This application relates to acoustic devices and, more specifically, to the configuration of these devices and their disposition with consumer devices.
Different types of acoustic devices have been used through the years. One type of device is a microphone and one type of microphone is a microelectromechanical system (MEMS) microphone. A MEMS microphone includes a MEMS die having at least one diaphragm and at least one back plate. The MEMS die is sometimes disposed on a substrate or base, and enclosed by a housing (e.g., a cup or cover with walls). A port may extend through the substrate (for a bottom port device) or through the top of the housing (for a top port device). In any case, sound energy traverses through the port, moves the diaphragm and creates a changing potential of the back plate, which creates an electrical signal. The electrical signal can be further processed by devices such as application specific integrated circuits (ASICs).
Microphones are mounted or disposed in various types of devices such as personal computers, tablets, and hearing aids to mention a few examples. As mentioned, a port is disposed in the microphone, often times through the base. Another second port is present in the device in which the microphone is disposed and this other port allows sound to pass through the second port to the microphone inside the device.
However, this placement of the microphone port is sometimes inconvenient with respect to the configuration of the device in which the microphone is located. For example, the microphone port at the base may not align with the second port or opening in the customer device. This misalignment sometimes requires the design of the device to be adjusted or modified, which increases the overall cost and complexity of the resultant system. These problems have resulted in some user dissatisfaction with previous approaches.
For a more complete understanding of the disclosure, reference should be made to the following detailed description and accompanying drawings wherein:
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity. It will further be appreciated that certain actions and/or steps may be described or depicted in a particular order of occurrence while those skilled in the art will understand that such specificity with respect to sequence is not actually required. It will also be understood that the terms and expressions used herein have the ordinary meaning as is accorded to such terms and expressions with respect to their corresponding respective areas of inquiry and study except where specific meanings have otherwise been set forth herein.
In the present approaches, a gasket is adhered to a microphone and in some examples is wrapped around one of the ends of the microphone, where the microphone is disposed within another device. A face plate (or similar structure) is disposed against the gasket. An opening in the gasket creates an acoustic path or passageway between the face plate and the microphone. In some aspects, the microphone seals around the port so that manually dispensing a sealant all around the body of the microphone is not necessary.
It will be appreciated that the structures provided herein effective create and result in a side port microphone where sound energy enters from the side of the microphone and is directed to a port in the microphone. Consequently, the disposition of the microphone is a device (e.g., hearing aid, personal computer, tablet, cellular phone) can be much more flexible than in previous approaches where the microphone had to be arranged to take into account the configuration of the host device and the arrangement of components within the host device.
In many of these embodiments, an acoustic apparatus includes a microphone. The microphone includes a MEMS device that is disposed on a base or substrate. A port extends through the base or substrate and the MEMS device is disposed over the port. A cover encloses the MEMS device. A gasket (which may be constructed of a flexible material) includes a channel and may extend around portions of the substrate. A face plate or other structure extends around portions of the gasket and channel. The channel extends parallel to the bottom surface of the base and across a length of the base. The face plate compresses or covers the gasket. Sound energy enters the channel, traverses the channel along the base, and enters the port. The sound energy must traverse the channel before entering the microphone and consequently does not directly enter the microphone from the exterior of the device in a direction perpendicular to the bottom surface of the microphone.
In other aspects, an apparatus includes a microphone and a gasket. The microphone includes a base having an inner surface and an outer surface. The inner surface is generally parallel with the outer surface. The base has a port extending from the outer surface to the inner surface. The microphone includes a MEMS transducer coupled to the inner surface of the base over the port. The microphone has a cover coupled to the base and encloses the MEMS transducer. The gasket is coupled to the outer surface of the base and forms a channel. The channel has a first end and a second end. The first end communicates with the port of the microphone, and the second end of the channel is generally aligned with an edge of the base.
Referring now to
In aspects, a gasket 112 is bent around the base 102 and, more specifically around a portion of the bottom exterior surface 103 and around the side exterior surface 105 of the base 102. The gasket 112 includes a channel 114. The channel 114 communicates with the port 104 and allows sound energy 124 external to the microphone 100 to be received by the microphone 100 via the channel 114. The channel 114 has a first end 131 and a second end 132. The first end (or portion) 131 of the channel 114 communicates with the port 104 of the microphone 100, and the second end (or portion) 132 of the channel 114 is generally aligned with an edge 133 of the base 102. Acoustic energy moves through the channel 114 from the second end 132 to the first end, and then into the port 104.
A face plate 116 presses against portions of the gasket 110. The face plate 116 encloses all or some of the gasket 112 and all or some of the channel 114. The face plate 116 also aligns the microphone with a port 122 in the device a compresses the gasket 112. The gasket 112 may be constructed from a soft foam or rubber to mention two examples. Other examples of materials may also be used including materials that are not flexible. The channel 114 in the examples described herein is generally straight. However, it will be appreciated that in other examples the channel may be curved, jagged, or non-linear.
The gasket 112 may be sealed to the microphone 100 by any type of adhesive. For example, adhesive tape may be applied to the back of the gasket so it can be secured to the microphone 100. Since in some aspects the gasket 112 is constructed of a flexible or bendable material, it also can be bent around the microphone 100 in an approximately 90 degree angle. Other angles are possible. In other examples, the gasket 112 is not bent around the microphone, but is planar and generally parallel to the base 102.
The face plate 116 may be constructed out of any suitable material and may be configured in any configuration that aligns the output port of the device with the microphone 100. So configured, it will be appreciated that the microphone 100 does not have to be situated so that the port 104 is aligned with the output port of the device 126. Rather, by using the gasket 112 and the channel 114 in the gasket 112, sound energy 124 can be directed from the exterior of the device 126, through the port 122 of the device 126, through the channel 114 to the microphone port 104 and thence into the microphone 100. In other words, sound energy 124 must traverse the channel 114 before entering the microphone 100 and consequently does not directly enter the microphone 100 from the exterior of the device 126 in a direction perpendicular to the bottom surface of the microphone 100. This configuration allows a much greater flexibility in microphone design along with a much greater flexibility in the design and configuration of components within a device (e.g., a cellular phone, a hearing aid or instrument, a personal computer, or a tablet to mention a few examples).
In one aspect, the bottom surface 103 of the microphone 100 has a first dimension that is shorter than a second dimension. The channel 114 extends along portions of the second (longer) dimension. In other examples, the channel 114 may extend along the first (shorter) dimension. As mentioned, the channel 114 can assume various shapes, but in examples is generally straight. The first end (or portion) 131 of the channel 114 may align with the end of the channel 114 in some examples. In other examples, the channel 114 may extend beyond the first end (or portion) 131. The second end 132 of the channel may align or generally align with an edge (e.g., edge 133) of the base 102.
As mentioned, the face plate 116 can be constructed of any suitable material (e.g., a metal or plastic) and can be configured or arranged in a variety of different ways. The face plate 116 may be any structure that aligns the microphone 100 with an exterior port in the device 126 in which the microphone is disposed. In one aspect and as shown in the examples herein, the face plate 116 at least partially defines an acoustic channel or passageway 151 (e.g., including the channel 114) in the gasket 112 that routes sound from the exterior of the device to the microphone. In this regard, the device 126 may also include a second port 152 through which sound enters the device, traverses the acoustic passageway 151 (including the channel 114), and enters the port 104.
In one example of the operation of the system of
So configured, a side port microphone is provided where the port of the microphone remains physically located through the base of the microphone 100. Sound energy 124 enters the microphone 100 from the side of the microphone 100 and is directed to a port 104 in the microphone 100 through the base 102. Consequently, the disposition of the microphone 100 within the customer device (e.g., a hearing aid, personal computer, tablet, or cellular phone to mention a few examples) can be much more flexible than in previous approaches where the microphone had to be arranged to take into account the configuration of the host device and the arrangement of components within the host device.
Referring now especially to
Preferred embodiments of this invention are described herein. It should be understood that the illustrated embodiments are exemplary only, and should not be taken as limiting the scope of the invention.
This patent claims benefit under 35 U.S.C. §119(e) to U.S. Provisional Application No. 62/134,124 entitled “Acoustic Apparatus with Side Port” filed Mar. 17, 2015, the content of which is incorporated herein by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5740261 | Loeppert | Apr 1998 | A |
6552469 | Pederson | Apr 2003 | B1 |
6781231 | Minervini | Aug 2004 | B2 |
7166910 | Minervini | Jan 2007 | B2 |
7190038 | Dehe | Mar 2007 | B2 |
7242089 | Minervini | Jul 2007 | B2 |
7382048 | Minervini | Jun 2008 | B2 |
7439616 | Minervini | Oct 2008 | B2 |
7466834 | Ogura | Dec 2008 | B2 |
7473572 | Dehe | Jan 2009 | B2 |
7501703 | Minervini | Mar 2009 | B2 |
7633156 | Minervini | Dec 2009 | B2 |
7781249 | Laming | Aug 2010 | B2 |
7795695 | Weigold | Sep 2010 | B2 |
7825484 | Martin | Nov 2010 | B2 |
7829961 | Hsiao | Nov 2010 | B2 |
7856804 | Laming | Dec 2010 | B2 |
7903831 | Song | Mar 2011 | B2 |
8018049 | Minervini | Sep 2011 | B2 |
8121331 | Minervini | Feb 2012 | B2 |
8170244 | Ryan | May 2012 | B2 |
8358004 | Minervini | Jan 2013 | B2 |
8450817 | Minervini | May 2013 | B2 |
8526665 | Lutz | Sep 2013 | B2 |
8594347 | Ryan | Nov 2013 | B2 |
8624384 | Minervini | Jan 2014 | B1 |
8624385 | Minervini | Jan 2014 | B1 |
8624386 | Minervini | Jan 2014 | B1 |
8624387 | Minervini | Jan 2014 | B1 |
8629551 | Minervini | Jan 2014 | B1 |
8629552 | Minervini | Jan 2014 | B1 |
8704360 | Minervini | Apr 2014 | B1 |
8781140 | Lautenschlager | Jul 2014 | B2 |
8791531 | Loeppert | Jul 2014 | B2 |
8879767 | Wickstrom | Nov 2014 | B2 |
8969980 | Lee | Mar 2015 | B2 |
8983105 | Reining | Mar 2015 | B2 |
8995694 | Vos | Mar 2015 | B2 |
9006880 | Minervini | Apr 2015 | B1 |
9023689 | Minervini | May 2015 | B1 |
9024432 | Minervini | May 2015 | B1 |
9051171 | Minervini | Jun 2015 | B1 |
9078063 | Loeppert | Jul 2015 | B2 |
9137595 | Lee | Sep 2015 | B2 |
9139421 | Minervini | Sep 2015 | B1 |
9139422 | Minervini | Sep 2015 | B1 |
9148731 | Minervini | Sep 2015 | B1 |
9338560 | Minervini | May 2016 | B1 |
20050207605 | Dehe | Sep 2005 | A1 |
20070215962 | Minervini | Sep 2007 | A1 |
20070278501 | MacPherson | Dec 2007 | A1 |
20070278601 | Goodelle | Dec 2007 | A1 |
20080175425 | Roberts | Jul 2008 | A1 |
20080217709 | Minervini | Sep 2008 | A1 |
20080267431 | Leidl | Oct 2008 | A1 |
20080279407 | Pahl | Nov 2008 | A1 |
20080283942 | Huang | Nov 2008 | A1 |
20090001553 | Pahl | Jan 2009 | A1 |
20090180655 | Tien | Jul 2009 | A1 |
20100046780 | Song | Feb 2010 | A1 |
20100052082 | Lee | Mar 2010 | A1 |
20100128914 | Khenkin | May 2010 | A1 |
20100183181 | Wang | Jul 2010 | A1 |
20100246877 | Wang | Sep 2010 | A1 |
20100290644 | Wu | Nov 2010 | A1 |
20100322443 | Wu | Dec 2010 | A1 |
20100322451 | Wu | Dec 2010 | A1 |
20110013787 | Chang | Jan 2011 | A1 |
20110075875 | Wu | Mar 2011 | A1 |
20120039499 | Ryan | Feb 2012 | A1 |
20130108074 | Reining | May 2013 | A1 |
20130177192 | Abry | Jul 2013 | A1 |
20140037115 | Vos | Feb 2014 | A1 |
20140037120 | Lim | Feb 2014 | A1 |
20140037124 | Lim | Feb 2014 | A1 |
20140064546 | Szczech | Mar 2014 | A1 |
20140133686 | Lee | May 2014 | A1 |
20140169607 | Goida | Jun 2014 | A1 |
20140291783 | Talag | Oct 2014 | A1 |
20140291784 | Conklin | Oct 2014 | A1 |
20140294209 | Szczech | Oct 2014 | A1 |
20140321687 | Friel | Oct 2014 | A1 |
20150041931 | Szczech | Feb 2015 | A1 |
20150117681 | Watson | Apr 2015 | A1 |
20150139428 | Reining | May 2015 | A1 |
20150172825 | Lim | Jun 2015 | A1 |
20150175659 | Gualtieri | Jun 2015 | A1 |
20150208165 | Volk | Jul 2015 | A1 |
20150251898 | Vos | Sep 2015 | A1 |
20160071506 | Qutub | Mar 2016 | A1 |
20160100257 | Nielsen | Apr 2016 | A1 |
Number | Date | Country |
---|---|---|
112010006098 | Mar 2014 | DE |
1346601 | May 2011 | EP |
Number | Date | Country | |
---|---|---|---|
20160277831 A1 | Sep 2016 | US |
Number | Date | Country | |
---|---|---|---|
62134124 | Mar 2015 | US |