIG. 3B) of VP22. Initial studies indicated that the AAV2REP490-VP22 fusion protein trafficked between cells, but that the corresponding VP22-AAV2REP491 did not. To circumvent possible steric interference with trafficking, 4 and 7 glycines were inserted in frame between the VP22 and AAV2REP491 open reading frames. All constructs were sequenced to ensure that no mutations were inadvertently introduced following PCR amplification.


The full-length AAV Rep fusion protein constructs were tested for their ability to traffic intercellularly as follows. 293 or COS cells were transfected with expression plamids encoding the fusion constructs and serially examined for spread of the fusion protein using indirect immunofluorescent microscopy after staining with an antibody directed against the myc tag common to all the fusion proteins. The constructs containing the full length AAV2 Rep did not traffic.


pVP22-Rep constructs with truncations in the NLS were constructed in a similar fashion to the previously described full length rep constructs. Rep proteins truncated at the carboxyl end at amino acids 484 (VP22AAVRep484), 491 (VP22AAVReP491), and 519 (VP22AAVRep519) were generated by PCR cloning. For these modified proteins, the 5′ end of the rep open reading frame was amplified with the same sense primer as VP22-Rep (5′GGGAGGTTTGATATCGCAGCCGCCATGCCGGGG 3′; SEQ ID NO: 1) and incorporated an EcoRV site (bold). The 3′ end of the Rep ORF for 484, 491 and 519 truncations were amplified with antisense primers, 5′ GGCTCCACCCTTTTTGTCTAGAAATTCATGCTCCAC 3′ (SEQ ID NO: 6), 5′ GGGGGCGGGTCTTTCTAGAGCTCCACCCTTTTTG 3′ (SEQ ID NO: 7), and 5′ GTTGATCGAAGCTTCTAGATCTGACGTCGATGG 3′ (SEQ ID NO: 8), respectively, all of which incorporated an Xba I site (bold).


For VP22(Gly)4AAVRep491 and VP22(Gly)7AAVReP491 constructs, the 5′ end of Rep ORF was amplified with 5′CCATTTTGAAGCGATATCGGTGGAGGCGGAGCCGCCATGCCGGGG 3′ (SEQ ID NO:9) and 5′ GGGTCTCCATTTGATATCGGGGGGGGTGGAGGCGGAGGCGCCATGCCGGGG 3′ (SEQ ID NO:10), respectively. EcoRV sites are in bold while bases encoding the glycine spacer residues are in bold and italicized. For the 3′ end, the antisense primer for the pVP22-Rep491 protein SEQ ID NO:7) was used. The amplified products were digested with EcoRV and Xbal, and inserted into similarly digested pV22/myc-His. Two full-length RepVP22 and three truncated RepVP22 constructs were generated.


Three truncated Rep constructs, AAVRep469VP22, AAVRep490VP22 and AAVRep505VP22, were created using independent Not I site-containing downstream primers coupled with the identical primer used to generate the full-length construct. The AAVRep469VP22 3′ primer, 5′GATCCTTTGCCCAGCGGCCGCCAGTCTTTGACTTCCTGCTTGG 3′(SEQ ID NO:11) extended from +1385 to +1425 with base changes at +1405 to +1408 and +1412. These sequence changes modified residue 469 from a phenylalanine to a cysteine and eliminated the production of all amino acids C-terminal to residue 469.


AAVRep490VP22 C-terminal primer, 5′GGTCTTTTGCGGCCGCCACCCTTTTTG 3′ (SEQ ID NO:12), extended from +1457 to +1483. Mismatches at +1469, +1471, and +1473 to +1475 were used to eliminate all residues C-terminal to 490. AAVRep505VP22 3′ primer, 5′GACTCGCGCACGCGGCCGCGCTCACTTATATCTGCG 3′ (SEQ ID NO:13), extended from +1496 to +1531. It contained nucleotide changes at positions +1513, +1515 to +1517 and +1520 resulting in the loss of amino acids C-terminal to residue 505. Additionally, residue 505 was modified from a proline to an arginine. All C-terminal primers above are given in the reverse orientation. Not I sites are indicated in bold.


The Rep protein sequence of the Rep491 truncated construct ends at amino acid 491 of the translated Rep protein, however there are 8 amino acids at the junction leading to the initiation codon of the VP22 polypeptide sequence. These amino acids (DIQHSGGR; SEQ ID NO:14) result from additional nucleotides found within the multiple cloning site. Therefore, it is clear to one of ordinary skill that multiple variations of the fusion peptides are possible, depending on the exact construction methods used to create them. The two moieties of the fusion polypeptide may be fused directly or indirectly, with additional amino acids present at the junction or either terminus. See Table II, below for exemplary sequences contained in the Rep fusion polypeptides compared to Rep wild type. All constructs were analyzed by DNA sequencing to insure that no additional mutations were inadvertently incorporated during the PCR amplifications. See Tables III-VI for sequence information for exemplary constructs.

TABLE IISequence Comparison: Wild Type Rep andTruncated Rep-VP22.SEQIDNameSequenceNO:A.Rep 78 WTCDLVNVDLDDCIFEQ (607-621)15Rep 78-Cys-VP22CDLVNVDLDDCIFEQCGR-VP2216B.Rep 78 WTYVKKGGAKKRPAPSD (485-499)17Rep491VP22YVKKGGADIQHSGGR-VP2218C.Rep 78 WTPAPSDADISEPKR (495-507)19Rep505VP22PAPSCADISERGR-VP2220


All rep gene inserts were amplified using a PE 9600 thermal cycler (Perkin and Elmer). A standard 100 μl reaction contained 100 ng of template DNA, 25 pmol of each respective upstream and downstream primer, 2 units of Vent polymerase (New England Biolabs, Beverly, Mass.), 200 μM of each dNTP, 3 mM MgSO4, and 1× Vent reaction buffer. The mixture was denatured at 95° C. for 5 minutes, and then 25 cycles of amplification (95° C., 30 s; 60° C., 30 s; 72° C., 90 s) were performed, followed by one extension cycle at 72° C. for 7 minutes. PCR products were gel purified using the Prep-a-Gene™ purification kit (Bio-Rad Laboratories, Hercules, Calif.), digested with appropriate restriction enzymes (NEB) and ligated into corresponding vectors at 16° C. for 16 hours. Plasmid constructs were transformed into chemically competent DH5a cells using standard methods. Plasmids were purified by anion exchange column chromatography (Qiagen, Valencia, Calif.), and quantitated spectrophotometrically. Enzymes were used according to conditions suggested by the manufacturers. Oligonucleotides were synthesized using a 394 B DNA Synthesizer (Applied Biosystems, Foster City, Calif.). All constructs were sequenced to insure that mutations were not inadvertently introduced during amplification.



FIG. 12 shows a map of CWRHIVAPAP. This construct contains one expression cassette encoding an antisense RNA complementary to the HIV TAR region under RSV LTR control, and another cassette encoding hu-placental alkaline phosphatase (hu PLAP) under PGK promoter control. CWRPGKH is similar to CWRHIVAPAP except for substitution of a PGK hygromycin resistance cassette for the PGK PLAP cassette.


African green monkey Vero (#CCL-81), 293 cells, COS cells and a Detroit 6-derived cell line, 7374, which contains integrated wild type AAV2, were maintained in high glucose Dulbecco's MEM (DMEM) with 2 mM glutamine and 10% heat inactivated fetal calf serum, at 37° C. in 5% humidified CO2. All cells were routinely tested and found free of mycoplasma. All transfections were performed using a CellPhect Transfection kit (calcium phosphate procedure; Amersham Pharmacia, Piscataway, N.J.) according to the manufacture's directions. For Western blot of VP-Rep fusion proteins, 293 cells were transfected with VP22-Rep or Rep-VP22 constructs (or their associated modified constructs lacking a functional NLS) using calcium phosphate coprecipitation. Cells were harvested after 48 hours and lysed. Proteins were separated using SDS-PAGE electrophoresis, and transferred to nitrocellulose. The western analyses demonstrated expression of the AAVREP490V22 fusion protein following transfection. See FIG. 4.


Example 2

Rep Expression and Trafficking Analyses by Immunofluorescence Microscopy.


Amino and carboxyl-terminal VP22/AAV2 Rep fusion proteins encoded by expression plasmids were initially tested for their ability to traffic intercellularly after calcium-phosphate transfection into 293 cells. For immunofluorescence assays, approximately 6.0×105 293 cells were plated on coverslips in 6-well plates and transfected with 1-3 μg of expression vector DNA for the various Rep derivatives. At specified times post-transfection, cells were briefly washed 3 times in room temperature phosphate-buffered saline (PBS), fixed in methanol at −20° C. for 5 minutes, and permeabilized by incubating them in acetone for 2-5 minutes at −20° C. The fixed cells were subsequently blocked with 1% BSA/1× PBS for 5 minutes at room temperature and stained with 1 μM primary mouse monoclonal anti-rep (such as CAT# MAB6030, Maine Biotechnology, Portland, Me.) or anti-c-myc antibody (such as CAT# R950-25, Invitrogen) diluted in 1% BSA/1× PBS, for 1 hour. The cells were then washed 3 times in PBS, 5 minutes each time, and incubated for 1 hour with a FITC-conjugated goat anti-mouse IgG secondary antibody (such as CAT# sc-2010; Santa Cruz Biotechnology, Santa Cruz, Calif.) and DAPI (4′,6-diamidino-2-phenylindole; Sigma, St. Louis, Mo.). Following the washes, the fixed cells were briefly rinsed in sterile dH2O, air-dried, and mounted onto glass slides using a 50% glycerol in dH2O. All staining procedures were conducted at room temperature. Cells were photographed by epifluorescense on a Nikon Labophot-2 photomicroscope with fluorescein and DAPI filters using a Nikon Fluor 40× objective. No visible staining of the full length construct RepVP22 was seen outside of the nucleus. Therefore, it appears that Rep-NLS overrides VP22's inherent nature to traffic outside of cell.


The ability of VP22AAV2Rep491 and VP22(Gly)4AAV2Rep491 constructs to traffic intercellularly also were compared following transfection. Cells were stained for fusion protein with fluorescein isothiocyanate (FITC) and with 4′-6-diamidino-2-phenylindole-2HCl (DAPI) to visualize the cells. See FIG. 5. Panels 5A and 5B show immunofluorescent staining indicating the presence of the fusion protein. The results indicate that the 4-glycine insert construct traffics intercellularly.


Example 4

Flow Cytometry.


To further confirm intercellular transport of Rep-VP22 fusions, 293 cells were transfected with expression plasmids encoding the Rep-VP22 fusion proteins and analyzed by flow cytometry. See FIG. 6. A separate culture of 293 cells was stained with PKH26, a vital membrane dye which permanently stains cells and is used for measuring cell division by flow cytometry. After expression of the VP22 protein for about 48 hours, these two populations of cells were mixed, incubated, and analyzed by flow cytometry using FITC conjugated anti fusion protein antibodies. Trafficking is indicated by demonstration of a cell population that stains with both PKH26 and antibody specific for VP22 in the VP22 fusion protein. The results are shown in FIG. 7. Panels A, B and C indicate that discrimination of PKH26 and antibody staining for VP22 or the VP22 fusions was comparatively specific. Analysis of cells after mixing (panels D and E) shows a comparatively large population of cells that is PHK26 and either VP22 or AAVRep490VP22 double positive, indicating trafficking.


Example 5

Site-Specific Integration.


An rAAV vector-containing plasmid pCWRHIVAPAP and one of the relevant Rep derivatives were cotransfected using calcium phosphate into 1.8×106 293 cells seeded in 60 mm dishes. 293 cells were harvested between 60 and 90 hours post-transfection and washed twice with PBS at 4° C. Cell pellets were suspended in 100 mM NaCl, 25 mM EDTA, and 10 mM Tris, pH 8.0, with 1 μg/ml RNase A and incubated for 2 hours at 37° C. Sodium dodecyl sulfate (SDS) and Proteinase K then were added to a final concentration of 0.5% and 0.1 mg/ml, respectively, and the mixture was incubated overnight at 56° C. Genomic DNA was purified from the digested cell pellet material by phenol/chloroform extraction, followed by ammonium acetate/ethanol precipitation. Isolated DNA was quantified via spectrophotometric analysis. Similar experiments were performed using CWRHIVAPgkH, an rAAV vector encoding resistance to hygromycin. In these experiments, cells were grown in media supplemented with 250 μg/mL hygromycin and 400 μg/mL G418 to select for cells expressing the rAAV vector and fusion protein, respectively. Colonies resistant to both hygromycin and G418 were isolated and expanded. Genomic DNA was extracted from the cell lines as described above.


PCR analyses employing one primer within the vector and the other primer within AAVS1 were used to assess site-specific integration. Each 50 μl reaction contained 50 ng DNA template and 25 pmol each of a specific primer for rAAV vector and for AAVS1. Reaction mixtures were denatured at 95° C. for 5 minutes, cooled to 80° C. for 2 minutes (at which point the Taq polymerase was added), and then subjected to 35 cycles of amplification (94° C., 1 min; 55° C., 1 min; 72° C., 3 min), followed by a single extension cycle at 72° C. for 5 minutes.


To confirm rAAV vector site-specific integration into AAVS1, PCR products corresponding to vector cellular junction sequences were inserted into PGEM-T vectors (Promega, Madison, Wis.), amplified in DH5α cells, and subjected to agarose gel sequence analysis in two independent Southern analyses, one probed with an rAAV-specific (FIG. 9) and the other with an AAVS1-specific (FIG. 10) probe. PCR reactions were performed using the Taq DNA polymerase kit (Qiagen), designed to amplify DNA containing secondary structures following the manufacture's directions. Amplified products were separated using 0.8% agarose gel electrophoresis in duplicate, and transferred overnight to a nitrocellulose membrane according to methods known in the art. After cross-linking the DNA samples to the filter blot, the membrane was cut in half, each half containing a complete set of the samples to be analyzed. One blot half was hybridized with a random primed 32p-labeled AAV-specific probe while the other half was hybridized with a AAVSl-specific probe. Bands that were positive with both probes indicate site-specific integration. Western blots were used to confirm the different sizes of mutants. Phosphorimaging analysis (Molecular Dynamics) was used to evaluate the extent of rAAV integration. See FIG. 8.


Example 6

rAAV-Cell Junction Sequence Analysis.


Preliminary DNA sequence alignment analyses of cell-vector junction sequences isolated following TA cloning of the junction fragment demonstrated both vector and AAVS1 sequences, indicating site-specific integration of the vector. See FIG. 11.

TABLE IIIPVP22 (Gly4) Rep491 Sequencegacggatcgg gagatctccc gatcccctat ggtcgactct cagtacaatc tgctctgatg60(SEQ ID NO: 21)ccgcatagtt aagccagtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg120cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc180ttagggttag gcgttttgcg ctgcttcgcg atgtacgggc cagatatacg cgttgacatt240gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata300tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc360cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc420attgacgtca atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt480atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt540atgcccagta catgacctta tgggactttc ctacttggca gtacatctac gtattagtca600tcgctattac catggtgatg cggttttggc agtacatcaa tgggcgtgga tagcggtttg660actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc720aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg780gtaggcgtgt acggtgggag gtctatataa gcagagctct ctggctaact agagaaccca840ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctagt900taagcttatt atgacctctc gccgctccgt gaagtcgggt ccgcgggagg ttccgcgcga960tgagtacgag gatctgtact acaccccgtc ttcaggtatg gcgagtcccg atagtccgcc1020tgacacctcc cgccgtggcg ccctacagac acgctcgcgc cagaggggcg aggtccgttt1080cgtccagtac gacgagtcgg attatgccct ctacgggggc tcgtcttccg aagacgacga1140acacccggag gtcccccgga cgcggcgtcc cgtttccggg gcggttttgt ccggcccggg1200gcctgcgcgg gcgcctccgc cacccgctgg gtccggaggg gccggacgca cacccaccac1260cgccccccgg gccccccgaa cccagcgggt ggcgtctaag gcccccgcgg ccccggcggc1320ggagaccacc cgcggcagga aatcggccca gccagaatcc gccgcactcc cagacgcccc1380cgcgtcgacg gcgccaaccc gatccaagac acccgcgcag gggctggcca gaaagctgca1440ctttagcacc gcccccccaa accccgacgc gccatggacc ccccgggtgg ccggctttaa1500caagcgcgtc ttctgcgccg cggtcgggcg cctggcggcc atgcatgccc ggatggcggc1560tgtccagctc tgggacatgt cgcgtccgcg cacagacgaa gacctcaacg aactccttgg1620catcaccacc atccgcgtga cggtctgcga gggcaaaaac ctgcttcagc gcgccaacga1680gttgttgaat ccagacgtgg tgcaggacgt cgacgcggcc acggcgactc gagggcgttc1740tgcggcgtcg cgccccaccg agcgacctcg agccccagcc cgctccgctt ctcgccccag1800acggcccgtc gagggtaccg agctcggatc cactagtcca gtgtggtgga attctgcaga1860tatcggtgga ggcggagccg ccatgccggg gttttacgag attgtgatta aggtccccag1920cgaccttgac gggcatctgc ccggcatttc tgacagcttt gtgaactggg tggccgagaa1980ggaatgggag ttgccgccag attctgacat ggatctgaat ctgattgagc aggcacccct2040gaccgtggcc gagaagctgc agcgcgactt tctgacggaa tggcgccgtg tgagtaaggc2100cccggaggcc cttttctttg tgcaatttga gaagggagag agctacttcc acatgcacgt2160gctcgtggaa accaccgggg tgaaatccat ggttttggga cgtttcctga gtcagattcg2220cgaaaaactg attcagagaa tttaccgcgg gatcgagccg actttgccaa actggttcgc2280ggtcacaaag accagaaatg gcgccggagg cgggaacaag gtggtggatg agtgctacat2340ccccaattac ttgctcccca aaacccagcc tgagctccag tgggcgtgga ctaatatgga2400acagtattta agcgcctgtt tgaatctcac ggagcgtaaa cggttggtgg cgcagcatct2460gacgcacgtg tcgcagacgc aggagcagaa caaagagaat cagaatccca attctgatgc2520gccggtgatc agatcaaaaa cttcagccag gtacatggag ctggtcgggt ggctcgtgga2580caaggggatt acctcggaga agcagtggat ccaggaggac caggcctcat acatctcctt2640caatgcggcc tccaactcgc ggtcccaaat caaggctgcc ttggacaatg cgggaaagat2700tatgagcctg actaaaaccg cccccgacta cctggtgggc cagcagcccg tggaggacat2760ttccagcaat cggatttata aaattttgga actaaacggg tacgatcccc aatatgcggc2820ttccgtcttt ctgggatggg ccacgaaaaa gttcggcaag aggaacacca tctggctgtt2880tgggcctgca actaccggga agaccaacat cgcggaggcc atagcccaca ctgtgccctt2940ctacgggtgc gtaaactgga ccaatgagaa ctttcccttc aacgactgtg tcgacaagat3000ggtgatctgg tgggaggagg ggaagatgac cgccaaggtc gtggagtcgg ccaaagccat3060tctcggagga agcaaggtgc gcgtggacca gaaatgcaag tcctcggccc agatagaccc3120gactcccgtg atcgtcacct ccaacaccaa catgtgcgcc gtgattgacg ggaactcaac3180gaccttcgaa caccagcagc cgttgcaaga ccggatgttc aaatttgaac tcacccgccg3240tctggatcat gactttggga aggtcaccaa gcaggaagtc aaagactttt tccggtgggc3300aaaggatcac gtggttgagg tggagcatga attctacgtc aaaaagggtg gagctctaga3360gggcccgcgg ttcgaacaaa aactcatctc agaagaggat ctgaatatgc ataccggtca3420tcatcaccat caccattgag tttaaacccg ctgatcagcc tcgactgtgc cttctagttg3480ccagccatct gttgtttgcc cctcccccgt gccttccttg accctggaag gtgccactcc3540cactgtcctt tcctaataaa atgaggaaat tgcatcgcat tgtctgagta ggtgtcattc3600tattctgggg ggtggggtgg ggcaggacag caagggggag gattgggaag acaatagcag3660gcatgctggg gatgcggtgg gctctatggc ttctgaggcg gaaagaacca gctggggctc3720tagggggtat ccccacgcgc cctgtagcgg cgcattaagc gcggcgggtg tggtggttac3780gcgcagcgtg accgctacac ttgccagcgc cctagcgccc gctcccttcg ctttcttccc3840ttcctttctc gccacgttcg ccggctttcc ccgtcaagct ctaaatcggg gcatcccttt3900agggttccga tttagtgctt tacggcacct cgaccccaaa aaacttgatt agggtgatgg3960ttcacgtagt gggccatcgc cctgatagac ggtttttcgc cctttgacgt tggagtccac4020gttctttaat agtggactct tgttccaaac tggaacaaca ctcaacccta tctcggtcta4080ttcttttgat ttataaggga ttttggggat ttcggcctat tggttaaaaa atgagctgat4140ttaacaaaaa tttaacgcga attaattctg tggaatgtgt gtcagttagg gtgtggaaag4200tccccaggct ccccaggcag gcagaagtat gcaaagcatg catctcaatt agtcagcaac4260caggtgtgga aagtccccag gctccccagc aggcagaagt atgcaaagca tgcatctcaa4320ttagtcagca accatagtcc cgcccctaac tccgcccatc ccgcccctaa ctccgcccag4380ttccgcccat tctccgcccc atggctgact aatttttttt atttatgcag aggccgaggc4440cgcctctgcc tctgagctat tccagaagta gtgaggaggc ttttttggag gcctaggctt4500ttgcaaaaag ctcccgggag cttgtatatc cattttcgga tctgatcaag agacaggatg4560aggatcgttt cgcatgattg aacaagatgg attgcacgca ggttctccgg ccgcttgggt4620ggagaggcta ttcggctatg actgggcaca acagacaatc ggctgctctg atgccgccgt4680gttccggctg tcagcgcagg ggcgcccggt tctttttgtc aagaccgacc tgtccggtgc4740cctgaatgaa ctgcaggacg aggcagcgcg gctatcgtgg ctggccacga cgggcgttcc4800ttgcgcagct gtgctcgacg ttgtcactga agcgggaagg gactggctgc tattgggcga4860agtgccgggg caggatctcc tgtcatctca ccttgctcct gccgagaaag tatccatcat4920ggctgatgca atgcggcggc tgcatacgct tgatccggct acctgcccat tcgaccacca4980agcgaaacat cgcatcgagc gagcacgtac tcggatggaa gccggtcttg tcgatcagga5040tgatctggac gaagagcatc aggggctcgc gccagccgaa ctgttcgcca ggctcaaggc5100gcgcatgccc gacggcgagg atctcgtcgt gagggatggc gatgcctgct tgccgaatat5160catggtggaa aatggccgct tttctggatt catcgactgt ggccggctgg gtgtggcgga5220ccgctatcag gacatagcgt tggctacccg tgatattgct gaagagcttg gcggcgaatg5280ggctgaccgc ttcctcgtgc tttacggtat cgccgctccc gattcgcagc gcatcgcctt5340ctatcgcctt cttgacgagt tcttctgagc gggactctgg ggttcgcgaa atgaccgacc5400aagcgacgcc caacctgcca tcacgagatt tcgattccac cgccgccttc tatgaaaggt5460tgggcttcgg aatcgttttc cgggacgccg gctggatgat cctccagcgc ggggatctca5520tgctggagtt cttcgcccac cccaacttgt ttattgcagc ttataatggt tacaaataaa5580gcaatagcat cacaaatttc acaaataaag catttttttc actgcattct agttgtggtt6540tgtccaaact catcaatgta tcttatcatg tctgtatacc gtcgacctct agctagagct5700tggcgtaatc atggtcatag ctgtttcctg tgtgaaattg ttatccgctc acaattccac5760acaacatacg agccggaagc ataaagtgta aagcctgggg tgcctaatga gtgagctaac5820tcacattaat tgcgttgcgc tcactgcccg ctttccagtc gggaaacctg tcgtgccagc5880tgcattaatg aatcggccaa cgcgcgggga gaggcggttt gcgtattggg cgctcttccg5940cttcctcgct cactgactcg ctgcgctcgg tcgttcggct gcggcgagcg gtatcagctc6000actcaaaggc ggtaatacgg ttatccacag aatcagggga taacgcagga aagaacatgt6060gagcaaaagg ccagcaaaag gccaggaacc gtaaaaaggc cgcgttgctg gcgtttttcc6120ataggctccg cccccctgac gagcatcaca aaaatcgacg ctcaagtcag aggtggcgaa6180acccgacagg actataaaga taccaggcgt ttccccctgg aagctccctc gtgcgctctc6240ctgttccgac cctgccgctt accggatacc tgtccgcctt tctcccttcg ggaagcgtgg6300cgctttctca atgctcacgc tgtaggtatc tcagttcggt gtaggtcgtt cgctccaagc6360tgggctgtgt gcacgaaccc cccgttcagc ccgaccgctg cgccttatcc ggtaactact6420gtcttgagtc caacccggta agacacgact tatcgccact ggcagcagcc actggtaaca6480ggattagcag agcgaggtat gtaggcggtg ctacagagtt cttgaagtgg tggcctaact6540acggctacac tagaaggaca gtatttggta tctgcgctct gctgaagcca gttaccttcg6600gaaaaagagt tggtagctct tgatccggca aacaaaccac cgctggtagc ggtggttttt6660ttgtttgcaa gcagcagatt agcgccagaa aaaaaggatc tcaagaagat cctttgatct6720tttctacggg gtctgacgct cagtggaacg aaaactcacg ttaagggatt ttggtcatga6780gattatcaaa aaggatcttc acctagatcc ttttaaatta aaaatgaagt tttaaatcaa6840tctaaagtat atatgagtaa acttggtctg acagttacca atgcttaatc agtgaggcac6900ctatctcagc gatctgtcta tttcgttcat ccatagttgc ctgactcccc gtcgtgtaga6960taactacgat acgggagggc ttaccatctg gccccagtgc tgcaatgata ccgcgagacc7020cacgctcacc ggctccagat ttatcagcaa taaaccagcc agccggaagg gccgagcgca7080gaagtggtcc tgcaacttta tccgcctcca tccagtctat taattgttgc cgggaagcta7140gagtaagtag ttcgccagtt aatagtttgc gcaacgttgt tgccattgct acaggcatcg7200tggtgtcacg ctcgtcgttt ggtatggctt cattcagctc cggttcccaa cgatcaaggc7260gagttacatg atcccccatg ttgtgcaaaa aagcggttag ctccttcggt cctccgatcg7320ttgtcagaag taagttggcc gcagtgttat cactcatggt tatggcagca ctgcataatt7380ctcttactgt catgccatcc gtaagatgct tttctgtgac tggtgagtac tcaaccaagt7440cattctgaga atagtgtatg cggcgaccga gttgctcttg cccggcgtca atacgggata7550ataccgcgcc acatagcaga actttaaaag tgctcatcat tggaaaacgt tcttcggggc7560gaaaactctc aaggatctta ccgctgttga gatccagttc gatgtaaccc actcgtgcac7620ccaactgatc ttcagcatct tttactttca ccagcgtttc tgggtgagca aaaacaggaa7680ggcaaaatgc cgcaaaaaag ggaataaggg cgacacggaa atgttgaata ctcatactct7740tcctttttca atattattga agcatttatc agggttattg tctcatgagc ggatacatat7800ttgaatgtat ttagaaaaat aaacaaatag gggttccgcg cacatttccc cgaaaagtgc7860cacctgacgt c7871









TABLE IV








Rep491VP22 Sequence


















gacggatcgg gagatctccc gatcccctat ggtcgactct cagtacaatc tgctctgatg
60
(SEQ ID NO: 22)






ccgcatagtt aagccagtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg
120





cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc
180





ttagggttag gcgttttgcg ctgcttcgcg atgtacgggc cagatatacg cgttgacatt
240





gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata
300





tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc
360





cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc
420





attgacgtca atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt
480





atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt
540





atgcccagta catgacctta tgggactttc ctacttggca gtacatctac gtattagtca
600





tcgctattac catggtgatg cggttttggc agtacatcaa tgggcgtgga tagcggtttg
660





actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc
720





aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg
780





gtaggcgtgt acggtgggag gtctatataa gcagagctct ctggctaact agagaaccca
840





ctgcttactg gcttatcgaa attaatacga cgcactatag ggagacccaa gctggctagt
900





taagcttcca tgccggggtt ttacgagatt gtgattaagg tccccagcga ccttgacggg
960





catctgcccg gcatttctga cagctttgtg aactgggtgg ccgagaagga atgggagttg
1020





ccgccagatt ctgacatgga tctgaatctg attgagcagg cacccctgac cgtggccgag
1080





aagctgcagc gcgactttct gacggaatgg cgccgtgtga gtaaggcccc ggaggccctt
1140





ttctttgtgc aatttgagaa gggagagagc tacttccaca tgcacgtgct cgtggaaacc
1200





accggggtga aatccatggt tttgggacgt ttcctgagtc agattcgcga aaaactgatt
1260





cagagaattt accgcgggat cgagccgact ttgccaaact ggttcgcggt cacaaagacc
1320





agaaatggcg ccggaggcgg gaacaaggtg gtggatgagt gctacatccc caattacttg
1380





ctccccaaaa cccagcctga gctccagtgg gcgtggacta atatggaaca gtatttaagc
1440





gcctgtttga atctcacgga gcgtaaacgg ttggtggcgc agcatctgac gcacgtgtcg
1500





cagacgcagg agcagaacaa agagaatcag aatcccaatt ctgatgcgcc ggtgatcaga
1560





tcaaaaactt cagccaggta catggagctg gtcgggtggc tcgtggacaa ggggattacc
1620





tcggagaagc agtggatcca ggaggaccag gcctcataca tctccttcaa tgcggcctcc
1680





aactcgcggt cccaaatcaa ggctgccttg gacaatgcgg gaaagattat gagcctgact
1740





aaaaccgccc ccgactacct ggtgggccag cagcccgtgg aggacatttc cagcaatcgg
1800





atttataaaa ttttggaact aaacgggtac gatccccaat atgcggcttc cgtctttctg
1860





ggatgggcca cgaaaaagtt cggcaagagg aacaccatct ggctgtttgg gcctgcaact
1920





accgggaaga ccaacatcgc ggaggccata gcccacactg tgcccttcta cgggtgcgta
1980





aactggacca atgagaactt tcccttcaac gactgtgtcg acaagatggt gatctggtgg
2040





gaggagggga agatgaccgc caaggtcgtg gagtcggcca aagccattct cggaggaagc
2100





aaggtgcgcg tggaccagaa atgcaagtcc tcggcccaga tagacccgac tcccgtgatc
2160





gtcacctcca acaccaacat gtgcgccgtg attgacggga actcaacgac cttcgaacac
2220





cagcagccgt tgcaagaccg gatgttcaaa tttgaactca cccgccgtct ggatcatgac
2280





tttgggaagg tcaccaagca ggaagtcaaa gactttttcc ggtgggcaaa ggatcacgtg
2340





gttgaggtgg agcatgaatt ctacgtcaaa aagggtggag ccgatatcca gcacagtggc
2400





ggccgcatga cctctcgccg ctccgtgaag tcgggtccgc gggaggttcc gcgcgatgag
2460





tacgaggatc tgtactacac cccgtcttca ggtatggcga gtcccgatag tccgcctgac
2520





acctcccgcc gtggcgccct acagacacgc tcgcgccaga ggggcgaggt ccgtttcgtc
2580





cagtacgacg agtcggatta tgccctctac gggggctcgt cttccgaaga cgacgaacac
2640





ccggaggtcc cccggacgcg gcgtcccgtt tccggggcgg ttttgtccgg cccggggcct
2700





gcgcgggcgc ctccgccacc cgctgggtcc ggaggggccg gacgcacacc caccaccgcc
2760





ccccgggccc cccgaaccca gcgggtggcg tctaaggccc ccgcggcccc ggcggcggag
2820





accacccgcg gcaggaaatc ggcccagcca gaatccgccg cactcccaga cgcccccgcg
2880





tcgacggcgc caacccgatc caagacaccc gcgcaggggc tggccagaaa gctgcacttt
2940





agcaccgccc ccccaaaccc cgacgcgcca tggacccccc gggtggccgg ctttaacaag
3000





cgcgtcttct gcgccgcggt cgggcgcctg gcggccatgc atgcccggat ggcggcggtc
3060





cagctctggg acatgtcgcg tccgcgcaca gacgaagacc tcaacgaact ccttggcatc
3120





accaccatcc gcgtgacggt ctgcgagggc aaaaacctgc ttcagcgcgc caacgagttg
3180





gtgaatccag acgtggtgca ggacgtcgac gcggccacgg cgactcgagg gcgttctgcg
3240





gcgtcgcgcc ccaccgagcg acctcgagcc ccagcccgct ccgcttctcg ccccagacgg
3300





cccgtcgagg gtctagaggg cccgcggttc gaacaaaaac tcatctcaga agaggatctg
3360





aatatgcata ccggtcatca tcaccatcac cattgagttt aaacccgctg atcagcctcg
3420





actgtgcctt ctagttgcca gccatctgtt gtttgcccct cccccgtgcc ttccttgacc
3480





ctggaaggtg ccactcccac tgtcctttcc taataaaatg aggaaattgc atcgcattgt
3540





ctgagtaggt gtcattctat tctggggggt ggggtggggc aggacagcaa gggggaggat
3600





tgggaagaca atagcaggca tgctggggat gcggtgggct ctatggcttc tgaggcggaa
3660





agaaccagct ggggctctag ggggtatccc cacgcgccct gtagcggcgc attaagcgcg
3720





gcgggtgtgg tggttacgcg cagcgtgacc gctacacttg ccagcgccct agcgcccgct
3780





cctttcgctt tcttcccttc ctttctcgcc acgttcgccg gctttccccg tcaagctcta
3840





aatcggggca tccctttagg gttccgattt agtgctttac ggcacctcga ccccaaaaaa
3900





cttgattagg gtgatggttc acgtagtggg ccatcgccct gatagacggt ttttcgccct
3960





ttgacgttgg agtccacgtt ctttaatagt ggactcttgt tccaaactgg aacaacactc
4020





aaccctatct cggtctattc ttttgattta taagggattt tggggatttc ggcctattgg
4080





ttaaaaaatg agctgattta acaaaaattt aacgcgaatt aattctgtgg aatgtgtgtc
4140





agttagggtg tggaaagtcc ccaggctccc caggcaggca gaagtatgca aagcatgcat
4200





ctcaattagt cagcaaccag gtgtggaaag tccccaggct ccccagcagg cagaagtatg
4260





caaagcatgc atctcaatta gtcagcaacc atagtcccgc ccctaactcc gcccatcccg
4320





cccctaactc cgcccagttc cgcccattct cgcccccatg gctgactaat tttttttatt
4380





tatgcagagg ccgaggccgc ctctgcctct gagctattcc agaagtagtg aggaggcttt
4440





tttggaggcc taggcttttg caaaaagctc ccgggagctt gtatatccat tttcggatct
4500





gatcaagaga caggatgagg atcgtttcgc atgattgaac aagatggatt gcacgcaggt
4560





tctccggccg cttgggtgga gaggctattc ggctatgact gggcacaaca gacaatcggc
4620





tgctctgatg ccgccgtgtt ccggctgtca gcgcaggggc gcccggttct ttttgtcaag
4680





accgacctgt ccggtgccct gaatgaactg caggacgagg cagcgcggct atcgtggctg
4740





gccacgacgg gcgttccttg cgcagctgtg ctcgacgttg tcactgaagc gggaagggac
4800





tggctgctat tgggcgaagt gccggggcag gatctcctgt catctcacct tgctcctgcc
4860





gagaaagtat ccatcatggc tgatgcaatg cggcggctgc atacgcttga tccggctacc
4920





tgcccattcg accaccaagc gaaacatcgc atcgagcgag cacgtactcg gatggaagcc
4980





ggtcttgtcg atcaggatga tctggacgaa gagcatcagg ggctcgcgcc agccgaactg
5040





ttcgccaggc tcaaggcgcg catgcccgac ggcgaggatc tcgtcgtgac ccatggcgat
5100





gcctgcttgc cgaatatcat ggtggaaaat ggccgctttt ctggattcat cgactgtggc
5160





cggctgggtg tggcggaccg ctatcaggac atagcgttgg ctacccgtga tattgctgaa
5220





gagcttggcg gcgaatgggc tgaccgcttc ctcgtgcttt acggtatcgc cgctcccgat
5280





tcgcagcgca tcgccttcta tcgccttctt gacgagttct tctgagcggg actctggggt
5340





tcgcgaaatg accgaccaag cgacgcccaa cctgccatca cgagatttcg attccaccgc
5400





cgccttctat gaaaggttgg gcttcggaat cgttttccgg gacgccggct ggatgatcct
5460





ccagcgcggg gatctcatgc tggagttctt cgcccacccc aacttgttta ttgcagctta
5520





taatggttac aaataaagca atagcatcac aaatttcaca aataaagcat ttttttcact
5580





gcattctagt tgtggtttgt ccaaactcat caatgtatct tatcatgtct gtataccgtc
5640





gacctctagc tagagcttgg cgtaatcatg gtcatagctg tttcctgtgt gaaattgtta
5700





tccgctcaca attccacaca acatacgagc cggaagcata aagtgtaaag cctggggtgc
5760





ctaatgagtg agctaactca cattaattgc gttgcgctca ctgcccgctt tccagtcggg
5820





aaacctgtcg tgccagctgc attaatgaat cggccaacgc gcggggagag gcggtttgcg
5880





tattgggcgc tcttccgctt cctcgctcac tgactcgctg cgctcggtcg ttcggctgcg
5940





gcgagcggta tcagctcact caaaggcggt aatacggtta tccacagaat caggggataa
6000





cgcaggaaag aacatgtgag caaaaggcca gcaaaaggcc aggaaccgta aaaaggccgc
6060





gttgctggcg tttttccata ggctccgccc ccctgacgag catcacaaaa atcgacgctc
6120





aagtcagagg tggcgaaacc cgacaggact ataaagatac caggcgtttc cccctggaag
6180





ctccctcgtg cgctctcctg ttccgaccct gccgcttacc ggatacctgt ccgcctttct
6240





cccttcggga agcgtggcgc tttctcaatg ctcacgctgt aggtatctca gttcggtgta
6300





ggtcgttcgc tccaagctgg gctgtgtgca cgaacccccc gttcagcccg accgctgcgc
6360





cttatccggt aactatcgtc ttgagtccaa cccggtaaga cacgacttat cgccactggc
6420





agcagccact ggtaacagga ttagcagagc gaggtatgta ggcggtgcta cagagttctt
6480





gaagtggtgg cctaactacg gctacactag aaggacagta tttggtatct gcgctctgct
6540





gaagccagtt accttcggaa aaagagttgg tagctcttga tccggcaaac aaaccaccgc
6600





tggtagcggt ggtttttttg tttgcaagca gcagattacg cgcagaaaaa aaggatctca
6660





agaagatcct ttgatctttt ctacggggtc tgacgctcag tggaacgaaa actcacgtta
6720





agggattttg gtcatgagat tatcaaaaag gatcttcacc tagatccttt taaattaaaa
6780





atgaagtttt aaatcaatct aaagtatata tgagtaaact tggtctgaca gttaccaatg
6840





cttaatcagt gaggcaccta tctcagcgat ctgtctattt cgttcatcca tagttgcctg
6900





actccccgtc gtgtagataa ctacgatacg ggagggctta ccatctggcc ccagtgctgc
6960





aatgataccg cgagacccac gctcaccggc tccagattta tcagcaataa accagccagc
7020





cggaagggcc gagcgcagaa gtggtcctgc aactttatcc gcctccatcc agtctattaa
7080





ttgttgccgg gaagctagag taagtagttc gccagttaat agtttgcgca acgttgttgc
7140





cattgctaca ggcatcgtgg tgtcacgctc gtcgtttggt atggcttcat tcagctccgg
7200





ttcccaacga tcaaggcgag ttacatgatc ccccatgttg tgcaaaaaag cggttagctc
7260





cttcggtcct ccgatcgttg tcagaagtaa gttggccgca gtgttatcac tcatggttat
7320





ggcagcactg cataattctc ttactgtcat gccatccgta agatgctttt ctgtgactgg
7380





tgattactca accaagtcat tctgagaata gtgtatgcgg cgaccgagtt gctcttgccc
7440





ggcgtcaata cgggataata ccgcgccaca tagcagaact ttaaaagtgc tcatcattgg
7500





aaaacgttct tcggggcgaa aactctcaag gatcttaccg ctgttgagat ccagttcgat
7560





gtaacccact cgtgcaccca actgatcttc agcatctttt actttcacca gcgtttctgg
7620





gtgagcaaaa acaggaaggc aaaatgccgc aaaaaaggga ataagggcga cacggaaatg
7680





ttgaatactc atactcttcc tttttcaata ttattgaagc atttatcagg gttattgtct
7740





catgagcgga tacatatttg aatgtattta gaaaaataaa caaatagggg ttccgcgcac
7800





atttccccga aaagtgccac ctgacgtc
7828
















TABLE V








RepVP22-R490 Sequence


















gacggatcgg gagatctccc gatcccctat ggtcgactct cagtacaatc tgctctgatg
60
(SEQ ID NO: 23)






ccgcatagtt aagccagtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg
120





cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc
180





ttagggttag gcgttttgcg ctgcttcgcg atgtacgggc cagatatacg cgttgacatt
240





gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata
300





tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc
360





cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc
420





attgacgtca atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt
480





atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt
540





atgcccagta catgacctta tgggactttc ctacttggca gtacatctac gtattagtca
600





tcgctattac catggtgatg cggttttggc agtacatcaa tgggcgtgga tagcggtttg
660





actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc
720





aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg
780





gtaggcgtgt acggtgggag gtctatataa gcagagctct ctggctaact agagaaccca
840





ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctagt
900





taagcttggt accgagctcg gatccactag tccagtgtgg tggaattctg cagatatcat
960





gccggggttt tacgagattg tgattaaggt ccccagcgac cttgacgggc atctgcccgg
1020





catttctgac agctttgtga actgggtggc cgagaaggaa tgggagttgc cgccagattc
1080





tgacatggat ctgaatctga ttgagcaggc acccctgacc gtggccgaga agctgcagcg
1140





cgactttctg acggaatggc gccgtgtgag taaggccccg gaggcccttt tctttgtgca
1200





atttgagaag ggagagagct acttccacat gcacgtgctc gtggaaacca ccggggtgaa
1260





atccatggtt ttgggacgtt tcctgagtca gattcgcgaa aaactgattc agagaattta
1320





ccgcgggatc gagccgactt tgccaaactg gttcgcggtc acaaagacca gaaatggcgc
1380





cggaggcggg aacaaggtgg tggatgagtg ctacatcccc aattacttgc tccccaaaac
1440





ccagcctgag ctccagtggg cgtggactaa catggaacag tatttaagcg cctgtttgaa
1500





tctcacggag cgtaaacggt tggtggcgca gcatctgacg cacgtgtcgc agacgcagga
1560





gcagaacaaa gagaatcaga atcccaattc tgatgcgccg gtgatcagat caaaaacttc
1620





agccaggtac atggagctgg tcgggtggct cgtggacaag gggattacct cggagaagca
1680





gtggatccag gaggaccagg cctcatacat ctccttcaat gcggcctcca actcgcggtc
1740





ccaaatcaag gctgccttgg acaatgcggg aaagattatg agcctgacta aaaccgcccc
1800





cgactacctg gtgggccagc agcccgtgga ggacatttcc agcaatcgga tttataaaat
1860





tttggaacta aacgggtacg atccccaata tgcggcttcc gtctttctgg gatgggccac
1920





gaaaaagttc ggcaagagga acaccatctg gctgtttggg cctgcaacta ccgggaagac
1980





caacatcgcg gaggccatag cccacactgt gcccttctac gggtgcgtaa actggaccaa
2040





tgagaacttt cccttcaacg actgtgtcga caagatggtg atctggtggg aggaggggaa
2100





gatgaccgcc aaggtcgtgg agtcggccaa agccattctc ggaggaagca aggtgcgcgt
2160





ggaccagaaa tgcaagtcct cggcccagat agacccgact cccgtgatcg tcacctccaa
2220





caccaacatg tgcgccgtga ttgacgggaa ctcaacgacc ttcgaacacc agcagccgtt
2280





gcaagaccgg atgttcaaat ttgaactcac ccgccgtgtg gatcatgact ttgggaaggt
2340





caccaagcag gaagtcaaag actttttccg gtgggcaaag gatcacgtgg ttgaggtgga
2400





gcatgaattc tacgtcaaaa agggtggcgg ccgcatgacc tctcgccgct ccgtgaagtc
2460





gggtccgcgg gaggttccgc gcgatgagta cgaggatctg tactacaccc cgtcttcagg
2520





tatggcgagt cccgatagtc cgcctgacac ctcccgccgt ggcgccctac agacacgctc
2580





gcgccagagg ggcgaggtcc gtttcgtcca gtacgacgag tcggattatg ccctctacgg
2640





gggctcgtct tccgaagacg acgaacaccc ggaggtcccc cggacgcggc gtcccgtttc
2700





cggggcggtt ttgtccggcc cggggcctgc gcgggcgcct ccgccacccg ctgggtccgg
2760





aggggccgga cgcacaccca ccaccgcccc ccgggccccc cgaacccagc gggtggcgtc
2820





taaggccccc gcggccccgg cggcggagac cacccgcggc aggaaatcgg cccagccaga
2880





atccgccgca ctcccagacg cccccgcgtc gacggcgcca acccgatcca agacacccgc
2940





gcaggggctg gccagaaagc tgcactttag caccgccccc ccaaaccccg acgcgccatg
3000





gaccccccgg gtggccggct ttaacaagcg cgtcttctgc gccgcggtcg ggcgcctggc
3060





ggccatgcat gcccggatgg cggcggtcca gctctgggac atgtcgcgtc cgcgcacaga
3120





cgaagacctc aacgaactcc ttggcatcac caccatccgc gtgacggtct gcgagggcaa
3180





aaacctgctt gagcgcgcca acgagttggt gaatccagac gtggtgcagg acgtcgacgc
3240





ggccacggcg actcgagggc gttctgcggc gtcgcgcccc accgagcgac ctcgagcccc
3300





agcccgctcc gcttctcgcc ccagacggcc cgtcgagggt ctagagggcc cgcggttcga
3360





acaaaaactc atctcagaag aggatctgaa tatgcatacc ggtcatcatc accatcacca
3420





ttgagtttaa acccgctgat cagcctcgac tgtgccttct agttgccagc catctgttgt
3480





ttgcccctcc cccgtgcctt ccttgaccct ggaaggtgcc actcccactg tcctttccta
3540





ataaaatgag gaaattgcat cgcattgtct gagtaggtgt cattctattc tggggggtgg
3600





ggtggggcag gacagcaagg gggaggattg ggaagacaat agcaggcatg ctggggatgc
3660





ggtgggctct atggcttctg aggcggaaag aaccagctgg ggctctaggg ggtatcccca
3720





cgcgccctgt agcggcgcat taagcgcggc gggtgtggtg gttacgcgca gcgtgaccgc
3780





tacacttgcc agcgccctag cgcccgctcc tttcgctttc ttcccttcct ttctcgccac
3840





gttcgccggc tttccccgtc aagctctaaa tcggggcatc cctttagggt tccgatttag
3900





tgctttacgg cacctcgacc ccaaaaaact tgattagggt gatggttcac gtagtgggcc
3960





atcgccctga tagacggttt ttcgcccttt gacgttggag tccacgttct ttaatagtgg
4020





actcttgttc caaactggaa caacactcaa ccctatctcg gtctattctt ttgatttata
4080





agggattttg gggatttcgg cctattggtt aaaaaatgag ctgatttaac aaaaatttaa
4140





cgcgaattaa ttctgtggaa tgtgtgtcag ttagggtgtg gaaagtcccc aggctcccca
4200





ggcaggcaga agtatgcaaa gcatgcatct caattagtca gcaaccaggt gtggaaagtc
4260





cccaggctcc ccagcaggca gaagtatgca aagcatgcat ctcaattagt cagcaaccat
4320





agtcccgccc ctaactccgc ccatcccgcc cctaactccg cccagttccg cccattctcc
4380





gccccatggc tgactaattt tttttattta tgcagaggcc gaggccgcct ctgcctctga
4440





gctattccag aagtagtgag gaggcttttt tggaggccta ggcttttgca aaaagctccc
4500





gggagcttgt atatccattt tcggatctga tcaagagaca ggatgaggat cgtttcgcat
4560





gattgaacaa gatggattgc acgcaggttc tccggccgct tgggtggaga ggctattcgg
4620





ctatgactgg gcacaacaga caatcggctg ctctgatgcc gccgtgttcc ggctgtcagc
4680





gagggggcgc ccggttcttt ttgtcaagac cgacctgtcc ggtgccctga atgaactgca
4740





ggacgaggca gcgcggctat cgtggctggc cacgacgggc gttccttgcg cagctgtgct
4800





cgacgttgtc actgaagcgg gaagggactg gctgctattg ggcgaagtgc cggggcagga
4860





tctcctgtca tctcaccttg ctcctgccga gaaagtatcc atcatggctg atgcaatgcg
4920





gcggctgcat acgcttgatc cggctacctg cccattcgac caccaagcga aacatcgcat
4980





cgagcgagca cgtactcgga tggaagccgg tcttgtcgat caggatgatc tggacgaaga
5040





gcatcagggg ctcgcgccag ccgaactgtt cgccaggctc aaggcgcgca tgcccgacgg
5100





cgaggatctc gtcgtgaccc atggcgatgc ctgcttgccg aatatcatgg tggaaaatgg
5160





ccgcttttct ggattcatcg actgtggccg gctgggtgtg gcggaccgct atcaggacat
5220





agcgttggct acccgtgata ttgctgaaga gcttggcggc gaatgggctg accgcttcct
5280





cgtgctttac ggtatcgccg ctcccgattc gcagcgcatc gccttctatc gccttcttga
5340





cgagttcttc tgagcgggac tctggggttc gcgaaatgac cgaccaagcg acgcccaacc
5400





tgccatcacg agatttcgat tccaccgccg ccttctatga aaggttgggc ttcggaatcg
5460





ttttccggga cgccggctgg atgatcctcc agcgcgggga tctcatgctg gagttcttcg
5520





cccaccccaa cttgtttatt gcagcttata atggttacaa ataaagcaat agcatcacaa
5580





atttcacaaa taaagcattt ttttcactgc attctagttg tggtttgtcc aaactcatca
5640





atgtatctta tcatgtctgt ataccgtcga cctctagcta gagcttggcg taatcatggt
5700





catagctgtt tcctgtgtga aattgttatc cgctcacaat tccacacaac atacgagccg
5760





gaagcataaa gtgtaaagcc tggggtgcct aatgagtgag ctaactcaca ttaattgcgt
5820





tgcgctcact gcccgctttc cagtcgggaa acctgtcgtg ccagctgcat taatgaatcg
5880





gccaacgcgc ggggagaggc ggtttgcgta ttgggcgctc ttccgcttcc tcgctcactg
5940





actcgctgcg ctcggtcgtt cggctgcggc gagcggtatc agctcactca aaggcggtaa
6000





tacggttatc cacagaatca ggggataacg caggaaagaa catgtgagca aaaggccagc
6060





aaaaggccag gaaccgtaaa aaggccgcgt tgctggcgtt tttccatagg ctccgccccc
6120





ctgacgagca tcacaaaaat cgacgctcaa gtcagaggtg gcgaaacccg acaggactat
6180





aaagatacca ggcgtttccc cctggaagct ccctcgtgcg ctctcctgtt ccgaccctgc
6240





cgcttaccgg atacctgtcc gcctttctcc cttcgggaag cgtggcgctt tctcaatgct
6300





cacgctgtag gtatctcagt tcggtgtagg tcgttcgctc caagctgggc tgtgtgcacg
6360





aaccccccgt tcagcccgac cgctgcgcct tatccggtaa ctatcgtctt gagtccaacc
6420





cggtaagaca cgacttatcg ccactggcag cagccactgg taacaggatt agcagagcga
6480





ggtatgtagg cggtgctaca gagttcttga agtggtggcc taactacggc tacactagaa
6540





ggacagtatt tggtatctgc gctctgctga agccagttac cttcggaaaa agagttggta
6600





gctcttgatc cggcaaacaa accaccgctg gtagcggtgg tttttttgtt tgcaagcagc
6660





agattacgcg cagaaaaaaa ggatctcaag aagatccttt gatcttttct acggggtctg
6720





acgctcagtg gaacgaaaac tcacgttaag ggattttggt catgagatta tcaaaaagga
6780





tcttcaccta gatcctttta aattaaaaat gaagttttaa atcaatctaa agtatatatg
6840





agtaaacttg gtctgacagt taccaatgct taatcagtga ggcacctatc tcagcgatct
6900





gtctatttcg ttcatccata gttgcctgac tccccgtcgt gtagataact acgatacggg
6960





agggcttacc atctggcccc agtgctgcaa tgataccgcg agacccacgc tcaccggctc
7020





cagatttatc agcaataaac cagccagccg gaagggccga gcgcagaagt ggtcctgcaa
7080





ctttatccgc ctccatccag tctattaatt gttgccggga agctagagta agtagttcgc
7140





cagttaatag tttgcgcaac gttgttgcca ttgctacagg catcgtggtg tcacgctcgt
7200





cgtttggtat ggcttcattc agctccggtt cccaacgatc aaggcgagtt acatgatccc
7260





ccatgttgtg caaaaaagcg gttagctcct tcggtcctcc gatcgttgtc agaagtaagt
7320





tggccgcagt gttatcactc atggttatgg cagcactgca taattctctt actgtcatgc
7380





catccgtaag atgcttttct gtgactggtg agtactcaac caagtcattc tgagaatagt
7440





gtatgcggcg accgagttgc tcttgcccgg cgtcaatacg ggataatacc gcgccacata
7500





gcagaacttt aaaagtgctc atcattggaa aacgttcttc ggggcgaaaa ctctcaagga
7560





tcttaccgct gttgagatcc agttcgatgt aacccactcg tgcacccaac tgatcttcag
7620





catcttttac tttcaccagc gttctggggt gagcaaaaac aggaaggcaa aatgccgcaa
7680





aaaagggaat aagggcgaca cggaaatgtt gaatactcat actcttcctt tttcaatatt
7740





attgaagcat ttatcagggt tattgtctca tgagcggata catatttgaa tgtatttaga
7800





aaaataaaca aataggggtt ccgcgcacat ttccccgaaa agtgccacct gacgtc
7856
















TABLE VI








VP22#2-RepVP5-EcRV-S-Cys Sequence.


















gacggatcgg gagatctccc gatcccctat ggtcgactct cagtacaatc tgctctgatg
60
(SEQ ID NO: 24)






ccgcatagtt aagccagtat ctgctccctg cttgtgtgtt ggaggtcgct gagtagtgcg
120





cgagcaaaat ttaagctaca acaaggcaag gcttgaccga caattgcatg aagaatctgc
180





ttagggttag gcgttttgcg ctgcttcgcg atgtacgggc cagatatacg cgttgacatt
240





gattattgac tagttattaa tagtaatcaa ttacggggtc attagttcat agcccatata
300





tggagttccg cgttacataa cttacggtaa atggcccgcc tggctgaccg cccaacgacc
360





cccgcccatt gacgtcaata atgacgtatg ttcccatagt aacgccaata gggactttcc
420





attgacgtca atgggtggac tatttacggt aaactgccca cttggcagta catcaagtgt
480





atcatatgcc aagtacgccc cctattgacg tcaatgacgg taaatggccc gcctggcatt
540





atgcccagta catgacctta tgggactttc ctacttggca gtacatctac gtattagtca
600





tcgctattac catggtgatg cggttttggc agtacatcaa tgggcgtgga tagcggtttg
660





actcacgggg atttccaagt ctccacccca ttgacgtcaa tgggagtttg ttttggcacc
720





aaaatcaacg ggactttcca aaatgtcgta acaactccgc cccattgacg caaatgggcg
780





gtaggcgtgt acggtgggag gtctatataa gcagagctct ctggctaact agagaaccca
840





ctgcttactg gcttatcgaa attaatacga ctcactatag ggagacccaa gctggctagt
900





taagcttggt accgagctcg gatccactag tccagtgtgg tggaattctg cagatatcat
960





gccggggttt tacgagattg tgattaaggt ccccagcgac cttgacgggc atctgcccgg
1020





catttctgac agctttgtga actgggtggc cgagaaggaa tgggagttgc cgccagattc
1080





tgacatggat ctgaatctga ttgagcaggc acccctgacc gtggccgaga agctgcagcg
1140





cgactttctg acggaatggc gccgtgtgag taaggccccg gaggcccttt tctttgtgca
1200





atttgagaag ggagagagct acttccacat gcacgtgctc gtggaaacca ccggggtgaa
1260





atccatggtt ttgggacgtt tcctgagtca gattcgcgaa aaactgattc agagaattta
1320





ccgcgggatc gagccgactt tgccaaactg gttcgcggtc acaaagacca gaaatggcgc
1380





cggaggcggg aacaaggtgg tggatgagtg ctacatcccc aattacttgc tccccaaaac
1440





ccagcctgag ctccagtggg cgtggactaa tatggaacag tatttaagcg cctgtttgaa
1500





tctcacggag cgtaaacggt tggtggcgca gcatctgacg cacgtgtcgc agacgcagga
1560





gcagaacaaa gagaatcaga atcccaattc tgatgcgccg gtgatcagat caaaaacttc
1620





agccaggtac atggagctgg tcgggtggct cgtggacaag gggattacct cggagaagca
1680





gtggatccag gaggaccagg cctcatacat ctccttcaat gcggcctcca actcgcggtc
1740





ccaaatcaag gctgccttgg acaatgcggg aaagattatg agcctgacta aaaccgcccc
1800





cgactacctg gtgggccagc agcccgtgga ggacatttcc agcaatcgga tttataaaat
1860





tttggaacta aacgggtacg atccccaata tgcggcttcc gtctttctgg gatgggccac
1920





gaaaaagttc ggcaagagga acaccatctg gctgtttggg cctgcaacta ccgggaagac
1980





caacatcgcg gaggccatag cccacactgt gcccttctac gggtgcgtaa actggaccaa
2040





tgagaacttt cccttcaacg actgtgtcga caagatggtg atctggtggg aggaggggaa
2100





gatgaccgcc aaggtcgtgg agtcggccaa agccattctc ggaggaagca aggtgcgcgt
2160





ggaccagaaa tgcaagtcct cggcccagat agacccgact cccgtgatcg tcacctccaa
2220





caccaacatg tgcgccgtga ttgacgggaa ctcaacgacc ttcgaacacc agcagccgtt
2280





gcaagaccgg atgttcaaat ttgaactcac ccgccgtctg gatcatgact ttgggaaggt
2340





caccaagcag gaagtcaaag actttttccg gtgggcaaag gatcacgtgg ttgaggtgga
2400





gcatgaattc tacgtcaaaa agggtggagc caagaaaaga cccgccccca gtgacgcaga
2460





tataagtgag cccaaacggg tgcgcgagtc agttgcgcag ccatcgacgt cagacgcgga
2520





agcttcgatc aactacgcag acaggtacca aaacaaatgt tctcgtcacg tgggcatgaa
2580





tctgatgctg tttccctgca gacaatgcga gagaatgaat cagaattcaa atatctgctt
2640





cactcacgga cagaaagact gtttagagtg ctttcccgtg tcagaatctc aacccgtttc
2700





tgtcgtcaaa aaggcgtatc agaaactgtg ctacattcat catatcatgg gaaaggtgcc
2760





agacgcttgc actgcctgcg atctggtcaa tgtggatttg gatgactgca tctttgaaca
2820





atgcggccgc atgacctctc gccgctccgt gaagtcgggt ccgcgggagg ttccgcgcga
2880





tgagtacgag gatctgtact acaccccgtc ttcaggtatg gcgagtcccg atagtccgcc
2940





tgacacctcc cgccgtggcg ccctacagac acgctcgcgc cagaggggcg aggtccgttt
3000





cgtccagtac gacgagtcgg attatgccct ctacgggggc tcgtcttccg aagacgacga
3060





acacccggag gtcccccgga cgcggcgtcc cgtttccggg gcggttttgt ccggcccggg
3120





gcctgcgcgg gcgcctccgc cacccgctgg gtccggaggg gccggacgca cacccaccac
3180





cgccccccgg gccccccgaa cccagcgggt ggcgtctaag gcccccgcgg ccccggcggc
3240





ggagaccacc cgcggcagga aatcggccca gccagaatcc gccgcactcc cagacgcccc
3300





cgcgtcgacg gcgccaaccc gatccaagac acccgcgcag gggctggcca gaaagctgca
3360





ctttagcacc gcccccccaa accccgacgc gccatggacc ccccgggtgg ccggctttaa
3420





caagcgcgtc ttctgcgccg cggtcgggcg cctggcggcc atgcatgccc ggatggcggc
3480





ggtccagctc tgggacatgt cgcgtccgcg cacagacgaa gacctcaacg aactccttgg
3540





catcaccacc atccgcgtga cggtctgcga gggcaaaaac ctgcttcagc gcgccaacga
3600





gttggtgaat ccagacgtgg tgcaggacgt cgacgcggcc acggcgactc gagggcgttc
3660





tgcggcgtcg cgccccaccg agcgacctcg agccccagcc cgctccgctt ctcgccccag
3720





acggcccgtc gagggtctag agggcccgcg gttcgaacaa aaactcatct cagaagagga
3780





tctgaatatg cataccggtc atcatcacca tcaccattga gtttaaaccc gctgatcagc
3840





ctcgactgtg ccttctagtt gccagccatc tgttgtttgc cctccccccg tgccttcctt
3900





gaccctggaa ggtgccactc ccactgtcct ttcctaataa aatgaggaaa ttgcatcgca
3960





ttgtctgagt aggtgtcatt ctattctggg gggtggggtg gggcaggaca gcaaggggga
4020





ggattgggaa gacaatagca ggcatgctgg ggatgcggtg ggctctatgg cttctgaggc
4080





ggaaagaacc agctggggct ctagggggta tccccacgcg ccctgtagcg gcgcattaag
4140





cgcggcgggt gtggtggtta cgcgcagcgt gaccgctaca cttgccagcg ccctagcgcc
4200





cgctcctttc gctttcttcc cttcctttct cgccacgttc gccggctttc cccgtcaagc
4260





tctaaatcgg ggcatccctt tagggttccg atttagtgct ttacggcacc tcgaccccaa
4320





aaaacttgat tagggtgatg gttcacgtag tgggccatcg ccctgataga cggtttttcg
4380





ccctttgacg ttggagtcca cgttctttaa tagtggactc ttgttccaaa ctggaacaac
4440





actcaaccct atctcggtct attcttttga tttataaggg attttgggga tttcggccta
4500





ttggttaaaa aatgagctga tttaacaaaa atttaacgcg aattaattct gtggaatgtg
4560





tgtcagttag ggtgtggaaa gtccccaggc tccccaggca ggcagaagta tgcaaagcat
4620





gcatctcaat tagtcagcaa ccaggtgtgg aaagtcccca ggctccccag caggcagaag
4680





tatgcaaagc atgcatctca attagtcagc aaccatagtc ccgcccctaa ctccgcccat
4740





cccgccccta actccgccca gttccgccca ttctccgccc catggctgac taattttttt
4800





tatttatgca gaggccgagg ccgcctctgc ctctgagcta ttccagaagt agtgaggagg
4860





cttttttgga ggcctaggct tttgcaaaaa gctccccgga gcttgtatat ccattttcgg
4920





atctgatcaa gagacaggat gaggatcgtt tcgcatgatt gaacaagatg gattgcacgc
4980





aggttctccg gccgcttggg tggagaggct attcggctat gactgggcac aacagacaat
5040





cggctgctct gatgccgccg tgttccggct gtcagcgcag gggcgcccgg ttctttttgt
5100





caagaccgac ctgtccggtg ccctgaatga actgcaggac gaggcagcgc ggctatcgtg
5160





gctggccacg acgggcgttc cttgcgcagc tgtgctcgac gttgtcactg aagcgggaag
5220





ggactggctg ctattgggcg aagtgccggg gcaggatctc ctgtcatctc accttgctcc
5280





tgccgagaaa gtatccatca tggctgatgc aatgcggcgg ctgcatacgc ttgatccggc
5340





tacctgccca ttcgaccacc aagcgaaaca tcgcatcgag cgagcacgta ctcggatgga
5400





agccggtctt gtcgatcagg atgatctgga cgaagagcat caggggctcg cgccagccga
5460





actgttcgcc aggctcaagg cgcgcatgcc cgacggcgag gatctcgtcg tgacdcatgg
5520





cgatgcctgc ttgccgaata tcatggtgga aaatggccgc ttttctggat tcatcgactg
5580





tggccggctg ggtgtggcgg accgctatca ggacatagcg ttggctaccc gtgatattgc
5640





tgaagagctt ggcggcgaat gggctgaccg cttcctcgtg ctttacggta tcgccgctcc
5700





cgattcgcag cgcatcgcct tctatcgcct tcttgacgag ttcttctgag cgggactctg
5760





gggttcgcga aatgaccgac caagcgacgc ccaacctgcc atcacgagat ttcgattcca
5820





ccgccgcctt ctatgaaagg ttgggcttcg gaatcgtttt ccgggacgcc ggctggatga
5880





tcctccagcg cggggatctc atgctggagt tcttcgccca ccccaacttg tttattgcag
5940





cttataatgg ttacaaataa agcaatagca tcacaaattt cacaaataaa gcattttttt
6000





cactgcattc tagttgtggt ttgtccaaac tcatcaatgt atcttatcat gtctgtatac
6060





cgtcgacctc tagctagagc ttggcgtaat catggtcata gctgtttcct gtgtgaaatt
6120





gttatccgct cacaattcca cacaacatac gagccggaag cataaagtgt aaagcctggg
6180





gtgcctaatg agtgagctaa ctcacattaa ttgcgttgcg ctcactgccc gctttccagt
6240





cgggaaacct gtcgtgccag ctgcattaat gaatcggcca acgcgcgggg agaggcggtt
6300





tgcgtattgg gcgctcttcc gcttcctcgc tcactgactc gctgcgctcg gtcgttcggc
6360





tgcggcgagc ggtatcagct cactcaaagg cggtaatacg gttatccaca gaatcagggg
6420





ataacgcagg aaagaacatg tgagcaaaag cccagcaaaa ggccaggaac cgtaaaaagg
6480





ccgcgttgct ggcgtttttc cataggctcc gcccccctga cgagcatcac aaaaatcgac
6540





gctcaagtca gaggtggcga aacccgacag gactataaag ataccaggcg tttccccctg
6600





gaagctccct cgtgcgctct cctgttccga ccctgccgct taccggatac ctgtccgcct
6660





ttctcccttc gggaagcgtg gcgctttctc aatgctcacg ctgtaggtat ctcagttcgg
6720





tgtaggtcgt tcgctccaag ctgggctgtg tgcacgaacc ccccgttcag cccgaccgct
6780





gcgccttatc cggtaactat cgtcttgagt ccaacccggt aagacacgac ttatcgccac
6840





tggcagcagc cactggtaac aggattagca gagcgaggta tgtaggcggt gctacagagt
6900





tcttgaagtg gtggcctaac tacggctaca ctagaaggac agtatttggt atctgcgctc
6960





tgctgaagcc agttaccttc ggaaaaagag ttggtagctc ttgatccggc aaacaaacca
7020





ccgctggtag cggtggtttt tttgtttgca agcagcagat tacgcgcaga aaaaaaggat
7080





ctcaagaaga tcctttgatc ttttctacgg ggtctgacgc tcagtggaac gaaaactcac
7140





gttaagggat tttggtcatg agattatcaa aaaggatctt cacctagatc cttttaaatt
7200





aaaaatgaag ttttaaatca atctaaagta tatatgagta aacttggtct gacagttacc
7260





aatgcttaat cagtgaggca cctatctcag cgatctgtct atttcgttca tccatagttg
7320





cctgactccc cgtcgtgtag ataactacga tacgggaggg cttaccatct ggccccagtg
7380





ctgcaatgat accgcgagac ccacgctcac cggctccaga tttatcagca ataaaccagc
7440





cagccggaag ggccgagcgc agaagtggtc ctgcaacttt atccgcctcc atccagtcta
7500





ttaattgttg ccgggaagct agagtaagta gttcgccagt taatagtttg cgcaacgttg
7560





ttgccattgc tacaggcatc gtggtgtcac gctcgtcgtt tggtatggct tcattcagct
7620





ccggttccca acgatcaagg cgagttacat gatcccccat gttgtgcaaa aaagcggtta
7680





gctccttcgg tcctccgatc gttgtcagaa gtaagttggc cgcagtgtta tcactcatgg
7740





ttatggcagc actgcataat tctcttactg tcatgccatc cgtaagatgc ttttctgtga
7800





ctggtgagta ctcaaccaag tcattctgag aatagtgtat gcggcgaccg agttgctctt
7860





gcccggcgtc aatacgggat aataccgcgc cacatagcag aactttaaaa gtgctcatca
7920





ttggaaaacg ttcttcgggg cgaaaactct caaggatctt accgctgttg agatccagtt
7980





cgatgtaacc cactcgtgca cccaactgat cttcagcatc ttttactttc accagcgttt
8040





ctgggtgagc aaaaacagga aggcaaaatg ccgcaaaaaa gggaataagg gcgacacgga
8100





aatgttgaat actcatactc ttcttttttc aatattattg aagcatttat cagggttatt
8160





gtctcatgag cggatacata tttgaatgta tttagaaaaa taaacaaata ggggttccgc
8220





gcacatttcc ccgaaaagtg ccacctgacg tc
8252









Claims
  • 1. A fusion polypeptide which comprises an AAV2 Rep protein sequence of the left open reading frame of the rep gene that lacks a functional nuclear localization signal sequence and a polypeptide sequence that confers nuclear localization on said fusion polypeptide.
  • 2. A fusion polypeptide of claim 1, wherein said nuclear-localization-conferring polypeptide sequence is selected from the group consisting of Drosophila antennaepedia protein, HIV-1 tat protein, VP22, and functional fragments and variants thereof.
  • 3. A fusion polypeptide of claim 1, wherein said nuclear-localization-conferring polypeptide sequence is selected from the group consisting of VP22 and functional fragments and variants thereof.
  • 4. A fusion polypeptide of claim 1, wherein said Rep protein sequence contains a deletion mutation in the nuclear localization signal.
  • 5. A fusion polypeptide of claim 1, wherein said Rep protein sequence is truncated to delete the carboxyl terminal amino acid residues of the Rep protein at amino acid residue 492.
  • 6. A fusion polypeptide of claim 1, wherein said Rep protein sequence is truncated to delete the carboxyl terminal amino acid residues of the Rep protein at amino acid residue 491.
  • 7. A fusion polypeptide of claim 1, wherein said Rep protein sequence is truncated to delete the carboxyl terminal amino acid residues of the Rep protein at amino acid residue 490.
  • 8. A fusion polypeptide of claim 1, wherein said Rep protein sequence is truncated to delete the carboxyl terminal amino acid residues of the Rep protein at amino acid residue 489.
  • 9. A fusion polypeptide of claim 1, wherein said Rep protein sequence is fused to the carboxyl terminus of said nuclear localization polypeptide sequence.
  • 10. A fusion polypeptide of claim 1, wherein said Rep protein sequence is fused to the amino terminus of said nuclear localization polypeptide sequence.
  • 11. A fusion polypeptide of claim 1, which further comprises a spacer of about 4 to about 7 amino acid residues between said Rep protein sequence and said nuclear localization polypeptide sequence.
  • 12. A DNA construct encoding the fusion polypeptide of claim 1.
  • 13. A DNA construct of claim 12 which further comprises a promoter.
  • 14. A method for mediating site-specific integration of a rep-deleted rAAV vector to a cell which comprises transfecting said cell with a DNA construct of claim 13.
  • 15. A method for mediating site-specific integration of a rep-deleted rAAV vector to a cell which comprises expressing a fusion polypeptide of claim 1 in said cell.
  • 16. A method for mediating site-specific integration of a rep-deleted rAAV vector to a cell which comprises contacting said cell with a fusion polypeptide of claim 1 during transfection of said cell with said rep-deleted rAAV vector.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims the benefit of U.S. provisional application Ser. No. 60/432,258 filed Dec. 11, 2002.

STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

This invention was made with government support in the form of grant no. HL60898-0lAl from the United States Department of Health and Human Services, National Institutes of Health, National Heart, Lung, and Blood Institute, and grant no. CA33572 from the Department of Health and Human Services, National Institutes of Health, the National Cancer Institute. The United States Government may have certain rights in the invention.

Provisional Applications (1)
Number Date Country
60432258 Dec 2002 US