ACTIVATABLE CYTOKINE CONSTRUCTS AND RELATED COMPOSITIONS AND METHODS

Information

  • Patent Application
  • 20240400630
  • Publication Number
    20240400630
  • Date Filed
    October 06, 2022
    2 years ago
  • Date Published
    December 05, 2024
    25 days ago
Abstract
Provided herein are activatable cytokine constructs that include: (a) a first monomer construct comprising a first mature cytokine protein (CP1), a first cleavable moiety (CM1), and a first dimerization domain (DD1), wherein the CM1 is positioned between the CPI and the DD1; and (b) a second monomer construct comprising a second mature cytokine protein (CP2), a second cleavable moiety (CM2), and a second dimerization domain (DD2), where the CM2 is positioned between the CP2 and the DD2, where: the CM1 and the CM2 function as a substrate for a protease; the DD1 and the DD2 bind each other, and where the ACC is characterized by a reduction in at least one activity of the CP1 and/or CP2 as compared to a control level of the at least one activity of the CP1 and/or CP2.
Description
REFERENCE TO AN ELECTRONIC SEQUENCE LISTING

The contents of the electronic sequence listing (CYTX087.xml; Size: 360,448 bytes; and Date of Creation: Sep. 29, 2022) is herein incorporated by reference in its entirety.


TECHNICAL FIELD

The present disclosure relates to the field of biotechnology, and more specifically, to activatable cytokine constructs, including activatable interleukin 15 (IL-15) cytokine constructs.


BACKGROUND

Cytokines are a family of naturally-occurring small proteins and glycoproteins produced and secreted by most nucleated cells in response to viral infection and/or other antigenic stimuli. Interleukins are a subclass of cytokines. Interleukins regulate cell growth, differentiation, and motility. They are particularly important in stimulating immune responses, such as inflammation. Interleukins have been used for treatment of cancer, autoimmune disorders, and other disorders. For example, interleukin-2 (IL2) is indicated for treatment of melanoma, graft-versus-host disease (GVHD), neuroblastoma, renal cell cancer (RCC), and is also considered useful for conditions including acute coronary syndrome, acute myeloid syndrome, atopic dermatitis, autoimmune liver diseases, basal cell carcinoma, bladder cancer, breast cancer, candidiasis, colorectal cancer, cutaneous T-cell lymphoma, endometriomas, HIV invention, ischemic heart disease, rheumatoid arthritis, nasopharyngeal adenocarcinoma, non-small cell lung cancer (NSCLC), ovarian cancer, pancreatic cancer, systemic lupus erythematosus, tuberculosis, and other disorders.


Interleukin-15 (IL-15) is known to promote the differentiation and expansion of T cells, B cells and natural killer (NK) cells, leading to enhanced antitumor responses. IL-15 has been identified as a promising candidate for anticancer therapy, and it has been tested in numerous clinical trials. Despite this promise, IL-15 is known to exhibit unwanted pro-inflammatory effects, and has been associated with the pathogenesis of several autoimmune diseases. Recombinant IL-15 has a maximum tolerated dose of 2 micrograms/kg. Recombinant soluble IL-15 also has a short half-life in vivo, which has hampered its use as a therapeutic. Other interleukins, such as IL-6, IL-7, IL-12, and IL-21, among others, are also potential treatments for cancers and other disorders. Interleukin therapy, however, is often accompanied by undesired side effects, including flu-like symptoms, nausea, vomiting, diarrhea, low blood pressure, and arrhythmia, among others.


Interferons are another subclass of cytokines. Interferons are presently grouped into three major classes: interferon type I, interferon type II, and interferon type III. Interferons exert their cellular activities by binding to specific membrane receptors on a cell surface.


Interferon therapy has many clinical benefits. For example, interferons are known to up-regulate the immune system and also to have antiviral and anti-proliferative properties. These biological properties have led to the clinical use of interferons as therapeutic agents for the treatment of viral infections and malignancies. Further, interferons are useful for recruiting a patient's innate immune system to identify and attack cancer cells. Accordingly, interferon therapy has been extensively used in cancer and antiviral therapy, including for the treatment of hepatitis, Kaposi sarcoma, hairy cell leukemia, chronic myeloid leukemia (CML), follicular lymphoma, renal cell cancer (RCC), melanoma, and other disease states. However, systemic administration of interferons is accompanied by dose-dependent toxicities, including strong flu-like symptoms, neurological symptoms, hepatotoxicity, bone marrow suppression, and arrhythmia, among others. In a Melanoma patient study, the combination of Pembrolizumab and Pegylated IFNa led to an ORR of 60.5%. The combination treatment was also associated with 49% of G3/G4 adverse events which required dose reduction of Pegylated IFNa (Davar et al., J. Clin. Oncol., 2018). These undesired side-effects have limited the dosage of interferon therapies and sometimes leads to discontinuation or delay of interferon treatment.


Thus, the need and desire for improved specificity and selectivity of cytokine therapy to the desired target is of great interest. Increased targeting of cytokine therapeutics to the disease site could reduce systemic mechanism-based toxicities and lead to broader therapeutic utility.


SUMMARY

The present disclosure provides activatable cytokine constructs (ACCs) that include: (a) a first monomer comprising a first mature cytokine protein (CP1), a first cleavable moiety (CM1), and a first dimerization domain (DD1), wherein the CM1 is positioned between the CP1 and the DD1; and (b) a second monomer comprising a second mature cytokine protein (CP2), a second cleavable moiety (CM2), and a second dimerization domain (DD2), wherein the CM2 is positioned between the CP2 and the DD2, where: the CM1 and the CM2 function as a substrate for a protease; the DD1 and the DD2 bind each other; and where the ACC is characterized by a reduction in at least one activity of the CP1 and/or CP2 as compared to a control level of the at least one activity of the CP1 and/or CP2. The protease(s) that cleave the CM1 and CM2 may be over-expressed in diseased tissue (e.g., tumor tissue) relative to healthy tissue. The ACC may be activated upon cleavage of the CM1 and/or CM2 so that the cytokine may exert its activity in the diseased tissue (e.g., in a tumor microenvironment) while the cytokine activity is attenuated in the context of healthy tissue. Thus, the ACCs provided herein may provide reduced toxicity relative to traditional cytokine therapeutics, enable higher effective dosages of cytokine, and/or increase the therapeutic window for the cytokine.


Provided herein are activatable cytokine constructs (ACC) that include a first monomer construct and a second monomer construct, wherein: (a) the first monomer construct comprises a first mature cytokine protein (CP1), a first cleavable moiety (CM1), and a first dimerization domain (DD1), wherein the CM1 is positioned between the CP1 and the DD1; and (b) the second monomer construct comprises a second mature cytokine protein (CP2), a second cleavable moiety (CM2), and a second dimerization domain (DD2), wherein the CM2 is positioned between the CP2 and the DD2; wherein the DD1 and the DD2 bind each other thereby forming a dimer of the first monomer construct and the second monomer construct; and wherein the ACC is characterized by having a reduced level of at least one CP1 and/or CP2 activity as compared to a control level of the at least one CP1 and/or CP2 activity.


The present disclosure provides activatable cytokine constructs (ACCs) that include: (a) a first monomer comprising a first mature cytokine protein (CP1), a first dimerization domain (DD1); and (b) a second monomer comprising a second mature cytokine protein (CP2), a cleavable moiety (CM), and a second dimerization domain (DD2), wherein the CM is positioned between the CP2 and the DD2, where: the CM functions as a substrate for a protease; the DD1 and the DD2 bind each other; and where the ACC is characterized by a reduction in at least one activity of the CP1 and/or CP2 as compared to a control level of the at least one activity of the CP1 and/or CP2.


The present disclosure provides activatable cytokine constructs (ACCs) that include: (a) a first monomer comprising a first mature cytokine protein (CP1), a cleavable moiety (CM), and a first dimerization domain (DD1), wherein the CM is positioned between the CP1 and the DD1; and (b) a second monomer comprising a second mature cytokine protein (CP2), and a second dimerization domain (DD2), where: the CM functions as a substrate for a protease; the DD1 and the DD2 bind each other; and where the ACC is characterized by a reduction in at least one activity of the CP1 and/or CP2 as compared to a control level of the at least one activity of the CP1 and/or CP2.


The present disclosure provides activatable cytokine constructs (ACCs) that include: (a) a first monomer comprising a first mature cytokine protein (CP1), and a first dimerization domain (DD1); and (b) a second monomer comprising a second mature cytokine protein (CP2), and a second dimerization domain (DD2), wherein the CP1, the CP2, or both CP1 and CP2 include(s) an amino acid sequence that functions as a substrate for a protease; the DD1 and the DD2 bind each other, and where the ACC is characterized by a reduction in at least one activity of the CP1 and/or CP2 as compared to a control level of the at least one activity of the CP1 and/or CP2.


In some embodiments, CP1 comprises an interleukin polypeptide and/or CP2 comprises an interleukin polypeptide. In some embodiments the ACC is characterized by having a reduced level of interleukin activity as compared to a corresponding control interleukin. For example, in some embodiments the control interleukin may comprise recombinant interleukin protein or pegylated interleukin protein. In some embodiments, the interleukin polypeptide is a protein selected from the group consisting of IL-1α, IL-1β, IL-1RA, IL-18, IL-2, IL-4, IL-7, IL-9, IL-13, IL-15, IL-3, IL-5, IL-6, IL-11, IL-12, IL-10, IL-20, IL-21 IL-14, IL-16, and IL-17. In some embodiments, CP1 and/or CP2 comprises IL-15.


In some embodiments, the first monomer comprising the first mature cytokine protein (CP1) and/or the second monomer comprising the second mature cytokine protein (CP2) further comprises a peptide mask (PM). In some embodiments, the ACC further comprises a CM between the PM and the CP.


In some embodiments, the activatable cytokine constructs (ACC) that include a first monomer construct and a second monomer construct, wherein: (a) the first monomer construct comprises a first peptide mask (PM1), a first mature cytokine protein (CP1), a first and a third cleavable moieties (CM1 and CM3), and a first dimerization domain (DD1), wherein the CM1 is positioned between the CP1 and the DD1, and the CM3 is positioned between the PM1 and the CP1; and (b) the second monomer construct comprises a second mature cytokine protein (CP2), a second cleavable moiety (CM2), and a second dimerization domain (DD2), wherein the CM2 is positioned between the CP2 and the DD2; wherein the DD1 and the DD2 bind each other thereby forming a dimer of the first monomer construct and the second monomer construct; and wherein the ACC is characterized by having a reduced level of at least one CP1 and/or CP2 activity as compared to a control level of the at least one CP1 and/or CP2 activity.


In some embodiments, the second monomer construct further comprises a second peptide mask (PM2) and a fourth cleavable moiety (CM4), wherein the CM4 is positioned between the PM2 and the CP2. In some embodiments, the first monomer construct comprises a first polypeptide that comprises the PM1, the CM3, the CP1, the CM1, and the DD1. In some embodiments, the second monomer construct comprises a second polypeptide that comprises the CP2, the CM2, and the DD2. In some embodiments, the second monomer construct comprises a second polypeptide that comprises the PM2, the CM4, the CP2, the CM2, and the DD2.


In some embodiments, the first monomer construct comprises a first polypeptide that comprises the CP1, the CM1, and the DDL. In some embodiments, the second monomer construct comprises a second polypeptide that comprises the CP2, the CM2, and the DD2. In some embodiments, the DD1 and the DD2 are a pair selected from the group consisting of: a pair of Fc domains, a sushi domain from an alpha chain of human IL-15 receptor (IL15Ra) and a soluble IL-15; barnase and barnstar, a protein kinase A (PKA) and an A-kinase anchoring protein (AKAP); adapter/docking tag modules based on mutated RNase I fragments; an epitope and single domain antibody (sdAb); an epitope and single chain variable fragment (scFv); and soluble N-ethyl-maleimide sensitive factor attachment protein receptors (SNARE) modules based on interactions of the proteins syntaxin, synaptotagmin, synaptobrevin, and SNAP25, an antigen-binding domain and an epitope.


In some embodiments, the DD1 and the DD2 are a pair of Fc domains. In some embodiments, the pair of Fc domains is a pair of human Fc domains. In some embodiments, the human Fc domains are human IgG1 Fc domains, human IgG2 Fc domains, human IgG3 Fc domains, or human IgG4 Fc domains. In some embodiments, the human Fc domains are human IgG4 Fc domains. In some embodiments, the human Fc domains comprise a sequence that is at least 80% identical to SEQ ID NO: 3. In some embodiments, the human Fc domains each comprise a sequence that is at least 90%, 95%, 96%, 97%, 98%, or 99% identical to SEQ ID NO: 3. In some embodiments, the human Fc domains each comprise SEQ ID NO: 3. In some embodiments, the DD1 and the DD2 are the same. For example, DD1 and the DD2 may be a pair of identical human IgG4 Fc domains. In some embodiments, the dimerization domains have amino acid sequences of SEQ ID NOs: 315 and 316, respectively. In some embodiments, the human Fc domains include mutations to eliminate glycosylation and/or to reduce Fc-gamma receptor binding. In some embodiments, the human Fc domains comprise the mutation N297Q, N297A, or N297G; in some embodiments the human Fc domains comprise a mutation at position 234 and/or 235, for example L235E, or L234A and L235A (in IgG1), or F234A and L235A (in IgG4); in some embodiments the human Fc domains are IgG2 Fc domains that comprise the mutations V234A, G237A, P238S, H268Q/A, V309L, A330S, or P331S, or a combination thereof (all according to EU numbering).


Additional examples of engineered human Fc domains are known to those skilled in the art. Examples of Ig heavy chain constant region amino acids in which mutations in at least one amino acid leads to reduced Fc function include, but are not limited to, mutations in amino acid 228, 233, 234, 235, 236, 237, 239, 252, 254, 256, 265, 270, 297, 318, 320, 322, 327, 329, 330, and 331 of the heavy constant region (according to EU numbering). Examples of combinations of mutated amino acids are also known in the art, such as, but not limited to a combination of mutations in amino acids 234, 235, and 331, such as L234F, L235E, and P331S or a combination of amino acids 318, 320, and 322, such as E318A, K320A, and K322A.


Further examples of engineered Fc domains include F243L/R292P/Y300L/V305I/P396 IgG1; S239D/I332E IgG1; S239D/I332E/A330L IgG1; S298A/E333A/K334A; in one heavy chain, L234Y/L235Q/G236W/S239M/H268D/D270E/S298A IgG1, and in the opposing heavy chain, D270E/K326D, A330M/K334E IgG; G236A/S239D/I332E IgG1; K326W/E333S IgG1; S267E/H268F/S324T IgG1; E345R/E430G/S440Y IgG1; N297A or N297Q or N297G IgG1; L235E IgG1; L234A/L235A IgG1; F234A/L235A IgG4; H268Q/V309L/A330S/P331S IgG2; V234A/G237A/P238S/H268A/V309L/A330S/P331S IgG2; M252Y/S254T/T256E IgG1; M428L/N434S IgG1; S267E/L328F IgG1; N325S/L328F IgG1, and the like. In some embodiments, the engineered Fc domain comprises one or more substitutions selected from the group consisting of N297A IgG1, N297Q IgG1, and S228P IgG4.


In some embodiments, DD1 comprises an antigen-binding domain and DD2 comprises a corresponding epitope. In some embodiments, the antigen-binding domain is an anti-His tag antigen-binding domain and wherein the DD2 comprises a His tag. In some embodiments, the antigen-binding domain is a single chain variable fragment (scFv). In some embodiments, the antigen-binding domain is a single domain antibody (sdAb). In some embodiments, at least one of DD1 and DD2 comprises a dimerization domain substituent selected from the group consisting of a non-polypeptide polymer and a small molecule. In some embodiments, DD1 and DD2 comprise non-polypeptide polymers covalently bound to each other. In some embodiments, the non-polypeptide polymer is a sulfur-containing polyethylene glycol, and wherein DD1 and DD2 are covalently bound to each other via one or more disulfide bonds. In some embodiments, at least one of DD1 and DD2 comprises a small molecule. In some embodiments, the small molecule is biotin. In some embodiments, DD1 comprises biotin and DD2 comprises an avidin.


In some embodiments, the CP1 and the CP2 are mature cytokines. In some embodiments, each of the CP1 and the CP2 comprise a mature cytokine sequence and further comprise a signal peptide (also referred to herein as a “signal sequence”). In some embodiments, the CP1 and/or the CP2 is/are each individually selected from the group consisting of: an interferon, an interleukin, GM-CSF, G-CSF, LIF, OSM, CD154, LT-β, TNF-α, TNF-β, 4-1BBL, APRIL, CD70, CD153, CD178, GITRL, LIGHT, OX40L, TALL-1, TRAIL, TWEAK, TRANCE, TGF-β1, TGF-β1, TGF-β3, Epo, Tpo, Flt-3L, SCF, M-CSF, and MSP.


The CP1 and/or CP2 may be a wild-type human or non-human animal sequence, a mutant sequence, a truncated sequence, a hybrid sequence, or sequence comprising insertions. In some embodiments, the CP1 and the CP2 are the same. In some embodiments, the CP1 and the CP2 are different and this disclosure includes selection and combination of any two of the cytokine proteins listed herein. In some embodiments, the CP1 and/or the CP2 is/are an interleukin. In some embodiments, the CP1 and the CP2 both are an interleukin. In some embodiments, the CP1 and the CP2 are different interleukins. In some embodiments, the CP1 and the CP2 are the same interleukin. In some embodiments, the CP1 or the CP2 is an interleukin. In some embodiments, one of the CP1 and the CP2 is an interleukin, and the other of CP1 or CP2 is a cytokine other than an interleukin. In some aspects, one or both cytokines are monomeric cytokines. In some aspects, one or both interferons are monomeric interleukin. In some aspects, either CP1 or CP2 is a monomeric interleukin and the other CP1 or CP2 is a different cytokine. In some embodiments, CP1 and/or the CP2 is/are each individually selected from the group consisting of IL-1α, IL-1β, IL-1RA, IL-18, IL-2, IL-4, IL-7, IL-9, IL-13, IL-15, IL-3, IL-5, IL-6, IL-11, IL-12, IL-10, IL-20, IL-21 IL-14, IL-16, and IL-17. In some embodiments, CP1 and/or CP2 comprises IL-15. In some aspects, the CP1 and/or the CP2 include a mutant cytokine sequence. In some aspects, the CP1 and/or the CP2 include a universal cytokine sequence. In some aspects, the CP1 and/or the CP2 include a truncated sequence that retains cytokine activity.


In some embodiments, the interleukin(s) is/are a human wildtype mature interleukin. In some embodiments, the interleukin(s) may be IL-15. In some embodiments, both CP1 and CP2 are IL-15. In some embodiments, both CP1 and CP2 are human mature IL-15. In some embodiments, both CP1 and CP2 comprise an amino acid sequence derived from human mature IL-15. In some embodiments, the IL-15 may be truncated. In some embodiments, the IL-15 comprises amino acids 49-161 of human IL-15 (SEQ ID NO: 347). In some embodiments, the IL-15 comprises amino acids 49-162 of human IL-15 (SEQ ID NO: 348). In some embodiments, the interleukin(s) is/are a mutant interleukin. In some embodiments, the interleukin(s) is/are a mutant interleukin wherein an endogenous protease cleavage site has been rendered dysfunctional by substitution, deletion, or insertion of one or more amino acids. In some embodiments, the interleukin(s) is/are a universal cytokine molecule, e.g., having a hybrid sequence of different cytokine subtypes or a chimeric cytokine sequence or a humanized cytokine sequence. In some embodiments, the CP1 and/or CP2 comprises a sequence that is at least 80% identical to SEQ ID NO: 347. In some embodiments, the CP1 and/or CP2 comprises a sequence that is at least 90%, 95%, 96%, 97%, 98%, or 99% identical to SEQ ID NO: 347. In some embodiments, the CP1 and/or CP2 comprises the sequence of SEQ ID NO: 347. In some embodiments, the CP1 and/or the CP2 comprises an interleukin. In some embodiments, the interleukin is selected from the group consisting of IL-1α, IL-1β, IL-1RA, IL-18, IL-2, IL-4, IL-7, IL-9, IL-13, IL-15, IL-3, IL-5, IL-6, IL-11, IL-12, IL-10, IL-20, IL-14, IL-16, and IL-17. In some embodiments, the interleukin is selected from the group consisting of IL-2 and IL-15.


In some embodiments, the CM1 and/or the CM2 each comprise a total of about 3 amino acids to about 15 amino acids. In some embodiments, the CM1 and the CM2 comprise substrates for different proteases. In some embodiments, the CM1 and the CM2 are of the same length and comprise the same amino acid sequence. In some embodiments, wherein the CM1 and the CM2 comprise substrates for the same protease. In some embodiments, the protease(s) is/are selected from the group consisting of: ADAM8, ADAM9, ADAM10, ADAM12, ADAM15, ADAM17/TACE, ADAMDEC1, ADAMTS1, ADAMTS4, ADAMTS5, BACE, Renin, Cathepsin D, Cathepsin E, Caspase 1, Caspase 2, Caspase 3, Caspase 4, Caspase 5, Caspase 6, Caspase 7, Caspase 8, Caspase 9, Caspase 10, Caspase 14, Cathepsin B, Cathepsin C, Cathepsin K, Cathespin L, Cathepsin S, Cathepsin V/L2, Cathepsin X/Z/P, Cruzipain, Legumain, Otubain-2, KLK4, KLK5, KLK6, KLK7, KLK8, KLK10, KLK11, KLK13, KLK14, Meprin, Neprilysin, PSMA, BMP-1, matrix metalloproteinases (e.g., MMP-1, MMP-2, MMP-3, MMP-7, MMP-9, MMP-10, MMP-11, MMP-12, MMP-13, MMP-14, MMP-15, MMP-16, MMP-17, MMP-19, MMP-20, MMP-23, MMP-24, MMP-26, MMP-27), activated protein C, cathepsin A, cathepsin G, Chymase, FVIIa, FIXa, FXa, FXIa, FXIIa, Elastase, Granzyme B, Guanidinobenzoatase, HtrA1, human neutrophil lyase, lactoferrin, marapsin, NS3/4A, PACE4, Plasmin, PSA, tPA, thrombin, tryptase, uPA, DESC1, DPP-4, FAP, Hepsin, Matriptase-2, MT-SP1/Matripase, TMPRSS2, TMPRSS3, and TMPRSS4. In some embodiments, the protease(s) is/are selected from the group consisting of: uPA, legumain, MT-SP1, ADAM17, BMP-1, TMPRSS3, TMPRSS4, MMP-2, MMP-9, MMP-12, MMP-13, and MMP-14.


Suitable cleavable moieties have been disclosed in WO 2010/081173, WO 2015/048329, WO 2015/116933, WO 2016/118629, and WO 2020/118109, the disclosures of which are incorporated herein by reference in their entireties.


In some embodiments, the CM1 and/or the CM2 comprise a sequence selected from the group consisting of: LSGRSDNH (SEQ ID NO: 5), TGRGPSWV (SEQ ID NO: 6), PLTGRSGG (SEQ ID NO: 7), TARGPSFK (SEQ ID NO: 8), NTLSGRSENHSG (SEQ ID NO: 9), NTLSGRSGNHGS (SEQ ID NO: 10), TSTSGRSANPRG (SEQ ID NO: 11), TSGRSANP (SEQ ID NO: 12), VHMPLGFLGP (SEQ ID NO: 13), AVGLLAPP (SEQ ID NO: 14), AQNLLGMV (SEQ ID NO: 15), QNQALRMA (SEQ ID NO: 16), LAAPLGLL (SEQ ID NO: 17), STFPFGMF (SEQ ID NO: 18), ISSGLLSS (SEQ ID NO: 19), PAGLWLDP (SEQ ID NO: 20), VAGRSMRP (SEQ ID NO: 21), VVPEGRRS (SEQ ID NO: 22), ILPRSPAF (SEQ ID NO: 23), MVLGRSLL (SEQ ID NO: 24), QGRAITFI (SEQ ID NO: 25), SPRSIMLA (SEQ ID NO: 26), SMLRSMPL (SEQ ID NO: 27), ISSGLLSGRSDNH (SEQ ID NO: 28), AVGLLAPPGGLSGRSDNH (SEQ ID NO: 29), ISSGLLSSGGSGGSLSGRSDNH (SEQ ID NO: 30), LSGRSGNH (SEQ ID NO: 31), SGRSANPRG (SEQ ID NO: 32), LSGRSDDH (SEQ ID NO: 33), LSGRSDIH (SEQ ID NO: 34), LSGRSDQH (SEQ ID NO: 35), LSGRSDTH (SEQ ID NO: 36), LSGRSDYH (SEQ ID NO: 37), LSGRSDNP (SEQ ID NO: 38), LSGRSANP (SEQ ID NO: 39), LSGRSANI (SEQ ID NO: 40), LSGRSDNI (SEQ ID NO: 41), MIAPVAYR (SEQ ID NO: 42), RPSPMWAY (SEQ ID NO: 43), WATPRPMR (SEQ ID NO: 44), FRLLDWQW (SEQ ID NO: 45), ISSGL (SEQ ID NO: 46), ISSGLLS (SEQ ID NO: 47), ISSGLL (SEQ ID NO: 48), ISSGLLSGRSANPRG (SEQ ID NO: 49), AVGLLAPPTSGRSANPRG (SEQ ID NO: 50), AVGLLAPPSGRSANPRG (SEQ ID NO: 51), ISSGLLSGRSDDH (SEQ ID NO: 52), ISSGLLSGRSDIH (SEQ ID NO: 53), ISSGLLSGRSDQH (SEQ ID NO: 54), ISSGLLSGRSDTH (SEQ ID NO: 55), ISSGLLSGRSDYH (SEQ ID NO: 56), ISSGLLSGRSDNP (SEQ ID NO: 57), ISSGLLSGRSANP (SEQ ID NO: 58), ISSGLLSGRSANI (SEQ ID NO: 59), AVGLLAPPGGLSGRSDDH (SEQ ID NO: 60), AVGLLAPPGGLSGRSDIH (SEQ ID NO: 61), AVGLLAPPGGLSGRSDQH (SEQ ID NO: 62), AVGLLAPPGGLSGRSDTH (SEQ ID NO: 63), AVGLLAPPGGLSGRSDYH (SEQ ID NO: 64), AVGLLAPPGGLSGRSDNP (SEQ ID NO: 65), AVGLLAPPGGLSGRSANP (SEQ ID NO: 66), AVGLLAPPGGLSGRSANI (SEQ ID NO: 67), ISSGLLSGRSDNI (SEQ ID NO: 68), AVGLLAPPGGLSGRSDNI (SEQ ID NO: 69), GLSGRSDNHGGAVGLLAPP (SEQ ID NO: 70), GLSGRSDNHGGVHMPLGFLGP (SEQ ID NO: 71), LSGRSDNHGGVHMPLGFLGP (SEQ ID NO: 72), ISSGLSS (SEQ ID NO: 73), PVGYTSSL (SEQ ID NO: 74), DWLYWPGI (SEQ ID NO: 75), LKAAPRWA (SEQ ID NO: 76), GPSHLVLT (SEQ ID NO: 77), LPGGLSPW (SEQ ID NO: 78), MGLFSEAG (SEQ ID NO: 79), SPLPLRVP (SEQ ID NO: 80), RMHLRSLG (SEQ ID NO: 81), LLAPSHRA (SEQ ID NO: 82), GPRSFGL (SEQ ID NO: 83), GPRSFG (SEQ ID NO: 84), SARGPSRW (SEQ ID NO: 85), GGWHTGRN (SEQ ID NO: 86), HTGRSGAL (SEQ ID NO: 87), AARGPAIH (SEQ ID NO: 88), RGPAFNPM (SEQ ID NO: 89), SSRGPAYL (SEQ ID NO: 90), RGPATPIM (SEQ ID NO: 91), RGPA (SEQ ID NO: 92), GGQPSGMWGW (SEQ ID NO: 93), FPRPLGITGL (SEQ ID NO: 94), SPLTGRSG (SEQ ID NO: 95), SAGFSLPA (SEQ ID NO: 96), LAPLGLQRR (SEQ ID NO: 97), SGGPLGVR (SEQ ID NO: 98), PLGL (SEQ ID NO: 99), SGRSDNI (SEQ ID NO: 100), and LSGRSNI (SEQ ID NO: 349). In some embodiments, the CM comprises a sequence selected from the group consisting of: ISSGLLSGRSDNH (SEQ ID NO: 28), LSGRSDDH (SEQ ID NO: 33), ISSGLLSGRSDQH (SEQ ID NO: 54), SGRSDNI (SEQ ID NO: 100), ISSGLLSGRSDNI (SEQ ID NO: 68), LSGRSDNI (SEQ ID NO: 41), and LSGRSNI (SEQ ID NO: 349). In some embodiments, the CM comprises a sequence selected from the group consisting of: SGRSDNI (SEQ ID NO: 100), LSGRSDNI (SEQ ID NO: 41), and LSGRSNI (SEQ ID NO: 349). In some embodiments, the protease(s) is/are produced by a tumor in the subject, e.g., the protease(s) are produced in greater amounts in the tumor than in healthy tissues of the subject. In some embodiments, the subject has been diagnosed or identified as having a cancer.


In some embodiments, the CP1 and the CM1 directly abut each other in the first monomer construct. In some embodiments, the CM1 and the DD1 directly abut each other in the first monomer construct. In some embodiments, the CP2 and the CM2 directly abut each other in the second monomer construct. In some embodiments, the CM2 and the DD2 directly abut each other in the second monomer construct. In some embodiments, the first monomer construct comprises the CP1 directly abutting the CM1, and the CM1 directly abutting the DD1, wherein the CM1 comprises a sequence that is selected from the group consisting of SEQ ID Nos 5-100 and SEQ ID NO: 349. In some embodiments, the second monomer construct comprises the CP2 directly abutting the CM2, and the CM2 directly abutting the DD2, wherein the CM2 comprises a sequence that is selected from the group consisting of SEQ ID Nos 5-100 and SEQ ID NO: 349. In some embodiments, the first monomer construct comprises the CP1 directly abutting the CM1, and the CM1 directly abutting the DD1, wherein the CM1 comprises a sequence that is no more than 13, 12, 11, 10, 9, 8, 7, 6, 5 or 4 amino acids in length. In some embodiments, the second monomer construct comprises the CP2 directly abutting the CM2, and the CM2 directly abutting the DD2, wherein the CM2 comprises a sequence that is no more than 13, 12, 11, 10, 9, 8, 7, 6, 5 or 4 amino acids in length. In some embodiments, the first and second monomer construct each are configured such that the cytokine (CM1 and CM2, respectively) directly abuts a cleavable moiety (CM1 and CM2, respectively) that is no more than 10, 9, 8, 7, 6, 5, or 4 amino acids in length, and the cleavable moiety directly abuts a dimerization domain (DD1 and DD2, respectively) that is the Fc region of a human IgG, wherein the N-terminus of the Fc region is the first cysteine residue in the hinge region reading in the N- to C-direction (e.g., Cysteine 226 of human IgG1, using EU numbering). In some aspects, the dimerization domain is an IgG Fc region wherein the upper hinge residues have been deleted. For example, the Fc is a variant wherein N-terminal sequences EPKSCDKTHT (SEQ ID NO: 387), ERK, ELKTPLGDTTHT (SEQ ID NO: 388), or ESKYGPP (SEQ ID NO: 389) have been deleted.


In some embodiments, the first monomer construct comprises at least one linker. In some embodiments, the at least one linker is a linker L1 disposed between the CP1 and the CM1 and/or a linker L2 disposed between the CM1 and the DDL. In some embodiments, the second monomer construct comprises at least one linker. In some embodiments, the at least one linker is a linker L3 disposed between the CP2 and the CM2 and/or a linker L4 disposed between the CM2 and the DD2. In some embodiments, the first monomer construct comprises a linker L1 and the second monomer construct comprises a linker L3. In some embodiments, L1 and L3 are the same. In some embodiments, the first monomer construct comprises a linker L2 and the second monomer construct comprises a linker L4. In some embodiments, L2 and L4 are the same. In some embodiments, each linker has a total length of 1 amino acid to about 15 amino acids. In some embodiments, each linker has a total length of at least 5 amino acids. As used herein, the term “linker” refers to a peptide, the amino acid sequence of which is not a substrate for a protease.


In some embodiments, the first monomer construct comprises at least one linker, wherein each linker is independently selected from the group consisting of a single glycine (G); two glycine residues (GG); GSSGGSGGSGG (SEQ ID NO: 210); GGGS (SEQ ID NO: 2); GGGSGGGS (SEQ ID NO: 211); GGGSGGGSGGGS (SEQ ID NO: 212); GGGGSGGGGSGGGGS (SEQ ID NO: 213); GGGGSGGGGSGGGGSGGGGSGGGGS (SEQ ID NO: 214); GGGGSGGGGS (SEQ ID NO: 215); GGGGS (SEQ ID NO: 216); GS; GGGGSGS (SEQ ID NO: 217); GGGGSGGGGSGGGGSGS (SEQ ID NO: 218); GGSLDPKGGGGS (SEQ ID NO: 219); PKSCDKTHTCPPCPAPELLG (SEQ ID NO: 220); SKYGPPCPPCPAPEFLG (SEQ ID NO: 221); GKSSGSGSESKS (SEQ ID NO: 222); GSTSGSGKSSEGKG (SEQ ID NO: 223); GSTSGSGKSSEGSGSTKG (SEQ ID NO: 224); GSTSGSGKPGSGEGSTKG (SEQ ID NO: 225); GSTSGSGKPGSSEGST (SEQ ID NO: 226); (GS)n, (GGS)n, (GSGGS)n (SEQ ID NO: 227), (GGGS)n (SEQ ID NO: 228), (GGGGS)n (SEQ ID NO: 216), wherein each n is an integer of at least one; GGSG (SEQ ID NO: 229); GGSGG (SEQ ID NO: 230); GSGSG (SEQ ID NO: 231; GSGGG (SEQ ID NO: 232); GGGSG (SEQ ID NO: 233); GSSSG (SEQ ID NO: 234); GGGGSGGGGSGGGGS (SEQ ID NO: 213); GGGGSGGGGSGGGGSGGGGS (SEQ ID NO: 235); and GSTSGSGKPGSSEGST (SEQ ID NO: 226). In some embodiments, the linker comprises a sequence of GGGS (SEQ ID NO: 2).


As used herein, the term “spacer” refers herein to an amino acid residue or a peptide incorporated at a free terminus of the mature ACC, for example between the signal peptide and the N-terminus of the mature ACC. In some aspects, a spacer (or “header”) may contain glutamine (Q) residues. In some aspects, residues in the spacer minimize aminopeptidase and/or exopeptidase action to prevent cleavage of N-terminal amino acids. Illustrative and non-limiting spacer amino acid sequences may comprise or consist of any of the following exemplary amino acid sequences: QGQSGS (SEQ ID NO:375); GQSGS (SEQ ID NO:376); QSGS (SEQ ID NO: 377); SGS; GS; S; QGQSGQG (SEQ ID NO: 378); GQSGQG (SEQ ID NO: 379); QSGQG (SEQ ID NO: 380); SGQG (SEQ ID NO: 381); GQG; QG; G; QGQSGQ (SEQ ID NO: 382); GQSGQ (SEQ ID NO: 383); QSGQ (SEQ ID NO: 384); QGQSG (SEQ ID NO: 385); QGQS (SEQ ID NO: 386); SGQ; GQ; and Q. In some embodiments, spacer sequences may be omitted.


In some embodiments, the first monomer construct, comprises in a N- to C-terminal direction, an optional PM1, an optional CM3, the CP1, the CM1, and, linked directly or indirectly to the C-terminus of the CM1, the DD1. In some embodiments, the first polypeptide comprises in a C- to N-terminal direction, an optional PM1, an optional CM3, the CP1, the CM1, and, linked directly or indirectly to the N-terminus of the CM1, the DD1. In some embodiments, the second polypeptide comprises in a N- to C-terminal direction, an optional PM2, an optional CM4, the CP2, CM2, and, linked directly or indirectly to the C-terminus of the CM2, the DD2. In some embodiments, the second polypeptide comprises in a C- to N-terminal direction, the CP2, CM2, and, linked directly or indirectly to the CM2, the DD2.


In some embodiments, the first monomer construct comprises in an N- to C-terminal direction, the CP1, an optional linker, the CM1, an optional linker, and the DD1, wherein DD1 is an Fc region of an IgG, wherein the N-terminus of the Fc region is the first cysteine residue in the hinge region reading in the N- to C-direction (e.g., Cysteine 226 of human IgG1 or IgG4, using EU numbering), and wherein the CM1 and any linker(s) interposed between the CP1 and the N-terminal cysteine of the DD1 have a combined total length of no more than 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, or 4 amino acids, preferably no more than 10 amino acids, especially preferably no more than 7 amino acids. In some embodiments, the second monomer construct comprises in an N- to C-terminal direction, the CP2, an optional linker, the CM2, an optional linker, and the DD2, wherein DD2 is an Fc region of an IgG, wherein the N-terminus of the Fc region is the first cysteine residue in the hinge region reading in the N- to C-direction (e.g., Cysteine 226 of human IgG1 or IgG4, using EU numbering), and wherein the CM2 and any linker(s) interposed between the CP2 and the N-terminal cysteine of the DD2 have a combined total length of no more than 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, or 4 amino acids, preferably no more than 10 amino acids, preferably no more than 8 amino acids, especially preferably no more than 7 amino acids.


In some embodiments, the ACC is a homodimer in which the first monomer construct and the second monomer construct are identical and comprise the amino acid sequence of SEQ ID NO: 350. In some embodiments, the ACC is a homodimer in which the first monomer construct and the second monomer construct are identical and comprise amino acids 21-359 of SEQ ID NO: 350. In some embodiments, the ACC is a homodimer in which the first monomer construct and the second monomer construct are identical and comprise an amino acid sequence selected from the group consisting of SEQ ID NO: 350, SEQ ID NO: 351, SEQ ID NO: 352, SEQ ID NO: 353, SEQ ID NO: 354, SEQ ID NO: 355, and SEQ ID NO: 356. In some embodiments, the first monomer construct and the second monomer construct each comprise an amino acid sequence that is at least 90%, 95%, 96%, 97%, 98%, or 99% identical to amino acids 21-359 of SEQ ID NO: 350. In some embodiments, the first monomer construct and the second monomer construct each comprise an amino acid sequence that is at least 90%, 95%, 96%, 97%, 98%, or 99% identical to a sequence selected from the group consisting of SEQ ID NO: 350, amino acids 21-359 of SEQ ID NO: 350, SEQ ID NO: 351, SEQ ID NO: 352, SEQ ID NO: 353, SEQ ID NO: 354, SEQ ID NO: 355, and SEQ ID NO: 356. In some embodiments, the first monomer construct and the second monomer construct each comprise an amino acid sequence that is at least 90%, 95%, 96%, 97%, 98%, or 99% identical to SEQ ID NO: 347. In some embodiments, the first monomer construct and the second monomer construct each comprise, in an N- to C-terminal direction, SEQ ID NO: 347; a CM comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 41, SEQ ID NO: 68, SEQ ID NO: 100, and SEQ ID NO: 349; and a dimerization domain. In some embodiments, the first monomer construct and the second monomer construct each comprise, in an N- to C-terminal direction, an optional peptide mask that specifically binds human IL-15; an optional CM3; a CP1 comprising an amino acid sequence of human IL-15; a CM1 comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 5-100 and SEQ ID NO: 349; and an Fc domain of a human IgG. In some embodiments, the first monomer construct and the second monomer construct each comprise, in an N- to C-terminal direction, an optional peptide mask that specifically binds human IL-15; an optional CM3; SEQ ID NO: 347; a CM comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 41, SEQ ID NO: 68, SEQ ID NO: 100, and SEQ ID NO: 349; and an Fc domain of a human IgG. In some embodiments, the CP1 is an IL-15, and the ACC comprises a peptide mask comprising an amino acid sequence derived from the group consisting of SEQ ID NO: 358-374. In some embodiments, the CP1 is an IL-15, and the ACC comprises a peptide mask of no more than 40 amino acids derived from an amino acid sequence selected from the group consisting of SEQ ID NO: 358-374.


In some embodiments, the at least one CP1 and/or CP2 activity is a binding affinity (KD) of the CP1 and/or the CP2 for its cognate receptor as determined using surface plasmon resonance. For example, where the CP1 or CP2 is an interleukin, the cognate receptor may be the interleukin receptor, for example, comprising CD25 (IL-2Rα), CD122 (IL-2Rβ), and CD132 (IL-2R7). In some embodiments, the at least one CP1 and/or CP2 activity is a level of proliferation of lymphoma cells. In some embodiments, the at least one CP1 and/or CP2 activity is the level of JAK/STAT/ISGF3 pathway activation in a lymphoma cell. In some embodiments, the at least one activity is a level of secreted alkaline phosphatase (SEAP) production in a cell, for example a lymphoma cell or a HEK cell. In some embodiments, the ACC (prior to exposure to proteases) is characterized by at least a 2-fold reduction in at least one CP1 and/or CP2 activity as compared to the control level. In some embodiments, the ACC is characterized by at least a 5-fold reduction in at least one CP1 and/or CP2 activity as compared to the control level. In some embodiments, the ACC is characterized by at least a 10-fold reduction in at least one activity of the CP1 and/or CP2 as compared to the control level. In some embodiments, the ACC is characterized by at least a 20-fold, 50-fold, 100-fold, 200-fold, 300-fold, 400-fold, 500-fold, 600-fold, 700-fold, 800-fold, 900-fold, 1000-fold, 1100-fold, 1200-fold, 1300-fold, 1400-fold, 1500-fold, 1600-fold, 1700-fold, 1800-fold, 1900-fold, 2000-fold reduction in at least one CP1 and/or CP2 activity as compared to the control level. In some embodiments, the control level of the at least one activity of the CP1 and/or CP2, is the activity of the CP1 and/or CP2 in the ACC following exposure of the ACC to the protease(s). In some embodiments, the control level of the at least one CP1 and/or CP2, is the corresponding CP1 and/or CP2 activity of a corresponding wildtype mature cytokine.


In some embodiments, the ACC is characterized by generating a cleavage product following exposure to the protease(s), wherein the cleavage product comprises the at least one activity of the CP1 and/or CP2. In some embodiments, the at least one activity of the CP1 and/or CP2 is anti-proliferation activity. In some embodiments, the control level is an EC50 value of the wildtype mature cytokine, and wherein ratio of EC50 (cleavage product) to EC50 (wildtype control level) is less than about 10, or less than about 9, or less than about 8, or less than about 7, or less than about 6, or less than about 5, or less than about 4, or less than about 3, or less than about 2, or less than about 1.5, or equal to about 1. In some embodiments, the EC50 of the cleavage product is approximately the same as the EC50 of the wildtype mature cytokine, demonstrating that following cleavage, the activity of the CP1 and/or CP2 is fully recovered, or nearly fully recovered. In some embodiments, the ratio of the EC50 of the cleavage product to the EC50 of the wildtype control is about 1 to about 10, or about 2 to about 8, or about 3 to about 7, or about 4 to about 6, demonstrating good recovery of cytokine activity following protease activation. In some embodiments, the CP1 and/or CP2 are IL-15, and the ACC is characterized by having a cleavage product following protease activation, wherein the ratio of the EC50 of the cleavage product to the EC50 of recombinant IL-15 is 1 to about 10, or about 2 to about 8, or about 3 to about 7, or about 4 to about 6, or about 5 to about 7, or about 6, as measured in IL-2/IL-15 responsive HEK293 cells.


Provided herein are compositions comprising any one of the ACCs described herein. In some embodiments, the composition is a pharmaceutical composition. Also provided herein are kits comprising at least one dose of any one of the compositions described herein.


Provided herein are methods of treating a subject in need thereof comprising administering to the subject a therapeutically effective amount of any one of the ACCs described herein or any one of the compositions described herein. In some embodiments, the subject has been identified or diagnosed as having a cancer. In some non-limiting embodiments, the cancer is Kaposi sarcoma, hairy cell leukemia, chronic myeloid leukemia (CML), follicular lymphoma, renal cell cancer (RCC), melanoma, neuroblastoma, basal cell carcinoma, bladder cancer, breast cancer, colorectal cancer, cutaneous T-cell lymphoma, nasopharyngeal adenocarcinoma, non-small cell lung cancer (NSCLC), ovarian cancer, pancreatic cancer. In some non-limiting embodiments, the cancer is a lymphoma. In some non-limiting embodiments, the lymphoma is Burkitt's lymphoma.


Provided herein are nucleic acids encoding a polypeptide that comprises the CP1 and CM1 of any one of the ACCs described herein. In some embodiments, the polypeptide further comprises any one of the DD1 described herein. Also provided herein are nucleic acids encoding a polypeptide that comprises the CP2 and CM2 of any one of the ACCs described herein. When the monomers are identical, then the present disclosure provides a single nucleic acid encoding the monomer that dimerizes to form ACC. In some embodiments, the polypeptide further comprises any one of the DD2 described herein. Also provided herein are vectors comprising any one of the nucleic acids described herein. In some embodiments, the vector is an expression vector. Also provided herein are cells comprising any one of the nucleic acids described herein or any one of the vectors described herein. In some embodiments, the nucleic acids encoding a polypeptide comprises a polynucleotide according to SEQ ID NO: 357. Provided herein are pairs of nucleic acids that together encode a polypeptide that comprises the CP1 and CM1 of the first monomer construct and a polypeptide that comprises the CP2 and CM2 of the second monomer construct of any one of the ACCs described herein. Also provided herein are pairs of vectors that together comprise any of one of the pair of nucleic acids described herein. In some embodiments, the pair of vectors is a pair of expression vectors. Also provided herein are cells comprising any one of the pairs of nucleic acids described herein or any one of the pairs of vectors described herein. In other embodiments, the present invention provides a vector comprising the pair of vectors.


Provided herein are methods of producing an ACC comprising: culturing any one of the cells described herein in a liquid culture medium under conditions sufficient to produce the ACC; and recovering the ACC from the cell or the liquid culture medium. In some embodiments, the method further comprises: isolating the ACC recovered from the cell or the liquid culture medium. In some embodiments, the method further comprises: formulating isolated ACC into a pharmaceutical composition.


Provided herein are ACCs produced by any one of the methods described herein. Also provided herein are compositions comprising any one the ACCs described herein. Also provided herein are compositions of any one of the compositions described herein, wherein the composition is a pharmaceutical composition. Also provided herein are kits comprising at least one dose of any one of the compositions described herein.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Methods and materials are described herein for use in the present invention; other, suitable methods and materials known in the art can also be used. The materials, methods, and examples are illustrative only and not intended to be limiting. All publications, patent applications, patents, sequences, database entries, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control.


Other features and advantages of the invention will be apparent from the following detailed description and FIGS., and from the claims.


The term “a” and “an” refers to one or more (i.e., at least one) of the grammatical object of the article. By way of example, “a cell” encompasses one or more cells.


As used herein, the terms “about” and “approximately,” when used to modify an amount specified in a numeric value or range, indicate that the numeric value as well as reasonable deviations from the value known to the skilled person in the art. For example ±20%, ±10%, or ±5%, are within the intended meaning of the recited value where appropriate.


Concentrations, amounts, and other numerical data may be expressed or presented herein in a range format. It is to be understood that such a range format is used merely for convenience and brevity and thus should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. As an illustration, a numerical range of “about 0.01 to 2.0” should be interpreted to include not only the explicitly recited values of about 0.01 to about 2.0, but also include individual values and sub-ranges within the indicated range. Thus, included in this numerical range are individual values such as 0.5, 0.7, and 1.5, and sub-ranges such as from 0.5 to 1.7, 0.7 to 1.5, and from 1.0 to 1.5, etc. Furthermore, such an interpretation should apply regardless of the breadth of the range or the characteristics being described. Additionally, it is noted that all percentages are in weight, unless specified otherwise.


In understanding the scope of the present disclosure, the terms “including” or “comprising” and their derivatives, as used herein, are intended to be open ended terms that specify the presence of the stated features, elements, components, groups, integers, and/or steps, but do not exclude the presence of other unstated features, elements, components, groups, integers and/or steps. The foregoing also applies to words having similar meanings such as the terms “including”, “having” and their derivatives. The term “consisting” and its derivatives, as used herein, are intended to be closed terms that specify the presence of the stated features, elements, components, groups, integers, and/or steps, but exclude the presence of other unstated features, elements, components, groups, integers and/or steps. The term “consisting essentially of,” as used herein, is intended to specify the presence of the stated features, elements, components, groups, integers, and/or steps as well as those that do not materially affect the basic and novel characteristic(s) of features, elements, components, groups, integers, and/or steps. It is understood that reference to any one of these transition terms (i.e. “comprising,” “consisting,” or “consisting essentially”) provides direct support for replacement to any of the other transition term not specifically used. For example, amending a term from “comprising” to “consisting essentially of” or “consisting of” would find direct support due to this definition for any elements disclosed throughout this disclosure. Based on this definition, any element disclosed herein or incorporated by reference may be included in or excluded from the claimed invention.


As used herein, a plurality of compounds, elements, or steps may be presented in a common list for convenience. However, these lists should be construed as though each member of the list is individually identified as a separate and unique member. Thus, no individual member of such list should be construed as a de facto equivalent of any other member of the same list solely based on their presentation in a common group without indications to the contrary.


Furthermore, certain molecules, constructs, compositions, elements, moieties, excipients, disorders, conditions, properties, steps, or the like may be discussed in the context of one specific embodiment or aspect or in a separate paragraph or section of this disclosure. It is understood that this is merely for convenience and brevity, and any such disclosure is equally applicable to and intended to be combined with any other embodiments or aspects found anywhere in the present disclosure and claims, which all form the application and claimed invention at the filing date. For example, a list of constructs, molecules, method steps, kits, or compositions described with respect to a construct, composition, or method is intended to and does find direct support for embodiments related to constructs, compositions, formulations, and methods described in any other part of this disclosure, even if those method steps, active agents, kits, or compositions are not re-listed in the context or section of that embodiment or aspect.


Unless otherwise specified, a “nucleic acid sequence encoding a protein” includes all nucleotide sequences that are degenerate versions of each other and thus encode the same amino acid sequence.


The term “N-terminally positioned” when referring to a position of a first domain or sequence relative to a second domain or sequence in a polypeptide primary amino acid sequence means that the first domain or sequence is located closer to the N-terminus of the polypeptide primary amino acid sequence than the second domain or sequence. In some embodiments, there may be additional sequences and/or domains between the first domain or sequence and the second domain or sequence.


The term “C-terminally positioned” when referring to a position of a first domain or sequence relative to a second domain or sequence in a polypeptide primary amino acid sequence means that the first domain or sequence is located closer to the C-terminus of the polypeptide primary amino acid sequence than the second domain or sequence. In some embodiments, there may be additional sequences and/or domains between the first domain or sequence and the second domain or sequence.


The term “exogenous” refers to any material introduced from or originating from outside a cell, a tissue, or an organism that is not produced by or does not originate from the same cell, tissue, or organism in which it is being introduced.


The term “transduced,” “transfected,” or “transformed” refers to a process by which an exogenous nucleic acid is introduced or transferred into a cell. A “transduced,” “transfected,” or “transformed” cell (e.g., mammalian cell) is one that has been transduced, transfected, or transformed with exogenous nucleic acid (e.g., a vector) that includes an exogenous nucleic acid encoding any of the activatable cytokine constructs described herein.


The term “nucleic acid” refers to a deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), or a combination thereof, in either a single- or double-stranded form. Unless specifically limited, the term encompasses nucleic acids containing known analogues of natural nucleotides that have similar binding properties as the reference nucleotides. Unless otherwise indicated, a particular nucleic acid sequence also implicitly encompasses complementary sequences as well as the sequence explicitly indicated. In some embodiments of any of the nucleic acids described herein, the nucleic acid is DNA. In some embodiments of any of the nucleic acids described herein, the nucleic acid is RNA.


Modifications can be introduced into a nucleotide sequence by standard techniques known in the art, such as site-directed mutagenesis and polymerase chain reaction (PCR)-mediated mutagenesis. Conservative amino acid substitutions are ones in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include: amino acids with acidic side chains (e.g., aspartate and glutamate), amino acids with basic side chains (e.g., lysine, arginine, and histidine), non-polar amino acids (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, and tryptophan), uncharged polar amino acids (e.g., glycine, asparagine, glutamine, cysteine, serine, threonine and tyrosine), hydrophilic amino acids (e.g., arginine, asparagine, aspartate, glutamine, glutamate, histidine, lysine, serine, and threonine), hydrophobic amino acids (e.g., alanine, cysteine, isoleucine, leucine, methionine, phenylalanine, proline, tryptophan, tyrosine, and valine). Other families of amino acids include: aliphatic-hydroxy amino acids (e.g., serine and threonine), amide family (e.g., asparagine and glutamine), aliphatic family (e.g., alanine, valine, leucine and isoleucine), aromatic family (e.g., phenylalanine, tryptophan, and tyrosine).


As used herein the phrase “specifically binds,” or “immunoreacts with” means that the activatable antigen-binding protein complex reacts with one or more antigenic determinants of the desired target antigen and does not react with other polypeptides, or binds at much lower affinity, e.g., about or greater than 10′ M.


The term “treatment” refers to ameliorating at least one symptom of a disorder. In some embodiments, the disorder being treated is a cancer and to ameliorate at least one symptom of a cancer.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1A is a schematic of an illustrative activatable cytokine construct comprising a first and second monomer construct that bind to each other either covalently or non-covalently via first and second dimerization domains DD1 140 and DD2 190, respectively. The first monomer construct comprises, from N-terminus to C-terminus, a first mature cytokine protein CP1 100, a first optional linker 110, a first cleavable moiety CM1 120, a second optional linker 130, and a first dimerization domain DD1 140. The second monomer construct comprises, from N-terminus to C-terminus, a second mature cytokine protein CP2 150, a third optional linker 160, a second cleavable moiety CM2 170, a fourth optional linker 180, and a second dimerization domain DD2 190.



FIG. 1B is a schematic of an illustrative activatable cytokine construct comprising a first and second monomer construct that bind to each other either covalently or non-covalently via first and second dimerization domains DD1 200 and DD2 250, respectively. The first monomer construct comprises, from N-terminus to C-terminus, a first dimerization domain DD1 200, a second optional linker 210, a first cleavable moiety CM1 220, a first optional linker 230, and a first mature cytokine protein CP1 240. The second monomer construct comprises, from N-terminus to C-terminus, a second dimerization domain DD2 250, a fourth optional linker 260, a second cleavable moiety CM2 270, a third optional linker 280, and a second mature cytokine protein CP2 290.



FIG. 1C is a schematic of an illustrative activatable cytokine construct comprising, from N-terminus to C-terminus: (1) a first monomer construct 110 having optionally a PM1 119, optionally a CM3 117, a CP1 115, a CM1 113, and a DD1 111, and; (2) a second monomer construct 120 having optionally a PM2 129, optionally a CM4 127, a CP2 125, a CM2 123, and a DD2 121; and (3) one or more covalent or non-covalent bonds (F4) bonding the first monomer construct 110 to the second monomer construct 120. The ACC may further comprise one or more of the optional linkers 112, 114, 116, 118, 122, 124, 126, and 128 between the components. In one example, DD1 111 and DD2 121 are the same. In another example, DD1 111 and DD2 121 are different.



FIG. 2A is a schematic of an illustrative activatable cytokine construct comprising a first and second monomer construct that bind to each other by non-covalent means via first and second dimerization domains DD1 340 and DD2 390, respectively. The first monomer construct comprises, from N-terminus to C-terminus, a first mature cytokine protein CP1 300, a first optional linker 310, a first cleavable moiety CM1 320, a second optional linker 330, and a first dimerization domain DD1 340. The second monomer construct comprises, from N-terminus to C-terminus, a second mature cytokine protein CP2 350, a third optional linker 360, a second cleavable moiety CM2 370, a fourth optional linker 380, and a second dimerization domain DD2 390.



FIG. 2B is a schematic of an illustrative activatable cytokine construct comprising a first and second monomer construct that bind to each other by non-covalent means via first and second dimerization domains DD1 400 and DD2 450, respectively. The first monomer construct comprises, from N-terminus to C-terminus, a first dimerization domain DD1 400, a second optional linker 410, a first cleavable moiety CM1 420, a first optional linker 430, and a first mature cytokine protein CP1 440. The second monomer construct comprises, from N-terminus to C-terminus, a second dimerization domain DD2 450, a fourth optional linker 460, a second cleavable moiety CM2 470, a third optional linker 480, and a second mature cytokine protein CP2 490.



FIG. 3 shows the sequence of a masked cytokine construct, ProC1471 with an optional signal sequence in italics, the sequence of the mature IL-15 (amino acids 49-161) underlined, and the sequence of the cleavable moiety (CM) in bold.



FIG. 4 shows the activity of ProC1471 compared to recombinant IL-15, as tested in vitro using IL-2/IL-15-responsive HEK293 cells.



FIG. 5 shows activation of a ProC1471 by proteases uPA and MT-SP1.



FIG. 6 shows the activity of protease-activated ProC1471 compared to non-activated ProC1471 and recombinant IL-15, as tested in vitro using IL-2/IL-15-responsive HEK293 cells.



FIG. 7A depicts the effect of length of a flexible linker in an interferon-α2b-Fc fusion on EC50 as determined by an HEK293 cell-based reporter assay. FIG. 7B depicts the effect of length of a Linking Region (LR) in an interferon-α2b-Fc fusion on EC50 as determined by an HEK293 cell-based reporter assay.



FIG. 8A depicts the effect of length of a linker in an interferon-α2b-Fc fusion protein on EC50 as determined from a Daudi apoptosis assay. FIG. 8B depicts the effect of length of a Linking Region (LR) in an interferon-α2b-Fc fusion on EC50 as determined from a Daudi apoptosis assay.



FIG. 9 depicts the results of an HEK293 cell-based reporter assay to assess the activity of an ACC (IFNa2b 1204DNIdL NhG4); a protease-treated (activated) ACC (IFNα-2b 1204DNIdL NhG4+uPA); Sylatron®; and the recombinant parental cytokine (IFNa2b). The results indicated that, following treatment of the ACC with a protease, the activity of the cytokine in the ACC could be restored to a level comparable to the recombinant parental cytokine.



FIG. 10 depicts the results of a Daudi lymphoma cell-based assay for measuring the anti-proliferation activity (top) and the results of an HEK293 cell-based reporter assay for measuring the activity (bottom) of an ACC (ProC440), a protease-treated ACC (ProC440+uPA), and stem cell IFNa2b. The results indicated that activity was reduced 1000× by making the ACC structure of the present disclosure and, following treatment of the ACC with a protease, the activity of the cytokine in the ACC was restored to a level comparable to the recombinant parental cytokine.



FIG. 11A depicts the structure of ProC440, and shows that cleavage with uPa at the expected site in the CM was confirmed by Mass spectrometry analysis. In addition to sensitivity to uPa activation, ProC440 is cleaved by MMP4. FIG. 11B shows the analysis by Mass spectrometry identified a MMP14 cleavage site at the C-terminal extremity of IFNa (at L161) near the cleavable moiety. Protease activation with MMP14 restored activity to a level that is comparable to the recombinant cytokine.



FIG. 12A is a schematic of an illustrative activatable cytokine construct comprising a first and second monomer construct that bind to each other by non-covalent means via first and second dimerization domains DD1 540 and DD2 590, respectively. The first monomer construct comprises, from N-terminus to C-terminus, a first mature cytokine protein CP1 500, a first optional linker 510, a first cleavable moiety CM1 520, a second optional linker 530, and a first dimerization domain DD1 540. The second monomer construct comprises, from N-terminus to C-terminus, a second mature cytokine protein CP2 550, a third optional linker 560, and a second dimerization domain DD2 590.



FIG. 12B is a schematic of an illustrative activatable cytokine construct comprising a first and second monomer construct that bind to each other by non-covalent means via first and second dimerization domains DD1 600 and DD2 650, respectively. The first monomer construct comprises, from N-terminus to C-terminus, a first dimerization domain DD1 600, a first optional linker 630 and a first mature cytokine protein CP1 640. The second monomer construct comprises, from N-terminus to C-terminus, a second dimerization domain DD2 650, a second optional linker 660, a cleavable moiety CM 670, a third optional linker 680, and a second mature cytokine protein CP2 690.



FIG. 13A is a schematic of an illustrative activatable cytokine construct comprising a first and second monomer construct that bind to each other by non-covalent means via first and second dimerization domains DD1 740 and DD2 790, respectively. The first monomer construct comprises, from N-terminus to C-terminus, a first mature cytokine protein CP 700, a first optional linker 710, a first cleavable moiety CM1 720, a second optional linker 730, and a first dimerization domain DD1 740. The second monomer construct comprises, from N-terminus to C-terminus, a polypeptide or protein that lacks cytokine activity 780, and a second dimerization domain DD2 790. The polypeptide or protein that lacks cytokine activity 780 may, for example, be a truncated cytokine protein that lacks cytokine activity, a mutated cytokine protein that lacks cytokine activity, a stub sequence, or a polypeptide sequence that binds with high affinity to CP 700 and reduces the cytokine activity of the second moiety as compared to the control level of the second moiety. The DD1 740 and the DD2 790 may be the same or different.



FIG. 13B is a schematic of an illustrative activatable cytokine construct comprising a first and second monomer construct that bind to each other by non-covalent means via first and second dimerization domains DD1 800 and DD2 850, respectively. The first monomer construct comprises, from N-terminus to C-terminus, a first dimerization domain DD1 800 and a polypeptide or protein that lacks cytokine activity 830. The second monomer construct comprises, from N-terminus to C-terminus, a second dimerization domain DD2 850, a first optional linker 860, a cleavable moiety CM 870, a second optional linker 880, and a mature cytokine protein CP 890. The polypeptide or protein that lacks cytokine activity 830 may, for example, be a truncated cytokine protein that lacks cytokine activity, a mutated cytokine protein that lacks cytokine activity, a stub sequence, or a polypeptide sequence that binds with high affinity to CP 700 and reduces the cytokine activity of the second moiety as compared to the control level of the second moiety. The DD1 800 and the DD2 850 may be the same or different.



FIG. 14 schematically shows an embodiment of an ACC denoting its Linking Region (LR).



FIG. 15 is image of a gel loaded with: (1) ACC IFNα-2b-hIgG4 Fc with cleavable moiety 1204 (1204); (2) product of protease membrane type serine protease 1 (MT-SP1) and ACC IFNα-2b-hIgG4 Fc with cleavable moiety 1204 (1204 MT-SP1); (3) product of ACC IFNα-2b-hIgG4 Fc with cleavable moiety 1204 and protease uPA (1204 uPA); (4) ACC IFNα-2b-hIgG4 Fc with cleavable moiety 1204 fused to a 5 amino acid linker (1204+1); (5) product of IFNα-2b-hIgG4 Fc 1204+1 and MT-SP1 (1204+1 MT-SP1); (6) ACC IFNα-2b-hIgG4 Fc with cleavable moiety 1490; (7) product of MT-SP1 and ACC IFNα-2b-hIgG4 Fc with cleavable moiety 1490; product of uPA and ACC IFNα-2b-hIgG4 Fc with cleavable moiety 1490 (1490 uPA).



FIG. 16 provides the results from an HEK293 cell-based reporter assay to assess interferon-α2b activity of Sylatron® (peginterferon alfa-2b) and various interferon α-2b (IFNa2b) fusions: human IgG4 N-terminally fused to IFNa2b (IFNa2b NhG4); Human IgG4 N-terminally fused to IFNa2b via a five amino acid linker (IFNa2b 5AA NhG4); activatable cytokine construct IFN-α2b-1204dL-hIgG4 (IFNa2b 1204DNIdL NhG4); an activatable cytokine construct that includes the same components as IFN-α2b-1204dL-hIgG4, but which also has a 5 amino acid linker positioned between the mature cytokine protein component and the cleavable moiety (IFNa2b 5AA 1204DNIdL NhG4); and activatable cytokine construct IFN-α2b-1490DNI-hIgG4 (IFNa2b 1490DNI NhG4).



FIG. 17A depicts the structure of ProC286 and the activity of ProC286 compared to the activity of Sylatron® in the Daudi apoptosis assay. ProC286 and Sylatron® showed similar levels of activity, indicating that ProC286 could be used as surrogate Sylatron® control to evaluate the tolerability of IFNa-2b in the hamster study. FIG. 17B depicts the structure of ProC291 and the activity of ProC291 compared to the activity of Sylatron® in the Daudi apoptosis assay. ProC291 showed significantly reduced activity compared to Sylatron® and ProC286.



FIGS. 18A-18C show the animal weight loss when dosed with 2 mpk (FIG. 18A), 10 mpk (FIG. 18B), and 15 mpk (FIG. 18C) of control hIgG4, ProC286, or ProC440 over treatment periods in Syrian Gold Hamsters.



FIGS. 19A-19C show the clinical chemistry outcomes (Alkaline phosphatase (ALP), FIG. 19A; Alanine transaminase (ALT), FIG. 19B; and Aspartate transaminase (AST), FIG. 19C) in Syrian Gold Hamsters dosed with 2 mpk, 10 mpk, and 15 mpk of control hIgG4, ProC286, or ProC440.



FIGS. 20A-20C show the hematology analysis outcomes (Reticulocyte count, FIG. 20A; Neutrophil count, FIG. 20B; and White Blood Cells (WBC) count, FIG. 20C) in Syrian Gold Hamsters dosed with 2 mpk, 10 mpk, and 15 mpk of control hIgG4, ProC286, or ProC440.



FIGS. 21A-21B show the activation of IL-15-containing ACC by uPa. FIG. 21A shows cleavage of various IL-15-containing ACCs with uPa by electrophoresis. FIG. 21B shows the activity of protease-activated IL-15-containing ACCs compared to non-activated IL-15-containing ACC in HEK-Blue reporter assay.



FIG. 22 shows the activity or protease-activated IL-15-containing ACCs compared to non-activated IL-15-containing ACCs in human PBMC proliferation assay based on percentage Ki67 expression.



FIG. 23 shows the activity of protease-activated IL-15-containing ACCs compared to non-activated IL-15-containing ACCs in human PBMC STAT5 phosphorylation assay.





DETAILED DESCRIPTION

Provided herein are activatable cytokine constructs (ACCs) that exhibit a reduced level of at least one activity of the corresponding cytokine, but which, after exposure to an activation condition, yield a cytokine product having substantially restored activity. Activatable cytokine constructs of the present invention may be designed to selectively activate upon exposure to diseased tissue, and not in normal tissue. As such, these compounds have the potential for conferring the benefit of a cytokine-based therapy, with potentially less of the toxicity associated with certain cytokine-based therapies.


Also provided herein are related intermediates, compositions, kits, nucleic acids, and recombinant cells, as well as related methods, including methods of using and methods of producing any of the activatable cytokine constructs described herein.


The inventors have surprisingly found that ACCs having the specific elements and structural orientations described herein appear potentially effective in improving the safety and therapeutic index of cytokines in therapy, particularly for treating cancers. While cytokines are regulators of innate and adaptive immune system and have broad anti-tumor activity in pre-clinical models, their clinical success has been limited by systemic toxicity and poor systemic exposure to target tissues. The inventors have surprisingly found that ACCs having the specific elements and structural orientations described herein appear to reduce the systemic toxicity associated with cytokine therapeutics and improve targeting and exposure to target issues. As such, the present disclosure provides a method of reducing target-mediated drug disposition (TMDD) of cytokine therapeutics by administering ACCs having the specific elements and structural orientations described herein to a subject. As such, the invention solves the problem of sequestration of a significant fraction of the administered cytokine dose by normal tissues, which is a problem that limits the fraction of the dose available in the systemic circulation to reach the target tissues, e.g., cancerous tissue, in conventional cytokine therapeutics. The present cytokine construct localizes target binding to tumor tissues, thereby maintaining potency, reducing side effects, enabling new target opportunities, improving the therapeutic window for validated targets, creating a therapeutic window for undruggable targets, and providing multiple binding modalities. The present disclosure enables safe and effective systemic delivery, thereby avoiding the dose-dependent toxicities of conventional systemic cytokine therapies, and also avoids a requirement for intra-tumoral injection. The present disclosure provides a means for imparting localized anti-viral activity, immunomodulatory activity, antiproliferative activity and pro-apoptotic activity. The inventors surprisingly found that dimerization of the first and second monomer constructs achieves high reduction of cytokine activity, particularly higher reduction than when a single cytokine is attached to a dimerization domain. See FIG. 4.


Additionally, the inventors have discovered that the degree of reduction of cytokine activity can be adjusted by varying the flexible linker length or the linking region length. The inventors surprisingly found that reduction of cytokine activity on the order of 1,000 fold or more can be achieved by attaching a cytokine via a short protease cleavable sequence to a sterically constrained dimerization domain (such as an Fc domain of a human IgG that is truncated at the first cysteine in the hinge region, e.g., Cys226 as numbered by EU numbering). Surprisingly, protease cleavage occurs despite the steric constraint, and full cytokine activity is regained upon cleavage of the cytokine from the dimerization domain.


The inventors have discovered that IL-15 cytokine activity can be reduced on the order of 1,000 fold, and by at least 250-fold, by attaching the IL-15 cytokine via a short protease cleavable sequence to a sterically constrained dimerization domain such as an Fc domain of human IgG, for example an Fc domain of human IgG4 that has been truncated at the first cysteine in the hinge region, e.g., Cys226 as numbered by EU numbering. Further, IL-15 cytokine activity can be recovered to the same level, or nearly the same level, as standard recombinant IL-15 upon cleavage of the IL-15 cytokine from the dimerization domain. In some embodiments, IL-15 cytokine activity is increased at least 50-fold upon cleavage of the IL-15 from the dimerization domain. In some embodiments, IL-15 cytokine activity is increased at least 60-fold upon cleavage of the IL-15 from the dimerization domain.


Applicant's U.S. Provisional App. No. 63/008,542, filed Apr. 10, 2020, which describes certain activatable cytokine constructs, is incorporated herein by reference in its entirety. The entire contents of Applicant's U.S. Provisional App. Nos. 63/161,889 and 63/161,913, both filed Mar. 16, 2021, and Applicant's U.S. Provisional App. Nos. 63/164,827 and 63/164,849, both filed Mar. 23, 2021, which describe certain activatable cytokine constructs, also are incorporated herein by reference.


Activatable Cytokine Constructs

Activatable cytokine constructs of the present invention are dimer complexes comprising a first monomer construct and a second monomer construct. Dimerization of the monomeric components is facilitated by a pair of dimerization domains. In one aspect, each monomer construct includes a cytokine protein, a cleavable moiety, and a dimerization domain (DD). In one aspect, one monomer construct includes a cytokine protein, a cleavable moiety, and a DD, whereas the other monomer construct includes a cytokine protein and a DD, but not a cleavable moiety. In one aspect, one monomer construct includes a cytokine protein, a cleavable moiety, and a DD, whereas the other monomer construct includes a protein or peptide that lacks cytokine activity and a DD, but not a cleavable moiety. In a specific embodiment, the present invention provides an activatable cytokine construct (ACC) that includes a first monomer construct and a second monomer construct, wherein:

    • (a) the first monomer construct comprises a first mature cytokine protein (CP1), a first cleavable moiety (CM1), and a first dimerization domain (DD1),
      • wherein the CM1 is positioned between the CP1 and the DD1; and
    • (b) the second monomer construct comprises a second mature cytokine protein (CP2), a second cleavable moiety (CM2), and a second dimerization domain (DD2),
      • wherein the CM2 is positioned between the CP2 and the DD2;
    • wherein the DD1 and the DD2 bind each other thereby forming a dimer of the first monomer construct and the second monomer construct; and
    • wherein the ACC is characterized by having a reduced level of at least one CP1 and/or CP2 activity as compared to a control level of the at least one CP1 and/or CP2 activity.


In a specific embodiment, CP1 and CP2 each comprise an interleukin polypeptide. In one embodiment the interleukin polypeptide is selected from the group consisting of IL-1α, IL-1β, IL-1RA, IL-18, IL-2, IL-4, IL-7, IL-9, IL-13, IL-15, IL-3, IL-5, IL-6, IL-11, IL-12, IL-10, IL-20, IL-21 IL-14, IL-15, IL-16, and IL-17. In another embodiment of the disclosure the interleukin polypeptide is IL-15, thereby comprising an activatable IL-15 construct. In one aspect, the activatable IL-15 construct has reduced activity compared to recombinant 115.


The term “activatable” when used in reference to a cytokine construct, refers to a cytokine construct that exhibits a first level of one or more activities, whereupon exposure to a condition that causes cleavage of one or both cleavable moieties results in the generation of a cytokine construct that exhibits a second level of the one or more activities, where the second level of activity is greater than the first level of activity. Non-limiting examples of an activities include any of the exemplary activities of a cytokine described herein or known in the art.


The term “mature cytokine protein” refers herein to a cytokine protein that lacks a signal sequence. A cytokine protein (CP) may be a mature cytokine protein or a cytokine protein with a signal peptide. Thus, the ACCs of the present disclosure may include a mature cytokine protein sequence in some aspects. In some aspects, the ACCs of the present disclosure may include a mature cytokine protein sequence and, additionally, a signal sequence. In some aspects, the ACCs of the present disclosure may include sequences disclosed herein, including or lacking the signal sequences recited herein.


The terms “cleavable moiety” and “CM” are used interchangeably herein to refer to a peptide, the amino acid sequence of which comprises a substrate for a sequence-specific protease. Cleavable moieties that are suitable for use as CM1 and/or CM2 include any of the protease substrates that are known the art. Exemplary cleavable moieties are described in more detail below.


The terms “dimerization domain” and “DD” are used interchangeably herein to refer to one member of a pair of dimerization domains, wherein each member of the pair is capable of binding to the other via one or more covalent or non-covalent interactions. The first DD and the second DD may be the same or different. Exemplary DDs suitable for use as DD1 and or DD2 are described in more detail herein below.


The terms “peptide mask” and “PM” are used interchangeably herein to refer to an amino acid sequence of less than 50 amino acids that reduces or inhibits one or more activities of a cytokine protein. The PM may bind to the cytokine and limit the interaction of the cytokine with its receptor. In some embodiments, the PM is no more than 40 amino acids in length. In preferred embodiments, the PM is no more than 20 amino acids in length. In some embodiments, the PM is no more than 19, 18, 17, 16, or 15 amino acids in length.


As used herein, the term “masking efficiency” refers to the activity (e.g., EC50) of the uncleaved ACC divided by the activity of a control cytokine, wherein the control cytokine may be either cleavage product of the ACC or the cytokine used as the CP of the ACC. An ACC having a reduced level of at least one CP1 and/or CP2 activity has a masking efficiency that is greater than 10. In some embodiments, the ACCs described herein have a masking efficiency that is greater than 10, greater than 100, greater than 1000, or greater than 5000. In some embodiments wherein the CP1 and/or CP2 are an IL-15 polypeptide, the ACC may have a masking efficiency that is about 10 to about 100, or about 10 to about 200, or about 50 to about 150, or about 50 to about 80, as measured by the ratio of the EC50 of the uncleaved ACC to the EC50 of the cleavage product of the ACC in IL-2/IL-15 responsive HEK293 cells.


As used herein, a polypeptide, such as a cytokine or an Fc domain, may be a wild-type polypeptide (e.g., a naturally-existing polypeptide) or a variant of the wild-type polypeptide. A variant may be a polypeptide modified by substitution, insertion, deletion and/or addition of one or more amino acids of the wild-type polypeptide, provided that the variant retains the basic function or activity of the wild-type polypeptide. In some examples, a variant may have altered (e.g., increased or decreased) function or activity comparing with the wild-type polypeptide. In some aspects, the variant may be a functional fragment of the wild-type polypeptide. The term “functional fragment” means that the sequence of the polypeptide (e.g., cytokine) may include fewer amino acids than the full-length polypeptide sequence, but sufficient polypeptide chain length to confer activity (e.g., cytokine activity).


The first and second monomer constructs may further comprise additional elements, such as, for example, one or more linkers, and the like. The additional elements are described below in more detail. The organization of the CP, CM, and DD components in each of the first and second monomer constructs may be arranged in the same order in each monomer construct. The CP1, CM1, and DD1 components may be the same or different as compared to the corresponding CP2, CM2, and DD2, in terms of, for example, molecular weight, size, amino acid sequence of the CP and CM components (and the DD components in embodiments where the DD components are polypeptides), and the like. Thus, the resulting dimer may have symmetrical or asymmetrical monomer construct components.


In some embodiments, the first monomer construct comprises, from N- to C-terminus of the CP and CM components, the CP1, the CM1, and, linked directly or indirectly (via a linker) to the C-terminus of the CM1, the DD1. In other embodiments, the first monomer construct comprises from C- to N-terminus of the CP and CM components, the CP1, the CM1, and, linked directly or indirectly (via a linker) to the N-terminus of the CM1, the DD1. In some embodiments, the second monomer construct comprises, from N- to C-terminal terminus of the CP and CM components, the CP2, the CM2, and, linked directly or indirectly (via a linker) to the C-terminus of the CM2, the DD2. In other embodiments, the second monomer construct comprises, from C- to N-terminus of the CP and CM components, the CP2, the CM2, and, linked directly or indirectly (via a linker) to the N-terminus of the CM2, the DD2.


In some embodiments, the first monomer comprising the first mature cytokine protein (CP1) and/or the second monomer comprising the second mature cytokine protein (CP2) further comprises a peptide mask (PM). In some embodiments, the ACC further comprises a CM between the PM and the CP.


In some embodiments, the activatable cytokine constructs (ACC) that include a first monomer construct and a second monomer construct, wherein: (a) the first monomer construct comprises a first peptide mask (PM1), a first mature cytokine protein (CP1), a first and a third cleavable moieties (CM1 and CM3), and a first dimerization domain (DD1), wherein the CM1 is positioned between the CP1 and the DD1, and the CM3 is positioned between the PM1 and the CP1; and (b) the second monomer construct comprises a second mature cytokine protein (CP2), a second cleavable moiety (CM2), and a second dimerization domain (DD2), wherein the CM2 is positioned between the CP2 and the DD2; wherein the DD1 and the DD2 bind each other thereby forming a dimer of the first monomer construct and the second monomer construct; and wherein the ACC is characterized by having a reduced level of at least one CP1 and/or CP2 activity as compared to a control level of the at least one CP1 and/or CP2 activity.


In some embodiments, the second monomer construct further comprises a second peptide mask (PM2) and a fourth cleavable moiety (CM4), wherein the CM4 is positioned between the PM2 and the CP2. In some embodiments, the first monomer construct comprises a first polypeptide that comprises the PM1, the CM3, the CP1, the CM1, and the DD1. In some embodiments, the second monomer construct comprises a second polypeptide that comprises the CP2, the CM2, and the DD2. In some embodiments, the second monomer construct comprises a second polypeptide that comprises the PM2, the CM4, the CP2, the CM2, and the DD2.


The ACC structure was discovered to be highly effective at reducing activity of the mature cytokine protein components in a way that does not lead to substantially impaired cytokine activity after activation. The CP's activity in the ACC may be reduced by both the structure of the ACC (e.g., the dimer structure) and the peptide mask(s) in the ACC. In some embodiments, the activation condition for the ACCs described herein is exposure to one or more proteases that can dissociate the CP from both the DD and the PM. For example, the one or more proteases may cleave the CM between the CP and the PM and the CM between the CP and the DD. As demonstrated in the Examples, activation of the ACC resulted in substantial recovery of cytokine activity. The results suggest that conformation of the cytokine components was not irreversibly altered within the context of the ACC.


In some embodiments, when a CP is coupled to a PM and in the presence of a natural binding partner of the CP, there is no binding or substantially no binding of the CP to the binding partner, or no more than 0.001%, 0.01%, 0.1%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, or 50% binding of the CP to its binding partner, as compared to the binding of the CP not coupled to a PM, for at least 2, 4, 6, 8, 12, 28, 24, 30, 36, 48, 60, 72, 84, 96 hours, or 5, 10, 15, 30, 45, 60, 90, 120, 150, 180 days, or 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 months or greater when measured in a mask efficiency assay. For example, the mask efficiency assay may involve measurement of the affinity of an ACC binding to a cell surface displaying a candidate peptide mask by, for example, FACS. Another non-limiting exemplary assay includes assessing the ability of a peptide mask to inhibit ACC binding to its binding partner at therapeutically relevant concentrations and times. For this second method, an immunoabsorbant assay to measure the time-dependent binding of proprotein binding to its binding partner has been developed as described in US20200308243, incorporated herein by reference. In an embodiment in which the CP is an IL-15 cytokine, the mask efficiency assay may involve measurement a level of secreted alkaline phosphatase (SEAP) production in IL-2/IL15-responsive HEK293 cells, as set out in Example 6.


In certain embodiments, the first and second monomeric constructs are oriented such that the components in each member of the dimer are organized in the same order from N-terminus to C-terminus of the CP and CM components. A schematic of an illustrative ACC is provided in FIG. 1A. With reference to FIG. 1A, the ACC comprises, from N-terminus to C-terminus of the CP and CM components: (1) a first monomer construct having a CP1 100; a CM1 120 C-terminally positioned relative to the CP1 100; an optional linker 110, which, if present, is positioned between the C-terminus of the CP1 100 and the N-terminus of the CM1 120; a DD1 140; and an optional linker 130, which, if present, is positioned between the C-terminus of the CM1 120; and the DD1 140; (2) a second monomeric construct having a CP2 150; a CM2 170 that is C-terminally positioned relative to the CP2 150; an optional linker 160, which, if present, is positioned between the C-terminus of the CP2 150 and the N-terminus of the CM2 170; a DD2 190; and an optional linker 180, which, if present, is positioned between the C-terminus of the CM2 170 and the DD2 190; and (3) one or more covalent or non-covalent bonds (←→).


A schematic of a further illustrative ACC, with its components organized in the reverse orientation of the ACC is provided in FIG. 1B. With reference to FIG. 1B, the ACC comprises, from N-terminus to C-terminus of the CP and CM components: (1) a first monomeric construct having a DD1 200; a CM1 220; an optional linker 210, which, if present, is positioned between the DD1 200 and the N-terminus of the CM1 220; a CP1 240 C-terminally positioned relative to the CM1 220; and an optional linker 230, which, if present, is positioned between the C-terminus of the CM1 220 and the N-terminus of the CP1 240; (2) a second monomeric construct having a DD2 250; a CM2 270; an optional linker 260, which, if present, is positioned between the DD2 250 and the N-terminus of the CM2 270; a CP2 290 C-terminally positioned relative to the CM2 270; and an optional linker 280, which, if present, is positioned between the C-terminus of the CM2 290 and the N-terminus of the CP2 290; and (3) one or more covalent or non-covalent bonds (←→).



FIG. 2A is a schematic of an illustrative activatable cytokine construct comprising a first and second monomer construct that bind to each other by non-covalent means via first and second dimerization domains DD1 340 and DD2 390, respectively. The first monomer construct comprises, from N-terminus to C-terminus of the CP and CM components, a first mature cytokine protein CP1 300, a first optional linker 310, a first cleavable moiety CM1 320, a second optional linker 330, and a first dimerization domain DD1 340. The second monomer construct comprises, from N-terminus to C-terminus, a second mature cytokine protein CP2 350, a third optional linker 360, a second cleavable moiety CM2 370, a fourth optional linker 380, and a second dimerization domain DD2 390.



FIG. 2B is a schematic of an illustrative activatable cytokine construct comprising a first and second monomer construct that bind to each other by non-covalent means via first and second dimerization domains DD1 400 and DD2 450, respectively. The first monomer construct comprises, from N-terminus to C-terminus of the CP and CM components, a first dimerization domain DD1 400, a second optional linker 410, a first cleavable moiety CM1 420, a first optional linker 430, and a first mature cytokine protein CP1 440. The second monomer construct comprises, from N-terminus to C-terminus of the CP and CM components, a second dimerization domain DD2 450, a fourth optional linker 460, a second cleavable moiety CM2 470, a third optional linker 480, and a second mature cytokine protein CP2 490. In alternative aspects, one of the two moieties depicted as CP1 440 and CP2 490 is a truncated cytokine protein that lacks cytokine activity. For example, either CP1 or CP2 may be a truncated interferon alpha 2b having the first 151 amino acids of wild-type interferon alpha 2b. In alternative aspects, one of the two moieties depicted as CP1 440 and CP2 490 is a mutated cytokine protein that lacks cytokine activity. For example, either CP1 or CP2 may be a truncated interferon alpha 2b having a L130P mutation. In alternative aspects, one of the two moieties depicted as CP1 440 and CP2 490 is a polypeptide sequence that lacks cytokine activity, e.g., a signal moiety and/or a stub sequence. In alternative aspects, a first one of the two moieties depicted as CP1 440 and CP2 490 is a polypeptide sequence that binds with high affinity to a second one of the two moieties depicted as CP1 440 and CP2 490 and reduces the cytokine activity of the second moiety as compared to the control level of the second moiety.


The ACC structure including a dimerization domain was discovered to be highly effective at reducing activity of the mature cytokine protein components in a way that does not lead to substantially impaired cytokine activity after activation. The activation condition for the ACCs described herein is exposure to a protease that can cleave at least one of the cleavable moieties (CMs) in the ACC. As demonstrated in the Examples, activation of the ACC resulted in substantial recovery of cytokine activity. The results suggest that conformation of the cytokine components was not irreversibly altered within the context of the ACC. Significantly, the ACC need not rely on a peptide mask that has binding affinity for the cytokine protein component to achieve a masking effect. Thus, the ACC may or may not comprise a peptide mask having binding affinity for the cytokine protein component.


The ACC may employ any of a variety of mature cytokine proteins, cleavable moieties, and DDs as the CP1, CP2, CM1, CM2, DD1, and DD2, respectively. For example, any of a variety of mature cytokine proteins that are known in the art or sequence and/or truncation variants thereof, may be suitable for use as either or both CP1 and CP2 components of the ACC. The mature cytokine proteins, CP1 and CP2 may be the same or different. In certain specific embodiments, CP1 and CP2 are the same. In other embodiments, CP1 and CP2 are different. The ACC may comprise additional amino acid residues at either or both N- and/or C-terminal ends of the CP1 and/or CP2.


In some embodiments, the CP1 and/or the CP2 may each independently comprise a mature cytokine protein selected from the group of: an interferon (such as, for example, an interferon alpha, an interferon beta, an interferon gamma, an interferon tau, and an interferon omega), an interleukin (such as, for example, IL-1α, IL-1β, IL-1RA, IL-18, IL-2, IL-4, IL-7, IL-9, IL-13, IL-15, IL-3, IL-5, GM-CSF, IL-6, IL-11, IL-21), G-CSF, IL-12, LIF, OSM, IL-10, IL-20, IL-14, IL-16, IL-17, CD154, LT-β, TNF-α, TNF-β, 4-1BBL, APRIL, CD70, CD153, CD178, GITRL, LIGHT, OX40L, TALL-1, TRAIL, TWEAK, TRANCE, TGF-β1, TGF-β1, TGF-β3, Erythropoietin (EPO), TPO, Flt-3L, SCF, M-CSF, and MSP, and the like, as well as sequence and truncation variants thereof. For example, sequences of such proteins include those exemplified herein and additional sequences can be obtained from ncbi.nlm.nih.gov/protein. Truncation variants that are suitable for use in the ACCs of the present invention include any N- or C-terminally truncated cytokine that retains a cytokine activity. Exemplary truncation variants employed in the present invention include any of the truncated cytokine polypeptides that are known in the art (see, e.g., Slutzki et al., J. Mol. Biol. 360:1019-1030, 2006, and US 2009/0025106), as well as cytokine polypeptides that are N- and/or C-terminally truncated by 1 to about 40 amino acids, 1 to about 35 amino acids, 1 to about 30 amino acids, 1 to about 25 amino acids, 1 to about 20 amino acids, 1 to about 15 amino acids, 1 to about 10 amino acids, 1 to about 8 amino acids, 1 to about 6 amino acids, 1 to about 4 amino acids, that retain a cytokine activity. In some of the foregoing embodiments, the truncated CP is an N-terminally truncated CP. In other embodiments, the truncated CP is a C-terminally truncated CP. In certain embodiments, the truncated CP is a C- and an N-terminally truncated CP.


In some embodiments, the CP1 and/or the CP2 each independently comprise an amino acid sequence that is at least 80% identical (e.g., at least 82%, at least 84%, at least 86%, at least 88%, at least 90%, at least 92%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical) to a cytokine reference sequence selected from the group consisting of: SEQ ID NO: 101, SEQ ID NO: 102, SEQ ID NO: 103, SEQ ID NO: 104, SEQ ID NO: 105, SEQ ID NO: 106, SEQ ID NO: 107, SEQ ID NO: 108, SEQ ID NO: 109, SEQ ID NO: 110, SEQ ID NO: 111, SEQ ID NO: 112, SEQ ID NO: 113, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 117, SEQ ID NO: 118, SEQ ID NO: 119, SEQ ID NO: 12, SEQ ID NO: 121, SEQ ID NO: 122, SEQ ID NO: 123, SEQ ID NO: 124, SEQ ID NO: 125, SEQ ID NO: 126, SEQ ID NO: 127, SEQ ID NO: 128, SEQ ID NO: 129, SEQ ID NO: 130, SEQ ID NO: 131, SEQ ID NO: 132, SEQ ID NO: 133, SEQ ID NO: 134, SEQ ID NO: 135, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 139, SEQ ID NO: 140, SEQ ID NO: 141, SEQ ID NO: 142, SEQ ID NO: 143, SEQ ID NO: 144, SEQ ID NO: 145, SEQ ID NO: 146, SEQ ID NO: 147, SEQ ID NO: 148, SEQ ID NO: 149, SEQ ID NO: 150, SEQ ID NO: 151, SEQ ID NO: 152, SEQ ID NO: 153, SEQ ID NO: 154, SEQ ID NO: 155, SEQ ID NO: 156, SEQ ID NO: 157, SEQ ID NO: 158, SEQ ID NO: 159, SEQ ID NO: 160, SEQ ID NO: 161, SEQ ID NO: 162, SEQ ID NO: 163, SEQ ID NO: 164, SEQ ID NO: 165, SEQ ID NO: 166, SEQ ID NO: 167, SEQ ID NO: 168, SEQ ID NO: 169, SEQ ID NO: 170, SEQ ID NO: 171, SEQ ID NO: 172, SEQ ID NO: 173, SEQ ID NO: 174, SEQ ID NO: 175, SEQ ID NO: 176, SEQ ID NO: 177, SEQ ID NO: 178, SEQ ID NO: 179, SEQ ID NO: 180, SEQ ID NO: 181, SEQ ID NO: 182, SEQ ID NO: 183, SEQ ID NO: 184, SEQ ID NO: 185, SEQ ID NO: 186, SEQ ID NO: 187, SEQ ID NO: 188, SEQ ID NO: 189, SEQ ID NO: 190, SEQ ID NO: 191, SEQ ID NO: 192, SEQ ID NO: 193, SEQ ID NO: 194, SEQ ID NO: 195, SEQ ID NO: 196, SEQ ID NO: 197, SEQ ID NO: 198, SEQ ID NO: 199, SEQ ID NO: 200, SEQ ID NO: 201, SEQ ID NO: 202, SEQ ID NO: 203, SEQ ID NO: 204, SEQ ID NO: 205, SEQ ID NO: 206, SEQ ID NO: 207, SEQ ID NO: 208, SEQ ID NO: 209, SEQ ID NO:347, and SEQ ID NO: 348. The percentage of sequence identity refers to the level of amino acid sequence identity between two or more peptide sequences when aligned using a sequence alignment program, e.g., the suite of BLAST programs, publicly available on the Internet at the NCBI website. See also Altschul et al., J. Mol. Biol. 215:403-10, 1990. In some aspects, the ACC includes an interferon alpha 2b mutant, for example, an interferon alpha 2b molecule having a mutation at position L130, e.g., L130P mutation, as either CP1 or CP2. In some aspects, the ACC includes an interferon alpha 2b mutant having a mutation at position 124, F64, 160, 163, F64, W76, I116, L117, F123, or L128, or a combination thereof. For example, the interferon alpha 2b mutant may include mutations 1116 to T, N. or R; L128 to N, H, or R; I24 to P or Q; L117H; or L128T, or a combination thereof. In some aspects, the interferon alpha 2b mutant may include mutations 124Q, I60T, F64A, W76H, I116R, and L128N, or a subset thereof. In some aspects, the ACC includes as one of CP1 and CP2 a truncated interferon alpha 2b molecule that lacks cytokine activity. For example, the truncated interferon alpha 2b may consist of 151 or fewer amino acids of interferon alpha 2b, e.g., any one of amino acids in the wild-type interferon alpha 2b sequence from N to C-terminus: 1 to 151, 1 to 150, 1 to 149, 1 to 148, . . . 1 to 10, 1 to 9, 1 to 8, 1 to 7, 1 to 6, or 2 to 151, 3 to 151, 4 to 151, 5 to 150, 6 to 149, 7 to 148, 8 to 147, or any intervening sequence of amino acids or mutants thereof.


In certain specific embodiments, the CP1 and/or the CP2 comprise an interleukin. Interleukins that are suitable for use in the constructs of the present invention as CP1 and/or CP2 include, for example, IL-1α, IL-1β, IL-1RA, IL-18, IL-2, IL-4, IL-7, IL-9, IL-13, IL-15, IL-3, IL-5, GM-CSF, IL-6, IL-1l, IL-21. In some embodiments, the interleukin comprises a wild type (WT) or recombinant interleukin. In some embodiments, the WT or recombinant interleukin polypeptide comprises IL-15. Exemplary IL-15 sequences are provided in SEQ ID NO: 347, SEQ ID NO: 348, SEQ ID NO: 129, and SEQ ID NO: 130.


In some embodiments, the CP1 and/or the CP2 exhibit(s) an interleukin activity and include(s) an amino acid sequence that is at least 80% identical, at least 82% identical, at least 84% identical, at least 86% identical, at least 88% identical, at least 90% identical, at least 92% identical, at least 94% identical, at least 96% identical, at least 98% identical, or at least 99% identical, or 100% identical to a sequence selected from the group consisting of SEQ ID NOs: 111-134, 137-140, 143-146, 151-160, and 347-348. In some embodiments, the CP1 and/or the CP2 comprise an interleukin having an amino acid sequence selected from the group consisting of SEQ ID NOs: 111-134, 137-140, 143-146, 151-160, and 347-348. In some embodiments, the CP1 and/or the CP2 comprise an interleukin having an amino acid sequence selected from the group consisting of SEQ ID NO: 129, SEQ ID NO: 347, and SEQ ID NO: 348. In certain embodiments, the CP1 and/or the CP2 are each independently an interleukin comprising the amino acid sequence of SEQ ID NO: 347. In some of the above-described embodiments, the CP1 and the CP2 comprise the same amino acid sequence.


In other embodiments, the CP1 and/or the CP2 exhibit(s) an interleukin activity and include(s) an amino acid sequence that is at least 80% identical, at least 82% identical, at least 84% identical, at least 86% identical, at least 88% identical, at least 90% identical, at least 92% identical, at least 94% identical, at least 96% identical, at least 98% identical, or at least 99% identical, or 100% identical to an interleukin reference sequence selected from the group consisting SEQ ID NO: 129, SEQ ID NO: 347, and SEQ ID NO: 348. In certain embodiments, the interleukin reference sequence is a human interleukin reference sequence selected from the group consisting of SEQ ID NO: 129, SEQ ID NO: 347, and SEQ ID NO: 348. In some embodiments, the CP1 and/or the CP2 comprise a mature interleukin having an amino acid sequence selected from the group consisting of SEQ ID NO: 129, SEQ ID NO: 347, and SEQ ID NO: 348. In some of the above-described embodiments, the CP1 and the CP2 comprise the same amino acid sequence.


In some embodiments, the CP1 and/or CP2 exhibit(s) an interleukin activity and include(s) an amino acid sequence that is at least 80% identical, at least 82% identical, at least 84% identical, at least 86% identical, at least 88% identical, at least 90% identical, at least 92% identical, at least 94% identical, at least 96% identical, at least 98% identical, or at least 99% identical, or 100% identical to an interleukin reference sequence corresponding to an amino acid sequence comprising SEQ ID NO: 347. In certain specific embodiments, the CP1 and/or CP2 comprise an interleukin polypeptide comprising the amino acid sequence of SEQ ID NO: 347. In some of the above-described embodiments, the CP1 and the CP2 comprise the same amino acid sequence.


In some embodiments, the CP1 and/or the CP2 exhibit(s) an interleukin activity and include(s) an amino acid sequence that is at least 80% identical, at least 82%, at least 84%, at least 86%, at least 88%, at least 90%, at least 92%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical or 100% identical to an interleukin reference sequence selected from the group consisting of: SEQ ID NO: 111, SEQ ID NO: 112, SEQ ID NO: 113, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 117, SEQ ID NO: 118, SEQ ID NO: 119, SEQ ID NO: 120, SEQ ID NO: 121, SEQ ID NO: 122, SEQ ID NO: 123, SEQ ID NO: 124, SEQ ID NO: 125, SEQ ID NO: 126, SEQ ID NO: 127, SEQ ID NO: 128, SEQ ID NO: 129, SEQ ID NO: 130, SEQ ID NO: 131, SEQ ID NO: 132, SEQ ID NO: 133, SEQ ID NO: 134, SEQ ID NO: 135, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 139, SEQ ID NO: 140, SEQ ID NO: 143, SEQ ID NO: 144, SEQ ID NO: 145, SEQ ID NO: 146, SEQ ID NO: 151, SEQ ID NO: 152, SEQ ID NO: 153, SEQ ID NO: 154, SEQ ID NO: 155, SEQ ID NO: 156, SEQ ID NO: 157, SEQ ID NO: 158, SEQ ID NO: 159, SEQ ID NO: 160, SEQ ID NO: 347, and SEQ ID NO: 348. In some embodiments, CP1 and/or CP2 comprises a mature interleukin having an amino acid sequence selected from the group consisting of: SEQ ID NO: 111, SEQ ID NO: 112, SEQ ID NO: 113, SEQ ID NO: 114, SEQ ID NO: 115, SEQ ID NO: 116, SEQ ID NO: 117, SEQ ID NO: 118, SEQ ID NO: 119, SEQ ID NO: 12, SEQ ID NO: 121, SEQ ID NO: 122, SEQ ID NO: 123, SEQ ID NO: 124, SEQ ID NO: 125, SEQ ID NO: 126, SEQ ID NO: 127, SEQ ID NO: 128, SEQ ID NO: 129, SEQ ID NO: 130, SEQ ID NO: 131, SEQ ID NO: 132, SEQ ID NO: 133, SEQ ID NO: 134, SEQ ID NO: 135, SEQ ID NO: 136, SEQ ID NO: 137, SEQ ID NO: 138, SEQ ID NO: 139, SEQ ID NO: 140, SEQ ID NO: 143, SEQ ID NO: 144, SEQ ID NO: 145, SEQ ID NO: 146, SEQ ID NO: 151, SEQ ID NO: 152, SEQ ID NO: 153, SEQ ID NO: 154, SEQ ID NO: 155, SEQ ID NO: 156, SEQ ID NO: 157, SEQ ID NO: 158, SEQ ID NO: 159, SEQ ID NO: 160, SEQ ID NO: 347, and SEQ ID NO: 348. In some of the above-described embodiments, the CP1 and the CP2 comprise the same amino acid sequence.


In some embodiments, CP1 and/or CP2 exhibit(s) an interleukin-15 activity and include(s) an amino acid sequence that is at least 80% identical, at least 82%, at least 84%, at least 86%, at least 88%, at least 90%, at least 92%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to an IL-15 reference sequence selected from the group consisting of SEQ ID NO: 129 (human IL-15), SEQ ID NO: 347 (amino acids 49-161 of human IL-15), and SEQ ID NO: 348 (amino acids 49-162 of human IL-15). In some embodiments, CP1 and CP2 comprise the same amino acid sequence and such sequence is at least 80% identical, at least 82%, at least 84%, at least 86%, at least 88%, at least 90%, at least 92%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% identical to a sequence selected from the group consisting of SEQ ID NO: 129 (human IL-15), SEQ ID NO: 347 (amino acids 49-161 of human IL-15), and SEQ ID NO: 348 (amino acids 49-162 of human IL-15).


The number of amino acids in the sequence of the cytokine proteins employed may vary, depending on the specific cytokine protein employed. In some embodiments, the CP1 and/or the CP2 each include a total of about 10 amino acids to about 700 amino acids, about 10 amino acids to about 650 amino acids, about 10 amino acids to about 600 amino acids, about 10 amino acids to about 550 amino acids, about 10 amino acids to about 500 amino acids, about 10 amino acids to about 450 amino acids, about 10 amino acids to about 400 amino acids, about 10 amino acids to about 350 amino acids, about 10 amino acids to about 300 amino acids, about 10 amino acids to about 250 amino acids, about 10 amino acids to about 200 amino acids, about 10 amino acids to about 150 amino acids, about 10 amino acids to about 100 amino acids, about 10 amino acids to about 80 amino acids, about 10 amino acids to about 60 amino acids, about 10 amino acids to about 40 amino acids, about 10 amino acids to about 20 amino acids, about 20 amino acids to about 700 amino acids, about 20 amino acids to about 650 amino acids, about 20 amino acids to about 600 amino acids, about 20 amino acids to about 550 amino acids, about 20 amino acids to about 500 amino acids, about 20 amino acids to about 450 amino acids, about 20 amino acids to about 400 amino acids, about 20 amino acids to about 350 amino acids, about 20 amino acids to about 300 amino acids, about 20 amino acids to about 250 amino acids, about 20 amino acids to about 200 amino acids, about 20 amino acids to about 150 amino acids, about 20 amino acids to about 100 amino acids, about 20 amino acids to about 80 amino acids, about 20 amino acids to about 60 amino acids, about 20 amino acids to about 40 amino acids, about 40 amino acids to about 700 amino acids, about 40 amino acids to about 650 amino acids, about 40 amino acids to about 600 amino acids, about 40 amino acids to about 550 amino acids, about 40 amino acids to about 500 amino acids, about 40 amino acids to about 450 amino acids, about 40 amino acids to about 400 amino acids, about 40 amino acids to about 350 amino acids, about 40 amino acids to about 300 amino acids, about 40 amino acids to about 250 amino acids, about 40 amino acids to about 200 amino acids, about 40 amino acids to about 150 amino acids, about 40 amino acids to about 100 amino acids, about 40 amino acids to about 80 amino acids, about 40 amino acids to about 60 amino acids, about 60 amino acids to about 700 amino acids, about 60 amino acids to about 650 amino acids, about 60 amino acids to about 600 amino acids, about 60 amino acids to about 550 amino acids, about 60 amino acids to about 500 amino acids, about 60 amino acids to about 450 amino acids, about 60 amino acids to about 400 amino acids, about 60 amino acids to about 350 amino acids, about 60 amino acids to about 300 amino acids, about 60 amino acids to about 250 amino acids, about 60 amino acids to about 200 amino acids, about 60 amino acids to about 150 amino acids, about 60 amino acids to about 100 amino acids, about 60 amino acids to about 80 amino acids, about 80 amino acids to about 700 amino acids, about 80 amino acids to about 650 amino acids, about 80 amino acids to about 600 amino acids, about 80 amino acids to about 550 amino acids, about 80 amino acids to about 500 amino acids, about 80 amino acids to about 450 amino acids, about 80 amino acids to about 400 amino acids, about 80 amino acids to about 350 amino acids, about 80 amino acids to about 300 amino acids, about 80 amino acids to about 250 amino acids, about 80 amino acids to about 200 amino acids, about 80 amino acids to about 150 amino acids, about 80 amino acids to about 100 amino acids, about 110 amino acids to about 162 amino acids, about 100 amino acids to about 120 amino acids, about 110 amino acids to about 120 amino acids, about 110 amino acids to about 115 amino acids, about 100 amino acids to about 700 amino acids, about 100 amino acids to about 650 amino acids, about 100 amino acids to about 600 amino acids, about 100 amino acids to about 550 amino acids, about 100 amino acids to about 500 amino acids, about 100 amino acids to about 450 amino acids, about 100 amino acids to about 400 amino acids, about 100 amino acids to about 350 amino acids, about 100 amino acids to about 300 amino acids, about 100 amino acids to about 250 amino acids, about 100 amino acids to about 200 amino acids, about 100 amino acids to about 150 amino acids, about 150 amino acids to about 700 amino acids, about 150 amino acids to about 650 amino acids, about 150 amino acids to about 600 amino acids, about 150 amino acids to about 550 amino acids, about 150 amino acids to about 500 amino acids, about 150 amino acids to about 450 amino acids, about 150 amino acids to about 400 amino acids, about 150 amino acids to about 350 amino acids, about 150 amino acids to about 300 amino acids, about 150 amino acids to about 250 amino acids, about 150 amino acids to about 200 amino acids, about 150 amino acids to about 170 amino acids, about 160 amino acids to about 165 amino acids, about 200 amino acids to about 700 amino acids, about 200 amino acids to about 650 amino acids, about 200 amino acids to about 600 amino acids, about 200 amino acids to about 550 amino acids, about 200 amino acids to about 500 amino acids, about 200 amino acids to about 450 amino acids, about 200 amino acids to about 400 amino acids, about 200 amino acids to about 350 amino acids, about 200 amino acids to about 300 amino acids, about 200 amino acids to about 250 amino acids, about 250 amino acids to about 700 amino acids, about 250 amino acids to about 650 amino acids, about 250 amino acids to about 600 amino acids, about 250 amino acids to about 550 amino acids, about 250 amino acids to about 500 amino acids, about 250 amino acids to about 450 amino acids, about 250 amino acids to about 400 amino acids, about 250 amino acids to about 350 amino acids, about 250 amino acids to about 300 amino acids, about 300 amino acids to about 700 amino acids, about 300 amino acids to about 650 amino acids, about 300 amino acids to about 600 amino acids, about 300 amino acids to about 550 amino acids, about 300 amino acids to about 500 amino acids, about 300 amino acids to about 450 amino acids, about 300 amino acids to about 400 amino acids, about 300 amino acids to about 350 amino acids, about 350 amino acids to about 700 amino acids, about 350 amino acids to about 650 amino acids, about 350 amino acids to about 600 amino acids, about 350 amino acids to about 550 amino acids, about 350 amino acids to about 500 amino acids, about 350 amino acids to about 450 amino acids, about 350 amino acids to about 400 amino acids, about 400 amino acids to about 700 amino acids, about 400 amino acids to about 650 amino acids, about 400 amino acids to about 600 amino acids, about 400 amino acids to about 550 amino acids, about 400 amino acids to about 500 amino acids, about 400 amino acids to about 450 amino acids, about 450 amino acids to about 700 amino acids, about 450 amino acids to about 650 amino acids, about 450 amino acids to about 600 amino acids, about 450 amino acids to about 550 amino acids, about 450 amino acids to about 500 amino acids, about 500 amino acids to about 700 amino acids, about 500 amino acids to about 650 amino acids, about 500 amino acids to about 600 amino acids, about 500 amino acids to about 550 amino acids, about 550 amino acids to about 700 amino acids, about 550 amino acids to about 650 amino acids, about 550 amino acids to about 600 amino acids, about 600 amino acids to about 700 amino acids, about 600 amino acids to about 650 amino acids, or about 650 amino acids to about 700 amino acids. In some embodiments, CP1 and/or the CP2 is a mature wildtype human cytokine protein.


Each monomer construct of the ACC may employ any of a variety of dimerization domains. Suitable DDs include both polymeric (e.g., a synthetic polymer, a polypeptide, a polynucleotide, and the like) and small molecule (non-polymeric moieties having a molecular weight of less than about 1 kilodalton, and sometimes less than about 800 Daltons) types of moieties. The pair of DDs may be any pair of moieties that are known in the art to bind to each other.


For example, in some embodiments, the DD1 and the DD2 are members of a pair selected from the group of: a sushi domain from an alpha chain of human IL-15 receptor (IL15Ra) and a soluble IL-15; barnase and bamstar; a PKA and an AKAP; adapter/docking tag molecules based on mutated RNase I fragments; a pair of antigen-binding domains (e.g., a pair of single domain antibodies); soluble N-ethyl-maleimide sensitive factor attachment protein receptors (SNARE) modules based on interactions of the proteins syntaxin, synaptotagmin, synaptobrevin, and SNAP25; a single domain antibody (sdAb) and corresponding epitope; an antigen-binding domain (e.g., a single chain antibody such as a single chain variable fragment (scFv), a single domain antibody, and the like) and a corresponding epitope; coiled coil polypeptide structures (e.g., Fos-Jun coiled coil structures, acid/base coiled-coil helices, Glu-Lys coiled coil helices, leucine zipper structures), small molecule binding pairs such as biotin and avidin or streptavidin, amine/aldehyde, lectin/carbohydrate; a pair of polymers that can bind each other, such as, for example, a pair of sulfur- or thiol-containing polymers (e.g., a pair of Fc domains, a pair of thiolized-human serum albumin polypeptides, and the like); and the like.


In some embodiments, the DD1 and DD2 are non-polypeptide polymers. The non-polypeptide polymers may covalently bound to each other. In some examples, the non-polypeptide polymers may be a sulfur-containing polymer, e.g., sulfur-containing polyethylene glycol. In such cases, the DD1 and DD2 may be covalently bound to each other via one or more disulfide bonds.


When the pair of DD1 and DD2 are members of a pair of epitope and antigen-binding domain, the epitope may be a naturally or non-naturally occurring epitope. Exemplary non-naturally occurring epitopes include, for example, a non-naturally occurring peptide, such as, for example, a poly-His peptide (e.g., a His tag, and the like).


In certain specific embodiments, the DD1 and the DD2 are a pair of Fc domains. As used herein, an “Fc domain” refers to a contiguous amino acid sequence of a single heavy chain of an immunoglobulin. A pair of Fc domains associate together to form an Fc region of an immunoglobulin.


In some embodiments, the pair of Fc domains is a pair of human Fc domains (e.g., a pair of wildtype human Fc domains). In some embodiments, the human Fc domains are human IgG1 Fc domains (e.g., wildtype human IgG1 Fc domains), human IgG2 Fc domains (e.g., wildtype human IgG2 Fc domains), human IgG3 Fc domains (e.g., wildtype human IgG3 Fc domains), or human IgG4 Fc domains (e.g., wildtype human IgG4 Fc domains). In some embodiments, the human Fc domains comprise a sequence that is at least 80% identical (e.g., at least 82%, at least 84%, at least 85%, at least 86%, at least 88%, at least 90%, at least 92%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical) to SEQ ID NO: 3.


In some embodiments, the pair of Fc domains comprises a knob mutant and a hole mutant of a Fc domain. The knob and hole mutants may interact with each other to facilitate the dimerization. In some embodiments, the knob and hole mutants may comprise one or more amino acid modifications within the interface between two Fc domains (e.g., in the CH3 domain). In one example, the modifications comprise amino acid substitution T366W and optionally the amino acid substitution S354C in one of the antibody heavy chains, and the amino acid substitutions T366S, L368A, Y407V and optionally Y349C in the other one of the antibody heavy chains (numbering according to EU index of Kabat numbering system). Examples of the knob and hole mutants include Fc mutants of SEQ ID NOs: 315 and 316, as well as those described in U.S. Pat. Nos. 5,731,168; 7,695,936; and 10,683,368, which are incorporated herein by reference in their entireties. In some embodiments, the dimerization domains comprise a sequence that is at least 80% identical (e.g., at least 82%, at least 84%, at least 85%, at least 86%, at least 88%, at least 90%, at least 92%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical) to SEQ ID NOs: 315 and 316, respectively.


In some embodiments, DD1 and/or DD2 can further include a serum half-life extending moiety (e.g., polypeptides that bind serum proteins, such as immunoglobulin (e.g., IgG) or serum albumin (e.g., human serum albumin (HSA)). Examples of half-life extending moieties include hexa-hat GST (glutathione S-transferase) glutathione affinity, Calmodulin-binding peptide (CBP), Strep-tag, Cellulose Binding Domain, Maltose Binding Protein, S-Peptide Tag, Chitin Binding Tag, Immuno-reactive Epitopes, Epitope Tags, E2Tag, HA Epitope Tag, Myc Epitope, FLAG Epitope, AU1 and AU5 Epitopes, Glu-Glu Epitope, KT3 Epitope, IRS Epitope, Btag Epitope, Protein Kinase-C Epitope, and VSV Epitope.


In some embodiments, DD1 and/or DD2 each include a total of about 5 amino acids to about 250 amino acids, about 5 amino acids to about 200 amino acids, about 5 amino acids to about 180 amino acids, about 5 amino acids to about 160 amino acids, about 5 amino acids to about 140 amino acids, about 5 amino acids to about 120 amino acids, about 5 amino acids to about 100 amino acids, about 5 amino acids to about 80 amino acids, about 5 amino acids to about 60 amino acids, about 5 amino acids to about 40 amino acids, about 5 amino acids to about 20 amino acids, about 5 amino acids to about 10 amino acids, about 10 amino acids to about 250 amino acids, about 10 amino acids to about 200 amino acids, about 10 amino acids to about 180 amino acids, about 10 amino acids to about 160 amino acids, about 10 amino acids to about 140 amino acids, about 10 amino acids to about 120 amino acids, about 10 amino acids to about 100 amino acids, about 10 amino acids to about 80 amino acids, about 10 amino acids to about 60 amino acids, about 10 amino acids to about 40 amino acids, about 10 amino acids to about 20 amino acids, about 20 amino acids to about 250 amino acids, about 20 amino acids to about 200 amino acids, about 20 amino acids to about 180 amino acids, about 20 amino acids to about 160 amino acids, about 20 amino acids to about 140 amino acids, about 20 amino acids to about 120 amino acids, about 20 amino acids to about 100 amino acids, about 20 amino acids to about 80 amino acids, about 20 amino acids to about 60 amino acids, about 20 amino acids to about 40 amino acids, about 40 amino acids to about 250 amino acids, about 40 amino acids to about 200 amino acids, about 40 amino acids to about 180 amino acids, about 40 amino acids to about 160 amino acids, about 40 amino acids to about 140 amino acids, about 40 amino acids to about 120 amino acids, about 40 amino acids to about 100 amino acids, about 40 amino acids to about 80 amino acids, about 40 amino acids to about 60 amino acids, about 60 amino acids to about 250 amino acids, about 60 amino acids to about 200 amino acids, about 60 amino acids to about 180 amino acids, about 60 amino acids to about 160 amino acids, about 60 amino acids to about 140 amino acids, about 60 amino acids to about 120 amino acids, about 60 amino acids to about 100 amino acids, about 60 amino acids to about 80 amino acids, about 80 amino acids to about 250 amino acids, about 80 amino acids to about 200 amino acids, about 80 amino acids to about 180 amino acids, about 80 amino acids to about 160 amino acids, about 80 amino acids to about 140 amino acids, about 80 amino acids to about 120 amino acids, about 80 amino acids to about 100 amino acids, about 100 amino acids to about 250 amino acids, about 100 amino acids to about 200 amino acids, about 100 amino acids to about 180 amino acids, about 100 amino acids to about 160 amino acids, about 100 amino acids to about 140 amino acids, about 100 amino acids to about 120 amino acids, about 120 amino acids to about 250 amino acids, about 120 amino acids to about 200 amino acids, about 120 amino acids to about 180 amino acids, about 120 amino acids to about 160 amino acids, about 120 amino acids to about 140 amino acids, about 140 amino acids to about 250 amino acids, about 140 amino acids to about 200 amino acids, about 140 amino acids to about 180 amino acids, about 140 amino acids to about 160 amino acids, about 160 amino acids to about 250 amino acids, about 160 amino acids to about 200 amino acids, about 160 amino acids to about 180 amino acids, about 180 amino acids to about 250 amino acids, about 180 amino acids to about 200 amino acids, about 200 amino acids to about 250 amino acids, about 210 to about 220 amino acids, about 215 to about 225 amino acids, about 215 to about 220 amino acids, about 217 to about 200 amino acids, or about 218 to about 200 amino acids. In some embodiments, DD1 and DD2 are each an Fc domain that comprises a portion of the hinge region that includes two cysteine residues, a CH2 domain, and a CH3 domain. In some embodiments, DD1 and DD2 are each an Fc domain whose N-terminus is the first cysteine residue in the hinge region reading in the N- to C-direction (e.g., Cysteine 226 of human IgG1 or IgG4, using EU numbering).


In some aspects, positioned between the CP and the DD components, either directly or indirectly (e.g., via a linker), is a cleavable moiety that comprises a substrate for a protease. In some embodiments, the CM1 and CM2 may each independently comprise a substrate for a protease selected from the group consisting of ADAM8, ADAM9, ADAM10, ADAM12, ADAM15, ADAM17/TACE, ADEMDEC1, ADAMTS1, ADAMTS4, ADAMTS5, BACE, Renin, Cathepsin D, Cathepsin E, Caspase 1, Caspase 2, Caspase 3, Caspase 4, Caspase 5, Caspase 6, Caspase 7, Caspase 8, Caspase 9, Caspase 10, Caspase 14, Cathepsin A, Cathepsin B, Cathepsin C, Cathepsin G, Cathepsin K, Cathepsin L, Cathepsin S, Cathepsin V/L2, Cathepsin X/Z/P, Chymase, Cruzipain, DESC1, DPP-4, FAP, Legumain, Otubain-2, Elastase, FVIIa, FiXA, FXa, FXIa, FXIIa, Granzyme B, Guanidinobenzoatase, Hepsin, HtrA1, Human Neutrophil Elastase, KLK4, KLK5, KLK6, KLK7, KLK8, KLK10, KLK11, KLK13, KLK14, Lactoferrin, Marapsin, Matriptase-2, Meprin, MT-SP1/Matriptase, Neprilysin, NS3/4A, PACE4, Plasmin, PSMA, PSA, BMP-1, MMP1, MMP2, MMP3, MMP7, MMP8, MMP9, MMP10, MMP11, MMP12, MMP13, MMP14, MMP15, MMP16, MMP17, MMP19, MMP20, MMP23, MMP24, MMP26, MMP27, TMPRSS2, TMPRSS3, TMPRSS4, tPA, Thrombin, Tryptase, and uPA.


In some embodiments of any of the ACCs described herein, the protease that cleaves any of the CMs described herein can be ADAM8, ADAM9, ADAM10, ADAM12, ADAM15, ADAM17/TACE, ADAMDEC1, ADAMTS1, ADAMTS4, ADAMTS5, BACE, Renin, Cathepsin D, Cathepsin E, Caspase 1, Caspase 2, Caspase 3, Caspase 4, Caspase 5, Caspase 6, Caspase 7, Caspase 8, Caspase 9, Caspase 10, Caspase 14, Cathepsin B, Cathepsin C, Cathepsin K, Cathespin L, Cathepsin S, Cathepsin V/L2, Cathepsin X/Z/P, Cruzipain, Legumain, Otubain-2, KLK4, KLK5, KLK6, KLK7, KLK8, KLK10, KLK11, KLK13, KLK14, Meprin, Neprilysin, PSMA, BMP-1, MMP-1, MMP-2, MMP-3, MMP-7, MMP-9, MMP-10, MMP-11, MMP-12, MMP-13, MMP-14, MMP-15, MMP-16, MMP-17, MMP-19, MMP-20, MMP-23, MMP-24, MMP-26, MMP-27, activated protein C, cathepsin A, cathepsin G, Chymase, FVIIa, FIXa, FXa, FXIa, FXIIa, Elastase, Granzyme B, Guanidinobenzoatase, HtrA1, human neutrophil lyase, lactoferrin, marapsin, NS3/4A, PACE4, Plasmin, PSA, tPA, thrombin, tryptase, uPA, DESC1, DPP-4, FAP, Hepsin, Matriptase-2, MT-SP1/Matripase, TMPRSS2, TMPRSS3, and TMPRSS4.


In some embodiments of any of the ACCs described herein, the protease is selected from the group of: uPA, legumain, MT-SP1, ADAM17, BMP-1, TMPRSS3, TMPRSS4, MMP-2, MMP-9, MMP-12, MMP-13, and MMP-14.


Increased levels of proteases having known substrates have been reported in a number of cancers. See, e.g., La Roca et al., British J. Cancer 90(7):1414-1421, 2004. Substrates suitable for use in the CM1 and/or CM2 components employed herein include those which are more prevalently found in cancerous cells and tissue. Thus, in certain embodiments, CM1 and/or CM2 each independently comprise a substrate for a protease that is more prevalently found in diseased tissue associated with a cancer. In some embodiments, the cancer is selected from the group of: gastric cancer, breast cancer, osteosarcoma, and esophageal cancer. In some embodiments, the cancer is breast cancer. In some embodiments, the cancer is a HER2-positive cancer. In some embodiments, the cancer is Kaposi sarcoma, hairy cell leukemia, chronic myeloid leukemia (CML), follicular lymphoma, renal cell cancer (RCC), melanoma, neuroblastoma, basal cell carcinoma, cutaneous T-cell lymphoma, nasopharyngeal adenocarcinoma, breast cancer, ovarian cancer, bladder cancer, BCG-resistant non-muscle invasive bladder cancer (NMIBC), endometrial cancer, pancreatic cancer, non-small cell lung cancer (NSCLC), colorectal cancer, esophageal cancer, gallbladder cancer, glioma, head and neck carcinoma, uterine cancer, cervical cancer, or testicular cancer, and the like. In some of the above-described embodiments, the CM components comprise substrates for protease(s) that is/are more prevalent in tumor tissue.


In some embodiments, CM1 and/or CM2 each independently include(s) a sequence selected from the group consisting of SEQ ID NO: 5 to SEQ ID NO: 100 and SEQ ID NO: 349 as well as C-terminal and N-terminal truncation variants thereof.


In some embodiments, the CM includes a sequence selected from the group of: ISSGLLSGRSDNH (SEQ ID NO: 28), LSGRSDDH (SEQ ID NO: 33), LSGRSDNI (SEQ ID NO: 41), ISSGLLSGRSDQH (SEQ ID NO: 54), ISSGLLSGRSDNI (SEQ ID NO: 68), SGRSDNI (SEQ ID NO: 100), and LSGRSNI (SEQ ID NO: 349).


In certain embodiments, CM1 and/or CM2 include(s) a sequence selected from the group of: APRSALAHGLF (SEQ ID NO: 263), AQNLLGMY (SEQ ID NO: 264), LSGRSDNHGGAVGLLAPP (SEQ ID NO: 265), VHMPLGFLGPGGLSGRSDNH (SEQ ID NO: 266), LSGRSDNHGGVHMPLGFLGP (SEQ ID NO: 267), LSGRSDNHGGSGGSISSGLLSS (SEQ ID NO: 268), ISSGLLSSGGSGGSLSGRSGNH (SEQ ID NO: 269), LSGRSDNHGGSGGSQNQALRMA (SEQ ID NO: 270), QNQALRMAGGSGGSLSGRSDNH (SEQ ID NO:271), LSGRSGNHGGSGGSQNQALRMA (SEQ ID NO: 272), QNQALRMAGGSGGSLSGRSGNH (SEQ ID NO: 273), ISSGLLSGRSGNH (SEQ ID NO: 274), as well as C-terminal and N-terminal truncation variants thereof. Examples of CM also include those described in U.S. Patent Application Publication Nos. 2016/0289324, 2019/0284283, and in publication numbers WO 2010/081173, WO 2015/048329, WO 2015/116933, WO 2016/118629, and WO 2020/118109, which are incorporated herein by reference in their entireties.


Truncation variants of the aforementioned amino acid sequences that are suitable for use in a CM1 and/or CM2 are any that retain the recognition site for the corresponding protease. These include C-terminal and/or N-terminal truncation variants comprising at least 3 contiguous amino acids of the above-described amino acid sequences, or at least 4, or at least 5, or at least 6, or at least 7 amino acids of the foregoing amino acid sequences that retain a recognition site for a protease. In certain embodiments, the truncation variant of the above-described amino acid sequences is an amino acid sequence corresponding to any of the above, but that is C- and/or N-terminally truncated by 1 to about 10 amino acids, 1 to about 9 amino acids, 1 to about 8 amino acids, 1 to about 7 amino acids, 1 to about 6 amino acids, 1 to about 5 amino acids, 1 to about 4 amino acids, or 1 to about 3 amino acids, and which: (1) has at least three amino acid residues; and (2) retains a recognition site for a protease. In some of the foregoing embodiments, the truncated CM is an N-terminally truncated CM. In some embodiments, the truncated CM is a C-terminally truncated CM. In some embodiments, the truncated C is a C- and an N-terminally truncated CM.


In some embodiments of any of the activatable cytokine constructs described herein, the CM1 and/or the CM2 comprise a total of about 3 amino acids to about 25 amino acids. In some embodiments, the CM1 and/or CM2 comprise a total of about 3 amino acids to about 25 amino acids, about 3 amino acids to about 20 amino acids, about 3 amino acids to about 15 amino acids, about 3 amino acids to about 10 amino acids, about 3 amino acids to about 5 amino acids, about 5 amino acids to about 25 amino acids, about 5 amino acids to about 20 amino acids, about 5 amino acids to about 15 amino acids, about 5 amino acids to about 10 amino acids, about 10 amino acids to about 25 amino acids, about 10 amino acids to about 20 amino acids, about 10 amino acids to about 15 amino acids, about 15 amino acids to about 25 amino acids, about 15 amino acids to about 20 amino acids, or about 20 amino acids to about 25 amino acids.


In some embodiments, the ACC may comprise multiple CMs that comprise substrates for different proteases. In some embodiments, the CM1 and the CM2 comprise substrates for different proteases. In some embodiments, the CM1 and the CM2 comprise substrates for the same protease.


The first and second monomer constructs may comprise one or more additional components including one or more linkers, and the like. In some embodiments, the first monomer can include a linker disposed between the CP1 and the CM1. In some embodiments, the CP1 and the CM1 directly abut each other in the first monomer. In some embodiments, the first monomer comprises a linker disposed between the CM1 and the DD1. In some embodiments, the linker has a total length of 1 amino acid to about 15 amino acids. In some embodiments, the CM1 and the DD1 directly abut each other in the first monomer. In some embodiments, the CM and any linkers disposed between the CP1 and DD1 have a combined total length of 3 to 15 amino acids, or 3 to 10 amino acids, or 3 to 7 amino acids.


In some embodiments, the second monomer comprises a linker disposed between the CP2 and the CM2. In some embodiments, the CP2 and the CM2 directly abut each other in the second monomer. In some embodiments, the second monomer comprises a linker disposed between the CM2 and the DD2. In some embodiments, the linker has a total length of 1 amino acid to about 15 amino acids. In some embodiments, the linker comprises a sequence of G; GG; or GGGS (SEQ ID NO: 2). In some embodiments, the CM2 (e.g., any of the cleavable moieties described herein) and the DD2 (e.g., any of the DDs described herein) directly abut each other in the second monomer. In some embodiments, the CM and any linkers disposed between the CP2 and DD2 have a combined total length of 3 to 15 amino acids, or 3 to 10 amino acids, or 3 to 7 amino acids.


In some embodiments, the first monomer and/or the second monomer can each include a total of about 50 amino acids to about 800 amino acids, about 50 amino acids to about 750 amino acids, about 50 amino acids to about 700 amino acids, about 50 amino acids to about 650 amino acids, about 50 amino acids to about 600 amino acids, about 50 amino acids to about 550 amino acids, about 50 amino acids to about 500 amino acids, about 50 amino acids to about 450 amino acids, about 50 amino acids to about 400 amino acids, about 50 amino acids to about 350 amino acids, about 50 amino acids to about 300 amino acids, about 50 amino acids to about 250 amino acids, about 50 amino acids to about 200 amino acids, about 50 amino acids to about 150 amino acids, about 50 amino acids to about 100 amino acids, about 100 amino acids to about 800 amino acids, about 100 amino acids to about 750 amino acids, about 100 amino acids to about 700 amino acids, about 100 amino acids to about 650 amino acids, about 100 amino acids to about 600 amino acids, about 100 amino acids to about 550 amino acids, about 100 amino acids to about 500 amino acids, about 100 amino acids to about 450 amino acids, about 100 amino acids to about 400 amino acids, about 100 amino acids to about 350 amino acids, about 100 amino acids to about 300 amino acids, about 100 amino acids to about 250 amino acids, about 100 amino acids to about 200 amino acids, about 100 amino acids to about 150 amino acids, about 150 amino acids to about 800 amino acids, about 150 amino acids to about 750 amino acids, about 150 amino acids to about 700 amino acids, about 150 amino acids to about 650 amino acids, about 150 amino acids to about 600 amino acids, about 150 amino acids to about 550 amino acids, about 150 amino acids to about 500 amino acids, about 150 amino acids to about 450 amino acids, about 150 amino acids to about 400 amino acids, about 150 amino acids to about 350 amino acids, about 150 amino acids to about 300 amino acids, about 150 amino acids to about 250 amino acids, about 150 amino acids to about 200 amino acids, about 200 amino acids to about 800 amino acids, about 200 amino acids to about 750 amino acids, about 200 amino acids to about 700 amino acids, about 200 amino acids to about 650 amino acids, about 200 amino acids to about 600 amino acids, about 200 amino acids to about 550 amino acids, about 200 amino acids to about 500 amino acids, about 200 amino acids to about 450 amino acids, about 200 amino acids to about 400 amino acids, about 200 amino acids to about 350 amino acids, about 200 amino acids to about 300 amino acids, about 200 amino acids to about 250 amino acids, about 250 amino acids to about 800 amino acids, about 250 amino acids to about 750 amino acids, about 250 amino acids to about 700 amino acids, about 250 amino acids to about 650 amino acids, about 250 amino acids to about 600 amino acids, about 250 amino acids to about 550 amino acids, about 250 amino acids to about 500 amino acids, about 250 amino acids to about 450 amino acids, about 250 amino acids to about 400 amino acids, about 250 amino acids to about 350 amino acids, about 250 amino acids to about 300 amino acids, about 300 amino acids to about 800 amino acids, about 300 amino acids to about 750 amino acids, about 300 amino acids to about 700 amino acids, about 300 amino acids to about 650 amino acids, about 300 amino acids to about 600 amino acids, about 300 amino acids to about 550 amino acids, about 300 amino acids to about 500 amino acids, about 300 amino acids to about 450 amino acids, about 300 amino acids to about 400 amino acids, about 300 amino acids to about 350 amino acids, about 350 amino acids to about 800 amino acids, about 350 amino acids to about 750 amino acids, about 350 amino acids to about 700 amino acids, about 350 amino acids to about 650 amino acids, about 350 amino acids to about 600 amino acids, about 350 amino acids to about 550 amino acids, about 350 amino acids to about 500 amino acids, about 350 amino acids to about 450 amino acids, about 350 amino acids to about 400 amino acids, about 400 amino acids to about 800 amino acids, about 400 amino acids to about 750 amino acids, about 400 amino acids to about 700 amino acids, about 400 amino acids to about 650 amino acids, about 400 amino acids to about 600 amino acids, about 400 amino acids to about 550 amino acids, about 400 amino acids to about 500 amino acids, about 400 amino acids to about 450 amino acids, about 450 amino acids to about 800 amino acids, about 450 amino acids to about 750 amino acids, about 450 amino acids to about 700 amino acids, about 450 amino acids to about 650 amino acids, about 450 amino acids to about 600 amino acids, about 450 amino acids to about 550 amino acids, about 450 amino acids to about 500 amino acids, about 500 amino acids to about 800 amino acids, about 500 amino acids to about 750 amino acids, about 500 amino acids to about 700 amino acids, about 500 amino acids to about 650 amino acids, about 500 amino acids to about 600 amino acids, about 500 amino acids to about 550 amino acids, about 550 amino acids to about 800 amino acids, about 550 amino acids to about 750 amino acids, about 550 amino acids to about 700 amino acids, about 550 amino acids to about 650 amino acids, about 550 amino acids to about 600 amino acids, about 600 amino acids to about 800 amino acids, about 600 amino acids to about 750 amino acids, about 600 amino acids to about 700 amino acids, about 600 amino acids to about 650 amino acids, about 650 amino acids to about 800 amino acids, about 650 amino acids to about 750 amino acids, about 650 amino acids to about 700 amino acids, about 700 amino acids to about 800 amino acids, about 700 amino acids to about 750 amino acids, or about 750 amino acids to about 800 amino acids.


In some embodiments of any of the ACCs described herein, one or more linkers (e.g., flexible linkers) can be introduced into the activatable cytokine construct to provide flexibility at one or more of the junctions between domains, between moieties, between moieties and domains, or at any other junctions where a linker would be beneficial. In some embodiments, where the ACC is provided as a conformationally constrained construct, a flexible linker can be inserted to facilitate formation and maintenance of a structure in the uncleaved activatable cytokine construct. Any of the linkers described herein can provide the desired flexibility to facilitate the inhibition of the binding of a target (e.g., a receptor of a cytokine), or to facilitate cleavage of a CM by a protease. In some embodiments, linkers are included in the ACC that are all or partially flexible, such that the linker can include a flexible linker as well as one or more portions that confer less flexible structure to provide for a desired ACC. Some linkers may include cysteine residues, which may form disulfide bonds and reduce flexibility of the construct. In some embodiments, reducing the length of the linkers or Linking Region reduces the activity of the mature cytokine protein in the ACCs (see, e.g., FIGS. 7A-7B and 8A-8B). In most instances, linker length is determined by counting, in a N- to C-direction, the number of amino acids from the N-terminus of the linker adjacent to the C-terminal amino acid of the preceding component, to the C-terminus of the linker adjacent to the N-terminal amino acid of the following component (i.e., where the linker length does not include either the C-terminal amino acid of the preceding component or the N-terminal amino acid of the following component). In embodiments in which a linker is employed at the N-terminus of a DD that comprises an Fc domain, linker length is determined by counting the number of amino acids from the N-terminus of the linker adjacent to the C-terminal amino acid of the preceding component to C-terminus of the linker adjacent to the first cysteine of an Fc hinge region (i.e., where the linker length does not include the C-terminal amino acid of the preceding component or the first cysteine of the Fc hinge region).


As apparent from the present disclosure and FIG. 14, ACCs of the present disclosure include a stretch of amino acids between the CP and the proximal point of interaction between the dimerization domains. That stretch of amino acids may be referred to as a Linking Region (LR). As used herein, the term “Linking Region” or “LR” refers to the stretch of amino acid residues between the C-terminus of the cytokine and the amino acid residue that is N-terminally adjacent to the proximal point of interaction between the dimerization domains (i.e., the linking region does not include the C-terminal amino acid of the cytokine or the N-terminal amino acid of the DD that forms the proximal point of interaction to the DD of the corresponding second monomer). For example, when the DDs are a pair of Fc domains, the linking region is the stretch of amino acid residues between the C-terminus of the cytokine and the first N-terminal cysteine residue that participates in the disulfide linkage of the Fc (e.g., Cysteine 226 of an IgG1 or IgG4 Fc domain, according to EU numbering). When the dimerization domain is not a peptide, then the linking region is the stretch of amino acid residues following the C-terminus of the cytokine until the last amino acid. For example, when the DDs are a biotin-streptavidin pair, the linking region of the biotin-containing monomer is the stretch of amino acid residues between the C-terminus of the cytokine and the biotin molecule, and the linking region of the streptavidin-containing monomer is the stretch of amino acid residues between the C-terminus of the cytokine and the streptavidin molecule. In some aspects, the Linking Region may comprise no more than 24, 18, 14, 12, 11, 10, 9, 8, 7, 6, 5, or 4 amino acids, e.g., 5 to 14, 7 to 12, 7 to 11, or 8 to 11 amino acids.


In some embodiments, additional amino acid sequences may be positioned N-terminally or C-terminally to any of the domains of any of the ACCs. Examples include, but are not limited to, targeting moieties (e.g., a ligand for a receptor of a cell present in a target tissue) and serum half-life extending moieties (e.g., polypeptides that bind serum proteins, such as immunoglobulin (e.g., IgG) or serum albumin (e.g., human serum albumin (HSA)).


In some embodiments of any of the activatable cytokine constructs described herein, a linker can include a total of about 1 amino acid to about 25 amino acids (e.g., about 1 amino acid to about 24 amino acids, about 1 amino acid to about 22 amino acids, about 1 amino acid to about 20 amino acids, about 1 amino acid to about 18 amino acids, about 1 amino acid to about 16 amino acids, about 1 amino acid to about 15 amino acids, about 1 amino acid to about 14 amino acids, about 1 amino acid to about 12 amino acids, about 1 amino acid to about 10 amino acids, about 1 amino acid to about 8 amino acids, about 1 amino acid to about 6 amino acids, about 1 amino acid to about 5 amino acids, about 1 amino acid to about 4 amino acids, about 1 amino acid to about 3 amino acids, about 1 amino acid to about 2 amino acids, about 2 amino acids to about 25 amino acids, about 2 amino acids to about 24 amino acids, about 2 amino acids to about 22 amino acids, about 2 amino acids to about 20 amino acids, about 2 amino acids to about 18 amino acids, about 2 amino acids to about 16 amino acids, about 2 amino acids to about 15 amino acids, about 2 amino acids to about 14 amino acids, about 2 amino acids to about 12 amino acids, about 2 amino acids to about 10 amino acids, about 2 amino acids to about 8 amino acids, about 2 amino acids to about 6 amino acids, about 2 amino acids to about 5 amino acids, about 2 amino acids to about 4 amino acids, about 2 amino acids to about 3 amino acids, about 4 amino acids to about 25 amino acids, about 4 amino acids to about 24 amino acids, about 4 amino acids to about 22 amino acids, about 4 amino acids to about 20 amino acids, about 4 amino acids to about 18 amino acids, about 4 amino acids to about 16 amino acids, about 4 amino acids to about 15 amino acids, about 4 amino acids to about 14 amino acids, about 4 amino acids to about 12 amino acids, about 4 amino acids to about 10 amino acids, about 4 amino acids to about 8 amino acids, about 4 amino acids to about 6 amino acids, about 4 amino acids to about 5 amino acids, about 5 amino acids to about 25 amino acids, about 5 amino acids to about 24 amino acids, about 5 amino acids to about 22 amino acids, about 5 amino acids to about 20 amino acids, about 5 amino acids to about 18 amino acids, about 5 amino acids to about 16 amino acids, about 5 amino acids to about 15 amino acids, about 5 amino acids to about 14 amino acids, about 5 amino acids to about 12 amino acids, about 5 amino acids to about 10 amino acids, about 5 amino acids to about 8 amino acids, about 5 amino acids to about 6 amino acids, about 6 amino acids to about 25 amino acids, about 6 amino acids to about 24 amino acids, about 6 amino acids to about 22 amino acids, about 6 amino acids to about 20 amino acids, about 6 amino acids to about 18 amino acids, about 6 amino acids to about 16 amino acids, about 6 amino acids to about 15 amino acids, about 6 amino acids to about 14 amino acids, about 6 amino acids to about 12 amino acids, about 6 amino acids to about 10 amino acids, about 6 amino acids to about 8 amino acids, about 8 amino acids to about 25 amino acids, about 8 amino acids to about 24 amino acids, about 8 amino acids to about 22 amino acids, about 8 amino acids to about 20 amino acids, about 8 amino acids to about 18 amino acids, about 8 amino acids to about 16 amino acids, about 8 amino acids to about 15 amino acids, about 8 amino acids to about 14 amino acids, about 8 amino acids to about 12 amino acids, about 8 amino acids to about 10 amino acids, about 10 amino acids to about 25 amino acids, about 10 amino acids to about 24 amino acids, about 10 amino acids to about 22 amino acids, about 10 amino acids to about 20 amino acids, about 10 amino acids to about 18 amino acids, about 10 amino acids to about 16 amino acids, about 10 amino acids to about 15 amino acids, about 10 amino acids to about 14 amino acids, about 10 amino acids to about 12 amino acids, about 12 amino acids to about 25 amino acids, about 12 amino acids to about 24 amino acids, about 12 amino acids to about 22 amino acids, about 12 amino acids to about 20 amino acids, about 12 amino acids to about 18 amino acids, about 12 amino acids to about 16 amino acids, about 12 amino acids to about 15 amino acids, about 12 amino acids to about 14 amino acids, about 14 amino acids to about 25 amino acids, about 14 amino acids to about 24 amino acids, about 14 amino acids to about 22 amino acids, about 14 amino acids to about 20 amino acids, about 14 amino acids to about 18 amino acids, about 14 amino acids to about 16 amino acids, about 14 amino acids to about 15 amino acids, about 15 amino acids to about 25 amino acids, about 15 amino acids to about 24 amino acids, about 15 amino acids to about 22 amino acids, about 15 amino acids to about 20 amino acids, about 15 amino acids to about 18 amino acids, about 15 amino acids to about 16 amino acids, about 16 amino acids to about 25 amino acids, about 16 amino acids to about 24 amino acids, about 16 amino acids to about 22 amino acids, about 16 amino acids to about 20 amino acids, about 16 amino acids to about 18 amino acids, about 18 amino acids to about 25 amino acids, about 18 amino acids to about 24 amino acids, about 18 amino acids to about 22 amino acids, about 18 amino acids to about 20 amino acids, about 20 amino acids to about 25 amino acids, about 20 amino acids to about 24 amino acids, about 20 amino acids to about 22 amino acids, about 22 amino acid to about 25 amino acids, about 22 amino acid to about 24 amino acids, or about 24 amino acid to about 25 amino acids).


In some embodiments of any of the ACCs described herein, the linker includes a total of about 1 amino acid, about 2 amino acids, about 3 amino acids, about 4 amino acids, about 5 amino acids, about 6 amino acids, about 7 amino acids, about 8 amino acids, about 9 amino acids, about 10 amino acids, about 11 amino acids, about 12 amino acids, about 13 amino acids, about 14 amino acids, about 15 amino acids, about 16 amino acids, about 17 amino acids, about 18 amino acids, about 19 amino acids, about 20 amino acids, about 21 amino acids, about 22 amino acids, about 23 amino acids, about 24 amino acids, or about 25 amino acids.


Surprisingly, the inventors have discovered that ACCs that do not comprise any linkers between the CP and the DD exhibit the most significant reduction in cytokine activity relative to the wildtype mature cytokine. See FIGS. 7A and 8A. Further, a configuration in which there are no linkers between the CP and the DD still allows effective cleavage of a CM positioned between the CP and the DD. See FIGS. 9-11. Thus, in some embodiments, the ACC does not comprise any linkers between the CP and the DD, and the CM between the CP and the DD comprises not more than 10, 9, 8, 7, 6, 5, 4, or 3 amino acids. In some embodiments the total number of amino acids in the LR comprises not more than 25 amino acids, e.g., not more than 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, or 3 amino acids, or 3 to 10 amino acids or 5 to 15 amino acids, or 7 to 12 amino acids, or any range or specific number of amino acids selected from the range encompassed by 3 to 25 amino acids.


In some embodiments of any of the ACCs described herein, a linker can be rich in glycine (Gly or G) residues. In some embodiments, the linker can be rich in serine (Ser or S) residues. In some embodiments, the linker can be rich in glycine and serine residues. In some embodiments, the linker has one or more glycine-serine residue pairs (GS) (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more GS pairs). In some embodiments, the linker has one or more Gly-Gly-Gly-Ser (GGGS) sequences (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more GGGS sequences). In some embodiments, the linker has one or more Gly-Gly-Gly-Gly-Ser (GGGGS) sequences (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more GGGGS sequences). In some embodiments, the linker has one or more Gly-Gly-Ser-Gly (GGSG) sequences (e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 or more GGSG sequences).


In some embodiments of any of the ACCs described herein, a linker includes any one of or a combination of one or more of: G, GG, GSSGGSGGSGG (SEQ ID NO: 210), GGGS (SEQ ID NO: 2), GGGSGGGS (SEQ ID NO: 211), GGGSGGGSGGGS (SEQ ID NO: 212), GGGGSGGGGSGGGGS (SEQ ID NO: 213), GGGGSGGGGSGGGGSGGGGSGGGGS (SEQ ID NO: 214), GGGGSGGGGS (SEQ ID NO: 215), GGGGS (SEQ ID NO: 216), GS, GGGGSGS (SEQ ID NO: 217), GGGGSGGGGSGGGGSGS (SEQ ID NO: 218), GGSLDPKGGGGS (SEQ ID NO: 219), PKSCDKTHTCPPCPAPELLG (SEQ ID NO: 220), SKYGPPCPPCPAPEFLG (SEQ ID NO: 221), GKSSGSGSESKS (SEQ ID NO: 222), GSTSGSGKSSEGKG (SEQ ID NO: 223), GSTSGSGKSSEGSGSTKG (SEQ ID NO: 224), and GSTSGSGKPGSGEGSTKG (SEQ ID NO: 225).


Non-limiting examples of linkers can include a sequence that is at least 70% identical (e.g., at least 72%, at least 74%, at least 75%, at least 76%, at least 78%, at least 80%, at least 82%, at least 84%, at least 85%, at least 86%, at least 88%, at least 90%, at least 92%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical) to GGGS (SEQ ID NO: 2), GSSGGSGGSGG (SEQ ID NO: 210), GGGGSGGGGSGGGGS (SEQ ID NO: 213), GGGGSGS (SEQ ID NO: 217), GGGGSGGGGSGGGGSGS (SEQ ID NO: 218), GGGGSGGGGSGGGGSGGGGS (SEQ ID NO: 235), GGSLDPKGGGGS (SEQ ID NO: 219), and GSTSGSGKPGSSEGST (SEQ ID NO: 226).


In some embodiments, the linker includes a sequence selected from the group of: GGSLDPKGGGGS (SEQ ID NO: 219), GGGGSGGGGSGGGGSGS (SEQ ID NO: 218), GGGGSGS (SEQ ID NO: 217), GS, (GS)n, (GGS)n, (GSGGS)n (SEQ ID NO: 227) and (GGGS)n (SEQ ID NO: 228), GGSG (SEQ ID NO: 229), GGSGG (SEQ ID NO: 230), GSGSG (SEQ ID NO: 231), GSGGG (SEQ ID NO: 232), GGGSG (SEQ ID NO: 233), GSSSG (SEQ ID NO: 234), GGGGSGGGGSGGGGS (SEQ ID NO: 213), GGGGSGGGGSGGGGSGGGGS (SEQ ID NO: 235), GSTSGSGKPGSSEGST (SEQ ID NO: 226), (GGGGS)n (SEQ ID NO: 216), wherein n is an integer of at least one. In some embodiments, the linker includes a sequence selected from the group consisting of: GGSLDPKGGGGS (SEQ ID NO: 219), GGGGSGGGGSGGGGSGS (SEQ ID NO: 218), GGGGSGS (SEQ ID NO: 217), and GS. In some embodiments of any of the ACCs described herein, the linker includes a sequence selected from the group of: GGGGSGGGGSGGGGS (SEQ ID NO: 213), GGGGSGGGGSGGGGSGGGGS (SEQ ID NO: 235), and GSTSGSGKPGSSEGST (SEQ ID NO: 226). In some embodiments of any of the activatable cytokine constructs described herein, the linker includes a sequence selected from the group of: GGGGSGGGGSGGGGS (SEQ ID NO: 213) or GGGGS (SEQ ID NO: 216). In some embodiments, the linker comprises a sequence of GGGS (SEQ ID NO: 2). In some embodiments, the linker comprises a single glycine residue (G), or a sequence of two glycine residues (GG).


In some embodiments, an ACC can include one, two, three, four, five, six, seven, eight, nine, or ten linker sequence(s) (e.g., the same or different linker sequences of any of the exemplary linker sequences described herein or known in the art). In some embodiments, a linker comprises sulfo-SIAB, SMPB, and sulfo-SMPB, wherein the linkers react with primary amines sulfhydryls.


In some embodiments of any of the ACCs described herein, the ACC is characterized by a reduction in at least one activity of the CP1 and/or CP2 as compared to a control level of the at least one activity of the CP1 and/or CP2. In some embodiments, a control level can be the level of the activity for a recombinant CP1 and/or CP2 (e.g., a commercially available recombinant CP1 and/or CP2, a recombinant wildtype CP1 and/or CP2, and the like). In some embodiments, a control level can be the level of the activity of a cleaved (activated) form of the ACC. In certain embodiments, a control level can be the level of the activity of a pegylated CP1 and/or CP2.


In some embodiments, the at least one activity is the binding affinity (KD) of the CP1 and/or the CP2 for its cognate receptor as determined using surface plasmon resonance (e.g., performed in phosphate buffered saline at 25° C.). In certain embodiments, the at least one activity is the level of proliferation of lymphoma cells. In other embodiments, the at least one activity is the level of JAK/STAT/ISGF3 pathway activation in a lymphoma cell. In some embodiments, the at least one activity is a level of SEAP production in a lymphoma cell. In some embodiments, the at least one activity is a level of SEAP production in a cell-based assay using HEK cells. In a further embodiment, the at least one activity of the CP1 and/or CP2 is level of cytokine-stimulated gene induction using, for example RNAseq methods (see, e.g., Zimmerer et al., Clin. Cancer Res. 14(18):5900-5906, 2008; Hilkens et al., J. Immunol. 171:5255-5263, 2003).


In some embodiments, the ACC is characterized by at least a 2-fold reduction in at least one CP1 and/or CP2 activity as compared to the control level of the at least one CP1 and/or CP2 activity. In some embodiments, the ACC is characterized by at least a 5-fold reduction in at least one activity of the CP1 and/or CP2 as compared to the control level of the at least one activity of the CP1 and/or CP2. In some embodiments, the ACC is characterized by at least a 10-fold reduction in at least one activity of the CP1 and/or CP2 as compared to the control level of the at least one activity of the CP1 and/or CP2. In some embodiments, the ACC is characterized by at least a 20-fold reduction in at least one activity of the CP1 and/or CP2 as compared to the control level of the at least one activity of the CP1 and/or CP2. In some embodiments, the ACC is characterized by at least a 30-fold, 40-fold, 50-fold, 60-fold, 70-fold, 80-fold, 90-fold, 100-fold, 500-fold, or 1000-fold reduction in at least one activity of the CP1 and/or CP2 as compared to the control level of the at least one activity of the CP1 and/or CP2. In some embodiments, ACC is characterized by at least a 1- to 20-fold reduction, a 200- to 500-fold reduction, a 300- to 500-fold reduction, a 400- to 500-fold reduction, a 500- to 600-fold reduction, a 600- to 700-fold reduction, a 150- to 1000-fold reduction, a 100- to 1500-fold reduction, a 200- to 1500-fold reduction, a 300- to 1500-fold reduction, a 400- to 1500-fold reduction, a 500- to 1500-fold reduction, a 1000- to 1500-fold reduction, a 100- to 1000-fold reduction, a 200- to 1000-fold reduction, a 300- to 1000-fold reduction, a 400- to 1000-fold reduction, a 500- to 1000-fold reduction, a 100- to 500-fold reduction, a 20- to 50-fold reduction, a 30- to 50-fold reduction, a 40- to 50-fold reduction, a 100- to 400-fold reduction, a 200- to 400-fold reduction, or a 300- to 400-fold reduction, a 100- to 300-fold reduction, a 200- to 300-fold reduction, or a 100- to 200-fold reduction in at least one activity of the CP1 and/or CP2 as compared to the control level of the at least one activity of the CP1 and/or CP2.


In some embodiments, the control level of the at least one activity of the CP1 and/or CP2 is the activity of the CP1 and/or CP2 released from the ACC following cleavage of CM1 and CM2 by the protease(s) (the “cleavage product”). In some embodiments, the control level of the at least one activity of the CP1 and/or CP2 is the activity of a corresponding wildtype mature cytokine (e.g., recombinant wildtype mature cytokine).


In some embodiments, incubation of the ACC with the protease yields an activated cytokine product(s), where one or more activities of CP1 and/or CP2 of the activated cytokine product(s) is greater than the one or more activities of CP1 and/or CP2 of the intact ACC. In some embodiments, one or more activities of CP1 and/or CP2 of the activated cytokine product(s) is at least 1-fold greater than the one or more activities of CP1 and/or CP2 of the ACC. In some embodiments, one or more activities of CP1 and/or CP2 of the activated cytokine product(s) is at least 2-fold greater than the one or more activities of CP1 and/or CP2 of the ACC. In some embodiments, one or more activities of CP1 and/or CP2 of the activated cytokine product(s) is at least 5-fold greater than the one or more activities of CP1 and/or CP2 of the ACC. In some embodiments, one or more activities of CP1 and/or CP2 of the activated cytokine product(s) is at least 10-fold greater than the one or more activities of CP1 and/or CP2 of the ACC. In some embodiments, one or more activities of CP1 and/or CP2 of the activated cytokine product(s) is at least 20-fold greater than the one or more activities of CP1 and/or CP2 of the ACC. In some embodiments, one or more activities of CP1 and/or CP2 of the activated cytokine product(s) is at least 1- to 20-fold greater, 2- to 20-fold greater, 3- to 20-fold greater, 4- to 20-fold greater, 5- to 20-fold greater, 10- to 20-fold greater, 15- to 20-fold greater, 1- to 15-fold greater, 2- to 15-fold greater, 3- to 15-fold greater, 4- to 15-fold greater, 5- to 15-fold greater, 10- to 15-fold greater, 1- to 10-fold greater, 2- to 10-fold greater, 3- to 10-fold greater, 4- to 10-fold greater, 5- to 10-fold greater, 1- to 5-fold greater, 2- to 5-fold greater, 3- to 5-fold greater, 4- to 5-fold greater, 1- to 4-fold greater, 2- to 4-fold greater, 3- to 4-fold greater, 1- to 3-fold greater, 2- to 3-fold greater, or 1- to 2-fold greater than the one or more activities of CP1 and/or CP2 of the ACC.


In some embodiments, an ACC can include a sequence that is at least 80% (e.g., at least 82%, at least 84%, at least 86%, at least 88%, at least 90%, at least 92%, at least 94%, at least 96%, at least 98%, at least 99%, or 100%) identical to SEQ ID NO: 347 or 348. In some embodiments, an ACC can be encoded by a nucleic acid including a sequence that is at least 80% (e.g., at least 82%, at least 84%, at least 86%, at least 88%, at least 90%, at least 92%, at least 94%, at least 96%, at least 98%, at least 99%, or 100%) identical to SEQ ID NO: 357. In some aspects, an ACC may include such sequences but either with or without the signal sequences of those sequences. Signal sequences are not particularly limited. Some non-limiting examples of signal sequences include, e.g., residues 1-20 of SEQ ID NO: 309 and corresponding residues and nucleotides in the other sequences, or substituted with a signal sequence from another species or cell line. Other examples of signal sequences include MRAWIFFLLCLAGRALA (SEQ ID NO: 343) and MALTFALLVALLVLSCKSSCSVG (SEQ ID NO: 344).


Various exemplary aspects of these activatable cytokine constructs are described below and can be used in any combination in the methods provided herein without limitation. Exemplary aspects of the activatable cytokine constructs and methods of making activatable cytokine constructs are described below.


In some embodiments, the CM is selected for use with a specific protease. The protease may be one produced by a tumor cell (e.g., the tumor cell may express greater amounts of the protease than healthy tissues). In some embodiments, the CM is a substrate for at least one protease selected from the group of an ADAM 17, a BMP-1, a cysteine protease such as a cathepsin, a HtrA1, a legumain, a matriptase (MT-SP1), a matrix metalloprotease (MMP), a neutrophil elastase, a TMPRSS, such as TMPRSS3 or TMPRSS4, a thrombin, and a u-type plasminogen activator (uPA, also referred to as urokinase).


In some embodiments, a CM is a substrate for at least one matrix metalloprotease (MMP). Examples of MMPs include MMP1, MMP2, MMP3, MMP7, MMP8, MMP9, MMP10, MMP11, MMP12, MMP13, MMP14, MMP15, MMP16, MMP17, MMP19, MMP20, MMP23, MMP24, MMP26, and MMP27. In some embodiments, the CM is a substrate for MMP9, MMP14, MMP1, MMP3, MMP13, MMP17, MMP11, and MMP19. In some embodiments, the CM is a substrate for MMP7. In some embodiments, the CM is a substrate for MMP9. In some embodiments, the CM is a substrate for MMP14. In some embodiments, the CM is a substrate for two or more MMPs. In some embodiments, the CM is a substrate for at least MMP9 and MMP14. In some embodiments, the CM includes two or more substrates for the same MMP. In some embodiments, the CM includes at least two or more MMP9 substrates. In some embodiments, the CM includes at least two or more MMP14 substrates.


In some embodiments, a CM is a substrate for an MMP and includes the sequence ISSGLLSS (SEQ ID NO: 19); QNQALRMA (SEQ ID NO: 16); AQNLLGMV (SEQ ID NO: 15); STFPFGMF (SEQ ID NO: 18); PVGYTSSL (SEQ ID NO: 74); DWLYWPGI (SEQ ID NO: 75); MIAPVAYR (SEQ ID NO: 42); RPSPMWAY (SEQ ID NO: 43); WATPRPMR (SEQ ID NO: 44); FRLLDWQW (SEQ ID NO: 45); LKAAPRWA (SEQ ID NO: 76); GPSHLVLT (SEQ ID NO: 77); LPGGLSPW (SEQ ID NO: 78); MGLFSEAG (SEQ ID NO: 79); SPLPLRVP (SEQ ID NO: 80); RMHLRSLG (SEQ ID NO: 81); LAAPLGLL (SEQ ID NO: 17); AVGLLAPP (SEQ ID NO: 14); LLAPSHRA (SEQ ID NO: 82); PAGLWLDP (SEQ ID NO: 20); and/or ISSGLSS (SEQ ID NO: 73).


In some embodiments, a CM is a substrate for thrombin. In some embodiments, the CM is a substrate for thrombin and includes the sequence GPRSFGL (SEQ ID NO: 83) or GPRSFG (SEQ ID NO: 84).


In some embodiments, a CM includes an amino acid sequence selected from the group of NTLSGRSENHSG (SEQ ID NO: 9); NTLSGRSGNHGS (SEQ ID NO: 10); TSTSGRSANPRG (SEQ ID NO: 11); TSGRSANP (SEQ ID NO: 12); VAGRSMRP (SEQ ID NO: 21); VVPEGRRS (SEQ ID NO: 22); ILPRSPAF (SEQ ID NO: 23); MVLGRSLL (SEQ ID NO: 24); QGRAITFI (SEQ ID NO: 25); SPRSIMLA (SEQ ID NO: 26); and SMLRSMPL (SEQ ID NO: 27).


In some embodiments, a CM is a substrate for a neutrophil elastase. In some embodiments, a CM is a substrate for a serine protease. In some embodiments, a CM is a substrate for uPA. In some embodiments, a CM is a substrate for legumain. In some embodiments, the CM is a substrate for matriptase. In some embodiments, the CM is a substrate for a cysteine protease. In some embodiments, the CM is a substrate for a cysteine protease, such as a cathepsin.


In some embodiments, a CM includes a sequence of ISSGLLSGRSDNH (SEQ ID NO: 28); ISSGLLSSGGSGGSLSGRSDNH (SEQ ID NO: 30); AVGLLAPPGGTSTSGRSANPRG (SEQ ID NO: 275); TSTSGRSANPRGGGAVGLLAPP (SEQ ID NO: 276); VHMPLGFLGPGGTSTSGRSANPRG (SEQ ID NO: 277); TSTSGRSANPRGGGVHMPLGFLGP (SEQ ID NO: 278); AVGLLAPPGGLSGRSDNH (SEQ ID NO: 29); LSGRSDNHGGAVGLLAPP (SEQ ID NO: 70); VHMPLGFLGPGGLSGRSDNH (SEQ ID NO: 266); LSGRSDNHGGVHMPLGFLGP (SEQ ID NO: 267); LSGRSDNHGGSGGSISSGLLSS (SEQ ID NO: 268); LSGRSGNHGGSGGSISSGLLSS (SEQ ID NO: 279); ISSGLLSSGGSGGSLSGRSGNH (SEQ ID NO: 269); LSGRSDNHGGSGGSQNQALRMA (SEQ ID NO: 270); QNQALRMAGGSGGSLSGRSDNH (SEQ ID NO: 271); LSGRSGNHGGSGGSQNQALRMA (SEQ ID NO: 272); QNQALRMAGGSGGSLSGRSGNH (SEQ ID NO: 273), and/or ISSGLLSGRSGNH (SEQ ID NO: 274).


In some embodiments, the CM1 and/or the CM2 comprise a sequence selected from the group consisting of: SEQ ID NO: 5 through SEQ ID NO: 100. In some embodiments, the CM comprises a sequence selected from the group of:











(SEQ ID NO: 28)



ISSGLLSGRSDNH, 







(SEQ ID NO: 33)



LSGRSDDH,







(SEQ ID NO: 54)



ISSGLLSGRSDQH,







(SEQ ID NO: 100)



SGRSDNI,



and







(SEQ ID NO: 68)



ISSGLLSGRSDNI,







(SEQ ID NO: 41)



LSGRSDNI,



and







(SEQ ID NO: 349)



LSGRSNI.






In some aspects, the ACC includes a CP1 selected from SEQ ID NOs: 111-134, 137-140, 143-146, 151-160, and 347-348, a CM1 selected from SEQ ID Nos: 5-100 and 263-308, and a DD1 dimerized with a CP2 selected from SEQ ID NOs: 111-134, 137-140, 143-146, 151-160, and 347-348, a CM2 selected from SEQ ID Nos: 5-100 and 263-308, and a DD2. In some aspects, the ACC may include, between CP1 and CM1 and/or between CM1 and DD1, a linker selected from SEQ ID Nos: 2 and 210-234, 245, or 250, and between CP2 and CM2 and/or between CM2 and DD2, a linker selected from SEQ ID Nos: 2 and 210-234, 245, or 250. In some embodiments, the ACC includes a DD1 and/or a DD2 that has an amino acid sequence that is at least 80% identical (e.g., at least 82%, at least 84%, at least 85%, at least 86%, at least 88%, at least 90%, at least 92%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical) to SEQ ID NO: 3 or SEQ ID NO: 4. In some embodiments, the ACC includes a DD1 that has an amino acid sequence that is at least 80% identical (e.g., at least 82%, at least 84%, at least 85%, at least 86%, at least 88%, at least 90%, at least 92%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical) to SEQ ID NO: 315 or SEQ ID NO: 316. In some embodiments, the ACC includes a DD2 that has an amino acid sequence that is at least 80% identical (e.g., at least 82%, at least 84%, at least 85%, at least 86%, at least 88%, at least 90%, at least 92%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% identical) to SEQ ID NO: 315 or SEQ ID NO: 316.


Conjugation to Agents

This disclosure also provides methods and materials for including additional elements in any of the ACCs described herein including, for example, a targeting moiety to facilitate delivery to a cell or tissue of interest, an agent (e.g., a therapeutic agent, an antineoplastic agent), a toxin, or a fragment thereof.


In some embodiments of any of the ACCs described herein, the ACC can be conjugated to a cytotoxic agent, including, without limitation, a toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof) or a radioactive isotope. In some embodiments of any of the ACCs described herein, the activatable cytokine construct can be conjugated to a cytotoxic agent including, without limitation, a toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope.


Non-limiting exemplary cytotoxic agents that can be conjugated to any of the ACCs described herein include: dolastatins and derivatives thereof (e.g., auristatin E, AFP, monomethyl auristatin D (MMAD), monomethyl auristatin F (MMAF), monomethyl auristatin E (MMAE), desmethyl auristatin E (DMAE), auristatin F, desmethyl auristatin F (DMAF), dolastatin 16 (DmJ), dolastatin 16 (Dpv), auristatin derivatives (e.g., auristatin tyramine, auristatin quinolone), maytansinoids (e.g., DM-1, DM4), maytansinoid derivatives, duocarmycin, alpha-amanitin, turbostatin, phenstatin, hydroxyphenstatin, spongistatin 5, spongistatin 7, halistatin 1, halistatin 2, halistatin 3, halocomstatin, pyrrolobenzimidazoles (PBI), cibrostatin6, doxaliform, cemadotin analogue (CemCH2-SH), Pseudomonas toxin A (PES8) variant, Pseudomonase toxin A (ZZ-PE38) variant, ZJ-101, anthracycline, doxorubicin, daunomubicin, bryostatin, camptothecin, 7-substituted campothecin, 10, 11-difluoromethylenedioxycamptothecin, combretastatins, debromoaplysiatoxin, KahaMide-F, discodermolide, and Ecteinascidins.


Non-limiting exemplary enzymatically active toxins that can be conjugated to any of the ACCs described herein include: diphtheria toxin, exotoxin A chain from Pseudomonas aeruginosa, ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, Aleuriies fordii proteins, dianfhin proteins, Phytoiaca Americana proteins (e.g., PAPI, PAPII, and PAP-8), Momordica charantia inhibitor, curcin, crotirs, Sapaonaria officinalis inhibitor, geionin, mitogeliin, restrictocin, phenomycin, neomycin, and tricothecenes.


Non-limiting exemplary anti-neoplastics that can be conjugated to any of the ACCs described herein include: adriamycin, cerubidine, bleomycin, alkeran, velban, oncovin, fluorouracil, methotrexate, thiotepa, bisantrene, novantrone, thioguanine, procarabizine, and cytarabine.


Non-limiting exemplary antivirals that can be conjugated to any of the ACCs described herein include: acyclovir, vira A, and symmetrel.


Non-limiting exemplary antifungals that can be conjugated to any of the ACCs described herein include: nystatin.


Non-limiting exemplary conjugatable detection reagents that can be conjugated to any of the ACCs described herein include: fluorescein and derivatives thereof, fluorescein isothiocyanate (FITC).


Non-limiting exemplary antibacterials that can be conjugated to any of the activatable cytokine constructs described herein include: aminoglycosides, streptomycin, neomycin, kanamycin, amikacin, gentamicin, and tobramycin.


Non-limiting exemplary 3beta,16beta,17alpha-trihydroxycholest-5-en-22-one 16-O-(2-O-4-methoxybenzoyl-beta-D-xylopyranosyl)-(1->3)-(2-O-acetyl-alpha-L-arabinopyranoside) (OSW-1) that can be conjugated to any of the activatable cytokine constructs described herein include: s-nitrobenzyloxycarbonyl derivatives of O6-benzylguanine, topoisomerase inhibitors, hemiasterlin, cephalotaxine, homoharringionine, pyrrol obenzodiazepine dimers (PBDs), functionalized pyrrolobenzodiazepenes, calcicheamicins, podophyiitoxins, taxanes, and vinca alkoids.


Non-limiting exemplary radiopharmaceuticals that can be conjugated to any of the activatable cytokine constructs described herein include: 123I, 89Zr, 125I, 131I, 99mTc, 201T1, 62Cu, 18F, 68Ga, 13N, 15O, 38K, 82Rb, 111In, 133Xe, 11C, and 99mTc (Technetium).


Non-limiting exemplary heavy metals that can be conjugated to any of the ACCs described herein include: barium, gold, and platinum.


Non-limiting exemplary anti-mycoplasmals that can be conjugated to any of the ACCs described herein include: tylosine, spectinomycin, streptomycin B, ampicillin, sulfanilamide, polymyxin, and chloramphenicol.


Those of ordinary skill in the art will recognize that a large variety of possible moieties can be conjugated to any of the activatable cytokine constructs described herein. Conjugation can include any chemical reaction that will bind the two molecules so long as the ACC and the other moiety retain their respective activities. Conjugation can include many chemical mechanisms, e.g., covalent binding, affinity binding, intercalation, coordinate binding, and complexation. In some embodiments, the preferred binding is covalent binding. Covalent binding can be achieved either by direct condensation of existing side chains or by the incorporation of external bridging molecules. Many bivalent or polyvalent linking agents are useful in conjugating any of the activatable cytokine constructs described herein. For example, conjugation can include organic compounds, such as thioesters, carbodiimides, succinimide esters, glutaraldehyde, diazobenzenes, and hexamethylene diamines. In some embodiments, the activatable cytokine construct can include, or otherwise introduce, one or more non-natural amino acid residues to provide suitable sites for conjugation.


In some embodiments of any of the ACCs described herein, an agent and/or conjugate is attached by disulfide bonds (e.g., disulfide bonds on a cysteine molecule) to the antigen-binding domain. Since many cancers naturally release high levels of glutathione, a reducing agent, glutathione present in the cancerous tissue microenvironment can reduce the disulfide bonds, and subsequently release the agent and/or the conjugate at the site of delivery.


In some embodiments of any of the ACCs described herein, when the conjugate binds to its target in the presence of complement within the target site (e.g., diseased tissue (e.g., cancerous tissue)), the amide or ester bond attaching the conjugate and/or agent to the linker is cleaved, resulting in the release of the conjugate and/or agent in its active form. These conjugates and/or agents when administered to a subject, will accomplish delivery and release of the conjugate and/or the agent at the target site (e.g., diseased tissue (e.g., cancerous tissue)). These conjugates and/or agents are particularly effective for the in vivo delivery of any of the conjugates and/or agents described herein.


In some embodiments, the linker is not cleavable by enzymes of the complement system. For example, the conjugate and/or agent is released without complement activation since complement activation ultimately lyses the target cell. In such embodiments, the conjugate and/or agent is to be delivered to the target cell (e.g., hormones, enzymes, corticosteroids, neurotransmitters, or genes). Furthermore, the linker is mildly susceptible to cleavage by serum proteases, and the conjugate and/or agent is released slowly at the target site.


In some embodiments of any of the ACCs described herein, the conjugate and/or agent is designed such that the conjugate and/or agent is delivered to the target site (e.g., disease tissue (e.g., cancerous tissue)) but the conjugate and/or agent is not released.


In some embodiments of any of the ACCs described herein, the conjugate and/or agent is attached to an antigen-binding domain either directly or via a non-cleavable linker. Exemplary non-cleavable linkers include amino acids (e.g., D-amino acids), peptides, or other organic compounds that may be modified to include functional groups that can subsequently be utilized in attachment to antigen-binding domains by methods described herein.


In some embodiments of any of the ACCs described herein, an ACC includes at least one point of conjugation for an agent. In some embodiments, all possible points of conjugation are available for conjugation to an agent. In some embodiments, the one or more points of conjugation include, without limitation, sulfur atoms involved in disulfide bonds, sulfur atoms involved in interchain disulfide bonds, sulfur atoms involved in interchain sulfide bonds but not sulfur atoms involved in intrachain disulfide bonds, and/or sulfur atoms of cysteine or other amino acid residues containing a sulfur atom. In such cases, residues may occur naturally in the protein construct structure or may be incorporated into the protein construct using methods including, without limitation, site-directed mutagenesis, chemical conversion, or mis-incorporation of non-natural amino acids.


This disclosure also provides methods and materials for preparing an ACC for conjugation. In some embodiments of any of the ACCs described herein, an ACC is modified to include one or more interchain disulfide bonds. For example, disulfide bonds in the ACC can undergo reduction following exposure to a reducing agent such as, without limitation, TCEP, DTT, or β-mercaptoethanol. In some cases, the reduction of the disulfide bonds is only partial. As used herein, the term partial reduction refers to situations where an ACC is contacted with a reducing agent and a fraction of all possible sites of conjugation undergo reduction (e.g., not all disulfide bonds are reduced). In some embodiments, an activatable cytokine construct is partially reduced following contact with a reducing agent if less than 99%, (e.g., less than 98%, 97%, 96%, 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10% or less than 5%) of all possible sites of conjugation are reduced. In some embodiments, the ACC having a reduction in one or more interchain disulfide bonds is conjugated to a drug reactive with free thiols.


This disclosure also provides methods and materials for conjugating a therapeutic agent to a particular location on an ACC. In some embodiments of any of the ACC described herein, an ACC is modified so that the therapeutic agents can be conjugated to the ACC at particular locations on the ACC. For example, an ACC can be partially reduced in a manner that facilitates conjugation to the ACC. In such cases, partial reduction of the ACC occurs in a manner that conjugation sites in the ACC are not reduced. In some embodiments, the conjugation site(s) on the ACC are selected to facilitate conjugation of an agent at a particular location on the protein construct. Various factors can influence the “level of reduction” of the ACC upon treatment with a reducing agent. For example, without limitation, the ratio of reducing agent to ACC, length of incubation, incubation temperature, and/or pH of the reducing reaction solution can require optimization in order to achieve partial reduction of the ACC with the methods and materials described herein. Any appropriate combination of factors (e.g., ratio of reducing agent to ACC, the length and temperature of incubation with reducing agent, and/or pH of reducing agent) can be used to achieve partial reduction of the ACC (e.g., general reduction of possible conjugation sites or reduction at specific conjugation sites).


An effective ratio of reducing agent to ACC can be any ratio that at least partially reduces the ACC in a manner that allows conjugation to an agent (e.g., general reduction of possible conjugation sites or reduction at specific conjugation sites). In some embodiments, the ratio of reducing agent to ACC will be in a range from about 20:1 to 1:1, from about 10:1 to 1:1, from about 9:1 to 1:1, from about 8:1 to 1:1, from about 7:1 to 1:1, from about 6:1 to 1:1, from about 5:1 to 1:1, from about 4:1 to 1:1, from about 3:1 to 1:1, from about 2:1 to 1:1, from about 20:1 to 1:1.5, from about 10:1 to 1:1.5, from about 9:1 to 1:1.5, from about 8:1 to 1:1.5, from about 7:1 to 1:1.5, from about 6:1 to 1:1.5, from about 5:1 to 1:1.5, from about 4:1 to 1:1.5, from about 3:1 to 1:1.5, from about 2:1 to 1:1.5, from about 1.5:1 to 1:1.5, or from about 1:1 to 1:1.5. In some embodiments, the ratio is in a range of from about 5:1 to 1:1. In some embodiments, the ratio is in a range of from about 5:1 to 1.5:1. In some embodiments, the ratio is in a range of from about 4:1 to 1:1. In some embodiments, the ratio is in a range from about 4:1 to 1.5:1. In some embodiments, the ratio is in a range from about 8:1 to about 1:1. In some embodiments, the ratio is in a range of from about 2.5:1 to 1:1.


An effective incubation time and temperature for treating an ACC with a reducing agent can be any time and temperature that at least partially reduces the ACC in a manner that allows conjugation of an agent to an ACC (e.g., general reduction of possible conjugation sites or reduction at specific conjugation sites). In some embodiments, the incubation time and temperature for treating an ACC will be in a range from about 1 hour at 37° C. to about 12 hours at 37° C. (or any subranges therein).


An effective pH for a reduction reaction for treating an ACC with a reducing agent can be any pH that at least partially reduces the ACC in a manner that allows conjugation of the ACC to an agent (e.g., general reduction of possible conjugation sites or reduction at specific conjugation sites).


When a partially-reduced ACC is contacted with an agent containing thiols, the agent can conjugate to the interchain thiols in the ACC. An agent can be modified in a manner to include thiols using a thiol-containing reagent (e.g., cysteine or N-acetyl cysteine). For example, the ACC can be partially reduced following incubation with reducing agent (e.g., TEPC) for about 1 hour at about 37° C. at a desired ratio of reducing agent to ACC. An effective ratio of reducing agent to ACC can be any ratio that partially reduces at least two interchain disulfide bonds located in the ACC in a manner that allows conjugation of a thiol-containing agent (e.g., general reduction of possible conjugation sites or reduction at specific conjugation sites).


In some embodiments of any of the ACCs described herein, an ACC is reduced by a reducing agent in a manner that avoids reducing any intrachain disulfide bonds. In some embodiments of any of the ACCs described herein, an ACC is reduced by a reducing agent in a manner that avoids reducing any intrachain disulfide bonds and reduces at least one interchain disulfide bond.


In some embodiments of any of the ACCs described herein, the ACC can also include an agent conjugated to the ACC. In some embodiments, the conjugated agent is a therapeutic agent.


In some embodiments, the agent (e.g., agent conjugated to an activatable cytokine construct) is a detectable moiety such as, for example, a label or other marker. For example, the agent is or includes a radiolabeled amino acid, one or more biotinyl moieties that can be detected by marked avidin (e.g., streptavidin containing a fluorescent marker or enzymatic activity that can be detected by optical or calorimetric methods), one or more radioisotopes or radionuclides, one or more fluorescent labels, one or more enzymatic labels, and/or one or more chemiluminescent agents. In some embodiments, detectable moieties are attached by spacer molecules.


In some embodiments, the agent (e.g., cytotoxic agent conjugated to an activatable cytokine construct) is linked to the ACC using a carbohydrate moiety, sulfhydryl group, amino group, or carboxylate group.


In some embodiments of any of the ACCs described herein conjugated to an agent, the agent (e.g., cytotoxic agent conjugated to an activatable cytokine construct) is conjugated to the ACC via a linker and/or a CM (also referred to as a cleavable sequence). In some embodiments, the agent (e.g., cytotoxic agent conjugated to an activatable cytokine construct) is conjugated to a cysteine or a lysine in the ACC. In some embodiments, the agent (e.g., cytotoxic agent conjugated to an activatable cytokine construct) is conjugated to another residue of the ACC, such as those residues disclosed herein. In some embodiments, the linker is a thiol-containing linker. In some embodiments, the linker is a non-cleavable linker. Some non-limiting examples of cleavable moieties and linkers are provided in Table 1.










TABLE 1





Types of CMs
Amino Acid Sequence
















Plasmin CMs



Pro-urokinase
PRFKIIGG (SEQ ID NO: 280)



PRFRIIGG (SEQ ID NO: 281)





TGFß
SSRHRRALD (SEQ ID NO: 282)





Plasminogen
RKSSIIIRMRDVVL (SEQ ID NO: 283)





Staphylokinase
SSSFDKGKYKKGDDA (SEQ ID NO: 284)



SSSFDKGKYKRGDDA (SEQ ID NO: 285)





Factor Xa CMs




IEGR (SEQ ID NO: 286)



IDGR (SEQ ID NO: 287)



GGSIDGR (SEQ ID NO: 288)





MMP CMs



Gelatinase A
PLGLWA (SEQ ID NO: 289)





Collagenase CMs



Calf skin collagen (α1(I) chain)
GPQGIAGQ (SEQ ID NO: 290)





Calf skin collagen (α2(I) chain)
GPQGLLGA (SEQ ID NO: 291)





Bovine cartilage collagen
GIAGQ (SEQ ID NO: 292)


(α1(II) chain)






Human liver collagen
GPLGIAGI (SEQ ID NO: 293)


(α1(III) chain)






Human α2M
GPEGLRVG (SEQ ID NO: 294)





Human PZP
YGAGLGVV (SEQ ID NO: 295)



AGLGVVER (SEQ ID NO: 296)



AGLGISST (SEQ ID NO: 297)





Rat α1M
EPQALAMS (SEQ ID NO: 298)



QALAMSAI (SEQ ID NO: 299)





Rat α2M
AAYHLVSQ (SEQ ID NO: 300)



MDAFLESS (SEQ ID NO: 301)





Rat α1I3(2J)
ESLPVVAV (SEQ ID NO: 302)





Rat α1I3(27J)
SAPAVESE (SEQ ID NO: 303)





Human fibroblast collagenase
DVAQFVLT (SEQ ID NO: 304)


(autolytic cleavages)
VAQFVLT (SEQ ID NO: 305)



VAQFVLTE (SEQ ID NO: 306)



AQFVLTEG (SEQ ID NO: 307)



PVQPIGPQ (SEQ ID NO: 308)









Those of ordinary skill in the art will recognize that a large variety of possible moieties can be coupled to the ACCs of the disclosure. (See, for example, “Conjugate Vaccines”, Contributions to Microbiology and Immunology, J. M. Cruse and R. E. Lewis, Jr (eds), Carger Press, New York, (1989), the entire contents of which are incorporated herein by reference). In general, an effective conjugation of an agent (e.g., cytotoxic agent) to an ACC can be accomplished by any chemical reaction that will bind the agent to the ACC while also allowing the agent and the ACC to retain functionality.


In some embodiments of any of the ACCs conjugated to an agent, a variety of bifunctional protein-coupling agents can be used to conjugate the agent to the ACC including, without limitation, N-succinimidyl-3-(2-pyridyldithiol) propionate (SPDP), iminothiolane (IT), bifunctional derivatives of imidoesters (e.g., dimethyl adipimidate HCL), active esters (e.g., disuccinimidyl suberate), aldehydes (e.g., glutareldehyde), bis-azido compounds (e.g., bis (p-azidobenzoyl) hexanediamine), bis-diazonium derivatives (e.g., bis-(p-diazoniumbenzoyl)-ethylenediamine), diisocyanates (e.g., tolyene 2,6-diisocyanate), and bis-active fluorine compounds (e.g., 1,5-difluoro-2,4-dinitrobenzene). For example, a ricin immunotoxin can be prepared as described in Vitetta et al., Science 238: 1098 (1987). In some embodiments, a carbon-14-labeled 1-isothiocyanatobenzyl-3-methyldiethylene triaminepentaacetic acid (MX-DTPA) chelating agent can be used to conjugate a radionucleotide to the ACC. (See, e.g., WO94/11026).


Suitable linkers and CMs are described in the literature. (See, for example, Ramakrishnan, S. et al., Cancer Res. 44:201-208 (1984) describing use of MBS (M-maleimidobenzoyl-N-hydroxysuccinimide ester). See also, U.S. Pat. No. 5,030,719, describing use of halogenated acetyl hydrazide derivative coupled to an ACC by way of an oligopeptide linker. In some embodiments, suitable linkers include: (i) EDC (i-ethyl-3-(3-dimethylamino-propyl) carbodiimide hydrochloride; (ii) SMPT (4-succinimidyloxycarbonyl-alpha-methyl-alpha-(2-pridyl-dithio)-toluene (Pierce Chem. Co., Cat. (21558G); (iii) SPDP (succinimidyl-6 [3-(2-pyridyldithio) propionamido]hexanoate (Pierce Chem. Co., Cat #21651G); (iv) Sulfo-LC-SPDP (sulfosuccinimidyl 6 [3-(2-pyridyldithio)-propianamide] hexanoate (Pierce Chem. Co. Cat. #2165-G); and (v) sulfo-NHS (N-hydroxysulfo-succinimide: Pierce Chem. Co., Cat. #24510) conjugated to EDC. Additional linkers include, but are not limited to, SMCC, sulfo-SMCC, SPDB, or sulfo-SPDB.


The CMs and linkers described above contain components that have different attributes, thus leading to conjugates with differing physio-chemical properties. For example, sulfo-NHS esters of alkyl carboxylates are more stable than sulfo-NHS esters of aromatic carboxylates. NHS-ester containing linkers are less soluble than sulfo-NHS esters. Further, the linker SMPT contains a sterically-hindered disulfide bond, and can form conjugates with increased stability. Disulfide linkages, are in general, less stable than other linkages because the disulfide linkage is cleaved in vitro, resulting in less conjugate available. Sulfo-NHS, in particular, can enhance the stability of carbodimide couplings. Carbodimide couplings (such as EDC) when used in conjunction with sulfo-NHS, forms esters that are more resistant to hydrolysis than the carbodimide coupling reaction alone.


In some embodiments of any of the ACCs, an agent can be conjugated to the ACC using a modified amino acid sequence included in the amino acid sequence of the ACC. By inserting conjugation-enabled amino acids at specific locations within the amino acid sequence of the ACC, the protein construct can be designed for controlled placement and/or dosage of the conjugated agent (e.g., cytotoxic agent). For example, the ACC can be modified to include a cysteine amino acid residue at positions on the first monomer, the second monomer, the third monomer, and/or the fourth monomer that provide reactive thiol groups and does not negatively impact protein folding and/or assembly and does not alter antigen-binding properties. In some embodiments, the ACC can be modified to include one or more non-natural amino acid residues within the amino acid sequence of the ACC to provide suitable sites for conjugation. In some embodiments, the ACC can be modified to include enzymatically activatable peptide sequences within the amino acid sequence of the ACC.


Nucleic Acids

Provided herein are nucleic acids including sequences that encode the first monomer construct (or the protein portion of the first monomer construct)(e.g., any of the first monomers constructs described herein) and the second monomer construct (or the protein portion of the second monomer construct)(e.g., any of the second monomer constructs described herein) of any of the ACCs described herein. In some embodiments, a pair of nucleic acids together encode the first monomer construct (or the protein portion of the first monomer construct) and the second monomer construct (or the protein portion of the second monomer construct). In some embodiments, the nucleic acid sequence encoding the first monomer construct (or the protein portion of the first monomer construct) is at least 70% identical (e.g., at least 72% identical, at least 74% identical, at least 76% identical, at least 78% identical, at least 80% identical, at least 82% identical, at least 84% identical, at least 86% identical, at least 88% identical, at least 90% identical, at least 92% identical, at least 94% identical, at least 96% identical, at least 98% identical, at least 99% identical, or 100% identical) to the nucleic acid sequence encoding the second monomer construct (or the protein portion of the second monomer construct).


In some embodiments, the nucleic acid encoding the protein portion of a first monomer construct encodes a polypeptide comprising the CP1 and CM1 moieties. In some embodiments, the nucleic acid encoding the protein portion of a second monomer encodes a polypeptide comprising the CP2 and CM2 moieties. In some embodiments, a pair of nucleic acids together encode the protein portion of a first monomer construct and the protein portion of the second monomer construct, wherein the protein portions are then conjugated to the DD1 and DD2 moieties, respectively (in a subsequent conjugation step).


In some embodiments, the nucleic acid encoding the first monomer construct encodes a polypeptide comprising the DD1 moiety. In some embodiments, the nucleic acid encoding the second monomer construct encodes a polypeptide comprising the DD2 moiety.


Vectors

Provided herein are vectors and sets of vectors including any of the nucleic acids described herein. One skilled in the art will be capable of selecting suitable vectors or sets of vectors (e.g., expression vectors) for making any of the ACCs described herein, and using the vectors or sets of vectors to express any of the ACCs described herein. For example, in selecting a vector or a set of vectors, the cell must be considered because the vector(s) may need to be able to integrate into a chromosome of the cell and/or replicate in it. Exemplary vectors that can be used to produce an ACC are also described below.


As used herein, the term “vector” refers to a polynucleotide capable of inducing the expression of a recombinant protein (e.g., a first or second monomer) in a cell (e.g., any of the cells described herein). A “vector” is able to deliver nucleic acids and fragments thereof into a host cell, and includes regulatory sequences (e.g., promoter, enhancer, poly(A) signal). Exogenous polynucleotides may be inserted into the expression vector in order to be expressed. The term “vector” also includes artificial chromosomes, plasmids, retroviruses, and baculovirus vectors.


Methods for constructing suitable vectors that include any of the nucleic acids described herein, and suitable for transforming cells (e.g., mammalian cells) are well-known in the art. See, e.g., Sambrook et al., Eds. “Molecular Cloning: A Laboratory Manual,” 2nd Ed., Cold Spring Harbor Press, 1989 and Ausubel et al., Eds. “Current Protocols in Molecular Biology,” Current Protocols, 1993.


Non-limiting examples of vectors include plasmids, transposons, cosmids, and viral vectors (e.g., any adenoviral vectors (e.g., pSV or pCMV vectors), adeno-associated virus (AAV) vectors, lentivirus vectors, and retroviral vectors), and any Gateway® vectors. A vector can, for example, include sufficient cis-acting elements for expression; other elements for expression can be supplied by the host mammalian cell or in an in vitro expression system. Skilled practitioners will be capable of selecting suitable vectors and mammalian cells for making any of the ACCs described herein.


In some embodiments of any of the ACCs described herein, the ACC may be made biosynthetically using recombinant DNA technology and expression in eukaryotic or prokaryotic species.


In some embodiments, the vector includes a nucleic acid encoding the first monomer and the second monomer of any of the ACCs described herein. In some embodiments, the vector is an expression vector.


In some embodiments, a pair of vectors together include a pair of nucleic acids that together encode the first monomer and the second monomer of any of the ACCs described herein. In some embodiments, the pair of vectors is a pair of expression vectors.


Cells

Also provided herein are host cells including any of the vector or sets of vectors described herein including any of the nucleic acids described herein.


Any of the ACCs described herein can be produced by any cell (e.g., a mammalian cell). In some embodiments, a host cell is a mammalian cell (e.g., a human cell), a rodent cell (e.g., a mouse cell, a rat cell, a hamster cell, or a guinea pig cell), or a non-human primate cell.


Methods of introducing nucleic acids and vectors (e.g., any of the vectors or any of the sets of vectors described herein) into a cell are known in the art. Non-limiting examples of methods that can be used to introducing a nucleic acid into a cell include: lipofection, transfection, calcium phosphate transfection, cationic polymer transfection, viral transduction (e.g., adenoviral transduction, lentiviral transduction), nanoparticle transfection, and electroporation.


In some embodiments, the introducing step includes introducing into a cell a vector (e.g., any of the vectors or sets of vectors described herein) including a nucleic acid encoding the monomers that make up any of the ACCs described herein.


In some embodiments of any of the methods described herein, the cell can be a eukaryotic cell. As used herein, the term “eukaryotic cell” refers to a cell having a distinct, membrane-bound nucleus. Such cells may include, for example, mammalian (e.g., rodent, non-human primate, or human), insect, fungal, or plant cells. In some embodiments, the eukaryotic cell is a yeast cell, such as Saccharomyces cerevisiae. In some embodiments, the eukaryotic cell is a higher eukaryote, such as mammalian, avian, plant, or insect cells. Non-limiting examples of mammalian cells include Chinese hamster ovary (CHO) cells and human embryonic kidney cells (e.g., HEK293 cells).


In some embodiments, the cell contains the nucleic acid encoding the first monomer and the second monomer of any one of the ACCs described herein. In some embodiments, the cell contains the pair of nucleic acids that together encode the first monomer and the second monomer of any of the ACCs described herein.


Methods of Producing Activatable Cytokine Constructs

Provided herein are methods of producing any of the ACCs described herein that include: (a) culturing any of the recombinant host cells described herein in a liquid culture medium under conditions sufficient to produce the ACC; and (b) recovering the ACC from the host cell and/or the liquid culture medium.


Methods of culturing cells are well known in the art. Cells can be maintained in vitro under conditions that favor cell proliferation, cell differentiation and cell growth. For example, cells can be cultured by contacting a cell (e.g., any of the cells described herein) with a cell culture medium that includes the necessary growth factors and supplements sufficient to support cell viability and growth.


In some embodiments of any of the methods described herein, the method further includes isolating the recovered ACC. Non-limiting examples of methods of isolation include: ammonium sulfate precipitation, polyethylene glycol precipitation, size exclusion chromatography, ligand-affinity chromatography, ion-exchange chromatography (e.g., anion or cation), and hydrophobic interaction chromatography.


In some embodiments, the cells can produce a protein portion of a first monomer construct that includes the CP1, the CM1, the PM2, and the CM3, and a protein portion of a second monomer construct that includes the CP2, and the CM2, and optionally the PM2 and the CM4, and then the protein portions are subsequently conjugated to the DD1 and DD2 moieties, respectively.


Compositions and methods described herein may involve use of non-reducing or partially-reducing conditions that allow disulfide bonds to form between the dimerization domains to form and maintain dimerization of the ACCs.


In some embodiments of any of the methods described herein, the method further includes formulating the isolated ACC into a pharmaceutical composition. Various formulations are known in the art and are described herein. Any of the isolated ACCs described herein can be formulated for any route of administration (e.g., intravenous, intratumoral, subcutaneous, intradermal, oral (e.g., inhalation), transdermal (e.g., topical), transmucosal, or intramuscular).


Also provided herein are ACCs produced by any of the methods described herein. Also provided are compositions (e.g., pharmaceutical compositions) that include any of the ACCs produced by any of the methods described herein. Also provided herein are kits that include at least one dose of any of the compositions (e.g., pharmaceutical compositions) described herein.


Methods of Treatment

Provided herein are methods of treating a disease (e.g., a cancer (e.g., any of the cancers described herein)) in a subject including administering a therapeutically effective amount of any of the ACCs described herein to the subject.


As used herein, the term “subject” refers to any mammal. In some embodiments, the subject is a feline (e.g., a cat), a canine (e.g., a dog), an equine (e.g., a horse), a rabbit, a pig, a rodent (e.g., a mouse, a rat, a hamster or a guinea pig), a non-human primate (e.g., a simian (e.g., a monkey (e.g., a baboon, a marmoset), or an ape (e.g., a chimpanzee, a gorilla, an orangutan, or a gibbon)), or a human. In some embodiments, the subject is a human.


In some embodiments, the subject has been previously identified or diagnosed as having the disease (e.g., cancer (e.g., any of the cancers described herein)).


As used herein, the term “treat” includes reducing the severity, frequency or the number of one or more (e.g., 1, 2, 3, 4, or 5) symptoms or signs of a disease (e.g., a cancer (e.g., any of the cancers described herein)) in the subject (e.g., any of the subjects described herein). In some embodiments where the disease is cancer, treating results in reducing cancer growth, inhibiting cancer progression, inhibiting cancer metastasis, or reducing the risk of cancer recurrence in a subject having cancer.


In some embodiments of any of the methods described herein, the disease is a cancer. Also provided herein are methods of treating a subject in need thereof (e.g., any of the exemplary subjects described herein or known in the art) that include administering to the subject a therapeutically effective amount of any of the ACCs described herein or any of the compositions (e.g., pharmaceutical compositions) described herein.


In some embodiments of these methods, the subject has been identified or diagnosed as having a cancer. Non-limiting examples of cancer include: solid tumor, hematological tumor, sarcoma, osteosarcoma, glioblastoma, neuroblastoma, melanoma, rhabdomyosarcoma, Ewing sarcoma, osteosarcoma, B-cell neoplasms, multiple myeloma, a lymphoma (e.g., B-cell lymphoma, B-cell non-Hodgkin's lymphoma, Hodgkin's lymphoma, cutaneous T-cell lymphoma), a leukemia (e.g., hairy cell leukemia, chronic lymphocytic leukemia (CLL), acute myeloid leukemia (AML), chronic myeloid leukemia (CML), acute lymphocytic leukemia (ALL)), myelodysplastic syndromes (MDS), Kaposi sarcoma, retinoblastoma, stomach cancer, urothelial carcinoma, lung cancer, renal cell carcinoma, gastric and esophageal cancer, pancreatic cancer, prostate cancer, brain cancer, colon cancer, bone cancer, lung cancer, breast cancer, colorectal cancer, ovarian cancer, nasopharyngeal adenocarcinoma, non-small cell lung carcinoma (NSCLC), squamous cell head and neck carcinoma, endometrial cancer, bladder cancer, cervical cancer, liver cancer, and hepatocellular carcinoma. In some embodiments, the cancer is a lymphoma. In some embodiments, the lymphoma is Burkitt's lymphoma. In some aspects, the subject has been identified or diagnosed as having familial cancer syndromes such as Li Fraumeni Syndrome, Familial Breast-Ovarian Cancer (BRCA1 or BRAC2 mutations) Syndromes, and others. The disclosed methods are also useful in treating non-solid cancers. Exemplary solid tumors include malignancies (e.g., sarcomas, adenocarcinomas, and carcinomas) of the various organ systems, such as those of lung, breast, lymphoid, gastrointestinal (e.g., colon), and genitourinary (e.g., renal, urothelial, or testicular tumors) tracts, pharynx, prostate, and ovary. Exemplary adenocarcinomas include colorectal cancers, renal-cell carcinoma, liver cancer, non-small cell carcinoma of the lung, and cancer of the small intestine.


Exemplary cancers described by the National Cancer Institute include: Acute Lymphoblastic Leukemia, Adult; Acute Lymphoblastic Leukemia, Childhood; Acute Myeloid Leukemia, Adult; Adrenocortical Carcinoma; Adrenocortical Carcinoma, Childhood; AIDS-Related Lymphoma; AIDS-Related Malignancies; Anal Cancer; Astrocytoma, Childhood Cerebellar; Astrocytoma, Childhood Cerebral; Bile Duct Cancer, Extrahepatic; Bladder Cancer; Bladder Cancer, Childhood; Bone Cancer, Osteosarcoma/Malignant Fibrous Histiocytoma; Brain Stem Glioma, Childhood; Brain Tumor, Adult; Brain Tumor, Brain Stem Glioma, Childhood; Brain Tumor, Cerebellar Astrocytoma, Childhood; Brain Tumor, Cerebral Astrocytoma/Malignant Glioma, Childhood; Brain Tumor, Ependymoma, Childhood; Brain Tumor, Medulloblastoma, Childhood; Brain Tumor, Supratentorial Primitive Neuroectodermal Tumors, Childhood; Brain Tumor, Visual Pathway and Hypothalamic Glioma, Childhood; Brain Tumor, Childhood (Other); Breast Cancer, Breast Cancer and Pregnancy; Breast Cancer, Childhood; Breast Cancer, Male; Bronchial Adenomas/Carcinoids, Childhood; Carcinoid Tumor, Childhood; Carcinoid Tumor, Gastrointestinal; Carcinoma, Adrenocortical; Carcinoma, Islet Cell; Carcinoma of Unknown Primary; Central Nervous System Lymphoma, Primary; Cerebellar Astrocytoma, Childhood; Cerebral Astrocytoma/Malignant Glioma, Childhood; Cervical Cancer; Childhood Cancers; Chronic Lymphocytic Leukemia; Chronic Myelogenous Leukemia; Chronic Myeloproliferative Disorders; Clear Cell Sarcoma of Tendon Sheaths; Colon Cancer; Colorectal Cancer, Childhood; Cutaneous T-Cell Lymphoma; Endometrial Cancer; Ependymoma, Childhood; Epithelial Cancer, Ovarian; Esophageal Cancer; Esophageal Cancer, Childhood; Ewing's Family of Tumors; Extracranial Germ Cell Tumor, Childhood; Extragonadal Germ Cell Tumor; Extrahepatic Bile Duct Cancer; Eye Cancer, Intraocular Melanoma; Eye Cancer, Retinoblastoma; Gallbladder Cancer; Gastric (Stomach) Cancer; Gastric (Stomach) Cancer, Childhood; Gastrointestinal Carcinoid Tumor; Germ Cell Tumor, Extracranial, Childhood; Germ Cell Tumor, Extragonadal; Germ Cell Tumor, Ovarian; Gestational Trophoblastic Tumor; Glioma, Childhood Brain Stem; Glioma, Childhood Visual Pathway and Hypothalamic; Hairy Cell Leukemia; Head and Neck Cancer; Hepatocellular (Liver) Cancer, Adult (Primary); Hepatocellular (Liver) Cancer, Childhood (Primary); Hodgkin's Lymphoma, Adult; Hodgkin's Lymphoma, Childhood; Hodgkin's Lymphoma During Pregnancy; Hypopharyngeal Cancer; Hypothalamic and Visual Pathway Glioma, Childhood; Intraocular Melanoma; Islet Cell Carcinoma (Endocrine Pancreas); Kaposi's Sarcoma; Kidney Cancer; Laryngeal Cancer; Laryngeal Cancer, Childhood; Leukemia, Acute Lymphoblastic, Adult; Leukemia, Acute Lymphoblastic, Childhood; Leukemia, Acute Myeloid, Adult; Leukemia, Acute Myeloid, Childhood; Leukemia, Chronic Lymphocytic; Leukemia, Chronic Myelogenous; Leukemia, Hairy Cell; Lip and Oral Cavity Cancer, Liver Cancer, Adult (Primary); Liver Cancer, Childhood (Primary); Lung Cancer, Non-Small Cell; Lung Cancer, Small Cell; Lymphoblastic Leukemia, Adult Acute; Lymphoblastic Leukemia, Childhood Acute; Lymphocytic Leukemia, Chronic; Lymphoma, AIDS-Related; Lymphoma, Central Nervous System (Primary); Lymphoma, Cutaneous T-Cell; Lymphoma, Hodgkin's, Adult; Lymphoma, Hodgkin's, Childhood; Lymphoma, Hodgkin's During Pregnancy; Lymphoma, Non-Hodgkin's, Adult; Lymphoma, Non-Hodgkin's, Childhood; Lymphoma, Non-Hodgkin's During Pregnancy; Lymphoma, Primary Central Nervous System; Macroglobulinemia, Waldenstrom's; Male Breast Cancer; Malignant Mesothelioma, Adult; Malignant Mesothelioma, Childhood; Malignant Thymoma; Medulloblastoma, Childhood; Melanoma; Melanoma, Intraocular; Merkel Cell Carcinoma; Mesothelioma, Malignant; Metastatic Squamous Neck Cancer with Occult Primary; Multiple Endocrine Neoplasia Syndrome, Childhood; Multiple Myeloma/Plasma Cell Neoplasm; Mycosis Fungoides; Myelodysplastic Syndromes; Myelogenous Leukemia, Chronic; Myeloid Leukemia, Childhood Acute; Myeloma, Multiple; Myeloproliferative Disorders, Chronic; Nasal Cavity and Paranasal Sinus Cancer; Nasopharyngeal Cancer; Nasopharyngeal Cancer, Childhood; Neuroblastoma; Non-Hodgkin's Lymphoma, Adult; Non-Hodgkin's Lymphoma, Childhood; Non-Hodgkin's Lymphoma During Pregnancy; Non-Small Cell Lung Cancer; Oral Cancer, Childhood; Oral Cavity and Lip Cancer; Oropharyngeal Cancer; Osteosarcoma/Malignant Fibrous Histiocytoma of Bone; Ovarian Cancer, Childhood; Ovarian Epithelial Cancer; Ovarian Germ Cell Tumor; Ovarian Low Malignant Potential Tumor; Pancreatic Cancer; Pancreatic Cancer, Childhood; Pancreatic Cancer, Islet Cell; Paranasal Sinus and Nasal Cavity Cancer; Parathyroid Cancer, Penile Cancer; Pheochromocytoma; Pineal and Supratentorial Primitive Neuroectodermal Tumors, Childhood; Pituitary Tumor; Plasma Cell Neoplasm/Multiple Myeloma; Pleuropulmonary Blastoma; Pregnancy and Breast Cancer; Pregnancy and Hodgkin's Lymphoma; Pregnancy and Non-Hodgkin's Lymphoma; Primary Central Nervous System Lymphoma; Primary Liver Cancer, Adult; Primary Liver Cancer, Childhood; Prostate Cancer; Rectal Cancer; Renal Cell (Kidney) Cancer; Renal Cell Cancer, Childhood; Renal Pelvis and Ureter, Transitional Cell Cancer; Retinoblastoma; Rhabdomyosarcoma, Childhood; Salivary Gland Cancer; Salivary Gland Cancer, Childhood; Sarcoma, Ewing's Family of Tumors; Sarcoma, Kaposi's; Sarcoma (Osteosarcoma)/Malignant Fibrous Histiocytoma of Bone; Sarcoma, Rhabdomyosarcoma, Childhood; Sarcoma, Soft Tissue, Adult; Sarcoma, Soft Tissue, Childhood; Sezary Syndrome; Skin Cancer; Skin Cancer, Childhood; Skin Cancer (Melanoma); Skin Carcinoma, Merkel Cell; Small Cell Lung Cancer; Small Intestine Cancer; Soft Tissue Sarcoma, Adult; Soft Tissue Sarcoma, Childhood; Squamous Neck Cancer with Occult Primary, Metastatic; Stomach (Gastric) Cancer; Stomach (Gastric) Cancer, Childhood; Supratentorial Primitive Neuroectodermal Tumors, Childhood; T-Cell Lymphoma, Cutaneous; Testicular Cancer; Thymoma, Childhood; Thymoma, Malignant; Thyroid Cancer; Thyroid Cancer, Childhood; Transitional Cell Cancer of the Renal Pelvis and Ureter; Trophoblastic Tumor, Gestational; Unknown Primary Site, Cancer of, Childhood; Unusual Cancers of Childhood; Ureter and Renal Pelvis, Transitional Cell Cancer, Urethral Cancer; Uterine Sarcoma; Vaginal Cancer; Visual Pathway and Hypothalamic Glioma, Childhood; Vulvar Cancer; Waldenstrom's Macro globulinemia; and Wilms' Tumor.


Further exemplary cancers include diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL).


Metastases of the aforementioned cancers can also be treated or prevented in accordance with the methods described herein.


In some embodiments, these methods can result in a reduction in the number, severity, or frequency of one or more symptoms of the cancer in the subject (e.g., as compared to the number, severity, or frequency of the one or more symptoms of the cancer in the subject prior to treatment).


In some embodiments of any of the methods described herein, the methods further include administering to a subject an additional therapeutic agent (e.g., one or more of the therapeutic agents listed in Table 2).









TABLE 2







Additional Therapeutic Agents








Antibody Trade Name (antibody name)
Target





Raptiva ™ (efalizumab)
CD11a


Arzerra ™ (ofatumumab)
CD20


Bexxar ™ (tositumomab)
CD20


Gazyva ™ (obinutuzumab)
CD20


Ocrevus ™ (ocrelizumab)
CD20


Rituxan ™ (rituximab)
CD20


Zevalin ™ (ibritumomab tiuxetan)
CD20


Adcetris ™ (brentuximab vedotin)
CD30


Myelotarg ™ (gemtuzumab)
CD33


Mylotarg ™ (gemtuzumab ozogamicin)
CD33


(vadastuximab)
CD33


(vadastuximab talirine)
CD33


Campath ™ (alemtuzumab)
CD52


Lemtrada ™ (alemtuzumab)
CD52


Tactress ™ (tamtuve ™ab)
CD52


Soliris ™ (eculizumab)
Complement C5


Ultomiris ™ (ravulizumab)
Complement C5


(olendalizumab)
Complement C5


Yervoy ™ (ipilimumab)
CTLA-4


(tremelimumab)
CTLA-4


Orencia ™ (abatacept)
CTLA-4


Hu5c8
CD40L


(letolizumab)
CD40L


Rexomun ™ (ertumaxomab)
CD3/Her2


Erbitux ™ (cetuximab)
EGFR


Portrazza ™ (necitumumab)
EGFR


Vectibix ™ (panitumumab)
EGFR


CH806
EGFR


(depatuxizumab)
EGFR


(depatuxizumab mafodotin)
EGFR


(futuximab:modotuximab)
EGFR


ICR62 (imgatuzumab)
EGFR


(laprituximab)
EGFR


(losatuxizumab)
EGFR


(losatuxizumab vedotin)
EGFR


mAb 528
EGFR


(matuzumab)
EGFR


(nimotuzumab)
EGFR


(tomuzotuximab)
EGFR


(zalutumumab)
EGFR


MDX-447
EGFR/CD64


(adecatumumab)
EpCAM


Panorex ™ (edrecolomab)
EpCAM


Vicinium ™
EpCAM


Synagis ™ (palivizumab)
F protein of RSV


ReoPro ™ (abiciximab)
Glycoprotein receptor IIb/IIIa


Herceptin ™ (trastuzumab)
Her2


Herceptin ™ Hylecta (trastuzumab;
Her2


Hyaluronidase)


(trastuzumab deruxtecan)
Her2


(hertuzumab verdotin)
Her2


Kadcyla ™ (trastuzumab emtansine)
Her2


(margetuximab)
Her2


(timigutuzumab)
Her2


Xolair ™ (omalizumab)
IgE


(ligelizumab)
IgE


(figitumumab)
IGF1R


(teprotumumab)
IGF1R


Simulect ™ (basiliximab)
IL2R


Zenapax ™ (daclizumab)
IL2R


Zinbryta ™ (daclizumab)
IL2R


Actemra ™ (tocilizumab)
IL-6 receptor


Kevzara ™ (sarilumab)
IL-6 receptor


(vobarilizumab)
IL-6 receptor


Stelara ™ (ustekinumab)
IL-12/IL-23


Tysabri ™ (natalizumab)
Integrinα4


(abrilumab)
Integrinα4



Jagged 1 or Jagged 2


(fasinumab)
NGF


(fulranumab)
NGF


(tanezumab)
NGF



Notch, e.g., Notch 1


Pidilizumab
Delta like-1 (PD-1 pathway



inhibitor)


Opdivo ® (nivolumab)
PD1


Keytruda ® (pembrolizumab)
PD1


Libtayo ® (cemiplimab)
PD1


BGB-A317 (tislelizumab)
PD1


PDR001 (spartalizumab)
PD1


JNJ-63723283 (cetrelimab)
PD1


TSR042 (dostarlimab)
PD1


AGEN2034 (balstilimab)
PD1


JS001 (toripalimab)
PD1


IOBI308 (sintilimab)
PD1


BCD100 (prolgolimab)
PD1


CBT-501 (genolimzumab
PD1


ABBV181 (budigalimab)
PD1


AK105
PD1


BI-754091
PD1


INCSHR-1210
PD1


MEDI0680
PD1


MGA012
PD1


SHR-1210
PD1


Imfinzi ™ (durvalumab)
PD-L1


Tecentriq ® (atezolizumab)
PD-L1


Bavencio ® (avelumab)
PD-L1


KN035 (envafolimab)
PD-L1


BMS936559 (MDX1105)
PD-L1


BGBA 333
PD-L1


FAZ053
PD-L1


LY-3300054
PD-L1


SH-1316
PD-L1


AMP-224
PD-L2


(bavituximab)
Phosphatidylserine


huJ591
PSMA


RAV12
RAAG12


Prolia ™ (denosumab)
RANKL


GC1008 (fresolimumab)
TGFbeta


Cimzia ™ (Certolizumab Pegol)
TNFα


Remicade ™ (infliximab)
TNFα


Humira ™ (adalimumab)
TNFα


Simponi ™ (golimumab)
TNFα


Enbrel ™ (etanercept)
TNF-R


(mapatumumab)
TRAIL-R1


Avastin ™ (bevacizumab)
VEGF


Lucentis ™ (ranibizumab)
VEGF


(brolucizumab)
VEGF


(vanucizumab)
VEGF









Compositions/Kits

Also provided herein are compositions (e.g., pharmaceutical compositions) including any of the ACCs described herein and one or more (e.g., 1, 2, 3, 4, or 5) pharmaceutically acceptable carriers (e.g., any of the pharmaceutically acceptable carriers described herein), diluents, or excipients.


In some embodiments, the compositions (e.g. pharmaceutical compositions) that include any of the ACCs described herein can be disposed in a sterile vial or a pre-loaded syringe.


In some embodiments, the compositions (e.g. pharmaceutical compositions) that include any of the ACCs described herein can be formulated for different routes of administration (e.g., intravenous, subcutaneous, intramuscular, intraperitoneal, or intratumoral).


In some embodiments, any of the pharmaceutical compositions described herein can include one or more buffers (e.g., a neutral-buffered saline, a phosphate-buffered saline (PBS), amino acids (e.g., glycine), one or more carbohydrates (e.g., glucose, mannose, sucrose, dextran, or mannitol), one or more antioxidants, one or more chelating agents (e.g., EDTA or glutathione), one or more preservatives, and/or a pharmaceutically acceptable carrier (e.g., bacteriostatic water, PBS, or saline).


As used herein, the phrase “pharmaceutically acceptable carrier” refers to any and all solvents, dispersion media, coatings, antibacterial agents, antimicrobial agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. Suitable carriers include, but are not limited to: water, saline, ringer's solutions, dextrose solution, and about 5% human serum albumin.


In some embodiments of any of the pharmaceutical compositions described herein, any of the ACCs described herein are prepared with carriers that protect against rapid elimination from the body, e.g., sustained and controlled release formulations, including implants and microencapsulated delivery systems. Biodegradable, biocompatible polymers can be used, e.g., ethylene vinyl acetate, polyanhydrides, polyglycolic acid, collage, polyorthoesters, and polylactic acid. Methods for preparation so of such pharmaceutical compositions and formulations are apparent to those skilled in the art.


Also provided herein are kits that include any of the ACCs described herein, any of the compositions that include any of the ACCs described herein, or any of the pharmaceutical compositions that include any of the ACCs described herein. Also provided are kits that include one or more second therapeutic agent(s) selected from Table 2 in addition to an ACC described herein. The second therapeutic agent(s) may be provided in a dosage administration form that is separate from the ACC. Alternatively, the second therapeutic agent(s) may be formulated together with the ACC. In some embodiments, the kit comprises (1) an ACC comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 129 and SEQ ID NOs: 347-356, and (2) a second therapeutic agent selected from Table 2.


Any of the kits described herein can include instructions for using any of the compositions (e.g., pharmaceutical compositions) and/or any of the ACCs described herein. In some embodiments, the kits can include instructions for performing any of the methods described herein. In some embodiments, the kits can include at least one dose of any of the compositions (e.g., pharmaceutical compositions) described herein. In some embodiments, the kits can provide a syringe for administering any of the pharmaceutical compositions described herein.


The present disclosure includes the following non-limiting aspects:

  • 1. An activatable cytokine construct (ACC) that includes a first monomer construct and a second monomer construct, wherein:
    • (a) the first monomer construct comprises a first mature cytokine protein (CP1), a first cleavable moiety (CM1), and a first dimerization domain (DD1), wherein the CM1 is positioned between the CP1 and the DD1; and
    • (b) the second monomer construct comprises a second mature cytokine protein (CP2), a second cleavable moiety (CM2), and a second dimerization domain (DD2), wherein the CM2 is positioned between the CP2 and the DD2; or
    • (a) the first monomer construct comprises a first mature cytokine protein (CP1), a first dimerization domain (DD1), and
    • (b) the second monomer construct comprises a second mature cytokine protein (CP2), a cleavable moiety (CM), and a second dimerization domain (DD2), wherein the CM is positioned between the CP2 and the DD2, wherein the CM functions as a substrate for a protease; or
    • (a) the first monomer construct comprises a first mature cytokine protein (CP1), a cleavable moiety (CM), and a first dimerization domain (DD1), wherein the CM is positioned between the CP1 and the DD1, and
    • (b) the second monomer construct comprises a second mature cytokine protein (CP2), and a second dimerization domain (DD2), wherein the CM functions as a substrate for a protease; or
    • (a) the first monomer construct comprises a first mature cytokine protein (CP1), and a first dimerization domain (DD1), and
    • (b) the second monomer construct comprises a second mature cytokine protein (CP2), and a second dimerization domain (DD2), wherein the CP1, the CP2, or both CP1 and CP2 include(s) an amino acid sequence that functions as a substrate for a protease;
    • further wherein:
    • (c) the DD1 and the DD2 bind each other thereby forming a dimer of the first monomer construct and the second monomer construct; and
    • (d) the ACC is characterized by having a reduced level of at least one CP1 and/or CP2 activity as compared to a control level of the at least one CP1 and/or CP2 activity.
  • 2. The ACC of aspect 1, wherein the first monomer construct comprises a first polypeptide that comprises the CP1, the CM1, and the DD1.
  • 3. The ACC of any one or combination of aspect 1 or 2, wherein the second monomer construct comprises a second polypeptide that comprises the CP2, the CM2, and the DD2.
  • 4. The ACC of any one or combination of aspects 1-3, wherein the DD1 and the DD2 are a pair selected from the group consisting of: a pair of Fc domains, a sushi domain from an alpha chain of human IL-15 receptor (IL15Rα) and a soluble IL-15; barnase and barnstar; a PKA and an AKAP; adapter/docking tag modules based on mutated RNase I fragments; an epitope and sdAb; an epitope and scFv; and SNARE modules based on interactions of the proteins syntaxin, synaptotagmin, synaptobrevin, and SNAP25, an antigen-binding domain and an epitope.
  • 5. The ACC of aspect 4, wherein the DD1 and the DD2 are a pair of Fc domains.
  • 6. The ACC of aspect 5, wherein the pair of Fc domains is a pair of human Fc domains.
  • 7. The ACC of aspect 6, wherein the human Fc domains are human IgG1 Fc domains, human IgG2 Fc domains, human IgG3 Fc domains, or human IgG4 Fc domains.
  • 8. The ACC of aspect 7, wherein the human Fc domains are human IgG4 Fc domains.
  • 9. The ACC of aspect 8, wherein the human Fc domains comprise a sequence that is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to SEQ ID NO: 3, SEQ ID NO: 315, or SEQ ID NO: 316.
  • 10. The ACC of aspect 9, wherein the human Fc domains comprise a sequence that is at least 90% identical to SEQ ID NO: 3, SEQ ID NO: 315, or SEQ ID NO: 316.
  • 11. The ACC of aspect 10, wherein the human Fc domains comprise SEQ ID NO: 3, SEQ ID NO: 315, or SEQ ID NO: 316.
  • 12. The ACC of any one or combination of aspects 1-3 and 5-11, wherein the DD1 and the DD2 are the same.
  • 13. The ACC of aspect 4, wherein DD1 comprises an antigen-binding domain and DD2 comprises a corresponding epitope.
  • 14. The ACC of aspect 13, wherein the antigen-binding domain is an anti-His tag antigen-binding domain and wherein the DD2 comprises a His tag.
  • 15. The ACC of aspect 13, wherein the antigen-binding domain is a single chain variable fragment (scFv).
  • 16. The ACC of aspect 13, wherein the antigen-binding domain is a single domain antibody (sdAb).
  • 17. The ACC of aspect 1, wherein at least one of DD1 and DD2 comprises a dimerization domain substituent selected from the group consisting of a non-polypeptide polymer and a small molecule.
  • 18. The ACC of aspect 17, wherein DD1 and DD2 comprise non-polypeptide polymers covalently bound to each other.
  • 19. The ACC of aspect 18, wherein the non-polypeptide polymer is a sulfur-containing polyethylene glycol, and wherein DD1 and DD2 are covalently bound to each other via one or more disulfide bonds.
  • 20. The ACC of aspect 17, wherein at least one of DD1 and DD2 comprises a small molecule.
  • 21. The ACC of aspect 20, wherein the small molecule is biotin.
  • 22. The ACC of aspect 20, wherein DD1 comprises biotin and DD2 comprises an avidin.
  • 23. The ACC of any one or combination of aspects 1-22, wherein the CP1 and/or the CP2 is/are each individually an interleukin.
  • 24. The ACC of any one or combination of aspects 1-23, wherein the CP1 and the CP2 are the same.
  • 25. The ACC of any one or combination of aspects 1-23 wherein the CP1 and the CP2 are different.
  • 26. The ACC of any one or combination of aspects 1-23, wherein the CP1 and/or the CP2 is/are is/are each individually selected from the group consisting of: IL-1α, IL-1β, IL-1RA, IL-18, IL-2, IL-4, IL-7, IL-9, IL-13, IL-15, IL-3, IL-5, IL-6, IL-11, IL-12, IL-10, IL-20, IL-21 IL-14, IL-15, IL-16, and IL-17.
  • 27. The ACC of aspect 26, wherein the CP1 and the CP2 is/are selected from the group consisting of IL-2, IL-10, IL-12, IL-15, and IL-21.
  • 28. The ACC of aspect 26, wherein the CP1 and the CP2 are different interleukins.
  • 29. The ACC of aspect 26, wherein the CP1 and the CP2 are the same interleukin.
  • 30. The ACC of aspect 26, wherein the CP1 or the CP2 is an interleukin.
  • 31. The ACC of any one or combination of aspects 26-30, wherein the interleukin(s) is/are a human wildtype mature interleukin.
  • 32. The ACC of any one or combination of aspects 26-31, wherein the interleukin is/are IL-2, IL-10, IL-12 or IL-15.
  • 33. The ACC of aspect 32, wherein the interleukins is/are IL-2, IL-12, and IL-15.
  • 34. The ACC of aspect 33, wherein the interleukin is/are at least one of IL-2 and IL-15.
  • 35. The ACC of aspect 34, wherein the interleukin is IL-15.
  • 36. The ACC of aspect 35, wherein the CP1 and/or CP2 comprises a sequence that is at least 80% identical to a sequence selected from the group consisting of SEQ ID NOs: 129, 347, and 348.
  • 37. The ACC of aspect 36, wherein the CP1 and/or CP2 comprises a sequence that is at least 90% identical to a sequence selected from the group consisting of SEQ ID NOs: 129, 347, and 348.
  • 38. The ACC of aspect 37, wherein the CP1 and/or CP2 comprises a sequence of SEQ ID NO: 347.
  • 39. The ACC of aspect 32, wherein the interleukin is IL-15.
  • 40. The ACC of aspect 38, wherein the interleukin has a sequence selected from the group consisting of SEQ ID NO: 347 and SEQ ID NO: 348.
  • 41. The ACC of any one of aspects 1-40, wherein the CP1 and/or the CP2 comprises an interleukin domain.
  • 42. The ACC of aspect 41, wherein the CP1 and the CP2 each comprises an interleukin.
  • 43. The ACC of aspect 42, wherein the interleukin is selected from the group consisting of IL-1α, IL-1β, IL-1RA, IL-18, IL-2, IL-4, IL-7, IL-9, IL-13, IL-15, IL-3, IL-5, IL-6, IL-11, IL-12, IL-10, IL-20, IL-14, IL-16, and IL-17.
  • 44. The ACC of any one or combination of aspects 1-43, wherein the CM1 and/or the CM2 comprise a total of about 3 amino acids to about 15 amino acids.
  • 45. The ACC of any one or combination of aspects 1-44, wherein the CM1 and the CM2 comprise substrates for different proteases.
  • 46. The ACC of any one or combination of aspects 1-44, wherein the CM1 and the CM2 comprise substrates for the same protease.
  • 47. The ACC of any one or combination of aspects 1-46, wherein the protease(s) is/are selected from the group consisting of: ADAM8, ADAM9, ADAM10, ADAM12, ADAM15, ADAM17/TACE, ADAMDEC1, ADAMTS1, ADAMTS4, ADAMTS5, BACE, Renin, Cathepsin D, Cathepsin E, Caspase 1, Caspase 2, Caspase 3, Caspase 4, Caspase 5, Caspase 6, Caspase 7, Caspase 8, Caspase 9, Caspase 10, Caspase 14, Cathepsin B, Cathepsin C, Cathepsin K, Cathespin L, Cathepsin S, Cathepsin V/L2, Cathepsin X/Z/P, Cruzipain, Legumain, Otubain-2, KLK4, KLK5, KLK6, KLK7, KLK8, KLK10, KLK11, KLK13, KLK14, Meprin, Neprilysin, PSMA, BMP-1, MMP-1, MMP-2, MMP-3, MMP-7, MMP-9, MMP-10, MMP-11, MMP-12, MMP-13, MMP-14, MMP-15, MMP-16, MMP-17, MMP-19, MMP-20, MMP-23, MMP-24, MMP-26, MMP-27, activated protein C, cathepsin A, cathepsin G, Chymase, FVIIa, FIXa, FXa, FXIa, FXIIa, Elastase, Granzyme B, Guanidinobenzoatase, HtrA1, human neutrophil lyase, lactoferrin, marapsin, NS3/4A, PACE4, Plasmin, PSA, tPA, thrombin, tryptase, uPA, DESC1, DPP-4, FAP, Hepsin, Matriptase-2, MT-SP1/Matripase, TMPRSS2, TMPRSS3, and TMPRSS4.
  • 48. The ACC of aspect 47, wherein the protease(s) is/are selected from the group consisting of: uPA, legumain, MT-SP1, ADAM17, BMP-1, TMPRSS3, TMPRSS4, MMP-2, MMP-9, MMP-12, MMP-13, and MMP-14.
  • 49. The ACC of aspect 47, wherein the CM1 and/or the CM2 comprise a sequence selected from the group consisting of: LSGRSDNH (SEQ ID NO: 5), TGRGPSWV (SEQ ID NO: 6), PLTGRSGG (SEQ ID NO: 7), TARGPSFK (SEQ ID NO: 8), NTLSGRSENHSG (SEQ ID NO: 9), NTLSGRSGNHGS (SEQ ID NO: 10), TSTSGRSANPRG (SEQ ID NO: 11), TSGRSANP (SEQ ID NO: 12), VHMPLGFLGP (SEQ ID NO: 13), AVGLLAPP (SEQ ID NO: 14), AQNLLGMV (SEQ ID NO: 15), QNQALRMA (SEQ ID NO: 16), LAAPLGLL (SEQ ID NO: 17), STFPFGMF (SEQ ID NO: 18), ISSGLLSS (SEQ ID NO: 19), PAGLWLDP (SEQ ID NO: 20), VAGRSMRP (SEQ ID NO: 21), VVPEGRRS (SEQ ID NO: 22), ILPRSPAF (SEQ ID NO: 23), MVLGRSLL (SEQ ID NO: 24), QGRAITFI (SEQ ID NO: 25), SPRSIMLA (SEQ ID NO: 26), SMLRSMPL (SEQ ID NO: 27), ISSGLLSGRSDNH (SEQ ID NO: 28), AVGLLAPPGGLSGRSDNH (SEQ ID NO: 29), ISSGLLSSGGSGGSLSGRSDNH (SEQ ID NO: 30), LSGRSGNH (SEQ ID NO: 31), SGRSANPRG (SEQ ID NO: 32), LSGRSDDH (SEQ ID NO: 33), LSGRSDIH (SEQ ID NO: 34), LSGRSDQH (SEQ ID NO: 35), LSGRSDTH (SEQ ID NO: 36), LSGRSDYH (SEQ ID NO: 37), LSGRSDNP (SEQ ID NO: 38), LSGRSANP (SEQ ID NO: 39), LSGRSANI (SEQ ID NO: 40), LSGRSDNI (SEQ ID NO: 41), MIAPVAYR (SEQ ID NO: 42), RPSPMWAY (SEQ ID NO: 43), WATPRPMR (SEQ ID NO: 44), FRLLDWQW (SEQ ID NO: 45), ISSGL (SEQ ID NO: 46), ISSGLLS (SEQ ID NO: 47), ISSGLL (SEQ ID NO: 48), ISSGLLSGRSANPRG (SEQ ID NO: 49), AVGLLAPPTSGRSANPRG (SEQ ID NO: 50), AVGLLAPPSGRSANPRG (SEQ ID NO: 51), ISSGLLSGRSDDH (SEQ ID NO: 52), ISSGLLSGRSDIH (SEQ ID NO: 53), ISSGLLSGRSDQH (SEQ ID NO: 54), ISSGLLSGRSDTH (SEQ ID NO: 55), ISSGLLSGRSDYH (SEQ ID NO: 56), ISSGLLSGRSDNP (SEQ ID NO: 57), ISSGLLSGRSANP (SEQ ID NO: 58), ISSGLLSGRSANI (SEQ ID NO: 59), AVGLLAPPGGLSGRSDDH (SEQ ID NO: 60), AVGLLAPPGGLSGRSDIH (SEQ ID NO: 61), AVGLLAPPGGLSGRSDQH (SEQ ID NO: 62), AVGLLAPPGGLSGRSDTH (SEQ ID NO: 63), AVGLLAPPGGLSGRSDYH (SEQ ID NO: 64), AVGLLAPPGGLSGRSDNP (SEQ ID NO: 65), AVGLLAPPGGLSGRSANP (SEQ ID NO: 66), AVGLLAPPGGLSGRSANI (SEQ ID NO: 67), ISSGLLSGRSDNI (SEQ ID NO: 68), AVGLLAPPGGLSGRSDNI (SEQ ID NO: 69), GLSGRSDNHGGAVGLLAPP (SEQ ID NO: 70), GLSGRSDNHGGVHMIPLGFLGP (SEQ ID NO: 71), LSGRSDNHGGVHMPLGFLGP (SEQ ID NO: 72), ISSGLSS (SEQ ID NO: 73), PVGYTSSL (SEQ ID NO: 74), DWLYWPGI (SEQ ID NO: 75), LKAAPRWA (SEQ ID NO: 76), GPSHLVLT (SEQ ID NO: 77), LPGGLSPW (SEQ ID NO: 78), MGLFSEAG (SEQ ID NO: 79), SPLPLRVP (SEQ ID NO: 80), RMHLRSLG (SEQ ID NO: 81), LLAPSHRA (SEQ ID NO: 82), GPRSFGL (SEQ ID NO: 83), GPRSFG (SEQ ID NO: 84), SARGPSRW (SEQ ID NO: 85), GGWHTGRN (SEQ ID NO: 86), HTGRSGAL (SEQ ID NO: 87), AARGPAIH (SEQ ID NO: 88), RGPAFNPM (SEQ ID NO: 89), SSRGPAYL (SEQ ID NO: 90), RGPATPIM (SEQ ID NO: 91), RGPA (SEQ ID NO: 92), GGQPSGMWGW (SEQ ID NO: 93), FPRPLGITGL (SEQ ID NO: 94), SPLTGRSG (SEQ ID NO: 95), SAGFSLPA (SEQ ID NO: 96), LAPLGLQRR (SEQ ID NO: 97), SGGPLGVR (SEQ ID NO: 98), PLGL (SEQ ID NO: 99), SGRSDNI (SEQ ID NO: 100), and LSGRSNI (SEQ ID NO: 349).
  • 50. The ACC of aspect 47, wherein the CM1 and/or the CM2 comprises a sequence selected from the group consisting of: ISSGLLSGRSDNH (SEQ ID NO: 28), LSGRSDDH (SEQ ID NO: 33), LSGRSDNI (SEQ ID NO: 41), ISSGLLSGRSDQH (SEQ ID NO: 54), SGRSDNI (SEQ ID NO: 100), ISSGLLSGRSDNI (SEQ ID NO: 68), and LSGRSNI (SEQ ID NO: 349).
  • 51. The ACC of any one or combination of aspects 1-50, wherein the protease(s) is/are produced by a tumor in a subject.
  • 52. The ACC of aspect 51, wherein the subject has been diagnosed or identified as having a cancer.
  • 53. The ACC of any one or combination of aspects 1-52, wherein the CP1 and the CM1 directly abut each other in the first monomer construct.
  • 54. The ACC of any one or combination of aspects 1-53, wherein the CM1 and the DD1 directly abut each other in the first monomer construct.
  • 55. The ACC of any one or combination of aspects 1-54, wherein the CP2 and the CM2 directly abut each other in the second monomer construct.
  • 56. The ACC of any one or combination of aspects 1-55, wherein the CM2 and the DD2 directly abut each other in the second monomer construct.
  • 57. The ACC of any one or combination of aspects 1-56, wherein the first monomer construct comprises at least one linker.
  • 58. The ACC of aspect 57, wherein the at least one linker is a linker L1 disposed between the CP1 and the CM1 and/or a linker L2 disposed between the CM1 and the DD1.
  • 59. The ACC of aspect 58, wherein the second monomer construct comprises at least one linker.
  • 60. The ACC of aspect 59, wherein the at least one linker is a linker L3 disposed between the CP2 and the CM2 and/or a linker L4 disposed between the CM2 and the DD2.
  • 61. The ACC of aspect 60, wherein the first monomer construct comprises a linker L1 and the second monomer construct comprises a linker L3.
  • 62. The ACC of aspect 61, wherein L1 and L3 are the same.
  • 63. The ACC of aspect 62, wherein the second monomer construct comprises a linker L2 and the second monomer construct comprises a linker L4.
  • 64. The ACC of aspect 63, wherein L2 and L4 are the same.
  • 65. The ACC of aspect 64, wherein each linker has a total length of 1 amino acid to about 15 amino acids.
  • 66. The ACC of aspect 65, wherein each linker has a total length of at least 5 amino acids.
  • 67. The ACC of any one or combination of aspects 1-66, wherein the first monomer construct comprises at least one linker, wherein each linker is independently selected from the group consisting of G; GG; GSSGGSGGSGG (SEQ ID NO: 210); GGGS (SEQ ID NO: 2); GGGSGGGS (SEQ ID NO: 211); GGGSGGGSGGGS (SEQ ID NO: 212); GGGGSGGGGSGGGGS (SEQ ID NO: 213); GGGGSGGGGSGGGGSGGGGSGGGGS (SEQ ID NO: 214); GGGGSGGGGS (SEQ ID NO: 215); GGGGS (SEQ ID NO: 216); GS; GGGGSGS (SEQ ID NO: 217); GGGGSGGGGSGGGGSGS (SEQ ID NO: 218); GGSLDPKGGGGS (SEQ ID NO: 219); PKSCDKTHTCPPCPAPELLG (SEQ ID NO: 220); SKYGPPCPPCPAPEFLG (SEQ ID NO: 221); GKSSGSGSESKS (SEQ ID NO: 222); GSTSGSGKSSEGKG (SEQ ID NO: 223); GSTSGSGKSSEGSGSTKG (SEQ ID NO: 224); GSTSGSGKPGSGEGSTKG (SEQ ID NO: 225); GSTSGSGKPGSSEGST (SEQ ID NO: 226); (GS)n, (GGS)n, (GSGGS)n (SEQ ID NO: 227), (GGGS)n (SEQ ID NO: 228), (GGGGS)n (SEQ ID NO: 216), wherein each n is an integer of at least one; GGSG (SEQ ID NO: 229); GGSGG (SEQ ID NO: 230); GSGSG (SEQ ID NO: 231; GSGGG (SEQ ID NO: 232); GGGSG (SEQ ID NO: 233); GSSSG (SEQ ID NO: 234); GGGGSGGGGSGGGGS (SEQ ID NO: 213); GGGGSGGGGSGGGGSGGGGS (SEQ ID NO: 235); and GSTSGSGKPGSSEGST (SEQ ID NO: 226).
  • 68. The ACC of aspect 67, wherein the linker comprises a sequence selected from the group consisting of G, GG, and GGGS (SEQ ID NO: 2).
  • 69. The ACC of any one or combination of aspects 1-68, wherein the first monomer construct, comprises in a N- to C-terminal direction, the CP1, the CM1, and, linked directly or indirectly to the C-terminus of the CM1, the DD1.
  • 70. The ACC of any one or combination of aspects 1-69, wherein the first polypeptide comprises in a C- to N-terminal direction, the CP1, the CM1, and, linked directly or indirectly to the N-terminus of the CM1, the DD1.
  • 71. The ACC of any one or combination of aspects 1-70, wherein the second polypeptide comprises in a N- to C-terminal direction, the CP2, CM2, and, linked directly or indirectly to the C-terminus of the CM2, the DD2.
  • 72. The ACC of any one or combination of aspects 1-71, wherein the second polypeptide comprises in a C- to N-terminal direction, the CP2, CM2, and, linked directly or indirectly to the CM2, the DD2.
  • 73. The ACC of aspect 69, wherein the first monomer construct comprises, in the N- to C-terminal direction, the CP1, the CM1, and the DD1, wherein the CP1 and the CM1 directly abut each other, wherein the CM1 and the DD1 directly abut each other, wherein the CM1 is a peptide of not more than 10 amino acids, wherein the second monomer construct is the same as the first monomer construct, and wherein the first and second monomer constructs are covalently bound to each other via at least two disulfide bonds.
  • 74. The ACC of aspect 73, wherein CP1 is an interleukin.
  • 75. The ACC of aspect 74, wherein CP1 is IL-15.
  • 76. The ACC of any one or combination of aspects 1-75, wherein the at least one CP1 and/or CP2 activity is a binding affinity (KD) of the CP1 and/or the CP2 for its cognate receptor as determined using surface plasmon resonance.
  • 77. The ACC of any one or combination of aspects 1-75, wherein the at least one CP1 and/or CP2 activity is a level of proliferation of lymphoma cells.
  • 78. The ACC of any one or combination of aspects 1-75, wherein the at least one CP1 and/or CP2 activity is a level of JAK/STAT/ISGF3 pathway activation in a lymphoma cell.
  • 79. The ACC of any one or combination of aspects 1-75, wherein the at least one activity is a level of SEAP production in a HEK cell.
  • 80. The ACC of any one or combination aspects 1-79, wherein the ACC is characterized by at least a 20-fold reduction in at least one CP1 and/or CP2 activity as compared to the control level.
  • 81. The ACC of aspect 80, wherein the ACC is characterized by at least a 50-fold reduction in at least one CP1 and/or CP2 activity as compared to the control level.
  • 82. The ACC of aspect 81, wherein the ACC is characterized by at least a 100-fold reduction in at least one activity of the CP1 and/or CP2 as compared to the control level.
  • 83. The ACC of aspect 82, wherein the ACC is characterized by at least a 500-fold reduction in at least one CP1 and/or CP2 activity as compared to the control level.
  • 84. The ACC of any one or combination of aspects 1-83, wherein the control level of the at least one activity of the CP1 and/or CP2, is the activity of the CP1 and/or CP2 in the ACC following exposure of the ACC to the protease(s).
  • 85. The ACC of any one or combination of aspects 1-83, wherein the control level of the at least one CP1 and/or CP2, is the corresponding CP1 and/or CP2 activity of a corresponding wildtype mature cytokine.
  • 86. The ACC of any one or combination of aspects 1-85, wherein the ACC is characterized by generating a cleavage product following exposure to the protease(s), wherein the cleavage product comprises the at least one activity of the CP1 and/or CP2.
  • 87. The ACC of aspect 86, wherein the at least one activity of the CP1 and/or CP2 is anti-proliferation activity.
  • 88. The ACC of aspect 87, wherein the control level is an EC50 value, and wherein ratio of EC50 (cleavage product) to EC50 (control level) is less than about 10, or less than about 9, or less than about 8, or less than about 7, or less than about 6, or less than about 5, or less than about 4, or less than about 3, or less than about 2, or less than about 1.5.
  • 89. A composition comprising an ACC of any one or combination of aspects 1-88.
  • 90. The composition of aspect 89, wherein the composition is a pharmaceutical composition.
  • 91. A container, vial, syringe, injector pen, or kit comprising at least one dose of the composition of aspect 89 or 90.
  • 92. A method of treating a subject in need thereof comprising administering to the subject a therapeutically effective amount of the ACC of any one or combination of aspects 1-88 or the composition of aspects 89 or 90.
  • 93. The method of aspect 92, wherein the subject has been identified or diagnosed as having a cancer.
  • 94. The method of aspect 93, wherein the cancer is a lymphoma, solid tumor, hematological tumor, sarcoma, osteosarcoma, glioblastoma, neuroblastoma, melanoma, rhabdomyosarcoma, Ewing sarcoma, osteosarcoma, B-cell neoplasms, multiple myeloma, B-cell lymphoma, B-cell non-Hodgkin's lymphoma, Hodgkin's lymphoma, chronic lymphocytic leukemia (CLL), acute myeloid leukemia (AML), chronic myeloid leukemia (CML), acute lymphocytic leukemia (ALL), myelodysplastic syndromes (MDS), cutaneous T-cell lymphoma, retinoblastoma, bladder cancer, stomach cancer, urothelial carcinoma, lung cancer, colon cancer, renal cell carcinoma, gastric and esophageal cancer, pancreatic cancer, prostate cancer, breast cancer, colorectal cancer, ovarian cancer, non-small cell lung carcinoma, squamous cell head and neck carcinoma, endometrial cancer, cervical cancer, liver cancer, or hepatocellular carcinoma.
  • 95. The method of aspect 94, wherein the lymphoma is Burkitt's lymphoma.
  • 96. A nucleic acid encoding a polypeptide that comprises the CP1 and CM1 of the ACC of any one or combination of aspects 1-88.
  • 97. The nucleic acid of aspect 96, wherein the polypeptide further comprises a DD1 of any one or combination of aspects 1-16 or aspects 23-88.
  • 98. A nucleic acid encoding a polypeptide that comprises the CP2 and CM2 of the ACC of any one or combination of aspects 1-88.
  • 99. The nucleic acid of aspect 98, wherein the polypeptide further comprises the DD2 of any one or combination of aspects 1-16 or aspects 23-88.
  • 100. A vector comprising the nucleic acid of any one or combination of aspects 96-99.
  • 101. The vector of aspect 100, wherein the vector is an expression vector.
  • 102. A cell comprising the nucleic acid of any one or combination of aspects 96-99 or the vector of aspect 100 or 101.
  • 103. A pair of nucleic acids that together encode a polypeptide that comprises the CP1 and CM1 of the first monomer construct and a polypeptide that comprises the CP2 and CM2 of the second monomer construct of any one or combination of aspects 1-88.
  • 104. A pair of vectors that together comprise the pair of nucleic acids of aspect 103.
  • 105. The pair of vectors of aspect 104, wherein the pair of vectors is a pair of expression vectors.
  • 106. A cell comprising the pair of nucleic acids of aspect 103 or the pair of vectors of aspects 104 or 105.
  • 107. A method of producing an ACC comprising:
    • culturing a cell of aspect 102 or 106 in a liquid culture medium under conditions sufficient to produce the ACC; and
    • recovering the ACC from the cell or the liquid culture medium.
  • 108. The method of aspect 107, further comprising:
    • isolating the ACC recovered from the cell or the liquid culture medium.
  • 109. The method of aspect 108, further comprising:
    • formulating isolated ACC into a pharmaceutical composition.
  • 110. An ACC produced by the method of aspect 107.
  • 111. A composition comprising an ACC of aspect 110.
  • 112. The composition of aspect 111, wherein the composition is a pharmaceutical composition.
  • 113. A container, vial, syringe, injector pen, or kit comprising at least one dose of the composition of aspect 111 or 112.
  • 114. An activatable cytokine construct (ACC) comprising a first monomer construct and a second monomer construct, wherein:
    • (a) the first monomer construct comprises a first mature cytokine protein (CP1), a first cleavable moiety (CM1), and a first dimerization domain (DD1);
    • (b) the second monomer construct comprises a second mature cytokine protein (CP2), a second cleavable moiety (CM2), and a second dimerization domain (DD2);
    • (c) the first monomer construct is a polypeptide comprising, in an N- to C-terminal direction, the CP1, the CM1, and the DD1, further wherein:
      • (i) each of the first monomer and the second monomer comprises a Linking Region comprising no more than 24 amino acids; and
      • (ii) the CP1 is a mature interleukin;
    • (d) further wherein:
      • (i) the second monomer construct is the same as the first monomer construct,
      • (ii) the first and second monomer constructs are covalently bound to each other via at least one disulfide bond, and
      • (iii) the DD1 and the DD2 are a pair of human IgG Fc domains;
    • (e) the DD1 and the DD2 bind each other thereby forming a dimer of the first monomer construct and the second monomer construct; and
    • (f) the ACC is characterized by having a reduced level of interleukin activity as compared to a corresponding control interleukin.
  • 115. The ACC of aspect 114, wherein the CP1 is a mature human interleukin.
  • 116. The ACC of any one or combination of aspects 114-115, wherein the mature interleukin is mature IL-15.
  • 117. The ACC of any one or combination of aspects 114-116, wherein the mature interleukin is a truncated form of IL-15.
  • 118. The ACC of any one or combination of aspects 114-116, wherein the mature interleukin comprises a sequence that is at least 95% identical to a sequence selected from the group consisting of SEQ ID NO: 129, SEQ ID NO:347, and SEQ ID NO: 348.
  • 119. The ACC of any one or combination of aspects 114-116, wherein the mature interleukin comprises the sequence of SEQ ID NO: 347.
  • 120. The ACC of any one or combination of aspects 114-119, wherein the CP1 and the CM1 directly abut each other, the CM1 and the DD1 directly abut each other, and the CM1 and the CM2 each comprises no more than 10 amino acids, optionally no more than 7 amino acids.
  • 121. The ACC of any one or combination of aspects 114-120, wherein the CM1 and the CM2 each independently functions as a substrate of urokinase (uPa) and/or a matrix metalloproteinase (MMP).
  • 122. The ACC of any one or combination of aspects 114-121, wherein the CM1 and the CM2 each independently functions as a substrate of urokinase (uPa) and/or MMP-14.
  • 123. The ACC of any one or combination of aspects 114-122, wherein the CM1 and the CM2 each comprises a sequence that is at least 85% identical to SEQ ID NO: 100.
  • 124. The ACC of any one or combination of aspects 114-123, wherein the CM1 and the CM2 each comprises a sequence selected from the group consisting of SEQ ID NO: 41, SEQ ID NO: 68, SEQ ID NO: 100, and LSGRSNI (SEQ ID NO: 349).
  • 125. The ACC of any one or combination of aspects 114-124, wherein the DD1 and the DD2 are a pair of human IgG1 Fc domains or a pair of human IgG4 Fc domains.
  • 126. The ACC of aspect 125, wherein the DD1 and the DD2 are a pair of human IgG1 Fc domains truncated at N-terminus to Cysteine 226 as numbered by EU numbering or a pair of human IgG4 Fc domains truncated at N-terminus to Cysteine 226 as numbered by EU numbering.
  • 127. The ACC of aspect 125 or 126, wherein the DD1 and the DD2 are a pair of human IgG4 Fc domains that comprise a S228P mutation as numbered by EU numbering.
  • 128. The ACC of any one or combination of aspects 114-127, wherein the DD1 and the DD2 each comprises a sequence that is at least 95% identical to SEQ ID NO: 3.
  • 129. The ACC of any one or combination of aspects 114-128, wherein the DD1 and the DD2 each comprises a sequence of SEQ ID NO: 3.
  • 130. The ACC of any one or combination of aspects 114-129, wherein the first and second monomer constructs are covalently bound to each other via at least two disulfide bonds.
  • 131. The ACC of any one or combination of aspects 114-130, wherein the first and second monomer constructs are covalently bound to each other via at least three disulfide bonds.
  • 132. The ACC of any one or combination of aspects 114-131, wherein the first and second monomer constructs are covalently bound to each other via at least four disulfide bonds.
  • 133. The ACC of any one or combination of aspects 114-132, wherein the first monomer construct further comprises a signal sequence directly abutting the N-terminus of the CM1.
  • 134. The ACC of aspect 133, wherein the signal sequence comprises a sequence that is at least 95% identical to SEQ ID NO: 345.
  • 135. The ACC of aspect 133, wherein the signal sequence comprises the sequence of SEQ ID NO: 345.
  • 136. The ACC of any one or combination of aspects 114-135 comprising a Linking Region comprising no more than 18 amino acids, or no more than 12 amino acids.
  • 137. The ACC of aspect 136, wherein the Linking Region comprises 7 to 12 amino acids.
  • 138. The ACC of aspect 136, wherein the Linking Region comprises 7 amino acids.
  • 139. The ACC of any one or combination of aspects 114-138, wherein the ACC is characterized by at least a 500-fold reduction in interleukin activity as compared to a corresponding control interleukin.
  • 140. The ACC of any one or combination of aspects 114-139, wherein the CP1 is an interleukin and the control interleukin is a recombinant interleukin.
  • 141. The ACC of any one or combination of aspects 114-139, wherein the ACC further comprises a peptide mask (PM1) and a cleavable moiety (CM3) located N-terminal of the CP1.
  • 142. The ACC of any one or combination of aspects 114-141, wherein the interleukin activity is an anti-proliferation activity in lymphoma cells.
  • 143. The ACC of any one or combination of aspects 114-141, wherein the interleukin activity is induction of secreted embryonic alkaline phosphatase production in interleukin-responsive HEK293 cells.
  • 144. The ACC of any of aspects 114-143, wherein the ACC is further characterized by generating a cleavage product following exposure to the protease for which CM1 functions as a substrate, wherein the ratio of the interleukin activity of the control interleukin to the cleavage product is less than about 2, and wherein the control interleukin is a corresponding recombinant wildtype interleukin.
  • 145. The ACC of aspect 144, wherein the EC50 of the cleavage product is approximately the same as the EC50 of the corresponding recombinant wildtype interleukin.
  • 146. The ACC of aspect 114, wherein the first and second monomer constructs each comprises a sequence that is at least 95% identical to a sequence selected from the group consisting of amino acids 21-359 of SEQ ID NO: 350 and SEQ ID Nos: 351-356.
  • 147. The ACC of aspect 146, wherein the ACC is characterized by at least a 200-fold reduction in interleukin activity as compared to wild type interleukin, and wherein the ACC is further characterized by generating a cleavage product following exposure to uPA, wherein the cleavage product has at least 50-fold more interleukin activity than the intact ACC, wherein interleukin activity is measured in an anti-proliferation assay in lymphoma cells or in an assay of induction of secreted embryonic alkaline phosphatase production in interleukin-responsive HEK293 cells.
  • 148. The ACC of aspect 146 or 147, wherein the ACC exhibits lower toxicity in vivo compared to recombinant human IL-15.
  • 149. An activatable cytokine construct (ACC) comprising a first monomer construct and a second monomer construct, wherein:
    • (a) the first monomer construct comprises a first mature cytokine protein (CP1), a first cleavable moiety (CM1), and a first dimerization domain (DD1);
    • (b) the second monomer construct comprises a second mature cytokine protein (CP2), a second cleavable moiety (CM2), and a second dimerization domain (DD2);
    • (c) the first monomer construct is a polypeptide comprising, in an N- to C-terminal direction, the CP1, the CM1, and the DD1, further wherein:
      • (i) the ACC comprises a linking region (LR) of 7 to 10 amino acids;
      • (ii) the CP1 comprises a sequence that is at least 85% identical to SEQ ID NO: 347,
      • (iii) the CM1 comprises a sequence that is at least 85% identical to SEQ ID: 349,
    • (d) further wherein:
      • (i) the second monomer construct is the same as the first monomer construct,
      • (ii) the first and second monomer constructs are covalently bound to each other via at least one disulfide bond, and
      • (iii) the DD1 and DD2 are a pair of human IgG Fc domains;
    • (e) the DD1 and the DD2 bind each other thereby forming a dimer of the first monomer construct and the second monomer construct; and
    • (f) the ACC is characterized by having a reduced level of IL-15 activity as compared to the IL-15 activity of recombinant human IL-15.
  • 150. A composition comprising the ACC of any one or combination of aspects 114-149.
  • 151. The composition of aspect 150, where the composition is a pharmaceutical composition.
  • 152. A container, vial, syringe, injector pen, or kit comprising at least one dose of the composition of aspect 150 or 151.
  • 153. A method of treating a subject in need thereof comprising administering to the subject a therapeutically effective amount of the ACC of any one or combination of aspects 114-149 or the composition of aspect 150 or 151.
  • 154. The method of aspect 153, wherein the subject has been identified or diagnosed as having a cancer.
  • 155. A nucleic acid encoding a polypeptide that comprises the first monomer of the ACC of any one or combination of aspects 114-149.
  • 156. A vector comprising the nucleic acid of aspect 155.
  • 157. The vector of aspect 156, wherein the vector is an expression vector.
  • 158. A mammalian cell comprising the nucleic acid of aspect 155 or the vector of aspect 156 or 157.
  • 159. The mammalian cell of aspect 158, wherein the mammalian cell is an HEK293 cell or a CHO cell.
  • 160. A method of manufacturing an ACC, the method comprising:
    • a. expressing the ACC in the mammalian cell of aspect 158 or 159; and
    • b. purifying the expressed ACC.
  • 161. The ACC of any one or combination of aspects 114-149, wherein the CM1 functions as a substrate for a protease that is over-expressed in a tumor tissue.
  • 162. The ACC of aspect 114, wherein the first and second monomer constructs each comprises a sequence that is at least 95%, 96%, 97%, 98%, 99%, or 100% identical to SEQ ID NO: 356.
  • 163. The ACC of aspect 162, wherein the first and second monomer constructs are identical and each comprises SEQ ID NO: 356.
  • 164. A composition comprising the ACC of aspect 162 or 163.
  • 165. The composition of aspect 164, where the composition is a pharmaceutical composition.
  • 166. A container, vial, syringe, injector pen, or kit comprising at least one dose of the composition of aspect 165.
  • 167. A method of treating a subject in need thereof comprising administering to the subject a therapeutically effective amount of the ACC of aspect 162 or the composition of aspect 165.
  • 168. The method of aspect 167, wherein the subject has been identified or diagnosed as having a cancer.
  • 169. A nucleic acid encoding a polypeptide that comprises the first monomer of the ACC of aspect 162 or 163.
  • 170. A vector comprising the nucleic acid of aspect 169.
  • 171. The vector of aspect 170, wherein the vector is an expression vector.
  • 172. A mammalian cell comprising the nucleic acid of aspect 169 or the vector of aspect 170 or 171.
  • 173. The mammalian cell of aspect 172, wherein the mammalian cell is an HEK293 cell or a CHO cell.
  • 174. A method of manufacturing an ACC, the method comprising:
    • a) expressing the ACC in the mammalian cell of aspect 172 or 173; and
    • b) purifying the expressed ACC.


EXAMPLES

The invention is further described in the following examples, which do not limit the scope of the invention described in the claims.


Example 1: Production of Activatable Cytokine Constructs

Activatable cytokine construct IFN-α2b-1204DNIdl-hIgG4 was prepared by recombinant methods. The 1st and 2nd monomer constructs of this ACC were identical, with each being a polypeptide having the amino acid sequence according to SEQ ID NO: 309. Each of the 1st and 2nd monomer constructs comprises, from N-terminus to C-terminus, a signal sequence from a mouse IgG kappa signal sequence (residues 1-20 of SEQ ID NO:309), a mature cytokine protein that corresponds to human interferon alpha-2b (SEQ ID NO:1), a cleavable moiety having the amino acid sequence of SEQ ID NO:99, a linker having the amino acid sequence, GGGS (SEQ ID NO:2), and a DD corresponding to human IgG Fc (SEQ ID NO:4). The polypeptide was prepared by transforming a host cell with a polynucleotide having the sequence of SEQ ID NO: 310, followed by cultivation of the resulting recombinant host cells. Dimerization of the resulting expressed polypeptides yielded activatable cytokine construct, IFN-α2b 1204DNIdl hIgG4.


Activatable cytokine construct IFN-α-2b 1490DNI-hIgG4 was also prepared by recombinant methods. The 1st and 2nd monomer constructs of this ACC were also identical, with each being a polypeptide having the amino acid sequence according to SEQ ID NO: 311. Each of the 1st and 2nd monomer constructs of this ACC comprises, from N-terminus to C-terminus, a signal sequence from a mouse IgG kappa signal sequence (residues 1-20 of SEQ ID NO:309), a mature cytokine protein that corresponds to human interferon alpha-2b (SEQ ID NO:1), a cleavable moiety having the amino acid sequence of SEQ ID NO:68, a linker having the amino acid sequence, GGGS (SEQ ID NO:2), and a DD corresponding to human IgG Fc (SEQ ID NO:4). The polypeptide was prepared by transforming a host cell with a polynucleotide having the sequence of SEQ ID NO: 312, followed by cultivation of the resulting recombinant host cells. Dimerization of the resulting expressed polypeptides yielded activatable cytokine construct, IFN-α2b 1204dl hIgG4.


Additional activatable cytokine constructs were prepared that included an additional five amino acid residues in the linkers.


Electrophoresis was performed on the activatable cytokine constructs and protease-treated activatable cytokine constructs. FIG. 15 depicts the gel, which shows the results for (from left to right): (1) ACC IFN-α2b-1204DNIdl-hIgG4 (“1204”); (2) MT-SP1-treated IFN-α2b-1204DNIdl-hIgG4 (“1204 MT-SP1”); (3) uPA-treated IFN-α2b-1204DNIdl-hIgG4 (“1204 uPA”); (4) IFN-α2b-1204DNIdl-hIgG4 with five amino acid residues added to the linker (“1204+1”); (5) MT-SP1-treated IFN-α2b-1204DNIdl-hIgG4 (“1204+1 MT-SP1”); (6) uPA-treated IFN-α2b-1204DNIdl-hIgG4 (“1204+1 uPA”); (7) IFN-α-2b 1490DNI-hIgG4 (“1490”); (8) MT-SP1-treated IFN-α-2b 1490DNI-hIgG4 (“1490 MT-SP1”); and (9) uPA-treated IFN-α-2b 1490DNI-hIgG4 (“1490 uPA”). The results suggest that the proteases were effective at cleaving the cleavable moieties in the activatable cytokine constructs.


Example 2. IFN-Alpha-2b Activity of Activatable Cytokine Constructs

A cell-based reporter assay for human type I interferons was used to test the activity of the ACCs described in Example 1.


IFN-responsive HEK293 cells were generated by stable transfection with the human STAT2 and IRF9 genes to obtain a fully active type I IFN signaling pathway. The cells also feature an inducible SEAP (secreted embryonic alkaline phosphatase) reporter gene under the control of the IFNα/β inducible ISG54 promoter. To maintain transgene expression, cells were cultured in DMEM GlutaMax media supplemented with 10% FBS, Pen/Strep, 30 μg/mL of blasticidin, 100 μg/ml of zeocin and 100 μg/mL of normocin. The addition of type I IFN to these cells activates the JAK/STAT/ISGF3 pathway and subsequently induces the production of SEAP which can be readily assessed in the supernatant using Quanti-Blue solution, a colorimetric detection for alkaline phosphatase activity. Using this reporter assay, the activity of IFNα-2b containing ACCs was compared to the activity of Sylatron® (Peginterferon alfa-2b). The data in FIG. 16 show that IFNα-2b activity of the ACCs was significantly reduced as compared to the IFNα-2b activity of Sylatron® (Peginterferon alfa-2b).


Furthermore, the data in FIGS. 7A and 7B show that the activity of the (uncleaved) ACCs could be modulated by varying the length of the linker or Linking Region. The data in FIG. 7A-7B show the results of IFNa-2b-hIgG4 Fc fusion constructs with varying linker lengths, or without a linker between the IFNa-2b and the hIgG4 Fc as tested in the HEK293 reporter assay. The fusion proteins tested in this experiment include, in an N- to C-terminal direction, the mature IFNalpha-2b cytokine sequence, an optional linker and/or cleavable moiety, and the Fc domain of human IgG4 of SEQ ID NO: 4 (including the full hinge region such that the N-terminus of the Fc sequence begins with the amino acid sequence ESKYGPPCPPC . . . ). The first construct (Linking Region=7) has no linker or cleavable moiety; its sequence in the N- to C-terminal direction consists of SEQ ID NO: 1 fused to SEQ ID NO: 4. The second construct (Linking Region=12) has a 5 amino acid linker SGGGG (SEQ ID NO: 335); its sequence in the N- to C-terminal direction consists of SEQ ID NO: 1 fused to SEQ ID NO: 335 fused to SEQ ID NO: 4. The third construct (Linking Region=18) includes a 7 amino acid CM (SGRSDNI) and a 4 amino acid linker GGGS; its sequence in the N- to C-terminal direction consists of SEQ ID NO: 1 fused to SEQ ID NO: 100 fused to SEQ ID NO: 2 fused to SEQ ID NO: 4. The fourth construct (Linking Region=23) includes a 5 amino acid linker, a 7 amino acid CM, and a 4 amino acid linker; its sequence in the N- to C-terminal direction consists of SEQ ID NO: 1 fused to SEQ ID NO: 335 fused to SEQ ID NO: 100 fused to SEQ ID NO: 2 fused to SEQ ID NO: 4. The fifth construct (Linking Region=24) includes a 13 amino acid CM (ISSGLLSGRSDNI) and a 4 amino acid linker; its sequence in the N- to C-terminal direction consists of SEQ ID NO: 1 fused to SEQ ID NO: 68 fused to SEQ ID NO: 2 fused to SEQ ID NO: 4.


Example 3: Activity of Protease-Treated ACCs

Protease treated IFNα-2b-containing ACCs were tested for anti-proliferative responses in Daudi lympho cells and in the cell-based reporter assay to determine if the activity could be restored.


To cleave the dimerizing domain, IFNα-2b-containing ACCs were treated overnight at 37° C. with recombinant human proteases such at urokinase-type plasminogen activator (uPA), or matriptase (MT-SP1). A cocktail of protease inhibitors were added to neutralize the proteases prior to testing for activity as described in Example 2 and 3. The results from these assays indicate that the treatment of IFNα-2b-containing ACCs with proteases could restore activity to a level that is comparable to the recombinant cytokine. EC50 values for ACC IFNα-2b-1204DNIdl-hIgG4, ACC IFNα-2b-1204DNIdl-hIgG4+uPA, and Stem Cell IFNα-2b (human recombinant IFN-alpha 2b, available from StemCell Technologies, Catalog #78077.1) were computed from the Daudi apoptosis assay results, and are provided below in Table 3.









TABLE 3







EC50: Daudi Apoptosis Assay











IFNα-2b-
IFNα-2b-




1204DNIdl-hIgG4
1204DNIdl-hIgG4
Stem Cell



(ACC)
(ACC) + uPA
IFNα-2b














EC50
131.8
0.5701
0.3664









EC50 values for ACC IFNα-2b-1204DNIdl-hIgG4, ACC IFNα-2b-1204DNIdl-hIgG4+uPA, and Stem Cell IFNα-2b were computed from the IFNα/β assay results, and are provided below in Table 4.









TABLE 4







EC50: IFNα/β Reporter Assay












IFNα-2b-
IFNα-2b-





1204DNIdl-
1204DNIdl-



hIgG4
hIgG4

Commercial



(ACC)
(ACC) + uPA
Sylatron ®
IFNα-2b















EC50
393.1
0.4611
3.019
1.280









These results show that without the presence of an activating protease, the activity of IFNα-2b-1204DNIdl-hIgG4 is significantly decreased relative to the IFNα-2b control.


Example 4: In Vivo Tolerability Activity of AMC

Human IFNα-2b cross react with hamster IFNα receptor and has been previously shown to be active in Hamster (Altrock et al, Journal of Interferon Research, 1986). To assess the tolerability of IFNα-2b-containing ACC ProC440, Syrian Gold Hamsters were dosed with a starting dose of 0.4 mg/kg. Animals received one dose of test article and kept on study up to 7 days post dose, unless non tolerated toxicities (DLT means dose limiting toxicities) were identified. The starting dose (0.4 mg/kg (“mpk”)) represents an equivalent dose of INFα-con (recombinant interferon alpha, a non-naturally occurring type-I interferon manufactured by Amgen under the name Infergen®) expected to induce body weight loss, decreased food consumption and bone marrow suppression in a hamster (125 gr). (In cynomolgus monkeys (cyno), 0.1 mg/kg/day of INFα-con has been associated with body weight lost, decreased food consumption and bone marrow suppression (equal to 1.25-2.5×10{circumflex over ( )}7 U for a 125 gram hamster).) If the starting dose was tolerated, animals were moved up to a “medium dose” of 2 mg/kg and received three doses of test article unless not tolerated. If tolerated, animals were moved up to a “high dose” of 10 mg/kg and received three doses of test article unless not tolerated. If tolerated, animals were moved up to a “higher dose” of 15 mg/kg. At each stage, if the test dose was not tolerated, the animal was moved down to the next lower dose. If the starting dose was not tolerated, the animal was moved down to a “lower dose” of 0.08 mg/kg. Animals were dosed with an ACC having a N- to C-terminus structure of DD-CM-CP dimers (ProC286). As a negative control, animals were dosed with a human IgG4. The negative control did not induce any toxicity in the animals, as expected.


ProC286 (ChIgG4 5AA 1204DNIdL IFNa2b) was also prepared by recombinant methods. The 1st and 2nd monomer constructs were identical, with each being a polypeptide having the amino acid sequence of SEQ ID NO: 320 and a signal sequence at its N-terminus. Each of the 1st and 2nd monomer constructs comprises, from N-terminus to C-terminus, a signal sequence, a dimerization domain corresponding to human IgG Fc (SEQ ID NO: 3), a linker (SEQ ID NO: 321) a cleavable moiety having the amino acid sequence of SEQ ID NO: 100, a linker (SEQ ID NO: 2), and a mature cytokine protein that corresponds to human interferon alpha-2b (SEQ ID NO: 1).


ProC291 (NhIgG4 5AA 1204DNIdL IFNa2b) was also prepared by recombinant methods. The 1st and 2nd monomer constructs were identical. Each of the 1st and 2nd monomer constructs comprises, from N-terminus to C-terminus, a mature cytokine protein that corresponds to human interferon alpha-2b (SEQ ID NO: 1), a linker (SEQ ID NO: 321), a CM (SEQ ID NO: 100), a linker (GGGS) (SEQ ID NO: 2), and a human IgG4 Fc region including the full hinge sequence (SEQ ID NO: 4).


The activity of ProC286 and ProC291 were compared to the activity of Sylatron® (PEG-IFN-alpha2b) in the Daudi apoptosis assay (FIGS. 17A-17B). In this assay, ProC286 and Sylatron® showed similar levels of activity as shown in FIG. 17A This indicates that ProC286 has similar activity to commercially-available pegylated IFN-alpha2b, and could be used as surrogate Sylatron® control to evaluate the tolerability of IFNα-2b in the hamster study. ProC291 showed reduced activity compared to ProC286 and Sylatron®, indicating that the structural orientation of the IFN N-terminal to the Fc was important for reduction in activity. That is, when the DD is a pair of Fc domains, positioning the cytokine N-terminal to the DD (as in ProC291) may provide greater reduction of cytokine activity than when the cytokine is positioned C-terminal to the DD (as in ProC286).


Animals were dosed on day 1 with the 0.4 mg/kg starting dose. Animals were kept on study for one week, unless a non-tolerated dose (DLT) was reached. Clinical observations, body weights & temperatures were measured prior to dosing, and at 6 h, 24 h, 72 h, and 7 d post-dose for each animal. Blood samples for Hematology and Chemistry analysis were collected at 72 h, 7 d post-dose for each animal. Hematology and Chemistry analysis were performed right after sampling. For the Hematology analysis, blood smear, differential white blood cell count, hematocrit, hemoglobin, mean corpuscular hemoglobin, mean corpuscular volume, platelet count, red blood cell (erythrocyte) count, red blood cell distribution width, reticulocyte count and white blood cell (leukocyte) count were evaluated. The clinical chemistry panel included measurement of alanine aminotransferase, albumin, albumin/globulin ratio, alkaline phosphatase, aspartate aminotransferase, calcium, chloride, cholesterol, creatine kinase, creatine, gamma glutamyl transferase, globulin, glucose, inorganic phosphorus, potassium, sodium, total bilirubin, total protein, triglycerides, urea, nitrogen, and C-reactive protein. The evidence of toxicities in the tolerability study are summarized in FIGS. 18-20.


Overall, animals dosed with the unmasked ProC286 constructs showed on average 5% body weight loss at when dosed at 2 mpk, and 15% body weight loss when dosed at 10 mpk and 15 mpk (FIG. 18). One animal dosed with ProC286 at 15 mpk showed 20% body weight loss 7 days post-dose (end of study). This is considered a non-tolerated dose. In contrast, animals dosed with ProC440 at 2 mpk and 10 mpk did not show body weight loss.


Animals dosed with ProC440 at 15 mpk showed on average 5% body weight loss (FIG. 18). This indicates that ACCs of the present disclosure with a dimerized structure of, starting at the N-terminus, CP-CM-DD unexpectedly limits IFNα-2b mediated bodyweight loss. Without wishing to be bound by theory, it is believed that positioning the interferon N-terminal of the DD and using a relatively short LR inhibits cytokine activity in the context of ProC440, reducing the toxicity of the interferon in comparison to PEGylated IFNα-2b (Sylatron®) or ProC286.


In terms of clinical chemistry, animals dosed with ProC286 showed significant elevation of Alkaline Phosphatase (ALP) at all doses (0.4 mpk, 2 mpk, 10 mpk and 15 mpk), 7 days post-dose (end of study) (FIG. 19). No significant increase of ALP was measured when animals were dosed with 10 mpk or 15 mpk of ProC440 (FIG. 19). Elevation of ALT is a marker of liver toxicity. IFNα-2b has been shown to induce liver toxicities. This indicates that ACCs of the present disclosure with a dimerized structure of, starting at the N-terminus, CP-CM-DD unexpectedly limits IFNα-2b mediated liver toxicities.


In terms of hematology, 3 days post-dose and 7 days post-dose (end of study), animals dosed with ProC286 at 2 mpk, 10 mpk and 15 mpk showed significant reduction level of Reticulocyte count, Neutrophil count and White Blood Cells (WBC) count (FIG. 20). These reductions are reminiscent of IFNα-2b mediated bone-marrow toxicities. Three days post-dose, animals dosed with ProC440 showed reduction level of Reticulocyte count, Neutrophil count and White Blood Cells (WBC) count (FIG. 20). Overall, the reduction level of hematopoietic cells observed in animals dosed with ProC440 is not as significant as the reduction levels observed in animals dosed with ProC286. At 7 days post-dose (end of study), in animals dosed with ProC440, the overall level of Reticulocyte count, Neutrophil count and White Blood Cells (WBC) count is back to normal levels, or to a similar level that what observed in animals dosed with the negative control IgG4 (FIG. 20). In animals dosed with ProC286, the level of Reticulocyte count, Neutrophil count and White Blood Cells (WBC) count remains low. This indicates that ACCs of the present disclosure with a dimerized structure of, starting at the N-terminus, CP-CM-DD unexpectedly limits IFNa-2b mediated bone marrow toxicities.


Example 5. In Vitro Characterization of Additional IFNa-2b Cytokine Constructs

Additional activatable cytokine constructs comprising IFNa-2b were also prepared by recombinant methods. The 1st and 2nd monomer constructs of these ACCs were identical. Each of the 1st and 2nd monomer constructs comprises, from N-terminus to C-terminus, a signal sequence from a mouse IgG kappa signal sequence (residues 1-20 of SEQ ID NO: 309), a mature cytokine protein that corresponds to human interferon alpha-2b (SEQ ID NO: 1), a cleavable moiety (CM) having the amino acid sequence of SEQ ID NO: 100, and a dimerization domain corresponding to human IgG4 S228P Fc (comprising SEQ ID NO: 3). In addition, these ACCs include or not a linker having the amino acid sequence SGGGG (SEQ ID NO: 335) between the CP and the CM. These ACCs include or not a linker having the amino acid sequence GGGS (SEQ ID NO: 2) between the CM and DD. These ACCs also contain or not portions of the hinge of the DD that are N-terminal to Cysteine 226. These additional activatable cytokines constructs are described in Table 6 (see SEQ ID Nos: 336 to 342 and SEQ ID NO: 313).









TABLE 6







Activatable cytokines having different lengths of amino acid sequences


between CP and Cysteine 226 of human IgG














Linker
Linker
Fc Hinge
LINKING



Alternative
between CP
between CM
N-terminal
REGION


Name
Name
and CM
and DD
residues
LENGTH





ProC288
IFNa2b
SGGGG
absent
absent
12



1204DNI 0 AA
(SEQ ID






Fc
NO: 335)








ProC289
IFNa2b
SGGGG
absent
GPP
15



1204DNI 3 AA
(SEQ ID






Fc
NO: 335)








ProC290
IFNa2b
SGGGG
absent
ESKYGPP
19



1204DNI 7 AA
(SEQ ID

(SEQ ID




Fc
NO: 335)

NO: 389)






ProC291
IFNa2b
SGGGG
GGGS
ESKYGPP
23



1204DNI 11 AA
(SEQ ID
(SEQ ID
(SEQ ID




Fc
NO: 335)
NO: 2)
NO: 389)






ProC440
N IFNa2b 0
absent
absent
absent
 7



1204DNIdL







0 AA Fc









ProC441
N IFNa2b 0
absent
absent
GPP
10



1204DNIdL







3 AA Fc









ProC442
N IFNa2b 0
absent
absent
ESKYGPP
14



1204DNIdL


(SEQ ID




7 AA Fc


NO: 389)






ProC443
N IFNa2b 0
absent
GGGS
ESKYGPP
18



1204DNIdL

(SEQ ID
(SEQ ID




11 AA Fc

NO: 2)
NO: 389)









The activity of ProC440, an ACC with no flexible linker and an Fc region truncated to Cys226, and the activity of additional ACCs containing various linkers and Fc region sequences was tested in vitro using IFN-responsive HEK293 cells and Daudi cells as previously described. In both assays, the activity (e.g., anti-proliferative effects) of ProC440 was reduced as compared to all other ACCs containing various additional sequences between the cytokine and the first amino acid that binds the DD to the corresponding second monomer (i.e., Cys226). EC50 values for the ACCs were computed from the IFNα/β assay results and are provided below in Table 7.









TABLE 7







EC50: IFNα/β Reporter Assay
















ProC288
ProC289
ProC290
ProC291
ProC440
ProC441
ProC442
ProC443



















EC50
34.34
17.93
10.33
8.743
41.37
6.28
6.637
1.687









EC50 values for the ACCs were computed from the Daudi apoptosis assay results and are provided below in Table 8.









TABLE 8







EC50: Daudi Apoptosis Assay
















ProC288
ProC289
ProC290
ProC291
ProC440
ProC441
ProC442
ProC443



















EC50
112.8
64.55
23.04
13.39
2078
1053
642.9
478









The data in Tables 7-8 also shows that the activity of the (uncleaved) ACCs could be modulated by varying the length of the amino acid sequences between the cytokine and Cys226 of the DD.


Without wishing to be bound by theory, based on the results presented herein, the inventors envisage that positioning a cytokine N-terminal of the DD and using a relatively short LR inhibits cytokine activity for cytokines in addition to the interferon-alpha cytokines exemplified in the foregoing specific examples.


Example 6: In Vitro Characterization of Example IL-15 Cytokine Constructs

An activatable cytokine construct containing human IL-15 (ProC1471) was prepared by recombinant methods. The 1st and 2nd monomer constructs of the ProC1471 were identical, with each being a polypeptide having the amino acid sequence of SEQ ID 350 and a signal sequence at its N-terminus. Each of the 1st and 2nd monomer constructs comprises, from N-terminus to C-terminus, a signal sequence from a mouse IgG kappa signal sequence (residues 1-20 of SEQ ID NO: 309), a mature cytokine protein that corresponds to human IL-15 amino acid residues 49-161 (SEQ ID NO: 347), a cleavable moiety having the amino acid sequence of SEQ ID NO: 100, and a dimerization domain corresponding to human IgG4 Fc, truncated at Cys226 (according to EU numbering) and including an S228P mutation (SEQ ID NO: 3) (FIG. 3). The complete monomer construct sequence for ProC1471, including the signal sequence, is shown in SEQ ID NO: 350. The Linking Region (LR) of this monomer construct is 7 amino acids long.


The polypeptide was prepared by transforming a host cell with a polynucleotide having the sequence of SEQ ID NO: 357, followed by cultivation of the resulting recombinant host cells. Dimerization of the resulting expressed polypeptides yielded the cytokine construct ProC1471.


The activity of ProC1471 was tested in vitro using IL-2/IL-15-responsive HEK293 cells. See FIGS. 4 and 6. The IL-2/IL15-responsive HEK293 cells were generated by stable transfection with the human CD25 (IL-2Rα), CD122 (IL-2Rβ), and CD132 (IL-2Rγ) genes, along with the human JAK3 and STAT5 genes to obtain a fully functional IL-2/IL-15 signaling pathway. The cells also feature an STAT5-inducible SEAP (secreted embryonic alkaline phosphatase) reporter gene. To maintain transgene expression, cells were cultured in DMEM GlutaMax media supplemented with 10% FBS, Pen/Strep, 10 μg/ml Puromycin, and 100 μg/mL of Normocin. The addition of IL-2 and IL-15 to these cells activates the STAT5 and subsequently induces the production of SEAP which can be readily assessed in the supernatant using QUANTI-Blue solution, a colorimetric detection for alkaline phosphatase activity.


IL-2/IL-15-responsive HEK293 cells were prepared at a concentration of 280,000 cells/mL in DMEM media supplemented with 10% FBS and 180 μL aliquots were pipetted into wells of a white flat-bottom 96-well plate (50,000 cells/well). The tested cytokines were diluted in DMEM media supplemented with 10% FBS. Duplicate of three-fold serial dilutions were prepared from which 20 μL was added to the each well. After 20-24 hours of incubation at 37° C., 20 μl of supernatant of the induced reporter cells was transferred to wells of a to flat-bottom 96-well plate. 180 μl of resuspended QUANTI-Blue solution was added per well. Following incubation of the plate at 37° C. incubator for 1-3 h, the SEAP levels were measured using a spectrophotometer at 620 nm. Dose-response curves were generated and EC50 values were obtained by sigmoidal fit non-linear regression using Graph Pad Prism software.


In the reporter assay, the activity of ProC1471 was reduced at least 250× (250-fold) as compared to PeproTech IL-15 (Recombinant human IL-15, available from PeproTech, Catalog #200-15) (FIG. 4). This indicates that the fusion of a cleavable dimerization domain corresponding to human IgG Fc provided steric masking to IL-15 in the ACC construct.


Example 7: Activity of Protease-Treated IL-15-Containing ACC

Protease treated IL-15-containing ACC was tested in the reporter assay to determine whether the interleukin activity could be restored. To cleave the dimerizing domain, IL-15-containing ACC was treated overnight at 37° C. with recombinant human proteases such as urokinase-type plasminogen activator (uPA), or matriptase (MT-SP1). Cleavage with uPa at the expected site in the cleavable moiety was confirmed by electrophoresis (FIG. 5). The results suggest that the uPa protease could cleave the cleavable moieties (CM) in ProC1471. Protease activation with uPa partially restored activity of ProC1471 to a level close to but lower than the recombinant IL-15 (FIG. 6). EC50 values for ProC1471, ProC1471+uPA, and PeproTech IL-15 were computed from the IL-15 reporter assay results and are provided below in Table 9. Activation of the ACC by uPa protease thus resulted in IL-15 activity that is about 64-fold greater than the intact ACC. The ratio of EC50 (cleavage product) to EC50 (wildtype control level) for ProC1471 when activated by uPa is about 6 (9.046/1.48=6.11), demonstrating good recovery of IL-15 activity following protease activation.









TABLE 9







EC50: HEK-Blue Reporter Assay











ProC1471
ProC1471 + uPA
PeproTech IL-15














EC50 (pM)
573.8
9.046
1.480









Example 8. Design of Additional IL-15 Cytokine Constructs

Additional activatable cytokine constructs ProC1874, ProC1875, ProC1876, ProC11877, ProC11878, and ProC11879 were also prepared by recombinant methods. The 1st and 2nd monomer constructs of these ACCs were identical. Each of the 1st and 2nd monomer constructs comprises, from N-terminus to C-terminus, a signal sequence from a mouse IgG1 kappa signal sequence (residues 1-20 of SEQ ID NO: 309), a mature cytokine protein that corresponds to human 11-15 residues 49-162 (SEQ II) NO: 348), a cleavable moiety (CM), and a dimerization domain corresponding to human IgG4 Fc, truncated at Cys226 (according to EU numbering) and including an S228P mutation (SEQ ID NO: 3). In addition, these ACCs include or not a linker between the cytokine and CM having the amino acid sequence shown in Table 10 below. These additional activatable cytokines constructs are described in Table 10, and the complete amino acid sequences of these constructs are provided in Table 14 (see SEQ ID Nos: 351 to 356).









TABLE 10







Activatable cytokines having different linker and CM













Linker
Linking





between CP
Region


Name
Alternative Name
and CM
Length
CM














ProC1471
IL-15(NT)_1204DNIdL_IgG4(C226)
absent
7
SEQ ID 100


ProC1874
IL-15_(0aa)_1204DNI_IgG4(C226)
absent
8
SEQ ID 40


ProC1875
IL-15_(1aa)_1204DNI_IgG4(C226)
G
9
SEQ ID 40


ProC1876
IL-15_(2aa)_1204DNI_IgG4(C226)
GG
10
SEQ ID 40


ProC1877
IL-15_(0aa)_1205_IgG4(C226)
absent
7
SEQ ID 349


ProC1878
IL-15_(1aa)_1205_IgG4(C226)
G
8
SEQ ID 349


ProC1879
IL-15_(2aa)_1205_IgG4(C226)
GG
9
SEQ ID 349









Example 9: Characterization of Additional IL-15-Containing ACCs

IL-15-containing ACCs ProC1471, ProC1876, and ProC1879 were treated overnight at 37° C. with recombinant uPA. Cleavage with uPa at the expected site in the cleavable moiety was confirmed by electrophoresis (FIG. 21A). HEK293 reporter assay characterize the activities of intact and protease-treated IL-15-containing ACCs (FIG. 21B). Table 11 shows the average EC50 values of the IL-15-containing ACCs from multiple experiments (n>3). Activation of the ACCs by uPa protease resulted in IL-15 activity that is about 49- to 104-fold greater than the intact ACCs.









TABLE 11







EC50: HEK-Blue Reporter Assay











Intact
Activated
Activity fold-change



ACC EC50
ACC EC50
intact ACC/activated



(pM)
(pM)
treated ACC
















IL-15
1.46





ProC1471
729.23
14.80
49



ProC1876
1111.73
17.63
63



ProC1879
2561.00
24.53
104










Example 10: Activity of IL-15-Containing ACCs on Human PBMC Proliferation

In the cell proliferation assay, human PBMCs were incubated with recombinant IL-15 or IL-15-ACCs (with or without prior-protease activation) for 3 days. Following incubation, PBMCs were stained with fixable viability dye eFlur™780, anti-CD3-FITC (UCHTI), anti-CD4-BV608 (RPA-T4), anti-CD8-BV480 (RPA-T8), anti-CD56-BV421 (HCD56), and anti-Ki67-APC (Ki67) antibodies. Various cell populations including CD3−, CD56+ NK cells, CD3+, CD8+ T cells and CD3+, CD4+ T cells were analyzed and proliferation of the various cell populations were determined based on percentage Ki67 expression, as shown in FIG. 22. Protease-treated IL-15-ACCs show stronger proliferative activity than the corresponding intact IL-15-containing ACCs. Table 12 shows the EC50 of various IL-15-containing ACCs in the PBMC proliferation assay.









TABLE 12







EC50: Human PBMC Proliferation Ki67












EC50 (nM)
NK Cells
CD8
CD4
















IL-15
0.004
0.221
0.121



ProC1471 + uPA
0.027
1.262
1.080



ProC1876 + uPA
0.112
6.793
4.556



ProC1879 + uPA
0.084
4.088
3.362



ProC1471
11533
589.4
287.6



ProC1876
29.415
442.35
313.3



ProC1879
883.25
2.57E+10
857.4










Example 11: Activity of IL-15-Containing ACCs on Human PBMC STAT5 Phosphorylation

IL-15 binding to IL-15R drives phosphorylation of STAT5 and subsequent proliferation of NK and T cells. In the STAT5 phosphorylation assay, human PBMCs were first stained with anti-CD3-FITC (UCHTI), anti-CD4-BV608 (RPA-T4), anti-CD8-BV480 (RPA-T8), anti-CD56-BV421 (HCD56) for 30 minutes at room temperature. After surface staining, cells were stimulated with various IL-15 test articles for 20 minutes at 37° C. in RPMI media containing 10% FBS. Cells were immediately fixed by pre-warmed fixation solution for 10-12 minutes at 37° C., washed, and incubated with pre-chilled (−20° C.) 90% methanol for 30 minutes at 4° C. After fixation and permeabilization, cells were washed again and stained with anti-pSTAT5-Alexa647 (pY687). Various cell populations including CD3−, CD56+ NK cells, CD3+, CD8+ T cells and CD3+, CD4+ T cells were analyzed and phosphorylation of STAT5 in the various cell populations was determined as the percentage of pSTAT5 positive cells (FIG. 23). EC50 for STAT5 phosphorylation of the IL15-ACCs on various cell populations was summarized in Table 13.









TABLE 13







EC50: Human PBMC STAT5 Phosphorylation












EC50 (pM)
NK cells
CD8
CD4
















IL-15
1.791
6.404
6.972



ProC1471 + uPA
106.2
163.6
582



ProC1879 + uPA
93.1
216.1
319.8



ProC1471
11560
40160
140700



ProC1879
14150
18980
19460

















TABLE 14







Example Sequences









SEQ ID




NO.
NAME
SEQUENCE












1
Human Interferon-
CDLPQTHSLGSRRTLMLLAQMRRISLFSCLKDRHDFGF



alpha-2b
PQEEFGNQFQKAETIPVLHEMIQQIFNLFSTKDSSAAWD




ETLLDKFYTELYQQLNDLEACVIQGVGVTETPLMKEDS




ILAVRKYFQRITLYLKEKKYSPCAWEVVRAEIMRSFSLS




TNLQESLRSKE





2
Linker
GGGS





3
Human IgG4 Fc
CPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVV



Region with S228P
DVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTY



mutation, truncated
RVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISK



to Cys226
AKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPS




DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVD




KSRWQQGNVFSCSVMHEALHNHYTQKSLSLS





4
Human IgG4 Fc
ESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPE



Region with S228P
VTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREE



mutation and full
QFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSS



hinge region
IEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLV




KGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY




SRLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLS





5
CM
LSGRSDNH





6
CM
TGRGPSWV





7
CM
PLTGRSGG





8
CM
TARGPSFK





9
CM
NTLSGRSENHSG





10
CM
NTLSGRSGNHGS





11
CM
TSTSGRSANPRG





12
CM
TSGRSANP





13
CM
VHMPLGFLGP





14
CM
AVGLLAPP





15
CM
AQNLLGMV





16
CM
QNQALRMA





17
CM
LAAPLGLL





18
CM
STFPFGMF





19
CM
ISSGLLSS





20
CM
PAGLWLDP





21
CM
VAGRSMRP





22
CM
VVPEGRRS





23
CM
ILPRSPAF





24
CM
MVLGRSLL





25
CM
QGRAITFI





26
CM
SPRSIMLA





27
CM
SMLRSMPL





28
CM
ISSGLLSGRSDNH





29
CM
AVGLLAPPGGLSGRSDNH





30
CM
ISSGLLSSGGSGGSLSGRSDNH





31
CM
LSGRSGNH





32
CM
SGRSANPRG





33
CM
LSGRSDDH





34
CM
LSGRSDIH





35
CM
LSGRSDQH





36
CM
LSGRSDTH





37
CM
LSGRSDYH





38
CM
LSGRSDNP





39
CM
LSGRSANP





40
CM
LSGRSANI





41
CM
LSGRSDNI





42
CM
MIAPVAYR





43
CM
RPSPMWAY





44
CM
WATPRPMR





45
CM
FRLLDWQW





46
CM
ISSGL





47
CM
ISSGLLS





48
CM
ISSGLL





49
CM
ISSGLLSGRSANPRG





50
CM
AVGLLAPPTSGRSANPRG





51
CM
AVGLLAPPSGRSANPRG





52
CM
ISSGLLSGRSDDH





53
CM
ISSGLLSGRSDIH





54
CM
ISSGLLSGRSDQH





55
CM
ISSGLLSGRSDTH





56
CM
ISSGLLSGRSDYH





57
CM
ISSGLLSGRSDNP





58
CM
ISSGLLSGRSANP





59
CM
ISSGLLSGRSANI





60
CM
AVGLLAPPGGLSGRSDDH





61
CM
AVGLLAPPGGLSGRSDIH





62
CM
AVGLLAPPGGLSGRSDQH





63
CM
AVGLLAPPGGLSGRSDTH





64
CM
AVGLLAPPGGLSGRSDYH





65
CM
AVGLLAPPGGLSGRSDNP





66
CM
AVGLLAPPGGLSGRSANP





67
CM
AVGLLAPPGGLSGRSANI





68
CM
ISSGLLSGRSDNI





69
CM
AVGLLAPPGGLSGRSDNI





70
CM
GLSGRSDNHGGAVGLLAPP





71
CM
GLSGRSDNHGGVHMPLGFLGP





72
CM
LSGRSDNHGGVHMPLGFLGP





73
CM
ISSGLSS





74
CM
PVGYTSSL





75
CM
DWLYWPGI





76
CM
LKAAPRWA





77
CM
GPSHLVLT





78
CM
LPGGLSPW





79
CM
MGLFSEAG





80
CM
SPLPLRVP





81
CM
RMHLRSLG





82
CM
LLAPSHRA





83
CM
GPRSFGL





84
CM
GPRSFG





85
CM
SARGPSRW





86
CM
GGWHTGRN





87
CM
HTGRSGAL





88
CM
AARGPAIH





89
CM
RGPAFNPM





90
CM
SSRGPAYL





91
CM
RGPATPIM





92
CM
RGPA





93
CM
GGQPSGMWGW





94
CM
FPRPLGITGL





95
CM
SPLTGRSG





96
CM
SAGFSLPA





97
CM
LAPLGLQRR





98
CM
SGGPLGVR





99
CM
PLGL





100
CM
SGRSDNI





101
Human Interferon
CDLPQTHSLGSRRTLMLLAQMRKISLFSCLKDRHDFGF



alpha-2a
PQEEFGNQFQKAETIPVLHEMIQQIFNLFSTKDSSAAWD




ETLLDKFYTELYQQLNDLEACVIQGVGVTETPLMKEDS




ILAVRKYFQRITLYLKEKKYSPCAWEVVRAEIMRSFSLS




TNLQESLRSKE





102
Rat Interferon
CDLPHTHNLRNKRAFTLLAQMRRLSPVSCLKDRKDFG



alpha-2
FPLEKVDGQQIQKAQAIPVLHELTQQILSLFTSKESSTA




WDASLLDSFCNDLQQQLSGLQACLMQQVGVQESPLTQ




EDSLLAVREYFHRITVYLREKKHSPCAWEVVRAEVWR




ALSSSANLLGRLREERNES





103
Mouse Interferon
CDLPHTYNLRNKRALKVLAQMRRLPFLSCLKDRQDFG



alpha-2
FPLEKVDNQQIQKAQAIPVLRDLTQQTLNLFTSKASSA




AWNATLLDSFCNDLHQQLNDLQTCLMQQVGVQ




EPPLTQEDALLAVRKYFHRITVYLREKKHS




PCAWEVVRAEVWRALSSSVNLLPRLSEEKE





104
Human Interferon
CDLPQTHSLGSRRTLMLLAQMRRISLFSCLKDRHDFGF



Alpha-2b
PQEEFGNQFQKAETIPVLHEMIQQIFNLFSTKDSSAAWD




ETLLDKFYTELYQQLNDLEACVIQGVGVTETPLMKEDS




ILAVRKYFQRITLYLKEKKYSPCAWEVVRAEIMRSFSLS




TNLQESLRSKE





105
Human Interferon
CDLPQTHSLGSRRTLMLLAQMRKISLFSCLKDRHDFGF



Alpha-n3
PQEEFGNQFQKAETIPVLHEMIQQIFNLFSTKDSSAAWD




ETLLDKFYTELYQQLNDLEACVIQGVGVTETPLMKEDS




ILAVRKYFQRITLYLKEKKYSPCAWEVVRAEIMRSFSLS




TNLQESLRSKECDLPQTHSLGSRRTLMLLAQMRRISLFS




CLKDRHDFGFPQEEFGNQFQKAETIPVLHEMIQQIFNLF




STKDSSAAWDETLLDKFYTELYQQLNDLEACVIQGVG




VTETPLMNEDSILAVRKYFQRITLYLKEKKYSPCAWEV




VRAEIMRSFSLSTNLQESLRSKECDLPQTHSLGSRRTLM




LLAQMRRISLFSCLKDRRDFGFPQEEFGNQFQKAETIPV




LHEMIQQIFNLFSTKDSSAAWDETLLDKFYTELYQQLN




DLEACVIQGVGVTETPLMNEDSILAVRKYFQRITLYLKE




KKYSPCAWEVVRAEIMRSFSLSTNLQESLRSKE





106
Human Interferon
MSYNLLGFLQRSSNFQCQKLLWQLNGRLEYCLKDRM



beta-1a
NFDIPEEIKQLQQFQKEDAALTIYEMLQNIFAIFRQDSSS




TGWNETIVENLLANVYHQINHLKTVLEEKLEKEDFTR




GKLMSSLHLKRYYGRILHYLKAKEYSHCAWTIVRVEIL




RNFYFINRLTGYLRN





107
Human Interferon
SYNLLGFLQRSSNFQSQKLLWQLNGRLEYCLKDRMNF



beta-1b
DIPEEIKQLQQFQKEDAALTIYEMLQNIFAIFRQDSSSTG




WNETIVENLLANVYHQINHLKTVLEEKLEKEDFTRGK




LMSSLHLKRYYGRILHYLKAKEYSHCAWTIVRVEILRN




FYFINRLTGYLRN





108
Mouse Interferon-
MNNRWILHAAFLLCFSTTALSINYKQLQLQERTNIRKC



Beta
QELLEQLNGKINLTYRADFKIPMEMTEKMQKSYTAFAI




QEMLQNVFLVFRNNFSSTGWNETIVVRLLDELHQQTV




FLKTVLEEKQEERLTWEMSSTALHLKSYYWRVQRYLK




LMKYNSYAWMVVRAEIFRNFLIIRRLTRNFQN





109
Rat Interferon-Beta
MANRWTLHIAFLLCFSTTALSIDYKQLQFRQSTSIRTCQ




KLLRQLNGRLNLSYRTDFKIPMEVMHPSQMEKSYTAF




AIQVMLQNVFLVFRSNFSSTGWNETIVESLLDELHQQT




ELLEIILKEKQEERLTWVTSTTTLGLKSYYWRVQRYLK




DKKYNSYAWMVVRAEVFRNFSIILRLNRNFQN





110
Human Interferon
MCDLPQNHGLLSRNTLVLLHQMRRISPFLCLKDRRDFR



Omega
FPQEMVKGSQLQKAHVMSVLHEMLQQIFSLFHTERSS




AAWNMTLLDQLHTGLHQQLQHLETCLLQVVGEGESA




GAISSPALTLRRYFQGIRVYLKEKKYSDCAWEVVRMEI




MKSLFLSTNMQERLRSKDRDLGSS





111
Human IL-1 alpha
MAKVPDMFEDLKNCYSENEEDSSSIDHLSLNQKSFYH




VSYGPLHEGCMDQSVSLSISETSKTSKLTFKESMVVVA




TNGKVLKKRRLSLSQSITDDDLEAIANDSEEEIIKPRSAP




FSFLSNVKYNFMRIIKYEFILNDALNQSIIRANDQYLTA




AALHNLDEAVKFDMGAYKSSKDDAKITVILRISKTQLY




VTAQDEDQPVLLKEMPEIPKTITGSETNLLFFWETHGT




KNYFTSVAHPNLFIATKQDYWVCLAGGPPSITDFQILE




NQA





112
Mouse IL-1 alpha
MAKVPDLFEDLKNCYSENEDYSSAIDHLSLNQKSFYD




ASYGSLHETCTDQFVSLRTSETSKMSNFTFKESRVTVS




ATSSNGKILKKRRLSFSETFTEDDLQSITHDLEETIQPRS




APYTYQSDLRYKLMKLVRQKFVMNDSLNQTIYQDVD




KHYLSTTWLNDLQQEVKFDMYAYSSGGDDSKYPVTL




KISDSQLFVSAQGEDQPVLLKELPETPKLITGSETDLIFF




WKSINSKNYFTSAAYPELFIATKEQSRVHLARGLPSMT




DFQIS





113
Human IL-1 beta
MAEVPELASEMMAYYSGNEDDLFFEADGPKQMKCSF




QDLDLCPLDGGIQLRISDHHYSKGFRQAASVVVAMDK




LRKMLVPCPQTFQENDLSTFFPFIFEEEPIFFDTWDNEA




YVHDAPVRSLNCTLRDSQQKSLVMSGPYELKALHLQG




QDMEQQVVFSMSFVQGEESNDKIPVALGLKEKNLYLS




CVLKDDKPTLQLESVDPKNYPKKKMEKRFVFNKIEINN




KLEFESAQFPNWYISTSQAENMPVFLGGTKGGQDITDF




TMQFVSS





114
Mouse IL-1 beta
MATVPELNCEMPPFDSDENDLFFEVDGPQKMKGCFQT




FDLGCPDESIQLQISQQHINKSFRQAVSLIVAVEKLWQL




PVSFPWTFQDEDMSTFFSFIFEEEPILCDSWDDDDNLLV




CDVPIRQLHYRLRDEQQKSLVLSDPYELKALHLNGQNI




NQQVIFSMSFVQGEPSNDKIPVALGLKGKNLYLSCVM




KDGTPTLQLESVDPKQYPKKKMEKRFVFNKIEVKSKV




EFESAEFPNWYISTSQAEHKPVFLGNNSGQDIIDFTMES




VSS





115
Human IL-1RA
MEICRGLRSHLITLLLFLFHSETICRPSGRKSSKMQAFRI




WDVNQKTFYLRNNQLVAGYLQGPNVNLEEKIDVVPIE




PHALFLGIHGGKMCLSCVKSGDETRLQLEAVNITDLSE




NRKQDKRFAFIRSDSGPTTSFESAACPGWFLCTAMEAD




QPVSLTNMPDEGVMVTKFYFQEDE





116
Mouse IL-1RA
MEICWGPYSHLISLLLILLFHSEAACRPSGKRPCKMQAF




RIWDTNQKTFYLRNNQLIAGYLQGPNIKLEEKIDMVPI




DLHSVELGIHGGKLCLSCAKSGDDIKLQLEEVNITDLSK




NKEEDKRFTFIRSEKGPTTSFESAACPGWFLCTTLEADR




PVSLTNTPEEPLIVTKFYFQEDQ





117
Human IL-18
MAAEPVEDNCINFVAMKFIDNTLYFIAEDDENLESDYF




GKLESKLSVIRNLNDQVLFIDQGNRPLFEDMTDSDCRD




NAPRTIFIISMYKDSQPRGMAVTISVKCEKISTLSCENKI




ISFKEMNPPDNIKDTKSDIIFFQRSVPGHDNKMQFESSS




YEGYFLACEKERDLFKLILKKEDELGDRSIMFTVQNED





118
Mouse IL-18
MAAMSEDSCVNFKEMMFIDNTLYFIPEENGDLESDNF




GRLHCTTAVIRNINDQVLFVDKRQPVFEDMTDIDQSAS




EPQTRLIIYMYKDSEVRGLAVTLSVKDSKMSTLSCKNK




IISFEEMDPPENIDDIQSDLIFFQKRVPGHNKMEFESSLY




EGHFLACQKEDDAFKLILKKKDENGDKSVMFTLTNLH




QS





119
Human IL-2
MYRMQLLSCIALSLALVTNSAPTSSSTKKTQLQLEHLL




LDLQMILNGINNYKNPKLTRMLTFKFYMPKKATELKH




LQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVL




ELKGSETTFMCEYADETATIVEFLNRWITFCQSIIS





120
Mouse IL-2
MYSMQLASCVTLTLVLLVNSAPTSSSTSSSTAEAQQQQ




QQQQQQQQHLEQLLMDLQELLSRMENYRNLKLPRML




TFKFYLPKQATELKDLQCLEDELGPLRHVLDLTQSKSF




QLEDAENFISNIRVTVVKLKGSDNTFECQFDDESATVV




DFLRRWIAFCQSIISTSPQ





121
Human IL-4
MGLTSQLLPPLFFLLACAGNFVHGHKCDITLQEIIKTLN




SLTEQKTLCTELTVTDIFAASKNTTEKETFCRAATVLR




QFYSHHEKDTRCLGATAQQFHRHKQLIRFLKRLDRNL




WGLAGLNSCPVKEANQSTLENFLERLKTIMREKYSKC




SS





122
Mouse IL-4
MGLNPQLVVILLFFLECTRSHIHGCDKNHLREIIGILNE




VTGEGTPCTEMDVPNVLTATKNTTESELVCRASKVLRI




FYLKHGKTPCLKKNSSVLMELQRLFRAFRCLDSSISCT




MNESKSTSLKDFLESLKSIMQMDYS





123
Human IL-7
MFHVSFRYIFGLPPLILVLLPVASSDCDIEGKDGKQYES




VLMVSIDQLLDSMKEIGSNCLNNEFNFFKRHICDANKE




GMFLFRAARKLRQFLKMNSTGDFDLHLLKVSEGTTILL




NCTGQVKGRKPAALGEAQPTKSLEENKSLKEQKKLND




LCFLKRLLQEIKTCWNKILMGTKEH





124
Mouse IL-7
MFHVSFRYIFGIPPLILVLLPVTSSECHIKDKEGKAYESV




LMISIDELDKMTGTDSNCPNNEPNFFRKHVCDDTKEAA




FLNRAARKLKQFLKMNISEEFNVHLLTVSQGTQTLVN




CTSKEEKNVKEQKKNDACFLKRLLREIKTCWNKILKG




SI





125
Human IL-9
MLLAMVLTSALLLCSVAGQGCPTLAGILDINFLINKMQ




EDPASKCHCSANVTSCLCLGIPSDNCTRPCFSERLSQMT




NTTMQTRYPLIFSRVKKSVEVLKNNKCPYFSCEQPCNQ




TTAGNALTFLKSLLEIFQKEKMRGMRGKI





126
Mouse IL-9
MLVTYILASVLLFSSVLGQRCSTTWGIRDTNYLIENLK




DDPPSKCSCSGNVTSCLCLSVPTDDCTTPCYREGLLQL




TNATQKSRLLPVFHRVKRIVEVLKNITCPSFSCEKPCNQ




TMAGNTLSFLKSLLGTFQKTEMQRQKSRP





127
Human IL-13
MHPLLNPLLLALGLMALLLTTVIALTCLGGFASPGPVP




PSTALRELIEELVNITQNQKAPLCNGSMVWSINLTAGM




YCAALESLINVSGCSAIEKTQRMLSGFCPHKVSAGQFS




SLHVRDTKIEVAQFVKDLLLHLKKLFREGREN





128
Mouse IL-13
MALWVTAVLALACLGGLAAPGPVPRSVSLPLTLKELIE




ELSNITQDQTPLCNGSMVWSVDLAAGGFCVALDSLTNI




SNCNAIYRTQRILHGLCNRKAPTTVSSLPDTKIEVAHFI




TKLLSYTKQLFRHGPF





129
Human IL-15
MRISKPHLRSISIQCYLCLLLNSHFLTEAGIHVFILGCFS




AGLPKTEANWVNVISDLKKIEDLIQSMHIDATLYTESD




VHPSCKVTAMKCFLLELQVISLESGDASIHDTVENLIIL




ANNSLSSNGNVTESGCKECEELEEKNIKEFLQSFVHIVQ




MFINTS





130
Mouse IL-15
MKILKPYMRNTSISCYLCFLLNSHELTEAGIHVFILGCV




SVGLPKTEANWIDVRYDLEKIESLIQSIHIDTTLYTDSDF




HPSCKVTAMNCFLLELQVILHEYSNMTLNETVRNVLY




LANSTLSSNKNVAESGCKECEELEEKTFTEFLQSFIRIV




QMFINTS





131
Human IL-3
MSRLPVLLLLQLLVRPGLQAPMTQTTPLKTSWVNCSN




MIDEIITHLKQPPLPLLDFNNLNGEDQDILMENNLRRPN




LEAFNRAVKSLQNASAIESILKNLLPCLPLATAAPTRHP




IHIKDGDWNEFRRKLTFYLKTLENAQAQQTTLSLAIF





132
Mouse IL-3
MVLASSTTSIHTMLLLLLMLFHLGLQASISGRDTHRLT




RTLNCSSIVKEIIGKLPEPELKTDDEGPSLRNKSFRRVNL




SKFVESQGEVDPEDRYVIKSNLQKLNCCLPTSANDSAL




PGVFIRDLDDFRKKLRFYMVHLNDLETVLTSRPPQPAS




GSVSPNRGTVEC





133
Human IL-5
MRMLLHLSLLALGAAYVYAIPTEIPTSALVKETLALLS




THRTLLIANETLRIPVPVHKNHQLCTEEIFQGIGTLESQT




VQGGTVERLFKNLSLIKKYIDGQKKKCGEERRRVNQF




LDYLQEFLGVMNTEWIIES





134
Mouse IL-5
MRRMLLHLSVLTLSCVWATAMEIPMSTVVKETLTQLS




AHRALLTSNETMRLPVPTHKNHQLCIGEIFQGLDILKN




QTVRGGTVEMLFQNLSLIKKYIDRQKEKCGEERRRTR




QFLDYLQEFLGVMSTEWAMEG





135
Human GM-CSF
MWLQSLLLLGTVACSISAPARSPSPSTQPWEHVNAIQE




ARRLLNLSRDTAAEMNETVEVISEMFDLQEPTCLQTRL




ELYKQGLRGSLTKLKGPLTMMASHYKQHCPPTPETSC




ATQIITFESFKENLKDFLLVIPFDCWEPVQE





136
Mouse GM-CSF
MWLQNLLFLGIVVYSLSAPTRSPITVTRPWKHVEAIKE




ALNLLDDMPVTLNEEVEVVSNEFSFKKLTCVQTRLKIF




EQGLRGNFTKLKGALNMTASYYQTYCPPTPETDCETQ




VTTYADFIDSLKTFLTDIPFECKKPGQK





137
Human IL-6
MNSFSTSAFGPVAFSLGLLLVLPAAFPAPVPPGEDSKD




VAAPHRQPLTSSERIDKQIRYILDGISALRKETCNKSNM




CESSKEALAENNLNLPKMAEKDGCFQSGFNEETCLVKI




ITGLLEFEVYLEYLQNRFESSEEQARAVQMSTKVLIQFL




QKKAKNLDAITTPDPTTNASLLTKLQAQNQWLQDMTT




HLILRSFKEFLQSSLRALRQM





138
Mouse IL-6
MKFLSARDFHPVAFLGLMLVTTTAFPTSQVRRGDFTE




DTTPNRPVYTTSQVGGLITHVLWEIVEMRKELCNGNS




DCMNNDDALAENNLKLPEIQRNDGCYQTGYNQEICLL




KISSGLLEYHSYLEYMKNNLKDNKKDKARVLQRDTET




LIHIFNQEVKDLHKIVLPTPISNALLTDKLESQKEWLRT




KTIQFILKSLEEFLKVTLRSTRQT





139
Human IL-11
MNCVCRLVLVVLSLWPDTAVAPGPPPGPPRVSPDPRA




ELDSTVLLTRSLLADTRQLAAQLRDKFPADGDHNLDS




LPTLAMSAGALGALQLPGVLTRLRADLLSYLRHVQWL




RRAGGSSLKTLEPELGTLQARLDRLLRRLQLLMSRLAL




PQPPPDPPAPPLAPPSSAWGGIRAAHAILGGLHLTLDW




AVRGLLLLKTRL





140
Mouse IL-11
MNCVCRLVLVVLSLWPDRVVAPGPPAGSPRVSSDPRA




DLDSAVLLTRSLLADTRQLAAQMRDKFPADGDHSLDS




LPTLAMSAGTLGSLQLPGVLTRLRVDLMSYLRHVQWL




RRAGGPSLKTLEPELGALQARLERLLRRLQLLMSRLAL




PQAAPDQPVIPLGPPASAWGSIRAAHAILGGLHLTLDW




AVRGLLLLKTRL





141
Human G-CSF
MAGPATQSPMKLMALQLLLWHSALWTVQEATPLGPA




SSLPQSFLLKCLEQVRKIQGDGAALQEKLVSECATYKL




CHPEELVLLGHSLGIPWAPLSSCPSQALQLAGCLSQLHS




GLFLYQGLLQALEGISPELGPTLDTLQLDVADFATTIW




QQMEELGMAPALQPTQGAMPAFASAFQRRAGGVLVA




SHLQSFLEVSYRVLRHLAQP





142
Mouse G-CSF
MAQLSAQRRMKLMALQLLLWQSALWSGREAVPLVT




VSALPPSLPLPRSFLLKSLEQVRKIQASGSVLLEQLCAT




YKLCHPEELVLLGHSLGIPKASLSGCSSQALQQTQCLS




QLHSGLCLYQGLLQALSGISPALAPTLDLLQLDVANFA




TTIWQQMENLGVAPTVQPTQSAMPAFTSAFQRRAGGV




LAISYLQGFLETARLALHHLA





143
Human IL-12 alpha
MCPARSLLLVATLVLLDHLSLARNLPVATPDPGMFPCL




HHSQNLLRAVSNMLQKARQTLEFYPCTSEEIDHEDITK




DKTSTVEACLPLELTKNESCLNSRETSFITNGSCLASRK




TSFMMALCLSSIYEDLKMYQVEFKTMNAKLLMDPKR




QIFLDQNMLAVIDELMQALNFNSETVPQKSSLEEPDFY




KTKIKLCILLHAFRIRAVTIDRVMSYLNAS





144
Human IL-12 beta
MCHQQLVISWFSLVFLASPLVAIWELKKDVYVVELDW




YPDAPGEMVVLTCDTPEEDGITWTLDQSSEVLGSGKTL




TIQVKEFGDAGQYTCHKGGEVLSHSLLLLHKKEDGIW




STDILKDQKEPKNKTFLRCEAKNYSGRFTCWWLTTIST




DLTFSVKSSRGSSDPQGVTCGAATLSAERVRGDNKEY




EYSVECQEDSACPAAEESLPIEVMVDAVHKLKYENYT




SSFFIRDIIKPDPPKNLQLKPLKNSRQVEVSWEYPDTWS




TPHSYFSLTFCVQVQGKSKREKKDRVFTDKTSATVICR




KNASISVRAQDRYYSSSWSEWASVPCS





145
Mouse IL-12 beta
MCPQKLTISWFAIVLLVSPLMAMWELEKDVYVVEVD




WTPDAPGETVNLTCDTPEEDDITWTSDQRHGVIGSGKT




LTITVKEFLDAGQYTCHKGGETLSHSHLLLHKKENGIW




STEILKNFKNKTFLKCEAPNYSGRFTCSWLVQRNMDL




KFNIKSSSSSPDSRAVTCGMASLSAEKVTLDQRDYEKY




SVSCQEDVTCPTAEETLPIELALEARQQNKYENYSTSFF




IRDIIKPDPPKNLQMKPLKNSQVEVSWEYPDSWSTPHS




YFSLKFFVRIQRKKEKMKETEEGCNQKGAFLVEKTSTE




VQCKGGNVCVQAQDRYYNSSCSKWACVPCRVRS





146
Mouse IL-12 alpha
MCQSRYLLFLATLALLNHLSLARVIPVSGPARCLSQSR




NLLKTTDDMVKTAREKLKHYSCTAEDIDHEDITRDQT




STLKTCLPLELHKNESCLATRETSSTTRGSCLPPQKTSL




MMTLCLGSIYEDLKMYQTEFQAINAALQNHNHQQIIL




DKGMLVAIDELMQSLNHNGETLRQKPPVGEADPYRV




KMKLCILLHAFSTRVVTINRVMGYLSSA





147
Human LIF
MKVLAAGVVPLLLVLHWKHGAGSPLPITPVNATCAIR




HPCHNNLMNQIRSQLAQLNGSANALFILYYTAQGEPFP




NNLDKLCGPNVTDFPPFHANGTEKAKLVELYRIVVYL




GTSLGNITRDQKILNPSALSLHSKLNATADILRGLLSNV




LCRLCSKYHVGHVDVTYGPDTSGKDVFQKKKLGCQL




LGKYKQIIAVLAQAF





148
Mouse LIF
MKVLAAGIVPLLLLVLHWKHGAGSPLPITPVNATCAIR




HPCHGNLMNQIKNQLAQLNGSANALFISYYTAQGEPFP




NNVEKLCAPNMTDFPSFHGNGTEKTKLVELYRMVAY




LSASLTNITRDQKVLNPTAVSLQVKLNATIDVMRGLLS




NVLCRLCNKYRVGHVDVPPVPDHSDKEAFQRKKLGC




QLLGTYKQVISVVVQAF





149
Human OSM
MGVLLTQRTLLSLVLALLFPSMASMAAIGSCSKEYRVL




LGQLQKQTDLMQDTSRLLDPYIRIQGLDVPKLREHCRE




RPGAFPSEETLRGLGRRGFLQTLNATLGCVLHRLADLE




QRLPKAQDLERSGLNIEDLEKLQMARPNILGLRNNIYC




MAQLLDNSDTAEPTKAGRGASQPPTPTPASDAFQRKL




EGCRFLHGYHRFMHSVGRVFSKWGESPNRSRRHSPHQ




ALRKGVRRTRPSRKGKRLMTRGQLPR





150
Mouse OSM
MQTRLLRTLLSLTLSLLILSMALANRGCSNSSSQLLSQL




QNQANLTGNTESLLEPYIRLQNLNTPDLRAACTQHSVA




FPSEDTLRQLSKPHFLSTVYTTLDRVLYQLDALRQKFL




KTPAFPKLDSARHNILGIRNNVFCMARLLNHSLEIPEPT




QTDSGASRSTTTPDVFNTKIGSCGFLWGYHRFMGSVG




RVFREWDDGSTRSRRQSPLRARRKGTRRIRVRHKGTR




RIRVRRKGTRRIWVRRKGSRKIRPSRSTQSPTTRA





151
Human IL-10
MHSSALLCCLVLLTGVRASPGQGTQSENSCTHFPGNLP




NMLRDLRDAFSRVKTFFQMKDQLDNLLLKESLLEDFK




GYLGCQALSEMIQFYLEEVMPQAENQDPDIKAHVNSL




GENLKTLRLRLRRCHRFLPCENKSKAVEQVKNAFNKL




QEKGIYKAMSEFDIFINYIEAYMTMKIRN





152
Mouse IL-10
MPGSALLCCLLLLTGMRISRGQYSREDNNCTHFPVGQS




HMLLELRTAFSQVKTFFQTKDQLDNILLTDSLMQDFK




GYLGCQALSEMIQFYLVEVMPQAEKHGPEIKEHLNSL




GEKLKTLRMRLRRCHRFLPCENKSKAVEQVKSDENKL




QDQGVYKAMNEFDIFINCIEAYMMIKMKS





153
Human IL-20
MKASSLAFSLLSAAFYLLWTPSTGLKTLNLGSCVIATN




LQEIRNGFSEIRGSVQAKDGNIDIRILRRTESLQDTKPAN




RCCLLRHLLRLYLDRVFKNYQTPDHYTLRKISSLANSF




LTIKKDLRLCHAHMTCHCGEEAMKKYSQILSHFEKLEP




QAAVVKALGELDILLQWMEETE





154
Mouse IL-20
MKGFGLAFGLFSAVGFLLWTPLTGLKTLHLGSCVITAN




LQAIQKEFSEIRDSVQAEDTNIDIRILRTTESLKDIKSLD




RCCFLRHLVRFYLDRVFKVYQTPDHHTLRKISSLANSF




LIIKKDLSVCHSHMACHCGEEAMEKYNQILSHFIELEL




QAAVVKALGELGILLRWMEEML





155
Human IL-14
MKNQDKKNGAAKQSNPKSSPGQPEAGPEGAQERPSQ




AAPAVEAEGPGSSQAPRKPEGAQARTAQSGALRDVSE




ELSRQLEDILSTYCVDNNQGGPGEDGAQGEPAEPEDAE




KSRTYVARNGEPEPTPVVNGEKEPSKGDPNTEEIRQSD




EVGDRDHRRPQEKKKAKGLGKEITLLMQTLNTLSTPE




EKLAALCKKYAELLEEHRNSQKQMKLLQKKQSQLVQ




EKDHLRGEHSKAVLARSKLESLCRELQRHNRSLKEEG




VQRAREEEEKRKEVTSHFQVTLNDIQLQMEQHNERNS




KLRQENMELAERLKKLIEQYELREEHIDKVFKHKDLQ




QQLVDAKLQQAQEMLKEAEERHQREKDFLLKEAVES




QRMCELMKQQETHLKQQLALYTEKFEEFQNTLSKSSE




VFTTFKQEMEKMTKKIKKLEKETTMYRSRWESSNKAL




LEMAEEKTVRDKELEGLQVKIQRLEKLCRALQTERND




LNKRVQDLSAGGQGSLTDSGPERRPEGPGAQAPSSPRV




TEAPCYPGAPSTEASGQTGPQEPTSARA





156
Mouse IL-14
MKNQDKKNGPAKHSNSKGSPGQREAGPEGAHGRPRQ




TAPGAEAEGSTSQAPGKTEGARAKAAQPGALCDVSEE




LSRQLEDILSTYCVDNNQGGPAEEGAQGEPTEPEDTEK




SRTYAARNGEPEPGIPVVNGEKETSKGEPGTEEIRASDE




VGDRDHRRPQEKKKAKGLGKEITLLMQTLNTLSTPEE




KLAALCKKYAELLEEHRNSQKQMKLLQKKQSQLVQE




KDHLRGEHSKAVLARSKLESLCRELQRHNRSLKEEGV




QRAREEEEKRKEVTSHFQVTLNDIQLQMEQHNERNSK




LRQENMELAERLKKLIEQYELREEHIDKVFKHKDLQQ




QLVDAKLQQAQEMLKEAEERHQREKEFLLKEAVESQR




MCELMKQQETHLKQQLALYTEKFEEFQNTLSKSSEVF




TTFKQEMEKMTKKIKKLEKETTMYRSRWESSNKALLE




MAEEKTVRDKELEGLQVKIQRLEKLCRALQTERNDLN




KRVQDLTAGGITDIGSERRPEATTASKEQGVESPGAQP




ASSPRATDAPCCSGAPSTGTAGQTGPGEPTPATA





157
Human IL-16
MESHSRAGKSRKSAKFRSISRSLMLCNAKTSDDGSSPD




EKYPDPFEISLAQGKEGIFHSSVQLADTSEAGPSSVPDL




ALASEAAQLQAAGNDRGKTCRRIFFMKESSTASSREKP




GKLEAQSSNFLFPKACHQRARSNSTSVNPYCTREIDFP




MTKKSAAPTDRQPYSLCSNRKSLSQQLDCPAGKAAGT




SRPTRSLSTAQLVQPSGGLQASVISNIVLMKGQAKGLG




FSIVGGKDSIYGPIGIYVKTIFAGGAAAADGRLQEGDEI




LELNGESMAGLTHQDALQKFKQAKKGLLTLTVRTRLT




APPSLCSHLSPPLCRSLSSSTCITKDSSSFALESPSAPIST




AKPNYRIMVEVSLQKEAGVGLGIGLCSVPYFQCISGIFV




HTLSPGSVAHLDGRLRCGDEIVEISDSPVHCLTLNEVYT




ILSHCDPGPVPIIVSRHPDPQVSEQQLKEAVAQAVENTK




FGKERHQWSLEGVKRLESSWHGRPTLEKEREKNSAPP




HRRAQKVMIRSSSDSSYMSGSPGGSPGSGSAEKPSSDV




DISTHSPSLPLAREPVVLSIASSRLPQESPPLPESRDSHPP




LRLKKSFEIVRKPMSSKPKPPPRKYFKSDSDPQKSLEER




ENSSCSSGHTPPTCGQEARELLPLLLPQEDTAGRSPSAS




AGCPGPGIGPQTKSSTEGEPGWRRASPVTQTSPIKHPLL




KRQARMDYSFDTTAEDPWVRISDCIKNLFSPIMSENHG




HMPLQPNASLNEEEGTQGHPDGTPPKLDTANGTPKVY




KSADSSTVKKGPPVAPKPAWFRQSLKGLRNRASDPRG




LPDPALSTQPAPASREHLGSHIRASSSSSSIRQRISSFETF




GSSQLPDKGAQRLSLQPSSGEAAKPLGKHEEGRFSGLL




GRGAAPTLVPQQPEQVLSSGSPAASEARDPGVSESPPP




GRQPNQKTLPPGPDPLLRLLSTQAEESQGPVLKMPSQR




ARSFPLTRSQSCETKLLDEKTSKLYSISSQVSSAVMKSL




LCLPSSISCAQTPCIPKEGASPTSSSNEDSAANGSAETSA




LDTGFSLNLSELREYTEGLTEAKEDDDGDHSSLQSGQS




VISLLSSEELKKLIEEVKVLDEATLKQLDGIHVTILHKEE




GAGLGFSLAGGADLENKVITVHRVFPNGLASQEGTIQK




GNEVLSINGKSLKGTTHHDALAILRQAREPRQAVIVTR




KLTPEAMPDLNSSTDSAASASAASDVSVESTAEATVCT




VTLEKMSAGLGFSLEGGKGSLHGDKPLTINRIFKGAAS




EQSETVQPGDEILQLGGTAMQGLTRFEAWNIIKALPDG




PVTIVIRRKSLQSKETTAAGDS





158
Mouse IL-16
MEPHGHSGKSRKSTKFRSISRSLILCNAKTSDDGSSPDE




KYPDPFETSLCQGKEGFFHSSMQLADTFEAGLSNIPDL




ALASDSAQLAAAGSDRGKHCRKMFFMKESSSTSSKEK




SGKPEAQSSSFLFPKACHQRTRSNSTSVNPYSAGEIDFP




MTKKSAAPTDRQPYSLCSNRKSLSQQLDYPILGTARPT




RSLSTAQLGQLSGGLQASVISNIVLMKGQAKGLGFSIV




GGKDSIYGPIGIYVKSIFAGGAAAADGRLQEGDEILELN




GESMAGLTHQDALQKFKQAKKGLLTLTVRTRLTTPPS




LCSHLSPPLCRSLSSSTCGAQDSSPFSLESPASPASTAKP




NYRIMVEVSLKKEAGVGLGIGLCSIPYFQCISGIFVHTL




SPGSVAHLDGRLRCGDEIVEINDSPVHCLTLNEVYTILS




HCDPGPVPIIVSRHPDPQVSEQQLKEAVAQAVEGVKFG




KDRHQWSLEGVKRLESSWHGRPTLEKEREKHSAPPHR




RAQKIMVRSSSDSSYMSGSPGGSPCSAGAEPQPSEREG




STHSPSLSPGEEQEPCPGVPSRPQQESPPLPESLERESHP




PLRLKKSFEILVRKPTSSKPKPPPRKYFKNDSEPQKKLE




EKEKVTDPSGHTLPTCSQETRELLPLLLQEDTAGRAPC




TAACCPGPAASTQTSSSTEGESRRSASPETPASPGKHPL




LKRQARMDYSFDITAEDPWVRISDCIKNLFSPIMSENHS




HTPLQPNTSLGEEDGTQGCPEGGLSKMDAANGAPRVY




KSADGSTVKKGPPVAPKPAWFRQSLKGLRNRAPDPRR




PPEVASAIQPTPVSRDPPGPQPQASSSIRQRISSFENFGSS




QLPDRGVQRLSLQPSSGETTKFPGKQDGGRFSGLLGQG




ATVTAKHRQTEVESMSTTFPNSSEVRDPGLPESPPPGQ




RPSTKALSPDPLLRLLTTQSEDTQGPGLKMPSQRARSFP




LTRTQSCETKLLDEKASKLYSISSQLSSAVMKSLLCLPS




SVSCGQITCIPKERVSPKSPCNNSSAAEGFGEAMASDTG




FSLNLSELREYSEGLTEPGETEDRNHCSSQAGQSVISLL




SAEELEKLIEEVRVLDEATLKQLDSIHVTILHKEEGAGL




GFSLAGGADLENKVITVHRVFPNGLASQEGTIQKGNEV




LSINGKSLKGATHNDALAILRQARDPRQAVIVTRRTTV




EATHDLNSSTDSAASASAASDISVESKEATVCTVTLEK




TSAGLGFSLEGGKGSLHGDKPLTINRIFKGTEQGEMVQ




PGDEILQLAGTAVQGLTRFEAWNVIKALPDGPVTIVIR




RTSLQCKQTTASADS





159
Human IL-17
MTPGKTSLVSLLLLLSLEAIVKAGITIPRNPGCPNSEDK




NFPRTVMVNLNIHNRNTNTNPKRSSDYYNRSTSPWNL




HRNEDPERYPSVIWEAKCRHLGCINADGNVDYHMNSV




PIQQEILVLRREPPHCPNSFRLEKILVSVGCTCVTPIVHH




VA





160
Mouse IL-17
MSPGRASSVSLMLLLLLSLAATVKAAAIIPQSSACPNTE




AKDFLQNVKVNLKVENSLGAKVSSRRPSDYLNRSTSP




WTLHRNEDPDRYPSVIWEAQCRHQRCVNAEGKLDHH




MNSVLIQQEILVLKREPESCPFTFRVEKMLVGVGCTCV




ASIVRQAA





161
Human CD154
MIETYNQTSPRSAATGLPISMKIFMYLLTVFLITQMIGS




ALFAVYLHRRLDKIEDERNLHEDFVFMKTIQRCNTGER




SLSLLNCEEIKSQFEGFVKDIMLNKEETKKENSFEMQK




GDQNPQIAAHVISEASSKTTSVLQWAEKGYYTMSNNL




VTLENGKQLTVKRQGLYYIYAQVTFCSNREASSQAPFI




ASLCLKSPGRFERILLRAANTHSSAKPCGQQSIHLGGVF




ELQPGASVFVNVTDPSQVSHGTGFTSFGLLKL





162
Mouse CD154
MIETYSQPSPRSVATGLPASMKIFMYLLTVFLITQMIGS




VLFAVYLHRRLDKVEEEVNLHEDFVFIKKLKRCNKGE




GSLSLLNCEEMRRQFEDLVKDITLNKEEKKENSFEMQR




GDEDPQIAAHVVSEANSNAASVLQWAKKGYYTMKSN




LVMLENGKQLTVKREGLYYVYTQVTFCSNREPSSQRP




FIVGLWLKPSSGSERILLKAANTHSSSQLCEQQSVHLG




GVFELQAGASVFVNVTEASQVIHRVGFSSFGLLKL





163
Human LT-beta
MGALGLEGRGGRLQGRGSLLLAVAGATSLVTLLLAVP




ITVLAVLALVPQDQGGLVTETADPGAQAQQGLGFQKL




PEEEPETDLSPGLPAAHLIGAPLKGQGLGWETTKEQAF




LTSGTQFSDAEGLALPQDGLYYLYCLVGYRGRAPPGG




GDPQGRSVTLRSSLYRAGGAYGPGTPELLLEGAETVTP




VLDPARRQGYGPLWYTSVGFGGLVQLRRGERVYVNIS




HPDMVDFARGKTFFGAVMVG





164
Mouse LT-beta
MGTRGLQGLGGRPQGRGCLLLAVAGATSLVTLLLAVP




ITVLAVLALVPQDQGRRVEKIIGSGAQAQKRLDDSKPS




CILPSPSSLSETPDPRLHPQRSNASRNLASTSQGPVAQSS




REASAWMTILSPAADSTPDPGVQQLPKGEPETDLNPEL




PAAHLIGAWMSGQGLSWEASQEEAFLRSGAQFSPTHG




LALPQDGVYYLYCHVGYRGRTPPAGRSRARSLTLRSA




LYRAGGAYGRGSPELLLEGAETVTPVVDPIGYGSLWY




TSVGFGGLAQLRSGERVYVNISHPDMVDYRRGKTFFG




AVMVG





165
Human TNF-alpha
STESMIRDVELAEEALPKKTGGPQGSRRCLFLSLFSFLI




VAGATTLFCLLHFGVIGPQREEFPRDLSLISPLAQAVRS




SSRTPSDKPVAHVVANPQAEGQLQWLNRRANALLAN




GVELRDNQLVVPSEGLYLIYSQVLFKGQGCPSTHVLLT




HTISRIAVSYQTKVNLLSAIKSPCQRETPEGAEAKPWYE




PIYLGGVFQLEKGDRLSAEINRPDYLDFAESGQVYFGII




AL





166
Mouse TNF-alpha
NHQVEEQLEWLSQRANALLANGMDLKDNQLVVPAD




GLYLVYSQVLFKGQGCPDYVLLTHTVSRFAISYQEKV




NLLSAVKSPCPKDTPEGAELKPWYEPIYLGGVFQLEKG




DQLSAEVNLPKYLDFAESGQVYFGVIAL





167
Human TNF-beta
MTPPERLFLPRVCGTTLHLLLLGLLLVLLPGAQGLPGV




GLTPSAAQTARQHPKMHLAHSTLKPAAHLIGDPSKQN




SLLWRANTDRAFLQDGFSLSNNSLLVPTSGIYFVYSQV




VFSGKAYSPKATSSPLYLAHEVQLFSSQYPFHVPLLSSQ




KMVYPGLQEPWLHSMYHGAAFQLTQGDQLSTHTDGI




PHLVLSPSTVFFGAFAL





168
Human 4-1BBL
MEYASDASLDPEAPWPPAPRARACRVLPWALVAGLLL




LLLLAAACAVFLACPWAVSGARASPGSAASPRLREGP




ELSPDDPAGLLDLRQGMFAQLVAQNVLLIDGPLSWYS




DPGLAGVSLTGGLSYKEDTKELVVAKAGVYYVFFQLE




LRRVVAGEGSGSVSLALHLQPLRSAAGAAALALTVDL




PPASSEARNSAFGFQGRLLHLSAGQRLGVHLHTEARAR




HAWQLTQGATVLGLFRVTPEIPAGLPSPRSE





169
Mouse 4-1BBL
MDQHTLDVEDTADARHPAGTSCPSDAALLRDTGLLAD




AALLSDTVRPTNAALPTDAAYPAVNVRDREAAWPPAL




NFCSRHPKLYGLVALVLLLLIAACVPIFTRTEPRPALTIT




TSPNLGTRENNADQVTPVSHIGCPNTTQQGSPVFAKLL




AKNQASLCNTTLNWHSQDGAGSSYLSQGLRYEEDKK




ELVVDSPGLYYVFLELKLSPTFTNTGHKVQGWVSLVL




QAKPQVDDFDNLALTVELFPCSMENKLVDRSWSQLLL




LKAGHRLSVGLRAYLHGAQDAYRDWELSYPNTTSFGL




FLVKPDNPWE





170
Human APRIL
AVLTQKQKKQHSVLHLVPINATSKDDSDVTEVMWQP




ALRRGRGLQAQGYGVRIQDAGVYLLYSQVLFQDVTFT




MGQVVSREGQGRQETLFRCIRSMPSHPDRAYNSCYSA




GVFHLHQGDILSVIIPRARAKLNLSPHGTFLGFVKL





171
Mouse APRIL
MPASSPGHMGGSVREPALSVALWLSWGAVLGAVTCA




VALLIQQTELQSLRREVSRLQRSGGPSQKQGERPWQSL




WEQSPDVLEAWKDGAKSRRRRAVLTQKHKKKHSVLH




LVPVNITSKADSDVTEVMWQPVLRRGRGLEAQGDIVR




VWDTGIYLLYSQVLFHDVTFTMGQVVSREGQGRRETL




FRCIRSMPSDPDRAYNSCYSAGVFHLHQGDIITVKIPRA




NAKLSLSPHGTFLGFVKL





172
Human CD70
MPEEGSGCSVRRRPYGCVLRAALVPLVAGLVICLVVCI




QRFAQAQQQLPLESLGWDVAELQLNHTGPQQDPRLY




WQGGPALGRSFLHGPELDKGQLRIHRDGIYMVHIQVT




LAICSSTTASRHHPTTLAVGICSPASRSISLLRLSFHQGC




TIASQRLTPLARGDTLCTNLIGTLLPSRNTDETFFGVQ




WVRP





173
Mouse CD70
MPEEGRPCPWVRWSGTAFQRQWPWLLLVVFITVFCC




WFHCSGLLSKQQQRLLEHPEPHTAELQLNLTVPRKDPT




LRWGAGPALGRSFTHGPELEEGHLRIHQDGLYRLHIQV




TLANCSSPGSTLQHRATLAVGICSPAAHGISLLRGRFGQ




DCTVALQRLTYLVHGDVLCTNLTLPLLPSRNADETFFG




VQWICP





174
Human CD153
MDPGLQQALNGMAPPGDTAMHVPAGSVASHLGTTSR




SYFYLTTATLALCLVFTVATIMVLVVQRTDSIPNSPDN




VPLKGGNCSEDLLCILKRAPFKKSWAYLQVAKHLNKT




KLSWNKDGILHGVRYQDGNLVIQFPGLYFIICQLQFLV




QCPNNSVDLKLELLINKHIKKQALVTVCESGMQTKHV




YQNLSQFLLDYLQVNTTISVNVDTFQYIDTSTFPLENVL




SIFLYSNSD





175
Mouse CD153
MEPGLQQAGSCGAPSPDPAMQVQPGSVASPWRSTRP




WRSTSRSYFYLSTTALVCLVVAVAIILVLVVQKKDSTP




NTTEKAPLKGGNCSEDLFCTLKSTPSKKSWAYLQVSK




HLNNTKLSWNEDGTIHGLIYQDGNLIVQFPGLYFIVCQ




LQFLVQCSNHSVDLTLQLLINSKIKKQTLVTVCESGVQ




SKNIYQNLSQFLLHYLQVNSTISVRVDNFQYVDTNTFP




LDNVLSVFLYSSSD





176
Human CD178
MQQPFNYPYPQIYWVDSSASSPWAPPGTVLPCPTSVPR




RPGQRRPPPPPPPPPPPPPPPPPLPPLPLPPLKKRGNHST




GLCLLVMFFMVLVALVGLGLGMFQLFHLQKELAELRE




STSQMHTASSLEKQIGHPSPPPEKKELRKVAHLTGKSN




SRSMPLEWEDTYGIVLLSGVKYKKGGLVINETGLYFV




YSKVYFRGQSCNNLPLSHKVYMRNSKYPQDLVMMEG




KMMSYCTTGQMWARSSYLGAVENLTSADHLYVNVSE




LSLVNFEESQTFFGLYKL





177
Mouse CD178
MQQPMNYPCPQIFWVDSSATSSWAPPGSVFPCPSCGPR




GPDQRRPPPPPPPVSPLPPPSQPLPLPPLTPLKKKDHNTN




LWLPVVFFMVLVALVGMGLGMYQLFHLQKELAELRE




FTNQSLKVSSFEKQIANPSTPSEKKEPRSVAHLTGNPHS




RSIPLEWEDTYGTALISGVKYKKGGLVINETGLYFVYS




KVYFRGQSCNNQPLNHKVYMRNSKYPEDLVLMEEKR




LNYCTTGQIWAHSSYLGAVENLTSADHLYVNISQLSLI




NFEESKTFFGLYKL





178
Human GITRL
MTLHPSPITCEFLFSTALISPKMCLSHLENMPLSHSRTQ




GAQRSSWKLWLFCSIVMLLFLCSFSWLIFIFLQLETAKE




PCMAKFGPLPSKWQMASSEPPCVNKVSDWKLEILQNG




LYLIYGQVAPNANYNDVAPFEVRLYKNKDMIQTLINK




SKIQNVGGTYELHVGDTIDLIFNSEHQVLKNNTYWGIIL




LANPQFIS





179
Mouse GITRL
MEEMPLRESSPQRAERCKKSWLLCIVALLLMLLCSLGT




LIYTSLKPTAIESCMVKFELSSSKWHMTSPKPHCVNTTS




DGKLKILQSGTYLIYGQVIPVDKKYIKDNAPFVVQIYK




KNDVLQTLMNDFQILPIGGVYELHAGDNIYLKENSKD




HIQKTNTYWGIILMPDLPFIS





180
Human LIGHT
MEESVVRPSVFVVDGQTDIPFTRLGRSHRRQSCSVARV




GLGLLLLLMGAGLAVQGWFLLQLHWRLGEMVTRLPD




GPAGSWEQLIQERRSHEVNPAAHLTGANSSLTGSGGPL




LWETQLGLAFLRGLSYHDGALVVTKAGYYYIYSKVQL




GGVGCPLGLASTITHGLYKRTPRYPEELELLVSQQSPC




GRATSSSRVWWDSSFLGGVVHLEAGEKVVVRVLDER




LVRLRDGTRSYFGAFMV





181
Mouse LIGHT
MESVVQPSVFVVDGQTDIPFRRLEQNHRRRRCGTVQV




SLALVLLLGAGLATQGWFLLRLHQRLGDIVAHLPDGG




KGSWEKLIQDQRSHQANPAAHLTGANASLIGIGGPLL




WETRLGLAFLRGLTYHDGALVTMEPGYYYVYSKVQL




SGVGCPQGLANGLPITHGLYKRTSRYPKELELLVSRRS




PCGRANSSRVWWDSSFLGGVVHLEAGEEVVVRVPGN




RLVRPRDGTRSYFGAFMV





182
Human OX40L
MERVQPLEENVGNAARPRFERNKLLLVASVIQGLGLL




LCFTYICLHFSALQVSHRYPRIQSIKVQFTEYKKEKGFIL




TSQKEDEIMKVQNNSVIINCDGFYLISLKGYFSQEVNIS




LHYQKDEEPLFQLKKVRSVNSLMVASLTYKDKVYLN




VTTDNTSLDDFHVNGGELILIHQNPGEFCVL





183
Mouse OX40L
MEGEGVQPLDENLENGSRPRFKWKKTLRLVVSGIKGA




GMLLCFIYVCLQLSSSPAKDPPIQRLRGAVTRCEDGQL




FISSYKNEYQTMEVQNNSVVIKCDGLYIIYLKGSFFQEV




KIDLHFREDHNPISIPMLNDGRRIVFTVVASLAFKDKVY




LTVNAPDTLCEHLQINDGELIVVQLTPGYCAPEGSYHS




TVNQVP





184
Human TALL-1
MDDSTEREQSRLTSCLKKREEMKLKECVSILPRKESPS




VRSSKDGKLLAATLLLALLSCCLTVVSFYQVAALQGD




LASLRAELQGHHAEKLPAGAGAPKAGLEEAPAVTAGL




KIFEPPAPGEGNSSQNSRNKRAVQGPEETVTQDCLQLI




ADSETPTIQKGSYTFVPWLLSFKRGSALEEKENKILVKE




TGYFFIYGQVLYTDKTYAMGHLIQRKKVHVFGDELSL




VTLFRCIQNMPETLPNNSCYSAGIAKLEEGDELQLAIPR




ENAQISLDGDVTFFGALKLL





185
Mouse TALL-1
MAMAFCPKDQYWDSSRKSCVSCALTCSQRSQRTCTDF




CKFINCRKEQGRYYDHLLGACVSCDSTCTQHPQQCAH




FCEKRPRSQANLQPELGRPQAGEVEVRSDNSGRHQGS




EHGPGLRLSSDQLTLYCTLGVCLCAIFCCFLVALASFLR




RRGEPLPSQPAGPRGSQANSPHAHRPVTEACDEVTASP




QPVETCSFCFPERSSPTQESAPRSLGIHGFAGTAAPQPC




MRATVGGLGVLRASTGDARPAT





186
Human TRAIL
MAMMEVQGGPSLGQTCVLIVIFTVLLQSLCVAVTYVY




FTNELKQMQDKYSKSGIACFLKEDDSYWDPNDEESMN




SPCWQVKWQLRQLVRKMILRTSEETISTVQEKQQNISP




LVRERGPQRVAAHITGTRGRSNTLSSPNSKNEKALGRK




INSWESSRSGHSFLSNLHLRNGELVIHEKGFYYIYSQTY




FRFQEEIKENTKNDKQMVQYIYKYTSYPDPILLMKSAR




NSCWSKDAEYGLYSIYQGGIFELKENDRIFVSVTNEHLI




DMDHEASFFGAFLVG





187
Mouse TRAIL
MPSSGALKDLSFSQHFRMMVICIVLLQVLLQAVSVAVT




YMYFTNEMKQLQDNYSKIGLACFSKTDEDFWDSTDGE




ILNRPCLQVKRQLYQLIEEVTLRTFQDTISTVPEKQLSTP




PLPRGGRPQKVAAHITGITRRSNSALIPISKDGKTLGQKI




ESWESSRKGHSFLNHVLFRNGELVIEQEGLYYIYSQTY




FRFQEAEDASKMVSKDKVRTKQLVQYIYKYTSYPDPI




VLMKSARNSCWSRDAEYGLYSIYQGGLFELKKNDRIF




VSVTNEHLMDLDQEASFFGAFLIN





188
Human TWEAK
MAARRSQRRRGRRGEPGTALLVPLALGLGLALACLGL




LLAVVSLGSRASLSAQEPAQEELVAEEDQDPSELNPQT




EESQDPAPFLNRLVRPRRSAPKGRKTRARRAIAAHYEV




HPRPGQDGAQAGVDGTVSGWEEARINSSSPLRYNRQI




GEFIVTRAGLYYLYCQVHFDEGKAVYLKLDLLVDGVL




ALRCLEEFSATAASSLGPQLRLCQVSGLLALRPGSSLRI




RTLPWAHLKAAPFLTYFGLFQVH





189
Mouse TWEAK
MASAWPRSLPQILVLGFGLVLMRAAAGEQAPGTSPCS




SGSSWSADLDKCMDCASCPARPHSDFCLGCAAAPPAH




FRLLWPILGGALSLVLVLALVSSFLVWRRCRRREKFTT




PIEETGGEGCPGVALIQ





190
Human TRANCE
MRRASRDYTKYLRGSEEMGGGPGAPHEGPLHAPPPPA




PHQPPAASRSMFVALLGLGLGQVVCSVALFFYFRAQM




DPNRISEDGTHCIYRILRLHENADFQDTTLESQDTKLIP




DSCRRIKQAFQGAVQKELQHIVGSQHIRAEKAMVDGS




WLDLAKRSKLEAQPFAHLTINATDIPSGSHKVSLSSWY




HDRGWAKISNMTFSNGKLIVNQDGFYYLYANICFRHH




ETSGDLATEYLQLMVYVTKTSIKIPSSHTLMKGGSTKY




WSGNSEFHFYSINVGGFFKLRSGEEISIEVSNPSLLDPDQ




DATYFGAFKVRDID





191
Mouse TRANCE
MRRASRDYGKYLRSSEEMGSGPGVPHEGPLHPAPSAP




APAPPPAASRSMFLALLGLGLGQVVCSIALFLYFRAQM




DPNRISEDSTHCFYRILRLHENADLQDSTLESEDTLPDS




CRRMKQAFQGAVQKELQHIVGPQRFSGAPAMMEGSW




LDVAQRGKPEAQPFAHLTINAASIPSGSHKVTLSSWYH




DRGWAKISNMTLSNGKLRVNQDGFYYLYANICFRHHE




TSGSVPTDYLQLMVYVVKTSIKIPSSHNLMKGGSTKN




WSGNSEFHFYSINVGGFFKLRAGEEISIQVSNPSLLDPD




QDATYFGAFKVQDID





192
Human TGF-beta1
MPPSGLRLLLLLLPLLWLLVLTPGRPAAGLSTCKTIDM




ELVKRKRIEAIRGQILSKLRLASPPSQGEVPPGPLPEAVL




ALYNSTRDRVAGESAEPEPEPEADYYAKEVTRVLMVE




THNEIYDKFKQSTHSIYMFFNTSELREAVPEPVLLSRAE




LRLLRLKLKVEQHVELYQKYSNNSWRYLSNRLLAPSD




SPEWLSFDVTGVVRQWLSRGGEIEGFRLSAHCSCDSRD




NTLQVDINGFTTGRRGDLATIHGMNRPFLLLMATPLER




AQHLQSSRHRRALDTNYCFSSTEKNCCVRQLYIDFRKD




LGWKWIHEPKGYHANFCLGPCPYIWSLDTQYSKVLAL




YNQHNPGASAAPCCVPQALEPLPIVYYVGRKPKVEQL




SNMIVRSCKCS





193
Mouse TGF-betal
MPPSGLRLLPLLLPLPWLLVLTPGRPAAGLSTCKTIDM




ELVKRKRIEAIRGQILSKLRLASPPSQGEVPPGPLPEAVL




ALYNSTRDRVAGESADPEPEPEADYYAKEVTRVLMVD




RNNAIYEKTKDISHSIYMFFNTSDIREAVPEPPLLSRAEL




RLQRLKSSVEQHVELYQKYSNNSWRYLGNRLLTPTDT




PEWLSFDVTGVVRQWLNQGDGIQGFRFSAHCSCDSKD




NKLHVEINGISPKRRGDLGTIHDMNRPFLLLMATPLER




AQHLHSSRHRRALDTNYCFSSTEKNCCVRQLYIDFRKD




LGWKWIHEPKGYHANFCLGPCPYIWSLDTQYSKVLAL




YNQHNPGASASPCCVPQALEPLPIVYYVGRKPKVEQLS




NMIVRSCKCS





194
Human TGF-beta2
MHYCVLSAFLILHLVTVALSLSTCSTLDMDQFMRKRIE




AIRGQILSKLKLTSPPEDYPEPEEVPPEVISIYNSTRDLLQ




EKASRRAAACERERSDEEYYAKEVYKIDMPPFFPSENA




IPPTFYRPYFRIVRFDVSAMEKNASNLVKAEFRVFRLQ




NPKARVPEQRIELYQILKSKDLTSPTQRYIDSKVVKTRA




EGEWLSFDVTDAVHEWLHHKDRNLGFKISLHCPCCTF




VPSNNYIIPNKSEELEARFAGIDGTSTYTSGDQKTIKSTR




KKNSGKTPHLLLMLLPSYRLESQQTNRRKKRALDAAY




CFRNVQDNCCLRPLYIDFKRDLGWKWIHEPKGYNANF




CAGACPYLWSSDTQHSRVLSLYNTINPEASASPCCVSQ




DLEPLTILYYIGKTPKIEQLSNMIVKSCKCS





195
Mouse TGF-beta2
MHYCVLSTFLLLHLVPVALSLSTCSTLDMDQFMRKRIE




AIRGQILSKLKLTSPPEDYPEPDEVPPEVISIYNSTRDLL




QEKASRRAAACERERSDEEYYAKEVYKIDMPSHLPSE




NAIPPTFYRPYFRIVRFDVSTMEKNASNLVKAEFRVFRL




QNPKARVAEQRIELYQILKSKDLTSPTQRYIDSKVVKT




RAEGEWLSFDVTDAVQEWLHHKDRNLGFKISLHCPCC




TFVPSNNYIIPNKSEELEARFAGIDGTSTYASGDQKTIKS




TRKKTSGKTPHLLLMLLPSYRLESQQSSRRKKRALDAA




YCFRNVQDNCCLRPLYIDFKRDLGWKWIHEPKGYNAN




FCAGACPYLWSSDTQHTKVLSLYNTINPEASASPCCVS




QDLEPLTILYYIGNTPKIEQLSNMIVKSCKCS





196
Human TGF-beta3
MKMHLQRALVVLALLNFATVSLSLSTCTTLDFGHIKK




KRVEAIRGQILSKLRLTSPPEPTVMTHVPYQVLALYNS




TRELLEEMHGEREEGCTQENTESEYYAKEIHKFDMIQG




LAEHNELAVCPKGITSKVFRFNVSSVEKNRTNLFRAEF




RVLRVPNPSSKRNEQRIELFQILRPDEHIAKQRYIGGKN




LPTRGTAEWLSFDVTDTVREWLLRRESNLGLEISIHCPC




HTFQPNGDILENIHEVMEIKFKGVDNEDDHGRGDLGRL




KKQKDHHNPHLILMMIPPHRLDNPGQGGQRKKRALDT




NYCFRNLEENCCVRPLYIDFRQDLGWKWVHEPKGYY




ANFCSGPCPYLRSADTTHSTVLGLYNTLNPEASASPCC




VPQDLEPLTILYYVGRTPKVEQLSNMVVKSCKCS





197
Mouse TGF-beta3
MHLQRALVVLALLNLATISLSLSTCTTLDFGHIKKKRV




EAIRGQILSKLRLTSPPEPSVMTHVPYQVLALYNSTREL




LEEMHGEREEGCTQETSESEYYAKEIHKFDMIQGLAEH




NELAVCPKGITSKVFRFNVSSVEKNGTNLFRAEFRVLR




VPNPSSKRTEQRIELFQILRPDEHIAKQRYIGGKNLPTR




GTAEWLSFDVTDTVREWLLRRESNLGLEISIHCPCHTF




QPNGDILENVHEVMEIKFKGVDNEDDHGRGDLGRLKK




QKDHHNPHLILMMIPPHRLDSPGQGSQRKKRALDTNY




CFRNLEENCCVRPLYIDFRQDLGWKWVHEPKGYYANF




CSGPCPYLRSADTTHSTVLGLYNTLNPEASASPCCVPQ




DLEPLTILYYVGRTPKVEQLSNMVVKSCKCS





198
Human EPO
MGVHECPAWLWLLLSLLSLPLGLPVLGAPPRLICDSRV




LERYLLEAKEAENITTGCAEHCSLNENITVPDTKVNFY




AWKRMEVGQQAVEVWQGLALLSEAVLRGQALLVNS




SQPWEPLQLHVDKAVSGLRSLTTLLRALGAQKEAISPP




DAASAAPLRTITADTFRKLFRVYSNFLRGKLKLYTGEA




CRTGDR





199
Mouse EPO
MGVPERPTLLLLLSLLLIPLGLPVLCAPPRLICDSRVLER




YILEAKEAENVTMGCAEGPRLSENITVPDTKVNFYAW




KRMEVEEQAIEVWQGLSLLSEAILQAQALLANSSQPPE




TLQLHIDKAISGLRSLTSLLRVLGAQKELMSPPDTTPPA




PLRTLTVDTFCKLFRVYANFLRGKLKLYTGEVCRRGD




R





200
Human TPO
MELTELLLVVMLLLTARLTLSSPAPPACDLRVLSKLLR




DSHVLHSRLSQCPEVHPLPTPVLLPAVDFSLGEWKTQM




EETKAQDILGAVTLLLEGVMAARGQLGPTCLSSLLGQL




SGQVRLLLGALQSLLGTQLPPQGRTTAHKDPNAIFLSF




QHLLRGKVRFLMLVGGSTLCVRRAPPTTAVPSRTSLVL




TLNELPNRTSGLLETNFTASARTTGSGLLKWQQGFRAK




IPGLLNQTSRSLDQIPGYLNRIHELLNGTRGLFPGPSRRT




LGAPDISSGTSDTGSLPPNLQPGYSPSPTHPPTGQYTLFP




LPPTLPTPVVQLHPLLPDPSAPTPTPTSPLLNTSYTHSQN




LSQEG





201
Mouse TPO
MELTDLLLAAMLLAVARLTLSSPVAPACDPRLLNKLL




RDSHLLHSRLSQCPDVDPLSIPVLLPAVDFSLGEWKTQ




TEQSKAQDILGAVSLLLEGVMAARGQLEPSCLSSLLGQ




LSGQVRLLLGALQGLLGTQLPLQGRTTAHKDPNALFLS




LQQLLRGKVRFLLLVEGPTLCVRRTLPTTAVPSSTSQLL




TLNKFPNRTSGLLETNFSVTARTAGPGLLSRLQGFRVKI




TPGQLNQTSRSPVQISGYLNRTHGPVNGTHGLFAGTSL




QTLEASDISPGAFNKGSLAFNLQGGLPPSPSLAPDGHTP




FPPSPALPTTHGSPPQLHPLFPDPSTTMPNSTAPHPVTM




YPHPRNLSQET





202
Human FLT-3L
MTVLAPAWSPTTYLLLLLLLSSGLSGTQDCSFQHSPISS




DFAVKIRELSDYLLQDYPVTVASNLQDEELCGGLWRL




VLAQRWMERLKTVAGSKMQGLLERVNTEIHFVTKCA




FQPPPSCLRFVQTNISRLLQETSEQLVALKPWITRQNFS




RCLELQCQPDSSTLPPPWSPRPLEATAPTAPQPPLLLLL




LLPVGLLLLAAAWCLHWQRTRRRTPRPGEQVPPVPSP




QDLLLVEH





203
Mouse FLT-3L
MTVLAPAWSPNSSLLLLLLLLSPCLRGTPDCYFSHSPIS




SNFKVKFRELTDHLLKDYPVTVAVNLQDEKHCKALW




SLFLAQRWIEQLKTVAGSKMQTLLEDVNTEIHFVTSCT




FQPLPECLRFVQTNISHLLKDTCTQLLALKPCIGKACQN




FSRCLEVQCQPDSSTLLPPRSPIALEATELPEPRPRQLLL




LLLLLLPLTLVLLAAAWGLRWQRARRRGELHPGVPLP




SHP





204
Human SCF
MKKTQTWILTCIYLQLLLFNPLVKTEGICRNRVINNVK




DVTKLVANLPKDYMITLKYVPGMDVLPSHCWISEMV




VQLSDSLTDLLDKFSNISEGLSNYSIIDKLVNIVDDLVE




CVKENSSKDLKKSFKSPEPRLFTPEEFFRIFNRSIDAFKD




FVVASETSDCVVSSTLSPEKDSRVSVTKPFMLPPVAASS




LRNDSSSSNRKAKNPPGDSSLHWAAMALPALFSLIIGF




AFGALYWKKRQPSLTRAVENIQINEEDNEISMLQEKER




EFQEV





205
Mouse SCF
MKKTQTWIITCIYLQLLLFNPLVKTKEICGNPVTDNVK




DITKLVANLPNDYMITLNYVAGMDVLPSHCWLRDMVI




QLSLSLTTLLDKFSNISEGLSNYSIIDKLGKIVDDLVLCM




EENAPKNIKESPKRPETRSFTPEEFFSIFNRSIDAFKDFM




VASDTSDCVLSSTLGPEKDSRVSVTKPFMLPPVAASSL




RNDSSSSNRKAAKAPEDSGLQWTAMALPALISLVIGFA




FGALYWKKKQSSLTRAVENIQINEEDNEISMLQQKERE




FQEV





206
Human M-CSF
MTAPGAAGRCPPTTWLGSLLLLVCLLASRSITEEVSEY




CSHMIGSGHLQSLQRLIDSQMETSCQITFEFVDQEQLK




DPVCYLKKAFLLVQDIMEDTMRFRDNTPNAIAIVQLQE




LSLRLKSCFTKDYEEHDKACVRTFYETPLQLLEKVKNV




FNETKNLLDKDWNIFSKNCNNSFAECSSQDVVTKPDC




NCLYPKAIPSSDPASVSPHQPLAPSMAPVAGLTWEDSE




GTEGSSLLPGEQPLHTVDPGSAKQRPPRSTCQSFEPPET




PVVKDSTIGGSPQPRPSVGAFNPGMEDILDSAMGTNW




VPEEASGEASEIPVPQGTELSPSRPGGGSMQTEPARPSN




FLSASSPLPASAKGQQPADVTGTALPRVGPVRPTGQD




WNHTPQKTDHPSALLRDPPEPGSPRISSLRPQGLSNPST




LSAQPQLSRSHSSGSVLPLGELEGRRSTRDRRSPAEPEG




GPASEGAARPLPRFNSVPLTDTGHERQSEGSFSPQLQES




VFHLLVPSVILVLLAVGGLLFYRWRRRSHQEPQRADSP




LEQPEGSPLTQDDRQVELPV





207
Mouse M-CSF
MTARGAAGRCPSSTWLGSRLLLVCLLMSRSIAKEVSE




HCSHMIGNGHLKVLQQLIDSQMETSCQIAFEFVDQEQL




DDPVCYLKKAFFLVQDIIDETMRFKDNTPNANATERLQ




ELSNNLNSCFTKDYEEQNKACVRTFHETPLQLLEKIKN




FFNETKNLLEKDWNIFTKNCNNSFAKCSSRDVVTKPDC




NCLYPKATPSSDPASASPHQPPAPSMAPLAGLAWDDS




QRTEGSSLLPSELPLRIEDPGSAKQRPPRSTCQTLESTEQ




PNHGDRLTEDSQPHPSAGGPVPGVEDILESSLGTNWVL




EEASGEASEGFLTQEAKFSPSTPVGGSIQAETDRPRALS




ASPFPKSTEDQKPVDITDRPLTEVNPMRPIGQTQNNTPE




KTDGTSTLREDHQEPGSPHIATPNPQRVSNSATPVAQL




LLPKSHSWGIVLPLGELEGKRSTRDRRSPAELEGGSASE




GAARPVARFNSIPLTDTGHVEQHEGSSDPQIPESVFHLL




VPGIILVLLTVGGLLFYKWKWRSHRDPQTLDSSVGRPE




DSSLTQDEDRQVELPV





208
Human MSP
MGWLPLLLLLTQCLGVPGQRSPLNDFQVLRGTELQHL




LHAVVPGPWQEDVADAEECAGRCGPLMDCRAFHYNV




SSHGCQLLPWTQHSPHTRLRRSGRCDLFQKKDYVRTCI




MNNGVGYRGTMATTVGGLPCQAWSHKFPNDHKYTPT




LRNGLEENFCRNPDGDPGGPWCYTTDPAVRFQSCGIKS




CREAACVWCNGEEYRGAVDRTESGRECQRWDLQHPH




QHPFEPGKFLDQGLDDNYCRNPDGSERPWCYTTDPQIE




REFCDLPRCGSEAQPRQEATTVSCFRGKGEGYRGTAN




TTTAGVPCQRWDAQIPHQHRFTPEKYACKDLRENFCR




NPDGSEAPWCFTLRPGMRAAFCYQIRRCTDDVRPQDC




YHGAGEQYRGTVSKTRKGVQCQRWSAETPHKPQFTFT




SEPHAQLEENFCRNPDGDSHGPWCYTMDPRTPFDYCA




LRRCADDQPPSILDPPDQVQFEKCGKRVDRLDQRRSKL




RVVGGHPGNSPWTVSLRNRQGQHFCGGSLVKEQWILT




ARQCFSSCHMPLTGYEVWLGTLFQNPQHGEPSLQRVP




VAKMVCGPSGSQLVLLKLERSVTLNQRVALICLPPEW




YVVPPGTKCEIAGWGETKGTGNDTVLNVALLNVISNQ




ECNIKHRGRVRESEMCTEGLLAPVGACEGDYGGPLAC




FTHNCWVLEGIIIPNRVCARSRWPAVFTRVSVFVDWIH




KVMRLG





209
Mouse MSP
MGLPLPLLQSSLLLMLLLRLSAASTNLNWQCPRIPYAA




SRDFSVKYVVPSFSAGGRVQATAAYEDSTNSAVFVAT




RNHLHVLGPDLQFIENLTTGPIGNPGCQTCASCGPGPH




GPPKDTDTLVLVMEPGLPALVSCGSTLQGRCFLHELEP




RGKALHLAAPACLFSANNNKPEACTDCVASPLGTRVT




VVEQGHASYFYVASSLDPELAASFSPRSVSIRRLKSDTS




GFQPGFPSLSVLPKYLASYLIKYVYSFHSGDFVYFLTVQ




PISVTSPPSALHTRLVRLNAVEPEIGDYRELVLDCHFAP




KRRRRGAPEGTQPYPVLQAAHSAPVDAKLAVELSISEG




QEVLFGVFVTVKDGGSGMGPNSVVCAFPIYHLNILIEE




GVEYCCHSSNSSSLLSRGLDFFQTPSFCPNPPGGEASGP




SSRCHYFPLMVHASFTRVDLFNGLLGSVKVTALHVTR




LGNVTVAHMGTVDGRVLQVEIARSLNYLLYVSNFSLG




SSGQPVHRDVSRLGNDLLFASGDQVFKVPIQGPGCRHF




LTCWRCLRAQRFMGCGWCGDRCDRQKECPGSWQQD




HCPPEISEFYPHSGPLRGTTRLTLCGSNFYLRPDDVVPE




GTHQITVGQSPCRLLPKDSSSPRPGSLKEFIQELECELEP




LVTQAVGTTNISLVITNMPAGKHFRVEGISVQEGFSFVE




PVLTSIKPDFGPRAGGTYLTLEGQSLSVGTSRAVLVNG




TQCRLEQVNEEQILCVTPPGAGTARVPLHLQIGGAEVP




GSWTFHYKEDPIVLDISPKCGYSGSHIMIHGQHLTSAW




HFTLSFHDGQSTVESRCAGQFVEQQQRRCRLPEYVVR




NPQGWATGNLSVWGDGAAGFTLPGFRFLPPPSPLRAG




LVELKPEEHSVKVEYVGLGAVADCVTVNMTVGGEVC




QHELRGDVVICPLPPSLQLGKDGVPLQVCVDGGCHILS




QVVRSSPGRASQRILLIALLVLILLVAVLAVALIFNSRR




RKKQLGAHSLSPTTLSDINDTASGAPNHEESSESRDGTS




VPLLRTESIRLQDLDRMLLAEVKDVLIPHEQVVIHTDQ




VIGKGHFGVVYHGEYTDGAQNQTHCAIKSLSRITEVQE




VEAFLREGLLMRGLHHPNILALIGIMLPPEGLPRVLLPY




MRHGDLLHFIRSPQRNPTVKDLVSFGLQVACGMEYLA




EQKFVHRDLAARNCMLDESFTVKVADFGLARGVLDK




EYYSVRQHRHARLPVKWMALESLQTYRFTTKSDVWS




FGVLLWELLTRGAPPYPHIDPFDLSHFLAQGRRLPQPE




YCPDSLYHVMLRCWEADPAARPTFRALVLEVKQVVA




SLLGDHYVQLTAAYVNVGPRAVDDGSVPPEQVQPSPQ




HCRSTSKPRPLSEPPLPT





210
Linker
GSSGGSGGSGG





211
Linker
GGGSGGGS





212
Linker
GGGSGGGSGGGS





213
Linker
GGGGSGGGGSGGGGS





214
Linker
GGGGSGGGGSGGGGSGGGGSGGGGS





215
Linker
GGGGSGGGGS





216
Linker
(GGGGS)n





217
Linker
GGGGSGS





218
Linker
GGGGSGGGGSGGGGSGS





219
Linker
GGSLDPKGGGGS





220
Linker
PKSCDKTHTCPPCPAPELLG





221
Linker
SKYGPPCPPCPAPEFLG





222
Linker
GKSSGSGSESKS





223
Linker
GSTSGSGKSSEGKG





224
Linker
GSTSGSGKSSEGSGSTKG





225
Linker
GSTSGSGKPGSGEGSTKG





226
Linker
GSTSGSGKPGSSEGST





227
Linker
(GSGGS)n





228
Linker
(GGGS)n





229
Linker
GGSG





230
Linker
GGSGG





231
Linker
GSGSG





232
Linker
GSGGG





233
Linker
GGGSG





234
Linker
GSSSG





235
Linker
GGGGSGGGGSGGGGSGGGGS





236 to
(Intentionally
(Intentionally Omitted)


244
Omitted)






245
Linker
GPQGTAGQ





246 to
(Intentionally
(Intentionally Omitted)


249
Omitted)






250
Linker
YGAGLGW





251 to
(Intentionally
(Intentionally Omitted)


262
Omitted)






263
CM
APRSALAHGLF





264
CM
AQNLLGMY





265
CM
LSGRSDNHGGAVGLLAPP





266
CM
VHMPLGFLGPGGLSGRSDNH





267
CM
LSGRSDNHGGVHMPLGFLGP





268
CM
LSGRSDNHGGSGGSISSGLLSS





269
CM
ISSGLLSSGGSGGSLSGRSGNH





270
CM
LSGRSDNHGGSGGSQNQALRMA





271
CM
QNQALRMAGGSGGSLSGRSDNH





272
CM
LSGRSGNHGGSGGSQNQALRMA





273
CM
QNQALRMAGGSGGSLSGRSGNH





274
CM
ISSGLLSGRSGNH





275
CM
AVGLLAPPGGTSTSGRSANPRG





276
CM
TSTSGRSANPRGGGAVGLLAPP





277
CM
VHMPLGFLGPGGTSTSGRSANPRG





278
CM
TSTSGRSANPRGGGVHMPLGFLGP





279
CM
LSGRSGNHGGSGGSISSGLLSS





280
Cleavable Sequence
PRFKIIGG





281
Cleavable Sequence
PRFRIIGG





282
Cleavable Sequence
SSRHRRALD





283
Cleavable Sequence
RKSSIIIRMRDVVL





284
Cleavable Sequence
SSSFDKGKYKKGDDA





285
Cleavable Sequence
SSSFDKGKYKRGDDA





286
Cleavable Sequence
IEGR





287
Cleavable Sequence
IDGR





288
Cleavable Sequence
GGSIDGR





289
Cleavable Sequence
PLGLWA





290
Cleavable Sequence
GPQGIAGQ





291
Cleavable Sequence
GPQGLLGA





292
Cleavable Sequence
GIAGQ





293
Cleavable Sequence
GPLGIAGI





294
Cleavable Sequence
GPEGLRVG





295
Cleavable Sequence
YGAGLGVV





296
Cleavable Sequence
AGLGVVER





297
Cleavable Sequence
AGLGISST





298
Cleavable Sequence
EPQALAMS





299
Cleavable Sequence
QALAMSAI





300
Cleavable Sequence
AAYHLVSQ





301
Cleavable Sequence
MDAFLESS





302
Cleavable Sequence
ESLPVVAV





303
Cleavable Sequence
SAPAVESE





304
Cleavable Sequence
DVAQFVLT





305
Cleavable Sequence
VAQFVLT





306
Cleavable Sequence
VAQFVLTE





307
Cleavable Sequence
AQFVLTEG





308
Cleavable Sequence
PVQPIGPQ





309
IFN-α2b-1204dL-
METDTLLLWVLLLWVPGSTGCDLPQTHSLGSRRTLML



hIgG4
LAQMRRISLFSCLKDRHDFGFPQEEFGNQFQKAETIPVL




HEMIQQIFNLFSTKDSSAAWDETLLDKFYTELYQQLND




LEACVIQGVGVTETPLMKEDSILAVRKYFQRITLYLKE




KKYSPCAWEVVRAEIMRSFSLSTNLQESLRSKESGRSD




NIGGGSESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTL




MISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNA




KTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVS




NKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQ




VSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDS




DGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALHNHYT




QKSLSLS





310
IFN-α-1204dL-
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGCTT



hIgG4
TTGTGGGTGCCAGGATCCACAGGCTGTGATCTGCCT



(polynucleotide)
CAAACGCATTCATTGGGGTCCAGGCGCACGCTTATG




TTGCTTGCACAGATGAGGAGAATATCACTTTTCTCTT




GCTTGAAGGACCGCCACGATTTTGGCTTTCCGCAGG




AAGAGTTCGGTAACCAGTTCCAAAAGGCAGAGACA




ATCCCCGTTTTGCATGAGATGATCCAACAGATCTTTA




ACCTGTTTTCAACCAAGGATAGCAGCGCAGCGTGGG




ATGAGACACTGCTTGACAAGTTTTACACCGAGCTCT




ATCAGCAACTTAATGATCTCGAAGCCTGCGTAATTC




AAGGAGTAGGCGTTACAGAGACACCTTTGATGAAGG




AGGATTCCATCCTTGCAGTAAGAAAATACTTCCAGA




GGATCACCCTCTACCTCAAAGAAAAGAAATACTCCC




CATGCGCGTGGGAAGTAGTGCGAGCTGAAATAATGC




GGAGCTTTTCTTTGTCAACTAATCTCCAAGAATCTCT




GAGAAGCAAGGAGTCAGGTAGGTCTGATAATATCG




GGGGAGGTTCTGAATCTAAGTACGGCCCTCCTTGTC




CTCCATGTCCTGCTCCAGAGTTTCTCGGAGGCCCCTC




CGTGTTCCTGTTTCCTCCAAAGCCTAAGGACACCCTG




ATGATCAGCAGAACCCCTGAAGTGACCTGCGTGGTG




GTCGACGTTTCACAAGAGGACCCCGAGGTGCAGTTC




AATTGGTACGTGGACGGCGTGGAAGTGCACAACGCC




AAGACCAAGCCTAGAGAGGAACAGTTCAACAGCAC




CTACAGAGTGGTGTCCGTGCTGACCGTGCTGCACCA




GGATTGGCTGAACGGCAAAGAGTACAAGTGCAAGG




TGTCCAACAAGGGCCTGCCTAGCAGCATCGAGAAAA




CCATCAGCAAGGCCAAGGGCCAGCCAAGGGAACCC




CAGGTTTACACACTGCCACCTAGCCAAGAGGAAATG




ACCAAGAACCAGGTGTCCCTGACCTGCCTGGTCAAG




GGCTTTTACCCCTCCGATATCGCCGTGGAATGGGAG




AGCAATGGCCAGCCTGAGAACAACTACAAGACCAC




ACCTCCTGTGCTGGACAGCGACGGCTCATTCTTCCTG




TACAGCAGACTGACCGTGGACAAGAGCAGATGGCA




GCAGGGCAACGTGTTCAGCTGCAGCGTGATGCACGA




GGCCCTGCACAACCACTACACCCAGAAGTCTCTGAG




CCTGAGCTGA





311
IFN-α2b-1490DNI-
METDTLLLWVLLLWVPGSTGCDLPQTHSLGSRRTLML



hIgG4
LAQMRRISLFSCLKDRHDFGFPQEEFGNQFQKAETIPVL




HEMIQQIFNLFSTKDSSAAWDETLLDKFYTELYQQLND




LEACVIQGVGVTETPLMKEDSILAVRKYFQRITLYLKE




KKYSPCAWEVVRAEIMRSFSLSTNLQESLRSKEISSGLL




SGRSDNIGGGSESKYGPPCPPCPAPEFLGGPSVFLFPPKP




KDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDGVEV




HNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYK




CKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMT




KNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPP




VLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHEALH




NHYTQKSLSLS





312
IFN-α2b-1490DNI-
ATGGAAACCGACACACTGCTGCTGTGGGTGCTGCTT



hIgG4
TTGTGGGTGCCAGGATCCACAGGCTGTGATCTGCCT



(polynucleotide)
CAAACGCATTCATTGGGGTCCAGGCGCACGCTTATG




TTGCTTGCACAGATGAGGAGAATATCACTTTTCTCTT




GCTTGAAGGACCGCCACGATTTTGGCTTTCCGCAGG




AAGAGTTCGGTAACCAGTTCCAAAAGGCAGAGACA




ATCCCCGTTTTGCATGAGATGATCCAACAGATCTTTA




ACCTGTTTTCAACCAAGGATAGCAGCGCAGCGTGGG




ATGAGACACTGCTTGACAAGTTTTACACCGAGCTCT




ATCAGCAACTTAATGATCTCGAAGCCTGCGTAATTC




AAGGAGTAGGCGTTACAGAGACACCTTTGATGAAGG




AGGATTCCATCCTTGCAGTAAGAAAATACTTCCAGA




GGATCACCCTCTACCTCAAAGAAAAGAAATACTCCC




CATGCGCGTGGGAAGTAGTGCGAGCTGAAATAATGC




GGAGCTTTTCTTTGTCAACTAATCTCCAAGAATCTCT




GAGAAGCAAGGAGATTAGTTCTGGCCTGCTGTCAGG




TAGGTCTGATAATATCGGGGGAGGTTCTGAATCTAA




GTACGGCCCTCCTTGTCCTCCATGTCCTGCTCCAGAG




TTTCTCGGAGGCCCCTCCGTGTTCCTGTTTCCTCCAA




AGCCTAAGGACACCCTGATGATCAGCAGAACCCCTG




AAGTGACCTGCGTGGTGGTCGACGTTTCACAAGAGG




ACCCCGAGGTGCAGTTCAATTGGTACGTGGACGGCG




TGGAAGTGCACAACGCCAAGACCAAGCCTAGAGAG




GAACAGTTCAACAGCACCTACAGAGTGGTGTCCGTG




CTGACCGTGCTGCACCAGGATTGGCTGAACGGCAAA




GAGTACAAGTGCAAGGTGTCCAACAAGGGCCTGCCT




AGCAGCATCGAGAAAACCATCAGCAAGGCCAAGGG




CCAGCCAAGGGAACCCCAGGTTTACACACTGCCACC




TAGCCAAGAGGAAATGACCAAGAACCAGGTGTCCCT




GACCTGCCTGGTCAAGGGCTTTTACCCCTCCGATATC




GCCGTGGAATGGGAGAGCAATGGCCAGCCTGAGAA




CAACTACAAGACCACACCTCCTGTGCTGGACAGCGA




CGGCTCATTCTTCCTGTACAGCAGACTGACCGTGGA




CAAGAGCAGATGGCAGCAGGGCAACGTGTTCAGCT




GCAGCGTGATGCACGAGGCCCTGCACAACCACTACA




CCCAGAAGTCTCTGAGCCTGAGCTGA





313
ProC440 without
CDLPQTHSLGSRRTLMLLAQMRRISLFSCLKDRHDFGF



signal sequence
PQEEFGNQFQKAETIPVLHEMIQQIFNLFSTKDSSAAW




DETLLDKFYTELYQQLNDLEACVIQGVGVTETPLMKE




DSILAVRKYFQRITLYLKEKKYSPCAWEVVRAEIMRSF




SLSTNLQESLRSKESGRSDNICPPCPAPEFLGGPSVFLFP




PKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDG




VEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGK




EYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQE




EMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKT




TPPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMHE




ALHNHYTQKSLSLS





314
PROC657 first
CDLPQTHSLGSRRTLMLLAQMRRISLFSCLKDRHDFGF



monomer (knob
PQEEFGNQFQKAETIPVLHEMIQQIFNLFSTKDSSAAW



mutation) without
DETLLDKFYTELYQQLNDLEACVIQGVGVTETPLMKE



signal sequence
DSILAVRKYFQRITLYLKEKKYSPCAWEVVRAEIMRSF




SLSTNLQESLRSKESGRSDNICPPCPAPEFEGGPSVFLFP




PKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYVDG




VEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGK




EYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPCQE




EMTKNQVSLWCLVKGFYPSDIAVEWESNGQPENNYK




TTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHE




ALHNHYTQKSLSLSLG





315
human IgG Fc with
CPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVTCVVV



a knob mutation
DVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTY




RVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISK




AKGQPREPQVYTLPPCQEEMTKNQVSLWCLVKGFYPS




DIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVD




KSRWQEGNVFSCSVMHEALHNHYTQKSLSLSLG





316
human IgG Fc with
CPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVTCVVV



a hole mutation
DVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTY




RVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISK




AKGQPREPQVCTLPPSQEEMTKNQVSLSCAVKGFYPS




DIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSRLTVD




KSRWQEGNVFSCSVMHEALHNRFTQKSLSLSLG





317
stub moiety
SDNI





318
Linker
GSSGGS





319
Linker
ESKY





320
ProC286 without
ESKYGPPCPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPE



signal sequence
VTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREE




QFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSS




IEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLV




KGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY




SRLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLS




SGGGGSGRSDNIGGGSCDLPQTHSLGSRRTLMLLAQM




RRISLFSCLKDRHDFGFPQEEFGNQFQKAETIPVLHEMI




QQIFNLFSTKDSSAAWDETLLDKFYTELYQQLNDLEAC




VIQGVGVTETPLMKEDSILAVRKYFQRITLYLKEKKYS




PCAWEVVRAEIMRSFSLSTNLQESLRSKE





321
Linker
SGGG





322
PROC657 second
SDNICPPCPAPEFEGGPSVFLFPPKPKDTLMISRTPEVTC



monomer (hole
VVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREEQFN



mutation) without
STYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEK



signal sequence
TISKAKGQPREPQVCTLPPSQEEMTKNQVSLSCAVKGF




YPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLVSRL




TVDKSRWQEGNVFSCSVMHEALHNRFTQKSLSLSLG





323
PRO859 sequence
CDLPQTHSLGSRRTLMLLAQMRKISLFSCLKDRHDFGF



without signal
PQEEFGNQFQKAETIPVLHEMIQQIFNLFTTKDSSAAW



sequence
DEDLLDKFCTELYQQLNDLEACVMQEERVGETPLMN




VDSILAVKKYFRRITLYLTEKKYSPCAWEVVRAEIMRS




LSLSTNLQERLRRKELSGRSDNICPPCPAPEFLGGPSVFL




FPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYV




DGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLN




GKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPS




QEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNY




KTTPPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVM




HEALHNHYTQKSLSLS





324
Universal IFN-
CDLPQTHSLGSRRTLMLLAQMRKISLFSCLKDRHDFGF



alpha A/D sequence
PQEEFGNQFQKAETIPVLHEMIQQIFNLFTTKDSSAAW




DEDLLDKFCTELYQQLNDLEACVMQEERVGETPLMN




VDSILAVKKYFRRITLYLTEKKYSPCAWEVVRAEIMRS




LSLSTNLQERLRRKE





325
Interferon beta,
MSYNLLGFLQRSSNFQCQKLLWQLNGRLEYCLKDRM



Chain A, human
NFDIPEEIKQLQQFQKEDAALTIYEMLQNIFAIF



(1AU1)
RQDSSSTGWNETIVENLLANVYHQINHLKTVLEEKLEK




EDFTRGKLMSSLHLKRYYGRILHYLKAKEYSH




CAWTIVRVEILRNFYFINRLTGYLRN





326
IFNB_CHICK
MTANHQSPGMHSILLLLLLPALTTTFSCNHLRHQDANF



Q90873.1
SWKSLQLLQNTAPPPPQPCPQQDVTFPFPETL




LKSKDKKQAAITTLRILQHLFNMLSSPHTPKHWIDRTR




HSLLNQIQHYIHHLEQCFVNQGTRSQRRGPRN




AHLSINKYFRSIHNFLQHNNYSACTWDHVRLQARDCF




RHVDTLIQWMKSRAPLTASSKRLNTQ





327
IFNA3_CANLF
MALPCSFSVALVLLSCHSLCCLACHLPDTHSLRNWRV



O97945.1
LTLLGQMRRLSASSCDHYTTDFAFPKELFDGQR




LQEAQALSVVHVMTQKVFHLFCTNTSSAPWNMTLLEE




LCSGLSEQLDDLDACPLQEAGLAETPLMHEDST




LRTYFQRISLYLQDRNHSPCAWEMVRAEIGRSFFSLTIL




QERVRRRK





328
IFN_ANAPL
MPGPSAPPPPAIYSALALLLLLTPPANAFSCSPLRLHDS



P51526.1
AFAWDSLQLLRNMAPSPTQPCPQQHAPCSFP




DTLLDTNDTQQAAHTALHLLQHLFDTLSSPSTPAHWL




HTARHDLLNQLQHHIHHLERCFPADAARLHRRG




PRNLHLSINKYFGCIQHFLQNHTYSPCAWDHVRLEAH




ACFQRIHRLTRTMR





329
IFNAH_BOVIN
MAPAWSFLLALLLLSCNAICSLGCHLPHTHSLPNRRVL



P49878.1
TLLRQLRRVSPSSCLQDRNDFAFPQEALGGSQ




LQKAQAISVLHEVTQHTFQLFSTEGSAAAWDESLLDKL




RAALDQQLTDLQACLRQEEGLRGAPLLKEDAS




LAVRKYFHRLTLYLREKRHNPCAWEVVRAEVMRAFS




SSTNLQERFRRKD





330
IFNA1_CHICK
MAVPASPQHPRGYGILLLTLLLKALATTASACNHLRPQ



P42165.1
DATFSHDSLQLLRDMAPTLPQLCPQHNASCSF




NDTILDTSNTRQADKTTHDILQHLFKILSSPSTPAHWND




SQRQSLLNRIHRYTQHLEQCLDSSDTRSRTR




WPRNLHLTIKKHFSCLHTFLQDNDYSACAWEHVRLQA




RAWFLHIHNLTGNTRT





331
IFNA_FELCA
MALPSSFLVALVALGCNSVCSLGCDLPQTHGLLNRRA



P35849.1
LTLLGQMRRLPASSCQKDRNDFAFPQDVFGGDQ




SHKAQALSVVHVTNQKIFHFFCTEASSSAAWNTTLLEE




FCTGLDRQLTRLEACVLQEVEEGEAPLTNEDI




HPEDSILRNYFQRLSLYLQEKKYSPCAWEIVRAEIMRSL




YYSSTALQKRLRSEK





332
interferon-beta-1
MANKCILQIALLMCFSTTALSMSYDVLRYQQRSSNLA



[Susscrofa]
CQKLLGQLPGTPQYCLEDRMNFEVPEEIMQPPQ



AAA31056.1
FQKEDAVLIIHEMLQQIFGILRRNFSSTGWNETVIKTILV




ELDGQMDDLETILEEIMEEENFPRGDMTIL




HLKKYYLSILQYLKSKEYRSCAWTVVQVEILRNFSFLN




RLTDYLRN





333
IFNB2_BOVIN
MTHRCLLQMVLLLCFSTTALSRSYSLLRFQQRRSLALC



P01576.1
QKLLRQLPSTPQHCLEARMDFQMPEEMKQAQQ




FQKEDAILVIYEMLQQIFNILTRDFSSTGWSETIIEDLLE




ELYEQMNHLEPIQKEIMQKQNSTMGDTTVL




HLRKYYFNLVQYLKSKEYNRCAWTVVRVQILRNFSFL




TRLTGYLRE





334
A Chain A,
CDLPQTHSLGSRRTLMLLAQMRRISLFSCLKDRHDFGF



INTERFERON-
PQEEFGNQFQKAETIPVLHEMIQQIFNLFSTK



ALPHA 2B 1RH2
DSSAAWDETLLDKFYTELYQQLNDLEACVIQGVGVTE




TPLMNEDSILAVRKYFQRITLYLKEKKYSPCAW




EVVRAEIMRSFSLSTNLQESLRSKE





335
Linker
SGGGG





336
ProC288 without
CDLPQTHSLGSRRTLMLLAQMRRISLFSCLKDRHDFGF



signal sequence
PQEEFGNQFQKAETIPVLHEMIQQIFNLFSTKDSSAAWD




ETLLDKFYTELYQQLNDLEACVIQGVGVTETPLMKEDS




ILAVRKYFQRITLYLKEKKYSPCAWEVVRAEIMRSFSLS




TNLQESLRSKESGGGGSGRSDNICPPCPAPEFLGGPSVF




LFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYV




DGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLN




GKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPS




QEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNY




KTTPPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVMH




EALHNHYTQKSLSLS





337
ProC289 without
CDLPQTHSLGSRRTLMLLAQMRRISLFSCLKDRHDFGF



signal sequence
PQEEFGNQFQKAETIPVLHEMIQQIFNLFSTKDSSAAW




DETLLDKFYTELYQQLNDLEACVIQGVGVTETPLMKE




DSILAVRKYFQRITLYLKEKKYSPCAWEVVRAEIMRSF




SLSTNLQESLRSKESGGGGSGRSDNIGPPCPPCPAPEFL




GGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEV




QFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVL




HQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQ




VYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNG




QPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQQGNV




FSCSVMHEALHNHYTQKSLSLS





338
ProC290 without
CDLPQTHSLGSRRTLMLLAQMRRISLFSCLKDRHDFGF



signal sequence
PQEEFGNQFQKAETIPVLHEMIQQIFNLFSTKDSSAAW




DETLLDKFYTELYQQLNDLEACVIQGVGVTETPLMKE




DSILAVRKYFQRITLYLKEKKYSPCAWEVVRAEIMRSF




SLSTNLQESLRSKESGGGGSGRSDNIESKYGPPCPPCPA




PEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQED




PEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLT




VLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPR




EPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWE




SNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQQ




GNVFSCSVMHEALHNHYTQKSLSLS





339
ProC291 without
CDLPQTHSLGSRRTLMLLAQMRRISLFSCLKDRHDFGF



signal sequence
PQEEFGNQFQKAETIPVLHEMIQQIFNLFSTKDSSAAW




DETLLDKFYTELYQQLNDLEACVIQGVGVTETPLMKE




DSILAVRKYFQRITLYLKEKKYSPCAWEVVRAEIMRSF




SLSTNLQESLRSKESGGGGSGRSDNIGGGSESKYGPPCP




PCPAPEFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDV




SQEDPEVQFNWYVDGVEVHNAKTKPREEQFNSTYRV




VSVLTVLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAK




GQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIA




VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSR




WQQGNVFSCSVMHEALHNHYTQKSLSLS





340
ProC441 without
CDLPQTHSLGSRRTLMLLAQMRRISLFSCLKDRHDFGF



signal sequence
PQEEFGNQFQKAETIPVLHEMIQQIFNLFSTKDSSAAW




DETLLDKFYTELYQQLNDLEACVIQGVGVTETPLMKE




DSILAVRKYFQRITLYLKEKKYSPCAWEVVRAEIMRSF




SLSTNLQESLRSKESGRSDNIGPPCPPCPAPEFLGGPSVF




LFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYV




DGVEVHNA





341
ProC442 without
CDLPQTHSLGSRRTLMLLAQMRRISLFSCLKDRHDFGF



signal sequence
PQEEFGNQFQKAETIPVLHEMIQQIFNLFSTKDSSAAW




DETLLDKFYTELYQQLNDLEACVIQGVGVTETPLMKE




DSILAVRKYFQRITLYLKEKKYSPCAWEVVRAEIMRSF




SLSTNLQESLRSKESGRSDNIESKYGPPCPPCPAPEFLGG




PSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFN




WYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQD




WLNGKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYT




LPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE




NNYKTTPPVLDSDGSFFLYSRLTVDKSRWQQGNVFSC




SVMHEALHNHYTQKSLSLS





342
ProC443 without
CDLPQTHSLGSRRTLMLLAQMRRISLFSCLKDRHDFGF



signal sequence
PQEEFGNQFQKAETIPVLHEMIQQIFNLFSTKDSSAAW




DETLLDKFYTELYQQLNDLEACVIQGVGVTETPLMKE




DSILAVRKYFQRITLYLKEKKYSPCAWEVVRAEIMRSF




SLSTNLQESLRSKESGRSDNIGGGSESKYGPPCPPCPAP




EFLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDP




EVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLT




VLHQDWLNGKEYKCKVSNKGLPSSIEKTISKAKGQPR




EPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWE




SNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQQ




GNVFSCSVMHEALHNHYTQKSLSLS





343
Signal sequence
MRAWIFFLLCLAGRALA





344
Signal sequence
MALTFALLVALLVLSCKSSCSVG





345
Signal sequence
METDTLLLWVLLLWVPGSTG





346
(Intentionally
(omitted)



Omitted)






347
Human IL-15
NWVNVISDLKKIEDLIQSMHIDATLYTESDVHPSCKVTA



(amino acid 49-
MKCFLLELQVISLESGDASIHDTVENLIILANNSLSSNG



161)
NVTESGCKECEELEEKNIKEFLQSFVHIVQMFINT





348
Human IL-15
NWVNVISDLKKIEDLIQSMHIDATLYTESDVHPSCKVTA



(amino acid 49-
MKCFLLELQVISLESGDASIHDTVENLIILANNSLSSNG



162)
NVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTS





349
CM
LSGRSNI





350
ProC1471

METDTLLLWVLLLWVPGSTGNWVNVISDLKKIEDLIQSM




IL-
HIDATLYTESDVHPSCKVTAMKCFLLELQVISLESGDA



15(NT)_1204DNIdL_
SIHDTVENLIILANNSLSSNGNVTESGCKECEELEEKNIK



IgG4(C226),
EFLQSFVHIVQMFINTSGRSDNICPPCPAPEFLGGPSVFL



with signal
FPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFNWYV



sequence
DGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLN




GKEYKCKVSNKGLPSSIEKTISKAKGQPREPQVYTLPPS




QEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNY




KTTPPVLDSDGSFFLYSRLTVDKSRWQQGNVFSCSVM




HEALHNHYTQKSLSLS





351
ProC1874
NWVNVISDLKKIEDLIQSMHIDATLYTESDVHPSCKVT




AMKCFLLELQVISLESGDASIHDTVENLIILANNSLSSN




GNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTS




LSGRSDNICPPCPAPEFLGGPSVFLFPPKPKDTLMISRTP




EVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPRE




EQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPS




SIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLV




KGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY




SRLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLS





352
ProC1875
NWVNVISDLKKIEDLIQSMHIDATLYTESDVHPSCKVT




AMKCFLLELQVISLESGDASIHDTVENLIILANNSLSSN




GNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTS




GLSGRSDNICPPCPAPEFLGGPSVFLFPPKPKDTLMISRT




PEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPR




EEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGL




PSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTC




LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSRLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL




SLS





353
ProC1876
NWVNVISDLKKIEDLIQSMHIDATLYTESDVHPSCKVT




AMKCFLLELQVISLESGDASIHDTVENLIILANNSLSSN




GNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTS




GGLSGRSDNICPPCPAPEFLGGPSVFLFPPKPKDTLMISR




TPEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKP




REEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKG




LPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLT




CLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSF




FLYSRLTVDKSRWQQGNVFSCSVMHEALHNHYTQKS




LSLS





354
ProC1877
NWVNVISDLKKIEDLIQSMHIDATLYTESDVHPSCKVT




AMKCFLLELQVISLESGDASIHDTVENLIILANNSLSSN




GNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTS




LSGRSNICPPCPAPEFLGGPSVFLFPPKPKDTLMISRTPE




VTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPREE




QFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPSS




IEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLV




KGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY




SRLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLS





355
ProC1878
NWVNVISDLKKIEDLIQSMHIDATLYTESDVHPSCKVT




AMKCFLLELQVISLESGDASIHDTVENLIILANNSLSSN




GNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTS




GLSGRSNICPPCPAPEFLGGPSVFLFPPKPKDTLMISRTP




EVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPRE




EQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPS




SIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLV




KGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLY




SRLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLS





356
ProC1879
NWVNVISDLKKIEDLIQSMHIDATLYTESDVHPSCKVT




AMKCFLLELQVISLESGDASIHDTVENLIILANNSLSSN




GNVTESGCKECEELEEKNIKEFLQSFVHIVQMFINTS




GGLSGRSNICPPCPAPEFLGGPSVFLFPPKPKDTLMISRT




PEVTCVVVDVSQEDPEVQFNWYVDGVEVHNAKTKPR




EEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGL




PSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTC




LVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFF




LYSRLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSL




SLS





357
IL-
atggaaaccgacacactgctgctgtgggtgctgcttttgtgggtgccaggatccacag



15(NT)_1204DNIdL_
gcaactgggttaacgtcatatctgacctgaaaaaaattgaagacctgatccaatcaatgc



IgG4(C226)
atattgatgcgactctctatactgaaagtgacgttcatccctcatgtaaagttaccgcaat



(polynucleotide)
gaaatgtttccttcttgaactccaggtgatctccctggaatcaggagacgcaagcataca




tgacactgtcgaaaacctgattatcctcgctaataatagtttgagttctaacggcaatgtta




cagagagtgggtgtaaggagtgcgaggagctggaggagaagaacatcaaggagttt




ttgcagagctttgttcacattgtccaaatgtttatcaacacctcaggtaggtctgataatatc




tgtcctccatgtcctgctccagagtttctcggaggcccctccgtgttcctgtttcctccaaa




gcctaaggacaccctgatgatcagcagaacccctgaagtgacctgcgtggtggtcga




cgtttcacaagaggaccccgaggtgcagttcaattggtacgtggacggcgtggaagtg




cacaacgccaagaccaagcctagagaggaacagttcaacagcacctacagagtggt




gtccgtgctgaccgtgctgcaccaggattggctgaacggcaaagagtacaagtgcaa




ggtgtccaacaagggcctgcctagcagcatcgagaaaaccatcagcaaggccaagg




gccagccaagggaaccccaggtttacacactgccacctagccaagaggaaatgacc




aagaaccaggtgtccctgacctgcctggtcaagggcttttacccctccgatatcgccgt




ggaatgggagagcaatggccagcctgagaacaactacaagaccacacctcctgtgct




ggacagcgacggctcattcttcctgtacagcagactgaccgtggacaagagcagatg




gcagcagggcaacgtgttcagctgcagcgtgatgcacgaggccctgcacaaccacta




cacccagaagtctctgagcctgagctga





358
IL-15 binding
AVNGTSQFTCFYNSRANISCVWSQDGALQDTSCQVHA



protein
WPDRRRWNQTCELLPVSQASWACNLILGAPDSQKLTT




VDIVTLRVLCREGVRWRVMAIQDFKPFENLRLMAPISL




QVVHVETHRCNISWEISQASHYFERHLEFEARTLSPGH




TWEEAPLLTLKQKQEWICLETLTPDTQYEFQVRVKPLQ




GEFTTWSPWSQPLAFRTKPAALGKDT





359
IL-15 binding
ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAG



protein
TSSLTECVLNKATNVAHWTTPSLKCIRDPALVHQRPAP




P





360
IL-15 binding
ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAG



protein
TSSLTECVLNKATNVAHWTTPSLKCIRDP





361
IL-15 binding
ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAG



protein
TSSLTECVLNKATNVAHWTTPSLKCIR





362
IL-15 binding
ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAG



protein
TSSLTECVLNKATNVAHWTTPSLKCIRDPALVHQRPAP




PSTVTTAGVTPQPESLSPSGKEPAASSPSSNNTAATTAA




IVPGSQLMPSKSPSTGTTEISSHESSHGTPSQTTAKNWE




LTASASHQPPGVYPQGHSDTT





363
IL-15 binding
ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAG



protein
TSSLTECVLNKATNVAHWTTPSLKCIRDPALVHQRPAP




PSTVTTAGVTPQPESLSPSGKEPAAS





364
IL-15 binding
MAPRRARGCRTLGLPALLLLLLLRPPATRGITCPPPMS



protein
VEHADIWVKSYSLYSRERYICNSGFKRKAGTSSLTECV




LNKATNVAHWTTPSLKCIRDPALVHQRPAPPSTVTTAG




VTPQPESLSPSGKEPAASSPSSNNTAATTAAIVPGSQLM




PSKSPSTGTTEISSHESSHGTPSQTTAKNWELTASASHQ




PPGVYPQGHSDTTVAISTSTVLLCGLSAVSLLACYLKS




RQTPPLASVEMEAMEALPVTWGTSSRDEDLENCSHHL





365
IL-2 or IL-15
AVNGTSQFTCFYNSRANISCVWSQDGALQDTSCQVHA



binding protein
WPDRRRWNQTCELLPVSQASWACNLILGAPESQKLTT




VDIVTLRVLCREGVRWRVMAIQDFKPFENLRLMAPISL




QVVHVETHRCNISWEISQASHYFERHLEFEARTLSPGH




TWEEAPLLTLKQKQEWICLETLTPDTQYEFQVRVKPLQ




GEFTTWSPWSQPLAFRTKPAALGKDT





366
IL-2 or IL-15
AVNGTSQFTCFYNSRANISCVWSQDGALQDTSCQVHA



binding protein
WPDRRRWNQTCELLPVSQASWACNLILGAPDHQKLTT




VDIVTLRVLCREGVRWRVMAIQDFKPFENLRLMAPISL




QVVHVETHRCNISWEISQASHYFERHLEFEARTLSPGH




TWEEAPLLTLKQKQEWICLETLTPDTQYEFQVRVKPLQ




GEFTTWSPWSQPLAFRTKPAALGKDT





367
IL-2 or IL-15
AVNGTSQFTCFYNSRANISCVWSQDGALQDTSCQVHA



binding protein
WPDRRRWNQTCELLPVSQASWACNLILGAPDSQKLTT




QDIVTLRVLCREGVRWRVMAIQDFKPFENLRLMAPISL




QVVHVETHRCNISWEISQASHYFERHLEFEARTLSPGH




TWEEAPLLTLKQKQEWICLETLTPDTQYEFQVRVKPLQ




GEFTTWSPWSQPLAFRTKPAALGKDT





368
IL-2 or IL-15
AVNGTSQFTCFYNSRANISCVWSQDGALQDTSCQVHA



binding protein
WPDRRRWNQTCELLPVSQASWACNLILGAPDSQKLTT




FDIVTLRVLCREGVRWRVMAIQDFKPFENLRLMAPISL




QVVHVETHRCNISWEISQASHYFERHLEFEARTLSPGH




TWEEAPLLTLKQKQEWICLETLTPDTQYEFQVRVKPLQ




GEFTTWSPWSQPLAFRTKPAALGKDT





369
IL-2 or IL-15
AVNGTSQFTCFYNSRANISCVWSQDGALQDTSCQVHA



binding protein
WPDRRRWNQTCELLPVSQASWACNLILGAPDSQKLTT




VDIVTLRVLCREGVRWRVMAIQDFKPFENLRLMAPISL




QVVHVETHRCNISWEISQASHYFQRHLEFEARTLSPGH




TWEEAPLLTLKQKQEWICLETLTPDTQYEFQVRVKPLQ




GEFTTWSPWSQPLAFRTKPAALGKDT





370
IL-2 or IL-15
AVNGTSQFTCFYNSRANISCVWSQDGALQDTSCQVHA



binding protein
WPDRRRWNQTCELLPVSQASWACNLILGAPDSQKLTT




VDIVTLRVLCREGVRWRVMAIQDFKPFENLRLMAPISL




QVVHVETHRCNISWEISQASHYFQRRLEFEARTLSPGH




TWEEAPLLTLKQKQEWICLETLTPDTQYEFQVRVKPLQ




GEFTTWSPWSQPLAFRTKPAALGKDT





371
IL-2 or IL-15
AVNGTSQFTCFYNSYANISCVWSQDGALQDTSCQVHA



binding protein
WPDRRRWNQTCELLPVSQASWACNLILGAPDSQKLTT




VDIVTLRVLCREGVRWRVMAIQDFKPFENLRLMAPISL




QVVHVETHRCNISWEISQASHYFERHLEFEARTLSPGH




TWEEAPLLTLKQKQEWICLETLTPDTQYEFQVRVKPLQ




GEFTTWSPWSQPLAFRTKPAALGKDT





372
IL-2 or IL-15
LNTTILTPNGNEDTTADFFLTTMPTDSLSVSTLPLPEVQ



binding protein
CFVFNVEYMNCTWNSSSEPQPTNLTLHYWYKNSDND




KVQKCSHYLFSEEITSGCQLQKKEIHLYQTFVVQLQDP




REPRRQATQMLKLQNLVIPWAPENLTLHKLSESQLELN




WNNRFLNHCLEHLVQYRTDWDHSWTEQSVDYRHKFS




LPSVDGQKRYTFRVRSRFNPLCGSAQHWSEWSHPIHW




GSNTSKENPFLFALEA





373
IL-2 or IL-15
CPDLVCYTDYLQTVICILEMWNLHPSTLTLTWQDQYE



binding protein
ELKDEATSCSLHRSAHNATHATYTCHMDVFHFMADDI




FSVNITDQSGNYSQECGSFLLAESIKPAPPFNVTVTFSG




QYNISWRSDYEDPAFYMLKGKLQYELQYRNRGDPWA




VSPRRKLISVDSRSVSLLPLEFRKDSSYELQVRAGPMPG




SSYQGTWSEWSDPVIFQTQSEELKE





374
IL-15 binding
ITCPPPMSVEHADIWVKSYSLYSRERYICNSGFKRKAG



protein
TSSLTECVLNKATNVAHWTTPSLKCIRDPALVHQRPAP




PS





375
Spacer
QGQSGS





376
Spacer
GQSGS





377
Spacer
QSGS





378
Spacer
QGQSGQG





379
Spacer
GQSGQG





380
Spacer
QSGQG





381
Spacer
SGQG





382
Spacer
QGQSGQ





383
Spacer
GQSGQ





384
Spacer
QSGQ





385
Spacer
QGQSG





386
Spacer
QGQS





387
Spacer
EPKSCDKTHT





388
Spacer
ELKTPLGDTTHT





389
Spacer
ESKYGPP









As described above, the invention described herein encompasses activatable cytokine constructs that include various cytokine proteins discussed herein. As non-limiting examples, the CP used in the ACCs of the invention may be any of those listed in SEQ ID NOs: 111-140, 143-146, 151-160, and 347-348, and variants thereof. In particular, monomeric cytokines are suited to use in the ACCs described herein. Based on the results provided herein, it is believed that the ACCs of the invention will exhibit reduced cytokine activity relative to the corresponding wild type cytokine, and that upon cleavage of the ACC by the relevant protease(s), the cleavage product will recover cytokine activity similar to that of the corresponding wild type cytokine.


OTHER EMBODIMENTS

It is to be understood that while the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and modifications are within the scope of the following claims.

Claims
  • 1. An activatable cytokine construct (ACC) comprising a first monomer construct and a second monomer construct, wherein: (a) the first monomer construct comprises a first interleukin polypeptide, a first cleavable moiety (CM1), and a first dimerization domain (DD1);(b) the second monomer construct comprises a second interleukin polypeptide, a second cleavable moiety (CM2), and a second dimerization domain (DD2);(c) the first monomer construct is a polypeptide comprising, in an N- to C-terminal direction, the interleukin polypeptide, the CM1, and the DD1, further wherein: (i) each of the first monomer construct and the second monomer construct comprises a Linking Region comprising no more than 18 amino acids, and(ii) the interleukin polypeptide is IL-15; (d) further wherein:(i) the second monomer construct is the same as the first monomer construct, and(ii) the DD1 and the DD2 are a pair of human IgG Fc domains;(e) the DD1 and the DD2 are covalently bound to each other via at least one disulfide bond thereby forming a dimer of the first monomer construct and the second monomer construct; and(f) the ACC is characterized by having a reduced level of IL-15 activity as compared to recombinant human IL-15, as measured by the level of secreted embryonic alkaline phosphatase SEAP production in IL-2/IL-15-responsive HEK293 cells.
  • 2. The ACC of claim 1, wherein the interleukin polypeptide comprises a sequence that is at least 95% identical to SEQ ID NO: 347.
  • 3. The ACC of claim 1, wherein the CM1 and the CM2 each comprises no more than 8 amino acids.
  • 4. The ACC of claim 1, wherein each of the CM1 and the CM2 is independently cleavable by a urokinase (uPa) and/or a matrix metalloproteinase (MMP).
  • 5. The ACC of claim 1, wherein the CM1 and the CM2 each comprises a sequence that is at least 85% identical to SEQ ID NO: 349.
  • 6. The ACC of claim 1, wherein the CM1 and the CM2 each comprises a sequence selected from the group consisting of SEQ ID NO: 41, SEQ ID NO: 68, SEQ ID NO: 100, and SEQ ID NO: 349.
  • 7. The ACC of claim 1, wherein the DD1 and the DD2 are a pair of human IgG4 Fc domains or wherein the DD1 and the DD2 are a pair of human IgG1 or IgG4 Fc domains truncated at the N-terminus to Cysteine 226 as numbered by EU numbering.
  • 8. (canceled)
  • 9. The ACC of claim 7, wherein the human IgG4 Fc domains comprise a S228P mutation as numbered by EU numbering.
  • 10. The ACC of claim 1, wherein the DD1 and the DD2 each comprises a sequence that is at least 95% identical to SEQ ID NO: 3.
  • 11. The ACC of claim 1, wherein the DD1 and the DD2 each comprises the sequence of SEQ ID NO: 3.
  • 12. The ACC of claim 1, wherein the first and second monomer constructs are covalently bound to each other via at least two, or at least three, or at least four disulfide bonds.
  • 13. (canceled)
  • 14. (canceled)
  • 15. The ACC of claim 1, wherein a) each of the first and second monomer constructs comprises a polypeptide sequence that is at least 95% identical to amino acids 21-359 of SEQ ID NO: 350; orb) each of the first and second monomer constructs comprises a polypeptide sequence selected from the group consisting of SEQ ID NOs: 350-356.
  • 16. (canceled)
  • 17. An activatable cytokine construct (ACC) comprising a first monomer construct and a second monomer construct, wherein: (a) the first monomer construct comprises a first interleukin polypeptide, a first cleavable moiety (CM1), and a first dimerization domain (DD1);(b) the second monomer construct comprises a second interleukin polypeptide, a second cleavable moiety (CM2), and a second dimerization domain (DD2);(c) the first monomer construct is a polypeptide comprising, in an N- to C-terminal direction, the interleukin polypeptide, the CM1, and the DD1, further wherein: (i) the interleukin polypeptide and the CM1 directly abut each other,(ii) the CM1 and the DD1 directly abut each other,(iii) the interleukin polypeptide comprises a sequence that is at least 85% identical to SEQ ID NO: 347,(iv) the CM1 comprises a sequence that is at least 85% identical to SEQ ID: 349,(d) further wherein: (i) the second monomer construct is the same as the first monomer construct, and(ii) the DD1 and DD2 are a pair of human IgG1 or IgG4 Fc domains;(e) the DD1 and the DD2 are covalently bound to each other via at least one disulfide bond thereby forming a dimer of the first monomer construct and the second monomer construct; and(f) the ACC is characterized by having a reduced level of IL-15 activity as compared to the activity of recombinant human IL-15.
  • 18. An activatable cytokine construct (ACC) that includes a first monomer construct and a second monomer construct, wherein: (a) the first monomer construct comprises a first interleukin polypeptide, a first cleavable moiety (CM1), and a first dimerization domain (DD1),wherein the CM1 is positioned between the interleukin polypeptide and the DD1; and(b) the second monomer construct comprises a second interleukin polypeptide, a second cleavable moiety (CM2), and a second dimerization domain (DD2),wherein the CM2 is positioned between the CP2 and the DD2; or(a) the first monomer construct comprises a first interleukin polypeptide, a first dimerization domain (DD1), and(b) the second monomer construct comprises a second interleukin polypeptide, a cleavable moiety (CM), and a second dimerization domain (DD2), wherein the CM is positioned between the CP2 and the DD2, wherein the CM functions as a substrate for a protease: or(a) the first monomer construct comprises a first interleukin polypeptide, a cleavable moiety (CM), and a first dimerization domain (DD1), wherein the CM is positioned between the interleukin polypeptide and the DD1, and(b) the second monomer construct comprises a second interleukin polypeptide, and a second dimerization domain (DD2),wherein the CM functions as a substrate for a protease; or(a) the first monomer construct comprises a first interleukin polypeptide, and a first dimerization domain (DD1), and(b) the second monomer construct comprises a second interleukin polypeptide, and a second dimerization domain (DD2), wherein the first interleukin polypeptide, the second interleukin polypeptide, or both the first interleukin polypeptide and the second interleukin polypeptide include(s) an amino acid sequence that functions as a substrate for a protease;wherein the DD1 and the DD2 bind each other thereby forming a dimer of the first monomer construct and the second monomer construct; andwherein the ACC is characterized by having a reduced level of interleukin activity as compared to a control level of interleukin activity.
  • 19. The ACC of claim 18, wherein the DD1 and the DD2 are a pair of Fc domains.
  • 20. The ACC of claim 19, wherein the pair of Fc domains is a pair of human Fc domains.
  • 21. The ACC of claim 20, wherein the human Fc domains are human IgG1 Fc domains, human IgG2 Fc domains, human IgG3 Fc domains, or human IgG4 Fc domains.
  • 22. The ACC of claim 21, wherein the human Fc domains are human IgG4 Fc domains.
  • 23. The ACC of claim 22, wherein the human Fc domains comprise a sequence that is at least 90% identical to SEQ ID NO: 3, SEQ ID NO: 315, or SEQ ID NO: 316.
  • 24. The ACC of claim 22, wherein the human Fc domains comprise SEQ ID NO: 3, SEQ ID NO: 315, or SEQ ID NO: 316.
  • 25. The ACC of claim 18, wherein the first interleukin polypeptide and/or the second interleukin polypeptide comprises a sequence that is at least 90% identical to SEQ ID NO: 347.
  • 26. The ACC of claim 18, wherein the first monomer construct and the second monomer construct have a structure, in the N-terminal to C-terminal direction, of first interleukin polypeptide CM1-DD1 and second interleukin polypeptide CM2-DD1, respectively.
  • 27. The ACC of claim 18, wherein the first interleukin polypeptide and/or second interleukin polypeptide comprises a sequence of SEQ ID NO: 347.
  • 28. The ACC of claim 1, wherein the ACC is characterized by having a level of IL-15 activity that is reduced by about 100- to about 500-fold as compared to recombinant human IL-15, as measured by the level of secreted embryonic alkaline phosphatase (SEAP) production in IL-2/IL-15-responsive HEK293 cells.
  • 29. The ACC of claim 28, wherein the ACC is characterized by having a level of IL-15 activity that is reduced by at least 200-fold as compared to recombinant human IL-15.
  • 30. The ACC of claim 28, wherein the ACC is characterized by having a level of IL-15 activity that is reduced by about 250-fold as compared to recombinant human IL-15.
  • 31. The ACC of claim 1, wherein the ACC is characterized by having an EC50 following cleavage of the ACC by uPA protease that is about 1 to about 10 times the EC50 of wildtype recombinant IL-15, as measured in IL-2/IL15-responsive HEK293 cells or wherein the ACC is characterized by having an EC50 following cleavage of the ACC by uPA protease that is about 3 to about 7 times the EC50 of wildtype recombinant IL-15, as measured in IL-2/IL15-responsive HEK293 cells.
  • 32. (canceled)
  • 33. A polynucleotide encoding a polypeptide that comprises the CP1 and CM1 of the ACC of claim 1.
  • 34. The polynucleotide of claim 33, wherein the polypeptide further comprises a DD1 having a sequence that is at least 95% identical to SEQ ID NO: 3.
  • 35. A vector comprising the polynucleotide of claim 33.
  • 36. (canceled)
  • 37. A host cell comprising the polynucleotide of claim 33.
  • 38. A pair of nucleic acids that together encode a polypeptide that comprises the CP1 and CM1 of the first monomer construct, and a polypeptide that comprises the CP2 and CM2 of the second monomer construct, of claim 1.
  • 39. A host cell comprising the pair of nucleic acids of claim 38.
  • 40. (canceled)
  • 41. A method of producing an ACC comprising: culturing a cell of claim 37 in a liquid culture medium under conditions sufficient to produce the ACC; andrecovering the ACC from the cell or the liquid culture medium.
  • 42. (canceled)
  • 43. (canceled)
  • 44. (canceled)
  • 45. A composition comprising an ACC of claim 1, optionally wherein the composition is a pharmaceutical composition.
  • 46. (canceled)
  • 47. A container, vial, syringe, injector pen, or kit comprising at least one dose of the composition of claim 45.
  • 48. A method of treating a subject in need thereof comprising administering to the subject a therapeutically effective amount of the ACC of claim 1.
  • 49. The method of claim 48, wherein the subject has been identified or diagnosed as having a cancer.
  • 50. The method of claim 49, wherein the cancer is leukemia, lymphoma, or a solid tumor.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 63/253,939, filed Oct. 8, 2021 and U.S. Provisional Application No. 63/311,397, filed Feb. 17, 2022. The entire contents of the above-identified applications are hereby fully incorporated herein by reference.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2022/077644 10/6/2022 WO
Provisional Applications (2)
Number Date Country
63253939 Oct 2021 US
63311397 Feb 2022 US