Abrasive articles including abrasive particles bonded to an elongated body

Information

  • Patent Grant
  • 9067268
  • Patent Number
    9,067,268
  • Date Filed
    Friday, March 22, 2013
    11 years ago
  • Date Issued
    Tuesday, June 30, 2015
    9 years ago
Abstract
An abrasive article comprising an elongated body, a bonding layer overlying a surface of the elongated body, and abrasive grains contained within the bonding layer at an average abrasive grain concentration within a range between about 0.02 ct/m and about 0.30 ct/m.
Description
BACKGROUND

1. Field of the Disclosure


The following is directed to abrasive articles, and particularly abrasive articles incorporating abrasive grains secured to an elongated body.


2. Description of the Related Art


A variety of abrasive tools have been developed over the past century for various industries for the general function of removing material from a workpiece, including for example sawing, drilling, polishing, cleaning, carving, and grinding. In particular reference to the electronics industry, abrasive tools suitable for slicing single crystal ingots of material to form wafers is particularly pertinent. As the industry continues to mature, the ingots have increasingly larger diameters, and it has become acceptable to use loose abrasives and wire saws for such works due to yield, productivity, affected layers, dimensional constraints and other factors.


Generally, wire saws are abrasive tools that include abrasive particles attached to a long length of wire that can be spooled at high speeds to produce a cutting action. While circular saws are limited to a cutting depth of less than the radius of the blade, wire saws can have greater flexibility allowing for cutting of straight or profiled cutting paths.


Various approaches have been taken in conventional fixed abrasive wire saws, such as producing these articles by sliding steel beads over a metal wire or cable, wherein the beads are separated by spacers. These beads may be covered by abrasive particles which are commonly attached by either electroplating or sintering. However, electroplating and sintering operations can be time consuming and thus costly ventures, prohibiting rapid production of the wire saw abrasive tool. Most of these wire saws have been used in applications, where kerf loss is not so dominating as in electronics applications, often to cut stone or marble. Some attempts have been made to attach abrasive particles via chemical bonding processes, such as brazing, but such fabrication methods reduce the flexibility of the wire saw, and the braze coating becomes susceptible to fatigue and premature failure. Other wire saws may use a resin to bind the abrasives to the wire. Unfortunately, the resin bonded wire saws tend to wear quickly and the abrasives are lost well before the useful life of the particles is realized, especially when cutting through hard materials.


Accordingly, the industry continues to need improved abrasive tools, particularly in the realm of wire sawing.


SUMMARY

According to one aspect, an abrasive article includes an elongated body, a bonding layer overlying a surface of the elongated body, and abrasive grains contained within the bonding layer at an average abrasive grain concentration within a range between about 0.02 ct/m and about 0.30 ct/m.


In accordance with another aspect, an abrasive article includes an elongated body, a bonding layer overlying a surface of the elongated body, and abrasive grains contained within the bonding layer. The abrasive article includes abrasive grains selected from a wide grit size distribution wherein at least 80% of the total number of abrasive grains have an average grit size contained within a grit size range of at least about 30 microns over a range of average grit sizes between about 1 micron to about 100 microns.


In still another aspect, an abrasive article includes an elongated body, a bonding layer overlying a surface of the elongated body, and abrasive grains contained within the bonding layer. The abrasive grains are selected from a wide grit size distribution wherein at least 80% of the total number of abrasive grains have an average grit size contained within a grit size range of at least about 30 microns over a range of average grit sizes between about 1 micron to about 100 microns, and the abrasive grains are contained within the bonding layer at an average abrasive grain concentration within a range between about 0.02 ct/m and about 0.30 ct/m.


According to still another aspect, an abrasive article includes an elongated body, a bonding layer overlying a surface of the elongated body, and abrasive grains contained within the bonding layer. The abrasive grains are contained within the bonding layer at an average abrasive grain concentration within a range between about 0.02 ct/m and about 0.30 ct/m, and wherein the abrasive article is capable of cutting through a total of at least about 200 cm2 of sapphire at an average cutting rate of at least 0.8 mm/min.


In yet another aspect, a method of cutting sapphire includes the steps of providing an abrasive article having an elongated body and abrasive grains affixed to the elongated body and providing a sapphire article. The method further includes using the abrasive article to cut through a total of at least about 200 cm2 of the sapphire article at an average cutting rate of at least 0.8 mm/min.





BRIEF DESCRIPTION OF THE DRAWINGS

The present disclosure may be better understood, and its numerous features and advantages made apparent to those skilled in the art by referencing the accompanying drawings.



FIG. 1 includes a cross-sectional illustration of a portion of an abrasive article in accordance with an embodiment.



FIG. 2A-2B include magnified images of abrasive articles according to embodiments herein.



FIG. 3 includes a plot of a grit size distribution for abrasive grains for use in an abrasive article in accordance with an embodiment.



FIG. 4 includes an image of a representative sample of abrasive grains having a particular distribution of grit sizes in accordance with an embodiment.



FIG. 5 includes a plot of a grit size distribution for abrasive grains for use in a conventional wire saw article.



FIG. 6 includes an image of a representative sample of abrasive grains having a particular distribution of grit sizes for a conventional wire saw article.



FIG. 7 includes a magnified image of abrasive articles according to embodiments herein.



FIG. 8 provides plots of the performance based on number of cuts versus cutting time for the samples formed according to embodiments herein as compared to a conventional sample.





The use of the same reference symbols in different drawings indicates similar or identical items.


DESCRIPTION OF THE PREFERRED EMBODIMENT(S)

The following is generally directed to abrasive articles formed from an elongated body to which abrasive grains are secured. In particular, the abrasive articles of embodiments herein may suitable for processes using long lengths of abrasive articles, which can include for example wire sawing processes, which can be used in the electronics industry to segment boules or ingots of crystalline material. However, it will be appreciated that such abrasive articles as disclosed herein can be used for other applications.


The abrasive articles herein can utilize an elongated body, which may be a wire or other member having a length defined by a dimension extending along the longitudinal axis of the elongated body to which a bonding layer, coating layer, and abrasive grains can be attached to produce the final-formed abrasive article. The elongated body can be made of various materials, including for example, inorganic materials, organic materials (e.g., polymers and naturally occurring organic materials), and a combination thereof. Suitable inorganic materials can include ceramics, glasses, metals, metal alloys, cermets, and a combination thereof. In certain instances, the elongated body is made of a metal or metal alloy material. For example, the elongated body can be made of a transition metal or transition metal alloy material and may incorporate elements of iron, nickel, cobalt, copper, chromium, molybdenum, vanadium, tantalum, tungsten, and the like. In some instances, the elongated body may be a braided structure incorporating a plurality of elongated strands woven together and secured to each other to form an elongated body. Certain designs may utilize piano wire as a suitable structure for the wire.


Suitable organic materials can include polymers, which can include thermoplastics, thermosets, elastomers, and a combination thereof. Particularly useful polymers can include polyimides, polyamides, resins, polyurethanes, polyesters, and the like. It will further be appreciated that the elongated body can include natural organic materials, for example, rubber.


The elongated body can have a certain shape. For example, the elongated body can have a generally cylindrical shape such that it has a circular cross-sectional contour. In using elongated bodies having a circular cross-sectional shape, as viewed in a plane extending transversely to the longitudinal axis of the elongated body. For such embodiments, the average diameter can be at least about 80 microns. Some designs may incorporate thicker elongated body members such that the average diameter can be at least about 150 microns, at least about 200 microns, and particularly within a range between about 80 microns and 400 microns.


In other designs, the elongated body can have a polygonal cross-sectional contour as viewed in a plane extending transversely to the longitudinal axis of the elongated body. The polygonal cross-sectional contour can include various multi-sided shapes, including in particular, rectangular shapes, pentagonal, hexagonal, and the like. In one particular instance, the elongated body can have a rectangular shape, wherein the elongated body is a belt having a first major surface, a second major surface opposite the first major surface and a side surface extending between the first and second major surfaces.


The side surface of the belt can define a thickness of the elongated body, while the first major surface can define a width of the elongated body as measured in a direction transverse to the longitudinal axis. In particular instances, the elongated body can have a thickness:width ratio of at least about 1:2. In other embodiments, the elongated body can have a thickness:width ratio of at least about 1:3, such as at least about 1:4, at least about 1:5, at least about 1:10, at least about 1:50. Still, particular embodiments can have a thickness:width ratio within a range between about 1:2 and 1:150, such as between about 1:2 and about 1:100.


The elongated body can have a length sufficient for conducting wiresawing applications. That is, the elongated body can have a length as measured along the longitudinal axis of the elongated body of at least about 1 km. In other instances, this length can be greater, such as on the order of at least about 5 km, at least about 10 km, and particularly within a range between about 1 km and about 15 km.


A bonding layer can be formed on the elongated body such that it overlies an upper surface of the elongated body to facilitate bonding and securing of abrasive grains therein. In some instances, the bonding layer is directly contacting the upper surface of the elongated body, and in fact, can be directly bonded to the upper surface of the elongated body. Still, in certain abrasive articles, an intervening layer of material may be disposed between the bonding layer and upper surface of the elongated body. Such intervening layers can be present to aid bonding between the elongated body and the bonding layer. Moreover, the bonding layer can be formed such that it covers essentially the entire upper surface of the elongated body. Suitable methods for forming the bonding layer can include deposition processes. For instance, the bonding layer can be deposited on the external surface of the elongated body by a plating process, such as an electroplating process, particularly in designs where the bonding layer comprises a metal material. Alternatively, the bonding layer can be formed through a brazing processes or a gas phase deposition processes.


In various embodiments, a method of forming abrasive articles described herein can include translating a wire through a system that can utilize a plating machine for depositing the bonding layer material on the wire. The wire can be translated through the plating machine, wherein the bonding layer material can be deposited on the upper surface of the elongated body.


The bonding layer can be made of a metal or metal alloy. In certain designs, the bonding layer can include transition metal elements. Some suitable metals can include copper, tin, nickel, tungsten, molybdenum, silver, and a combination thereof. In particular embodiments, the bonding layer can include a metal alloy material that is more ductile than the underlying layer(s) of the elongated body, thus facilitating abrasive grain reception and/or retention in the bonding layer.


After forming a bonding layer on the elongated body, the process of forming the abrasive article can further include embedding abrasive grains within the bonding layer. The process of embedding abrasive grains within the bonding layer can be completed such that the abrasive grains are secured to the wire to form a suitable abrasive article. Notably, the process of embedding the abrasive grains into the bonding layer can be a separate step, particularly separated from other processes for forming the constituent layers (e.g., bonding layer and coating layer).


In accordance with various embodiments, the process of embedding abrasive grains within the bonding layer can include a pressing process wherein the abrasive grains are embedded, at least partially, into the bonding layer material while passing between two or more pressing surfaces. For example, abrasive grains can be passed between a roller and another rigid form, such as a stationary block, another roller, or the like and pressed into the bonding layer while the wire passes therethrough. In one process, a manner for continuously covering the surface of the pressing surfaces in abrasive grains can be undertaken. In other processes, the abrasive grains may be injected into the region between the pressing surfaces proximate to the wire of the abrasive article, such that abrasive grains can be captured between the pressing surfaces and embedded within the bonding layer.


As illustrated, the abrasive grains can be provided on the surface of at least one of the pressing surfaces from a bath, that contains a mixture of the abrasive grains within a liquid carrier. In particular, the liquid carrier can have a chemistry to aid formation of a proper suspension of the abrasive grains, such that a substantially uniform coating and particular concentration of abrasive grains are on the pressing surface, which can aid the formation of an abrasive article having a controlled distribution and concentration of abrasive grains. It will be appreciated, that certain orientations between the pressing surfaces and the bath can be utilized for proper delivery of the liquid carrier and abrasive grains to the region between the pressing surfaces and attachment to the wire.


The liquid carrier can contain a major component that can be an organic material such as water or alcohol. In addition, other components may be added in minor amounts, such as stabilizers, which can also be organic components, for facilitating the formation of a proper suspension within the bath and on the pressing surfaces. Certain processes may utilize a liquid carrier including sodium dodecylsulfate, polyethylene glycol (PEG), and/or isopropanol.


The materials of the abrasive grains can be hard, and thus suitable for use in an abrasive processing. For example, the abrasive grains can have a Mohs hardness of at least about 7, such as at least 8, and more typically on the order of at least about 9. Some suitable materials can include carbides, carbon-based materials (e.g. fullerenes), nitrides, oxides, borides, and a combination thereof may be employed as the abrasive grains. In certain instances, the abrasive grains can be superabrasive grains. For example, diamond (natural or synthetic), cubic boron nitride, and a combination thereof. In one particular embodiment, the abrasive grains consist essentially of diamond.


Notably, the size distribution of the average grit size of the abrasive grains can be modified such that the abrasive grains are selected from a non-Gaussian grit size distribution. For example, the abrasive grains can be selected from a particularly wide grit size distribution that extends over a broad, yet precise range of grit sizes. The range of grit sizes may be selected from between about 1 micron to about 100 microns, such as between 10 microns and about 100 microns, between 15 microns and 100 microns or even between 20 microns and 100 microns. Moreover, the range of grit sizes may be narrower, such as between about 20 microns and about 95 microns or even between about 20 microns and about 90 microns.


The wide grit size distribution may be further characterized by the fact that the distribution comprises a substantially uniform presence of all of the grit sizes across the range of average grit sizes. For example, the percent variation between any two grit sizes within the distribution (i.e., the percentage of abrasive grains having one average grit size as compared to the percentage of abrasive grains having a different average grit size) can be not greater than about 25%. In other instances, the variation may be less, such as not greater than about 20%, not greater than about 15%, not greater than about 12%, not greater than about 10% or even not greater than about 8%. Certain designs may employ a percent variation in the presence of the average grit size between any two average grit sizes within the distribution of between about 2% and about 25%, such as between about 5% and about 20% or between about 5% and about 15%.


For some abrasive articles, the selected wide grit size distribution can be described by a particular percentage of the abrasive grains within the distribution that are present over a range of average grit sizes. The range of grit sizes can be defined by a range of average grit sizes extending from a discrete lower average grit size value to a discrete upper average grit size value. Articles herein can utilize a wide grit size distribution wherein at least 80% of the total number of abrasive grains have an average grit size contained within a grit size range spanning at least about 25 microns of average grit sizes. For example, at least 80% of the total number of abrasive grains can have an average grit size within a range defined by a lower average grit size of 50 microns to an upper average grit size of 75 microns. In other instances, the range of grit sizes may be broader, such that at least 80% of the total number of abrasive grains have an average grit size within a grit size range of at least about 30 microns, at least about 40 microns, at least about 50 microns or even at least about 60 microns.


Some embodiments can employ a greater percentage of the abrasive grains within the broad range of average grit sizes, for example, at least 85%, at least about 90%, or even at least about 95% of the total number of abrasive grains have an average grit size spanning a grit size range of at least about 30 microns, at least about 40 microns, or even at least about 50 microns. Still, embodiments herein may have a wide grit size distribution, wherein at least 95% of the total number of abrasive grains have an average grit size contained within a range of average grit sizes between about 30 microns and about 80 microns, such as between about 30 microns and about 70 microns, and even between about 30 microns and about 60 microns.


Other types of non-Gaussian distributions for the selection of abrasive grains may include distributions using at least two different average grit sizes. One such distribution can be a bimodal grit size distribution. In particular instances, it may be suitable to select at least one grit size that is significantly larger than another grit size to improve performance characteristics. As will be appreciated, a greater number of modes, such as three, four, or more may be employed when forming the selected non-Gaussian grit size distribution. Still, the formation of a wide grit size distribution may not necessarily include the selection and combining of two (or more) separate grit sizes, but the creation of a particular broad, grit size distribution having a uniformity of representative grit sizes across the full range of the distribution.


Notably, the abrasive articles according to embodiments herein, can utilize a particularly wide grit size distribution of grains attached to the elongated body. As described herein, the wide grit size distribution of the abrasive grains may not necessarily be formed by the selection of grains alone, and in particular, can be caused by the forming process. That is, particulars of the pressing process can be sufficient to cause fracture and/or breakage of a certain percentage of the abrasive grains and therein resulting in a wider grit size distribution than afforded by simple sorting processes alone.


A particular concentration of abrasive grains on the final-formed abrasive article may also be used for improved performance characteristics. For example, the process of forming may be such that the abrasive body has an average abrasive grain concentration within the bonding layer of at least about 0.02 ct/m. In other instances, the average abrasive grain concentration can be greater, such as at least about 0.05 ct/m, at least about 0.08 ct/m, at least about 0.10 ct/m, or even at least about 0.20 ct/m. In particular embodiments, the average abrasive grain concentration within the abrasive article can be within a range between about 0.02 ct/m and about 0.30 ct/m, such as between about 0.02 ct/m and about 0.28 ct/m, between about 0.10 ct/m and about 0.28 ct/m, between about 0.10 ct/m and about 0.25 ct/m or even between about 0.15 ct/m and about 0.25 ct/m.


For certain articles, the final-formed abrasive article can exhibit a greater concentration of abrasive grains, such as at least about 20 ct/m. That is, for certain abrasive article designs, the concentration of abrasive grains can be at least about 22 ct/m at least about 24 ct/m, or even at least about 25 ct/m. In certain exemplary articles, the concentration of abrasive grains can be within a range between about 20 ct/m and about 30 ct/m, such as between about 22 ct/m and about 30 ct/m, and more particularly, between about 24 ct/m and about 28 ct/m.


After embedding the abrasive grains within the bonding layer, a coating layer can be formed overlying the bonding layer and a portion of the abrasive grains. The coating layer can be formed such that it is directly bonded to the upper surface of the bonding layer and portions of the exposed surfaces of the abrasive grains extending above the bonding layer. Typically, the abrasive article is formed such that the coating layer forms a continuous coating over the external surface area of the bonding layer and portions of abrasive grains. The coating layer can, in some instances, completely coat some or all of the abrasive grains. In other abrasive articles, the coating layer may only partially cover the abrasive grains, such that a portion of the abrasive grains are exposed and protrude above the external surface of the coating layer.


The coating layer can be applied via a deposition process. One particularly suitable deposition process includes an electroplating process, wherein the wire is translated through an electroplating machine. As such, the coating layer can be made of a metal material or metal alloy. Certain suitable metals can include transition metal elements. For example, according to one embodiment, the coating layer comprises nickel, such that the coating layer can be made essentially of nickel. The use of nickel-based coating layers can also utilize nickel-based alloy materials. As such, other metal elements, such as transition metal elements, may be employed within the nickel-based alloy composition as alloying species.



FIG. 1 includes a cross-sectional illustration of an abrasive article in accordance with an embodiment. As illustrated, the abrasive article 300 includes an elongated body 301 as a core article having a circular cross-sectional shape. Surrounding the elongated body 301 is a bonding layer 303 such that it substantially covers the upper surface 306 of the elongated body 301.


In accordance with a particular embodiment, the bonding layer 303 can be formed to have an average thickness of at least about 10 microns. In other cases, the bonding layer 303 can be more robust, having an average thickness on the order of at least about 15 microns, at least about 20 microns, or even at least about 25 microns. For example, the bonding layer 303 can have an average thickness within a range between about 10 microns and about 50 microns, such as within a range between about 15 microns and about 50 microns, or even more particularly within a range between about 20 microns and about 50 microns.


Optionally, the bonding layer 303 can incorporate a filler 309 within the bonding layer 303. The filler 309 can include an abrasive particulate to improve the abrasive capabilities and wear characteristics of the bonding layer 303. However, the abrasive particulate of the filler 309 can be significantly different than the abrasive grains 307, particularly with regard to size, such that in certain instances the filler 309 can have an average grain size that is substantially less than the average grain size of the abrasive grains 307. That is, the abrasive particulate of the filler 309 can have an average grain size that is at least about 2 times less than the average grit size of the smallest abrasive grains 307. In fact, the abrasive particulate may have an average grain size that is even smaller, such as on the order of at least 3 times less, such as at least about 5 times less, at least about 10 times less, and particularly within a range between about 2 times and about 10 times less than the average grit size of the smallest abrasive grains 307.


The abrasive particulate making up the filler 309 within the bonding layer 303 can be made from a material such as carbides, carbon-based materials (e.g. fullerenes), borides, nitrides, oxides, and a combination thereof. In particular instances, the abrasive particulate can be a superabrasive material such as diamond, cubic boron nitride, or a combination thereof. It will be appreciated that the abrasive particulate of the filler 309 can be the same material as that of the abrasive grains 307. In other instances, the abrasive particulate of the filler 309 can include a different material than the material of the abrasive grains 307.


Certain abrasive articles herein may utilize a coating layer 305 overlying the bonding layer 303 and portions of the abrasive grains 307 and having an average thickness of not greater than about 15 microns. In other instances, the coating layer may be thinner, such that the average thickness is not greater than about 10 microns, such as not greater than about 8 microns, not greater than about 5 microns, and particularly within a range between about 2 microns and 15 microns, or between about 1 micron and about 10 microns, or even between about 5 microns and about 10 microns.


As further illustrated in FIG. 1, the coating layer 305 can include an optional coating filler material 311 contained within the coating layer 305. The coating filler material 311 may be placed within the coating layer 305 such that substantially all of the coating filler material 311 is surrounded by the material of the coating layer 305. Notably, the coating layer filler 311 can include an abrasive particulate having the same features of the abrasive particulate of the filler material 309 within the bonding layer 303. In particular embodiments, the abrasive particulate making up the coating filler material 311 can be the same as the abrasive particulate of the filler material 309 within the bonding layer 303. Still, in other embodiments, the abrasive particulate of the coating filler material 311 can be different than the abrasive particulate of the filler material 309 of the bonding layer 303.


The abrasive articles herein demonstrate particular performance characteristics. Notably, the abrasive articles herein may be suitable for use in slicing though hard, crystalline materials, such as single crystal sapphire and the like, especially for single crystal or polycrystalline materials that may be used in photovoltaic devices. For example, the abrasive articles herein are capable of cutting through a total of at least about 200 cm2 of sapphire at an average cutting rate of at least 0.8 mm/min. In fact, certain articles have demonstrated a capability of cutting through a greater amount of sapphire at the minimum cutting grate of at least 0.8 mm/min, such as at least about 300 cm2, or even at least about 400 cm2. Particular abrasive articles according to embodiments herein are capable of slicing through between about 200 cm2 and about 500 cm2, such as on the order of between about 250 cm2 and about 475, or more particularly between about 300 cm2 and about 450 cm2 of sapphire at a minimum rate of 0.8 mm/min over a useable lifetime of the article.


In particular instances, the abrasive articles according to embodiments herein are capable of achieving faster cutting rates through significant amounts (measured in cross-section) of single crystal sapphire. For example, in one embodiment, the abrasive article can cut through a total of at least about 400 cm2 of sapphire at an average cutting rate of at least 0.9 mm/min, such as on the order of at least about 1 mm/min, at least about 1.2 mm/min, at least about 1.3 mm/min, or even at least about 1.4 mm/min. Particular embodiments can have a cutting rate through a total of at least 400 cm2 of sapphire of between about 0.8 mm/min and about 1.5 mm/min, such as between about 0.9 mm/min and about 1.5 mm/min, and even between about 1 mm/min and about 1.4 mm/min.


Moreover, the abrasive articles herein demonstrate improved cutting lifetimes, especially through hard materials (e.g., sapphire). For example, certain abrasive articles according to the embodiments demonstrate a cutting lifetime (i.e., use of wire for actual cutting) of at least about 5 hours through sapphire. Some other abrasive articles have shown a cutting life of at least about 8 hours, such as at least about 10 hours, at least about 15 hours, at least about 18 hours, or even at least about 20 hours. Particular embodiments can have a cutting life within a range between about 5 hours and 25 hours, such as between about 10 hours and 25 hours, or even between about 15 hours and 25 hours.



FIGS. 4A-4B include magnified images of abrasive articles according to embodiments herein. Each of FIGS. 4A-4B illustrate portions of abrasive articles having abrasive grains 403 attached to the surface of a wire via a coating layer 401. The image of FIG. 2A is an abrasive article produced according to the processes herein having an average abrasive grain concentration of 0.06 ct/m. The abrasive article of FIG. 2B was also formed according to the processes described herein, and has an average abrasive grain concentration of 0.11 ct/m. As can be seen in a comparison, the average abrasive grain concentration of the abrasive article of FIG. 2B is greater than the average abrasive grain concentration of the abrasive article of FIG. 2A.


EXAMPLE

The following example provides a comparison between the abrasive article formed according to embodiments herein and a conventional wire saw formed using a similar process. A first sample (Sample 1) was formed according to embodiments herein. The wire material used was standard spring steel piano wire. The wire was coated over the entire external surface area with a copper bonding layer material having an average thickness of approximately 40 microns. Abrasive grains were then embedded into the wire.


The distribution of abrasive grains selected for embedding into the bonding layer is illustrated in FIG. 3, and an image of a representative sample of the grit sizes of the selected abrasive grains is provided in FIG. 4. Notably, the abrasive grains were selected from a wide grit size distribution, wherein all of the abrasive grains were within the range of average grit sizes between 20 microns to 93 microns, approximately 90% of the abrasive grains spanned a 50 micron range of grit sizes between 20 microns and about 70 microns, and the percent variation within the range of grit sizes was not greater than 10% between the least populated average grit size (e.g., approximately 90 microns) and the most populated average grit size (e.g., approximately 42 microns) within the distribution.


The abrasive grain coated wire of Sample 1 was then coated with a coating layer of material via an electroplating process. The coating layer was a nickel-based alloy having a composition comprising approximately 98% nickel and approximately 2% of other metals species, and other materials. The final-formed abrasive wire had an average abrasive grain concentration of 0.11 ct/m, a portion of which is illustrated in FIG. 2B.


A second sample (Sample 2) was formed according to the process noted above for Sample 1. The final-formed abrasive article of Sample 2 was formed to have an average abrasive grain concentration of 0.06 ct/m, a portion of which is illustrated in FIG. 2A.


A conventional wire sawing article (Sample C1) thought to be formed by rolling the abrasive grains into the wire material was obtained for comparative purposes. The abrasive grains were analyzed and the distribution of grit sizes of the abrasive grains is provided in FIG. 5, and an image of a representative sample of the grit sizes of the selected abrasive grains is provided in FIG. 6. As can be seen from the chart of FIG. 5 and the image of FIG. 6, the grain size distribution is narrow, the vast majority of grit sizes spanning a range of grit sizes of about 30 microns with a standard mean of about 32 microns. The coating layer was made of a nickel-based alloy material and the abrasive grain concentration was calculated to be 0.01 ct/m. A magnified image of a portion of the conventional wire saw material is provided in FIG. 7.


Samples 1 and 2 and the conventional sample, Sample C1, were then tested to compare certain performance characteristics. Each of the samples were used to slice through 2 inch (5.08 cm) diameter single crystal sapphire blanks. Each successful slice through a sapphire blank was recorded as a “Cut” and the duration to slice through the blank was recorded for each of the samples. Each of the wires were run at a rate of 8 m/s, under a load of 16 N. Each of the samples were run until the wire failed, wherein failure occurred through breaking of the wire or a failure to cut through the sapphire blank.



FIG. 8 provides plots of the performance for each of the samples, wherein plot 1001 corresponds to Sample 1, plot 1002 corresponds to Sample 2, and plot 1003 corresponds to Sample C1. As illustrated, Samples 1 and 2 demonstrate an improved ability to slice through a significantly greater total amount of sapphire material than Sample C1. In fact, Samples 1 and 2 demonstrate a capability of cutting through over twice as much total sapphire material than Sample C1. Moreover, Samples 1 and 2 demonstrated more rapid cutting of the sapphire material for Cuts 1-7 than the Sample C1. Overall, Sample 1 was capable of slicing through 426 cm2 of sapphire material at an average rate of 1.13 mm/min. Sample 2 achieved an average rate of 0.85 mm/min for the same total amount of sapphire material (426 cm2).


The foregoing includes a description of abrasive articles that represent a departure from the state-of-the-art. The abrasive articles herein are directed to wire saw abrasive tools incorporating elongated body members having abrasive grains that are secured to the elongated body via a bonding layer of metal and a coating layer. In particular, the abrasive articles herein may be suitable for use in wire sawing applications, particularly for the electronics industry, including slicing or sectioning of single crystal or polycrystalline materials that may be used in photovoltaic devices. With regard to this industry, it should be noted that a particular focus is the reduction of material loss of these expensive advanced materials, reduction of cutting times and thus costs, as well as a reduction of subsurface damage of such expensive materials. The embodiments herein incorporate a combination of features that includes select distributions of abrasive grain grit sizes, certain bonding layer and coating layer materials and thicknesses, average abrasive grain concentrations, and other features described herein.


In the foregoing, reference to specific embodiments and the connections of certain components is illustrative. As such, the above-disclosed subject matter is to be considered not restrictive, and the appended claims are intended to cover all such modifications, enhancements, and other embodiments, which fall within the true scope of the present invention. Thus, to the maximum extent allowed by law, the scope of the present invention is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.


The Abstract of the Disclosure is provided to comply with Patent Law and is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description of the Drawings, various features may be grouped together or described in a single embodiment for the purpose of streamlining the disclosure. This disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter may be directed to less than all features of any of the disclosed embodiments. Thus, the following claims are incorporated into the Detailed Description of the Drawings, with each claim standing on its own as defining separately claimed subject matter.

Claims
  • 1. An abrasive article comprising: an elongated body;a bonding layer overlying a surface of the elongated body;abrasive grains contained within the bonding layer at an average abrasive grain concentration within a range between about 0.02 ct/m and about 0.30 ct/m along a length of the elongated body, wherein the abrasive grains define a non-Gaussian distribution defined by at least three different modes.
  • 2. The abrasive article of claim 1, wherein the elongated body is a wire.
  • 3. The abrasive article of claim 1, wherein the elongated body comprises a length of at least about 1 km.
  • 4. The abrasive article of claim 1, wherein the abrasive grains define a wide grit size distribution characterized by a grit size range spanning at least about 50 microns.
  • 5. The abrasive article of claim 1, wherein at least 80% of a total number of abrasive grains are contained within a grit size range spanning at least about 25 microns.
  • 6. The abrasive article of claim 5, wherein at least 95% of the total number of abrasive grains are contained within a grit size range spanning average grit sizes between about 30 microns and about 80 microns.
  • 7. The abrasive article of claim 1, further comprising a coating layer overlying the bonding layer and portions of the abrasive grains.
  • 8. The abrasive article of claim 7, wherein the coating layer comprises a metal.
  • 9. The abrasive article of claim 8, wherein the coating layer comprises nickel.
  • 10. The abrasive article of claim 1, wherein the bonding layer comprises an average thickness within a range between about 10 microns and about 50 microns.
  • 11. The abrasive article of claim 10, wherein the bonding layer comprises a filler.
  • 12. The abrasive article of claim 11, wherein the filler comprises an abrasive particulate.
  • 13. The abrasive article of claim 12, wherein the abrasive particulate of the filler can have an average grain size that is at least about 2 times less than the average grit size of the abrasive grains.
  • 14. The abrasive article of claim 1, wherein the abrasive article is capable of cutting through a total of at least about 200 cm2 of sapphire at an average cutting rate of at least 0.8 mm/min.
  • 15. The abrasive article of claim 14, wherein the abrasive article has at least 5 hours of cutting life.
  • 16. The abrasive article of claim 1, wherein the bonding layer comprises a metal.
  • 17. The abrasive article of claim 1, wherein the bonding layer comprises a metal alloy.
  • 18. The abrasive article of claim 16, wherein the bonding layer comprises tin.
CROSS-REFERENCE TO RELATED APPLICATION(S)

The present application is a Continuation of U.S. Utility patent application Ser. No. 12/857,378 filed Aug. 16, 2010, which claims priority from U.S. Provisional Patent Application No. 61/234,202, filed Aug. 14, 2009, entitled “Abrasive Articles Including Abrasive Particles Bonded to An Elongated Body,” naming inventors Susanne Liebelt, Vincent Tesi, and Theodor von Bennigsen-Mackiewicz, which application is incorporated by reference herein in its entirety.

US Referenced Citations (158)
Number Name Date Kind
2764543 Comstock 3D., et al. Sep 1956 A
2784536 Barron Mar 1957 A
2793478 Rohowetz May 1957 A
3150470 Barron Sep 1964 A
3178273 Libal Apr 1965 A
3854898 Whitney, Jr. et al. Dec 1974 A
3884212 Armstrong et al. May 1975 A
3894673 Lowder et al. Jul 1975 A
3906684 Marshall et al. Sep 1975 A
3997302 Supkis Dec 1976 A
3997902 Nard Dec 1976 A
4015931 Thakur Apr 1977 A
4018576 Lowder et al. Apr 1977 A
4055700 Ronnquist et al. Oct 1977 A
4187828 Schmid Feb 1980 A
4384564 Smith et al. May 1983 A
4485757 Ebner Dec 1984 A
4627950 Matsui et al. Dec 1986 A
4643740 Nicolson Feb 1987 A
4646710 Schmid et al. Mar 1987 A
4681538 DeLuca et al. Jul 1987 A
4684052 McDonald et al. Aug 1987 A
4727852 Schmid et al. Mar 1988 A
4776862 Wiand Oct 1988 A
4866888 Murai et al. Sep 1989 A
4907564 Sowa et al. Mar 1990 A
4968326 Wiand Nov 1990 A
4974373 Kawashima et al. Dec 1990 A
5062865 Chen et al. Nov 1991 A
5127197 Brukvoort et al. Jul 1992 A
5127924 Russell Jul 1992 A
5213591 Celikkaya et al. May 1993 A
5218949 Tomlinson et al. Jun 1993 A
5250084 Lansell et al. Oct 1993 A
5251802 Bruxvoort et al. Oct 1993 A
5318604 Gorsuch et al. Jun 1994 A
5377568 Hauser Jan 1995 A
5377659 Tank et al. Jan 1995 A
5383443 Buyens Jan 1995 A
5438973 Schmid et al. Aug 1995 A
5454750 Cosmano et al. Oct 1995 A
5492771 Lowder et al. Feb 1996 A
5496386 Broberg et al. Mar 1996 A
5511718 Lowder et al. Apr 1996 A
5544643 Bauer et al. Aug 1996 A
5571296 Barber, Jr. et al. Nov 1996 A
5578098 Gagliardi et al. Nov 1996 A
5616065 Egglhuber Apr 1997 A
5643055 Linzell Jul 1997 A
5660320 Hoffmuller et al. Aug 1997 A
5707509 Hartweg Jan 1998 A
5840089 Chesley et al. Nov 1998 A
5846269 Shiue et al. Dec 1998 A
5855314 Shiue et al. Jan 1999 A
5913305 Hauser Jun 1999 A
5924917 Benedict Jul 1999 A
5935407 Nenov et al. Aug 1999 A
5964210 Hodsden Oct 1999 A
5975988 Christianson Nov 1999 A
6056794 Stoetzel et al. May 2000 A
6065462 Hodsden et al. May 2000 A
6070570 Ueoka et al. Jun 2000 A
6102024 Buljan et al. Aug 2000 A
6194068 Ohashi et al. Feb 2001 B1
6194086 Nenov et al. Feb 2001 B1
6228133 Thurber et al. May 2001 B1
6279564 Hodsden Aug 2001 B1
6286498 Sung Sep 2001 B1
6311684 Hodsden et al. Nov 2001 B1
6319108 Adefris et al. Nov 2001 B1
6368198 Sung et al. Apr 2002 B1
6463921 Shimazaki et al. Oct 2002 B2
6613113 Minick et al. Sep 2003 B2
6679243 Sung Jan 2004 B2
6755720 Ishizaki et al. Jun 2004 B1
6783442 Lukschandel et al. Aug 2004 B2
6790126 Wood et al. Sep 2004 B2
6797023 Knapp et al. Sep 2004 B2
6830598 Sung Dec 2004 B1
6858050 Palmgren Feb 2005 B2
6899920 Meyer May 2005 B2
6915796 Sung Jul 2005 B2
6939413 Crockett Sep 2005 B2
7089925 Lin et al. Aug 2006 B1
7124753 Sung Oct 2006 B2
7134430 Kim et al. Nov 2006 B2
7261752 Sung Aug 2007 B2
7306508 Kawasaki et al. Dec 2007 B2
7435276 Chen et al. Oct 2008 B2
7556558 Palmgren Jul 2009 B2
7704127 Taniguchi et al. Apr 2010 B2
7926478 Nakai et al. Apr 2011 B2
8037878 Kitagawa et al. Oct 2011 B2
8206472 Tani et al. Jun 2012 B2
8257572 Castro et al. Sep 2012 B2
8291895 Sudarshan et al. Oct 2012 B2
8425640 Liebelt et al. Apr 2013 B2
8677986 Kazahaya et al. Mar 2014 B2
8720429 Lange et al. May 2014 B2
8802602 Schmitjes et al. Aug 2014 B2
20010025457 Tselesin Oct 2001 A1
20020010068 Komatsu Jan 2002 A1
20020077054 Sung Jun 2002 A1
20030084894 Sung May 2003 A1
20030121212 Minick et al. Jul 2003 A1
20030134577 Coad Jul 2003 A1
20030140914 Lukschandel et al. Jul 2003 A1
20040107648 Sung Jun 2004 A1
20040112359 Sung Jun 2004 A1
20040244789 Jentgens Dec 2004 A1
20050018642 Nakamura Jan 2005 A1
20050103320 Ebner May 2005 A1
20060016127 Sung Jan 2006 A1
20060083688 Singaram et al. Apr 2006 A1
20060194038 You et al. Aug 2006 A1
20060258268 Miyata et al. Nov 2006 A1
20070023027 Nakai et al. Feb 2007 A1
20070051354 Sung Mar 2007 A1
20070051355 Sung Mar 2007 A1
20070151554 Song et al. Jul 2007 A1
20070261690 Jentgens Nov 2007 A1
20070283944 Hukin Dec 2007 A1
20080053000 Palmgren et al. Mar 2008 A1
20080141593 Bhatia Jun 2008 A1
20080141994 Skovgaard-Soerensen et al. Jun 2008 A1
20080148650 You Jun 2008 A1
20080206576 Qian et al. Aug 2008 A1
20080212733 Pop et al. Sep 2008 A1
20080261499 Tani et al. Oct 2008 A1
20080271783 Murakami et al. Nov 2008 A1
20090064983 Sudarshan et al. Mar 2009 A1
20090120422 Taniguchi May 2009 A1
20090202781 Hall et al. Aug 2009 A1
20090242410 Castro et al. Oct 2009 A1
20090283089 Sung Nov 2009 A1
20100197202 Branagan et al. Aug 2010 A1
20110009039 Balagani et al. Jan 2011 A1
20110039070 Liebelt et al. Feb 2011 A1
20110045292 Tian et al. Feb 2011 A1
20110263187 Liu et al. Oct 2011 A1
20110308371 Morita et al. Dec 2011 A1
20120037140 Campos et al. Feb 2012 A1
20120055097 Tian et al. Mar 2012 A1
20120167482 Tian et al. Jul 2012 A1
20130000211 Upadhyay et al. Jan 2013 A1
20130032129 Otani et al. Feb 2013 A1
20130061535 Tian et al. Mar 2013 A1
20130084786 Rehrig et al. Apr 2013 A1
20130092143 Sudarshan et al. Apr 2013 A1
20130205676 Tian et al. Aug 2013 A1
20130219801 Liebelt et al. Aug 2013 A1
20140007513 Rehrig et al. Jan 2014 A1
20140011434 Puzemis et al. Jan 2014 A1
20140013675 Tian et al. Jan 2014 A1
20140017984 Rehrig et al. Jan 2014 A1
20140017985 Tian et al. Jan 2014 A1
20140150766 Che et al. Jun 2014 A1
20140311472 Tian et al. Oct 2014 A1
Foreign Referenced Citations (143)
Number Date Country
599837 May 1978 CH
1456410 Nov 2003 CN
1488480 Apr 2004 CN
1583336 Feb 2005 CN
1721113 Jan 2006 CN
1739927 Mar 2006 CN
1863643 Nov 2006 CN
101066614 Nov 2007 CN
201283606 Aug 2009 CN
101564828 Oct 2009 CN
101712135 May 2010 CN
10-2004-043718 Mar 2006 DE
0237784 Jun 1991 EP
916449 May 1999 EP
1371438 Dec 2003 EP
1475463 Nov 2004 EP
1685934 Aug 2006 EP
2497602 Sep 2012 EP
876605 Sep 1961 GB
962357 Jul 1964 GB
1254365 Nov 1971 GB
1342359 Jan 1974 GB
61-71949 Apr 1986 JP
63-102868 May 1988 JP
30-79264 Apr 1991 JP
5016066 Jan 1993 JP
H07-096454 Apr 1995 JP
H08-126953 May 1996 JP
H09-150314 Jun 1997 JP
H09-155631 Jun 1997 JP
H09-254006 Sep 1997 JP
10-034544 Feb 1998 JP
H10-118938 May 1998 JP
10-256581 Sep 1998 JP
H10-328932 Dec 1998 JP
H11-216657 Aug 1999 JP
H11-216658 Aug 1999 JP
11-277398 Oct 1999 JP
2957571 Oct 1999 JP
H11-320379 Nov 1999 JP
H11-347911 Dec 1999 JP
2000-052226 Feb 2000 JP
2000-071160 Mar 2000 JP
2000-071162 Mar 2000 JP
2000-094297 Apr 2000 JP
2000-158318 Jun 2000 JP
2000-158319 Jun 2000 JP
2000-218504 Aug 2000 JP
2000-246542 Sep 2000 JP
2000-246654 Sep 2000 JP
2000-263452 Sep 2000 JP
3-104553 Oct 2000 JP
2000-271872 Oct 2000 JP
2000-288902 Oct 2000 JP
2001-054850 Feb 2001 JP
2001-105295 Apr 2001 JP
2001-113519 Apr 2001 JP
2001-259993 Sep 2001 JP
2001-277092 Oct 2001 JP
2001-287146 Oct 2001 JP
2001-341076 Dec 2001 JP
2002-205272 Jul 2002 JP
2002-254286 Sep 2002 JP
2002-254327 Sep 2002 JP
2002-273663 Sep 2002 JP
2002-326151 Nov 2002 JP
2002-331466 Nov 2002 JP
2002-361566 Dec 2002 JP
2003-231063 Aug 2003 JP
2003-275970 Sep 2003 JP
2003291057 Oct 2003 JP
2004-050318 Feb 2004 JP
2004-174680 Jun 2004 JP
2004-209573 Jul 2004 JP
2004-216553 Aug 2004 JP
2004-261889 Sep 2004 JP
2004-338023 Dec 2004 JP
2005-007221 Jan 2005 JP
2005-238377 Sep 2005 JP
2006-007387 Jan 2006 JP
37-77285 May 2006 JP
2006-123024 May 2006 JP
2006123055 May 2006 JP
2006130636 May 2006 JP
2006-150505 Jun 2006 JP
2006-179677 Jul 2006 JP
2006-181701 Jul 2006 JP
2006-231479 Sep 2006 JP
2006-272499 Oct 2006 JP
2007-021677 Feb 2007 JP
2007-044870 Feb 2007 JP
2007-061976 Mar 2007 JP
2007-152485 Jun 2007 JP
2007-152486 Jun 2007 JP
2007-196312 Aug 2007 JP
2007-196329 Aug 2007 JP
2007-203393 Aug 2007 JP
2007-203417 Aug 2007 JP
2007-237628 Sep 2007 JP
2007-253268 Oct 2007 JP
2007-268627 Oct 2007 JP
2007-281176 Oct 2007 JP
2007-307261 Nov 2007 JP
2008-068332 Mar 2008 JP
2008-221406 Sep 2008 JP
2009-066689 Apr 2009 JP
2010-000583 Jan 2010 JP
2010-000584 Jan 2010 JP
2010-284754 Dec 2010 JP
2011-016208 Jan 2011 JP
2011-161613 Aug 2011 JP
2000-0033534 Jun 2000 KR
2001-0055980 Jul 2001 KR
442370 Jun 2001 TW
1291389 Dec 2007 TW
9805466 Feb 1998 WO
9835784 Aug 1998 WO
9946077 Sep 1999 WO
0061324 Oct 2000 WO
0104227 Jan 2001 WO
2004069479 Aug 2004 WO
2005064677 Jul 2005 WO
2006070534 Jul 2006 WO
2007039934 Apr 2007 WO
2006083688 Aug 2007 WO
2008000072 Jan 2008 WO
2009064345 May 2009 WO
2009-158507 Dec 2009 WO
2010071198 Jun 2010 WO
2010125083 Nov 2010 WO
2010125085 Nov 2010 WO
2011020105 Feb 2011 WO
2011020109 Feb 2011 WO
2012092614 Jul 2012 WO
2013040423 Mar 2013 WO
2013049204 Apr 2013 WO
2013147892 Oct 2013 WO
2014004982 Jan 2014 WO
2014004991 Jan 2014 WO
2014005009 Jan 2014 WO
2014005015 Jan 2014 WO
2014005028 Jan 2014 WO
2014005037 Jan 2014 WO
Non-Patent Literature Citations (26)
Entry
Copper and Copper Alloys Jan. 1, 2001 (excerpt)—Davis, ASM International; pp. 127-130.
Enomoto, Toshiyuki et al “Development of a Resinoid Diamond Wire Containing Metal Power for Slicing a Slicing Ingot.” Annals of the CIRP. 32.1 (1983): 273-276.
Jun Sugawara et al., “Development of fixed abrasive-grain wire saw with less cutting loss” SEI Technical Review No. 58, Jun. 2004, pp. 7-11.
International Search Report for PCT/US2012/031699 mailed Nov. 16, 2012.
Daisuke Ide, “Resin Bond Diamond wire for slicing ceramics”, Industrial Diamond Review vol. 2/2007, pp. 32-34.
Y. Chiba et al., “Development of a high-speed manufacturing method for electroplated diamond wire tools”, Annals of the CIRP vol. 52/1/2003, pp. 281-284.
Osamu Kamiya et al., “Diamond and metal bonding by active solder for micro-cutting wire”, Int. J. of Mdern Physics B, vol. 20, Nos. 25-27 (2006) pp. 3932-3937.
Fujisawa, M. et al. “Precision Sawing with Wire Saw.” Annals of the CIRP. 32.1 (1983): 87-90.
Conversion US mesh (tamis)—microns: http://www.granuloshop.com/Conversion.htm (Sep. 2, 2003).
International Search Report for PCT/US2010/045643 mailed Apr. 29, 2011.
International Search Report for PCT/US2011/068240 mailed Aug. 27, 2012.
Handbook of Thermoset Plastics, 2nd edition, p. 28, 1998.
International Search Report for PCT/US2010/045647 mailed Apr. 29, 2011.
U.S. Appl. No. 13/930,577 filed Jun. 28, 2013.
International Search Report for PCT/US2012/055529 mailed Feb. 21, 2013.
International Search Report for PCT/US2012/057334 mailed Mar. 28, 2013.
Higashi, Taisuke et al., Development of Low Melting Temperature Coating Materials for High Performance Diamonds Wire Saw: Effect of an Additive on Mechanical Properties.
Nakamura Choko Co., Ltd., “Company Report”, Mar. 31, 2010, 10 pages.
International Search Report for PCT/US2013/048549 mailed Sep. 11, 2013.
International Search Report for PCT/US2013/048565 mailed Aug. 27, 2013.
International Search Report for PCT/US2013/048587 mailed Sep. 17, 2013.
International Search Report for PCT/US2013/048609 mailed Sep. 2, 2013.
International Search Report for PCT/US2013/048511 mailed Aug. 27, 2013.
International Search Report for PCT/US2013/048491 mailed Aug. 26, 2013.
Patel, Mitesh M., “Characterizing Fatigue and Fracture Response of Medical Grade Nickel-Titanium Alloys by Rotary Beam Testing,” Presented at the Astm Symposium on Fatigue and Fracture of Medical Metallic Materials and Devices, Dallas, Texas, Nov. 2005, 12 pages.
International Search Report for PCT/US2014/034611 mailed Aug. 28, 2014.
Related Publications (1)
Number Date Country
20130219801 A1 Aug 2013 US
Provisional Applications (1)
Number Date Country
61234202 Aug 2009 US
Continuations (1)
Number Date Country
Parent 12857378 Aug 2010 US
Child 13849370 US