Ablation probe with fluid-based acoustic coupling for ultrasonic tissue imaging and treatment

Information

  • Patent Grant
  • 8945015
  • Patent Number
    8,945,015
  • Date Filed
    Monday, January 7, 2013
    11 years ago
  • Date Issued
    Tuesday, February 3, 2015
    9 years ago
Abstract
Devices and systems for ultrasonically imaging tissue and performing ablation therapy are disclosed. An ablation probe for treating and imaging body tissue includes an ablation electrode tip with a number of acoustic openings and a plurality of ultrasonic imaging sensors disposed within an interior lumen of the tip. The ultrasonic imaging sensors are supported within the interior lumen via an insert equipped with a number of recesses that receive the ultrasonic imaging sensors. An acoustically transparent shell disposed between the ultrasonic imaging sensors and the acoustic openings forms a fluid channel in the acoustic pathway of the sensors. During an ablation procedure, cooling fluid from an external fluid source is delivered through the fluid channel, providing an acoustic coupling effect between the ultrasonic imaging sensors and the surrounding body tissue.
Description
STATEMENT OF JOINT RESEARCH AGREEMENT

In compliance with 37 C.F.R. 1.71(g) (1), disclosure is herein made that the invention was made pursuant to a Joint Research Agreement as defined in 35 U.S.C. §103(c)(3), which was in effect on or before the date the claimed invention was made, and as a result of activities undertaken within the scope of the Joint Research Agreement, by or on the behalf of PHILIPS MEDICAL SYSTEMS NEDERLAND B.V., and EP TECHNOLOGIES, INC., a subsidiary of BOSTON SCIENTIFIC CORPORATION.


TECHNICAL FIELD

The present disclosure relates generally to devices and systems for imaging tissue within the body during an ablation procedure. More specifically, the present disclosure relates to an ablation probe with ultrasonic imaging capabilities.


BACKGROUND

In ablation therapy, it is often necessary to determine various characteristics of body tissue at a target ablation site within the body. In interventional cardiac electrophysiology (EP) procedures, for example, it is often necessary for the physician to determine the condition of cardiac tissue at a target ablation site in or near the heart. During some EP procedures, the physician may deliver a mapping catheter through a main vein or artery into an interior region of the heart to be treated. Using the mapping catheter, the physician may then determine the source of a cardiac rhythm disturbance or abnormality by placing a number of mapping elements carried by the catheter into contact with the adjacent cardiac tissue and then operate the catheter to generate an electrophysiology map of the interior region of the heart. Once a map of the heart is generated, the physician may then advance an ablation catheter into the heart, and position an ablation electrode carried by the catheter tip near the targeted cardiac tissue to ablate the tissue and form a lesion, thereby treating the cardiac rhythm disturbance or abnormality. In some techniques, the ablation catheter itself may include a number of mapping electrodes, allowing the same device to be used for both mapping and ablation.


Various ultrasound-based imaging catheters and probes have been developed for directly visualizing body tissue in applications such as interventional cardiology, interventional radiology, and electrophysiology. For interventional cardiac electrophysiology procedures, for example, ultrasound imaging devices have been developed that permit the visualization of anatomical structures of the heart directly and in real-time. In some electrophysiology procedures, for example, ultrasound catheters may be used to image the intra-atrial septum, to guide transseptal crossing of the atrial septum, to locate and image the pulmonary veins, and to monitor the atrial chambers of the heart for signs of a perforation and pericardial effusion.


Many ultrasound-based imaging systems comprise an imaging probe that is separate from the mapping and ablation catheters used to perform therapy on the patient. As a result, a position tracking system is sometimes used to track the location of each device within the body. In some procedures, it may be difficult for the physician to quickly and accurately determine the condition of tissue to be ablated. Moreover, the images obtained using many ultrasound-based imaging systems are often difficult to read and understand without reference to images obtained from a separate imaging system such as a fluoroscopic imaging system.


SUMMARY

The present disclosure relates generally to devices and systems for imaging tissue within the body during an ablation procedure.


In Example 1, an ablation probe for treating and imaging body tissue comprises: an elongate probe body having a proximal section and a distal section; an ablation electrode tip coupled to the distal section of the elongate probe body, the ablation electrode tip configured for delivering ablation energy to body tissue; a plurality of acoustic openings disposed through the ablation electrode tip; a plurality of ultrasonic imaging sensors disposed within an interior lumen of the ablation electrode tip; an acoustically transparent member disposed between the ultrasonic imaging sensors and the acoustic openings; and a fluid channel interposed between the ultrasonic imaging sensors and the acoustically transparent member.


In Example 2, the probe according to Example 1, wherein each ultrasonic imaging sensor is configured to transmit ultrasonic waves through the fluid channel, the acoustically transparent member, and a corresponding one of the acoustic openings.


In Example 3, the probe according to any of Examples 1 or 2, wherein the ablation electrode tip comprises a tubular-shaped metal shell.


In Example 4, the probe according to any of Examples 1-3, wherein the acoustic openings are located circumferentially about the ablation electrode tip.


In Example 5, the probe according to any of Examples 1-4, wherein the ablation electrode tip further includes a plurality of irrigation ports.


In Example 6, the probe according to Example 5, wherein the irrigation ports are located circumferentially about the ablation electrode tip.


In Example 7, the probe according to any of Examples 5-6, wherein the irrigation ports are located distally and/or proximally of the acoustic openings.


In Example 8, the probe according to any of Examples 5-7, wherein the ultrasonic imaging sensors are located within the interior lumen of the ablation electrode tip at a location proximal to the irrigation ports.


In Example 9, the probe according to any of Examples 1-8, wherein the ultrasonic imaging sensors are each configured for transmitting laterally-directed ultrasonic waves from a side of the ablation electrode tip.


In Example 10, the probe of according to any of Examples 1-9, further comprising at least one additional ultrasonic imaging sensor disposed within the ablation electrode tip, the at least one additional ultrasonic imaging sensor configured for transmitting ultrasonic waves in a distal direction away from a distal end of the ablation electrode tip.


In Example 11, the probe according to Example 10, wherein the acoustically transparent member is further disposed between the at least one additional ultrasonic imaging sensor and a distal-facing acoustic opening disposed through the ablation electrode tip, and wherein the fluid channel is further interposed between the at least one additional ultrasonic imaging sensor and the distal-facing acoustic opening.


In Example 12, the probe according to any of Examples 1-10, wherein the acoustically transparent member comprises a tubular-shaped shell.


In Example 13, the probe according to any of Examples 1-12, wherein fluid within the fluid channel acoustically couples the ultrasonic imaging sensors to the body tissue.


In Example 14, the probe according to any of Examples 1-13, further comprising an insert configured for supporting the ultrasonic imaging sensors within the interior lumen of the ablation electrode tip.


In Example 15, the probe according to Example 14, wherein the insert comprises a cylindrically-shaped insert body including a plurality of recesses each configured for receiving an ultrasonic transducer therein.


In Example 16, the probe according to any of Examples 14-15, wherein a transmitting face of each ultrasonic imaging sensor is substantially flush with an outer surface of the insert body.


In Example 17, the probe according to any of Examples 14-16, wherein the interior lumen of the ablation electrode tip includes a proximal fluid chamber and a distal fluid chamber, wherein the proximal and distal fluid chambers are separated by the insert.


In Example 18, an ablation probe for treating and imaging body tissue comprises: an elongate probe body having a proximal section and a distal section; an ablation electrode tip coupled to the distal section of the elongate probe body, the ablation electrode tip configured for delivering ablation energy to body tissue; a plurality of acoustic openings disposed through a side of the ablation electrode tip; an insert disposed within an interior lumen of the ablation electrode tip; a plurality of lateral-facing ultrasonic imaging sensors coupled to the insert, the lateral-facing ultrasonic imaging sensors configured for transmitting ultrasonic waves from a side of the ablation electrode tip; an acoustically transparent member disposed between the lateral-facing ultrasonic imaging sensors and the acoustic openings; a fluid channel interposed between the lateral-facing ultrasonic imaging sensors and the acoustically transparent member; and at least one distal-facing ultrasonic imaging sensor disposed within the interior lumen of the ablation electrode, the distal-facing ultrasonic imaging sensor configured for transmitting ultrasonic waves in a distal direction away from a distal end of the ablation electrode tip.


In Example 19, an ablation and ultrasound imaging system comprises: an ablation probe including an ablation electrode tip configured for delivering ablation energy to body tissue, the ablation electrode tip comprising a plurality of acoustic openings disposed through the ablation electrode tip, a plurality of ultrasonic imaging sensors disposed within an interior lumen of the ablation electrode tip, an acoustically transparent member disposed between the ultrasonic imaging sensors and the acoustic openings, and a fluid channel interposed between the ultrasonic imaging sensors and the acoustically transparent member. The system further comprises a fluid source configured for delivering cooling fluid to the ablation electrode tip, the cooling fluid acoustically coupling the ultrasonic imaging sensors to the body tissue; an ablation therapy module configured for generating and supplying an electrical signal to the ablation electrode tip; and an ultrasound imaging module configured for processing ultrasonic imaging signals received from the ultrasonic imaging sensors.


In Example 20, the system according to Example 19, wherein the ultrasonic imaging module comprises a signal generator configured to generate control signals for controlling each ultrasonic imaging sensor; and an image processor configured for processing electrical signals received from each ultrasonic imaging sensor and generating a plurality of ultrasonic images.


While multiple embodiments are disclosed, still other embodiments of the present invention will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative embodiments of the invention. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature and not restrictive.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic view of a combined ablation and imaging system in accordance with an illustrative embodiment;



FIG. 2 is a perspective view showing the distal section of the combined ablation and ultrasonic imaging probe of FIG. 1 in greater detail;



FIG. 3 is a schematic view showing an interior portion of the ablation electrode tip in accordance with an illustrative embodiment;



FIG. 4 is a perspective view of the tip insert of FIG. 3;



FIG. 5 is a cross-sectional view of the ablation electrode tip along line 5-5 in FIG. 3;



FIG. 6 is another schematic view of the ablation electrode tip showing the flow of cooling fluid across the surface of the ultrasonic imaging sensors; and



FIG. 7 is an enlarged view showing the transmission of ultrasonic waves from one of the ultrasonic imaging sensors through the cooling fluid, acoustically transparent shell, and acoustic opening of the ablation electrode tip.





While the invention is amenable to various modifications and alternative forms, specific embodiments have been shown by way of example in the drawings and are described in detail below. The intention, however, is not to limit the invention to the particular embodiments described. On the contrary, the invention is intended to cover all modifications, equivalents, and alternatives falling within the scope of the invention as defined by the appended claims.


DETAILED DESCRIPTION


FIG. 1 is a schematic view of a combined ablation and imaging system 10 in accordance with an illustrative embodiment. As shown in FIG. 1, the system 10 includes a combined ablation and ultrasonic imaging probe 12, an RF generator 14, a fluid reservoir and pump 16, and an ultrasonic imaging module 18. The probe 12 comprises an elongate probe body 20 having a proximal section 22 equipped with a handle assembly 24, and a deflectable distal section 26 including an ablation electrode tip 28. The probe body 20 includes an internal cooling fluid lumen 29 fluidly coupled to the fluid reservoir and pump 16, which supplies cooling fluid, such as saline, through the probe body 20 to a number of irrigation ports 30 in the ablation electrode tip 28. The probe body 20 may further include additional lumens or other tubular elements for supporting electrical conductors, additional fluid lumens, a thermocouple, an insertable stylet, as well as other components. In some embodiments, the probe body 20 comprises flexible plastic tubing with a braided metal mesh to increase the rotational stiffness of the body 20.


The RF generator 14 is configured for generating RF energy for performing ablation procedures using the ablation electrode tip 28. The RF generator 14 includes an RF energy source 32 and a controller 34 for controlling the timing and level of the RF energy delivered by the tip 28. During an ablation procedure, the RF generator 14 is configured to deliver ablation energy to the tip 28 in a controlled manner to ablate any sites identified or targeted for ablation. Other types of ablation sources in addition to or in lieu of the RF generator 14 can also be used for ablating target sites. Examples of other types of ablation sources can include, but are not limited to, microwave generators, acoustic generators, cryoablation generators, and laser/optical generators.


The ultrasonic imaging module 18 is configured for generating high resolution ultrasonic images (e.g., A, M, or B-mode images) of anatomical structures within the body based on signals received from several ultrasonic imaging sensors 36 located within the probe tip 28. In the embodiment of FIG. 1, the ultrasonic imaging module 18 includes an ultrasonic signal generator 40 and an image processor 42. The ultrasonic signal generator 40 is configured to provide electrical signals for controlling each of the ultrasonic imaging sensors 36. The imaging signals received back from the ultrasonic imaging sensors 36, in turn, are fed to the image processor 42, which processes the signals and generates images that can be displayed on a graphical user interface (GUI) 44. In certain embodiments, for example, the ultrasonic images displayed on the GUI 44 can be used to assist the physician with advancing the probe 12 through the body and to perform an ablation procedure. In cardiac ablation procedures, for example, the ultrasonic images generated from the ultrasound signals can be used to confirm tissue contact of the probe 12 within the heart or surrounding anatomy, to determine the orientation of the probe 12 within the body, to determine the tissue depth of the tissue at a target ablation site, and/or to visualize the progression of a lesion being formed in the tissue.


Various characteristics associated with the ultrasonic imaging sensors 36 as well as the circuitry within the ultrasonic imaging module 18 can be controlled to permit the sensors 36 to accurately detect tissue boundaries (e.g., blood or other bodily fluids), lesion formation and progression, as well as other characteristics of the tissue before, during, and/or after the ablation procedure. Example tissue characteristics that can be visualized using the probe 12 include, but are not limited to, the presence of fluid vaporization inside the tissue, the existence of a prior scar, the size and shape of a lesion being formed, as well as structures adjacent to heart tissue (e.g., lungs, esophagus). The depth at which the ultrasonic imaging sensors 36 can visualize anatomical structures within the body is dependent on the mechanical characteristics of the sensors 36, the electrical characteristics of the sensor circuitry including the drive frequency of the signal generator 40, the boundary conditions and degree of attenuation between the sensors 36 and the surrounding anatomy, as well as other factors.


In some embodiments, the probe 12 further includes a steering mechanism to permit the operator to deflect and steer the probe 12 within the body. In one embodiment, for example, a steering member such as a steering knob 46 rotatably coupled to the handle 24 can be used to deflect the ablation electrode tip 28 in one or multiple directions relative to a longitudinal axis of the probe body 20. Rotational movement of the steering knob 46 in a first direction relative to the handle 24 causes a steering wire within the probe body 20 to move proximally relative to the probe body 20, which, in turn, bends the distal section 26 of the probe body 20 into a particular shape such as an arced shape. Rotational movement of the steering knob 46 in the opposite direction, in turn, causes the distal section 26 of the probe body 20 to return to its original shape, as shown. To assist in the deflection, and in some embodiments, the probe body 20 includes one or more regions made of a lower durometer material than the other portions of the probe body 20.


Although the system 10 is described in the context of a medical system for use in intracardiac electrophysiology procedures for diagnosing and treating the heart, in other embodiments the system 10 may be used for treating, diagnosing, or otherwise visualizing other anatomical structures such as the prostate, brain, gall bladder, uterus, esophagus, and/or other regions in the body. Moreover, many of the elements in FIG. 1 are functional in nature, and are not meant to limit the structure that performs these functions in any manner. For example, several of the functional blocks can be embodied in a single device or one or more of the functional blocks can be embodied in multiple devices.



FIG. 2 is a perspective view showing the distal section 26 of the probe 12 of FIG. 1 in greater detail. As can be further seen in FIG. 2, the ablation electrode tip 28 includes an RF ablation electrode 48 configured for delivering ablation energy to body tissue surrounding the tip 28. In the embodiment of FIG. 2, the RF ablation electrode 48 comprises a tubular-shaped metal shell that extends from a distal end 50 of the probe body 20 to a distal end 52 of the tip 28. A number of exposed openings 54a, 54b, 54c, 54d disposed through the ablation electrode tip 28 form acoustic openings that permit ultrasonic waves transmitted by the ultrasonic imaging sensors 36a, 36b, 36c, 36d to pass through the tip 28 and into the surrounding tissue. The reflected ultrasonic waves received back from the tissue pass through the acoustic openings 54a, 54b, 54c, 54d and are sensed by the ultrasonic imaging sensors 36a, 36b, 36c, 36d operating in a receive mode. In some embodiments, the acoustic openings 54a, 54b, 54c, 54d comprise exposed openings or apertures formed through the wall of the ablation electrode tip 28.


In addition to serving as an ablation electrode, the RF ablation electrode 48 also functions as a housing that contains the ultrasonic imaging sensors 36a, 36b, 36c, 36d, the electrical conductors coupling the RF ablation electrode 48 to the RF generator 14, the electrical conductors coupling the ultrasonic imaging sensors 36a, 36b, 36c, 36d to the ultrasonic imaging module 18, one or more steering wires of the steering mechanism, as well as other components. In certain embodiments, the RF ablation electrode 48 comprises an electrically conductive alloy such as platinum-iridium, which in addition to serving as an electrode for providing ablation therapy, is also used as a fluoroscopic marker to determine the location of the ablation electrode tip 28 within the body using fluoroscopy.


In the embodiment of FIG. 2, the probe 12 includes a distal-facing ultrasonic imaging sensor 36a located at or near the distal end 52 of the ablation electrode tip 28. The ultrasonic sensor 36a is configured to transmit ultrasonic waves primarily in a forward or distal direction away from the distal end 52 of the ablation electrode tip 28. A second set of ultrasonic imaging sensors 36b, 36c, 36d disposed within the tip 28 at a location proximal to the distal-facing ultrasonic imaging sensor 36a are configured to transmit ultrasonic waves primarily in a lateral or side-facing direction away from the side of the ablation electrode tip 28. The reflected waves received back from the ultrasonic imaging sensors 36a, 36b, 36c, 36d produces signals that can be used by the ultrasonic imaging module 18 to generate images of the surrounding body tissue.


In some embodiments, the ultrasonic imaging sensors 36a, 36b, 36c, 36d each comprise piezoelectric transducers formed of a piezoceramic material such as lead zirconate titanate (PZT) or a piezoelectric polymer such as polyvinylidene fluoride (PVDF). In some embodiments, the ablation electrode tip 28 includes three laterally-facing ultrasonic imaging sensors 36b, 36c, 36d each oriented circumferentially at 120° intervals apart from each other about the tip 28 for use in imaging tissue located adjacent to the sides of the tip 28. In other embodiments, a greater or lesser number of laterally-facing ultrasonic imaging sensors are employed for imaging tissue adjacent to the sides of the probe tip 28.


In the embodiment of FIG. 2, the ablation electrode tip 28 has an open irrigated configuration including a number of irrigation ports 30 used to deliver cooling fluid to cool the tip 28 and the surrounding tissue. In other embodiments, the ablation electrode tip 28 has a closed irrigation configuration in which the cooling fluid is recirculated through the tip 28 without being ejected into the surrounding tissue. In some embodiments, the ablation electrode tip 28 comprises six irrigation ports 30 each disposed circumferentially at 60° intervals apart from each other about the tip 28 and at a location proximal to the distal-facing ultrasonic sensor 36a and distal to the location of the laterally-facing ultrasonic sensors 36b, 36c, 36d. In other embodiments, a greater or lesser number of fluid irrigation ports 30 are employed. In some embodiments, the fluid irrigation ports 30 are circular in shape, and have a diameter in the range of approximately 0.01 inches to 0.02 inches. The size, number, and/or positioning of the irrigation ports 30 can vary, however.


During ablation therapy, cooling fluid is used to control the temperature and reduce coagulum formation on the ablation electrode tip 28, thus preventing an impedance rise of the tissue in contact with the tip 28 and increasing the transfer of RF ablation energy delivered into the tissue. In certain embodiments, and as discussed further herein, the cooling fluid also serves as an impedance matching layer to acoustically couple the ultrasonic sensors 36a, 36b, 36c, 36d to the surrounding body tissue, thus decreasing reflections that can occur at the interface between the tissue and the sensors 36a, 36b, 36c, 36d.



FIG. 3 is a schematic view showing an interior portion of the ablation electrode tip 28 in accordance with an illustrative embodiment. As shown in FIG. 3, the ablation electrode tip 28 includes a distal tip insert 58 configured to divide the interior of the probe tip 28 into a proximal fluid chamber 60 and a distal fluid chamber 62. As can be further seen in conjunction with FIG. 4, the distal insert 58 comprises a cylindrically-shaped body 64 having an outer extent 66 with a number of recesses 68 each configured to receive a corresponding one of the lateral-facing ultrasonic imaging sensors 36b, 36c, 36c therein. In certain embodiments, for example, the distal insert 58 comprises a stainless steel body having recesses 68 sized and shaped to frictionally receive the ultrasonic imaging sensors 36b, 36c, 36d by press-fitting the sensors 36b, 36c, 36d into the recesses 68. In some embodiments, the depth of the recesses 68 are configured such that the transmitting face of the ultrasonic sensors 36b, 36c, 36d lie substantially flush with the outer extent 66 of the insert body 64. In use, the insert body 64 separates the proximal fluid chamber 60 from the distal fluid chamber 62, creating a back pressure as fluid enters the proximal fluid chamber 60. This back pressure causes the fluid to circulate before being forced into the distal fluid chamber 62.


An internal bore 70 extending through the insert body 64 is configured to receive electrical conductors used for electrically coupling the ultrasonic sensors 36a, 36b, 36c, 36d to the ultrasonic imaging module 18. As can be further seen in FIG. 3, for example, the interior lumen 70 of the insert body 64 is connected at both ends to tubular members 72, 74 that contain electrical conductors 76, 78 for the ultrasonic sensors 36a, 36b, 36c, 36d.



FIG. 5 is a cross-sectional view of the ablation electrode tip 28 along line 5-5 of FIG. 3. As can be further seen in conjunction with FIGS. 4 and 5, a tubular-shaped shell 80 disposed radially about the tip insert body 64 defines an annular-shaped fluid channel 82 connecting the proximal fluid chamber 60 with the distal fluid chamber 62. In other embodiments, the shape of the fluid channel 82 is different from that shown. In some embodiments, the shell 80 comprises an acoustically transparent material such as clear acrylic, which has a relatively low acoustic impedance. The shell 80 also serves to fluidly seal the acoustic openings 54b, 54c, 54d from the surrounding body tissue and, in some embodiments, provides a desired acoustic coupling effect between the cooling fluid within the fluid channel 82 and the body tissue.


As can be further seen in FIG. 5, and in some embodiments, the ablation electrode tip 28 includes three laterally-facing ultrasonic imaging sensors 36b, 36c, 36d at equidistant angles α of 120° about the circumference of the tip 28. Although three laterally-facing ultrasonic imaging sensors 36b, 36c, 36d are shown, a greater or lesser number of sensors may be employed in other embodiments. By way of example and not limitation, four ultrasonic imaging sensors may be disposed at equidistant angles α of 90° about the circumference of the ablation electrode tip 28. In some embodiments, the laterally-facing ultrasonic imaging sensors 36b, 36c, 36d are configured to transmit ultrasonic waves in a direction perpendicular to the side of the ablation electrode tip 28. In other embodiments, the laterally-facing ultrasonic imaging sensors 36b, 36c, 36d are configured to transmit ultrasonic waves from the side of the ablation electrode tip 28 at a slight forward angle.


During imaging, the use of multiple ultrasonic imaging sensors 36b, 36c, 36d spaced about the circumference of the ablation electrode tip 28 ensures that at least one of the laterally-facing sensors 36b, 36b, 36d is in view of target tissue located to the side of the tip 28 irrespective of the tip orientation. Such configuration also permits the physician to easily visualize the target tissue without having to rotate the probe 12 once the probe 12 is in contact with the tissue.



FIG. 6 is another schematic view of the ablation electrode tip 28 showing the flow of cooling fluid 84 across the surface of the ultrasonic imaging sensors 36b, 36c, 36d. During an ablation procedure, cooling fluid 84 delivered through the probe body 20 enters into the proximal fluid chamber 60. The cooling fluid 84 then enters into the fluid channel 82 and passes across the ultrasonic imaging sensors 36b, 36c, 36d, providing an acoustic coupling effect between the sensors 36b, 36c, 36d and the shell 80. The cooling fluid 84 then enters into the distal fluid chamber 62 and exits into the surrounding body tissue through the irrigation ports 30 shown in FIGS. 1-2.



FIG. 7 is an enlarged view showing the transmission of ultrasonic waves 86 from one of the ultrasonic imaging sensors 36c through the cooling fluid 84, shell 80, and acoustic opening 54c of the ablation probe tip 28. As shown in FIG. 7, the cooling fluid 84 within the fluid channel 82 comes into contact with the transmitting/receiving surface 88 of the ultrasonic imaging sensor 30c and the interior surface 90 of the shell 80. The cooling fluid 84 is selected so as to have an acoustic impedance similar to that of the body tissue, which serves to facilitate transmission of the ultrasonic waves 86 into the shell 80, through the acoustic opening 54c, and into the tissue within minimal boundary reflection losses at each interface. A similar effect occurs for the fluid passing across the transmitting face or surface for other ultrasonic imaging sensors 36b, 36c.


Various modifications and additions can be made to the exemplary embodiments discussed without departing from the scope of the present invention. For example, while the embodiments described above refer to particular features, the scope of this invention also includes embodiments having different combinations of features and embodiments that do not include all of the described features. Accordingly, the scope of the present invention is intended to embrace all such alternatives, modifications, and variations as fall within the scope of the claims, together with all equivalents thereof.

Claims
  • 1. An ablation probe for treating and imaging body tissue, the ablation probe comprising: an elongate probe body having a proximal section and a distal section;an ablation electrode tip coupled to the distal section of the elongate probe body, the ablation electrode tip configured for delivering ablation energy to body tissue;a plurality of acoustic openings disposed through the ablation electrode tip;a plurality of ultrasonic imaging sensors disposed within an interior lumen of the ablation electrode tip;an acoustically transparent member disposed between the ultrasonic imaging sensors and the acoustic openings, the acoustically transparent member comprising a tubular shell that circumferentially surrounds at least one of the plurality of ultrasonic imaging sensors; anda fluid channel interposed between the ultrasonic imaging sensors and the acoustically transparent member.
  • 2. The probe of claim 1, wherein each ultrasonic imaging sensor is configured to transmit ultrasonic waves through the fluid channel, the acoustically transparent member, and a corresponding one of the acoustic openings.
  • 3. The probe of claim 1, wherein the ablation electrode tip comprises a tubular-shaped metal shell.
  • 4. The probe of claim 1, wherein the acoustic openings are located circumferentially about the ablation electrode tip.
  • 5. The probe of claim 1, wherein the acoustically transparent member comprises a tubular-shaped shell.
  • 6. The probe of claim 1, wherein fluid within the fluid channel acoustically couples the ultrasonic imaging sensors to the body tissue.
  • 7. The probe of claim 1, wherein the ablation electrode tip further includes a plurality of irrigation ports.
  • 8. The probe of claim 7, wherein the irrigation ports are located circumferentially about the ablation electrode tip.
  • 9. The probe of claim 7, wherein the irrigation ports are located at least one of distally and proximally of the acoustic openings.
  • 10. The probe of claim 7, wherein the ultrasonic imaging sensors are located within the interior lumen of the ablation electrode tip at a location proximal to the irrigation ports.
  • 11. The probe of claim 1, wherein the ultrasonic imaging sensors are each configured for transmitting laterally-directed ultrasonic waves from a side of the ablation electrode tip.
  • 12. The probe of claim 11, further comprising at least one additional ultrasonic imaging sensor disposed within the ablation electrode tip, the at least one additional ultrasonic imaging sensor configured for transmitting ultrasonic waves in a distal direction away from a distal end of the ablation electrode tip.
  • 13. The probe of claim 12, wherein the acoustically transparent member is further disposed between the at least one additional ultrasonic imaging sensor and a distal-facing acoustic opening disposed through the ablation electrode tip, and wherein the fluid channel is further interposed between the at least one additional ultrasonic imaging sensor and the distal-facing acoustic opening.
  • 14. The probe of claim 1, further comprising an insert configured for supporting the ultrasonic imaging sensors within the interior lumen of the ablation electrode tip.
  • 15. The probe of claim 14, wherein the insert comprises a cylindrically-shaped insert body including a plurality of recesses each configured for receiving an ultrasonic transducer.
  • 16. The probe of claim 14, wherein a transmitting face of each ultrasonic imaging sensor is substantially flush with an outer surface of the insert body.
  • 17. The probe of claim 14, wherein the interior lumen of the ablation electrode tip includes a proximal fluid chamber and a distal fluid chamber, wherein the proximal and distal fluid chambers are separated by the insert.
  • 18. An ablation probe for treating and imaging body tissue, the ablation probe comprising: an elongate probe body having a proximal section and a distal section;an ablation electrode tip coupled to the distal section of the elongate probe body, the ablation electrode tip configured for delivering ablation energy to body tissue;a plurality of acoustic openings disposed through the ablation electrode tip;a plurality of ultrasonic imaging sensors disposed within an interior lumen of the ablation electrode tip, the plurality of ultrasonic imaging sensors arrayed around a longitudinal axis of the ablation electrode tip to respectively face a plurality of different lateral directions with respect to the longitudinal axis;an acoustically transparent member disposed between the ultrasonic imaging sensors and the acoustic openings; anda fluid channel interposed between the ultrasonic imaging sensors and the acoustically transparent member.
  • 19. An ablation probe for treating and imaging body tissue, the ablation probe comprising: an elongate probe body having a proximal section and a distal section;an ablation electrode tip coupled to the distal section of the elongate probe body, the ablation electrode tip configured for delivering ablation energy to body tissue;a plurality of acoustic openings disposed through the ablation electrode tip;a plurality of ultrasonic imaging sensors disposed within an interior lumen of the ablation electrode tip;an acoustically transparent member disposed between the ultrasonic imaging sensors and the acoustic openings;an insert within the interior lumen of the ablation electrode tip, the insert comprising a cylindrically-shaped insert body including a plurality of recesses that respectively receive the plurality of ultrasonic imaging sensors; anda fluid channel interposed between the ultrasonic imaging sensors and the acoustically transparent member.
  • 20. The ablation probe of claim 19, wherein the interior lumen of the ablation electrode tip includes a proximal fluid chamber and a distal fluid chamber, wherein the proximal and distal fluid chambers are separated by the insert and the fluid channel fluidly connects the proximal fluid chamber to the distal fluid chamber.
CROSS-REFERENCE TO RELATED APPLICATION

This application claims priority to Provisional Application No. 61/592,908, filed Jan. 31, 2012, which is herein incorporated by reference in its entirety.

US Referenced Citations (208)
Number Name Date Kind
3773401 Douklias et al. Nov 1973 A
4763660 Kroll et al. Aug 1988 A
5029588 Yock et al. Jul 1991 A
5254088 Lundquist et al. Oct 1993 A
5331966 Bennett et al. Jul 1994 A
5383874 Jackson et al. Jan 1995 A
5385146 Goldreyer Jan 1995 A
5385148 Lesh et al. Jan 1995 A
5391199 Ben-Haim Feb 1995 A
5398683 Edwards et al. Mar 1995 A
5485849 Panescu et al. Jan 1996 A
5494042 Panescu et al. Feb 1996 A
5500012 Brucker et al. Mar 1996 A
5571088 Lennox et al. Nov 1996 A
5579764 Goldreyer Dec 1996 A
5582609 Swanson et al. Dec 1996 A
5647870 Kordis et al. Jul 1997 A
5788636 Curley Aug 1998 A
5800482 Pomeranz et al. Sep 1998 A
5830213 Panescu et al. Nov 1998 A
5833621 Panescu et al. Nov 1998 A
5871483 Jackson et al. Feb 1999 A
6004269 Crowley et al. Dec 1999 A
6050994 Sherman Apr 2000 A
6059778 Sherman May 2000 A
6064905 Webster, Jr. et al. May 2000 A
6070094 Swanson et al. May 2000 A
6101409 Swanson et al. Aug 2000 A
6116027 Smith et al. Sep 2000 A
6165123 Thompson Dec 2000 A
6171305 Sherman Jan 2001 B1
6200314 Sherman Mar 2001 B1
6233491 Kordis et al. May 2001 B1
6241754 Swanson et al. Jun 2001 B1
6290697 Tu et al. Sep 2001 B1
6352534 Paddock et al. Mar 2002 B1
6423002 Hossack Jul 2002 B1
6475213 Whayne et al. Nov 2002 B1
6488678 Sherman Dec 2002 B2
6491710 Satake Dec 2002 B2
6508767 Burns et al. Jan 2003 B2
6508769 Bonnefous Jan 2003 B2
6516667 Broad et al. Feb 2003 B1
6544175 Newman Apr 2003 B1
6547788 Maguire et al. Apr 2003 B1
6572547 Miller et al. Jun 2003 B2
6579278 Bencini Jun 2003 B1
6582372 Poland Jun 2003 B2
6589182 Loftman et al. Jul 2003 B1
6592525 Miller et al. Jul 2003 B2
6620103 Bruce et al. Sep 2003 B1
6632179 Wilson et al. Oct 2003 B2
6638222 Chandrasekaran et al. Oct 2003 B2
6640120 Swanson et al. Oct 2003 B1
6656174 Hegde et al. Dec 2003 B1
6658279 Swanson et al. Dec 2003 B2
6676606 Simpson et al. Jan 2004 B2
6692441 Poland et al. Feb 2004 B1
6705992 Gatzke Mar 2004 B2
6709396 Flesch et al. Mar 2004 B2
6735465 Panescu May 2004 B2
6736814 Manna et al. May 2004 B2
6743174 Ng et al. Jun 2004 B2
6773402 Govari et al. Aug 2004 B2
6776758 Peszynski et al. Aug 2004 B2
6796980 Hall Sep 2004 B2
6824517 Salgo et al. Nov 2004 B2
6837884 Woloszko Jan 2005 B2
6917834 Koblish et al. Jul 2005 B2
6922579 Taimisto et al. Jul 2005 B2
6932811 Hooven et al. Aug 2005 B2
6945938 Grunwald Sep 2005 B2
6950689 Willis et al. Sep 2005 B1
6952615 Satake Oct 2005 B2
6958040 Oliver et al. Oct 2005 B2
7001383 Keidar Feb 2006 B2
7037264 Poland May 2006 B2
7047068 Haissaguerre May 2006 B2
7097643 Cornelius et al. Aug 2006 B2
7105122 Karason Sep 2006 B2
7112198 Satake Sep 2006 B2
7115122 Swanson et al. Oct 2006 B1
7131947 Demers Nov 2006 B2
7166075 Varghese et al. Jan 2007 B2
7220233 Nita et al. May 2007 B2
7232433 Schlesinger et al. Jun 2007 B1
7247155 Hoey et al. Jul 2007 B2
7270634 Scampini et al. Sep 2007 B2
7288088 Swanson Oct 2007 B2
7291142 Eberl et al. Nov 2007 B2
7306561 Sathyanarayana Dec 2007 B2
7335052 D'Sa Feb 2008 B2
7347820 Bonnefous Mar 2008 B2
7347821 Dkyba et al. Mar 2008 B2
7347857 Anderson et al. Mar 2008 B2
7361144 Levrier et al. Apr 2008 B2
7422591 Phan Sep 2008 B2
7438714 Phan Oct 2008 B2
7455669 Swanson Nov 2008 B2
7488289 Suorsa et al. Feb 2009 B2
7507205 Borovsky et al. Mar 2009 B2
7529393 Peszynski et al. May 2009 B2
7534207 Shehada et al. May 2009 B2
7544164 Knowles et al. Jun 2009 B2
7549988 Eberl et al. Jun 2009 B2
7569052 Phan et al. Aug 2009 B2
7578791 Rafter Aug 2009 B2
7582083 Swanson Sep 2009 B2
7585310 Phan et al. Sep 2009 B2
7648462 Jenkins et al. Jan 2010 B2
7697972 Verard et al. Apr 2010 B2
7704208 Thiele Apr 2010 B2
7720420 Kajita May 2010 B2
7727231 Swanson Jun 2010 B2
7736362 Eberl et al. Jun 2010 B2
7740629 Anderson et al. Jun 2010 B2
7758508 Thiele et al. Jul 2010 B1
7766833 Lee et al. Aug 2010 B2
7776033 Swanson Aug 2010 B2
7785324 Eberl Aug 2010 B2
7794398 Salgo Sep 2010 B2
7796789 Salgo et al. Sep 2010 B2
7799025 Wellman Sep 2010 B2
7815572 Loupas Oct 2010 B2
7819863 Eggers et al. Oct 2010 B2
7837624 Hossack et al. Nov 2010 B1
7859170 Knowles et al. Dec 2010 B2
7862561 Swanson et al. Jan 2011 B2
7862562 Eberl Jan 2011 B2
7892228 Landis et al. Feb 2011 B2
8016822 Swanson Sep 2011 B2
20020087208 Koblish et al. Jul 2002 A1
20030013958 Govari et al. Jan 2003 A1
20030158548 Phan et al. Aug 2003 A1
20030158549 Swanson Aug 2003 A1
20040162556 Swanson Aug 2004 A1
20040186467 Swanson et al. Sep 2004 A1
20040215177 Swanson Oct 2004 A1
20040215186 Cornelius et al. Oct 2004 A1
20050059862 Phan Mar 2005 A1
20050059962 Phan et al. Mar 2005 A1
20050059963 Phan et al. Mar 2005 A1
20050059965 Eberl et al. Mar 2005 A1
20050065506 Phan Mar 2005 A1
20050090817 Phan Apr 2005 A1
20050119545 Swanson Jun 2005 A1
20050119648 Swanson Jun 2005 A1
20050119649 Swanson Jun 2005 A1
20050119653 Swanson Jun 2005 A1
20050119654 Swanson et al. Jun 2005 A1
20050124881 Kanai et al. Jun 2005 A1
20050187544 Swanson et al. Aug 2005 A1
20060089634 Anderson et al. Apr 2006 A1
20060100522 Yuan et al. May 2006 A1
20060161146 Cornelius et al. Jul 2006 A1
20060247607 Cornelius et al. Nov 2006 A1
20060253028 Lam et al. Nov 2006 A1
20060253116 Avitall et al. Nov 2006 A1
20070003811 Zerfass et al. Jan 2007 A1
20070016054 Yuan et al. Jan 2007 A1
20070016228 Salas Jan 2007 A1
20070049925 Phan et al. Mar 2007 A1
20070073135 Lee et al. Mar 2007 A1
20070088345 Larson et al. Apr 2007 A1
20070270794 Anderson et al. Nov 2007 A1
20080009733 Saksena Jan 2008 A1
20080025145 Peszynski et al. Jan 2008 A1
20080058836 Moll et al. Mar 2008 A1
20080140065 Rioux et al. Jun 2008 A1
20080161795 Wang et al. Jul 2008 A1
20080195089 Thiagalingam et al. Aug 2008 A1
20080228111 Nita Sep 2008 A1
20080243214 Koblish Oct 2008 A1
20080281322 Sherman et al. Nov 2008 A1
20080287803 Li et al. Nov 2008 A1
20090048591 Ibrahim et al. Feb 2009 A1
20090062790 Malchano et al. Mar 2009 A1
20090093810 Subramaniam et al. Apr 2009 A1
20090093811 Koblish et al. Apr 2009 A1
20090216125 Lenker Aug 2009 A1
20090240247 Rioux et al. Sep 2009 A1
20090259274 Simon et al. Oct 2009 A1
20090299360 Ormsby Dec 2009 A1
20100010487 Phan et al. Jan 2010 A1
20100057072 Roman et al. Mar 2010 A1
20100106155 Anderson et al. Apr 2010 A1
20100113938 Park et al. May 2010 A1
20100168568 Sliwa Jul 2010 A1
20100168570 Sliwa et al. Jul 2010 A1
20100249599 Hastings et al. Sep 2010 A1
20100249603 Hastings et al. Sep 2010 A1
20100249604 Hastings et al. Sep 2010 A1
20100331658 Kim et al. Dec 2010 A1
20110071400 Hastings et al. Mar 2011 A1
20110071401 Hastings et al. Mar 2011 A1
20110125143 Gross et al. May 2011 A1
20110130648 Beeckler et al. Jun 2011 A1
20120172698 Hastings et al. Jul 2012 A1
20120172727 Hastings et al. Jul 2012 A1
20120172871 Hastings et al. Jul 2012 A1
20120310064 McGee Dec 2012 A1
20120330304 Vegesna et al. Dec 2012 A1
20130023897 Wallace Jan 2013 A1
20130066312 Subramaniam et al. Mar 2013 A1
20130066315 Subramaniam et al. Mar 2013 A1
20130172742 Rankin et al. Jul 2013 A1
20140066764 Subramaniam et al. Mar 2014 A1
20140081262 Koblish et al. Mar 2014 A1
Foreign Referenced Citations (21)
Number Date Country
1343426 Sep 2003 EP
1343427 Sep 2003 EP
1547537 Jun 2005 EP
1935332 Jun 2008 EP
WO9927862 Jun 1999 WO
WO0029062 May 2000 WO
WO0164145 Sep 2001 WO
WO0168173 Sep 2001 WO
WO0205868 Jan 2002 WO
WO0209599 Feb 2002 WO
WO0219934 Mar 2002 WO
WO02102234 Dec 2002 WO
WO03039338 May 2003 WO
WO2007079278 Jul 2007 WO
WO2008046031 Apr 2008 WO
WO2009032421 Mar 2009 WO
WO2011024133 Mar 2011 WO
WO2011089537 Jul 2011 WO
WO2011095937 Aug 2011 WO
WO2012001595 Jan 2012 WO
WO2012049621 Apr 2012 WO
Non-Patent Literature Citations (11)
Entry
International Search Report and Written Opinion issued in PCT/US2012/031819, mailed Sep. 27, 2012, 16 pages.
International Search Report and Written Opinion issued in PCT/US2012/055309, mailed Nov. 19, 2012, 13 pages.
International Search Report and Written Opinion issued in PCT/US2012/072061, mailed Mar. 21, 2013, 9 pages.
Partial International Search Report issued in PCT/US2012/0551545, mailed Dec. 20, 2012, 7 pages.
International Search Report and Written Opinion issued in PCT/US2013/020503, mailed Mar. 20, 2013, 10 pages.
Goldberg, S. Nahum et al., “Variables Affecting Proper System Grounding for Radiofrequency Ablation in an Animal Model”, JVIR, vol. 11, No. 8, Sep. 2000, pp. 1069-1075.
International Search Report and Written Opinion issued in PCT/US2008/058324, dated Aug. 18, 2008, 11 pages.
Machi MD, Junji, “Prevention of Dispersive Pad Skin Burns During RFA by a Simple Method”, Editorial Comment, Surg Laparosc Endosc Percutan Tech, vol. 13, No. 6, Dec. 2003, pp. 372-373.
Neufeld, Gordon R. et al., “Electrical Impedance Properties of the Body and the Problem of Alternate-site Burns During Electrosurgery”, Medical Instrumentation, vol. 19, No. 2, Mar.-Apr. 1985, pp. 83-87.
Steinke, Karin et al., “Dispersive Pad Site burns With Modern Radiofrequency Ablation Equipment”, Surg Laparosc Endosc Percutan Tech, vol. 13, No. 6, Dec. 2003, pp. 366-371.
International Search Report and Written Opinion issued in PCT/US2013/058105, mailed Nov. 22, 2013, 16 pages.
Related Publications (1)
Number Date Country
20130197363 A1 Aug 2013 US
Provisional Applications (1)
Number Date Country
61592908 Jan 2012 US