This disclosure relates to an electro-acoustic transducer that is adapted to be used in open audio devices.
Open audio devices allow the user to be more aware of the environment, and provide social cues that the wearer is available to interact with others. However, since the acoustic transducer(s) of open audio devices are spaced from the ear and do not confine the sound to the just the ear, open audio devices produce more sound spillage that can be heard by others as compared to on-ear headphones. Spillage can detract from the usefulness and desirability of open audio devices.
All examples and features mentioned below can be combined in any technically possible way.
In one aspect, an acoustic device includes an open audio device structure that is configured to be carried on the head or upper torso of a user, and a housing carried by the open audio device structure, the housing having opposed front and rear faces and opposed first and second ends. There is a flat diaphragm in the housing that comprises a front face and a rear face, the diaphragm configured to radiate front acoustic radiation from its front face and into a front acoustic volume defined between the front face of the diaphragm and the front face of the housing and rear acoustic radiation from its rear face and into a rear acoustic volume defined between the rear face of the diaphragm and the rear face of the housing, wherein the front and rear acoustic radiations are out of phase. A flexible structure supports the diaphragm such that the diaphragm can move relative to the housing. There is a primary magnet proximate the rear face of the diaphragm, and a magnetic circuit that defines a path for magnetic flux of the primary magnet. There is a voice coil that is exposed to the magnetic flux and is configured to move the diaphragm up and down along a radiation axis that is normal to the front face of the diaphragm. There are first and second sound-emitting outlets in the housing, wherein the first sound-emitting outlet is in or proximate the first end of the housing, defines a center, and is acoustically coupled to the front acoustic volume so as to emit from the housing front acoustic radiation, and wherein the second sound-emitting outlet is in or proximate the second end of the housing, defines a center, and is acoustically coupled to the rear acoustic volume so as to emit rear acoustic radiation. A distance between the centers of the first and second sound-emitting outlets is greater than a distance along the radiation axis between the front and rear faces of the housing.
Embodiments may include one of the above and/or below features, or any combination thereof. The open audio device structure may be configured to be worn on the user's head such that the diaphragm radiation axis is transverse to a side of the head. The open audio device structure may comprise a temple piece of eyeglass headphones, and one of the first and second sound-emitting outlets may be configured to be close to the user's ear and the other of the first and second sound-emitting outlets may be configured to be farther from the ear.
Embodiments may include one of the above and/or below features, or any combination thereof. The diaphragm may be rectangular and may further comprise first and second parallel sides. The primary magnet may be rectangular and may comprise a front face, a rear face, and first and second parallel sides. The magnetic circuit may comprise a front pole piece between the front face of the primary magnet and the rear face of the diaphragm, a rear pole piece proximate the rear face of the primary magnet, and first and second side magnets, the first side magnet proximate to and spaced from the first side of the primary magnet and the second side magnet proximate to and spaced from the second side of the primary magnet, wherein the magnetic circuit defines a magnetic circuit gap between the primary magnet and the first and second side magnets. The voice coil may be located in the magnetic circuit gap. The housing may further comprise a frame that surrounds the magnetic circuit and the diaphragm and is configured to support the diaphragm. At least one of the first and second sound-emitting outlets may comprise an opening in the frame. The rear pole piece may define one of the first and second sound-emitting outlets.
Embodiments may include one of the above and/or below features, or any combination thereof. The acoustic device may further comprise a resistive port opening in the housing that receives the rear acoustic radiation and is spaced from the second sound-emitting outlet. The housing may comprise a rear pole piece of the magnetic circuit and the resistive port opening may comprise an opening in the rear pole piece. The second sound-emitting outlet may comprise an opening in the rear pole piece. The primary magnet may comprise two spaced primary magnet sections, and the second sound-emitting opening and the resistive port opening may be between the two spaced primary magnet sections.
Embodiments may include one of the above and/or below features, or any combination thereof. The acoustic device may further comprise a resistive port opening in the housing that receives the front acoustic radiation and is spaced from the first sound-emitting outlet. The primary magnet may further comprise two opposed ends, wherein the voice coil has a first depth in a magnetic circuit gap between the primary magnet and the first and second side magnets, and wherein the voice coil comprises an end section that is adjacent one of the opposed ends of the primary magnet and has a second depth that is less than the first depth. The primary magnet may comprise flat front and rear faces, wherein the magnetic circuit comprises a front pole piece that comprises a flat plate located on and coextensive with the front face of the primary magnet, and wherein the magnetic circuit further comprises a rear pole piece that comprises a flat plate located on and extending beyond a perimeter of the rear face of the primary magnet.
Embodiments may include one of the above and/or below features, or any combination thereof. The diaphragm may further comprise first and second sides and first and second ends, wherein the voice coil is adjacent to and spaced from both sides and both ends of the diaphragm, and wherein the voice coil is spaced farther from the first diaphragm end than it is from either of the sides of the diaphragm. The primary magnet may further comprise a first end proximate to the first diaphragm end, wherein the voice coil has a first depth in a magnetic circuit gap of the magnetic circuit, and wherein the voice coil comprises a first end section that is adjacent the first end of the primary magnet and has a second depth that is less than the first depth. The magnetic circuit may comprise a rear pole piece proximate a rear face of the primary magnet, and wherein the rear pole piece defines at least most of a rear wall of the housing.
In another aspect, an acoustic device includes a rectangular flat diaphragm comprising a front face and a rear face, first and second parallel sides, and first and second parallel ends that are each orthogonal to both of the diaphragm sides, the diaphragm configured to radiate front acoustic radiation from its front face and rear acoustic radiation from its rear face, a flexible structure that supports the diaphragm such that the diaphragm can move, a rectangular primary magnet proximate the rear face of the diaphragm and comprising a flat front face, a flat rear face, and first and second parallel sides, a magnetic circuit that defines a path for magnetic flux of the primary magnet, wherein the magnetic circuit comprises a front pole piece that comprises a flat plate located on and coextensive with the front face of the primary magnet, a rear pole piece that comprises a flat plate located on and extending beyond a perimeter of the rear face of the primary magnet, and first and second side magnets, the first side magnet proximate and spaced from the first side of the primary magnet and the second side magnet proximate and spaced from the second side of the primary magnet, wherein the magnetic circuit defines a magnetic circuit gap between the primary magnet and the first and second side magnets, a voice coil located in the magnetic circuit gap and configured to move the diaphragm, first and second sound-emitting outlets, wherein the first sound-emitting outlet is acoustically coupled to the front face of the diaphragm so as to emit front acoustic radiation, and wherein the second sound-emitting outlet is acoustically coupled to the rear face of the diaphragm so as to emit rear acoustic radiation, a housing that surrounds the magnetic circuit and the diaphragm, is configured to support the flexible structure, and is configured to direct at least one of the front acoustic radiation and rear acoustic radiation, wherein the housing has first and second opposed ends, and wherein the first sound-emitting outlet is in or proximate the first end of the housing and the second sound-emitting outlet is in or proximate the second end of the housing, wherein the housing defines the first sound-emitting outlet and the second sound-emitting outlet comprises an opening in the rear pole piece, and a resistive port opening that receives the rear acoustic radiation and is spaced from the second sound-emitting outlet, wherein the resistive port opening comprises an opening in the rear pole piece.
In another aspect an acoustic device includes a rectangular flat diaphragm comprising a front face and a rear face, first and second parallel sides, and first and second parallel ends that are each orthogonal to both of the diaphragm sides, the diaphragm configured to radiate front acoustic radiation from its front face and rear acoustic radiation from its rear face, a flexible structure that supports the diaphragm such that the diaphragm can move, a rectangular primary magnet proximate the rear face of the diaphragm and comprising a flat front face, a flat rear face, and first and second parallel sides, a magnetic circuit that defines a path for magnetic flux of the primary magnet, wherein the magnetic circuit comprises a front pole piece that comprises a flat plate located on and coextensive with the front face of the primary magnet, a rear pole piece that comprises a flat plate located on and extending beyond a perimeter of the rear face of the primary magnet, and first and second side magnets, the first side magnet proximate to and spaced from the first side of the primary magnet and the second side magnet proximate to and spaced from the second side of the primary magnet, wherein the magnetic circuit defines a magnetic circuit gap between the primary magnet and the first and second side magnets, a voice coil located in the magnetic circuit gap and configured to move the diaphragm, first and second sound-emitting outlets, wherein the first sound-emitting outlet is acoustically coupled to the front face of the diaphragm so as to emit front acoustic radiation, and wherein the second sound-emitting outlet is acoustically coupled to the rear face of the diaphragm so as to emit rear acoustic radiation, a housing that is configured to direct the front acoustic radiation, wherein the housing defines the first sound-emitting outlet, wherein the housing has first and second opposed ends and comprises a frame that surrounds the magnetic circuit and the diaphragm and is configured to support the flexible structure, wherein the second sound-emitting outlet comprises an opening in the frame, and wherein the first sound-emitting outlet is in the first end of the housing and the second sound-emitting outlet is in the second end of the housing, and a resistive port opening that receives the front acoustic radiation and is spaced from the first sound-emitting outlet, wherein the first sound-emitting outlet and the resistive port opening are both in the housing.
The electro-acoustic transducer for the acoustic device of the present disclosure is very thin yet is able to exhibit dipole-like acoustic properties where sound in the far field is canceled. The transducer has two spaced sound-emitting openings. One opening receives sound from the front face of the transducer diaphragm. The other opening receives sound from the rear face of the diaphragm that is out of phase with the sound from the front face. The transducer is part of an acoustic device (e.g., an open audio device) that locates and orients the transducer such that one transducer opening is closer to the ear than is the other transducer opening. Sound from the opening that is closer to the ear is not completely canceled by sound from the other opening because the other opening is more distant. The transducer can thus be used in a low-spillage open audio device.
The transducer diaphragm is preferably but not necessarily flat or nearly flat. The voice coil can be but need not be located farther from one or both ends of the diaphragm than it is from the sides of the diaphragm. This creates a gap near an end of one face of the diaphragm; this face is typically but not necessarily the rear face. Acoustic radiation from this face can pass through this gap to one of the openings. This arrangement creates a transducer that emits sound from both faces of the diaphragm, where the sound is emitted out of separate openings. Because the sound is emitted from both faces of the diaphragm, the sound is inherently out of phase. The sound from the openings will thus tend to cancel in the far field, resulting in dipole-like behavior.
An electro-acoustic transducer includes an acoustic element (e.g., a diaphragm) that emits front-side acoustic radiation from its front side and emits rear-side acoustic radiation from its rear side. The diaphragm is preferably but not necessarily flat. This helps to keep the transducer thin. A housing or other structure directs the front-side acoustic radiation and the rear-side acoustic radiation. A plurality of sound-conducting vents in the structure allow sound to leave the structure. A distance between vents defines an effective length of an acoustic dipole of the transducer. The effective length may be considered to be the distance between the two vents that contribute most to the emitted radiation at any particular frequency. The structure and its vents can be constructed and arranged such that the effective dipole length is frequency dependent. The electro-acoustic transducer is able to achieve a greater ratio of sound pressure delivered to the ear to spilled sound, as compared to a traditional thin transducer with a flat diaphragm.
A headphone refers to a device that typically fits around, on, or in an ear and that radiates acoustic energy into the ear canal. This disclosure describes a type of open audio device with one or more electro-acoustic transducers that are located off of the ear. Headphones are sometimes referred to as earphones, earpieces, headsets, earbuds, or sport headphones, and can be wired or wireless. A headphone includes an electro-acoustic transducer driver to transduce audio signals to acoustic energy. The acoustic driver may be housed in an earcup. Some of the figures and descriptions following show a single open audio device. A headphone may be a single stand-alone unit or one of a pair of headphones (each including at least one acoustic driver), one for each ear. A headphone may be connected mechanically to another headphone, for example by a headband and/or by leads that conduct audio signals to an acoustic driver in the headphone. A headphone may include components for wirelessly receiving audio signals. A headphone may include components of an active noise reduction (ANR) system. Headphones may also include other functionality, such as a microphone.
In an around the ear or on the ear or off the ear headphone, the headphone may include a headband and at least one housing that is arranged to sit on or over or proximate an ear of the user. The headband can be collapsible or foldable, and can be made of multiple parts. Some headbands include a slider, which may be positioned internal to the headband, that provides for any desired translation of the housing. Some headphones include a yoke pivotally mounted to the headband, with the housing pivotally mounted to the yoke, to provide for any desired rotation of the housing.
An open audio device includes but is not limited to off-ear headphones (i.e., devices that have one or more electro-acoustic transducers that are coupled to the head but do not occlude the ear canal opening), and audio devices carried by the upper torso, e.g., the shoulder region. In the description that follows the open audio device is depicted as an off-ear headphone, but that is not a limitation of the disclosure as the electro-acoustic transducer can be used in any device that is configured to deliver sound to one or both ears of the wearer where there are no ear cups and no ear buds.
Exemplary electro-acoustic transducer 10 is depicted in
Housing 20 in this instance comprises housing front wall 23, housing end wall 39, frame ends 21 and 22, and rear pole piece 16. Housing 20 defines an acoustic radiator front volume 28, and an acoustic radiator rear volume 29. Diaphragm 12 is configured to be moved up and down in the direction of arrow 13 (which may also be considered the diaphragm radiation axis) and thus radiates sound pressure into both volume 28 and volume 29, the sound pressure to the two different volumes being out of phase. Housing 20 thus directs both the front side acoustic radiation and the rear side acoustic radiation. Housing 20 comprises three (and in some cases two, or four or more) sound-emitting openings in this non-limiting example. Front opening 24, which could optionally be covered by a screen to prevent ingress of dust or foreign matter, is in or proximate first end 35 of housing 20 Rear opening 25 is in or proximate second end 36 of housing 20 and so is as far from front opening 24 as is possible given the size and shape of housing 20. Opening 25 could be covered by a screen to prevent ingress of dust or foreign matter. One of openings 24 and 25 should be close to the ear. Second rear opening 26 would typically be covered by a resistive screen 27, such as a 46 Rayl polymer screen made by Saati Americas Corp., with a location in Fountain Inn, SC, USA; the acoustic impedance of the screen would be selected to achieve a desired resistance in light of the details of the rear port design, the area of opening 26, and the desired crossover frequency between the long and short dipole lengths. There can also optionally be a second front opening (not shown in
A front opening and a rear opening radiate sound to the same acoustic space (e.g., see space 42,
One or more openings on the front side of the transducer and one or more openings on the rear side of the transducer create dipole radiation from the transducer. When used in an open personal near-field audio system (such as with off-ear headphones, eyeglass headphones, or a torso-worn device), there are two main acoustic challenges that are addressed by the variable-length dipole transducer of the present disclosure. Headphones or other personal audio devices should deliver sufficient SPL to the ear, while at the same time minimizing spillage to the environment. The variable length dipoles of the present transducers allow the device to have a relatively large effective dipole length at low frequencies and a smaller effective dipole length at higher frequencies, with the effective length relatively smoothly transitioning between the two frequencies. For applications where the sound source is placed near but not covering an ear, what is desired is high SPL at the ear and low SPL spilled to bystanders (i.e., low SPL farther from the source). The SPL at the ear is a function of how close the front and back sides of the dipole are to the ear canal. Having one dipole source close to the ear and the other far away causes higher SPL at the ear for a given driver volume displacement. This allows a smaller driver to be used. However, spilled SPL is a function of dipole length, where larger length leads to more spilled sound. For a personal audio device, in which the driver needs to be relatively small, at low frequencies driver displacement is a limiting factor of SPL delivered to the ear. This leads to the conclusion that larger dipole lengths are better at lower frequencies, where spillage is less of a problem because humans are less sensitive to bass frequencies as compared to mid-range frequencies. At higher frequencies, the dipole length should be smaller.
As described above, one non-limiting manner of arranging the transducer such that one dipole source opening is located near the ear and another dipole source opening is located farther from the ear is to locate the openings in or very near the opposite ends of the housing. Another goal of the transducer is for it to be thin so that it can be carried near the ear but not be overly obtrusive. As depicted in
Transducer 10 also includes flexible structure 18 (which may be but need not be a roll) that supports diaphragm 12 such that the diaphragm can move relative to housing 20. Primary magnet 14 is proximate to rear diaphragm face 12b. Magnet 14 may have but need not have flat top and bottom surfaces. A magnetic circuit defines a path for magnetic flux from magnet 14. The magnetic circuit comprises front pole piece 15 which may be a flat plate that sits on the top surface of magnet 14, as shown, and rear pole piece 16 which may be a flat plate that sits against the bottom face of magnet 14, as shown. Plate 16 may extend beyond the perimeter of magnet 14 so that plate 16 can form the rear wall of housing 20. Voice coil 17 is located in the magnetic circuit gap and is exposed to magnetic flux so that it moves the diaphragm up and down. Housing 20 also includes opposed frame wall ends 21 and 22. Walls 21 and 22 surround the magnetic circuit and the diaphragm. Housing end wall 39 is coupled to frame wall 22 and supports housing front wall 23 that overlies and is spaced from diaphragm 12 to define front volume 28 as well as front opening 24.
In some non-limiting examples herein, the electro-acoustic transducer is used to deliver sound to an ear of a user, for example as part of a headphone or another type of open audio device. An exemplary headphone 34 is partially depicted in
In the non-limiting example of
One side of the acoustic radiator (the front side in the non-limiting example of
Variable-length dipole electro-acoustic transducers are further disclosed in U.S. patent application Ser. No. 15/375,119, filed Dec. 11, 2016, the disclosure of which is incorporated herein by reference in its entirety for all purposes. Further, in some examples there may also be a second opening in the front cavity (not shown) that is opposite opening 18 and that helps to reduce intermodulation in the front acoustic cavity, as disclosed in U.S. patent application Ser. No. 15/647,749, filed Jul. 12, 2017, the disclosure of which is incorporated herein by reference in its entirety for all purposes.
Some of the electro-acoustic transducers shown in the figures are rectangular, and typically include two or four small magnets on the outside of the voice coil. In these transducers a central, positively polarized primary magnet is surround by two or four oppositely polarized secondary magnets that are part of the magnetic circuit of the transducer. There would typically but not necessarily be one secondary magnet spaced from and parallel to each of two long sides, or all four sides, of the primary magnet. The diaphragm is rectangular and flat. A problem with this arrangement for open audio devices (in which sound from both faces of the diaphragm is used) is that the flow of air in the rear acoustic space behind the diaphragm is highly restricted, and may not flow out the back or rear of the transducer with the appropriate phase to cancel far-field sound from the front of the diaphragm. All the air displaced at the rear of the diaphragm must flow through the small gaps around the voice coil. These gaps restrict the flow, often to an extent that the transducer does not act sufficiently like a dipole to be useful to cancel far-field sound.
In an open audio device it is desirable for the sound from one side of the diaphragm to exit from a “nozzle” close to the ear, and the sound from the other side of the diaphragm to exit much farther from the ear, at the other end of the transducer. This creates something like a dipole, with good far-field sound cancellation. Where air flow from the rear side of the diaphragm is restricted by the voice coil gap, the dipole behavior of the transducer is limited.
The dipole behavior of such transducers is improved in this disclosure by arranging the transducer such that sound from both sides of the diaphragm can exit the transducer such that, at least in approximation, the sound from the two sides of the transducer is out of phase and exits the transducer from openings that are far enough apart such that sound is not cancelled before it reaches the ear canal.
Another issue of concern with open audio devices that are worn on the head (such as eyeglass headphones) is that the transducer should be as thin as possible. Thin transducers can better fit into eyeglasses and other carriers that are worn on the head, and are less obtrusive and thus more desirable. Adding structure around the transducer to direct the front and/or back acoustic radiation can help achieve the goals of dipole behavior described above. However, this structure may add to the thickness of the transducer and so may not be desirable.
Several alternative transducer arrangements that can accomplish the desired behaviors are disclosed herein. In some arrangements the voice coil is moved farther from the primary magnet at one or both of the two opposed ends of the magnet. This can be accomplished by re-shaping the primary magnet such that its ends are pulled in, or by removing the secondary magnet at one or both ends of the primary magnet. These changes create a wider magnetic circuit gap at one or both ends of the primary magnet, and so allow the voice coil to be moved farther away from the primary magnet at the end(s). This creates a larger channel for airflow from the back of the transducer.
Electro-acoustic transducer 50,
A rectangular primary magnet 80 is below and proximate to the rear face of the diaphragm. Magnet 80 comprises a front face 82, a rear face 84, and first 86 and second 88 parallel sides that are parallel to the parallel sides of the diaphragm. A magnetic circuit 100 defines a path for magnetic flux of the primary magnet. Magnetic circuit 100 comprises a front pole piece 102 between the front face of the primary magnet and the rear face of the diaphragm, a rear pole piece 104 adjacent the rear face of the primary magnet, and first 110 and second 120 side (secondary) magnets. The first side magnet is proximate to and spaced from the first side of the primary magnet and the second side magnet is proximate to and spaced from the second side of the primary magnet. These spaces are part of the magnetic circuit gap 130 between the primary magnet and the first and second side magnets. Voice coil 140 is located in this magnetic circuit gap, and is configured to move the diaphragm. The voice coil is proximate to and spaced from both sides and both ends of the diaphragm, and in this example (as shown in
In transducer 50, the front and rear faces of the primary magnet are flat, and the front pole piece 102 comprises a flat plate located on and coextensive with the front face of the primary magnet. The rear pole piece 104 comprises a flat plate located on and extending beyond a perimeter of the rear face of the primary magnet. Frame 150 is coupled to and supported by the rear pole piece.
Transducer 50 has first 162 and second 164 sound-emitting outlets. The first sound-emitting outlet (which in this simplified example is the free air above the diaphragm) is acoustically coupled to the front face of the diaphragm so as to emit front acoustic radiation. The second sound-emitting outlet is acoustically coupled to the rear face of the diaphragm and rear acoustic cavity 58 so as to emit rear acoustic radiation. In this non-limiting example second outlet 164 comprises one or more openings in frame 150, the openings preferably being located in end 151 of the frame that is closest to end 64 of magnet 80 and the adjacent end of the diaphragm. The openings could be at the second end 62 of magnet 80. Arrows 166 generally indicate the flow of sound out of outlet 164.
The two magnets that are sometimes found proximate the ends of the voice coil are not present. The voice coil is pushed out so as to increase the gap between the primary magnet and the voice coil, which provides a relatively open acoustic path from the back of the diaphragm to the end of the transducer. On the end opposite the nozzle, openings are provided in the plastic frame that surrounds the transducer and supports the outer surround landing. The two end magnets have both been removed on the assumption that the motor structure must remain symmetrical to avoid exciting excessive rocking. It might be possible to make better use of the voice coil with a primary magnet shaped as in transducer 50a,
It should be understood that both
It should also be understood that by “rectangular” we mean generally rectangular. When applied to the diaphragm and the primary magnet, by generally rectangular we mean they may include such features as radiused corners, or small indentations on the perimeter to assist in assembly or provide clearances to eliminate interference with other parts of the transducer during operation. It should also be understood that by “flat” we mean generally flat. When applied to the diaphragm, by generally flat we mean that a diaphragm might include ribs or variations in thickness in order to add stiffness or modify modal breakup behavior, but still be “flat” overall.
Housing 210 can be coupled to frame 150 (e.g., at housing end 214 as depicted) to create an assembly 215 that has first end 215a and second opposed end 215b. One sound-emitting outlet (e.g., rear side outlet 164a) acoustically communicates with rear acoustic cavity 58a and is in or proximate the first end of the assembly. Another sound-emitting outlet (e.g., front side outlet 216) is in or proximate the second end of the assembly. In the non-limiting example depicted in
As described above, the transducer can also include a resistive port opening that can act as one opening of a dipole-like transducer. An example is port 201 comprising opening 202 that is exposed to rear radiation, where the opening is covered by resistive screen 204. In this example, port 201 is located in the rear pole piece and is configured to receive rear acoustic radiation.
If transducer 200 were used in an eyeglass headphone, such as the examples shown in
Another alternative transducer arrangement is shown in
Another alternative transducer arrangement is shown in
Another alternative transducer arrangement is shown in a simplified schematic in
In another alternative arrangement, a resistive leak is created in the middle of the diaphragm, e.g., with an opening in the diaphragm covered by a resistive screen (not shown). This can reduce intermodulation distortion caused by a Helmholtz resonance that is modulated in frequency because of the changing volume under the diaphragm. The diaphragm might be completely flat. The diaphragm may be a thin composite laminate, which might be able to support a resistive screen. Alternately, a plurality of micro-perforations directly through the diaphragm material (not shown) may be used instead of a larger screened opening.
The subject transducer can potentially be assembled using the highly automated and precise mass-production construction methods used to make cellphone speaker transducers, but with modifications that make the result suitable for low-spillage open-audio applications where the air from the back of the diaphragm is used to cancel the far-field radiation from the front of the diaphragm. A benefit of this type of transducer is its thinness, which is highly desired in applications such as eyeglass headphones.
Loudspeaker 810 includes driver 812 that radiates into front volume 814 and back volume 816. Front volume 814 includes nozzle vent 818 that is aligned with opening 819 in temple piece 802, so that sound can escape via nozzle 818. Having the nozzle built into an eyeglass temple allows the nozzle to be located close to and in front of the ear, which allows sound to be best delivered to ear canal opening 804. Temple piece 802 can be (but need not be) made adjustable in length so that the user can place nozzle 818 in desired proximity to ear canal opening 804. This adjustable length feature is schematically depicted by joint 807 that allows ends 806 and 808 to move relative to one another, closer together or farther away. Front volume 814 also can include opposed resistive vent 820 that is aligned with opening 821 in temple piece 802, so that sound can escape via vent 820. Cavity 822 in temple piece 802 is acoustically coupled to opening 821. Cavity 822 should have enough volume to allow flow through opening 820, to damp the resonance in front volume 814. Back volume 816 includes resistive opening 830 that is aligned with opening 831 in temple piece 802, so that sound can escape via opening 830. Back volume 816 also includes mass port opening 834 at the end of elongated transmission line cavity or port 836 in temple piece 802.
Control, amplification, power, and wireless communications (e.g., Bluetooth low energy or BLE), and other necessary or desirable functions, are provided by electronics 840, which is built into or otherwise carried by temple piece 802. Electronics 840 supply audio signals to driver 812, and supply communication signals to optional built-in antenna 842. Antenna 842 can be located in the anterior portion of temple piece 802 (e.g., close to the bridge), so that its signal is minimally impacted by the wearer's head. In one example, wireless communications can be used to communicate audio signals from one side (one temple) to the other, in the instance where there are loudspeakers in both temples. Power for the loudspeakers can be provided locally (e.g., with a battery in the temple piece), or there can be a single battery and power can be transferred via wiring (not shown) that passes through the bridge or is otherwise transferred from one temple piece to the other.
Elements of
When processes are represented or implied in the block diagram, the steps may be performed by one element or a plurality of elements. The steps may be performed together or at different times. The elements that perform the activities may be physically the same or proximate one another, or may be physically separate. One element may perform the actions of more than one block. Audio signals may be encoded or not, and may be transmitted in either digital or analog form. Conventional audio signal processing equipment and operations are in some cases omitted from the drawing.
A number of implementations have been described. Nevertheless, it will be understood that additional modifications may be made without departing from the scope of the inventive concepts described herein, and, accordingly, other embodiments are within the scope of the following claims.
This application is a continuation of and claims priority to application Ser. No. 16/737,733, filed on Jan. 8, 2020, which itself is a continuation of and claims priority to application Ser. No. 16/151,541, filed on Oct. 4, 2018, now U.S. Pat. No. 10,609,465, issued on Mar. 31, 2020.
Number | Name | Date | Kind |
---|---|---|---|
4904078 | Gorike | Feb 1990 | A |
6758303 | Zurek | Jul 2004 | B2 |
10609465 | Wakeland | Mar 2020 | B1 |
11095966 | Wakeland | Aug 2021 | B2 |
11234071 | Wakeland | Jan 2022 | B2 |
20130051585 | Karkkainen | Feb 2013 | A1 |
20160255433 | Grinker | Sep 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20210377639 A1 | Dec 2021 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 16737733 | Jan 2020 | US |
Child | 17400964 | US | |
Parent | 16151541 | Oct 2018 | US |
Child | 16737733 | US |