Accelerometer With Reduced Extraneous Vibrations Owing To Improved Return Movement

Information

  • Patent Application
  • 20080092651
  • Publication Number
    20080092651
  • Date Filed
    August 11, 2004
    20 years ago
  • Date Published
    April 24, 2008
    16 years ago
Abstract
The invention relates to an accelerometer comprising a moving mass (5) and a fixed part (2), which uses variations in capacitance (3, 4) in order to detect the movement of the mass (5). The inventive accelerometer comprises a first series of electrodes (3, 4) which are solidly connected to the mass (5) and which are interdigitated with a series of electrodes (3, 4) which are solidly connected to the fixed part (2). According to the invention, each moving electrode (4), together with an adjacent fixed electrode (3), forms a capacitance which varies according to the position of the moving mass (5). The accelerometer further comprises an electronic circuit which is used to: (i) detect the variation in at least one capacitance between the moving mass (5) and the fixed part (2), in the form of a moving mass displacement indicator; and also (ii) generate an electrostatic stress in order to return the moving mass (5) to the initial position thereof. Moreover, the aforementioned electronic circuit is provided in order to generate the electrostatic return stress in such a way that it is automatically controlled by a preceding displacement measurement. The invention is characterized in that the recurring return stress thus generated is specifically selected such that the mechanical power frequency spectrum (10, 20) thereof has an essentially zero power zone at the mechanical resonance frequency of the electrodes (4) of the moving mass (5) and/or of the fixed part (2).
Description

Other features, objects and advantages of the invention will become apparent upon reading the detailed description which follows, made with reference to the appended figures wherein:



FIG. 1 schematically illustrates a particular embodiment of an acceleration sensor according to the invention;



FIGS. 2
a-2c are plots illustrating frequency spectra of the noise related to the mass restoration tension, of a transformation function of this force tension with and without resonance of the fingers, and of the resulting force, with and without resonance of the fingers there again;



FIG. 3 illustrates the frequency spectra of a pulsed control voltage and a square wave signal windowing this voltage;



FIG. 4 illustrates interdigitated electrodes according to an alternative of the invention;



FIG. 5 illustrates interdigitated electrodes according to another alternative of the invention.





The acceleration sensor illustrated in FIG. 1 comprises the following components, made in a same semi-conducting substrate 1:

    • a fixed frame 2;
    • two series of fixed electrodes 3 and 7 solidly connected to the frame 2;
    • a series of electrodes 4 supported by a moving plate 5;
    • springs 6 connecting the moving plate 5 to the frame 2 (a single spring is illustrated here for the sake of clarity of the drawing).


The moving electrodes 4 are electrically insulated from the fixed electrodes 3 and 7.


The electrodes 3 form a capacitor C1 with the electrodes 4 facing each other. The electrodes 7 form a capacitor C2 with the electrodes 4 facing each other.


When the moving mass is displaced relatively to the fixed part, the values of C1 and C2 vary in the opposite direction. This allows the relative position of the moving mass to be measured. In addition, in the present embodiment, a voltage applied to the terminals of C1 produces an electrostatic force which tends to bring electrodes 3 and 4 closer, therefore to displace the moving mass in one direction, whereas a voltage applied to the terminals of C2 tends to displace the moving mass in the other direction.


An electronic circuit not illustrated here and known to the skilled practitioner, is connected to each series of fixed electrodes 3 and 7 and to the series of moving electrodes 4.


Preferentially of the switched capacitor type, this circuit is clocked at the rate of a clock, and cyclically applies, in successive phases, a measuring voltage to the terminals of each capacitor so that their capacitance (differential measurement of both neighbouring capacitors) may be measured. The measured displacement is indicative of the displacement of the moving plate 5 due to the selectively present acceleration. The duration of the phase for applying a measuring voltage, noted as Tc and also called loading time, or even duration of the detecting phase, is far less than the resonance period of the system (and therefore the vibration period of the ground).


The control set up here consists of cancelling the relative movement of the mass 5 by applying a force between the series of moving electrodes and either one of the series of fixed electrodes (C1 or C2). This is an electrostatic force and this is the actuating phase when the latter is applied in a way temporally distinct from the detecting phase.


Preferentially, it is the same electronic circuit which alternately measures the position of the moving mass and tends to bring it back to its initial position by applying suitable voltages to the terminals of the capacitors C1 and/or C2.


Hence, the circuit defines multiplexing between measurement and feedback, with preferentially a discharge of the capacities between both of these steps.


The multiplexing frequency range for example is 100 to 500 times the resonance frequency of the system.


In another embodiment, returning the moving mass may be accomplished simultaneously to the displacement measurement.


The mechanical chip typically resonates at 500 Hz. The resonance frequency, preferentially selected to be closest to the vibration frequency of the ground, is adjusted by setting an electrostatic stiffness ke in the present example. This stiffness is superimposed onto the mechanical stiffness and adjusted by the duration of the charging step for measuring capacitances.


Electrostatic stiffness is selected here in order to lower the resonance frequency of the system, the mechanical stiffness being deliberately selected above the high frequency of the band of interest.


With this optional arrangement, known from document FR2 769 309, it is possible to limit collapse, to reduce inter-electrode distance and to therefore use high electric fields (therefore strong electrostatic stiffness).


This arrangement further allows optimization of the performances in the useful bandwidth and compensation of mechanical stiffness dispersion of the moving plate suspension springs, dispersion typically noticed in the usual manufacturing processes.


By the electrostatic stiffness, the apparent frequency is brought back to 140 Hz so as to at best reduce the noise in the useful bandwidth (0-200 Hz).


The fixed and moving electrodes have the shape of “fingers”, usually parallelepipedous silicon beams connected together with a base as a comb. Each of these fingers has a resonance frequency corresponding to that of a cantilever beam.


In the present case, the resonance frequency of the fingers typically was 90 kHz and changed to 585 kHz after a first modification as described in the text which follows.


The inventors have identified that these fingers tend to resonate considerably, and this with all the more amplitude as the ambient pressure is very low inside the chip.


The resulting movement is responsible for the folding back of the base band, by frequency transposition of the noise present in the control force, and therefore for the global noise degradation of the geophone, in particular when the maximum compensable acceleration (Amax) is increased with the actuator.


The spectral components of the respective return signal applied to the mass will be analyzed hereafter.


In order to discuss the means applied for limiting the resonance of the fingers, one first reports the observation here, according to which the repeated control force F, applied to the moving plate 5, is expressed as F=(ε.S.V2)/(2.d2) with S: surface facing the electrodes, V: voltage between the electrodes and d: distance between the electrodes. If V and d vary over time, one may write F(t)=F1(t).F2(t) with F1(t)=V(t)2 and F2(t)=ε.S/2.d(t)2.


As a multiplication in the time domain is expressed by a convolution in the frequency domain, one has F(f)=F1(f)


F2(f).

The aspect of F1(f) is illustrated in FIG. 2a, by curve 10 (in the absence of an acceleration signal) and that of F2(f) in FIG. 2b (curve 20: resonant fingers, curve 30: non-resonant fingers). The aspect of the force spectrum F(f) is also illustrated in FIG. 2c (curve 40: resonant fingers and 50: non-resonant fingers).


The rise of undesirable noise in the base band due to the resonance of the fingers is observed.


In other words, the fingers enter into resonance because their eigenfrequency is strongly represented in the power spectrum of the repeated control force as adopted in this type of accelerometer.


Let us note that because of sampling, the spectrum is repeated to infinity with recurrence Fe, the sampling frequency, as illustrated under reference 60 in FIG. 3.


It is interesting to observe that because the feedback force appears as repeated pulses of width Ta and not as Dirac pulses (zero width), this means that this spectrum 60 is multiplied by a cardinal sine function with a first zero frequency of 1/Ta.


In FIG. 3, curve 60 illustrates the frequency control spectrum with short duration pulses (Dirac pulses) and curve 80 with actual pulses of duration Ta therefore with relatively large zones with almost inexistent power. The value of the control force Fcontrol is reported in ordinates versus frequency f.


In FIG. 3, curve 70, the frequency transform of the signal with pulses of duration Ta, is a cardinal sine of formula sin(Pi.T.Fa)/(Pi.Fa.Ta). (With a first zero at frequency 1/Ta).


Curve 80 is therefore the result of multiplication of curve 60 by curve 70.


How to make the most of these power dips not utilized up to now is suggested here.


For this, matching is achieved between one of these power dips and the resonance frequency of the fingers.


A first preferential arrangement is to select a positioning of the cardinal sine in order to place a return to zero of the power on the resonance frequency of the fingers, the spectrum resulting from the product then itself having a return to zero at resonance.


This positioning is for example carried out by selecting a suitable value of Ta so that the value 1/Ta is placed on the resonance frequency of the fingers. In the same way, other returns to zero of the cardinal. sine 70 may be used.


It will be noted that this assumes that the frequency of the fingers is higher than Fe, Ta cannot be >Te (Te denotes the sampling period).


By selecting a spectrum placed in this way, a significant gain on the noise level of the accelerometer may be obtained.


According to another arrangement, the fixed and/or moving fingers 3 and 4 are configured so that their resonance is brought back into such a natural power sink, a sink due to application of the forces during duration Ta in the actuating phase, flanked by returns to zero of the restoration force. The preferred frequency for the resonance of the fingers is that equal to 1/Ta, corresponding to the first zero passage of the cardinal sine, the transform of the square wave signal.


Typically, Ta is 14/32 Te, therefore 1/Ta=585 kHz for Fe=256 kHz.


In the parallelepipedous version, in order to increase the frequency of resonance of the fingers in a ratio of 6.5 without reducing the length in the ratio of square root of (6.5), fingers would be needed with a length of 160 μm, which is incompatible with the voltage possibilities of the electronics (to actuate the mass, high voltages would be required).


In order to change the resonance frequency of the fingers, a trapezoidal profile as illustrated in FIG. 4 is preferentially adopted here.


With fingers having a length of 240 μm, a width L at the anchoring with the value of 20 μm and a width I at the top of 4 μm, a resonance frequency of 585 kHz is achieved typically.


Another embodiment, illustrated in FIG. 5, consists of adopting a shape with successive steep reductions in width, towards the free end.


Such an embodiment has additional advantages in that it is easily made with simple cutting machines. Indeed, such a shape of fingers does not require any oblique cut, which facilitates the cutting operation.


Adoption of a wide base for a tapered shape reduces the flexing mass and increases the mechanical strength at the base. The flexural resonance frequency is increased very significantly. Moreover, the amplitudes of oscillations are reduced very significantly. However, the surfaces facing each other between adjacent fingers remain with an almost unchanged extent, thereby practically not affecting the electrical properties of the capacities in presence.


The trapezoidal shape is preferred, as the latter has no rectilinear sub-part and is therefore particularly flexible locally.


A finger alternative with curved edges, for example with an external convex curvature, but which may also be concave, forming a general rounded trapezium shape, is also provided. Such a shape is found to be more compact and has an even higher resonance frequency.


Although a finger shape with decreasing width upon approaching the free end is beneficial to the flexural strength, it may be advantageous to adopt a different shape, notably for shifting the resonance frequency towards a higher frequency.


It should be noted that this geometrical change in the resonance frequency of the fingers, discussed here with reference to an internal vibration source, also allows to do away with vibration sources of other natures.


Thus, in the case of non-controlled accelerometers, and also of non-multiplexed accelerometers (i.e., notably in which return is performed simultaneously with the measurement), by changing the resonance frequency of the fingers, it is possible to do away with frequencies of stresses of external origin.


Thus, the resonance frequencies of the fingers are placed out of the frequency ranges of vibrations of external origin, which otherwise would be active.


It will be noted that the higher the resonance frequency, the lower is the amplitude of the movement.

Claims
  • 1. An accelerometer with a moving mass (5) and a fixed part (2) using variations in capacitance (3, 4) in order to detect the movement of the mass (5), wherein a first series of electrodes (3, 4) solidly connected to the mass (5) is interdigitated with a series of electrodes (3, 4) solidly connected to the fixed part (2), each moving electrode (4) forming, with an adjacent fixed electrode (3), a variable capacitance depending on the position of the moving mass (5), the accelerometer further comprising an electronic circuit provided for detecting the variation of at least one capacitance between the moving mass (5) and the fixed part (2) as an indicator of the displacement of the moving mass, and to also generate an electrostatic force for returning the moving mass (b) to its initial position, the electronic circuit being provided for generating the electrostatic return force in a way controlled by a previous displacement measurement, characterized in that the thus generated repeated return force is specifically selected so that its frequency mechanical power spectrum (10, 20) has a substantially zero power zone at the mechanical resonance frequency of the electrodes (4) of the moving mass (5) and/or of the fixed part (2).
  • 2. The accelerometer according to claim 1, characterized in that the control means perform repeated return of the moving mass in time slots (Ta), and in that the frequency transform (20) of the corresponding square wave signal (20) has a return to substantially zero at the resonance frequency of the electrodes (3, 4) of the moving part (5) and/or of the fixed part (2).
  • 3. The accelerometer according to claim 2, characterized in that the average slot time is predetermined so that the frequency transform (20) of the square wave signal (20) has a return to substantially zero (1/Ta) at the resonance frequency of the electrodes (3, 4) of the moving part (5) and/or of the fixed part (2).
  • 4. The accelerometer according to claim 3, characterized in that the average slot time (Ta) is selected so that its frequency transform (20) has a first return to zero (1/Ta) at the resonance frequency of the electrodes (4) of the moving part (5) and/or the fixed part (2).
  • 5. The accelerometer according to any of claims 1 to 4, characterized in that the electrostatic return force is applied in time slots with an average width Ta, and in that Ta is selected according to the relationship 1/Ta=F where F is the resonance frequency of the electrodes (4) of the moving part (5) and/or the fixed part (2).
  • 6. The accelerometer according to the preceding claim, characterized in that the frequency transform of the square wave signal has the shape of a cardinal sine.
  • 7. The accelerometer according to any of the preceding claims, characterized in that electrode(s) (3, 4) of the moving mass (5) and/or the fixed part (2) each have a section, the width of which varies towards their free end.
  • 8. The accelerometer according to claim 7, characterized in that the electrodes (3, 4) of the moving mass (5) and/or of the fixed part (2) have at least one part with a continuous change in section width.
  • 9. The accelerometer according to any of claims 7 or 8, characterized in that the electrodes (3, 4) of the moving mass (5) and/or the fixed part (2) have at least one part, the section width of which has steep changes.
  • 10. The accelerometer according to any of claims 7 to 9, characterized in that the electrodes (3, 4) of the moving mass (5) and/or the fixed part (2) have at least one part, the section width of which decreases towards the free end of the relevant electrode.
  • 11. The accelerometer according to any of claims 7 to 10, characterized in that the electrodes (3, 4) of the moving mass (5) and/or the fixed part (2) include a trapezoidal shape with decreasing width (L,I) towards their free end.
  • 12. The accelerometer according to any of claims 7 to 11, characterized in that the electrodes (3, 4) of the moving mass (5) and/or the fixed part (2) include a part, the section width of which varies with steps of constant width, the width (L,I) steeply changing between each step.
  • 13. The accelerometer according to any of claims 7 to 12, characterized in that the electrodes (3, 4) of the moving mass (5) and/or the fixed part (2) include a part, the width of which gradually decreases towards the free end of the electrode by forming at least one rounded side edge.
  • 14. The accelerometer according to any of claims 7 to 13, characterized in that the electrodes (3) of the fixed part (2) have a complementary shape to the gap located between two adjacent electrodes (4) of the moving mass (5).
Priority Claims (1)
Number Date Country Kind
0309901 Aug 2003 FR national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/FR04/02125 8/11/2004 WO 00 12/20/2006