This U.S. non-provisional patent application claims priority under 35 U.S.C. §119 of Korean Patent Application No. 10-2013-0129427, filed on Oct. 29, 2013, the entire contents of which are hereby incorporated by reference.
The present invention disclosed herein relates to a micro device using micro electro mechanical systems (MEMS), and more particularly, to a condenser-type acoustic sensor.
Acoustic sensors, in other words, microphones convert voices into electric signals. Recently, as it is accelerated to develop small-sized wired or wireless devices, the size of acoustic sensors gradually becomes miniaturized. According thereto, recently, acoustic sensors using MEMS have been developed.
Acoustic sensors are largely classified into a piezo type and condenser type. In case of the piezo-type, a piezo effect, in which a potential difference occurs between both ends of a piezoelectric material when a physical pressure is applied to the piezoelectric material, is used to convert a pressure of a voice signal into an electric signal. The piezo type has a lot of limitations in being applied, due to a low band and uneven characteristics of a voice band frequency. In case of the condenser type, a theory of a condenser, in which two electrodes are opposite to each other, is applied. One electrode of an acoustic sensor is fixed and another functions as a diaphragm. In this case, when a diaphragm vibrates according to a pressure of a voice signal, a capacitance between electrodes is changed and condensed charges are changed, thereby allowing a current to flow. The condenser type has excellent stability and frequency characteristics. Due to frequency characteristics described above, condenser-type acoustic sensors are generally used.
The present invention provides a miniaturized acoustic sensor.
The present invention also provides an acoustic sensor having improved reliability.
Embodiments of the present invention provide acoustic sensors including a substrate including an acoustic chamber, a first hole, and a second hole, penetrating the substrate, a lower electrode pad extended onto a top surface of the substrate while covering a sidewall of the first hole, a diaphragm pad extended onto the top surface of the substrate while covering a sidewall of the second hole, a lower electrode provided on the acoustic chamber and connected to the lower electrode pad, and a diaphragm above the lower electrode while being separated from the lower electrode and connected to the diaphragm pad.
In some embodiments, the diaphragm pad may be separated from the lower electrode pad.
In other embodiments, the acoustic sensor may further include a sacrificial layer disposed between the lower electrode pad and the diaphragm.
In still other embodiments, the acoustic sensor may further include a supporting film provided in the acoustic chamber and connected to the substrate and a substrate insulating film provided on the supporting film and the top surface of the substrate, in which the substrate insulating film may be extended between the substrate and the lower electrode pad and between the substrate and the diaphragm pad, and the lower electrode may be provided on the substrate insulating film.
In even other embodiments, the diaphragm pad may include the same material as the diaphragm.
In yet other embodiments, the lower electrode pad may include the same material as the lower electrode.
In further embodiments, a lowest surface of the lower electrode pad and a lowest surface of the diaphragm pad may form a coplanar together with a bottom surface of the substrate.
In still further embodiments, the lower electrode may include sound pressure input holes penetrating the lower electrode, in which a diaphragm gap may be provided between the lower electrode and the diaphragm, and the diaphragm gap may be connected to the acoustic chamber through the sound pressure input holes.
In other embodiments of the present invention, acoustic sensor apparatuses include a package substrate, an acoustic sensor disposed on the package substrate and including a substrate including an acoustic chamber, a first hole, and a second hole, penetrating the substrate, a lower electrode pad extended onto a top surface of the substrate while covering a sidewall of the first hole, a diaphragm pad extended onto the top surface of the substrate while covering a sidewall of the second hole, a lower electrode provided on the acoustic chamber and connected to the lower electrode pad, and a diaphragm above the lower electrode while being separated from the lower electrode and connected to the diaphragm pad, and a signal processor mounted on the package substrate.
In some embodiments, the diaphragm may be electrically connected to the package substrate and the signal processor through the diaphragm pad.
In other embodiments, the acoustic sensor apparatus may include a diaphragm connection portion provided in the second hole on a top surface of the package substrate and connected to the diaphragm pad, in which the diaphragm pad may be electrically connected to the package substrate and the signal processor by the diaphragm connection portion.
In still other embodiments, the apparatus may include a lower electrode connection portion provided in the first hole on the top surface of the package substrate and connected to the lower electrode pad, in which the lower electrode pad may be electrically connected to the package substrate and the signal processor by the lower electrode connection portion.
In even other embodiments, the lower electrode pad may be separated from the diaphragm and the diaphragm pad.
In yet other embodiments, the acoustic sensor may further include a supporting film provided in the acoustic chamber and connected to the substrate and a substrate insulating film provided on the supporting film and the top surface of the substrate, in which the lower electrode may be disposed on the substrate insulating film.
The accompanying drawings are included to provide a further understanding of the present invention, and are incorporated in and constitute a part of this specification. The drawings illustrate exemplary embodiments of the present invention and, together with the description, serve to explain principles of the present invention. In the drawings:
Exemplary embodiments of the present invention will be described with reference to the attached drawings to allow the construction and effects of the present invention to be fully understood. However, the present invention is not limited to the following embodiments but may be embodied in various shapes and diversely modified. Merely, the embodiments are provided to allow a person with an ordinary skill in the art to perfectly understand the scope of the present invention by explaining the embodiments. Those skilled in the art may understand that in what kind of appropriate environment the inventive concepts may be performed.
Terms used in the specification are to describe the embodiments but not to limit the scope of the present invention. As used herein, the singular forms are intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises” and/or “comprising” used herein specify the presence of stated components, operations, and/or elements, but do not preclude the presence or addition of one or more other components, operations, and/or elements.
When a layer or film is referred to as being “formed on” another layer or film, it can be directly or indirectly formed on the other layer or film. That is, for example, intervening layers or films may be present.
Although the terms “first”, “second”, “third”, etc. may be used herein to describe various regions, films or layers, these regions, films or layers should not be limited by these terms. These regions, films or layers are only used to distinguish one region, film or layer from another. Accordingly, a membrane mentioned as a first membrane in on embodiment may be mentioned as a second membrane in another embodiment. The respective embodiments described and illustrated herein include complementary ones thereof. Throughout the specification, like reference numerals designate like elements.
Terms used in the embodiments, unless otherwise defined, may be understood as meanings generally known to those skilled in the art.
Hereinafter, the embodiments of the present invention will be described with reference to the attached drawings.
Referring to
The substrate 110 may be one of a silicon substrate and a compound semiconductor substrate. For example, the substrate 110 may include III-V compound semiconductor materials such as gallium arsenide (GaAs) and indium phosphorus (InP). The substrate 110 may have a thickness of from about 1 μm to about 1000 μm. According thereto, the acoustic sensor 100 may be miniaturized. The substrate 110 may include the acoustic chamber 140, a first hole 111 and second hole 112.
The acoustic chamber 140 may penetrate the substrate 110. A flat protection film 113 may cover an inside surface 110i of the substrate 110, in which the acoustic chamber 140 is formed. In a top view, the protection film 113 may have a circular or closed-loop shape. The protection film 113 may have a width of from about 1 μm to about 10 μm and a height of from about 1 μm to about 1000 μm. The protection film 113, compared with the substrate 110, may include a material having etching selectivity, for example, an oxide and organic material. A supporting film 114 may be provided in the acoustic chamber 140. In a top view, the supporting film 114 may have a cross shape. The supporting film 114 may be connected to the protection film 113. According thereto, a substrate insulating film 121 and the lower electrode 120 may be stably fixed to the substrate 110 by the supporting film 114. The supporting film 114 may have a width of from about 1 μm to about 10 μm and a height of from about 1 μm to about 1000 μm. The supporting film 114, compared with the substrate 110, may include a material having etching selectivity, for example, an oxide and organic material. The supporting film 114 may have same material as the protection film 113.
The substrate insulating film 121 may cover a top surface 110a of the substrate 110. The lower electrode 120 may be disposed on the supporting film 114 and acoustic chamber 140. The substrate insulating film 121 may include one of an organic material and oxide.
The lower electrode 120 may be provided on the acoustic chamber 140. The lower electrode 120 may include a conductive material, for example, metal. The lower electrode 120 may be stably fixed to the substrate 110 by the supporting film 114 and the substrate insulating film 121. The lower electrode 120 may be insulated from the substrate 110 by the substrate insulating film 121. The sound pressure input holes 141 may be provided penetrating the substrate insulating film 121 and lower electrode 120. The sound pressure input holes 141 may be connected to the acoustic chamber 140.
The first hole 111 and second hole 112 may penetrate from the top surface 110a to a bottom surface 110b of the substrate 110. As shown in
The diaphragm 130 may be disposed on the top surface 110a of the substrate 110 while being separated from the lower electrode 120. The diaphragm gap 143 may be provided between the lower electrode 120 and diaphragm 130. The diaphragm gap 143 may be connected to the sound pressure input holes 141. A sacrificial layer 131 may be provided on an inside wall 130i of the diaphragm 130. The sacrificial layer 131 may be disposed between the substrate insulating film 121 and diaphragm 130. The sacrificial layer 131 may include one of amorphous silicon and an organic material. As shown in
As shown in
As an example, the diaphragm 130 and diaphragm pad 133 may have one of a single layer structure formed of a conductive layer and a multilayer structure formed of a conductive layer and insulating film. The diaphragm 130 and diaphragm pad 133 may have a thickness of from about 1 μm to about 20 μm. The diaphragm 133 may be separated from the lower electrode pad 123. The substrate insulating film 121 may be extended from the top surface 110a of the substrate 110 to sidewalls of holes. The substrate insulating film 121 may be disposed between the substrate 110 and lower electrode pad 123 and between the substrate 110 and diaphragm pad 133, respectively. The respective pads 123 and 133 may be electrically insulated from the substrate 110 by the substrate insulating film 121.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
The substrate 110, acoustic chamber 140, sound pressure input holes 141, diaphragm gap 143, lower electrode 120, diaphragm 130, lower electrode pad 123, and diaphragm pad 133 may identical or similar to the described above with reference to
As shown in
As shown in
Referring to
The package substrate 300 may be a printed circuit board (PCB) having a circuit pattern. The acoustic sensor 100 and signal circuit unit 200 may be mounted on the package substrate 300, respectively. A sound pressure transfer hole 340 may be formed in the package substrate 300. The sound pressure transfer hole 340 may be connected to the acoustic chamber 140. External sound pressure may be transferred to the acoustic chamber 140 through the sound pressure transfer hole 340.
Examples of the acoustic sensor 100 have been described with reference to
The lower electrode 120 may be provided on the substrate insulating film 121. The lower electrode pad 123 may cover the sidewall 111c of the first hole 111. The lower electrode pad 123 may be extended onto the top surface 110a of the substrate 110 to be connected to the lower electrode 120. The sacrificial layer 131 is provided between the lower electrode pad 123 and diaphragm 130, thereby electrically insulating the lower electrode pad 123 from the diaphragm 130. Differently, as described with reference to
A lower electrode connection portion 125 may be provided in the first hole 111 on a top surface of the package substrate 300. For example, the first hole 111 is filled with a conductive material, thereby forming the lower electrode connection portion 125. A top surface 125a of the lower electrode connection portion 125 may have a level identical to or lower than a highest surface 123a of the lower electrode pad 123. The lower electrode connection portion 125 may be connected to the lower electrode pad 123. The lower electrode 120 may be electrically connected to one of the package substrate 300 and signal circuit unit 200 through the lower electrode pad 123, lower electrode connection portion 125, and a first connection portion 320.
The diaphragm 130 may be separated from the lower electrode 120. The diaphragm pad 133 may cover the sidewall 112c of the second hole 112. The diaphragm pad 133 may be extended onto the top surface 110a of the substrate 110 to be connected to the diaphragm 130. A diaphragm connection portion 135 may be formed on a top surface 300a of the package substrate 300 in the second hole 112. The diaphragm connection portion 135 may be connected to the diaphragm pad 133. For example, the second hole 112 is filled with a conductive material, thereby forming the diaphragm connection portion 135. A top surface 135a of the diaphragm connection portion 135 may have a level identical to or lower than a highest surface 133a of the diaphragm pad 133. The diaphragm 130 may be electrically connected to one of the package substrate 300 and signal circuit unit 200 through the diaphragm pad 133, diaphragm connection portion 135, and a second connection portion 330. The first connection portion 320 and second connection portion 330 may be wirings formed in the package substrate 300. As another example, the first connection portion 320 and second connection portion 330 may be one of the wirings and pads on the package substrate 300 but are not limited thereto and may be various.
As the pads 123 and 133 and connection portions 125 and 135 are provided, a bonding wire (not shown) may not be formed on the top surface 110a of the substrate 110. According thereto, a height of the acoustic sensor 100 may be reduced. According to the embodiments, the acoustic sensor 100 may be miniaturized.
According to the inventive concepts, a lower electrode pad may cover a sidewall of a first hole and a diaphragm pad may cover a sidewall of a second hole. The lower electrode pad may be extended onto a top surface of a substrate and may be connected to a lower electrode. The diaphragm pad may be extended onto the top surface of the substrate and may be connected to a diaphragm. An acoustic sensor may be electrically connected to a package substrate and signal circuit unit by pads. The acoustic sensor does not include a bonding wire and may be miniaturized.
According to the method of manufacturing the acoustic sensor, the substrate may be planarized. Accordingly, the acoustic sensor may be more miniaturized.
The above-disclosed subject matter is to be considered illustrative, and not restrictive, and the appended claims are intended to cover all such modifications, enhancements, and other embodiments, which fall within the true spirit and scope of the present invention. Thus, to the maximum extent allowed by law, the scope of the present invention is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.
Number | Date | Country | Kind |
---|---|---|---|
10-2013-0129427 | Oct 2013 | KR | national |
Number | Name | Date | Kind |
---|---|---|---|
5573679 | Mitchell et al. | Nov 1996 | A |
20060134904 | Araki et al. | Jun 2006 | A1 |
20080031476 | Wang et al. | Feb 2008 | A1 |
20100181637 | Harada et al. | Jul 2010 | A1 |
20110278683 | Kasai et al. | Nov 2011 | A1 |
20120098076 | Lee et al. | Apr 2012 | A1 |
20130100779 | Lee et al. | Apr 2013 | A1 |
Entry |
---|
Alfons Dehé,“Silicon microphone development and application”, Science Direct, Sensors and Actuators A, Jul. 20, 2006, pp. 283-287, vol. 133, No. 2, Elsevier B.V. |
Number | Date | Country | |
---|---|---|---|
20150117680 A1 | Apr 2015 | US |