This application is related to U.S. patent application entitled “Above Resonance Isolator/Circulator and Method of Manufacture Thereof” identified by Ser. No. 10/383,717 filed on the same day herewith, which is hereby incorporated by reference.
The present invention relates generally to above resonance isolators/circulators.
Above resonance circulators and isolators are devices used in radio and radar frequency applications. Current industry standards for above resonance circulators/isolators typically require the use of multiple ferrite pieces and a plurality of other components used to separate the ferrites. Additionally, most above resonance circulators/isolators use magnetic shielding such as a metal housing to encase magnets and ferrites. Reducing costs associated with manufacturing such devices is paramount in today's competitive market place. To date, attempts to substantially reduce such costs have been largely unsuccessful.
An above resonance circulator/isolator and method for manufacturing the same is described. In one implementation, the above resonance circulator/isolator includes a magnet, a spacer, a single ferrite element, a center conductor, and a pole piece. The center conductor is sandwiched between the magnet and the single ferrite element with the spacer interposed between the magnet and the center conductor. The pole piece is coupled to the single ferrite element, such that the single ferrite element is sandwiched between the center conductor and the pole piece.
The following exemplary implementation introduces the broad concept of manufacturing an above resonance circulator/isolator without magnetic shielding, such as in the form of a housing unit. Accordingly, magnetic shielding is not necessary to bias ferrite material in the above resonance circulator/isolator. The following exemplary implementation also introduces the broad concept of manufacturing an above resonance circulator/isolator using only a single ferrite element.
Thus, by virtue of using only a single ferrite element instead of multiple ferrite elements, and eliminating magnetic shielding, it is possible to greatly reduce a substantial number of components traditionally used in above resonance circulator/isolators. Costs associated with manufacturing an above resonance circulator/isolator are, therefore, substantially reduced.
The detailed description is described with reference to the accompanying figures. In the figures, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears.
Exemplary Architecture With Magnetic Shielding
Positioned directly below the center conductor 102 is a single ferrite element 110 that is substantially or completely magnetized. Center conductor 102 can be slightly separated from single ferrite element 110 through the use of some type of separation part (including an epoxy or glue, not shown). In the exemplary illustration, however, there are no components or gaps interposed between single ferrite element 110 and center conductor 102. Center conductor 102 and single ferrite element 110 are held together through compression exerted by forces applied by housing unit 118 to be described in more detail below.
In the exemplary illustration, single ferrite element 110 is in the shape of a disc, but may be implemented using other shape configurations. As shown in
Positioned above the center conductor 102 is a magnet 112. Magnet 112 is generally larger than the single ferrite element 110 and may be implemented in various shapes such as ovals, ellipses, etc. Separating magnet 112 from center conductor 102 is a spacer 114. Spacer 114 may be implemented using one or more materials from epoxy to harder materials such as a dielectric. Spacer 114 is generally between about 1 mil to 20 mils thick, although it may be possible to use slightly thinner of thicker spacers depending on the application.
Positioned above magnet 112 is a cover return 116. Cover return 116 is generally in the shape of a disc, but may be implemented in a variety of shapes, such as ovals, ellipses, etc. Cover return 116 is generally made of some type of steel material or related material capable of shielding magnet fields.
Housing unit 118 encases and springably compresses: cover return 116, magnet 112, spacer 114, single ferrite element 110 and center conductor 102. In the exemplary implementation, housing unit 118 includes a top piece 120 and bottom piece 122. Top piece 120 is in the form of a top retainer and can be made of a metal material, or other materials such as plastic or ceramic.
Bottom piece 122 is in the form of a cup shaped piece with three male prongs 124, 126, and 128, perpendicular to the base 121 of bottom piece 122. Gaps between the prongs 124, 126, 128 provide spaces for connectors 104, 106, and 108 to extend beyond housing unit 118. Bottom piece 122 is preferably made of some type of metal material, such as steel, to provide shielding of magnetic fields, but can be implemented with non-metallic materials. In the event bottom piece 122 is not implemented with metal, then an optional pole piece 130 is needed to provide a ground plane for above resonance circulator/isolator 100. Otherwise, if the bottom piece is implemented with some type of metallic material, it is possible for bottom piece 122 to act as the ground plane and eliminate the need for optional pole piece 130.
Top piece 120 is configured to snap down over each of the male prongs 124, 126 and 128. For instance, male prongs 124, 126, and 128 may lock into an internal ridge located in top piece 120. The total height of the housing unit 118 is designed to be approximately even with or slightly lower than the uncompressed cumulative height of cover return 116, magnet 112, spacer 114, the single ferrite element 110 and center conductor 102 when each is stacked upon each other. Accordingly, when bottom piece 122 and top piece 120 engage each other, they both assert a compression force on all components they encase (e.g., cover return 116, magnet 112, spacer 114, the single ferrite element 110 and center conductor 102). It is also possible to use an elastic packing material to fill any potential voids at the bottom or top of the housing unit 118, in the event the total height of the housing unit 118 is greater than the uncompressed cumulative height of cover return 116, magnet 112, spacer 114, the single ferrite element 110 and center conductor 102, when each is stacked upon the other.
It is envisioned that the housing unit 118 can be implemented using alternative configurations that do not necessarily have to compress the components of the above resonance resonator 100. For example, it is possible that the housing unit 118 could be implemented as two halves configured to attach to each other. The housing unit 118 could be in the form of a preformed cylinder or box that is capable of encasing components of the above resonance resonator 100. Fastening materials could also be used to attach the components of the housing unit 118 together. Additionally, components within the housing unit (such as magnet 112, center conductor 102, etc.) also may be coupled to each other by fastening materials such as epoxy in the event that compression forces are not applied by the housing unit 118.
It is to be appreciated that while
Referring back to the exemplary order of components shown in
In block 202, a single ferrite element is deposited on top of the bottom piece (or cup) of a housing. For example, single ferrite element 110 (
In block 204, a center conductor is deposited on top of the single ferrite element 110. For example, center conductor 102 is deposited directly on top of single ferrite 110.
In block 206, a spacer is deposited on top of the center conductor. For example, spacer 114 is deposited on top of center conductor 102.
In block 208, a magnet is deposited on top of the spacer. For example, magnet 112 is deposited on top of spacer 114. Thus, at this point, the single ferrite element 110 is underneath the center conductor 102 such that the single ferrite element 110 is opposite the magnet 112 and the center conductor 102 is sandwiched between the spacer 114 and the single ferrite element 110. No metal element is interposed between any of the magnet 112, the spacer 114, the single ferrite element 110, and the center conductor 102.
In block 210, a cover return is deposited on top of the magnet. For example, cover return 116 is deposited on top of magnet 112.
In block 212, the cover return, spacer, magnet, center conductor, and single ferrite element are encased in some type of housing unit. For example, cover return 116, spacer 114, magnet 112, center conductor 102, and single ferrite element 110 are encased in housing unit 118.
Exemplary Architecture Without Magnetic Shielding
Magnet 312, center conductor 302, pole piece 330, and single ferrite element 310 are similar to like elements with similar reference numbers described above with reference to
Single ferrite element 310 is mounted underneath the center conductor 302. A non-conductive liquid epoxy is used to attach single ferrite element 310 to center conductor 302. Alternatively, single ferrite element 310 may be fastened to center conductor 302 by clips or other mechanical devices.
Pole piece 330 is coupled to the single ferrite element 310 by epoxy 313. In one implementation, epoxy 313 is a liquid epoxy that may include conductive materials such as silver, gold, or other conductive materials. Pole piece 330 serves as the ground plane for above resonance circulator/isolator 300.
In operation, above resonance circulator/isolator 300 functions without magnetic shielding. Magnet 312 is larger than single ferrite element 310. In the exemplary illustration, magnet 312 has a larger diameter than single ferrite element 310, which causes magnetic fields to travel from the south side of magnet 312 (i.e., from the bottom of magnet 312) to pole piece 330 and return north (i.e., upwards from pole piece 330) by traveling through air.
It is to be appreciated that while
In block 402, a spacer is deposited on top of a center conductor. For example, liquid epoxy 314 is deposited on center conductor 302.
In block 404, a magnet is deposited on top of the spacer. For example, magnet 312 is deposited on to spacer 314.
In block 406, a single ferrite element is placed underneath the center conductor such that the single ferrite element is opposite the magnet and the center conductor is sandwiched between the spacer and the single ferrite element. For example, single ferrite element 310 is attached to the bottom of center conductor 302 via a liquid epoxy. At this point, no metal element is interposed between any of the magnet 312, spacer 314, single ferrite element 310, and the center conductor 302.
In block 408, a pole piece is attached to the single ferrite element, so that the single ferrite element is sandwiched between the center conductor and the pole piece. The pole piece is coupled to the single ferrite element by an epoxy. For example, pole piece 330 is attached to single ferrite element 310 by interposing a liquid epoxy 313 between the pole piece 330 and single ferrite element 310.
In block 410, all the aforementioned components described in blocks 402–408 are clamped together and cured in an oven under compression. For example, vertical compression may be applied to the components with a mechanical actuator and cured for 30 minutes at 150 degrees Celsius. Other cure temperatures and cure times are possible.
Although some implementations of the various methods and arrangements of the present invention have been illustrated in the accompanying Drawings and described in the foregoing Detailed Description, it will be understood that the invention is not limited to the exemplary aspects disclosed, but is capable of numerous rearrangements, modifications and substitutions without departing from the spirit of the invention as set forth and defined by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3614675 | Konishi | Oct 1971 | A |
3621476 | Kanbayashi | Nov 1971 | A |
4761621 | Kane et al. | Aug 1988 | A |
4806886 | Stern et al. | Feb 1989 | A |
5615473 | Dydyk et al. | Apr 1997 | A |
5898346 | Kamei et al. | Apr 1999 | A |
6087905 | Makino et al. | Jul 2000 | A |
6130587 | Jun et al. | Oct 2000 | A |
6507249 | Schloemann | Jan 2003 | B1 |
6566972 | Paquette et al. | May 2003 | B1 |
6633205 | Jussaume et al. | Oct 2003 | B1 |
6690248 | Kawanami et al. | Feb 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20040174225 A1 | Sep 2004 | US |