The present invention is generally directed to sensing and data acquisition, and, more particularly, to a sensing and data acquisition system, as may involve an acoustically-responsive optical data acquisition line non-contactively coupled to a sensing system.
Certain industries as may operate in extreme environments, such as may be involved in the extraction of natural resources from underground sites, may face a multitude of challenges to appropriately meet safety and environmental regulations while sustaining profitable returns. For example, industries involved in offshore drilling (e.g., to extract petroleum and natural gas) may operate in a relatively deep-water environment, and from time-to-time may have to deal with major weather-related events (e.g. hurricanes, storms), cyclical motion due to waves and ocean currents, and excessive bending and strain during deployment, operation, and recovery operations. Physical assets which may be used to perform subsea operations, (such as long, flexible cylindrical structures, e.g., risers, flowlines, tendons, mooring lines, etc.) may experience metal fatigue due to cyclical motion or other damage from singular events.
These vibrations, often occurring at high frequencies over extended periods of time, could eventually result in costly and burdensome catastrophic structural failure of a given asset due to fatigue damage accumulation. Accordingly, in spite of the challenges of such extreme operational environments, sensing and acquisition of asset parameters of interest is imperative to gain appropriate understanding of the physical integrity (e.g., accumulation of VIV) of a given asset, with an aim of accurately monitoring and estimating fatigue damage so as to proactively take appropriate measures before a catastrophic malfunction occurs. At least in view of the foregoing considerations, there is a need for improved sensing and data acquisition systems that permit reliable and cost-effective acquisition of data at least in such challenging environments.
Generally, aspects of the present invention in one example embodiment may provide a sensing and data acquisition system including a sensing system affixed onto an asset to sense at least one asset parameter. The sensing system may provide at least one sensor assembly including at least one sensor to generate a respective electrical signal indicative of a sensed asset parameter. The sensing assembly may further provide a signal conditioner connected to receive the respective electrical signal from the sensor and supply an encoded digital representation of the sensed asset parameter. An acoustic modem may be connected to the signal conditioner to receive the encoded digital representation of the sensed asset parameter and transmit an acoustic signal based on the encoded digital representation of the sensed asset parameter. A data acquisition line may be disposed proximate to the asset and non-contactively coupled to the sensing system. The data acquisition line may include an optical fiber acoustically coupled to the acoustic modem and responsive to the encoded digital representation of the sensed asset parameter transmitted by the modem to effect an optical change in an acoustically-responsive portion of the fiber. The optical change may be measurable to detect the encoded digital representation of the sensed asset parameter.
Further aspects of the present invention in another example embodiment may provide a sensing and data acquisition system including a sensing assembly, which in turn may include a signal conditioner connected to receive a respective electrical signal from at least one sensor affixed onto an asset and supply an encoded digital representation of at least one sensed asset parameter. An acoustic modem may be connected to the signal conditioner to receive the encoded digital representation of the sensed asset parameter and transmit an acoustic signal based on the encoded digital representation of the sensed asset parameter. A data acquisition line may be disposed proximate to the asset and may be non-contactively coupled to the sensing assembly. The data acquisition line may include an optical fiber acoustically coupled to the acoustic modem and responsive to the encoded digital representation of the sensed asset parameter transmitted by the modem to effect an optical change in an acoustically-responsive portion of the fiber. The optical change may be measurable to detect the encoded digital representation of the sensed asset parameter.
The invention is explained in the following description in view of the drawings that show:
In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of various embodiments of the present invention. However, those skilled in the art will understand that embodiments of the present invention may be practiced without these specific details, that the present invention is not limited to the depicted embodiments, and that the present invention may be practiced in a variety of alternative embodiments. In other instances, to avoid pedantic and unnecessary description well known methods, procedures, and components have not been described in detail.
Furthermore, various operations may be described as multiple discrete steps performed in a manner that is helpful for understanding embodiments of the present invention. However, the order of description should not be construed as to imply that these operations need be performed in the order they are presented, nor that they are even order dependent. Moreover, repeated usage of the phrase “in one embodiment” does not necessarily refer to the same embodiment, although it may. Lastly, the terms “comprising”, “including”, “having”, and the like, as used in the present application, are intended to be synonymous unless otherwise indicated.
In one example embodiment, a sensing and data acquisition system embodying aspects of the present invention may include a sensing system 10 affixed onto an asset 12 to sense at least one asset parameter. In one example embodiment, asset 12 may be a subsea riser and example asset parameters which may be monitored by sensing system 10 may be strain, temperature, pressure, position, velocity, and acceleration.
It will be appreciated that aspects of the present invention are not limited to applications involving subsea assets since other types of assets may equally benefit from a sensing and data acquisition system embodying aspects of the present invention, such as subsurface assets (e.g., assets involved in mining operations), aboveground assets, combinations of at least some of the foregoing assets, etc. Sensing system 10 may include one or more sensor assemblies 14, which may include one or more sensors 16 (
In one example embodiment, sensor assembly 14 may include a signal conditioner 18, as, for example, may include amplification circuitry, analog-to-digital converter circuitry, and encoding circuitry, connected to receive the respective electrical signal from sensor 16 and supply an encoded digital representation of the sensed asset parameter. Sensing system 10 may further include an acoustic modem 20 connected to signal conditioner 18 to receive the encoded digital representation of the sensed asset parameter and transmit an acoustic signal (e.g,, schematically represented by wavefronts 24) based on the encoded digital representation of the sensed asset parameter. In one example embodiment, the encoded digital representation may include a parity bit, as may be arranged to detect transmission errors in the transmitted acoustic signal in a presence of acoustic noise. In one example embodiment, sensor 16 could be a component separate from sensor assembly 14. For example, an add-on sensor assembly to a field-deployed sensor may just include the signal conditioner and acoustic modem.
A data acquisition line 26 may be disposed proximate to asset 12 (e.g., in a range from approximately a few centimeters to approximately a few hundred meters or more) and may be non-contactively coupled to sensing system 10. For example, data acquisition line 26 may be made up of a protective jacket 27, which houses an optical fiber 28 acoustically coupled to acoustic modem 20 to be responsive to the encoded digital representation of the sensed asset parameter transmitted by the modem to effect an optical change in a respective portion of the fiber (e.g., acoustically-responsive fiber portion D in
In one example embodiment, an optical interrogator 30, which in one example application may be disposed onboard a vessel 31, may include an optical source 32 (
In one example embodiment, as shown in
In one example embodiment, as shown in
In one example embodiment, as illustrated in
While various embodiments of the present invention have been shown and described herein, it will be obvious that such embodiments are provided by way of example only. Numerous variations, changes and substitutions may be made without departing from the invention herein. Accordingly, it is intended that the invention be limited only by the spirit and scope of the appended claims.