1. Field of the Invention
The present invention relates generally to an accessory tool for a vacuum cleaner, and more specifically, to a fluid distribution and recovery tool.
2. Description of the Related Art
Vacuum cleaning appliances are known for removing dry or wet debris from surfaces, including fabric-covered surfaces like carpets and upholstery, and bare surfaces like hardwood, linoleum and tile. Conventional dry vacuum cleaners are not capable of distributing or recovering fluids from surfaces because moisture can damage the motor and filtration system of the vacuum cleaner. As a result, liquid extraction vacuum cleaning appliances such as vacuum mops, extractors and carpet cleaners must be used to distribute and/or remove liquids from surfaces requiring a consumer to keep several large pieces of equipment available to complete different floor cleaning needs.
Various attachments have been developed to adapt conventional dry vacuum cleaners to distribute and recover liquids. Many of these attachments only allow for fluid recovery, and are not provided with means for fluid distribution. Some attachments include replacement filter systems that can collect recovered fluid. Other attachments include hand-held accessory tools, often referred to as wet or wet pick-up tools, that are coupled to the conventional dry vacuum cleaner using a vacuum hose.
A noted problem with using a wet pick-up tool to convert a conventional dry vacuum cleaner into one capable of fluid distribution and/or recovery is preventing fluid from entering the filtration system and suction source of the vacuum cleaner. Accordingly, wet pick-up tools often include means for separating working air from recovered fluid and a container for collecting the recoverd fluid so that fluid is prevented from passing, along with the working air, to the conventional dry vacuum cleaner through the vacuum hose. However, if the container is overfilled or turned to an unusual angle, known wet pick-up tools can allow fluid to remain in the working air and enter the conventional dry vacuum cleaner, causing damage to the filtration system and suction source.
According to one embodiment of the invention, a vacuum cleaner for cleaning a surface includes a dispenser supplying a cleaning fluid from a treating reservoir to the floor, a suction system having a suction source, a suction nozzle, and a suction hose fluidly coupling the suction nozzle to the suction source to establish a suction flow path from the suction nozzle to the suction source, and an accessory tool housing a portion of the suction system and coupled to the suction hose and comprising, a recovery tank fluidly coupled to the suction flow path to store the dispensed treating chemistry drawn into the suction nozzle, and a backflow preventer located in the fluid path between the suction nozzle and the recovery tank and configured to prevent escape of fluid from the recovery tank back into the suction nozzle.
According to another embodiment of the invention, an accessory tool for use in connection with a vacuum cleaner with a suction source includes a housing assembly having a suction outlet opening adapted to be connected to a vacuum hose in fluid communication with the suction source, a suction nozzle fluidly coupled to the suction opening, a recovery tank in fluid communication with the suction nozzle to store liquid drawn in through the suction nozzle, and a backflow preventer configured to prevent escape of fluid from the recovery tank back into the suction nozzle wherein a suction flow path is established from the suction nozzle, through the recovery tank, and to the suction outlet opening when suction is applied at the suction opening.
In the drawings:
Referring to the drawings, and in particular to
The vacuum cleaner 14 can comprise any type of vacuum cleaner utilizing a vacuum hose, such as an upright, canister, stick-type, or hand-held vacuum cleaner, or with a built-in central vacuum cleaning system. Further, the vacuum cleaner 14 can be used to clean fabric-covered surfaces, such as carpets and upholstery, or bare surfaces, such as hardwood, linoleum, and tile. The vacuum cleaner 14 draws in dirt-laden air through the hose 12 and into a filtration system where the dirt is trapped for later disposal. Exemplary filtration systems can include a filter bag or a bagless cyclonic filter. As illustrated, the vacuum cleaner 14 comprises an upright vacuum cleaner using at least a cyclone separator as the filtration system. Details of a suitable vacuum cleaner for use with the accessory tool 10 are disclosed in commonly assigned U.S. Pat. No. 6,810,557 to Hansen et al.
Referring to
Referring to
Referring to
The suction nozzle 38 comprises a rear nozzle body 52, which, as illustrated, is integrally formed with the recovery tank 36 and a front nozzle body 54 removably mounted to the rear nozzle body 52 to form a fluid flow path 56 therebetween. In another embodiment (not illustrated), the front nozzle body 54 is not removable from the rear nozzle body 52. In yet another embodiment (not illustrated), the recovery tank 36 is removable from the suction nozzle 38. The fluid flow path 56 extends between a suction nozzle opening 58, which, in operation, is positioned adjacent the surface to be cleaned, and the recovery tank inlet 40.
The rear nozzle body 52 comprises a generally planar upper wall 60 and two spaced side walls 62 joined to a rear wall 64. The front nozzle body 54 comprises a front wall 66 having two spaced side walls 68 configured to snap-fit to the side walls 62 of the rear nozzle body 52 to releasably secure the front nozzle body 54 to the rear nozzle body 52. The front wall 66 further comprises an upper portion 70 that extends above the side walls 68 and comprises an arcuate upper surface 72. When the front nozzle body 54 is mounted to the rear nozzle body 52, the upper portion 70 extends above the upper wall 60 of the rear nozzle body 54 and the arcuate upper surface 72 conforms to the arcuate lower surface 28 of the nozzle receiver 26. The upper portion 70 further forms an area where the user can grip the front nozzle body 54 to remove it from the rear nozzle body 52. The front wall 66 further has a generally flat glide surface 74 at a lower portion thereof, adjacent the suction nozzle opening 58, which rests on the surface to be cleaned during operation and helps distribute the weight of the accessory tool 10 over a relatively large surface area so that the user may glide the accessory tool 10 over the surface to be cleaned with less exertion.
Referring to
Referring to
Referring to
When the accessory tool 10 is assembled, the suction fan 84 is received within the area bounded by the partitions 110 and the arcuate wall 114 of the suction fan cover 88, and the suction fan cover 88 is received within the recovery tank 36. While not illustrated, the suction fan cover 88 can be provided with a float valve assembly for sealing the fan inlet openings 106 when the amount of fluid in the recovery chamber 46 rises above a certain level to insure that fluid does not enter the fan/turbine assembly 20. For example, the baffle 108 could be modified to include a float valve assembly. Alternately, the float valve assembly can be formed with the recovery tank assembly 18.
Referring to
Referring to
Referring to
Referring to
In operation, when the turbine blades 190 are exposed to a moving air stream, such as that created by the vacuum cleaner 14, the axle 94 rotates with the turbine blades 190. Specifically, the exposure of the arced segment 198 of the turbine blades 190 to a moving air stream causes the turbine body 174, and consequently the axle 94, to rotate. The rotation of the axle 94 cases the suction fan 86 to rotate. As the suction fan 84 rotates, the fan blades 172 pull air from the recovery chamber 46 through the fan openings 106, thereby creating a partial vacuum within the recovery tank 36 and suction nozzle 38 and suction at the suction nozzle opening 58.
Referring to
Arrow B indicates the “wet” portion of the pathway, where recovered cleaning fluid and dirt enters the suction nozzle 38 and is collected in the recovery tank 36. Some air also enters the suction nozzle 38, and passes around the baffle 108 and into the suction fan chamber 89 via the fan inlet openings 106 (shown in
Because the suction fan 84 and the turbine 86 are contained within separate chambers 89, 91, fluid from the wet portion of the pathway B is prevented from entering the vacuum cleaner 14 through the dry portion of the airflow pathway A. Furthermore, a seal (not shown) can be used at the bearing to prevent fluid from getting into the bearing 96, and potentially into the dry portion of the pathway A.
In a variation of the embodiment of the accessory tool of
Referring to
A pair of agitator retainers 212, 214 is formed on either side of the rear nozzle body 202 and moveably mounts an agitator assembly 216. The first agitator retainer 212 comprises a closed end wall 218, while the second agitator retainer 214 comprises an end wall 220 having an opening 222 formed through which the agitator assembly 216 can be inserted during assembly of the nozzle assembly 200.
The agitator assembly 216 comprises a generally cylindrical agitator body 224 having a first end 226 that is mounted within the first agitator retainer 212 and a second end 228 that is mounted within the second agitator retainer 214. An agitator surface, such as bristles 230, is provided on the agitator body 224 between the first and second ends 226, 228 for scrubbing or otherwise agitating the surface to be cleaned. The bristles 230 can be sufficiently resilient so that they deform to allow the agitator assembly 216 to be inserted through the opening 222. A locking projection or detent 232 is formed on the agitator body 224 and is received in one of two spaced locking slots 234, 236 formed adjacent the opening 222 on the second agitator retainer 214. As illustrated, the first locking slot 234 is generally formed at the nine o'clock position with respect to the opening 222, and the second locking slot 236 is generally formed at the twelve o'clock position with respect to the opening 222, such that the locking slots 234, 236 are spaced roughly 90° apart. However, the locking slots 234, 236 can be positioned at many different orientations with respect to each other.
Referring to
To move the agitator assembly 216 from the first to the second use orientation, the agitator body 224 is rotated, preferably using the knob 238, in a clockwise direction with respect to the orientation of
The rotatable agitator assembly 215 allows the extraction mode to be separated from the scrubbing mode. The position of the bristles 230 in scrubbing mode (
Referring to
The recovery tank assembly 300 comprises a recovery tank 302 and a suction nozzle 304 in communication with the recovery tank 302 via a recovery tank inlet 306. The recovery tank 302 comprises a generally cylindrical peripheral wall 308 having a closed bottom 310, and forms a recovery chamber 312 in which recovered cleaning fluid and dirt passing through the suction nozzle 304 is received via the recovery tank inlet 306. The recovery tank 302 is removably mounted to a tank cap 314, which is fixedly attached to the fan/turbine assembly 20′ and can be removed therefrom to empty the contents of the recovery chamber 312 after a cleaning operation is complete. Preferably, one or both of the recovery tank 302 and the suction nozzle 304 are translucent or transparent to allow the contents to be at least partially visible to the user.
Optionally, the recovery tank 302 further includes a support frame 316 that adds rigidity to the recovery tank 302 and can comprise multiple vertical pieces 318 extending along the peripheral wall 308 from the closed bottom 310 to the tank cap 314 that are joined by a circular piece 320 extending around the inside circumference of the peripheral wall 308.
The suction nozzle 304 comprises a one-piece nozzle body 322 integrally formed with the recovery tank 302. The nozzle body 322 is hollow to form a fluid flow path 324 extending between a suction nozzle opening 326, which, in operation, is positioned adjacent the surface to be cleaned, and the recovery tank inlet 306.
A hollow rotating column 328 configured for 360° rotation about an axis of rotation R is provided within the recovery chamber 312 and is coupled with a bearing plate 330 formed on the interior side of the closed bottom 310 of the recovery tank 302. The column 328 is divided into an upper section 332 and a lower section 334 by a horizontal wall 336 formed in the hollow interior of the column 328. An air exit 338 is formed in the upper section 332 and fluidly communicates the recovery chamber 312 with a recovery tank outlet 340 formed in the tank cap 314 via an air flow path 342 defined by air exit 338 and the upper section 332. The recovery tank outlet 340 is in fluid communication with the fan/turbine assembly 20′. The lower section 334 comprises at least one opening 344 through the column 328 to allow water to enter the hollow interior of the lower section 334. As illustrated, four such openings 334 are provided, but only two of the openings 334 are visible in
Referring additionally to
The arrangement of the recovery tank assembly 300 allows the accessory tool 10′ to be held and used in many different orientations without liquid inadvertently being ingested into the fan/turbine assembly 20′, as well as maximizing the amount of fluid that can be contained in the recovery chamber 312. While not illustrated, the rotating air exit can be applied to other cleaning tools and apparatus, and it is contemplated that the rotating air exit 338 can be used in other diverse applications.
Referring to
The suction fan 84″ is not directly physically coupled with the turbine 86″, but rather is magnetically coupled with the turbine 86″ through the separation plate 92″. The suction fan 84″ comprises at least one magnet 402 on its lower surface 178″ and the turbine 86″ comprises at least one magnet 404 on its upper surface 158″. Preferably, the suction fan 84″ and the turbine 86″ each comprise multiple magnets 402, 404 spaced from each other. As illustrated, four magnets 402, 404 spaced at 90° intervals are provided on the suction fan 84″ and the turbine 86″.
Accordingly, the separation plate 92″ does not include a through opening, and the suction fan 84″ and the turbine 86″ are separately rotatably mounted within the suction fan chamber 89″ and the turbine chamber 91″. As illustrated, the separation plate 92″ comprises opposing bearing seats 406, 408 on its upper and lower surfaces 144, 146, respectively. Each bearing seat 406, 408 receives a bearing 410, 412 which in turn mounts a turbine axle 414 and a fan axle 416, respectively. The turbine axle 414 is received by the axle opening 170″ of the turbine 86″ and the fan axle 416 is received by the axle opening 188″ of the suction fan 84″.
In operation, when the turbine 86″ is exposed to a moving air stream, such as that created by the vacuum cleaner 14, the turbine 86″ will rotate with the turbine axle 414. The circular movement of the turbine magnets 404 generates a magnetic field which causes the suction fan magnets 402 to move correspondingly, and, consequently the suction fan 84″ to rotate about the suction fan axle 416. As the suction fan 84″ rotates, a partial vacuum is created within the recovery tank 36″ and suction nozzle 38″ and suction is created at the suction nozzle opening 58″.
Since the suction fan 84″ and the turbine 86″ have separate bearings and axles, maintenance and replacement of parts can be performed separately. Furthermore, since the separation plate 92″ does not have a through opening, the need for an expensive seal at the bearing 412 is negated, and the separation of the dry and wet portions of the airflow pathway is more clearly defined.
The concept of a magnetically-coupled suction/drive system can be applied to other cleaning tools and apparatus. For example, the concept can be applied to a vacuum cleaning appliance having a motor-driven suction fan. A suction motor having a motor shaft is retained within a first enclosure and the suction fan is retained within a second enclosure that is separate from the first enclosure. The suction fan is rotatably mounted within the second enclosure and is magnetically coupled with the motor shaft.
Referring to
The fluid dispensing assembly 500 comprises a removable fluid reservoir 502 defining a fluid chamber 504 in which cleaning fluid is stored before it is distributed onto the surface to be cleaned. The cleaning fluid can comprise any suitable cleaning fluid, including, but not limited to, water, concentrated detergent, diluted detergent, and the like. The fluid reservoir 502 includes a removable cap 506 that is removed to fill the fluid chamber 504 with cleaning fluid. Optionally, the fluid reservoir 502 can be a single-use container that is discarded when empty and replaced with a new fluid reservoir 502.
The fluid dispensing assembly 500 further comprises a turbine-driven fluid pump 508 for dispensing cleaning fluid from the fluid reservoir 502. The fluid pump 508 can comprise any common fluid pump suitable for being driven by the turbine 86′″. As illustrated, the fluid pump 508 includes a pump housing 510 formed on the tool body 16′″ which houses a pump fan 512 rotatably coupled with the turbine 86′″ by an axle 514. The axle 514 also couples the suction fan 84′″ with the turbine 86′″, as previously described for the first embodiment of the accessory tool. A seal 532 is provided about the axle 514 to prevent fluid from leaking out of the fluid pump 508 and into the working air conduit 34′″. While only one turbine 86′″ is illustrated, the accessory tool 10′″ can alternately be provided with separate turbines for the suction fan 84′″ and the fluid pump 508.
The pump housing 510 defines a pump chamber 516 in which cleaning fluid from the fluid reservoir 502 can be received, in addition to the pump fan 512. The pump housing 510 comprises an inlet 518 to the pump chamber 516 that is in communication with the fluid reservoir 502 when it is received in the tool body 16′″, and an outlet from the pump chamber 516 that is in communication with a fluid distributor. The fluid reservoir 502 preferably comprises a common dry disconnect coupling (not shown) that is in communication with the inlet 518 when the fluid reservoir 502 is seated on the tool body 16′″, so that cleaning fluid will flow from the fluid reservoir 502 by gravity feed.
The outlet of the pump housing 510 preferably comprises a fluid flow controller 520, such as a solenoid valve or a mechanical valve, that allows pressurized fluid to flow from the pump chamber 516 to a fluid distributor 522 upon actuation of the fluid flow controller 520, which can be effected using an electrical or mechanical coupling between the fluid flow controller 520 and a user-accessible actuator 524. The user-accessible actuator 524 is preferably provided on the tool body 16′″ near the hose connector 30′″, which provides a convenient place for the user to grip the accessory tool 10′″ while being able to selectively press the actuator 524 using the thumb or finger of the gripping hand. The fluid distributor 522 comprises a fluid conduit 526 extending along the suction nozzle 38′″ that defining a fluid flow path 528 between the fluid flow controller 520 and a spray nozzle 530 positioned to spray fluid onto the surface to be cleaned, forwardly of the suction nozzle 38′″.
In operation, when the turbine 86′″ is exposed to a moving air stream, such as that created by the vacuum cleaner 14, the axle 514 rotates with the turbine. The rotation of the axle 514 cases the pump fan 512. The suction fan 86′″ also rotates, as previously described. As the pump fan 512 rotates, the cleaning fluid in the pump chamber 516 is pressurized. Pressing the actuator 524 opens the fluid flow controller 520, allowing pressurized cleaning fluid to flow from the pump chamber 516, through the fluid flow path 528, and onto the surface to be cleaned, via the spray nozzle 530.
The accessory tool according to any of the above embodiments can expand the cleaning capability of a conventional dry floor surface cleaning appliance by allowing the dry vacuum cleaner to be used to distribute cleaning fluid as well as recover fluid. The accessory tool can also be used with a wet extraction cleaning appliance for both distributing and recovering fluid. The accessory tool is designed such that the water recovery path is separated and isolated from the conventional working air path of the vacuum cleaning appliance to prevent water laden working air from entering the vacuum cleaning appliance. Other embodiments of the accessory tool not specifically shown herein are possible. For example, the accessory tool can include an agitating surface, such as a scrubbing pad or a brush. The agitating surface can further be configured for movement, and can be coupled with the turbine to provide motive power thereto.
Referring now to
A representative example of an extraction cleaner can be found in U.S. Pat. No. 6,131,237, which is incorporated herein by reference in its entirety. As illustrated herein, the extraction cleaner 612 is an upright extraction cleaner having a housing 614 that includes an upright handle assembly 616 that is pivotally connected to a base assembly 618 for directing the base assembly 618 across the surface to be cleaned.
The extraction cleaner 612 may include a fluid delivery system for storing and delivering a cleaning fluid to the surface to be cleaned and a fluid recovery system or a suction system for extracting and storing the dispensed cleaning fluid and debris from the surface to be cleaned. The components of the fluid delivery system and the fluid recovery system can be supported by either or both the base assembly 618 and the handle assembly 616. In the illustrated embodiment, the components are primarily supported by the base assembly 618.
The fluid delivery system can include a fluid supply tank 620 for storing a supply of cleaning fluid, an auxiliary fluid distributor 622 for depositing a cleaning fluid onto the cleaning surface, and a fluid conduit (not shown) between the fluid supply tank 620 and the auxiliary fluid distributor 622. A pump 608 can be mounted to the housing 614 or accessory tool 610 for conveying cleaning fluid from the fluid supply tank 620, through the fluid conduit and auxiliary fluid distributor 622. The fluid pump 608 can comprise any fluid pump suitable for conveying liquid such as a solenoid pump, centrifugal pump, manual piston pump or turbine-driven fluid pump 508 previously described, for example. The fluid supply tank 620 and the auxiliary fluid distributor 622 may be mounted to the base assembly 618 as illustrated. Various combinations of optional components can be incorporated into the fluid delivery system such as a heater or fluid control and mixing valves as is commonly known in the art.
The fluid recovery system can include an extraction path in the form of an extraction nozzle 624 extending towards a surface to be cleaned, a recovery tank 626 and a working air conduit (not shown) associated with the base assembly 618 and in fluid communication with the extraction nozzle 624 and the recovery tank 626. The fluid recovery system can also comprise a suction source such as a motor/fan assembly 628 in fluid communication with the recovery tank 626 and configured to generate a working airflow to draw liquid and entrained debris through the extraction nozzle 624 and into the recovery tank 626.
A vacuum or suction hose 630 can also be operably coupled to the extraction cleaner 612 and can be fluidly coupled to the motor/fan assembly 628. The accessory tool 610 can be removably mounted to the suction hose 630 such that the accessory tool 610 can be operably coupled to the extraction cleaner 612. More specifically, the accessory tool 610 includes a housing assembly 640 having a suction outlet opening 642 adapted to be connected to the suction hose 630 such that it can be in fluid communication with the motor/fan assembly 628. A suction nozzle 644 can be included in the housing assembly 640 and can be fluidly coupled to the suction outlet opening 642.
As more easily seen in
As illustrated, the auxiliary recovery tank 650 can have a retaining mechanism 652, which can interface with a portion of the housing assembly 640 and can be used to removably mount the auxiliary recovery tank 650 to the housing assembly 640. Any suitable retaining mechanism can be used and bayonet tabs have been illustrated for exemplary purposes only. More specifically, the tabs 653 are configured to engage corresponding slots 655 and grooves 657 in the housing assembly 640. The tabs 653 can be inserted into the slots 655 and then rotated within in the grooves 657 to secure the tank 650 to the housing assembly 640. A detent 661 on the outer surface of the auxiliary recovery tank 650 can create an interference fit with a corresponding feature (not shown) on the housing assembly 640 for securing the auxiliary recovery tank 650 to the housing assembly 640. A user can overcome the interference fit exerting force to rotate the recovery tank 650 relative to the housing assembly 640 and thus remove the recovery tank 650 from the housing assembly 640 to empty the contents located in the auxiliary recovery tank 650 after a cleaning operation is complete.
The auxiliary recovery tank 650 can be fluidly coupled to the suction flow path and can be in fluid communication with the suction nozzle 644 to store liquid drawn into the suction nozzle 644. The auxiliary recovery tank 650 like the earlier embodiments includes a generally cylindrical peripheral wall having a closed bottom and forms a recovery chamber in which recovered cleaning fluid and dirt passing through the suction nozzle 644 can be received and retained. One or both of the auxiliary recovery tank 650 and the suction nozzle 644 can be translucent or transparent to allow the contents to be at least partially visible to the user.
The housing assembly 640 can include a cover 648 and an air/liquid separator 654 for separating air from liquid drawn into the auxiliary recovery tank 650 through the suction nozzle 644. The air/liquid separator 654 can be secured to either of the housing assembly 640 or auxiliary recovery tank 650. Alternatively, the air/liquid separator can be formed integrally with the housing assembly 640 or the auxiliary recovery tank 650. As shown in Figures, the air/liquid separator 654 has been illustrated as a separate component that is fastened to the housing assembly 640 for exemplary purposes only.
The fluid dispensing assembly 660 can distribute cleaning fluid onto a surface to be cleaned and can include a fluid delivery tube 662, a spray nozzle 664, and a fluid inlet 668, which can be fluidly coupled to a cleaning fluid source. It is contemplated that the cleaning fluid source can be a separate fluid cleaning source such as an auxiliary reservoir (not shown) or that the fluid inlet 668 can be fluidly coupled to the fluid supply tank 620. A trigger assembly (not shown) can be configured to selectively actuate a pump or a valve for selectively distributing cleaning fluid onto the surface to be cleaned. The trigger assembly can be operably coupled between the fluid inlet 668 and the cleaning fluid source and can be operated by a user to distribute cleaning fluid from the spray nozzle 664 onto the surface to be cleaned. The user can repeatedly depress the trigger or continuously depress the trigger to distribute cleaning fluid until a desired amount of cleaning fluid has been applied onto the surface to be cleaned. It is understood that in some cleaning operations, the user can desire to only recover fluid from the surface to be cleaned, and in this case, cleaning fluid is not dispensed from the fluid dispensing assembly 660.
The agitator assembly 656 can be mounted in the accessory tool 619 and can be associated with the suction nozzle 644. The agitator assembly 656 can include an agitator body 659 with an agitator surface, such as bristles 658, provided on the agitator body 659 for scrubbing or otherwise agitating the surface to be cleaned.
A backflow preventer 670 can be located in the suction flow path upstream from the auxiliary recovery tank 650 to prevent liquid leakage therefrom. With reference to
The suction flow path can include a tortuous path portion 680 between the auxiliary recovery tank 650 and the suction outlet opening 642 through which the air travels after it has been separated from the liquid in the auxiliary recovery tank 650. The tortuous path portion 680 can be defined between corresponding surfaces of the auxiliary recovery tank 650, the air/liquid separator 654 and the housing assembly 640 to form an air-passable barrier between the recovery tank 650 and the suction outlet opening 642.
Alternatively or in addition to the tortuous path, a liquid flow preventer 682 can be included in the accessory tool 610 between the auxiliary recovery tank 650 and the suction outlet opening 642. The liquid flow preventer 682 can be any suitable mechanism to prevent the flow of liquid to the suction outlet opening 642 and has been schematically illustrated as a valve. The valve can be an umbrella valve or a duckbill valve.
Regardless of whether the tortuous flow path and/or the liquid flow preventer is included in the accessory tool 610, the result will be that separated air can travel from the auxiliary recovery tank 650 to the suction outlet opening 642 when suction is applied at the suction outlet opening 642. If the liquid flow preventer 682 is included, it will open upon exposure to a working airflow to permit the working airflow to pass around it. When the suction source is de-energized or when the accessory tool 610 is detached from the suction hose 630, the liquid flow preventer 682 automatically closes and prevents liquid leakage through the suction outlet opening 642. Likewise, the tortuous flow path portion 680 permits airflow to pass therethrough while simultaneously preventing liquid from flowing to the suction outlet opening 642.
Optionally, a shut-off float can be incorporated within the auxiliary recovery tank 650 to prevent liquid leakage through the tortuous path portion 680 when suction is applied at the outlet opening 642. For example, a commonly known shut-off float assembly with a buoyant shut-off member can be adapted to block the working airflow path between the auxiliary recovery tank 650 and suction outlet opening 642 when the recovered liquid in the tank reaches a predetermined level, or when the tank and liquid therein are oriented in a predetermined position.
In operation, when the motor/fan assembly 628 of the extraction cleaner 612 is activated a suction flow path is established from the suction nozzle 644, through the auxiliary recovery tank 650, and to the suction outlet opening 642 when suction is applied at the suction outlet opening 642. Fluid and dirt drawn in through the suction nozzle 644 are deposited and retained in the auxiliary recovery tank 650 and separated air can travel from the auxiliary recovery tank 650 to the suction outlet opening 642.
The arrangement of the backflow preventer 670 prevents fluid from leaking out of the auxiliary recovery tank 650 and exiting the accessory tool 610 through the suction nozzle 644. The backflow preventer 670 opens when the accessory tool 610 is connected to the suction hose 630 and exposed to a working airflow and allows air and liquid to pass freely there through in the direction from the suction nozzle 644 into the auxiliary recovery tank 650. The working airflow is schematically illustrated as arrows 686. However, the backflow preventer 670 closes and blocks the flow of air and liquid in the reverse direction, from the auxiliary recovery tank 650 through the suction nozzle 644. Moreover, when the suction source is de-energized or when the accessory tool 610 is detached from the suction hose 630 and no longer exposed to a working airflow, the backflow preventer 670 automatically closes or seals to prevent liquid leakage therethrough. Accordingly, the backflow preventer 670 allows a user to tilt the accessory tool 610 in many different orientations during use and storage without liquid inadvertently leaking out of the accessory tool 610 through the suction nozzle 644.
Further, the tortuous path portion 680 and optional liquid flow preventer 682 can prevent liquid from leaking out of the auxiliary recovery tank 650 and exiting the accessory tool 610 through the suction outlet opening 642. Accordingly, the accessory tool 610 can be tilted in many different orientations during use and storage without liquid inadvertently being leaked out of the tool through the suction outlet opening 642. Moreover, the tortuous path portion 680 prevents soiled liquid in the auxiliary recovery tank 650 from being transported through the suction hose 630, recovery tank 626 and working air conduit and being ingested into the motor/fan assembly 628.
While the above embodiment of the invention is described in the context of the extraction cleaner 612, it is within the scope of the invention for any suitable type of extraction device to be used. For example, the accessory tool 610 can be used with a portable extraction cleaner. It will also be understood that the accessory tool 610 can be used with the dry vacuum cleaners described above and that the previously described accessory tools can be used with the extraction cleaner 612.
While the invention has been specifically described in connection with certain specific embodiments thereof, it is to be understood that this is by way of illustration and not of limitation, and the scope of the appended claims should be construed as broadly as the prior art will permit. For example, while the figures describe a device with the main operating components arranged along a generally vertical axis relative to the tool body, it is understood that the components can be arranged along a generally horizontal axis or at any angle therebetween.
This application is a continuation-in-part of pending application U.S. Ser. No. 12/041,007, filed Mar. 3, 2008, which claims the benefit of U.S. Provisional Patent Application No. 60/893,033, filed Mar. 5, 2007, all of which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
60893033 | Mar 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12041007 | Mar 2008 | US |
Child | 13456285 | US |