Activatable cytokine polypeptides and methods of use thereof

Information

  • Patent Grant
  • 12036266
  • Patent Number
    12,036,266
  • Date Filed
    Friday, September 23, 2022
    2 years ago
  • Date Issued
    Tuesday, July 16, 2024
    6 months ago
Abstract
The disclosure features fusion proteins that are conditionally active variants of a cytokine of interest. In one aspect, the full-length polypeptides of the invention have reduced or minimal cytokine-receptor activating activity even though they contain a functional cytokine polypeptide. Upon activation, e.g., by cleavage of a linker that joins a blocking moiety, e.g. a steric blocking polypeptide, in sequence to the active cytokine, the cytokine can bind its receptor and effect signaling. Typically, the fusion proteins further comprise an in vivo half-life extension element, which may be cleaved from the cytokine in the tumor microenvironment.
Description
SEQUENCE LISTING

The instant application contains a Sequence Listing which has been submitted electronically in XML format and is hereby incorporated by reference in its entirety. Said XML file, created on Sep. 20, 2022, is named 761146_300011_SL.xml and is 908,507 bytes in size.


BACKGROUND

The development of mature immunocompetent lymphoid cells from less-committed precursors, their subsequent antigen-driven immune responses, and the suppression of these and unwanted autoreactive responses are highly dependent and regulated by cytokines (including interleukin-2 [IL-2], IL-4, IL-7, IL-9, IL-15, and IL-21) that utilize receptors in the common γ-chain (γc) family (Rochman et al., 2009) and family members including IL-12, 18 and 23. IL-2 is essential for thymic development of Treg cells and critically regulates several key aspects of mature peripheral Treg and antigen-activated conventional T cells. Because of its potent T cell growth factor activity in vitro, IL-2 has been extensively studied in part because this activity offered a potential means to directly boost immunity, e.g., in cancer and AIDS-HIV patients, or a target to antagonize unwanted responses, e.g., transplantation rejection and autoimmune diseases. Although in vitro studies with IL-2 provided a strong rationale for these studies, the function of IL-2 in vivo is clearly much more complex as first illustrated in IL-2-deficient mice, where a rapid lethal autoimmune syndrome, not lack of immunity, was observed (Sadlack et al., 1993, 1995). Similar observations were later made when the gene encoding IL-2Rα (Il2ra) and IL-2Rβ (Il2rb) were individually ablated (Suzuki et al., 1995; Willerford et al., 1995).


The present invention refers to conditionally active and/or targeted cytokines for use in the treatment of cancer and other diseases dependent on immune up or down regulation. For example, the antitumoral activity of some cytokines is well known and described and some cytokines have already been used therapeutically in humans. Cytokines such as interleukin-2 (IL-2) and interferon α (IFNα) have shown positive antitumoral activity in patients with different types of tumors, such as kidney metastatic carcinoma, hairy cell leukemia, Kaposi sarcoma, melanoma, multiple myeloma, and the like. Other cytokines like IFNβ, the Tumor Necrosis Factor (TNF) α, TNFβ, IL-1, 4, 6, 12, 15 and the CSFs have shown a certain antitumoral activity on some types of tumors and therefore are the object of further studies.


SUMMARY

Provided herein are therapeutic proteins, nucleic acids (e.g., DNA, RNA, mRNA) that encode the proteins, and compositions and methods of using the proteins and nucleic acids for the treatment of a disease or disorder, such as proliferative disease, a tumorous disease, an inflammatory disease, an immunological disorder, an autoimmune disease, an infectious disease, a viral disease, an allergic reaction, a parasitic reaction, graft-versus-host disease and the like. In certain embodiments, the fusion protein the amino acid sequence of any one of SEQ ID NOs.: 193-271. Certain fusion proteins disclosed herein are referred to as ACP200-208, ACP211, ACP213-ACP215, ACP240-ACP245, ACP247, ACP284-ACP292, ACP296-ACP300, ACP302-ACP306, ACP309-ACP314, ACP336-ACP359, ACP371-ACP379, ACP383-ACP434, ACP439-ACP447, or ACP451-ACP471. This disclosure also relates to nucleic acids (e.g., DNA, RNA, mRNA) that encode the fusion proteins, methods of making fusion proteins, compositions comprising a fusion protein, as well as methods of using the fusion proteins to treat cancer including combination of two or more fusion proteins and one or more fusion protein in combination with another therapeutic agent.


The invention features fusion proteins that are conditionally active variants of a cytokine of interest. Cytokines of particular interest include IL-2, IL-12, and IFN. In one aspect, the full-length polypeptides of the invention have reduced or minimal cytokine-receptor activating activity even though they contain a functional cytokine polypeptide. Upon activation, e.g., by cleavage of a linker that joins a blocking moiety, e.g. a steric blocking polypeptide, in sequence to the active cytokine, the cytokine, e.g., IL-2, IL-7, IL-12, IL-15, IL-18, IL-21, IL-23, IFNalpha, IFNbeta, IFNgamma, TNFalpha, lymphotoxin, TGF-beta1, TGFbeta2, TGFbeta3, GM-CSF, CXCL10, CCL19, CCL20, CCL21 or functional fragment or mutein or functional variant or a subunit of any of the foregoing, can bind its receptor and effect signaling. If desired, the full-length polypeptides can include a blocking polypeptide moiety that also provides additional advantageous properties. For example, the full-length polypeptide can contain a blocking polypeptide moiety that also extends the serum half-life and/or targets the full-length polypeptide to a desired site of cytokine activity. Alternatively, the full-length fusion polypeptides can contain a serum half-life extension element and/or targeting domain that are distinct from the blocking polypeptide moiety. Preferably, the fusion protein contains at least one element or domain capable of extending in vivo circulating half-life. Preferably, this element is removed enzymatically in the desired body location (e.g. protease cleavage in the tumor microenvironment), restoring pharmacokinetic properties to the payload molecule (e.g. IL2, IL-12, IFNb or IFNa) substantially similar to the naturally occurring payload molecule. The fusion proteins may be targeted to a desired cell or tissue.


The fusion polypeptides typically comprise a cytokine polypeptide [A], a blocking moiety [D], optionally a half-life extension moiety [H], and a protease-cleavable polypeptide linker. The cytokine polypeptide and the blocking moiety and the optional half-life extension element when present are operably linked by the protease-cleavable polypeptide linker and the fusion polypeptide has attenuated cytokine receptor activating activity, e.g., the cytokine-receptor activating activity of the fusion polypeptide is at least about 10× less than the cytokine receptor activating activity of the polypeptide that contains the cytokine polypeptide that is produced by cleavage of the protease cleavable linker. Some preferred fusion polypeptides are of one of formula (I)-(VI):

[A]-[L1]-[H]-[L2]-[D]  (I);
[D]-[L2]-[H]-[L1]-[A]  (II);
[A]-[L1]-[D]-[L2]-[H]  (III);
[H]-[L2]-[D]-[L1]-[A]  (IV);
[H]-[L1]-[A]-[L2′]-[D]  (V);
[D]-[L1]-[A]-[L2′]-[H]  (VI);


wherein A is a cytokine polypeptide, D is a blocking moiety, H is a half-life extension moiety, L1 is a protease-cleavable polypeptide linker, L2 is an polypeptide linker that is optionally protease-cleavable, and L2′ is a protease-cleavable polypeptide linker. L1 and L2 or L1 and L2′ can be have the same or different amino acid sequence and or protease-cleavage site (when L2 is protease-cleavable) as desired.


In some aspects, the fusion proteins described herein are conditionally active variants of IL-12, IL-2, or IFN. In embodiments, the fusion protein can contain an IL-2 polypeptide. The fusion protein containing an IL-2 polypeptide can comprise or consist of the amino acid sequence of SEQ ID NOs. 257-300, 302-317, 325-353, 355-365, 366, 372-381, 383-385, 388-420, 579-608, and 636-646. The fusion proteins disclosed as SEQ ID NOs. 257-300, 302-317, 325-353, 355-365, 366, 372-381, 383-385, 388420, 579-608, 636-646 are referred to herein as ACP289-ACP292, ACP296-ACP302, WW0301, ACP304-ACP306, ACP309-ACP313, WW0353, ACP414, ACP336-ACP398, WW0472-WW0477, ACP406-ACP426, ACP439-ACP447, ACP451-ACP471, WW0729, WW0734-WW0792, ACP101, ACP293-ACP295, ACP316-ACP335, ACP427-ACP438, and ACP448-ACP450. For example, the fusion protein can comprise the amino acid sequence of SEQ ID NO: 272. The fusion protein can comprise the amino acid sequence of SEQ ID NO: 286. The fusion protein can comprise the amino acid sequence of SEQ ID NO:362. The fusion protein can comprise the amino acid sequence of SEQ ID NO:336. The fusion protein can comprise the amino acid sequence of SEQ ID NO: 348. The fusion protein can comprise the amino acid sequence of SEQ ID NO: 363. The fusion protein can comprise the amino acid sequence of SEQ ID NO: 580.


In embodiments, the fusion protein can contain IL-12. The fusion protein containing an IL-12 polypeptide can comprise or consist of the amino acid sequence of any one of SEQ ID NOs. 368-371, 434-440, 453-519, or 523-538. The fusion proteins disclosed as SEQ ID NOs. 368-371, 434-440, 453-519, or 523-538 are referred to herein as ACP240-ACP245, ACP247, ACP285-ACP288, WW0641, WW0649-WW0652, WW0662-WW0725, WW0765-WW0772, and WW0796-WW0803. For example, the fusion protein can comprise the amino acid sequence of SEQ ID NO: 424. For example, the fusion protein can comprise the amino acid sequence of SEQ ID NO: 428. For example, the fusion protein can comprise the amino acid sequence of SEQ ID NO: 541. For example, the fusion protein can comprise the amino acid sequence of SEQ ID NO: 556. For example, the fusion protein can comprise the amino acid sequence of SEQ ID NO: 560. For example, the fusion protein can comprise the amino acid sequence of SEQ ID NO: 568. For example, the fusion protein can comprise the amino acid sequence of SEQ ID NO: 573.


In embodiments, the fusion protein contains IFN. The fusion protein containing an IFN polypeptide can comprise or consist of the amino acid sequence of any one of SEQ ID NOs. 421-430, and 539-578. The fusion proteins disclosed as SEQ ID NOs. 421-430, and 539-578 can be referred to herein as ACP200-ACP209, WW0644-WW0648, WW0781-WW0786, WW0815-WW0822, WW0831-WW0834, WW0737-WW0748, and WW0787-WW0790.


In some aspects, the fusion polypeptide disclosed herein can be covalently or non-covalently bonded to a second polypeptide chain. For example, a fusion polypeptide can dimerize (i.e. form a dimer) or a portion of a fusion polypeptide may associate with another polypeptide, for example, to form a functional binding site for a cytokine polypeptide or serum albumin. In certain embodiments, the second polypeptide chain and the blocking moiety on the fusion polypeptide are complementary and together form a functional binding site that has specificity for the cytokine polypeptide contained in the fusion polypeptide. Exemplary functional binding sites that can be formed by the blocking moiety of the fusion polypeptide and a complimentary second polypeptide include antigen binding sites of antibodies, such as a Fab fragment of an antibody or a portion thereof. For example, one chain of a Fab that binds the cytokine can be the blocking moiety of the fusion polypeptide, e.g., a VH-CH1, and the complementary VL-CL can be part of the second polypeptide. In such situations, the blocking moiety of the fusion protein i.e., VH-CH1 and the second polypeptide that comprises the complementary VL-CL, can associate to form a functional binding site with specificity for the cytokine polypeptide contained within the fusion protein (e.g., IL-2, IL-12, IFNalpha, IFNbeta) and attenuate cytokine polypeptide activity.


In embodiments, the fusion protein containing an IL-2 cytokine polypeptide can be bonded covalently or noncovalently to a second polypeptide chain. The second polypeptide chain can contain an antibody light chain VL-CL that comprises or consists of the amino acid sequence of SEQ ID NO: 263, 264, or 333. Such a second polypeptide can bond with a complimentary VH-CH1 polypeptide contained within the fusion protein, e.g., as contained within SEQ ID NOS: 362, 363, 325, 286, 579, 581, or 582. The second polypeptide chain disclosed as SEQ ID NOs. 263, 264, and 333 can be referred herein as WW0523 (ACP381), WW0524 (ACP382), or WW0556 (ACP414).


In embodiments, the fusion polypeptide can comprise or consist of the amino acid sequence of SEQ ID NOs. 362, 363, 325, 286, 579, 581, or 582 and the second polypeptide chain can comprise or consist of the amino acid sequence of SEQ ID NOs: 263, 264, or 333. The fusion polypeptide disclosed as SEQ ID NOs. 362, 363, 325, 286, 579, 581, or 582 can be referred to as WW0520 (ACP378), WW0521 (ACP379), WW0548 (ACP406), WW0621 (ACP457), WW0729, WW0735, or WW0736, and the second polypeptide chain disclosed as SEQ ID NOs. 263, 264, and 333 can be referred herein as WW0523 (ACP381), WW0524 (ACP382), or WW0556 (ACP414). For example, the fusion protein can comprise or consist the amino acid sequence of SEQ ID NO: 362 and the second polypeptide chain can comprise or consist the amino acid sequence of SEQ ID NO: 263. For example, the fusion protein can comprise or consist the amino acid sequence of SEQ ID NO: 362 and the second polypeptide chain can comprise or consist the amino acid sequence of SEQ ID NO: 264. For example, the fusion protein can comprise or consist the amino acid sequence of SEQ ID NO: 362 and the second polypeptide chain can comprise or consist the amino acid sequence of SEQ ID NO: 333. For example, the fusion protein can comprise or consist of an amino acid sequence of SEQ ID NO: 363 and the second polypeptide chain can comprise or consist of an amino acid sequence of SEQ ID NO: 263. For example, the fusion protein can comprise or consist of an amino acid sequence of SEQ ID No. 363 and the second polypeptide chain can comprise or consist of an amino acid sequence of SEQ ID NO: 264. For example, the fusion protein can comprise or consist of an amino acid sequence of SEQ ID NO: 363 and the second polypeptide chain can comprise or consist of an amino acid sequence of SEQ ID NO: 333. For example, the fusion protein can comprise or consist of an amino acid sequence of SEQ ID NO: 325 and the second polypeptide chain can comprise or consist of an amino acid sequence of SEQ ID NO: 264. For example, the fusion protein can comprise or consist of an amino acid sequence of SEQ ID NO: 325 and the second polypeptide chain can comprise or consist of an amino acid sequence of SEQ ID NO: 333. For example, the fusion protein can comprise or consist of an amino acid sequence of SEQ ID NO: 325 and the second polypeptide chain can comprise or consist of an amino acid sequence of SEQ ID NO: 263. For example, the fusion protein can comprise or consist of an amino acid sequence of SEQ ID NO: 286 and the second polypeptide chain can comprise or consist of an amino acid sequence of SEQ ID NO: 263. For example, the fusion protein can comprise or consist of an amino acid sequence of SEQ ID NO: 286 and the second polypeptide chain can comprise or consist of an amino acid sequence of SEQ ID NO: 264. For example, the fusion protein can comprise or consist of an amino acid sequence of SEQ ID NO: 286, and the second polypeptide can comprise or consist of an amino acid sequence of SEW ID NO: 333. For example, the fusion protein can comprise or consist of an amino acid sequence of SEQ ID NO: 579 and the second polypeptide chain can comprise or consist of an amino acid sequence of SEQ ID NO: 263. For example, the fusion protein can comprise or consist of an amino acid sequence of SEQ ID NO: 579 and the second polypeptide chain can comprise or consist of an amino acid sequence of SEQ ID NO: 264. For example, the fusion protein can comprise or consist of an amino acid sequence of SEQ ID NO: 579 and the second polypeptide chain can comprise or consist of an amino acid sequence of SEQ ID NO: 233. For example, the fusion protein can comprise or consist of SEQ ID NO: 581 and the second polypeptide chain can comprise or consist of SEQ ID NO.: 263. For example, the fusion protein can comprise or consist of SEQ ID NO: 581 and the second polypeptide chain can comprise or consist of SEQ ID NO.: 264. For example, the fusion protein can comprise or consist of SEQ ID NO: 581 and the second polypeptide chain can comprise or consist of SEQ ID NO.: 333. For example, the fusion protein can comprise or consist of SEQ ID NO: 582 and the second polypeptide chain can comprise or consist of SEQ ID NO: 263. For example, the fusion protein can comprise or consist of SEQ ID NO: 582 and the second polypeptide chain can comprise or consist of SEQ ID NO: 264. For example, the fusion protein can comprise or consist of SEQ ID NO: 582 and the second polypeptide chain can comprise or consist of SEQ ID NO: 333.


As described herein targeting is accomplished through the action of a blocking polypeptide moiety that also binds to a desired target, or through a targeting domain. The domain that recognizes a target antigen on a preferred target (for example a tumor-specific antigen), may be attached to the cytokine via a cleavable or non-cleavable linker. If attached by a non-cleavable linker, the targeting domain may further aid in retaining the cytokine in the tumor, and it may be considered a retention domain. The targeting domain does not necessarily need to be directly linked to the payload molecule, and it may be linked directly to another element of the fusion protein. This is especially true if the targeting domain is attached via a cleavable linker.


In one aspect is provided a fusion polypeptide comprising a cytokine polypeptide, or functional fragment, a mutein thereof, a functional variant thereof or a subunit thereof, and a blocking moiety, e.g. a steric blocking domain. The blocking moiety is fused to the cytokine polypeptide, directly or through a linker, and can be separated from the cytokine polypeptide by cleavage (e.g., protease mediated cleavage) of the fusion polypeptide at or near the fusion site or linker or in the blocking moiety. For example, when the cytokine polypeptide is fused to a blocking moiety through a linker that contains a protease cleavage site, the cytokine polypeptide is released from the blocking moiety and can bind its receptor, upon protease mediated cleavage of the linker. The linker is designed to be cleaved at the site of desired cytokine activity, for example in the tumor microenvironment, avoiding off-target cytokine activity and reducing overall toxicity of cytokine therapy.


The blocking moiety can also function as a serum half-life extension element. In some embodiments, the fusion polypeptide further comprises a separate serum half-life extension element. In some embodiments, the fusion polypeptide further comprises a targeting domain. In various embodiments, the serum half-life extension element is a water-soluble polypeptide such as optionally branched or multi-armed polyethylene glycol (PEG), full length human serum albumin (HSA) or a fragment that preserves binding to FcRn, an Fc fragment, or a nanobody that binds to FcRn directly or to human serum albumin.


In addition to serum half-life extension elements, the pharmaceutical compositions described herein preferably comprise at least one, or more targeting domains that bind to one or more target antigens or one or more regions on a single target antigen. It is contemplated herein that a polypeptide construct of the invention is cleaved, for example, in a disease-specific microenvironment or in the blood of a subject at the protease cleavage site and that the targeting domain(s) will bind to a target antigen on a target cell. At least one target antigen is involved in and/or associated with a disease, disorder or condition. Exemplary target antigens include those associated with a proliferative disease, a tumorous disease, an inflammatory disease, an immunological disorder, an autoimmune disease, an infectious disease, a viral disease, an allergic reaction, a parasitic reaction, a graft-versus-host disease or a host-versus-graft disease.


In some embodiments, a target antigen is a cell surface molecule such as a protein, lipid or polysaccharide. In some embodiments, a target antigen is a on a tumor cell, virally infected cell, bacterially infected cell, damaged red blood cell, arterial plaque cell, or fibrotic tissue cell.


Target antigens, in some cases, are expressed on the surface of a diseased cell or tissue, for example a tumor or a cancer cell. Target antigens for tumors include but are not limited to Fibroblast activation protein alpha (FAPa), Trophoblast glycoprotein (5T4), Tumor-associated calcium signal transducer 2 (Trop2), Fibronectin EDB (EDB-FN), fibronectin EIIIB domain, CGS-2, EpCAM, EGFR, HER-2, HER-3, c-Met, FOLR1, FAP, and CEA. Pharmaceutical compositions disclosed herein, also include proteins comprising two antigen binding domains that bind to two different target antigens known to be expressed on a diseased cell or tissue. Exemplary pairs of antigen binding domains include but are not limited to EGFR/CEA, EpCAM/CEA, and HER-2/HER-3.


In some embodiments, the targeting polypeptides independently comprise a scFv, a VH domain, a VL domain, a non-Ig domain, or a ligand that specifically binds to the target antigen. In some embodiments, the targeting polypeptides specifically bind to a cell surface molecule. In some embodiments, the targeting polypeptides specifically bind to a tumor antigen. In some embodiments, the targeting polypeptides specifically and independently bind to a tumor antigen selected from at least one of EpCAM, EGFR, HER-2, HER-3, cMet, CEA, and FOLR1. In some embodiments, the targeting polypeptides specifically and independently bind to two different antigens, wherein at least one of the antigens is a tumor antigen selected from EpCAM, EGFR, HER-2, HER-3, cMet, CEA, and FOLR1. In some embodiments, the targeting polypeptide serves as a retention domain and is attached to the cytokine via a non-cleavable linker.


As described herein, the cytokine blocking moiety can bind to the cytokine and thereby block activation of the cognate receptor of the cytokine.


This disclosure also related to nucleic acids, e.g., DNA, RNA, mRNA, that encode the conditionally active proteins described herein, as well as vectors and host cells that contain such nucleic acids.


This disclosure also relates to pharmaceutical compositions that contain a conditionally active protein, nucleic acid that encodes the conditionally active protein, and vectors and host cells that contain such nucleic acids. Typically, the pharmaceutical composition contains one or more physiologically acceptable carriers and/or excipients.


The disclosure also relates to therapeutic methods that include administering to a subject in need thereof an effective amount of a conditionally active protein, nucleic acid that encodes the conditionally active protein, vector or host cells that contain such a nucleic acid, and pharmaceutical compositions of any of the foregoing. Typically, the subject has, or is at risk of developing, a proliferative disease, a tumorous disease, an inflammatory disease, an immunological disorder, an autoimmune disease, an infectious disease, a viral disease, an allergic reaction, a parasitic reaction, a graft-versus-host disease or a host-versus-graft disease.


The disclosure also relates to the use of a conditionally active protein, nucleic acid that encodes the conditionally active protein, vector or host cells that contain such a nucleic acid, and pharmaceutical compositions of any of the foregoing, for treating a subject in need thereof. Typically, the subject has, or is at risk of developing, a proliferative disease, a tumorous disease, an inflammatory disease, an immunological disorder, an autoimmune disease, an infectious disease, a viral disease, an allergic reaction, a parasitic reaction, a graft-versus-host disease or a host-versus-graft disease.


The disclosure also relates to the use of a conditionally active protein, nucleic acid that encodes the conditionally active protein, vector or host cells that contain such a nucleic acid for the manufacture of a medicament for treating a disease, such as a proliferative disease, a tumorous disease, an inflammatory disease, an immunological disorder, an autoimmune disease, an infectious disease, a viral disease, an allergic reaction, a parasitic reaction, a graft-versus-host disease or a host-versus-graft disease.





BRIEF DESCRIPTION OF THE DRAWINGS


FIGS. 1A-1E are a series of graphs showing activity of IL-2 fusion proteins in a HEKBlue IL-2 reporter assay in the presence of HSA. Squares depict activity of the uncut IL-2 polypeptide (intact) and triangles depict the activity of the cut polypeptide (cleaved). Circles depict activity of control IL-2. EC50 for each IL-12. EC50 values for each are shown in the table. FIGS. 1A-IE also depict results of the protein cleavage assay for each IL-2 polypeptide. Constructs tested and depicted include WW0475 (FIG. 1A), WW0517 (FIG. 1B), WW0548/556 (FIG. 1C), WW0735/523 (FIG. 1D), and WW0621/523 (FIG. 1E). FIG. 1F is a graph showing activity of a non-cleavable control, WW0729/523. FIG. 1F also depicts results of a protein cleavage assay for the non-cleavable control.



FIGS. 2A-2L are a series of graphs showing activity of fusion proteins in an IL-2 luciferase reporter assay. Closed squares depict activity of the uncut IL-2 polypeptide (intact) and open squares depict the activity of the cut IL-2 polypeptide (cleaved). Circles depict activity of the control (human IL-2). EC50 values for each are shown in the table (human IL-2). EC50 values for each are shown in the table. Constructs tested and depicted include WW0521/WW0556 (FIG. 2A), WW0521/WW0524 (FIG. 2B), WW0521/WW0523 (FIG. 2C), WW0520/WW0524 (FIG. 2D), WW0517 (FIG. 2E), WW0516 (FIG. 2F), WW0417 (FIG. 2G), WW0317 (FIG. 2H), WW0317 (FIG. 2I), and WW0520/WW0523 (FIG. 2J), WW0621/WW0523 (FIG. 2K), WW0048 (FIG. 2L).



FIGS. 3A-3J are a series of graphs showing activity of fusion proteins in an IL-2 T-Blast assay. In FIGS. 3B, 3D, 3J squares and in FIGS. 3A, 3C, 3E, 3I triangles depict activity of the uncut IL-2 polypeptide (intact), and in FIGS. 3B, 3D, 3J triangles, and in FIGS. 3A, 3C and 3E-3I upside down triangles depict the activity of the cut polypeptide (cleaved). Circles (FIGS. 3B, 3D, 3J) or squares (FIGS. 3A, 3C, 3E-3I) depict activity of the control human IL-2. EC50 values for each are shown in the table. Constructs tests and depicted include WW0317 (FIG. 3A), WW0516 (FIG. 3B), WW0354 (FIG. 3C), WW0517 (FIG. 3D), WW0621/0523 (FIG. 3E), WW0521/524 (FIG. 3F), WW0520/0523 (FIG. 3G), WW0729/523 (FIG. 3H), and WW0735/523 (FIG. 3I), WW0520/524 (FIG. 3J).



FIGS. 4A-4G are graphs that show results of analyzing WW0475, WW0520/0523, WW0548/0524, WW0548/0556, WW0517, WW0621/0523, and WW0619 IL-2 fusion proteins in a syngeneic MC38 mouse tumor model. Each graph shows average tumor volume (Mean+/−SEM) over time in mice treated with different doses of each of the fusion proteins as indicated. The data show tumor volume decreasing over time in a dose-dependent manner.



FIGS. 5A-5C are a series of spider plots showing activity of fusion proteins in the MC38 mouse syngeneic model corresponding to the data shown in FIG. 4A-4G. Each line in the plots is the tumor volume over time for a single mouse. FIG. 5A contains the data corresponding to vehicle treatment and fusion proteins WW0517 and WW0520/523. FIG. 5B contains the data corresponding to treatment with fusion proteins WW0548/0524, WW0548/0556, and WW0475. FIG. 5C contains the data corresponding to treatment with fusion proteins WW0619 and WW0621/0523.



FIGS. 6A-6C are a series of spider plots showing the impact of fusion proteins on body weight in an MC38 mouse syngeneic model corresponding to the data shown in FIGS. 5A-5C. Each line in the plots is the body weight over time for a single mouse. FIG. 6A contains the data corresponding to vehicle treatment and fusion proteins WW0517 and WW0520/523. FIG. 6B contains the data corresponding to treatment with fusion proteins WW0548/0524, WW0548/0556, and WW0475. FIG. 6C contains the data corresponding to treatment with fusion proteins WW0619 and WW0621/0523.



FIGS. 7A-7Q are a series of graphs showing activity of fusion proteins in an HEKBlue IL-12 reporter assay. FIGS. 7A-7Q depict IL-12/STAT4 activation in a comparison of human p40/murine p35 IL-12 or human IL-12 fusion proteins to chimeric IL-12 (mouse p35/human p40) or recombinant human IL-12 (control). Squares depict activity of the uncut IL-12 polypeptide (intact) and triangles depict the activity of the cut IL-12 polypeptide (cleaved). Circles depict activity of the control. EC50 values for each are shown in the table.



FIGS. 8A-8D are a series of graphs showing activity of fusion proteins in an IL12 T-Blast assay. FIGS. 8A-8D depicts activation of IL-12 signaling in a comparison of a human p40/murine p35 IL12 or human IL12 fusion protein to control, chimeric IL-12 (human p40/murine p35 IL12) or recombinant human IL12. Squares depict activity of the uncut IL-12 polypeptide (intact) and triangles depict the activity of the cut IL-12 polypeptide (cleaved). Circles depict activity of the control chimeric IL-12 or recombinant human IL-12. EC50 values for each are shown in the table.



FIGS. 9A-9C are a series of graphs showing activity of fusion proteins in an IL-12 luciferase reporter assay. FIGS. 9A-9B depict activation of IL-12 signaling in a comparison of a human p40/murine p35 IL-12 fusion protein to recombinant human IL-12 (control). FIG. 9C depicts activation of IL-12 signaling in comparison of a human IL-12 (human p40/human p35 IL-12) fusion protein to recombinant human IL12. Closed squares depict activity of the uncut IL-12 polypeptide (intact) and open squares depict the activity of the cut polypeptide (cleaved). Circles depict activity of the control. EC50 values for each are shown in the table.



FIGS. 10A-10J are a series of graphs showing activity of fusion proteins in the B16-Blue IFN-α/β reporter assay. FIGS. 10A-10J depict activation of the IFN-α/β pathway in a comparison of mouse IFNα fusion protein to mouse IFNα (control). Squares depict activity of the uncut IFNα polypeptide (intact) and triangles depict the activity of the cut IFNα polypeptide (cleaved). Circles depict activity of the control (mouse IFNα). EC50 values for each are shown in the table. FIGS. 10A-10J also depict results of the protein cleavage assay for each IFNα fusion protein. Each IFNα fusion protein was run on an SDS-PAGE gel in both cleaved and uncleaved form. As can be seen in the gel, cleavage was complete.



FIGS. 11A-11B are graphs depicting results from a HEK-Blue IL-12 reporter assay performed on human p40/murine p35 IL12 fusion proteins before and after protease cleavage. Constructs ACP35 (FIG. 11A) and ACP34 (FIG. 11B) were tested. Analysis was performed based on quantification of Secreted Alkaline Phosphatase (SEAP) activity using the reagent QUANTI-Blue® (InvivoGen). Results confirm that IL12 protein fusion proteins are active.



FIGS. 12A-12F show a series of graphs depicting the results of HEK-blue assay of four IL-12 fusion proteins, before and after cleavage by MMP9. Analysis was performed based on quantification of Secreted Alkaline Phosphatase (SEAP) activity using the reagent QUANTI-Blue (InvivoGen). The data show greater activity in the cleaved IL12 than in the full fusion protein. Constructs tested were ACP06 (FIG. 12A), ACP07 (FIG. 12C), ACP08 (FIG. 12B), ACP09 (FIG. 12D), ACP10 (FIG. 12E), ACP11 (FIG. 12F).



FIG. 13 shows results of protein cleavage assay. Fusion protein ACP11 was run on an SDS-PAGE gel in both cleaved and uncleaved form. As can be seen in the gel, cleavage was complete.



FIG. 14 is a schematic which depicts a non-limiting example of an inducible cytokine protein, wherein the construct is activated upon protease cleavage of a linker attached between two subunits of the cytokine.



FIGS. 15A-15D are graphs depicting results from a HEK-Blue assay performed on human p40/murine p35 IL12 fusion proteins before and after protease cleavage. Results confirm that IL12 protein fusion proteins are active. Each proliferation assay was performed with HSA or without HSA.



FIGS. 16A-16F are a series of graphs showing activity of exemplary IFNγ fusion proteins compared to activity of mouse IFNγ control using WEHI 279 cell survival assay. Each assay was performed with medium containing HSA (+HSA) or not containing HSA (-HSA). Each fusion protein comprises an anti-HSA binder, and both uncleaved and MMP9 protease cleaved versions of the fusion protein were used in each assay.



FIGS. 17A-17F are a series of graphs showing activity of exemplary IFNγ fusion proteins compared to activity of mouse IFNγ control using B16 reporter assay. Each assay was performed with medium containing HSA (+HSA) or not containing HSA (-HSA). Each fusion protein comprises an anti-HSA binder, and both uncleaved and MMP9 protease cleaved versions of the fusion protein were used in each assay.



FIGS. 18A-18B show results of protein cleavage assay, as described in Example 2. Two constructs, ACP31 (IFN-α fusion protein; FIG. 18A) and ACP55 (IFN-γ fusion protein; 18B), were run on an SDS-PAGE gel in both cleaved and uncleaved form. As can be seen in the gel, cleavage was complete.



FIGS. 19A-19B are a series of graphs (FIGS. 19A and 19B) showing activity of exemplary IFNγ fusion proteins before and after protease cleavage using B16 reporter assay. Each assay was performed with culture medium containing HSA, and each fusion protein comprises an anti-HSA binder. Both uncleaved and MMP9 protease cleaved versions of the fusion protein were used in each assay.



FIGS. 20A-20B are a series of graphs (FIG. 20A and FIG. 20B) showing activity of exemplary IFNα fusion proteins before and after cleavage using a B16 reporter assay. Each assay was performed with medium containing HSA, and each fusion protein comprises an anti-HSA binder. Both uncleaved and MMP9 protease cleaved versions of the fusion protein were used in each assay.



FIGS. 21A-21D are a series of graphs depicting the results of tumor growth studies using the MC38 cell line. FIG. 21A-C show the effect of IFNγ and IFNγ fusion proteins on tumor growth when injected intraperitoneally (IP) using different dosing levels and schedules (ug=micrograms, BID=twice daily, BIW=twice weekly, QW=weekly). FIG. 21D shows the effect of intratumoral (IT) injection of IFNγ and IL-2 on tumor growth.



FIGS. 22A-22B are a series of graphs showing activity of exemplary IFNγ fusion proteins (ACP51 (FIG. 22A), and ACP52 (FIG. 22B)) cleaved by MMP9 protease compared to activity of uncleaved fusion proteins using B16 reporter assay. Each fusion protein comprises an anti-HSA binder and a tumor targeting domain.



FIGS. 23A-23B are a series of graphs showing activity of exemplary IFNγ fusion proteins (ACP53 and ACP54) cleaved by MMP9 protease compared to activity of uncleaved fusion proteins using B16 reporter assay. Each fusion protein comprises IFNγ directly fused to albumin.



FIGS. 24A-24D are graphs depicting results from a HEK-Blue IL-2 reporter assay performed on IL-2 fusion proteins and recombinant human IL2 (Rec hIL-2). Analysis was performed based on quantification of Secreted Alkaline Phosphatase (SEAP) activity using the reagent QUANTI-Blue (InvivoGen). FIG. 24A shows results of IL-2 constructs ACP132 and ACP 133 with and without albumin. FIG. 24B shows results of IL-2 construct ACP16 cleaved and uncleaved. Results of a protein cleavage assay of ACP16 in cleaved and uncleaved forms is also depicted. FIG. 24C shows results of IL-2 construct ACP153 in cleaved and uncleaved forms. Results of a protein cleavage assay are also depicted. FIG. 24D illustrates the results from a HEK-Blue IL-2 assay using wild-type cytokine, intact fusion protein, and protease-cleaved fusion protein.



FIGS. 25A and 25B are two graphs showing analysis of ACP16 (FIG. 25A) and ACP124 (FIG. 25B) in a HEKBlue IL-2 reporter assay in the presence of HSA. Circles depict the activity of the uncut polypeptide; squares depict activity of the cut polypeptide. FIG. 25C is a graph showing results of a CTLL-2 proliferation assay. CTLL2 cells (ATCC) were plated in suspension at a concentration of 500,000 cells/well in culture media with or without 40 mg/ml human serum albumin (HSA) and stimulated with a dilution series of activatable hIL2 for 72 hours at 37° C. and 5% CO2. Activity of uncleaved and cleaved activatable ACP16 was tested. Cleaved activatable hIL2 was generated by incubation with active MMP9. Cell activity was assessed using a CellTiter-Glo (Promega) luminescence-based cell viability assay. Circles depict intact fusion protein, and squares depict protease-cleaved fusion protein.



FIGS. 26A-26C are a series of graphs showing activity of fusion proteins in an HEKBIue IL-12 reporter assay. FIG. 26A depicts IL-12/STAT4 activation in a comparison of ACP11 (a human p40/murine p35 IL12 fusion protein) to ACP04 (negative control). FIG. 26B is a graph showing analysis of ACP91 (a chimeric IL-12 fusion protein). Squares depict activity of the uncut ACP91 polypeptide, and triangles depict the activity of the cut polypeptide (ACP91+MMP9). EC50 values for each are shown in the table. FIG. 26C is a graph showing analysis of ACP136 (a chimeric IL-12 fusion protein). Squares depict activity of the uncut ACP136 polypeptide, and triangles depict the activity of the cut polypeptide (ACP136+MMP9). EC50 values for each are shown in the table insert.



FIGS. 27A-27F are a series of graphs showing that cleaved mouse IFNα1 polypeptides ACP31 (FIG. 27A), ACP125 (FIG. 27B), ACP126 (FIG. 27C), ACP127 (FIG. 27D), APC128 (FIG. 27E), and APC129 (FIG. 27F) are active in an B16-Blue IFN-α/p reporter assay.



FIGS. 28A-28N are a series of graphs depicting the activity of ACP56 (FIG. 28A), ACP57 (FIG. 28B) ACP58 (FIG. 28C), ACP59 (FIG. 28D), ACP60 (FIG. 28E), ACP61+HSA (FIG. 28F), ACP30+HSA (FIG. 28G), ACP73 (FIG. 28H), ACP70+HSA (FIG. 28I), ACP71 (FIG. 28J), ACP72 (FIG. 28K), ACP 73 (FIG. 28L), ACP74 (FIG. 28M), and ACP75 (FIG. 28N) in a B16 IFNγ reporter assay. Each fusion was tested for its activity when cut (squares) and uncut (circles).



FIGS. 29A-29B are two graphs showing results of analyzing ACP31 (mouse IFNα1 fusion protein) and ACP11 (a human p40/murine p35 IL12 fusion protein) in a tumor xenograft model. FIG. 29A shows tumor volume over time in mice treated with 33 μg ACP31 (circles), 110 μg ACP31 (triangles), 330 μg ACP31 (diamonds), and as controls 1p g murine wild type IFNα1 (dashed line, squares) and 10 μg mIFNα1 (dashed line, small circles). Vehicle alone is indicated by large open circles. The data show tumor volume decreasing over time in a dose-dependent manner in mice treated with ACP31. FIG. 29B shows tumor volume over time in mice treated with 17.5 μg ACP11 (squares), 175 μg ACP11 (triangles), 525 μg ACP11 (circles), and as controls 2 μg ACP04 (dashed line, triangles) and 10 μg ACP04 (dashed line, diamonds). Vehicle alone is indicated by large open circles. The data show tumor volume decreasing over time in a dose-dependent manner in mice treated with both ACP11 and ACP04 (a human p40/murine p35 IL12 fusion protein).



FIGS. 30A-30F are a series of spaghetti plots showing tumor volume over time in a mouse xenograft tumor model in mice each treated with vehicle alone (FIG. 30A), 2 μg ACP04 (FIG. 30B), 10 μg ACP04 (FIG. 30C), 17.5 μg ACP11 (FIG. 30D), 175 μg ACP11 (FIG. 30E), and 525 μg ACP11 (FIG. 30F). Each line represents a single mouse.



FIG. 31A-31C are three graphs showing results of analyzing ACP16 and ACP124 in a tumor xenograft model. FIG. 31A shows tumor volume over time in mice treated with 4.4 μg ACP16 (squares), 17 μg ACP16 (triangles), 70 μg ACP16 (downward triangles), 232 μg ACP16 (dark circles), and as a comparator 12 μg wild type IL-2 (dashed line, triangles) and 36 μg wild type IL-2 (dashed line, diamonds. Vehicle alone is indicated by large open circles. The data show tumor volume decreasing over time in a dose-dependent manner in mice treated with ACP16 at higher concentrations. FIG. 31B shows tumor volume over time in mice treated with 17 μg ACP124 (squares), 70 μg ACP124 (triangles), 230 μg ACP124 (downward triangles), and 700 μg ACP124. Vehicle alone is indicated by large open circles. FIG. 31C shows tumor volume over time in mice treated with 17 μg ACP16 (triangles), 70 μg ACP16 (circles), 232 μg ACP16 (dark circles), and as a comparator 17 μg ACP124 (dashed line, triangles) 70 μg ACP124 (dashed line, diamonds), 230 μg ACP124 (dashed line, stars). Vehicle alone is indicated by dark downward triangles. The data show tumor volume decreasing over time in a dose-dependent manner in mice treated with ACP16, but not ACP124.



FIG. 32A-32B are a series of spaghetti plots showing activity of fusion proteins in an MC38 mouse xenograft model corresponding to the data shown in FIG. 31A-31C. Each line in the plots is a single mouse.



FIG. 33 is a graph showing tumor volume over time in a mouse xenograft model showing tumor growth in control mice (open circles) and AP16-treated mice (squares).



FIGS. 34A-34D are a series of survival plots showing survival of mice over time after treatment with cleavable fusion proteins. FIG. 34A shows data for mice treated with vehicle alone (gray line), 17 μg ACP16 (dark line), and 17 μg ACP124 (dashed line). FIG. 34B shows data for mice treated with vehicle alone (gray line), 70 μg ACP16 (dark line), and 70 μg ACP124 (dashed line). FIG. 34C shows data for mice treated with vehicle alone (gray line), 232 μg ACP16 (dark line), and 230 μg ACP124 (dashed line). FIG. 34D shows data for mice treated with vehicle alone (gray line), 232 μg ACP16 (dark line), and 700 μg ACP124 (dashed line).



FIG. 35 a series of spaghetti plots showing activity of fusion proteins in an MC38 mouse xenograft model. All mouse groups were given four doses total except for the highest three doses of APC132, wherein fatal toxicity was detected after 1 week/2 doses. Shown are vehicle alone (top), 17, 55, 70, and 230 μg ACP16 (top full row), 9, 28, 36, and 119 μg ACP132 (middle full row), and 13, 42, 54, and 177 μg ACP21 (bottom full row). Each line in the plots represents an individual animal.



FIGS. 36A-36H are a series of graphs showing activity of fusion proteins in the HEK-Blue IFN-α/p reporter assay. FIGS. 36A-36H depict activation of the IFN-α/β pathway in a comparison of human IFNα fusion protein) to control (human IFNα). Squares depict activity of the uncut IFNα polypeptide (intact) and triangles depict the activity of the cut IFNα polypeptide (cleaved). Circles depict activity of the control (human IFNα). EC50 values for each are shown in the table. Results confirm that the IFNα fusion proteins are active and inducible. FIGS. 36A-36H also depict results of the protein cleavage assay for each IFNα fusion protein. Each IFNα fusion protein was run on an SDS-PAGE gel in both cleaved and uncleaved form. As can be seen in the gel, cleavage was complete.



FIGS. 37A-37D are a series of graphs showing activity of fusion proteins in the HEK-Blue IFN-α/p reporter assay. FIGS. 37A-37B depict activation of the IFN-α/β pathway in a comparison of a mouse IFNβ fusion protein to control (mouse IFNβ). FIGS. 37C-37D depict activation of the IFN-α/β pathway in a comparison of a human IFNβ fusion protein to control (human IFNβ). Squares depict activity of the uncut IFNβ polypeptide (intact) and triangles depict the activity of the cut IFNβ polypeptide (cleaved). Circles depict activity of the control. EC50 values for each are shown in the table. Results confirm that the IFNβ fusion proteins are active and inducible.



FIGS. 38A-38C are a series of graphs showing activity of fusion proteins in the human PBMCs assay. FIGS. 38A-38C depict activation of the IFNα pathway in a comparison of human IFNα fusion protein to control (human IFNα). Squares depict activity of the uncut IFNα polypeptide (intact) and triangles depict the activity of the cut IFNα polypeptide (cleaved). Circles depict activity of the control human IFNα. EC50 values for each are shown in the table. Analysis was performed based on quantification of CXCL-10 (IP-10). Results confirm that the IFNα fusion proteins are active and inducible.



FIGS. 39A-39G show are results of analyzing IFN fusion proteins in syngeneic MC38 mouse tumor model. FIG. 39A shows average tumor volume over time in mice treated with 369 μg WW0610 (square), 553 μg WW0610 (down triangle), 830 μg WW0610 (up triangle), and 1,245 μg WW0610 (circle). Vehicle alone is indicated by a black circle. FIG. 39B shows average tumor volume over time in mice treated with 1,231 μg WW0815 (square), 1,845 μg WW0815 (down triangle), 2,770 μg WW0815 (up triangle), and 4,154 μg WW0815 (circle). Vehicle alone is indicated by a black circle. FIG. 39C shows average tumor volume over time in mice treated with 4.6 μg WW0644 (square), 9.3 μg WW0644 (down triangle), 19 μg WW0644 (up triangle), and 37 μg WW0644 (circle). Vehicle alone is indicated by a black circle. FIG. 39D shows average tumor volume over time in mice treated with 31 μg WW0816 (square), 62 μg WW0816 (down triangle), 123 μg WW0816 (up triangle), and 247 μg WW0816 (circle). Vehicle alone is indicated by a black circle. FIG. 39E shows average tumor volume over time in mice treated with 110 μg WW0609 (square), 830 μg WW0609 (down triangle), and 1,320 μg WW0609 (up triangle). FIG. 39F shows average tumor volume over time in mice treated with 110 μg WW0610 (square), 830 μg WW0610 (down triangle), and 1,320 μg WW0610 (up triangle). FIG. 39G shows average tumor volume over time in mice treated with 0.3 μg WW0643 (square), 1.5 μg WW0643 (down triangle), 7.5 μg WW0643 (up triangle), and 37.5 μg WW0643 (diamond). Vehicle alone is indicated by a black circle.



FIG. 40A-40G shows a series of spider plots showing activity of fusion proteins in an MC38 xenograft model corresponding to data in FIGS. 39A-39G. Each line in the plots is the tumor volume over time for a single mouse.



FIG. 41A-41G show average percent body weight over time in mice treated with the IFN fusion proteins in FIGS. 39A-39G.



FIGS. 42A-42E shows the results of B16 IFN reporter assays. Inducible interferon constructs of interest were tested before and after cleavage. The relevant wildtype IFN was tested as a control.



FIG. 43 shows binding data of ACP16, ACP10, ACP11



FIGS. 44A-44D depict the activity of cytokine fusion proteins constructs ACP243, ACP244, ACP243, ACP244, and ACP247.



FIG. 45 shows a series of spider plots showing tumor volume over time during treatment with vehicle, IL-12, ACP11 or ACP10.



FIGS. 46A-46D, 47A-47D, 48A, 48B, 49A-49I, 50A, 50B, and 51A-51C shows data (tumor volume and/or body weight) for mice treated with cytokine fusion proteins constructs.



FIGS. 52A-52N, 53A, and 53B depict the activity of cytokine fusion proteins constructs.



FIG. 54A-54N shows the results of proliferation assays comparing cut protein, uncut protein, and IL2 as a control.



FIGS. 55A-55N shows the results of HekBlue IL2 reporter assays comparing activity of constructs with and without protease cleavage; IL-2 is included as a control.



FIGS. 56, 57A-57D, 58, 59A-59Z depict the activity of cytokine fusion proteins constructs.



FIGS. 60A-60G shows a series of spider plots showing the impact of IFN fusion proteins on body weight in an MC38 mouse xenograft model corresponding to the data shown in FIGS. 41A-41G. Each line in the plots is the body weight over time for a single mouse.



FIGS. 61A-61B are a series of graphs showing activity of fusion proteins in the B16-Blue IFN-α/β reporter assay. FIG. 61A depicts activation of the IFN-α/β pathway for construct WW0609 in the presence and absence of albumin. FIG. 61B depicts activation of the IFN-α/β pathway for construct WW0643 in the presence and absence of albumin. Squares depict activity of the uncut IFNα polypeptide (intact) and triangles depict the activity of the cut IFNα polypeptide (cleaved). Circles depict activity of the control (mouse IFNα). EC50 values for each are shown in the table.





DETAILED DESCRIPTION

Disclosed herein are methods and compositions to engineer and use constructs comprising inducible cytokines. Cytokines are potent immune agonists, which lead to them being considered promising therapeutic agents for oncology. However, cytokines proved to have a very narrow therapeutic window. Cytokines have short serum half-lives and are also considered to be highly potent. Consequently, therapeutic administration of cytokines produced undesirable systemic effects and toxicities. These were exacerbated by the need to administer large quantities of cytokine in order to achieve the desired levels of cytokine at the intended site of cytokine action (e.g., a tumor). Unfortunately, due to the biology of cytokines and inability to effectively target and control their activity, cytokines did not achieve the hoped-for clinical advantages in the treatment of tumors.


Disclosed herein are fusion proteins that overcome the toxicity and short half-life problems that have severely limited the clinical use of cytokines in oncology. The fusion proteins contain cytokine polypeptides that have receptor agonist activity. But in the context of the fusion protein, the cytokine receptor agonist activity is attenuated, and the circulating half-life is extended. The fusion proteins include protease cleave sites, which are cleaved by proteases that are associated with a desired site of cytokine activity (e.g., a tumor), and are typically enriched or selectively present at the site of desired activity. Thus, the fusion proteins are preferentially (or selectively) and efficiently cleaved at the desired site of activity to limit cytokine activity substantially to the desired site of activity, such as the tumor microenvironment. Protease cleavage at the desired site of activity, such as in a tumor microenvironment, releases a form of the cytokine from the fusion protein that is much more active as a cytokine receptor agonist than the fusion protein (typically at least about 100× more active than the fusion protein). The form of the cytokine that is released upon cleavage of the fusion protein typically has a short half-life, which is often substantially similar to the half-life of the naturally occurring cytokine, further restricting cytokine activity to the tumor microenvironment. Even though the half-life of the fusion protein is extended, toxicity is dramatically reduced or eliminated because the circulating fusion protein is attenuated, and active cytokine is targeted to the tumor microenvironment. The fusion proteins described herein, for the first time, enable the administration of an effective therapeutic dose of a cytokine to treat tumors with the activity of the cytokine substantially limited to the tumor microenvironment, and dramatically reduces or eliminates unwanted systemic effects and toxicity of the cytokine.


The fusion proteins disclosed herein typically comprise a cytokine polypeptide [A], a blocking moiety [D], optionally a half-life extension moiety [H], and a protease-cleavable polypeptide linker. The cytokine polypeptide and the blocking moiety and the optional half-life extension element when present are operably linked by the protease-cleavable polypeptide linker and the fusion polypeptide has attenuated cytokine receptor activating activity, e.g., the cytokine-receptor activating activity of the fusion polypeptide is at least about 10× less than the cytokine receptor activating activity of the polypeptide that contains the cytokine polypeptide that is produced by cleavage of the protease cleavable linker. Some preferred fusion polypeptides are of one of formula (I)-(VI):

[A]-[L1]-[H]-[L2]-[D]  (I);
[D]-[L2]-[H]-[L1]-[A]  (II);
[A]-[L1]-[D]-[L2]-[H]  (III);
[H]-[L2]-[D]-[L1]-[A]  (IV);
[H]-[L1]-[A]-[L2′]-[D]  (V);
[D]-[L1]-[A]-[L2′]-[H]  (VI);


wherein [A] is a cytokine polypeptide, [D] is a blocking moiety, [H] is a half-life extension moiety, [L1] is a protease-cleavable polypeptide linker, [L2] is an polypeptide linker that is optionally protease-cleavable, and [L2′] is a protease-cleavable polypeptide linker. [L1] and [L2] or [L1] and [L2′] can be have the same or different amino acid sequence and or protease-cleavage site (when L2 is protease-cleavable) as desired.


This disclosure further relates to pharmaceutical compositions that contain the inducible fusion protein and an additional therapeutic agent, as well as nucleic acids that encode the polypeptides, and recombinant expression vectors and host sells for making such fusion proteins. Also provided herein are methods of using the disclosed fusion proteins in the treatment of diseases, conditions, and disorders.


Unless otherwise defined, all terms of art, notations and other scientific terminology used herein are intended to have the meanings commonly understood by those of skill in the art to which this invention pertains. In some cases, terms with commonly understood meanings are defined herein for clarity and/or for ready reference, and the inclusion of such definitions herein should not necessarily be construed to represent a difference over what is generally understood in the art. The techniques and procedures described or referenced herein are generally well understood and commonly employed using conventional methodologies by those skilled in the art, such as, for example, the widely utilized molecular cloning methodologies described in Sambrook et al., Molecular Cloning: A Laboratory Manual 4th ed. (2012) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. As appropriate, procedures involving the use of commercially available kits and reagents are generally carried out in accordance with manufacturer-defined protocols and conditions unless otherwise noted.


“Cytokine” is a well-known term of art that refers to any of a class of immunoregulatory proteins (such as interleukin or interferon) that are secreted by cells especially of the immune system and that are modulators of the immune system. Cytokine polypeptides that can be used in the fusion proteins disclosed herein include, but are not limited to transforming growth factors, such as TGF-α and TGF-β (e.g., TGFbeta1, TGFbeta2, TGFbeta3); interferons, such as interferon-α, interferon-β, interferon-γ, interferon-kappa and interferon-omega; interleukins, such as IL-1, IL-1α, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-14, IL-15, IL-16, IL-17, IL-18, IL-21 and IL-25; tumor necrosis factors, such as tumor necrosis factor alpha and lymphotoxin; chemokines (e.g., C-X-C motifchemokine 10 (CXCL10), CCL19, CCL20, CCL21), and granulocyte macrophage-colony stimulating factor (GM-CS), as well as fragments of such polypeptides that active the cognate receptors for the cytokine (i.e., functional fragments of the foregoing). “Chemokine” is a term of art that refers to any of a family of small cytokines with the ability to induce directed chemotaxis in nearby responsive cells.


Cytokines are well-known to have short serum half-lives that frequently are only a few minutes or hours. Even forms of cytokines that have altered amino acid sequences intended to extend the serum half-life yet retain receptor agonist activity typically also have short serum half-lives. As used herein, a “short-half-life cytokine” refers to a cytokine that has a substantially brief half-life circulating in the serum of a subject, such as a serum half-life that is less than 10, less than 15, less than 30, less than 60, less than 90, less than 120, less than 240, or less than 480 minutes. As used herein, a short half-life cytokine includes cytokines which have not been modified in their sequence to achieve a longer than usual half-life in the body of a subject and polypeptides that have altered amino acid sequences intended to extend the serum half-life yet retain receptor agonist activity. This latter case is not meant to include the addition of heterologous protein domains, such as a bona fide half-life extension element, such as serum albumin.


“Sortases” are transpeptidases that modify proteins by recognizing and cleaving a carboxyl-terminal sorting signal embedded in or terminally attached to a target protein or peptide. Sortase A catalyzes the cleavage of the LPXTG motif (SEQ ID NO.: 442) (where X is any standard amino acid) between the Thr and Gly residue on the target protein, with transient attachment of the Thr residue to the active site Cys residue on the enzyme, forming an enzyme-thioacyl intermediate. To complete transpeptidation and create the peptide-monomer conjugate, a biomolecule with an N-terminal nucleophilic group, typically an oligoglycine motif, attacks the intermediate, displacing Sortase A and joining the two molecules.


As used herein, the term “steric blocker” refers to a polypeptide or polypeptide moiety that can be covalently bonded to a cytokine polypeptide directly or indirectly through other moieties such as linkers, for example in the form of a chimeric polypeptide (fusion protein), but otherwise does not covalently bond to the cytokine polypeptide. A steric blocker can non-covalently bond to the cytokine polypeptide, for example though electrostatic, hydrophobic, ionic or hydrogen bonding. A steric blocker typically inhibits or blocks the activity of the cytokine moiety due to its proximity to the cytokine moiety and comparative size. A steric blocker may also block by virtue of recruitment of a large protein binding partner. An example of this is an antibody which binds to serum albumin; while the antibody itself may or may not be large enough to block activation or binding on its own, recruitment of albumin allows for sufficient steric blocking.


As used and described herein, a “half-life extension element” is a part of the chimeric polypeptide that increases the serum half-life and improve pK, for example, by altering its size (e.g., to be above the kidney filtration cutoff), shape, hydrodynamic radius, charge, or parameters of absorption, biodistribution, metabolism, and elimination.


As used herein, the terms “activatable,” “activate,” “induce,” and “inducible” refer to the ability of a protein, i.e. a cytokine, that is part of a fusion protein, to bind its receptor and effectuate activity upon cleavage of additional elements from the fusion protein.


As used herein, “plasmids” or “viral vectors” are agents that transport the disclosed nucleic acids into the cell without degradation and include a promoter yielding expression of the nucleic acid molecule and/or polypeptide in the cells into which it is delivered.


As used herein, the terms “peptide”, “polypeptide”, or “protein” are used broadly to mean two or more amino acids linked by a peptide bond. Protein, peptide, and polypeptide are also used herein interchangeably to refer to amino acid sequences. It should be recognized that the term polypeptide is not used herein to suggest a particular size or number of amino acids comprising the molecule and that a peptide of the invention can contain up to several amino acid residues or more.


As used throughout, “subject” can be a vertebrate, more specifically a mammal (e.g. a human, horse, cat, dog, cow, pig, sheep, goat, mouse, rabbit, rat, and guinea pig), birds, reptiles, amphibians, fish, and any other animal. The term does not denote a particular age or sex. Thus, adult and newborn subjects, whether male or female, are intended to be covered.


As used herein, “patient” or “subject” may be used interchangeably and can refer to a subject with a disease or disorder (e.g. cancer). The term patient or subject includes human and veterinary subjects.


As used herein the terms “treatment”, “treat”, or “treating” refers to a method of reducing the effects of a disease or condition or symptom of the disease or condition. Thus, in the disclosed method, treatment can refer to at least about 10%, at least about 20%, at least about 30%, at least about 40%, at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, or substantially complete reduction in the severity of an established disease or condition or symptom of the disease or condition. For example, a method for treating a disease is considered to be a treatment if there is a 10% reduction in one or more symptoms of the disease in a subject as compared to a control. Thus, the reduction can be a 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, or any percent reduction in between 10% and 100% as compared to native or control levels. It is understood that treatment does not necessarily refer to a cure or complete ablation of the disease, condition, or symptoms of the disease or condition.


As used herein, the terms “prevent”, “preventing”, and “prevention” of a disease or disorder refers to an action, for example, administration of the chimeric polypeptide or nucleic acid sequence encoding the chimeric polypeptide, that occurs before or at about the same time a subject begins to show one or more symptoms of the disease or disorder, which inhibits or delays onset or exacerbation of one or more symptoms of the disease or disorder.


As used herein, references to “decreasing”, “reducing”, or “inhibiting” include a change of at least about 10%, of at least about 20%, of at least about 30%, of at least about 40%, of at least about 50%, of at least about 60%, of at least about 70%, of at least about 80%, of at least about 90% or greater as compared to a suitable control level. Such terms can include but do not necessarily include complete elimination of a function or property, such as agonist activity.


An “attenuated cytokine receptor agonist” is a cytokine receptor agonist that has decreased receptor agonist activity as compared to the cytokine receptor's naturally occurring agonist. An attenuated cytokine agonist may have at least about 10×, at least about 50×, at least about 100×, at least about 250×, at least about 500×, at least about 1000× or less agonist activity as compared to the receptor's naturally occurring agonist. When a fusion protein that contains a cytokine polypeptide as described herein is described as “attenuated” or having “attenuated activity”, it is meant that the fusion protein is an attenuated cytokine receptor agonist.


An “intact fusion protein” is a fusion protein in which no domain has been removed, for example by protease cleavage. A domain may be removable by protease cleavage or other enzymatic activity, but when the fusion protein is “intact”, this has not occurred.


As used herein “moiety” refers to a portion of a molecule that has a distinct function within that molecule, and that function may be performed by that moiety in the context of another molecule. A moiety may be a chemical entity with a particular function, or a portion of a biological molecule with a particular function. For example, a “blocking moiety” within a fusion protein is a portion of the fusion protein which is capable of blocking the activity of some or all of the fusion polypeptide. This may be a protein domain, such as serum albumin. Blocking may be accomplished by a steric blocker or a specific blocker. A steric blocker blocks by virtue of size and position and not based upon specific binding; an examples is serum albumin. A specific blocker blocks by virtue of specific interactions with the moiety to be blocked. A specific blocker must be tailored to the particular cytokine or active domain; a steric blocker can be used regardless of the payload, as long as it is large enough. If desired a blocking moiety that is incorporated into a fusion proteins described herein can associate with another polypeptide to create a specific binding domain. For example, if a cytokine binding fragment of an antibody is used as the blocking moiety, the fusion polypeptide can include an scFv that is specific for the cytokine as the blocking moiety or the fusion polypeptide can comprise half of a Fab, for example VH-CH1 or VL-CL as the blocking moity, which can associate with a complementary chain VL-CL or VH-CH1, respectively, to form an Fab fragment that specifically binds the cytokine. As further described herein, the blocking moiety may block activity of the fusion protein directly or when the blocking moiety associates with another polypeptide. For example, when an anti-HSA scFv binds HSA or when a VH-CH1 polypeptide associates with a complementary VL-CL polypeptide and then binds the cytokine polypeptide.


In general, the therapeutic use of cytokines is strongly limited by their systemic toxicity. TNF, for example, was originally discovered for its capacity of inducing the hemorrhagic necrosis of some tumors, and for its in vitro cytotoxic effect on different tumoral lines, but it subsequently proved to have strong pro-inflammatory activity, which can, in case of overproduction conditions, dangerously affect the human body. As the systemic toxicity is a fundamental problem with the use of pharmacologically active amounts of cytokines in humans, novel derivatives and therapeutic strategies are now under evaluation, aimed at reducing the toxic effects of this class of biological effectors while keeping their therapeutic efficacy.


IL-2 exerts both stimulatory and regulatory functions in the immune system and is, along with other members of the common γ chain (γc) cytokine family, central to immune homeostasis. IL-2 mediates its action by binding to IL-2 receptors (IL-2R), consisting of either trimeric receptors made of IL-2Rα (CD25), IL-2Rβ (CD122), and IL-2Rγ (γc, CD132) chains or dimeric βγ IL-2Rs (1, 3). Both IL-2R variants are able to transmit signal upon IL-2 binding. However, trimeric αβγ IL-2Rs have a roughly 10-100 times higher affinity for IL-2 than dimeric βγ IL-2Rs (3), implicating that CD25 confers high-affinity binding of IL-2 to its receptor but is not crucial for signal transduction. Trimeric IL-2Rs are found on activated T cells and CD4+ forkhead box P3 (FoxP3)+ T regulatory cells (Treg), which are sensitive to IL-2 in vitro and in vivo. Conversely, antigen-experienced (memory) CD8+, CD44 high memory-phenotype (MP) CD8+, and natural killer (NK) cells are endowed with high levels of dimeric βγ IL-2Rs, and these cells also respond vigorously to IL-2 in vitro and in vivo.


Expression of the high-affinity IL-2R is critical for endowing T cells to respond to low concentrations of IL-2 that is transiently available in vivo. IL-2Rα expression is absent on naive and memory T cells but is induced after antigen activation. IL-2Rβ is constitutively expressed by NK, NKT, and memory CD8+ T cells but is also induced on naive T cells after antigen activation. γc is much less stringently regulated and is constitutively expressed by all lymphoid cells. Once the high-affinity IL-2R is induced by antigen, IL-2R signaling upregulates the expression of IL-2Rα in part through Stat5-dependent regulation of Il2ra transcription (Kim et al., 2001). This process represents a mechanism to maintain expression of the high-affinity IL-2R and sustain IL-2 signaling while there remains a source of IL-2.


IL-2 is captured by IL-2Rα through a large hydrophobic binding surface surrounded by a polar periphery that results in a relatively weak interaction (Kd 10-8 M) with rapid on-off binding kinetics. However, the IL-2Rα-IL-2 binary complex leads to a very small conformational change in IL-2 that promotes association with IL-2Rβ through a distinct polar interaction between IL-2 and IL-2Rβ. The pseudo-high affinity of the IL2/α/β trimeric complex (i.e. Kd ˜300 μM) clearly indicates that the trimeric complex is more stable than either IL2 bound to the α chain alone (Kd=10 nM) or to the 0 chain alone (Kd=450 nM) as shown by Ciardelli's data. In any event, the IL2/α/β trimer then recruits the γ chain into the quaternary complex capable of signaling, which is facilitated by the large composite binding site on the IL2-bound β chain for the γ chain.


In other words, the ternary IL-2Rα-IL-2Rβ-IL-2 complex then recruits γc through a weak interaction with IL-2 and a stronger interaction with IL-2Rβ to produce a stable quaternary high-affinity IL-2R (Kd 10-11 M which is 10 pM). The formation of the high-affinity quaternary IL-2-IL-2R complex leads to signal transduction through the tyrosine kinases Jak1 and Jak3, which are associated with IL-2Rβ and γc, respectively (Nelson and Willerford, 1998). The quaternary IL-2-IL-2R complex is rapidly internalized, where IL-2, IL-2Rβ, and γc are rapidly degraded, but IL-2Rα is recycled to the cell surface (Hémar et al., 1995; Yu and Malek, 2001). Thus, those functional activities that require sustained IL-2R signaling require a continued source of IL-2 to engage IL-2Rα and form additional IL-2-IL-2R signaling complexes.


Interleukin-15 (IL-15), another member of the 4-alpha-helix bundle family of cytokines, has also emerged as an immunomodulator for the treatment of cancer. IL-15 is initially captured via IL-15Rα, which is expressed on antigen-presenting dendritic cells, monocytes and macrophages. IL-15 exhibits broad activity and induces the differentiation and proliferation of T, B and natural killer (NK) cells via signaling through the IL-15/IL-2-R-β (CD122) and the common γ chain (CD132). It also enhances cytolytic activity of CD8+ T cells and induces long-lasting antigen-experienced CD8+CD44 memory T cells. IL-15 stimulates differentiation and immunoglobulin synthesis by B cells and induces maturation of dendritic cells. It does not stimulate immunosuppressive T regulatory cells (Tregs). Thus, boosting IL-15 activity selectively in the tumor micro-environment could enhance innate and specific immunity and fight tumors (Waldmann et al., 2012). IL-15 was initially identified for its ability to stimulate T cell proliferation in an IL-2-like manner through common receptor components (IL-2R/15Rβ-γc) and signaling through JAK1/JAK3 and STAT3/STAT5. Like IL-2, IL-15 has been shown to stimulate proliferation of activated CD4−CD8−, CD4+CD8+, CD4+ and CD8+ T cells as well as facilitate the induction of cytotoxic T-lymphocytes, and the generation, proliferation and activation of NK cells (Waldmann et al., 1999). However, unlike IL-2 which is required to maintain forkhead box P3 (FOXP3)-expressing CD4+CD25+ Treg cells and for the retention of these cells in the periphery, IL-15 has little effect on Tregs (Berger et al., 2009). This is important as FOXP3-expressing CD4+CD25+ Tregs inhibit effector T cells, thereby inhibiting immune responses including those directed against the tumor. IL-2 also has a crucial role in initiating activation induced cell death (AICD), a process that leads to the elimination of self-reactive T cells, whereas IL-15 is an anti-apoptotic factor for T cells (Marks-Konczalik et al., 2000). IL-15 co-delivered with HIV peptide vaccines has been shown to overcome CD4+ T cell deficiency by promoting longevity of antigen-specific CD8+ T cells and blocking TRAIL-mediated apoptosis (Oh et al., 2008). Furthermore, IL-15 promotes the long-term maintenance of CD8+CD44hi memory T cells (Kanegane et al., 1996).


The importance of IL-15 and IL-15Rα to T and NK cell development is further highlighted by the phenotype of IL-15Rα+/+ and IL-15−/− mice. Knockout mice demonstrate decreased numbers of total CD8+ T cells, and are deficient in memory-phenotype CD8+ T cells, NK cells, NK/T cells and some subsets of intestinal intraepithelial lymphocytes, indicating that IL-15 provides essential positive homeostatic functions for these subsets of cells (Lodolce et al., 1996; Kennedy et al., 1998). The similarities in the phenotypes of these two strains of knockout mice suggest the importance of IL-15Rα in maintaining physiologically relevant IL-15 signals.


IL-15 is presented in trans by the IL-15 receptor alpha-chain to the IL-15Rβγc complex displayed on the surface of T cells and natural killer (NK) cells (Han et al., 2011). The IL-15Ra-chain plays a role of chaperone protein, stabilizes, and increases IL-15 activity (Desbois et al., 2016). It has been shown that exogenous IL-15 may have a limited impact on patients with cancer due to its dependency on IL-15Ra frequently downregulated in cancer patients. Therefore, the fusion protein RLI, composed of the sushi+ domain of IL15Ra coupled via a linker to IL-15, has been suggested as an alternative approach to IL15 therapy (Bessard et al., 2009). It was found that administration of soluble IL-15/IL-15Rα complexes greatly enhanced IL-15 serum half-life and bioavailability in vivo (Stoklasek et al., 2010).


In addition to the effects on T and NK cells, IL-15 also has several effects on other components of the immune system. IL-15 protects neutrophils from apoptosis, modulates phagocytosis and stimulates the secretion of IL-8 and IL-1R antagonist. It functions through the activation of JAK2, p38 and ERK1/2 MAPK, Syk kinase and the NF-kB transcriptional factor (Pelletier et al., 2002). In mast cells, IL-15 can act as a growth factor and an inhibitor of apoptosis. In these cells IL-15 activates the JAK2/STAT5 pathway without the requirement of γc binding (Tagaya et al., 1996). IL-15 also induces B lymphocyte proliferation and differentiation, and increases immunoglobulin secretion (Armitage et al., 1995). It also prevents Fas-mediated apoptosis and allows induction of antibody responses partially independent of CD4-help (Demerci et al., 2004; Steel et al., 2010). Monocytes, macrophages and dendritic cells effectively transcribe and translate IL-15. They also respond to IL-15 stimulation. Macrophages respond by increasing phagocytosis, inducing IL-8, IL-12 and MCP-1 expression, and secreting IL-6, IL-8 and TNF α (Budagian et al., 2006). Dendritic cells incubated with IL-15 demonstrate maturation with increased CD83, CD86, CD40, and MHC class II expression, are also resistant to apoptosis, and show enhanced interferon-γ secretion (Anguille et al., 2009).


IL-15 has also been shown to have effects on non-hematological cells including myocytes, adipocytes, endothelial and neural cells. IL-15 has an anabolic effect on muscle and may support muscle cell differentiation (Quinn et al., 1995). It stimulates myocytes and muscle fibers to accumulate contractile protein and is able to slow muscle wasting in rats with cancer-related cachexia (Figueras et al., 2004). IL-15 has also been shown to stimulate angiogenesis (Angiolillo et al., 1997) and induce microglial growth and survival (Hanisch et al., 1997).


Interleukin-7 (IL-7), also of the IL-2/IL-15 family, is a well-characterized pleiotropic cytokine, and is expressed by stromal cells, epithelial cells, endothelial cells, fibroblasts, smooth muscle cells and keratinocytes, and following activation, by dendritic cells (Alpdogan et al., 2005). Although it was originally described as a growth and differentiation factor for precursor B lymphocytes, subsequent studies have shown that IL-7 is critically involved in T-lymphocyte development and differentiation. Interleukin-7 signaling is essential for optimal CD8 T-cell function, homeostasis and establishment of memory (Schluns et al., 2000); it is required for the survival of most T-cell subsets, and its expression has been proposed to be important for regulating T-cell numbers.


IL-7 binds to a dimeric receptor, including IL-7Rα and γc to form a ternary complex that plays fundamental roles in extracellular matrix remodeling, development, and homeostasis of T and B cells (Mazzucchelli and Durum, 2007). IL-7 Ra also cross-reacts to form a ternary complex with thymic stromal lymphopoietin (TSLP) and its receptor (TSLPR), and activates the TSLP pathway, resulting in T and dendritic cell proliferation in humans and further B cell development in mice (Leonard, 2002). Tight regulation of the signaling cascades activated by the complexes are therefore crucial to normal cellular function. Under-stimulation of the IL-7 pathway caused by mutations in the IL-7Rα ectodomain inhibits T and B cell development, resulting in patients with a form of severe combined immunodeficiency (SCID) (Giliani et al., 2005; Puel et al., 1998).


IL-7 has a potential role in enhancing immune reconstitution in cancer patients following cytotoxic chemotherapy. IL-7 therapy enhances immune reconstitution and can augment even limited thymic function by facilitating peripheral expansion of even small numbers of recent thymic emigrants. Therefore, IL-7 therapy could potentially repair the immune system of patients who have been depleted by cytotoxic chemotherapy (Capitini et al., 2010).


Interleukin-12 (IL-12) is a disulfide-linked heterodimer of two separately encoded subunits (p35 and p40), which are linked covalently to give rise to the so-called bioactive heterodimeric (p70) molecule (Lieschke et al., 1997; Jana et al., 2014). Apart from forming heterodimers (IL-12 and IL-23), the p40 subunit is also secreted as a monomer (p40) and a homodimer (p402). It is known in the art that synthesis of the heterodimer as a single chain with a linker connecting the p35 to the p40 subunit preserves the full biological activity of the heterodimer. IL-12 plays a critical role in the early inflammatory response to infection and in the generation of Th1 cells, which favor cell-mediated immunity. It has been found that overproduction of IL-12 can be dangerous to the host because it is involved in the pathogenesis of a number of autoimmune inflammatory diseases (e.g. MS, arthritis, type 1 diabetes).


The IL-12 receptor (IL-12R) is a heterodimeric complex consisting of IL-12Rβ1 and IL-12Rβ2 chains expressed on the surface of activated T-cells and natural killer cells (Trinchieri et al., 2003). The IL-12Rβ1 chain binds to the IL-12p40 subunit, whereas IL-12p35 in association with IL-12Rβ2 confers an intracellular signaling ability (Benson et al., 2011). Signal transduction through IL-12R induces phosphorylation of Janus kinase (Jak2) and tyrosine kinase (Tyk2), that phosphorylate and activate signal transducer and activator of transcription (STAT)1, STAT3, STAT4, and STAT5. The specific cellular effects of IL-12 are due mainly to activation of STAT4. IL-12 induces natural killer and T-cells to produce cytokines, in particular interferon (IFN)γ, that mediate many of the proinflammatory activities of IL-12, including CD4+ T-cell differentiation toward the Th1 phenotype (Montepaone et al., 2014).


Regulatory T cells actively suppress activation of the immune system and prevent pathological self-reactivity and consequent autoimmune disease. Developing drugs and methods to selectively activate regulatory T cells for the treatment of autoimmune disease is the subject of intense research and, until the development of the present invention, which can selectively deliver active interleukins at the site of inflammation, has been largely unsuccessful. Regulatory T cells (Treg) are a class of CD4+CD25+ T cells that suppress the activity of other immune cells. Treg are central to immune system homeostasis, and play a major role in maintaining tolerance to self-antigens and in modulating the immune response to foreign antigens. Multiple autoimmune and inflammatory diseases, including Type 1 Diabetes (T1D), Systemic Lupus Erythematosus (SLE), and Graft-versus-Host Disease (GVHD) have been shown to have a deficiency of Treg cell numbers or Treg function.


Consequently, there is great interest in the development of therapies that boost the numbers and/or function of Treg cells. One treatment approach for autoimmune diseases being investigated is the transplantation of autologous, ex vivo-expanded Treg cells (Tang, Q., et al, 2013, Cold Spring Harb. Perspect. Med., 3:1-15). While this approach has shown promise in treating animal models of disease and in several early stage human clinical trials, it requires personalized treatment with the patient's own T cells, is invasive, and is technically complex. Another approach is treatment with low dose Interleukin-2 (IL-2). Treg cells characteristically express high constitutive levels of the high affinity IL-2 receptor, IL2Rαβγ, which is composed of the subunits IL2Rα (CD25), IL2Rβ (CD122), and IL2Rγ (CD132), and Treg cell growth has been shown to be dependent on IL-2 (Malek, T. R., et al., 2010, Immunity, 33:153-65).


Conversely, immune activation has also been achieved using IL-2, and recombinant IL-2 (Proleukin®) has been approved to treat certain cancers. High-dose IL-2 is used for the treatment of patients with metastatic melanoma and metastatic renal cell carcinoma with a long-term impact on overall survival.


Clinical trials of low-dose IL-2 treatment of chronic GVHD (Koreth, J., et al., 2011, N Engl J Med., 365:2055-66) and HCV-associated autoimmune vasculitis patients (Saadoun, D., et al., 2011, N Engl J Med., 365:2067-77) have demonstrated increased Treg levels and signs of clinical efficacy. New clinical trials investigating the efficacy of IL-2 in multiple other autoimmune and inflammatory diseases have been initiated. The rationale for using so-called low dose IL-2 was to exploit the high IL-2 affinity of the trimeric IL-2 receptor which is constitutively expressed on Tregs while leaving other T cells which do not express the high affinity receptor in the inactivated state. Aldesleukin (marketed as Proleukin® by Prometheus Laboratories, San Diego, CA), the recombinant form of IL-2 used in these trials, is associated with high toxicity. Aldesleukin, at high doses, is approved for the treatment of metastatic melanoma and metastatic renal cancer, but its side effects are so severe that its use is only recommended in a hospital setting with access to intensive care (Web address: www.proleukin.com/assets/pdf/proleukin.pdf).


The clinical trials of IL-2 in autoimmune diseases have employed lower doses of IL-2 in order to target Treg cells, because Treg cells respond to lower concentrations of IL-2 than many other immune cell types due to their expression of IL2R alpha (Klatzmann D, 2015 Nat Rev Immunol. 15:283-94). However, even these lower doses resulted in safety and tolerability issues, and the treatments used have employed daily subcutaneous injections, either chronically or in intermittent 5-day treatment courses. Therefore, there is a need for an autoimmune disease therapy that potentiates Treg cell numbers and function, that targets Treg cells more specifically than IL-2, that is safer and more tolerable, and that is administered less frequently.


One approach that has been suggested for improving the therapeutic index of IL-2-based therapy for autoimmune diseases is to use variants of IL-2 that are selective for Treg cells relative to other immune cells. IL-2 receptors are expressed on a variety of different immune cell types, including T cells, NK cells, eosinophils, and monocytes, and this broad expression pattern likely contributes to its pleiotropic effect on the immune system and high systemic toxicity. In particular, activated T effector cells express IL2Rαβγ, as do pulmonary epithelial cells. But, activating T effector cells runs directly counter to the goal of down-modulating and controlling an immune response, and activating pulmonary epithelial cells leads to known dose-limiting side effects of IL-2 including pulmonary edema. In fact, the major side effect of high-dose IL-2 immunotherapy is vascular leak syndrome (VLS), which leads to accumulation of intravascular fluid in organs such as lungs and liver with subsequent pulmonary edema and liver cell damage. There is no treatment of VLS other than withdrawal of IL-2. Low-dose IL-2 regimens have been tested in patients to avoid VLS, however, at the expense of suboptimal therapeutic results.


According to the literature, VLS is believed to be caused by the release of proinflammatory cytokines from IL-2-activated NK cells. However, there is some evidence that pulmonary edema results from direct binding of IL-2 to lung endothelial cells, which expressed low to intermediate levels of functional αβγ IL-2Rs. And, the pulmonary edema associated with interaction of IL-2 with lung endothelial cells was abrogated by blocking binding to CD25 with an anti-CD25 monoclonal antibody (mAb), in CD25-deficient host mice, or by the use of CD122-specific IL-2/anti-IL-2 mAb (IL-2/mAb) complexes, thus preventing VLS.


Treatment with interleukin cytokines other than IL-2 has been more limited. IL-15 displays immune cell stimulatory activity similar to that of IL-2 but without the same inhibitory effects, thus making it a promising immunotherapeutic candidate. Clinical trials of recombinant human IL-15 for the treatment of metastatic malignant melanoma or renal cell cancer demonstrated appreciable changes in immune cell distribution, proliferation, and activation and suggested potential antitumor activity (Conlon et. al., 2014). IL-15 is currently in clinical trials to treat various forms of cancer. However, IL-15 therapy is known to be associated with undesired and toxic effects, such as exacerbating certain leukemias, graft-versus-host disease, hypotension, thrombocytopenia, and liver injury. (Mishra A., et al., Cancer Cell, 2012, 22(5):645-55; Alpdogan O. et al., Blood, 2005, 105(2):866-73; Conlon K C et al., J Clin Oncol, 2015, 33(1):74-82.)


IL-7 promotes lymphocyte development in the thymus and maintains survival of naive and memory T cell homeostasis in the periphery. Moreover, it is important for the organogenesis of lymph nodes (LN) and for the maintenance of activated T cells recruited into the secondary lymphoid organs (SLOs) (Gao et. al., 2015). In clinical trials of IL-7, patients receiving IL-7 showed increases in both CD4+ and CD8+ T cells, with no significant increase in regulatory T cell numbers as monitored by FoxP3 expression (Sportes et al., 2008). In clinical trials reported in 2006, 2008 and 2010, patients with different kinds of cancers such as metastatic melanoma or sarcoma were injected subcutaneously with different doses of IL-7. Little toxicity was seen except for transient fevers and mild erythema. Circulating levels of both CD4+ and CD8+ T cells increased significantly and the number of Treg reduced. TCR repertoire diversity increased after IL-7 therapy. However, the anti-tumor activity of IL-7 was not well evaluated (Gao et. al., 2015). Results suggest that IL-7 therapy could enhance and broaden immune responses.


IL-12 is a pleiotropic cytokine, the actions of which create an interconnection between the innate and adaptive immunity. IL-12 was first described as a factor secreted from PMA-induced EBV-transformed B-cell lines. Based on its actions, IL-12 has been designated as cytotoxic lymphocyte maturation factor and natural killer cell stimulatory factor. Due to bridging the innate and adaptive immunity and potently stimulating the production of IFNγ, a cytokine coordinating natural mechanisms of anticancer defense, IL-12 seemed ideal candidate for tumor immunotherapy in humans. However, severe side effects associated with systemic administration of IL-12 in clinical investigations and the very narrow therapeutic index of this cytokine markedly tempered enthusiasm for the use of this cytokine in cancer patients (Lasek et. al., 2014). Approaches to IL-12 therapy in which delivery of the cytokine is tumor-targeted, which may diminish some of the previous issues with IL-12 therapy, are currently in clinical trials for cancers.


The direct use of IL-2 as an agonist to bind the IL-2R and modulate immune responses therapeutically has been problematic due its well-documented therapeutic risks, e.g., its short serum half-life and high toxicity. These risks have also limited the therapeutic development and use of other cytokines. New forms of cytokines that reduce these risks are needed. Disclosed herein are compositions and methods comprising IL-2 and IL-15 and other cytokines, functional fragments and muteins of cytokines, variants, and subunits of cytokines as well as conditionally active cytokines designed to address these risks and provide needed immunomodulatory therapeutics.


The present invention is designed to address the shortcomings of direct IL-2 therapy and therapy using other cytokines, for example using cytokine blocking moieties, e.g. steric blocking polypeptides, serum half-life extending polypeptides, targeting polypeptides, linking polypeptides, including protease cleavable linkers, and combinations thereof. Cytokines, including interleukins (e.g., IL-2, IL-7, IL-12, IL-15, IL-18, IL-21 IL-23), interferons (IFNs, including IFNalpha, IFNbeta and IFNgamma), tumor necrosis factors (e.g., TNFalpha, lymphotoxin), transforming growth factors (e.g., TGFbeta1, TGFbeta2, TGFbeta3), chemokines (C-X-C motif chemokine 10 (CXCL10), CCL19, CCL20, CCL21), and granulocyte macrophage-colony stimulating factor (GM-CS) are highly potent when administered to patients. As used herein, “chemokine” means a family of small cytokines with the ability to induce directed chemotaxis in nearby responsive cells Cytokines can provide powerful therapy, but are accompanied by undesired effects that are difficult to control clinically and which have limited the clinical use of cytokines. This disclosure relates to new forms of cytokines that can be used in patients with reduced or eliminated undesired effects. In particular, this disclosure relates to pharmaceutical compositions including chimeric polypeptides (fusion proteins), nucleic acids encoding fusion proteins and pharmaceutical formulations of the foregoing that contain cytokines or active fragments or muteins of cytokines that have decreased cytokine receptor activating activity in comparison to the corresponding cytokine. However, under selected conditions or in a selected biological environment the chimeric polypeptides activate their cognate receptors, often with the same or higher potency as the corresponding naturally occurring cytokine. As described herein, this is typically achieved using a cytokine blocking moiety that blocks or inhibits the receptor activating function of the cytokine, active fragment or mutein thereof under general conditions but not under selected conditions, such as those present at the desired site of cytokine activity (e.g., an inflammatory site or a tumor).


The chimeric polypeptides and nucleic acids encoding the chimeric polypeptides can be made using any suitable method. For example, nucleic acids encoding a chimeric polypeptide can be made using recombinant DNA techniques, synthetic chemistry or combinations of these techniques, and expressed in a suitable expression system, such as in CHO cells. Chimeric polypeptides can similarly be made, for example by expression of a suitable nucleic acid, using synthetic or semi-synthetic chemical techniques, and the like. In some embodiments, the blocking moiety can be attached to the cytokine polypeptide via sortase-mediated conjugation. “Sortases” are transpeptidases that modify proteins by recognizing and cleaving a carboxyl-terminal sorting signal embedded in or terminally attached to a target protein or peptide. Sortase A catalyzes the cleavage of the LPXTG motif (SEQ ID No.: 442) (where X is any standard amino acid) between the Thr and Gly residue on the target protein, with transient attachment of the Thr residue to the active site Cys residue on the enzyme, forming an enzyme-thioacyl intermediate. To complete transpeptidation and create the peptide-monomer conjugate, a biomolecule with an N-terminal nucleophilic group, typically an oligoglycine motif, attacks the intermediate, displacing Sortase A and joining the two molecules.


To form the cytokine-blocking moiety fusion protein, the cytokine polypeptide is first tagged at the N-terminus with a polyglycine sequence, or alternatively, with at the C-terminus with a LPXTG motif (SEQ ID NO.: 442). The blocking moiety or other element has respective peptides attached that serve as acceptor sites for the tagged polypeptides. For conjugation to domains carrying a LPXTG (SEQ ID NO.: 442) acceptor peptide attached via its N-terminus, the polypeptide will be tagged with an N-terminal poly-glycine stretch. For conjugation to domain carrying a poly-glycine peptide attached via its C-terminus, the polypeptide will be tagged at its C-terminus with a LPXTG (SEQ ID NO.: 442) sortase recognition sequence. Recognizing poly-glycine and LPXTG (SEQ ID NO.: 442) sequences, sortase will form a peptide bond between polymer-peptide and tagged polypeptides. The sortase reaction cleaves off glycine residues as intermediates and occurs at room temperature.


A variety of mechanisms can be exploited to remove or reduce the inhibition caused by the blocking moiety. For example, the pharmaceutical compositions can include a cytokine moiety and a blocking moiety, e.g. a steric blocking moiety, with a protease cleavable linker comprising a protease cleavage site located between the cytokine and cytokine blocking moiety or within the cytokine blocking moiety. When the protease cleavage site is cleaved, the blocking moiety can dissociate from cytokine, and the cytokine can then activate cytokine receptor. A cytokine moiety can also be blocked by a specific blocking moiety, such as an antibody, which binds an epitope found on the relevant cytokine.


Any suitable linker can be used. For example, the linker can comprise glycine-glycine, a sortase-recognition motif, or a sortase-recognition motif and a peptide sequence (Gly4Ser)n(SEQ ID NO.: 443) or (Gly3Ser)n, (SEQ ID NO.: 444) wherein n is 1, 2, 3, 4 or 5. Typically, the sortase-recognition motif comprises a peptide sequence LPXTG (SEQ ID NO.: 442), where X is any amino acid. In some embodiments, the covalent linkage is between a reactive lysine residue attached to the C-terminal of the cytokine polypeptide and a reactive aspartic acid attached to the N-terminal of the blocker or other domain. In other embodiments, the covalent linkage is between a reactive aspartic acid residue attached to the N-terminal of the cytokine polypeptide and a reactive lysine residue attached to the C-terminal of said blocker or other domain.


Accordingly, as described in detail herein, the cytokine blocking moieties used can be steric blockers. As used herein, a “steric blocker” refers to a polypeptide or polypeptide moiety that can be covalently bonded to a cytokine polypeptide directly or indirectly through other moieties such as linkers, for example in the form of a chimeric polypeptide (fusion protein), but otherwise does not covalently bond to the cytokine polypeptide. A steric blocker can non-covalently bond to the cytokine polypeptide, for example though electrostatic, hydrophobic, ionic or hydrogen bonding. A steric blocker typically inhibits or blocks the activity of the cytokine moiety due to its proximity to the cytokine moiety and comparative size. The steric inhibition of the cytokine moiety can be removed by spatially separating the cytokine moiety from the steric blocker, such as by enzymatically cleaving a fusion protein that contains a steric blocker and a cytokine polypeptide at a site between the steric blocker and the cytokine polypeptide.


As described in greater detail herein, the blocking function can be combined with or due to the presence of additional functional components in the pharmaceutical composition, such as a targeting domain, a serum half-life extension element, and protease-cleavable linking polypeptides. For example, a serum half-life extending polypeptide can also be a steric blocker.


In the interest of presenting a concise disclosure of the full scope of the invention, aspects of the invention are described in detail using the cytokine IL-2 as an exemplary cytokine. However, the invention and this disclosure are not limited to IL-2. It will be clear to a person of skill in the art that this disclosure, including the disclosed methods, polypeptides and nucleic acids, adequately describes and enables the use of other cytokines, fragments, variants, cytokine subunits, and muteins, such as IL-2, IL-7, IL-12, IL-15, IL-18, IL-21 IL-23, IFNalpha, IFNbeta, IFNgamma, TNFalpha, lymphotoxin, TGF-beta1, TGFbeta2, TGFbeta3, GM-CSF, CXCL10, CCL19, CCL20, CCL21 and functional fragments or muteins of any of the foregoing. Preferred cytokines for use in the fusion proteins disclosed herein are IL-2, IL-12, IFNalpha, IFNbeta, IFNgamma, muteins, functional variants, and functional fragments, or subunits of any of the foregoing. For example, the cytokine a IL-12 cytokine may be a p35 subunit, a p40 subunit, a heterodimer.


Various elements ensure the delivery and activity of IL-2 preferentially at the site of desired IL-2 activity and to severely limit systemic exposure to the interleukin via a blocking and/or a targeting strategy preferentially linked to a serum half-life extension strategy. In this serum half-life extension strategy, the blocked version of interleukin circulates for extended times (preferentially 1-2 or more weeks) but the activated version has the typical serum half-life of the interleukin.


By comparison to a serum half-life extended version, the serum half-life of IL-2 administered intravenously is only ˜10 minutes due to distribution into the total body extracellular space, which is large, ˜15 L in an average sized adult. Subsequently, IL-2 is metabolized by the kidneys with a half-life of ˜2.5 hours. (Smith, K. “Interleukin 2 immunotherapy.” Therapeutic Immunology 240 (2001)). By other measurements, IL-2 has a very short plasma half-life of 85 minutes for intravenous administration and 3.3 hours subcutaneous administration (Kirchner, G. I., et al., 1998, Br J Clin Pharmacol. 46:5-10). In some embodiments of this invention, the half-life extension element is linked to the interleukin via a linker which is cleaved at the site of action (e.g. by inflammation-specific or tumor-specific proteases) releasing the interleukin's full activity at the desired site and also separating it from the half-life extension of the uncleaved version. In such embodiments, the fully active and free interleukin would have very different pharmacokinetic (pK) properties—a half-life of hours instead of weeks. In addition, exposure to active cytokine is limited to the site of desired cytokine activity (e.g., an inflammatory site or tumor) and systemic exposure to active cytokine, and associated toxicity and side effects, are reduced.


Other cytokines envisioned in this invention have similar pharmacology (e.g. IL-15 as reported by Blood 2011 117:4787-4795; doi: doi.org/10.I182/blood-2010-10-311456) as IL-2 and accordingly, the designs of this invention address the shortcomings of using these agents directly, and provide chimeric polypeptides that can have extended half-life and/or be targeted to a site of desired activity (e.g., a site of inflammation or a tumor).


If desired, IL-2 can be engineered to bind the IL-2R complex generally or one of the three IL-2R subunits specifically with an affinity that differs from that of the corresponding wild-type IL-2, for example toto selectively activate Tregs or Teff. For example, IL-2 polypeptides that are said to have higher affinity for the trimeric form of the IL-2 receptor relative to the dimeric beta/gamma form of the I1-2 receptor in comparison to wild type IL-2 can have an amino acid sequence that includes one of the following sets of mutations with respect to SEQ ID NO:1 (a mature IL-2 protein comprising amino acids 21-153 of human IL-2 having the Uniprot Accession No. P60568-1): (a) K64R, V69A, and Q74P; (b) V69A, Q74P, and T101A; (c) V69A, Q74P, and 1128T; (d) N30D, V69A, Q74P, and F103S; (e) K49E, V69A, A73V, and K76E; (f) V69A, Q74P, T101A, and T133N; (g) N30S, V69A, Q74P, and I128A; (h) V69A, Q74P, N88D, and S99P; (i) N30S, V69A, Q74P, and I128T; (j) K9T, Q11R, K35R, V69A, and Q74P; (k) A1T, M46L, K49R, E61D, V69A, and H79R; (1) K48E, E68D, N71T, N90H, F103S, and 1114V; (m) S4P, T10A, Q11R, V69A, Q74P, N88D, and T133A; (n) E15K, N30S Y31H, K35R, K48E, V69A, Q74P, and I92T; (o) N30S, E68D, V69A, N71A, Q74P, S75P, K76R, and N90H; (p) N30S, Y31C, T37A, V69A, A73V, Q74P, H79R, and I128T; (q) N26D, N29S, N30S, K54R, E67G, V69A, Q74P, and I92T; (r) K8R, Q13R, N26D, N30T, K35R, T37R, V69A, Q74P, and I92T; and (s) N29S, Y31H, K35R, T37A, K48E, V69A, N71R, Q74P, N88D, and 189V. This approach can also be applied to prepare muteins of other cytokines including interleukins (e.g., IL-2, IL-7, IL-12, IL-15, IL-18, IL-23), interferons (IFNs, including IFNalpha, IFNbeta and IFNgamma), tumor necrosis factors (e.g., TNFalpha, lymphotoxin), transforming growth factors (e.g., TGFbeta1, TGFbeta2, TGFbeta3) and granulocyte macrophage-colony stimulating factor (GM-CS). For example, muteins can be prepared that have desired binding affinity for a cognate receptor.


As noted above, any of the mutant IL-2 polypeptides disclosed herein can include the sequences described; they can also be limited to the sequences described and otherwise identical to SEQ ID NO:1. Moreover, any of the mutant IL-2 polypeptides disclosed herein can optionally include a substitution of the cysteine residue at position 125 with another residue (e.g., serine) and/or can optionally include a deletion of the alanine residue at position 1 of SEQ ID NO:1.


Another approach to improving the therapeutic index of an IL-2 based therapy is to optimize the pharmacokinetics of the molecule to maximally activate Treg cells. Early studies of IL-2 action demonstrated that IL-2 stimulation of human T cell proliferation in vitro required a minimum of 5-6 hours exposure to effective concentrations of IL-2 (Cantrell, D. A., et. al., 1984, Science, 224: 1312-1316). When administered to human patients, IL-2 has a very short plasma half-life of 85 minutes for intravenous administration and 3.3 hours subcutaneous administration (Kirchner, G. I., et al., 1998, Br J Clin Pharmacol. 46:5-10). Because of its short half-life, maintaining circulating IL-2 at or above the level necessary to stimulate T cell proliferation for the necessary duration necessitates high doses that result in peak IL-2 levels significantly above the EC50 for Treg cells or will require frequent administration. These high IL-2 peak levels can activate IL2Rβγ receptors and have other unintended or adverse effects, for example VLS as noted above. An IL-2 analog, or a multifunctional protein with IL-2 attached to a domain that enables binding to the FcRn receptor, with a longer circulating half-life than IL-2 can achieve a target drug concentration for a specified period of time at a lower dose than IL-2, and with lower peak levels. Such an IL-2 analog will therefore require either lower doses or less frequent administration than IL-2 to effectively stimulate Treg cells. Less frequent subcutaneous administration of an IL-2 drug will also be more tolerable for patients. A therapeutic with these characteristics will translate clinically into improved pharmacological efficacy, reduced toxicity, and improved patient compliance with therapy. Alternatively, IL-2 or muteins of IL-2 (herein, “IL-2*”) can be selectively targeted to the intended site of action (e.g. sites of inflammation or a tumor). This targeting can be achieved by one of several strategies, including the addition of domains to the administered agent that comprise blockers of the IL-2 (or muteins) that are cleaved away or by targeting domains or a combination of the two.


In some embodiments, IL-2* partial agonists can be tailored to bind with higher or lower affinity depending on the desired target; for example, an IL-2* can be engineered to bind with enhanced affinity to one of the receptor subunits and not the others. These types of partial agonists, unlike full agonists or complete antagonists, offer the ability to tune the signaling properties to an amplitude that elicits desired functional properties while not meeting thresholds for undesired properties. Given the differential activities of the partial agonists, a repertoire of IL-2 variants could be engineered to exhibit an even finer degree of distinctive signaling activities, ranging from almost full to partial agonism to complete antagonism.


In some embodiments, the IL-2* has altered affinity for IL-2Rα. In some embodiments, the IL-2* has a higher affinity for IL-2Rα than wild-type IL-2. In other embodiments, the IL-2* has altered affinity for IL-2Rβ. In one embodiment, IL-2* has enhanced binding affinity for IL-2Rβ, e.g., the N-terminus of IL-2Rβ, that eliminates the functional requirement for IL-2Rα. In another embodiment, an IL-2* is generated that has increased binding affinity for IL-2Rβ but that exhibited decreased binding to IL-2Rγ, and thereby is defective IL-2Rβγ heterodimerization and signaling.


Blocking moieties, described in further detail below, can also be used to favor binding to or activation of one or more receptors. In one embodiment, blocking moieties are added such that IL-2Rβγ binding or activation is blocked but IL-2Rα binding or activation is not changed. In another embodiment, blocking moieties are added such that IL-2Rα binding or activation is diminished. In another embodiment, blocking moieties are added such that binding to and or activation of all three receptors is inhibited. This blocking may be relievable by removal of the blocking moieties in a particular environment, for example by proteolytic cleavage of a linker linking one or more blocking moieties to the cytokine.


A similar approach can be applied to improve other cytokines, particularly for use as immunostimulatory agents, for example for treating cancer. For example, in this aspect, the pharmacokinetics and/or pharmacodynamics of the cytokine (e.g., IL-2, IL-7, IL-12, IL-15, IL-18, IL-21 IL-23, IFNalpha, IFNbeta and IFNgamma, TNFalpha, lymphotoxin, TGFbeta1, TGFbeta2, TGFbeta3 GM-CSF, CXCL10, CCL19, CCL20, and CCL21 can be tailored to maximally activate effector cells (e.g., effect T cells, NK cells) and/or cytotoxic immune response promoting cells (e.g., induce dendritic cell maturation) at a site of desired activity, such as in a tumor, but preferably not systemically.


Thus, provided herein are pharmaceutical compositions comprising at least one cytokine polypeptide, such as interleukins (e.g., IL-2, IL-7, IL-12, IL-15, IL-18, IL-21, IL-23), interferons (IFNs, including IFNalpha, IFNbeta and IFNgamma), tumor necrosis factors (e.g., TNFalpha, lymphotoxin), transforming growth factors (e.g., TGFbeta1, TGFbeta2, TGFbeta3), chemokines (e.g. CXCL10, CCL19, CCL20, CCL21) and granulocyte macrophage-colony stimulating factor (GM-CS) or a functional fragment or mutein of any of the foregoing. The polypeptide typically also includes at least one linker amino acid sequence, wherein the amino acid sequence is in certain embodiments capable of being cleaved by an endogenous protease. In one embodiment, the linker comprises an amino acid sequence comprising HSSKLQ (SEQ ID NO.: 25), GPLGVRG (SEQ ID NO.: 445), IPVSLRSG (SEQ ID NO.: 446), VPLSLYSG (SEQ ID NO. 447), or SGESPAYYTA (SEQ ID NO. 448). In other embodiments, the chimeric polypeptide further contains a blocking moiety, e.g. a steric blocking polypeptide moiety, capable of blocking the activity of the interleukin polypeptide. The blocking moiety, for example, can comprise a human serum albumin (HSA) binding domain or an optionally branched or multi-armed polyethylene glycol (PEG). Alternatively, the pharmaceutical composition comprises a first cytokine polypeptide or a fragment thereof, and blocking moiety, e.g. a steric blocking polypeptide moiety, wherein the blocking moiety blocks the activity of the cytokine polypeptide on the cytokine receptor, and wherein the blocking moiety in certain embodiments comprises a protease cleavable domain. In some embodiments, blockade and reduction of cytokine activity is achieved simply by attaching additional domains with very short linkers to the N or C terminus of the interleukin domain. In such embodiments, it is anticipated the blockade is relieved by protease digestion of the blocking moiety or of the short linker that tethers the blocker to the interleukin. Once the domain is clipped or is released, it will no longer be able to achieve blockade of cytokine activity.


The pharmaceutical composition e.g., chimeric polypeptide can comprise two or more cytokines, which can be the same cytokine polypeptide or different cytokine polypeptides. For example, the two or more different types of cytokines have complementary functions. In some examples, a first cytokine is IL-2 and a second cytokine is IL-12. In some embodiments, each of the two or more different types of cytokine polypeptides have activities that modulate the activity of the other cytokine polypeptides. In some examples of chimeric polypeptides that contain two cytokine polypeptides, a first cytokine polypeptide is T-cell activating, and a second cytokine polypeptide is non-T-cell-activating. In some examples of chimeric polypeptides that contain two cytokine polypeptides, a first cytokine is a chemoattractant, e.g. CXCL10, and a second cytokine is an immune cell activator.


Preferably, the cytokine polypeptides (including functional fragments) that are included in the fusion proteins disclosed herein are not mutated or engineered to alter the properties of the naturally occurring cytokine, including receptor binding affinity and specificity or serum half-life. However, changes in amino acid sequence from naturally occurring (including wild type) cytokine are acceptable to facilitate cloning and to achieve desired expression levels, for example.


Blocking Moiety


The blocking moiety can be any moiety that inhibits the ability of the cytokine to bind and/or activate its receptor. The blocking moiety can inhibit the ability of the cytokine to bind and/or activate its receptor sterically blocking and/or by noncovalently binding to the cytokine. Examples of suitable blocking moieties include the full length or a cytokine-binding fragment or mutein of the cognate receptor of the cytokine. Antibodies and fragments thereof including, a polyclonal antibody, a recombinant antibody, a human antibody, a humanized antibody a single chain variable fragment (scFv), single-domain antibody such as a heavy chain variable domain (VH), a light chain variable domain (VL) and a variable domain of camelid-type nanobody (VHH), a dAb and the like that bind the cytokine can also be used. Other suitable antigen-binding domain that bind the cytokine can also be used, include non-immunoglobulin proteins that mimic antibody binding and/or structure such as, anticalins, affilins, affibody molecules, affimers, affitins, alphabodies, avimers, DARPins, fynomers, kunitz domain peptides, monobodies, and binding domains based on other engineered scaffolds such as SpA, GroEL, fibronectin, lipocallin and CTLA4 scaffolds. Further examples of suitable blocking polypeptides include polypeptides that sterically inhibit or block binding of the cytokine to its cognate receptor. Advantageously, such moieties can also function as half-life extending elements. For example, a peptide that is modified by conjugation to a water-soluble polymer, such as PEG, can sterically inhibit or prevent binding of the cytokine to its receptor. Polypeptides, or fragments thereof, that have long serum half-lives can also be used, such as serum albumin (human serum albumin), immunoglobulin Fc, transferrin and the like, as well as fragments and muteins of such polypeptides. Antibodies and antigen-binding domains that bind to, for example, a protein with a long serum half-life such as HSA, immunoglobulin or transferrin, or to a receptor that is recycled to the plasma membrane, such as FcRn or transferrin receptor, can also inhibit the cytokine, particularly when bound to their antigen. Examples of such antigen-binding polypeptides include a single chain variable fragment (scFv), single-domain antibody such as a heavy chain variable domain (VH), a light chain variable domain (VL) and a variable domain of camelid-type nanobody (VHH), a dAb and the like. Other suitable antigen-binding domain that bind the cytokine can also be used, include non-immunoglobulin proteins that mimic antibody binding and/or structure such as, anticalins, affilins, affibody molecules, affimers, affitins, alphabodies, avimers, DARPins, fynomers, kunitz domain peptides, monobodies, and binding domains based on other engineered scaffolds such as SpA, GroEL, fibronectin, lipocallin and CTLA4 scaffolds.


In illustrative examples, when IL-2 is the cytokine in the chimeric polypeptide, the blocking moiety can be the full length or fragment or mutein of the alpha chain of IL-2 receptor (IL-2Rα) or beta (IL-2Rβ) or gamma chain of IL-2 receptor (IL-2Rγ), an anti-IL-2 single-domain antibody (dAb) or scFv, a Fab, an anti-CD25 antibody or fragment thereof, and anti-HSA dAb or scFv, and the like. As described further herein, when an antibody fragement is used to attenuate the activity of the cytokine polypeptide, the blocking moiety in the fusion protein can be a single chain antibody binding fragment, such as an scFv. The blocking moiety can also be half of a two chain antigen binding fragment such as a VH-CH1, which associates with a complementary VL-CL on a second polypeptide for form an antibody binding site the binds the cytokine polypeptide.


In vivo Half-life Extension Elements


Preferably, the chimeric polypeptides comprise an in vivo half-life extension element. Increasing the in vivo half-life of therapeutic molecules with naturally short half-lives allows for a more acceptable and manageable dosing regimen without sacrificing effectiveness. As used herein, a “half-life extension element” is a part of the chimeric polypeptide that increases the in vivo half-life and improve pK, for example, by altering its size (e.g., to be above the kidney filtration cutoff), shape, hydrodynamic radius, charge, or parameters of absorption, biodistribution, metabolism, and elimination. An exemplary way to improve the pK of a polypeptide is by expression of an element in the polypeptide chain that binds to receptors that are recycled to the plasma membrane of cells rather than degraded in the lysosomes, such as the FcRn receptor on endothelial cells and transferrin receptor. Three types of proteins, e.g., human IgGs, HSA (or fragments), and transferrin, persist for much longer in human serum than would be predicted just by their size, which is a function of their ability to bind to receptors that are recycled rather than degraded in the lysosome. These proteins, or fragments of them that retain the FcRn binding are routinely linked to other polypeptides to extend their serum half-life. In one embodiment, the half-life extension element is a human serum albumin (HSA) binding domain. HSA (SEQ ID NO: 2) may also be directly bound to the pharmaceutical compositions or bound via a short linker. Fragments of HSA may also be used. HSA and fragments thereof can function as both a blocking moiety and a half-life extension element. Human IgGs and Fc fragments can also carry out a similar function.


The serum half-life extension element can also be antigen-binding polypeptide that binds to a protein with a long serum half-life such as serum albumin, transferrin and the like. Examples of such polypeptides include antibodies and fragments thereof including, a polyclonal antibody, a recombinant antibody, a human antibody, a humanized antibody a single chain variable fragment (scFv), single-domain antibody such as a heavy chain variable domain (VH), a light chain variable domain (VL) and a variable domain of camelid-type nanobody (VHH), a dAb and the like. Other suitable antigen-binding domain include non-immunoglobulin proteins that mimic antibody binding and/or structure such as, anticalins, affilins, affibody molecules, affimers, affitins, alphabodies, avimers, DARPins, fynomers, kunitz domain peptides, monobodies, and binding domains based on other engineered scaffolds such as SpA, GroEL, fibronectin, lipocallin and CTLA4 scaffolds. Further examples of antigen-binding polypeptides include a ligand for a desired receptor, a ligand-binding portion of a receptor, a lectin, and peptides that binds to or associates with one or more target antigens.


Some preferred serum half-life extension elements are polypeptides that comprise complementarity determining regions (CDRs), and optionally non-CDR loops. Advantageously, such serum half-life extension elements can extend the serum half-life of the cytokine, and also function as inhibitors of the cytokine (e.g., via steric blocking, non-covalent interaction or combination thereof) and/or as targeting domains. In some instances, the serum half-life extension elements are domains derived from an immunoglobulin molecule (Ig molecule) or engineered protein scaffolds that mimic antibody structure and/or binding activity. The Ig may be of any class or subclass (IgG1, IgG2, IgG3, IgG4, IgA, IgE, IgM etc). A polypeptide chain of an Ig molecule folds into a series of parallel beta strands linked by loops. In the variable region, three of the loops constitute the “complementarity determining regions” (CDRs) which determine the antigen binding specificity of the molecule. An IgG molecule comprises at least two heavy (H) chains and two light (L) chains inter-connected by disulfide bonds, or an antigen binding fragment thereof. Each heavy chain is comprised of a heavy chain variable region (abbreviated herein as VH) and a heavy chain constant region. The heavy chain constant region is comprised of three domains, CH1, CH2 and CH3. Each light chain is comprised of a light chain variable region (abbreviated herein as VL) and a light chain constant region. The light chain constant region is comprised of one domain, CL. The VH and VL regions can be further subdivided into regions of hypervariability, termed complementarity determining regions (CDRs) with are hypervariable in sequence and/or involved in antigen recognition and/or usually form structurally defined loops, interspersed with regions that are more conserved, termed framework regions (FR). Each VH and VL is composed of three CDRs and four FRs, arranged from amino-terminus to carboxy-terminus in the following order: FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4. In some embodiments of this disclosure, at least some or all of the amino acid sequences of FR1, FR2, FR3, and FR4 are part of the “non-CDR loop” of the binding moieties described herein. A variable domain of an immunoglobulin molecule has several beta strands that are arranged in two sheets. The variable domains of both light and heavy immunoglobulin chains contain three hypervariable loops, or complementarity-determining regions (CDRs). The three CDRs of a V domain (CDR1, CDR2, CDR3) cluster at one end of the beta barrel. The CDRs are the loops that connect beta strands B-C, C′-C″, and F-G of the immunoglobulin fold, whereas the bottom loops that connect beta strands AB, CC′, C″-D and E-F of the immunoglobulin fold, and the top loop that connects the D-E strands of the immunoglobulin fold are the non-CDR loops. In some embodiments of this disclosure, at least some amino acid residues of a constant domain, CH1, CH2, or CH3, are part of the “non-CDR loop” of the binding moieties described herein. Non-CDR loops comprise, in some embodiments, one or more of AB, CD, EF, and DE loops of a C1-set domain of an Ig or an Ig-like molecule; AB, CC′, EF, FG, BC, and EC′ loops of a C2-set domain of an Ig or an Ig-like molecule; DE, BD, GF, A(A1A2)B, and EF loops of I(Intermediate)-set domain of an Ig or Ig-like molecule.


Within the variable domain, the CDRs are believed to be responsible for antigen recognition and binding, while the FR residues are considered a scaffold for the CDRs. However, in certain cases, some of the FR residues play an important role in antigen recognition and binding. Framework region residues that affect Ag binding are divided into two categories. The first are FR residues that contact the antigen, thus are part of the binding-site, and some of these residues are close in sequence to the CDRs. Other residues are those that are far from the CDRs in sequence, but are in close proximity to it in the 3-D structure of the molecule, e.g., a loop in heavy chain.


The binding moieties are any kinds of polypeptides. For example, in certain instances the binding moieties are natural peptides, synthetic peptides, or fibronectin scaffolds, or engineered bulk serum proteins. The bulk serum protein comprises, for example, albumin, fibrinogen, or a globulin. In some embodiments, the binding moieties are engineered scaffolds. Engineered scaffolds comprise, for example, sdAb, a scFv, a Fab, a VHH, a fibronectin type III domain, immunoglobulin-like scaffold (as suggested in Halaby et al., 1999. Prot Eng 12(7):563-571), DARPin, cystine knot peptide, lipocalin, three-helix bundle scaffold, protein G-related albumin-binding module, or a DNA or RNA aptamer scaffold.


In some cases, the serum half-life extending element comprises a binding site for a bulk serum protein. In some embodiments, the CDRs provide the binding site for the bulk serum protein. The bulk serum protein is, in some examples, a globulin, albumin, transferrin, IgG1, IgG2, IgG4, IgG3, IgA monomer, Factor XIII, Fibrinogen, IgE, or pentameric IgM. In some embodiments, the CDR form a binding site for an immunoglobulin light chain, such as an Igκ free light chain or an Igλ free light chain.


The serum half-life extension element can be any type of binding domain, including but not limited to, domains from a monoclonal antibody, a polyclonal antibody, a recombinant antibody, a human antibody, a humanized antibody. In some embodiments, the binding moiety is a single chain variable fragment (scFv), single-domain antibody such as a heavy chain variable domain (VH), a light chain variable domain (VL) and a variable domain (VHH) of camelid derived nanobody. In other embodiments, the binding moieties are non-Ig binding domains, i.e., antibody mimetic, such as anticalins, affilins, affibody molecules, affimers, affitins, alphabodies, avimers, DARPins, fynomers, kunitz domain peptides, and monobodies.


In other embodiments, the serum half-life extension element can be a water-soluble polymer or a peptide that is conjugated to a water-soluble polymer, such as PEG. “PEG,” “polyethylene glycol” and “poly(ethylene glycol)” as used herein, are interchangeable and encompass any nonpeptidic water-soluble poly(ethylene oxide). The term “PEG” also means a polymer that contains a majority, that is to say, greater than 50%, of —OCH2CH2— repeating subunits. With respect to specific forms, the PEG can take any number of a variety of molecular weights, as well as structures or geometries such as “branched,” “linear,” “forked,” “multifunctional,” and the like, to be described in greater detail below. The PEG is not limited to a particular structure and can be linear (e.g., an end capped, e.g., alkoxy PEG or a bifunctional PEG), branched or multi-armed (e.g., forked PEG or PEG attached to a polyol core), a dendritic (or star) architecture, each with or without one or more degradable linkages. Moreover, the internal structure of the PEG can be organized in any number of different repeat patterns and can be selected from the group consisting of homopolymer, alternating copolymer, random copolymer, block copolymer, alternating tripolymer, random tripolymer, and block tripolymer. PEGs can be conjugated to polypeptide and peptides through any suitable method. Typically, a reactive PEG derivative, such as N-hydroxysuccinamidyl ester PEG, is reacted with a peptide or polypeptide that includes amino acids with a side chain that contains an amine, sulfhydryl, carboxylic acid or hydroxyl functional group, such as cysteine, lysine, asparagine, glutamine, theonine, tyrosine, serine, aspartic acid, and glutamic acid.


Targeting and Retention Domains


For certain applications, it may be desirable to maximize the amount of time the construct is present in its desired location in the body. This can be achieved by including one further domain in the chimeric polypeptide (fusion protein) to influence its movements within the body. For example, the chimeric nucleic acids can encode a domain that directs the polypeptide to a location in the body, e.g., tumor cells or a site of inflammation; this domain is termed a “targeting domain” and/or encode a domain that retains the polypeptide in a location in the body, e.g., tumor cells or a site of inflammation; this domain is termed a “retention domain”. In some embodiments a domain can function as both a targeting and a retention domain. In some embodiments, the targeting domain and/or retention domain are specific to a protease-rich environment. In some embodiments, the encoded targeting domain and/or retention domain are specific for regulatory T cells (Tregs), for example targeting the CCR4 or CD39 receptors. Other suitable targeting and/or retention domains comprise those that have a cognate ligand that is overexpressed in inflamed tissues, e.g., the IL-1 receptor, or the IL-6 receptor. In other embodiments, the suitable targeting and/or retention domains comprise those who have a cognate ligand that is overexpressed in tumor tissue, e.g., Epcam, CEA or mesothelin. In some embodiments, the targeting domain is linked to the interleukin via a linker which is cleaved at the site of action (e.g. by inflammation or cancer specific proteases) releasing the interleukin full activity at the desired site. In some embodiments, the targeting and/or retention domain is linked to the interleukin via a linker which is not cleaved at the site of action (e.g. by inflammation or cancer specific proteases), causing the cytokine to remain at the desired site.


Antigens of choice, in some cases, are expressed on the surface of a diseased cell or tissue, for example a tumor or a cancer cell. Antigens useful for tumor targeting and retention include but are not limited to EpCAM, EGFR, HER-2, HER-3, c-Met, FOLR1, and CEA. Pharmaceutical compositions disclosed herein, also include proteins comprising two targeting and/or retention domains that bind to two different target antigens known to be expressed on a diseased cell or tissue. Exemplary pairs of antigen binding domains include but are not limited to EGFR/CEA, EpCAM/CEA, and HER-2/HER-3.


Suitable targeting and/or retention domains include antigen-binding domains, such as antibodies and fragments thereof including, a polyclonal antibody, a recombinant antibody, a human antibody, a humanized antibody a single chain variable fragment (scFv), single-domain antibody such as a heavy chain variable domain (VH), a light chain variable domain (VL) and a variable domain of camelid-type nanobody (VHH), a dAb and the like. Other suitable antigen-binding domain include non-immunoglobulin proteins that mimic antibody binding and/or structure such as, anticalins, affilins, affibody molecules, affimers, affitins, alphabodies, avimers, DARPins, fynomers, kunitz domain peptides, monobodies, and binding domains based on other engineered scaffolds such as SpA, GroEL, fibronectin, lipocallin and CTLA4 scaffolds. Further examples of antigen-binding polypeptides include a ligand for a desired receptor, a ligand-binding portion of a receptor, a lectin, and peptides that binds to or associates with one or more target antigens.


In some embodiments, the targeting and/or retention domains specifically bind to a cell surface molecule. In some embodiments, the targeting and/or retention domains specifically bind to a tumor antigen. In some embodiments, the targeting polypeptides specifically and independently bind to a tumor antigen selected from at least one of Fibroblast activation protein alpha (FAPa), Trophoblast glycoprotein (5T4), Tumor-associated calcium signal transducer 2 (Trop2), Fibronectin EDB (EDB-FN), fibronectin EIIIB domain, CGS-2, EpCAM, EGFR, HER-2, HER-3, cMet, CEA, and FOLR1. In some embodiments, the targeting polypeptides specifically and independently bind to two different antigens, wherein at least one of the antigens is a tumor antigen selected from EpCAM, EGFR, HER-2, HER-3, cMet, CEA, and FOLR1.


The targeting and/or retention antigen can be a tumor antigen expressed on a tumor cell. Tumor antigens are well known in the art and include, for example, EpCAM, EGFR, HER-2, HER-3, c-Met, FOLR1, PSMA, CD38, BCMA, and CEA. 5T4, AFP, B7-H3, Cadherin-6, CAIX, CD117, CD123, CD138, CD166, CD19, CD20, CD205, CD22, CD30, CD33, CD352, CD37, CD44, CD52, CD56, CD70, CD71, CD74, CD79b, DLL3, EphA2, FAP, FGFR2, FGFR3, GPC3, gpA33, FLT-3, gpNMB, HPV-16 E6, HPV-16 E7, ITGA2, ITGA3, SLC39A6, MAGE, mesothelin, Muc1, Muc16, NaPi2b, Nectin-4, P-cadherin, NY-ESO-1, PRLR, PSCA, PTK7, ROR1, SLC44A4, SLTRK5, SLTRK6, STEAP1, TIM1, Trop2, WT1.


The targeting and/or retention antigen can be an immune checkpoint protein. Examples of immune checkpoint proteins include but are not limited to CD27, CD137, 2B4, TIGIT, CD155, ICOS, HVEM, CD40L, LIGHT, TIM-1, OX40, DNAM-1, PD-L1, PD1, PD-L2, CTLA-4, CD8, CD40, CEACAM1, CD48, CD70, A2AR, CD39, CD73, B7-H3, B7-H4, BTLA, IDO1, IDO2, TDO, KIR, LAG-3, TIM-3, or VISTA.


The targeting and/or retention antigen can be a cell surface molecule such as a protein, lipid or polysaccharide. In some embodiments, a targeting and/or retention antigen is a on a tumor cell, virally infected cell, bacterially infected cell, damaged red blood cell, arterial plaque cell, inflamed or fibrotic tissue cell. The targeting and/or retention antigen can comprise an immune response modulator. Examples of immune response modulator include but are not limited to granulocyte-macrophage colony stimulating factor (GM-CSF), macrophage colony stimulating factor (M-CSF), granulocyte colony stimulating factor (G-CSF), interleukin 2 (IL-2), interleukin 3 (IL-3), interleukin 12 (IL-12), interleukin 15 (IL-15), B7-1 (CD80), B7-2 (CD86), GITRL, CD3, or GITR.


The targeting and/or retention antigen can be a cytokine receptor. Examples, of cytokine receptors include but are not limited to Type I cytokine receptors, such as GM-CSF receptor, G-CSF receptor, Type I IL receptors, Epo receptor, LIF receptor, CNTF receptor, TPO receptor, Type II Cytokine receptors, such as IFN-alpha receptor (IFNAR1, IFNAR2), IFB-beta receptor, IFN-gamma receptor (IFNGR1, IFNGR2), Type II IL receptors; chemokine receptors, such as CC chemokine receptors, CXC chemokine receptors, CX3C chemokine receptors, XC chemokine receptors; tumor necrosis receptor superfamily receptors, such as TNFRSF5/CD40, TNFRSF8/CD30, TNFRSF7/CD27, TNFRSF1A/TNFR1/CD120a, TNFRSF1B/TNFR2/CD120b; TGF-beta receptors, such as TGF-beta receptor 1, TGF-beta receptor 2; Ig super family receptors, such as IL-1 receptors, CSF-1R, PDGFR (PDGFRA, PDGFRB), SCFR.


Linkers


As stated above, the pharmaceutical compositions comprise one or more linker sequences. A linker sequence serves to provide flexibility between polypeptides, such that, for example, the blocking moiety is capable of inhibiting the activity of the cytokine polypeptide. The linker sequence can be located between any or all of the cytokine polypeptide, the serum half-life extension element, and/or the blocking moiety. As described herein at least one of the linkers is protease cleavable, and contains a (one or more) cleavage site for a (one or more) desired protease. Preferably, the desired protease is enriched or selectively expressed at the desired site of cytokine activity (e.g., the tumor microenvironment). Thus, the fusion protein is preferentially or selectively cleaved at the site of desired cytokine activity.


Suitable linkers can be of different lengths, such as from 1 amino acid (e.g., Gly) to 20 amino acids, from 2 amino acids to 15 amino acids, from 3 amino acids to 12 amino acids, including 4 amino acids to 10 amino acids, amino acids to 9 amino acids, 6 amino acids to 8 amino acids, or 7 amino acids to 8 amino acids, and may be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, or 60 amino acids.


The orientation of the components of the pharmaceutical composition, are largely a matter of design choice and it is recognized that multiple orientations are possible and all are intended to be encompassed by this disclosure. For example, a blocking moiety can be located C-terminally or N-terminally to a cytokine polypeptide.


Proteases known to be associated with diseased cells or tissues include but are not limited to serine proteases, cysteine proteases, aspartate proteases, threonine proteases, glutamic acid proteases, metalloproteases, asparagine peptide lyases, serum proteases, cathepsins, Cathepsin B, Cathepsin C, Cathepsin D, Cathepsin E, Cathepsin K, Cathepsin L, kallikreins, hK1, hK10, hK15, plasmin, collagenase, Type IV collagenase, stromelysin, Factor Xa, chymotrypsin-like protease, trypsin-like protease, elastase-like protease, subtilisin-like protease, actinidain, bromelain, calpain, caspases, caspase-3, Mir-CP, papain, HIV-protease, HSV protease, CMV protease, chymosin, renin, pepsin, matriptase, legumain, plasmepsin, nepenthesin, metalloexopeptidases, metallendopeptidases, matrix metalloproteases (MMP), MMP1, MMP2, MMP3, MMP8, MMP9, MMP13, MMP11, MMP14, urokinase plasminogen activator (uPA), enterokinase, prostate-specific antigen (PSA, hK3), interleukin-10β converting enzyme, thrombin, FAP (FAP-a), dipeptidyl peptidase, meprins, granzymes and dipeptidyl peptidase IV (DPPIV/CD26). Proteases capable of cleaving amino acid sequences encoded by the chimeric nucleic acid sequences provided herein can, for example, be selected from the group consisting of a prostate specific antigen (PSA), a matrix metalloproteinase (MMP), an A Disintigrin and a Metalloproteinase (ADAM), a plasminogen activator, a cathepsin, a caspase, a tumor cell surface protease, and an elastase. The MMP can, for example, be matrix metalloproteinase 2 (MMP2) or matrix metalloproteinase 9 (MMP9).


Proteases useful in the methods disclosed herein are presented in Table 1, and exemplary proteases and their cleavage site are presented in Table 1a:









TABLE 1







Proteases relevant to inflammation and cancer









Protease
Specificity
Other aspects










Secreted by killer T cells:









Granzyme B (grB)
Cleaves after Asp
Type of serine protease; strongly



residues (asp-ase)
implicated in inducing perforin-dependent




target cell apoptosis


Granzyme A (grA)
trypsin-like, cleaves after
Type of serine protease;



basic residues


Granzyme H (grH)
Unknown substrate
Type of serine protease;



specificity
Other granzymes are also secreted by




killer T cells, but not all are present in




humans


Caspase-8
Cleaves after Asp
Type of cysteine protease; plays essential



residues
role in TCR-induced cellular expansion-




exact molecular role unclear


Mucosa-associated
Cleaves after arginine
Type of cysteine protease; likely acts both


lymphoid tissue
residues
as a scaffold and proteolytically active


(MALT1)

enzyme in the CBM-dependent signaling




pathway


Tryptase
Targets: angiotensin I,
Type of mast cell-specific serine protease;



fibrinogen, prourokinase,
trypsin-like; resistant to inhibition by



TGFβ; preferentially
macromolecular protease inhibitors



cleaves proteins after
expressed in mammals due to their



lysine or arginine
tetrameric structure, with all sites facing



residues
narrow central pore; also associated with




inflammation







Associated with inflammation:









Thrombin
Targets: FGF-2,
Type of serine protease; modulates



HB-EGF, Osteo-pontin,
activity of vascular growth factors,



PDGF, VEGF
chemokines and extracellular proteins;




strengthens VEGF-induced proliferation;




induces cell migration; angiogenic factor;




regulates hemostasis


Chymase
Exhibit chymotrypsin-
Type of mast cell-specific serine protease



like specificity, cleaving



proteins after aromatic



amino acid residues


Carboxypeptidase A
Cleaves amino acid
Type of zinc-dependent metalloproteinase


(MC-CPA)
residues from C-terminal



end of peptides and



proteins


Kallikreins
Targets: high molecular
Type of serine protease; modulate



weight
relaxation response; contribute to



kininogen, pro-urokinase
inflammatory response; fibrin degradation


Elastase
Targets: E-cadherin, GM-
Type of neutrophil serine protease;



CSF, IL-1, IL-2, IL-6,
degrades ECM components; regulates



IL8, p38MAPK, TNFα, VE-
inflammatory response; activates pro-



cadherin
apoptotic signaling


Cathepsin G
Targets: EGF, ENA-78,
Type of serine protease; degrades ECM



IL-8, MCP-1, MMP-2,
components; chemo-attractant of



MT1-MMP,
leukocytes; regulates inflammatory



PAI-1, RANTES, TGFβ
response; promotes apoptosis



TNFα


PR-3
Targets: ENA-78, IL-8,
Type of serine protease; promotes



IL-18, JNK, p38MAPK,
inflammatory response; activates pro-



TNFα
apoptotic signaling


Granzyme M (grM)
Cleaves after Met and
Type of serine protease; only expressed in



other long, unbranched
NK cells



hydrophobic residues


Calpains
Cleave between Arg and
Family of cysteine proteases; calcium-



Gly
dependent; activation is involved in the




process of numerous inflammation-




associated diseases
















?TABLE 1a







Exemplary Proteases and Protease


Recognition Sequences












Cleavage
SEQ 




Domain
ID



Protease
Sequence
NO:















MMP7
KRALGLPG
3







MMP7
(DE)8RPLALWRS(DR)8
4







MMP9
PR(S/T)(L/I)(S/T)
5







MMP9
LEATA
6







MMP11
GGAANLVRGG
7







MMP14
SGRIGFLRTA
8







MMP
PLGLAG
9







MMP
PLGLAX
10







MMP
PLGC(me)AG
11







MMP
ESPAYYTA
12







MMP
RLQLICL
13







MMP
RLQLKAC
14







MMP2, MMP9, MMP14
EP(Cit)G(Hof)YL
15







Urokinase plasminogen
SGRSA
16



activator (uPA)









Urokinase plasminogen
DAFK
17



activator (uPA)









Urokinase plasminogen
GGGRR
18



activator (uPA)









Lysosomal Enzyme
GFLG
19







Lysosomal Enzyme
ALAL
20







Lysosomal Enzyme
FK
21







Cathepsin B
NLL
22







Cathepsin D
PIC(Et)FF
23







Cathepsin K
GGPRGLPG
24







Prostate Specific
HSSKLQ
25



Antigen









Prostate Specific
HSSKLQL
26



Antigen









Prostate Specific
HSSICLQEDA
27



Antigen









Herpes Simplex
LVLASSSFGY
28



Virus Protease









HIV Protease
GVSQNYPIVG
29







CMV Protease
GVVQASCRLA
30







Thrombin
F(Pip)RS
31







Thrombin
DPRSFL
32







Thrombin
PPRSFL
33







Caspase-3
DEVD
34







Caspase-3
DEVDP
35







Caspase-3
KGSGDVEG
36







Interleukin 1β
GWEHDG
37



converting enzyme









Enterokinase
EDDDDKA
38







FAP
KQEQNPGST
39







Kallikrein 2
GKAFRR
40







Plasmin
DAFK
41







Plasmin
DVLK
42







Plasmin
DAFK
43







TOP
ALLLALL
44










Provided herein are pharmaceutical compositions comprising polypeptide sequences. As with all peptides, polypeptides, and proteins, including fragments thereof, it is understood that additional modifications in the amino acid sequence of the chimeric polypeptides (amino acid sequence variants) can occur that do not alter the nature or function of the peptides, polypeptides, or proteins. Such modifications include conservative amino acid substitutions and are discussed in greater detail below.


The compositions provided herein have a desired function. The compositions are comprised of at least a cytokine polypeptide, such as IL-2, IL-7, IL-12, IL-15, IL-18, IL-21, IFNα, or IFNγ, or a chemokine, such as CXCL10, CCL19, CCL20, CCL21, a blocking moiety, e.g. a steric blocking polypeptide, and an optional serum half-life extension element, and an optional targeting polypeptide, with one or more linkers connecting each polypeptide in the composition. The first polypeptide, e.g., an IL-2 mutein, is provided to be an active agent. The blocking moiety is provided to block the activity of the interleukin. The linker polypeptide, e.g., a protease cleavable polypeptide, is provided to be cleaved by a protease that is specifically expressed at the intended target of the active agent. Optionally, the blocking moiety blocks the activity of the first polypeptide by binding the interleukin polypeptide. In some embodiments, the blocking moiety, e.g. a steric blocking peptide, is linked to the interleukin via a protease-cleavable linker which is cleaved at the site of action (e.g. by inflammation-specific or tumor-specific proteases) releasing the cytokine full activity at the desired site.


The protease cleavage site may be a naturally occurring protease cleavage site or an artificially engineered protease cleavage site. The artificially engineered protease cleavage site can be cleaved by more than one protease specific to the desired environment in which cleavage will occur, e.g. a tumor. The protease cleavage site may be cleavable by at least one protease, at least two proteases, at least three proteases, or at least four proteases.


In some embodiments, the linker comprises glycine-glycine, a sortase-recognition motif, or a sortase-recognition motif and a peptide sequence (Gly4Ser)n (SEQ ID NO.: 443) or (Gly3Ser)n, (SEQ ID NO.: 444), wherein n is 1, 2, 3, 4 or 5. In one embodiment, the sortase-recognition motif comprises a peptide sequence LPXTG (SEQ ID NO.: 442), where X is any amino acid. In one embodiment, the covalent linkage is between a reactive lysine residue attached to the C-terminal of the cytokine polypeptide and a reactive aspartic acid attached to the N-terminal of the blocking or other moiety. In one embodiment, the covalent linkage is between a reactive aspartic acid residue attached to the N-terminal of the cytokine polypeptide and a reactive lysine residue attached to the C-terminal of the blocking or other moiety.


Cleavage and Inducibility


As described herein, the activity of the cytokine polypeptide the context of the fusion protein is attenuated, and protease cleavage at the desired site of activity, such as in a tumor microenvironment, releases a form of the cytokine from the fusion protein that is much more active as a cytokine receptor agonist than the fusion protein. For example, the cytokine-receptor activating (agonist) activity of the fusion polypeptide can be at least about 10×, at least about 50×, at least about 100×, at least about 250×, at least about 500×, or at least about 1000× less than the cytokine receptor activating activity of the cytokine polypeptide as a separate molecular entity. The cytokine polypeptide that is part of the fusion protein exists as a separate molecular entity when it contains an amino acid that is substantially identical to the cytokine polypeptide and does not substantially include additional amino acids and is not associated (by covalent or non-covalent bonds) with other molecules. If necessary, a cytokine polypeptide as a separate molecular entity may include some additional amino acid sequences, such as a tag or short sequence to aid in expression and/or purification.


In other examples, the cytokine-receptor activating (agonist) activity of the fusion polypeptide is at least about 10×, at least about 50×, at least about 100×, at least about 250×, at least about 500×, or about 1000× less than the cytokine receptor activating activity of the polypeptide that contains the cytokine polypeptide that is produced by cleavage of the protease cleavable linker in the fusion protein. In other words, the cytokine receptor activating (agonist) activity of the polypeptide that contains the cytokine polypeptide that is produced by cleavage of the protease cleavable linker in the fusion protein is at least about 10×, at least about 50×, at least about 100×, at least about 250×, at least about 500×, or at least about 1000× greater than the cytokine receptor activating activity of the fusion protein.


Polypeptide Variants and Amino Acid Substitutions


The polypeptides described herein can include components (e.g., the cytokine, the blocking moiety) that have the same amino acid sequence of the corresponding naturally occurring protein (e.g., IL-2, IL-15, HSA) or can have an amino acid sequence that differs from the naturally occurring protein so long as the desired function is maintained. It is understood that one way to define any known modifications and derivatives or those that might arise, of the disclosed proteins and nucleic acids that encode them is through defining the sequence variants in terms of identity to specific known reference sequences. Specifically disclosed are polypeptides and nucleic acids which have at least, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 percent identity to the chimeric polypeptides provided herein. For example, provided are polypeptides or nucleic acids that have at least, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99 percent identity to the sequence of any of the nucleic acids or polypeptides described herein. Those of skill in the art readily understand how to determine the identity of two polypeptides or two nucleic acids. For example, the identity can be calculated after aligning the two sequences so that the identity is at its highest level.


Another way of calculating identity can be performed by published algorithms. Optimal alignment of sequences for comparison may be conducted by the local identity algorithm of Smith and Waterman Adv. Appl. Math. 2:482 (1981), by the identity alignment algorithm of Needleman and Wunsch, J. Mol. Biol. 48:443 (1970), by the search for similarity method of Pearson and Lipman, Proc. Natl. Acad. Sci. USA 85:2444 (1988), by computerized implementations of these algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group, 575 Science Dr., Madison, Wis.), or by inspection.


The same types of identity can be obtained for nucleic acids by, for example, the algorithms disclosed in Zuker, Science 244:48-52 (1989); Jaeger et al., Proc. Natl. Acad. Sci. USA 86:7706-7710 (1989); Jaeger et al., Methods Enzymol. 183:281-306 (1989), which are herein incorporated by reference for at least material related to nucleic acid alignment. It is understood that any of the methods typically can be used and that in certain instances the results of these various methods may differ, but the skilled artisan understands if identity is found with at least one of these methods, the sequences would be said to have the stated identity, and be disclosed herein.


Protein modifications include amino acid sequence modifications. Modifications in amino acid sequence may arise naturally as allelic variations (e.g., due to genetic polymorphism), may arise due to environmental influence (e.g., by exposure to ultraviolet light), or may be produced by human intervention (e.g., by mutagenesis of cloned DNA sequences), such as induced point, deletion, insertion and substitution mutants. These modifications can result in changes in the amino acid sequence, provide silent mutations, modify a restriction site, or provide other specific mutations. Amino acid sequence modifications typically fall into one or more of three classes: substitutional, insertional or deletional modifications. Insertions include amino and/or carboxyl terminal fusions as well as intrasequence insertions of single or multiple amino acid residues. Insertions ordinarily will be smaller insertions than those of amino or carboxyl terminal fusions, for example, on the order of one to four residues. Deletions are characterized by the removal of one or more amino acid residues from the protein sequence. Typically, no more than about from 2 to 6 residues are deleted at any one site within the protein molecule. Amino acid substitutions are typically of single residues, but can occur at a number of different locations at once; insertions usually will be on the order of about from 1 to 10 amino acid residues; and deletions will range about from 1 to 30 residues. Deletions or insertions preferably are made in adjacent pairs, i.e. a deletion of 2 residues or insertion of 2 residues. Substitutions, deletions, insertions or any combination thereof may be combined to arrive at a final construct. The mutations must not place the sequence out of reading frame and preferably will not create complementary regions that could produce secondary mRNA structure. Substitutional modifications are those in which at least one residue has been removed and a different residue inserted in its place. Such substitutions generally are made in accordance with the following Table 2 and are referred to as conservative substitutions.









?TABLE 2







Exemplary amino acid substitutions










Amino Acid
Exemplary Substitutions







Ala
Ser, Gly, Cys







Arg
Lys, Gln, Met, Ile







Asn
Gln, His, Glu, Asp







Asp
Glu, Asn, Gln







Cys
Ser, Met, Thr







Gln
Asn, Lys, Glu, Asp







Glu
Asp, Asn, Gln







Gly
Pro, Ala







His
Asn, Gln







Ile
Leu, Val, Met







Leu
Ile, Val, Met







Lys
Arg, Gln, Met, Ile







Met
Leu, Ile, Val







Phe
Met, Leu, Tyr, Trp, His







Ser
Thr, Met, Cys







Thr
Ser, Met, Val







Trp
Tyr, Phe







Tyr
Trp, Phe, His







Val
Ile, Leu, Met










Modifications, including the specific amino acid substitutions, are made by known methods. For example, modifications are made by site specific mutagenesis of nucleotides in the DNA encoding the polypeptide, thereby producing DNA encoding the modification, and thereafter expressing the DNA in recombinant cell culture. Techniques for making substitution mutations at predetermined sites in DNA having a known sequence are well known, for example M13 primer mutagenesis and PCR mutagenesis.


Modifications can be selected to optimize binding. For example, affinity maturation techniques can be used to alter binding of the scFv by introducing random mutations inside the complementarity determining regions (CDRs). Such random mutations can be introduced using a variety of techniques, including radiation, chemical mutagens or error-prone PCR. Multiple rounds of mutation and selection can be performed using, for example, phage display.


The disclosure also relates to nucleic acids that encode the chimeric polypeptides described herein, and to the use of such nucleic acids to produce the chimeric polypeptides and for therapeutic purposes. For example, the invention includes DNA and RNA molecules (e.g., mRNA, self-replicating RNA) that encode a chimeric polypeptide and to the therapeutic use of such DNA and RNA molecules.


Exemplary Compositions


Exemplary fusion proteins of the invention combine the above described elements in a variety of orientations. The orientations described in this section are meant as examples and are not to be considered limiting.


In some embodiments, the fusion protein comprises a cytokine, a blocking moiety and a half-life extension element. In some embodiments, the cytokine is positioned between the half-life extension element and the blocking moiety. In some embodiments, the cytokine is N-terminal to the blocking moiety and the half-life extension element. In some such embodiments, the cytokine is proximal to the blocking moiety; in some such embodiments, the cytokine is proximal to the half-life extension element. At least one protease-cleavable linker must be included in all embodiments, such that the cytokine may be active upon cleavage. In some embodiments, the cytokine is C-terminal to the blocking moiety and the half-life extension element. Additional elements may be attached to one another by a cleavable linker, a non-cleavable linker, or by direct fusion.


In some embodiments, the blocking domains used are capable of extending half-life, and the cytokine is positioned between two such blocking domains. In some embodiments, the cytokine is positioned between two blocking domains, one of which is capable of extending half-life.


In some embodiments, two cytokines are included in the same construct. In some embodiments, the cytokines are connected to two blocking domains each (three in total in one molecule), with a blocking domain between the two cytokine domains. In some embodiments, one or more additional half-life extension domains may be included to optimize pharmacokinetic properties. In some cases, it is beneficial to include two of the same cytokine to facilitate dimerization. An example of a cytokine that works as a dimer is IFN.


In some embodiments, three cytokines are included in the same construct. In some embodiments, the third cytokine may function to block the other two in place of a blocking domain between the two cytokines.


Preferred half-life extension elements for use in the fusion proteins are human serum albumin (HSA), an antibody or antibody fragment (e.g., scFV, dAb) which binds serum albumin, a human or humanized IgG, or a fragment of any of the foregoing. In some preferred embodiments, the blocking moiety is human serum albumin (HSA), or an antibody or antibody fragment which binds serum albumin, an antibody which binds the cytokine and prevents activation of binding or activation of the cytokine receptor, another cytokine, or a fragment of any of the foregoing. In preferred embodiments comprising an additional targeting domain, the targeting domain is an antibody which binds a cell surface protein which is enriched on the surface of cancer cells, such as EpCAM, FOLR1, and Fibronectin.


In embodiments, the fusion protein can contain an IL-2 polypeptide. The fusion protein containing an IL-2 polypeptide can comprise or consist of the amino acid sequence of any one of SEQ ID NOs. 257-300, 302-317, 325-353, 355-365, 366, 372-381, 383-385, 388-420, 579-608 and 636-646. The fusion proteins disclosed as SEQ ID NOs. 257-300, 302-317, 325-353, 355-365, 366, 372-381, 383-385, 388-420, 579-608, and 636-646 are also referred to herein as ACP289-ACP292, ACP296-ACP302, WW0301, ACP304-ACP306, ACP309-ACP313, WW0353, ACP414, ACP336-ACP398, WW0472-WW0477, ACP406-ACP426, ACP439-ACP447, ACP451-ACP471, WW0729, WW0734-WW0792, ACP101, ACP293-ACP295, ACP316-ACP335, ACP427-ACP438, and ACP448-ACP450. For example, the fusion protein can comprise the amino acid sequence of SEQ ID NO: 272. The fusion protein can comprise the amino acid sequence of SEQ ID NO: 286. The fusion protein can comprise the amino acid sequence of SEQ ID NO:362. The fusion protein can comprise the amino acid sequence of SEQ ID NO:336. The fusion protein can comprise the amino acid sequence of SEQ ID NO: 348. The fusion protein can comprise the amino acid sequence of SEQ ID NO: 363. The fusion protein can comprise the amino acid sequence of SEQ ID NO: 580.


In embodiments, the fusion protein can contain an IL-12 polypeptide. The fusion protein containing an IL-12 polypeptide can comprise or consist of the amino acid sequence of any one of SEQ ID NOs. 368-371, 434-440, 453-519, or 523-538. The fusion proteins disclosed as SEQ ID NOs. 368-371, 434-440, 453-519, or 523-538 are referred to herein as ACP240-ACP245, ACP247, ACP285-ACP288, WW0641, WW0649-WW0652, WW0662-WW0725, WW0765-WW0772, and WW0796-WW0803. For example, the fusion protein can comprise the amino acid sequence of SEQ ID NO:459. The fusion protein can comprise the amino acid sequence of SEQ ID NO: 466. The fusion protein can comprise the amino acid sequence of SEQ ID NO: 484. The fusion protein can comprise the amino acid sequence of SEQ ID NO: 506.


In embodiments, the fusion protein contains an IFN (e.g., IFNgamma, IFNalpha, IFNbeta) polypeptide. In some examples the IFN polypeptide is an IFNalpha or an IFNbeta. The fusion protein containing an IFN polypeptide can comprise or consist of the amino acid sequence of SEQ ID NOs. 421-430, and 539-578. The fusion proteins disclosed as SEQ ID NOs. 421-430, and 539-578 can be referred to herein as ACP200-ACP209, WW0644-WW0648, WW0781-WW0786, WW0815-WW0822, WW0831-WW0834, WW0737-WW0748, and WW0787-WW0790. For example, the fusion protein can comprise the amino acid sequence of SEQ ID NO: 421. The fusion protein can comprise the amino acid sequence of SEQ ID NO: 428. The fusion protein can comprise the amino acid sequence of 541. The fusion protein can comprise the amino acid sequence of SEQ IND NO: 558. The fusion protein can comprise the amino acid sequence of SEQ ID NO: 577.


In some aspects, the fusion polypeptide disclosed herein can be covalently or non-covalently bonded to a second polypeptide chain. For example, a fusion polypeptide can dimerize (i.e. form a dimer) or a portion of a fusion polypeptide may associate with another polypeptide, for example, to form a functional binding site for a cytokine polypeptide or serum albumin. In certain embodiments, the second polypeptide chain and the blocking moiety on the fusion polypeptide are complementary and together form a functional binding site that has specificity for the cytokine polypeptide contained in the fusion polypeptide. Exemplary functional binding sites that can be formed by the blocking moiety of the fusion polypeptide and a complimentary second polypeptide include antigen binding sites of antibodies, such as a Fab fragment of an antibody or a portion thereof. For example, one chain of a Fab that binds the cytokine can be the blocking moiety of the fusion polypeptide, e.g., a VH-CH1, and the complementary VL-CL can be part of the second polypeptide. In such situations, the blocking moiety of the fusion protein i.e., VH-CH1 and the second polypeptide that comprises the complementary VL-CL, can associate to form a functional binding site with specificity for the cytokine polypeptide contained within the fusion protein (e.g., IL-2, IL-12, IFNalpha, IFNbeta) and attenuates cytokine polypeptide activity. At least a portion of the blocking moiety can be on the second polypeptide chain can comprise at least a portion of the blocking moiety that associates with the blocking moiety on the fusion polypeptide.


In embodiments, the fusion protein containing an IL-2 cytokine polypeptide can be bonded covalently or noncovalently to a second polypeptide chain. The second polypeptide chain can contain an antibody light chain VL-CL that comprises or consist of the amino acid sequence of SEQ ID NO: 263, 264, or 333. Such a second polypeptide can bond with a complimentary VH-CH1 polypeptide contained within the fusion protein, e.g., as contained within SEQ ID NOS: 362, 363, 325, 286, 579, 581, or 582. The second polypeptide chain disclosed as SEQ ID NOs. 263, 264, and 333 can be referred herein as WW0523 (ACP381), WW0524 (ACP382), or WW0556 (ACP414).


In embodiments, the fusion polypeptide can comprise or consist of the amino acid sequence of SEQ ID NOs. 362, 363, 325, 286, 579, 581, or 582 and the second polypeptide chain can comprise or consist of the amino acid sequence of SEQ ID NOs: 263, 264, or 333. The fusion polypeptide disclosed as SEQ ID NOs. 362, 363, 325, 286, 579, 581, or 582 can be referred to as WW0520 (ACP378), WW0521 (ACP379), WW0548 (ACP406), WW0621 (ACP457), WW0729, WW0735, or WW0736, and the second polypeptide chain disclosed as SEQ ID NOs. 263, 264, and 333 can be referred herein as WW0523 (ACP381), WW0524 (ACP382), or WW0556 (ACP414).


For example, the fusion protein can comprise or consist the amino acid sequence of SEQ ID NO: 362 and the second polypeptide chain can comprise or consist the amino acid sequence of SEQ ID NO: 263. For example, the fusion protein can comprise or consist the amino acid sequence of SEQ ID NO: 362 and the second polypeptide chain can comprise or consist the amino acid sequence of SEQ ID NO: 264. For example, the fusion protein can comprise or consist the amino acid sequence of SEQ ID NO: 362 and the second polypeptide chain can comprise or consist the amino acid sequence of SEQ ID NO: 333. For example, the fusion protein can comprise or consist of an amino acid sequence of SEQ ID NO: 363 and the second polypeptide chain can comprise or consist of an amino acid sequence of SEQ ID NO: 263. For example, the fusion protein can comprise or consist of an amino acid sequence of SEQ ID No. 363 and the second polypeptide chain can comprise or consist of an amino acid sequence of SEQ ID NO: 264. For example, the fusion protein can comprise or consist of an amino acid sequence of SEQ ID NO: 363 and the second polypeptide chain can comprise or consist of an amino acid sequence of SEQ ID NO: 333. For example, the fusion protein can comprise or consist of an amino acid sequence of SEQ ID NO: 325 and the second polypeptide chain can comprise or consist of an amino acid sequence of SEQ ID NO: 264. For example, the fusion protein can comprise or consist of an amino acid sequence of SEQ ID NO: 325 and the second polypeptide chain can comprise or consist of an amino acid sequence of SEQ ID NO: 333. For example, the fusion protein can comprise or consist of an amino acid sequence of SEQ ID NO: 325 and the second polypeptide chain can comprise or consist of an amino acid sequence of SEQ ID NO: 263. For example, the fusion protein can comprise or consist of an amino acid sequence of SEQ ID NO: 286 and the second polypeptide chain can comprise or consist of an amino acid sequence of SEQ ID NO: 263. For example, the fusion protein can comprise or consist of an amino acid sequence of SEQ ID NO: 286 and the second polypeptide chain can comprise or consist of an amino acid sequence of SEQ ID NO: 264. For example, the fusion protein can comprise or consist of an amino acid sequence of SEQ ID NO: 286, and the second polypeptide can comprise or consist of an amino acid sequence of SEW ID NO: 333. For example, the fusion protein can comprise or consist of an amino acid sequence of SEQ ID NO: 579 and the second polypeptide chain can comprise or consist of an amino acid sequence of SEQ ID NO: 263. For example, the fusion protein can comprise or consist of an amino acid sequence of SEQ ID NO: 579 and the second polypeptide chain can comprise or consist of an amino acid sequence of SEQ ID NO: 264. For example, the fusion protein can comprise or consist of an amino acid sequence of SEQ ID NO: 579 and the second polypeptide chain can comprise or consist of an amino acid sequence of SEQ ID NO: 233. For example, the fusion protein can comprise or consist of SEQ ID NO: 581 and the second polypeptide chain can comprise or consist of SEQ ID NO.: 263. For example, the fusion protein can comprise or consist of SEQ ID NO: 581 and the second polypeptide chain can comprise or consist of SEQ ID NO.: 264. For example, the fusion protein can comprise or consist of SEQ ID NO: 581 and the second polypeptide chain can comprise or consist of SEQ ID NO.: 333. For example, the fusion protein can comprise or consist of SEQ ID NO: 582 and the second polypeptide chain can comprise or consist of SEQ ID NO: 263. For example, the fusion protein can comprise or consist of SEQ ID NO: 582 and the second polypeptide chain can comprise or consist of SEQ ID NO: 264. For example, the fusion protein can comprise or consist of SEQ ID NO: 582 and the second polypeptide chain can comprise or consist of SEQ ID NO: 333.


Methods of Treatment and Pharmaceutical Compositions


This disclosure also relates to pharmaceutical compositions that comprise one or more fusion proteins as disclosed herein, optionally in combination with another therapeutic agent, which are preferably immunomodulators or anti-cancer agents. The disclosure also relates to the use of such pharmaceutical compositions, and one or more fusion proteins, optionally in combination with another therapeutic agent in treatment of cancers.


The therapeutic combinations disclosed herein can comprise, for example, a fusion protein containing an IL-2 polypeptide, a fusion protein containing an IL-12 polypeptide, or a fusion protein containing an IFN polypeptide. Therapy can be provided using two or more fusion proteins. For example, the therapeutic combination can comprise a fusion protein containing an IL-2 polypeptide and a fusion protein containing an IL-12 polypeptide, a fusion protein containing an IL-2 polypeptide and a fusion protein containing an IFN polypeptide, a fusion protein containing an IL-12 polypeptide and a fusion protein containing an IFN polypeptide.


The therapeutic combinations disclosed herein can comprise a fusion polypeptide cytokine polypeptide [A], a blocking moiety [D], optionally a half-life extension moiety [H], and a protease-cleavable polypeptide linker, wherein the cytokine polypeptide and the blocking moiety and the optional half-life extension element when present are operably linked by the protease-cleavable polypeptide linker and the fusion polypeptide has attenuated cytokine receptor activating activity, wherein the cytokine-receptor activating activity of the fusion polypeptide is at least about 10× less than the cytokine receptor activating activity of the polypeptide that contains the cytokine polypeptide that is produced by cleavage of the protease cleavable linker. the fusion polypeptide has the formula:

[A]-[L1]-[H]-[L2]-[D]  (I);
[D]-[L2]-[H]-[L1]-[A]  (II);
[A]-[L1]-[D]-[L2]-[H]  (III);
[H]-[L2]-[D]-[L1]-[A]  (IV);
[H]-[L1]-[A]-[L2′]-[D]  (V);
[D]-[L1]-[A]-[L2′]-[H]  (VI);

wherein [A] is a cytokine polypeptide, [D] is a blocking moiety, [H] is a half-life extension moiety, [L1] is a protease-cleavable polypeptide linker, [L2] is an polypeptide linker that is optionally protease-cleavable, and [L2′] is a protease-cleavable polypeptide linker.


The therapeutic compositions can comprise a second fusion polypeptide comprising at least one of each of: a second cytokine polypeptide [A], a blocking moiety [D]optionally a half-life extension element [H]; and a protease-cleavable polypeptide linker [L]; wherein the cytokine polypeptide and the cytokine blocking moiety and the optional half-life extension element when present are operably linked by the protease-cleavable polypeptide linker and the fusion polypeptide has attenuated cytokine receptor activating activity, wherein the cytokine-receptor activating activity of the fusion polypeptide is at least about 10× less than the cytokine receptor activating activity of the polypeptide that contains the cytokine polypeptide that is produced by cleavage of the protease cleavable linker. The second fusion polypeptide can have the formula:

[A]-[L1]-[H]-[L2]-[D]  (I);
[D]-[L2]-[H]-[L1]-[A]  (II);
[A]-[L1]-[D]-[L2]-[H]  (III);
[H]-[L2]-[D]-[L1]-[A]  (IV);
[H]-[L1]-[A]-[L2′]-[D]  (V);
[D]-[L1]-[A]-[L2′]-[H]  (VI);

wherein [A] is a cytokine polypeptide, [D] is a blocking moiety, [H] is a half-life extension moiety, [L1] is a protease-cleavable polypeptide linker, [L2] is an polypeptide linker that is optionally protease-cleavable, and [L2′] is a protease-cleavable polypeptide linker.


The therapeutic combinations disclosed herein can comprise a first fusion protein comprising an amino acid selected from the group consisting of SEQ ID NOs. 257-300, 302-317, 325-353, 355-365, 366, 372-381, 383-385, 388-420, 579-608, 636-646, 368-371, 434-440, 453-519, 523-538, 421-430, and 539-578 and a second fusion protein comprising an amino acid sequence selected from the group consisting of selected from the group consisting of SEQ ID NOs. 257-300,302-317, 325-353, 355-365, 366, 372-381, 383-385, 388-420, 579-608, 636-646, 368-371, 434-440, 453-519, 523-538, 421-430, and 539-578. It is preferred that the first fusion protein and the second fusion protein are different. In some preferred embodiments, the therapeutic combination comprises a first fusion protein comprising an amino acid sequence selected from SEQ ID NO: 257-300,302-317, 325-353, 355-365, 366, 372-381, 383-385, 388-420, 579-608, 636-646 and a second fusion protein comprising an amino acid sequence selected from SEQ ID NO: 368-371, 434-440, 453-519, 523-538, 421-430, and 539-578. In some preferred embodiments, the therapeutic combination comprises a first fusion proteins comprising an amino acid sequence selected from SEQ ID NO: 368-371, 434-440, 453-519, or 523-538 and a second fusion protein comprising an amino acid sequence selected from SEQ ID NO: 257-300, 302-317, 325-353, 355-365, 366, 372-381, 383-385, 388-420, 636-646, 579-608, 421-430, and 539-578. In some preferred embodiments, the therapeutic combination comprises a first fusion protein comprising an amino acid sequence selected from SEQ ID NO: 421-430, and 539-578 and a second fusion protein comprising an amino acid sequence selected from SEQ ID NOs. 257-300, 302-317, 325-353, 355-365, 366, 372-381, 383-385, 388-420, 579-608, 636-646, 368-371, 434-440, 453-519, 523-538, or combinations thereof.


The therapeutic combination disclosed herein can comprise a first fusion protein that is covalently or non-covalently bonded to a second polypeptide chain and a therapeutic agent. The therapeutic combination can comprise (i) a fusion polypeptide comprising an amino acid sequence selected from SEQ ID NOs. 362, 363, 325, 286, 579, 581, or 582 and a second polypeptide chain comprising the amino acid sequence of SEQ ID NOs: 263, 264, or 333, and (ii) a second therapeutic agent, wherein the second therapeutic agent is a second fusion polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NOs. 257-300,302-317, 325-353, 355-365, 366, 372-381, 383-385, 388-420, 579-608, 636-646, 368-371, 434-440, 453-519, 523-538, 421-430, 539-578, or combinations thereof. It is preferred that the first fusion protein and the second fusion protein are not the same.


In embodiments, the therapeutic combination can comprise an additional therapeutic agent (e.g., one, two, three, four, five, or more therapeutic agents). In embodiments, the therapeutic combination can comprise 2 or more fusion proteins and one or more therapeutic agents, preferably agents for treating cancer.


Other exemplary therapeutic agents include, but are not limited to chemotherapeutic agents (e.g., Adriamycin, Cerubidine, Bleomycin, Alkeran, Velban, Oncovin, Fluorouracil, Thiotepa, Methotrexate, Bisantrene, Noantrone, Thiguanine, Cytaribine, Procarabizine), immuno-oncology agents (e.g., anti-PD-L1, anti-CTLA4, anti-PD-1, anti-CD47, anti-GD2, VEGF inhibitor), antibody-drug conjugates, cellular therapies (e.g, CAR-T, T-cell therapy), oncolytic viruses, radiation therapy and/or small molecules.


Non-limiting examples of anti-cancer agents that can be used include acivicin; aclarubicin; acodazole hydrochloride; acronine; adozelesin; aldesleukin; altretamine; ambomycin; ametantrone acetate; aminoglutethimide; amsacrine; anastrozole; anthramycin; asparaginase; asperlin; azacitidine; azetepa; azotomycin; batimastat; benzodepa; bicalutamide; bisantrene hydrochloride; bisnafide dimesylate; bizelesin; bleomycin sulfate; brequinar sodium; bropirimine; busulfan; cactinomycin; calusterone; caracemide; carbetimer, carboplatin; carmustine; carubicin hydrochloride; carzelesin; cedefingol; chlorambucil; cirolemycin; cisplatin; cladribine; crisnatol mesylate; cyclophosphamide; cytarabine; dacarbazine; dactinomycin; daunorubicin hydrochloride; decitabine; dexormaplatin; dezaguanine; dezaguanine mesylate; diaziquone; docetaxel; doxorubicin; doxorubicin hydrochloride; droloxifene; droloxifene citrate; dromostanolone propionate; duazomycin; edatrexate; eflornithine hydrochloride; elsamitrucin; enloplatin; enpromate; epipropidine; epirubicin hydrochloride; erbulozole; esorubicin hydrochloride; estramustine; estramustine phosphate sodium; etanidazole; etoposide; etoposide phosphate; etoprine; fadrozole hydrochloride; fazarabine; fenretinide; floxuridine; fludarabine phosphate; fluorouracil; flurocitabine; fosquidone; fostriecin sodium; gemcitabine; gemcitabine hydrochloride; hydroxyurea; idarubicin hydrochloride; ifosfamide; ilmofosine; interleukin II (including recombinant interleukin II, or rIL2), interferon alpha-2a; interferon alpha-2b; interferon alpha-n1 interferon alpha-n3; interferon beta-I a; interferon gamma-I b; iproplatin; irinotecan hydrochloride; lanreotide acetate; letrozole; leuprolide acetate; liarozole hydrochloride; lometrexol sodium; lomustine; losoxantrone hydrochloride; masoprocol; maytansine; mechlorethamine hydrochloride; megestrol acetate; melengestrol acetate; melphalan; menogaril; mercaptopurine; methotrexate; methotrexate sodium; metoprine; meturedepa; mitindomide; mitocarcin; mitocromin; mitogillin; mitomalcin; mitomycin; mitosper; mitotane; mitoxantrone hydrochloride; mycophenolic acid; nocodazole; nogalamycin; ormaplatin; oxisuran; paclitaxel; pegaspargase; peliomycin; pentamustine; peplomycin sulfate; perfosfamide; pipobroman; piposulfan; piroxantrone hydrochloride; plicamycin; plomestane; porfimer sodium; porfiromycin; prednimustine; procarbazine hydrochloride; puromycin; puromycin hydrochloride; pyrazofurin; riboprine; rogletimide; safingol; safingol hydrochloride; semustine; simtrazene; sparfosate sodium; sparsomycin; spirogermanium hydrochloride; spiromustine; spiroplatin; streptonigrin; streptozocin; sulofenur, talisomycin; tecogalan sodium; tegafur; teloxantrone hydrochloride; temoporfin; teniposide; teroxirone; testolactone; thiamiprine; thioguanine; thiotepa; tiazofurin; tirapazamine; toremifene citrate; trestolone acetate; triciribine phosphate; trimetrexate; trimetrexate glucuronate; triptorelin; tubulozole hydrochloride; uracil mustard; uredepa; vapreotide; verteporfin; vinblastine sulfate; vincristine sulfate; vindesine; vindesine sulfate; vinepidine sulfate; vinglycinate sulfate; vinleurosine sulfate; vinorelbine tartrate; vinzolidine sulfate; vinzolidine sulfate; vorozole; zeniplatin; zinostatin; zorubicin hydrochloride.


Accordingly, this disclosure relates to a therapeutic combination of any of the fusions proteins disclosed herein (e.g., fusion proteins that comprise an IL-2 polypeptide, and IL-12 polypeptide or an IFN polypeptide) in combination with a chemotherapeutic agent, such as Adriamycin, Cerubidine, Bleomycin, Alkeran, Velban, Oncovin, Fluorouracil, Thiotepa, Methotrexate, Bisantrene, Noantrone, Thiguanine, Cytaribine, Procarabizine. This disclosure relates to a therapeutic combination of any of the fusions proteins disclosed herein (e.g., fusion proteins that comprise an IL-2 polypeptide, and IL-12 polypeptide or an IFN polypeptide) in combination with an antibody-drug conjugate. A variety of antibody drug conjugates that are suitable for use in cancer therapy are well known and typically include an antibody that binds to a cellular antigen that is preferentially express or expressed at high levels on tumor cells, and a cytotoxic drug. This disclosure relates to a therapeutic combination of any of the fusion proteins disclosed herein (e.g., fusion proteins that comprise an IL-2 polypeptide, and IL-12 polypeptide, or an IFN polypeptide) in combination with a cellular therapy, such as CAR-T or T-cell therapy. The disclosure relates to a therapeutic combination of the fusion proteins disclosed herein (e.g., fusion proteins that comprise an IL-2 polypeptide, and IL-12 polypeptide, or an IFN polypeptide) in combination with an oncolytic virus. Exemplary oncolytic viruses include, oncolytic adenoviruses, type 1 herpes simplex virus (HSV), polioviruses, measles virus (MV), Newcastle disease virus (NDV), reoviruses, vesicular stomatitis virus (VSV), and Zika virus. This disclosure relates to a therapeutic combination of any of the fusion proteins disclosed herein (e.g., fusion proteins that comprise an IL-2 polypeptide, and IL-12 polypeptide, or an IFN polypeptide) in combination with radiation therapy, such an external beam radiation or internal therapy radiation therapy.


This disclosure relates to a therapeutic combination of any of the fusion proteins disclosed herein (e.g., fusion proteins that comprise an IL-2 polypeptide, and IL-12 polypeptide, or an IFN polypeptide) in combination with cytokines (e.g., IL-2, IL-15), signal induction inhibitors (e.g., BRAF inhibitors or MEK inhibitors), checkpoint inhibitors (e.g., PDL-1, PD-1, CTLA-4), c-met inhibitors, kinase inhibitors (e.g., VGEF inhibitors), a proteasome inhibitor, mTOR inhibitor, angiogenesis inhibitor. In embodiments, any one of the fusion proteins disclosed herein (e.g., fusion proteins that comprise an IL-2 polypeptide, and IL-12 polypeptide, or an IFN polypeptide) can be combined with an anti-PD-L1 agent or an anti-PD-1 agent. Exemplary PD-1 and/or PD-L1 inhibitors include, but are not limited to Spartalizumab, Camrelizumab, Sintilimab, Tislelizumab, Toripalimab, Dostarlimab, INCMGA00012, AMP-224, and AMP-514). In embodiments, a fusion protein comprising the amino acid sequence selected from SEQ ID NO: 257-300, 302-317, 325-353, 355-365, 366, 372-381, 383-385, 388-420, 579-608, 636-646, 368-371, 434-440, 453-519, 523-538, 421-430, and 539-578 can be combined with a check-point inhibitor, such as PDL-1, PD-1, or CTL-4.


Further provided are methods of treating a subject with or at risk of developing an of a disease or disorder, such as proliferative disease, a tumorous disease, an inflammatory disease, an immunological disorder, an autoimmune disease, an infectious disease, a viral disease, an allergic reaction, a parasitic reaction, or graft-versus-host disease. The methods disclosed herein are preferably used to treat a subject having cancer. The methods administering to a subject in need thereof an effective amount of a fusion protein as disclosed herein that is typically administered as a pharmaceutical composition. In some embodiments, the method further comprises selecting a subject with or at risk of developing such a disease or disorder. The pharmaceutical composition preferably comprises a blocked cytokine, fragment, variant, subunit, or mutein thereof that is activated at a site of inflammation or a tumor. In one embodiment, the chimeric polypeptide comprises a cytokine polypeptide, fragment or mutein thereof and a serum half-life extension element. In another embodiment, the chimeric polypeptide comprises a cytokine polypeptide, variant, subunit, fragment or mutein thereof and a blocking moiety, e.g. a steric blocking polypeptide, wherein the steric blocking polypeptide is capable of sterically blocking the activity of the cytokine polypeptide, fragment or mutein thereof. In another embodiment, the chimeric polypeptide comprises a cytokine polypeptide, fragment or mutein thereof, a blocking moiety, and a serum half-life extension element.


Inflammation is part of the complex biological response of body tissues to harmful stimuli, such as pathogens, damaged cells, or irritants, and is a protective response involving immune cells, blood vessels, and molecular mediators. The function of inflammation is to eliminate the initial cause of cell injury, clear out necrotic cells and tissues damaged from the original insult and the inflammatory process, and to initiate tissue repair. Inflammation can occur from infection, as a symptom or a disease, e.g., cancer, atherosclerosis, allergies, myopathies, HIV, obesity, or an autoimmune disease. An autoimmune disease is a chronic condition arising from an abnormal immune response to a self-antigen. Autoimmune diseases that may be treated with the polypeptides disclosed herein include but are not limited to lupus, celiac disease, diabetes mellitus type 1, Graves disease, inflammatory bowel disease, multiple sclerosis, psoriasis, rheumatoid arthritis, and systemic lupus erythematosus.


The pharmaceutical composition can comprise one or more protease-cleavable linker sequences. The linker sequence serves to provide flexibility between polypeptides, such that each polypeptide is capable of inhibiting the activity of the first polypeptide. The linker sequence can be located between any or all of the cytokine polypeptide, fragment or mutein thereof, the blocking moiety, and serum half-life extension element. Optionally, the composition comprises, two, three, four, or five linker sequences. The linker sequence, two, three, or four linker sequences can be the same or different linker sequences. In one embodiment, the linker sequence comprises GGGGS (SEQ ID NO.: 449), GSGSGS (SEQ ID NO.: 450), or G(SGGG)2SGGT (SEQ ID NO.: 451). In another embodiment, the linker comprises a protease-cleavable sequence selected from group consisting of HSSKLQ (SEQ ID NO.: 25), GPLGVRG (SEQ ID NO.: 445), IPVSLRSG (SEQ ID NO.: 446), VPLSLYSG (SEQ ID NO.: 447), and SGESPAYYTA (SEQ ID NO.: 448).


In some embodiments, the linker is cleaved by a protease selected from the group consisting of a kallikrein, thrombin, chymase, carboxypeptidase A, cathepsin G, an elastase, PR-3, granzyme M, a calpain, a matrix metalloproteinase (MMP), a plasminogen activator, a cathepsin, a caspase, a tryptase, or a tumor cell surface protease.


Suitable linkers can be of different lengths, such as from 1 amino acid (e.g., Gly) to 20 amino acids, from 2 amino acids to 15 amino acids, from 3 amino acids to 12 amino acids, including 4 amino acids to 10 amino acids, amino acids to 9 amino acids, 6 amino acids to 8 amino acids, or 7 amino acids to 8 amino acids, and may be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, or 60 amino acids.


Further provided are methods of treating a subject with or at risk of developing cancer. The methods comprise administering to the subject in need thereof an effective amount of a chimeric polypeptide (a fusion protein) as disclosed herein that is typically administered as a pharmaceutical composition. In some embodiments, the method further comprises selecting a subject with or at risk of developing cancer. The pharmaceutical composition preferably comprises a blocked cytokine, fragment or mutein thereof that is activated at a tumor site.


The methods disclosed herein can be used for any suitable cancer including, hematological malignancy, solid tumors, sarcomas, carcinomas, and other solid and non-solid tumors. Illustrative suitable cancers include, for example, acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), adrenocortical carcinoma, anal cancer, appendix cancer, astrocytoma, basal cell carcinoma, brain tumor, bile duct cancer, bladder cancer, bone cancer, breast cancer, bronchial tumor, carcinoma of unknown primary origin, cardiac tumor, cervical cancer, chordoma, colon cancer, colorectal cancer, craniopharyngioma, ductal carcinoma, embryonal tumor, endometrial cancer, ependymoma, esophageal cancer, esthesioneuroblastoma, fibrous histiocytoma, Ewing sarcoma, eye cancer, germ cell tumor, gallbladder cancer, gastric cancer, gastrointestinal carcinoid tumor, gastrointestinal stromal tumor, gestational trophoblastic disease, glioma, head and neck cancer, hepatocellular cancer, histiocytosis, Hodgkin lymphoma, hypopharyngeal cancer, intraocular melanoma, islet cell tumor, Kaposi sarcoma, kidney cancer, Langerhans cell histiocytosis, laryngeal cancer, lip and oral cavity cancer, liver cancer, lobular carcinoma in situ, lung cancer, macroglobulinemia, malignant fibrous histiocytoma, melanoma, Merkel cell carcinoma, mesothelioma, metastatic squamous neck cancer with occult primary, midline tract carcinoma involving NUT gene, mouth cancer, multiple endocrine neoplasia syndrome, multiple myeloma, mycosis fingoides, myelodysplastic syndrome, myelodysplastic/myeloproliferative neoplasm, nasal cavity and par nasal sinus cancer, nasopharyngeal cancer, neuroblastoma, non-small cell lung cancer, oropharyngeal cancer, osteosarcoma, ovarian cancer, pancreatic cancer, papillomatosis, paraganglioma, parathyroid cancer, penile cancer, pharyngeal cancer, pheochromocytomas, pituitary tumor, pleuropulmonary blastoma, primary central nervous system lymphoma, prostate cancer, rectal cancer, renal cell cancer, renal pelvis and ureter cancer, retinoblastoma, rhabdoid tumor, salivary gland cancer, Sezary syndrome, skin cancer, small cell lung cancer, small intestine cancer, soft tissue sarcoma, spinal cord tumor, stomach cancer, T-cell lymphoma, teratoid tumor, testicular cancer, throat cancer, thymoma and thymic carcinoma, thyroid cancer, urethral cancer, uterine cancer, vaginal cancer, vulvar cancer, and Wilms tumor.


Preferably, the tumor is a solid tumor. Colon cancer, lung cancer, melanoma, sarcoma, renal cell carcinoma, and breast cancer are of particular interest.


The method can further involve the administration of one or more additional agents to treat cancer, such as one or more cytokine fusion proteins described herein, chemotherapeutic agents (e.g., Adriamycin, Cerubidine, Bleomycin, Alkeran, Velban, Oncovin, Fluorouracil, Thiotepa, Methotrexate, Bisantrene, Noantrone, Thiguanine, Cytaribine, Procarabizine), immuno-oncology agents (e.g., anti-PD-L1, anti-CTLA4, anti-PD-1, anti-CD47, anti-GD2, VEGF inhibitor), cellular therapies (e.g, CAR-T, T-cell therapy), oncolytic viruses, radiation therapy and the like.


In embodiments, the fusion proteins described herein, can be administered with one or more additional cytokine fusion proteins that are inducible. For example, a fusion protein containing an IL-2 polypeptide, as described herein, may be administered with fusion protein containing an IL-12 polypeptide, an IFN polypeptide, a different IL-2 polypeptide or a combinations thereof. A fusion protein containing an IL-12 polypeptide, as described herein, may be administered with a fusion protein containing an IL-2 polypeptide, an IFN polypeptide, a different IL-12 polypeptide or a combinations thereof. A fusion protein containing an IFN polypeptide, as described herein, may be administered with a fusion protein containing anIL-2 polypeptide, an IL-12 polypeptide, an different IFN polypeptide, or a combinations thereof.


In some preferred embodiments, a first fusion protein comprising the amino acid sequence of any one of SEQ ID NOS: 257-300, 302-317, 325-353, 355-365, 366, 372-381, 383-385, 388-420, 579-608, and 636-646 can be administered with a second different fusion protein comprising an amino acid sequence of any one of SEQ ID NOs. 368-371, 434-440, 453-519, 523-538, 421-430, and 539-578. In some preferred embodiments, a first fusion proteins comprising the amino acid sequence of any one of 368-371, 434-440, 453-519, or 523-538 can be administered with a second different fusion protein comprising an amino acid sequence of any one of SEQ ID NOs. 257-300, 302-317, 325-353, 355-365, 366, 372-381, 383-385, 388-420, 579-608, 636-646, 421-430, and 539-578. In some preferred embodiments, a first fusion protein comprising the amino acid sequence of any one of SEQ ID NOs. 421-430, and 539-578 can be administered with a second different fusion protein comprising the amino acid sequence of any one of SEQ ID NOs. 257-300, 302-317, 325-353, 355-365, 366, 372-381, 383-385, 388-420, 579-608, 636-646, 368-371, 434-440, 453-519, 523-538, or combinations thereof.


Further exemplary agents that can be administered in combination with one or more inducible cytokine fusion proteins described herein include, but are not limited to cytokines (e.g., IL-2, IL-15), signal induction inhibitors (e.g., BRAF inhibitors or MEK inhibitors), checkpoint inhibitors (e.g., PDL-1, PD-1, CTLA-4), c-met inhibitors, kinase inhibitors (e.g., VGEF inhibitors), a proteasome inhibitor, mTOR inhibitor, angiogenesis inhibitor.


A preferred immuno-oncology agent is an anti-PD-L1 agent or an anti-PD-1. Exemplary PD-1 and/or PD-L1 inhibitors include, but are not limited to Spartalizumab, Camrelizumab, Sintilimab, Tislelizumab, Toripalimab, Dostarlimab, INCMGA00012, AMP-224, and AMP-514). In embodiments, a fusion protein disclosed as 257-300, 302-317, 325-353, 355-365, 366, 372-381, 383-385, 388-420, 579-608, 636-646, 368-371, 434-440, 453-519, 523-538, 421-430, and 539-578 can be administered in combination with a check-point inhibitor, such as PDL-1, PD-1, or CTL-4.


Provided herein are pharmaceutical formulations or compositions containing the chimeric polypeptides and a pharmaceutically acceptable carrier. The herein provided compositions are suitable for administration in vitro or in vivo. By pharmaceutically acceptable carrier is meant a material that is not biologically or otherwise undesirable, i.e., the material is administered to a subject without causing undesirable biological effects or interacting in a deleterious manner with the other components of the pharmaceutical formulation or composition in which it is contained. The carrier is selected to minimize degradation of the active ingredient and to minimize adverse side effects in the subject.


Suitable carriers and their formulations are described in Remington: The Science and Practice of Pharmacy, 21st Edition, David B. Troy, ed., Lippicott Williams & Wilkins (2005). Typically, an appropriate amount of a pharmaceutically-acceptable salt is used in the formulation to render the formulation isotonic, although the formulate can be hypertonic or hypotonic if desired. Examples of the pharmaceutically-acceptable carriers include, but are not limited to, sterile water, saline, buffered solutions like Ringers solution, and dextrose solution. The pH of the solution is generally about 5 to about 8 or from about 7 to 7.5. Other carriers include sustained release preparations such as semipermeable matrices of solid hydrophobic polymers containing the immunogenic polypeptides. Matrices are in the form of shaped articles, e.g., films, liposomes, or microparticles. Certain carriers may be more preferable depending upon, for instance, the route of administration and concentration of composition being administered. Carriers are those suitable for administration of the chimeric polypeptides or nucleic acid sequences encoding the chimeric polypeptides to humans or other subjects.


The pharmaceutical formulations or compositions are administered in a number of ways depending on whether local or systemic treatment is desired and on the area to be treated. The compositions are administered via any of several routes of administration, including topically, orally, parenterally, intravenously, intra-articularly, intraperitoneally, intramuscularly, subcutaneously, intracavity, transdermally, intrahepatically, intracranially, nebulization/inhalation, or by installation via bronchoscopy. In some embodiments, the compositions are administered locally (non-systemically), including intratumorally, intra-articularly, intrathecally, etc.


Preparations for parenteral administration include sterile aqueous or non-aqueous solutions, suspensions, and emulsions. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl oleate. Aqueous carriers include water, alcoholic/aqueous solutions, emulsions or suspensions, including saline and buffered media. Parenteral vehicles include sodium chloride solution, Ringer's dextrose, dextrose and sodium chloride, lactated Ringer's, or fixed oils. Intravenous vehicles include fluid and nutrient replenishers, electrolyte replenishers (such as those based on Ringer's dextrose), and the like. Preservatives and other additives are optionally present such as, for example, antimicrobials, anti-oxidants, chelating agents, and inert gases and the like.


Formulations for topical administration include ointments, lotions, creams, gels, drops, suppositories, sprays, liquids, and powders. Conventional pharmaceutical carriers, aqueous, powder, or oily bases, thickeners and the like are optionally necessary or desirable.


Compositions for oral administration include powders or granules, suspension or solutions in water or non-aqueous media, capsules, sachets, or tables. Thickeners, flavorings, diluents, emulsifiers, dispersing aids or binders are optionally desirable.


Optionally, the chimeric polypeptides or nucleic acid sequences encoding the chimeric polypeptides are administered by a vector. There are a number of compositions and methods which can be used to deliver the nucleic acid molecules and/or polypeptides to cells, either in vitro or in vivo via, for example, expression vectors. These methods and compositions can largely be broken down into two classes: viral based delivery systems and non-viral based delivery systems. Such methods are well known in the art and readily adaptable for use with the compositions and methods described herein. Such compositions and methods can be used to transfect or transduce cells in vitro or in vivo, for example, to produce cell lines that express and preferably secrete the encoded chimeric polypeptide or to therapeutically deliver nucleic acids to a subject. The components of the chimeric nucleic acids disclosed herein typically are operably linked in frame to encode a fusion protein.


As used herein, plasmid or viral vectors are agents that transport the disclosed nucleic acids into the cell without degradation and include a promoter yielding expression of the nucleic acid molecule and/or polypeptide in the cells into which it is delivered. Viral vectors are, for example, Adenovirus, Adeno-associated virus, herpes virus, Vaccinia virus, Polio virus, Sindbis, and other RNA viruses, including these viruses with the HIV backbone. Also preferred are any viral families which share the properties of these viruses which make them suitable for use as vectors. Retroviral vectors, in general are described by Coffin et al., Retroviruses, Cold Spring Harbor Laboratory Press (1997), which is incorporated by reference herein for the vectors and methods of making them. The construction of replication-defective adenoviruses has been described (Berkner et al., J. Virol. 61:1213-20 (1987); Massie et al., Mol. Cell. Biol. 6:2872-83 (1986); Haj-Ahmad et al., J. Virol. 57:267-74 (1986); Davidson et al., J. Virol. 61:1226-39 (1987); Zhang et al., BioTechniques 15:868-72 (1993)). The benefit and the use of these viruses as vectors is that they are limited in the extent to which they can spread to other cell types, since they can replicate within an initial infected cell, but are unable to form new infectious viral particles. Recombinant adenoviruses have been shown to achieve high efficiency after direct, in vivo delivery to airway epithelium, hepatocytes, vascular endothelium, CNS parenchyma, and a number of other tissue sites. Other useful systems include, for example, replicating and host-restricted non-replicating vaccinia virus vectors.


The provided polypeptides and/or nucleic acid molecules can be delivered via virus like particles. Virus like particles (VLPs) consist of viral protein(s) derived from the structural proteins of a virus. Methods for making and using virus like particles are described in, for example, Garcea and Gissmann, Current Opinion in Biotechnology 15:513-7 (2004).


The provided polypeptides can be delivered by subviral dense bodies (DBs). DBs transport proteins into target cells by membrane fusion. Methods for making and using DBs are described in, for example, Pepperl-Klindworth et al., Gene Therapy 10:278-84 (2003).


The provided polypeptides can be delivered by tegument aggregates. Methods for making and using tegument aggregates are described in International Publication No. WO 2006/110728.


Non-viral based delivery methods, can include expression vectors comprising nucleic acid molecules and nucleic acid sequences encoding polypeptides, wherein the nucleic acids are operably linked to an expression control sequence. Suitable vector backbones include, for example, those routinely used in the art such as plasmids, artificial chromosomes, BACs, YACs, or PACs. Numerous vectors and expression systems are commercially available from such corporations as Novagen (Madison, Wis.), Clonetech (Pal Alto, Calif.), Stratagene (La Jolla, Calif.), and Invitrogen/Life Technologies (Carlsbad, Calif.). Vectors typically contain one or more regulatory regions. Regulatory regions include, without limitation, promoter sequences, enhancer sequences, response elements, protein recognition sites, inducible elements, protein binding sequences, 5′ and 3′ untranslated regions (UTRs), transcriptional start sites, termination sequences, polyadenylation sequences, and introns. Such vectors can also be used to make the chimeric polypeptides by expression is a suitable host cell, such as CHO cells.


Preferred promoters controlling transcription from vectors in mammalian host cells may be obtained from various sources, for example, the genomes of viruses such as polyoma, Simian Virus 40 (SV40), adenovirus, retroviruses, hepatitis B virus, and most preferably cytomegalovirus (CMV), or from heterologous mammalian promoters, e.g. β-actin promoter or EF1α promoter, or from hybrid or chimeric promoters (e.g., CMV promoter fused to the β-actin promoter). Of course, promoters from the host cell or related species are also useful herein.


Enhancer generally refers to a sequence of DNA that functions at no fixed distance from the transcription start site and can be either 5′ or 3′ to the transcription unit. Furthermore, enhancers can be within an intron as well as within the coding sequence itself. They are usually between 10 and 300 base pairs (bp) in length, and they function in cis. Enhancers usually function to increase transcription from nearby promoters. Enhancers can also contain response elements that mediate the regulation of transcription. While many enhancer sequences are known from mammalian genes (globin, elastase, albumin, fetoprotein, and insulin), typically one will use an enhancer from a eukaryotic cell virus for general expression. Preferred examples are the SV40 enhancer on the late side of the replication origin, the cytomegalovirus early promoter enhancer, the polyoma enhancer on the late side of the replication origin, and adenovirus enhancers.


The promoter and/or the enhancer can be inducible (e.g. chemically or physically regulated). A chemically regulated promoter and/or enhancer can, for example, be regulated by the presence of alcohol, tetracycline, a steroid, or a metal. A physically regulated promoter and/or enhancer can, for example, be regulated by environmental factors, such as temperature and light. Optionally, the promoter and/or enhancer region can act as a constitutive promoter and/or enhancer to maximize the expression of the region of the transcription unit to be transcribed. In certain vectors, the promoter and/or enhancer region can be active in a cell type specific manner. Optionally, in certain vectors, the promoter and/or enhancer region can be active in all eukaryotic cells, independent of cell type. Preferred promoters of this type are the CMV promoter, the SV40 promoter, the β-actin promoter, the EF1α promoter, and the retroviral long terminal repeat (LTR).


The vectors also can include, for example, origins of replication and/or markers. A marker gene can confer a selectable phenotype, e.g., antibiotic resistance, on a cell. The marker product is used to determine if the vector has been delivered to the cell and once delivered is being expressed. Examples of selectable markers for mammalian cells are dihydrofolate reductase (DHFR), thymidine kinase, neomycin, neomycin analog G418, hygromycin, puromycin, and blasticidin. When such selectable markers are successfully transferred into a mammalian host cell, the transformed mammalian host cell can survive if placed under selective pressure. Examples of other markers include, for example, the E. coli lacZ gene, green fluorescent protein (GFP), and luciferase. In addition, an expression vector can include a tag sequence designed to facilitate manipulation or detection (e.g., purification or localization) of the expressed polypeptide. Tag sequences, such as GFP, glutathione S-transferase (GST), polyhistidine, c-myc, hemagglutinin, or FLAG™ tag (Kodak; New Haven, Conn.) sequences typically are expressed as a fusion with the encoded polypeptide. Such tags can be inserted anywhere within the polypeptide including at either the carboxyl or amino terminus.


As used herein, the terms peptide, polypeptide, or protein are used broadly to mean two or more amino acids linked by a peptide bond. Protein, peptide, and polypeptide are also used herein interchangeably to refer to amino acid sequences. It should be recognized that the term polypeptide is not used herein to suggest a particular size or number of amino acids comprising the molecule and that a peptide of the invention can contain up to several amino acid residues or more. As used throughout, subject can be a vertebrate, more specifically a mammal (e.g. a human, horse, cat, dog, cow, pig, sheep, goat, mouse, rabbit, rat, and guinea pig), birds, reptiles, amphibians, fish, and any other animal. The term does not denote a particular age or sex. Thus, adult and newborn subjects, whether male or female, are intended to be covered. As used herein, patient or subject may be used interchangeably and can refer to a subject with a disease or disorder (e.g. cancer). The term patient or subject includes human and veterinary subjects.


A subject at risk of developing a disease or disorder can be genetically predisposed to the disease or disorder, e.g., have a family history or have a mutation in a gene that causes the disease or disorder, or show early signs or symptoms of the disease or disorder. A subject currently with a disease or disorder has one or more than one symptom of the disease or disorder and may have been diagnosed with the disease or disorder.


The methods and agents as described herein are useful for both prophylactic and therapeutic treatment. For prophylactic use, a therapeutically effective amount of the chimeric polypeptides or chimeric nucleic acid sequences encoding the chimeric polypeptides described herein are administered to a subject prior to onset (e.g., before obvious signs of cancer or inflammation) or during early onset (e.g., upon initial signs and symptoms of cancer or inflammation). Prophylactic administration can occur for several days to years prior to the manifestation of symptoms of cancer or inflammation. Prophylactic administration can be used, for example, in the preventative treatment of subjects diagnosed with a genetic predisposition to cancer. Therapeutic treatment involves administering to a subject a therapeutically effective amount of the chimeric polypeptides or nucleic acid sequences encoding the chimeric polypeptides described herein after diagnosis or development of cancer or inflammation (e.g., an autoimmune disease). Prophylactic use may also apply when a patient is undergoing a treatment, e.g., a chemotherapy, in which inflammation is expected.


According to the methods taught herein, the subject is administered an effective amount of the agent (e.g., a chimeric polypeptide). The terms effective amount and effective dosage are used interchangeably. The term effective amount is defined as any amount necessary to produce a desired physiologic response. Effective amounts and schedules for administering the agent may be determined empirically, and making such determinations is within the skill in the art. The dosage ranges for administration are those large enough to produce the desired effect in which one or more symptoms of the disease or disorder are affected (e.g., reduced or delayed). The dosage should not be so large as to cause substantial adverse side effects, such as unwanted cross-reactions, anaphylactic reactions, and the like. Generally, the dosage will vary with the age, condition, sex, type of disease, the extent of the disease or disorder, route of administration, or whether other drugs are included in the regimen, and can be determined by one of skill in the art. The dosage can be adjusted by the individual physician in the event of any contraindications. Dosages can vary and can be administered in one or more dose administrations daily, for one or several days. Guidance can be found in the literature for appropriate dosages for given classes of pharmaceutical products.


As used herein the terms treatment, treat, or treating refers to a method of reducing the effects of a disease or condition or symptom of the disease or condition. Thus, in the disclosed method, treatment can refer to a 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or 100% reduction in the severity of an established disease or condition or symptom of the disease or condition. For example, a method for treating a disease is considered to be a treatment if there is a 10% reduction in one or more symptoms of the disease in a subject as compared to a control. Thus, the reduction can be a 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, or any percent reduction in between 10% and 100% as compared to native or control levels. It is understood that treatment does not necessarily refer to a cure or complete ablation of the disease, condition, or symptoms of the disease or condition.


As used herein, the terms prevent, preventing, and prevention of a disease or disorder refers to an action, for example, administration of the chimeric polypeptide or nucleic acid sequence encoding the chimeric polypeptide, that occurs before or at about the same time a subject begins to show one or more symptoms of the disease or disorder, which inhibits or delays onset or exacerbation of one or more symptoms of the disease or disorder. As used herein, references to decreasing, reducing, or inhibiting include a change of 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% or greater as compared to a control level. Such terms can include but do not necessarily include complete elimination.


IL-2 variants have been developed that are selective for IL2Rαβγ relative to IL2Rβγ (Shanafelt, A. B., et al., 2000, Nat Biotechnol. 18:1197-202; Cassell, D. J., et. al., 2002, Curr Pharm Des., 8:2171-83). These variants have amino acid substitutions which reduce their affinity for IL2RB. Because IL-2 has undetectable affinity for IL2RG, these variants consequently have reduced affinity for the IL2Rβγ receptor complex and reduced ability to activate IL2Rβγ-expressing cells, but retain the ability to bind IL2RA and the ability to bind and activate the IL2Rαβγ receptor complex.


One of these variants, IL2/N88R (Bay 50-4798), was clinically tested as a low-toxicity version of IL-2 as an immune system stimulator, based on the hypothesis that IL2Rβγ-expressing NK cells are a major contributor to toxicity. Bay 50-4798 was shown to selectively stimulate the proliferation of activated T cells relative to NK cells, and was evaluated in phase I/II clinical trials in cancer patients (Margolin, K., et. al., 2007, Clin Cancer Res., 13:3312-9) and HIV patients (Davey, R. T., et. al., 2008, J Interferon Cytokine Res., 28:89-100). These clinical trials showed that Bay 50-4798 was considerably safer and more tolerable than aldesleukin, and also showed that it increased the levels of CD4+CD25+ T cells, a cell population enriched in Treg cells. Subsequent to these trials, research in the field more fully established the identity of Treg cells and demonstrated that Treg cells selectively express IL2Rαβγ (reviewed in Malek, T. R., et al., 2010, Immunity, 33:153-65).


In addition, mutants can be made that selectively alter the affinity for the CD25 chain relative to native I1-2.


IL-2 can be engineered to produce mutants that bind the IL-2R complex generally or the IL-2Ra subunit specifically with an affinity that differs from that of the corresponding wild-type IL-2 or of a presently available mutant (referred to as C125S, as the cysteine residue at position 125 is replaced with a serine residue).


Accordingly, the present invention features mutant interleukin-2 (IL-2*) polypeptides that include an amino acid sequence that is at least 80% identical to wild-type IL-2 (e.g., 85, 87, 90, 95, 97, 98, or 99% identical) and that bind, as compared to WT IL-2, with higher to the IL-2 trimeric receptor relative to the dimeric IL-2 receptor. Typically, the muteins will also bind an IL-2 receptor α subunit (IL-2Rα) with an affinity that is greater than the affinity with which wild type IL-2 binds the IL-2Rα. The amino acid sequence within mutant IL-2 polypeptides can vary from SEQ ID NO:1 (UniProtKB accession number P60568) by virtue of containing (or only containing) one or more amino acid substitutions, which may be considered conservative or non-conservative substitutions. Non-naturally occurring amino acids can also be incorporated. Alternatively, or in addition, the amino acid sequence can vary from SEQ ID NO:1 (which may be considered the “reference” sequence) by virtue of containing and addition and/or deletion of one or more amino acid residues. More specifically, the amino acid sequence can differ from that of SEQ ID NO:1 by virtue of a mutation at least one of the following positions of SEQ ID NO:1: 1, 4, 8, 9, 10, 11, 13, 15, 26, 29, 30, 31, 35, 37, 46, 48, 49, 54, 61, 64, 67, 68, 69, 71, 73, 74, 75, 76, 79, 88, 89, 90, 92, 99, 101, 103, 114, 125, 128, or 133 (or combinations thereof). As noted, as few as one of these positions may be altered, as may two, three, four, five, six, seven, eight, nine, ten, or 11 or more (including up to all) of the positions. For example, the amino acid sequence can differ from SEQ ID NO:1 at positions 69 and 74 and further at one or more of positions 30, 35, and 128. The amino acid sequence can also differ from SEQ ID NO:2 (as disclosed in U.S. Pat. No. 7,569,215, incorporated herein by reference) at one of the following sets of positions: (a) positions 64, 69, and 74; (b) positions 69, 74, and 101; (c) positions 69, 74, and 128; (d) positions 30, 69, 74, and 103; (e) positions 49, 69, 73, and 76; (f) positions 69, 74, 101, and 133; (g) positions 30, 69, 74, and 128; (h) positions 69, 74, 88, and 99; (i) positions 30, 69, 74, and 128; (j) positions 9, 11, 35, 69, and 74; (k) positions 1, 46, 49, 61, 69, and 79; (l) positions 48, 68, 71, 90, 103, and 114; (m) positions 4, 10, 11, 69, 74, 88, and 133; (n) positions 15, 30 31, 35, 48, 69, 74, and 92; (O) positions 30, 68, 69, 71, 74, 75, 76, and 90; (p) positions 30, 31, 37, 69, 73, 74, 79, and 128; (q) positions 26, 29, 30, 54, 67, 69, 74, and 92; (r) positions 8, 13, 26, 30, 35, 37, 69, 74, and 92; and (s) positions 29, 31, 35, 37, 48, 69, 71, 74, 88, and 89. Aside from mutations at these positions, the amino acid sequence of the mutant IL-2 polypeptide can otherwise be identical to SEQ ID NO:1. With respect to specific substitutions, the amino acid sequence can differ from SEQ ID NO:1 by virtue of having one or more of the following mutations: A1T, S4P, K8R, K9T, T10A, Q11R, Q13R, E15K, N26D, N29S, N30S, N30D, N30T, Y31H, Y31C, K35R, T37A, T37R, M46L, K48E, K49R, K49E, K54R, E61D, K64R, E67G, E68D, V69A, N71T, N71A, N71R, A73V, Q74P, S75P, K76E, K76R, H79R, N88D, I89V, N90H, I92T, S99P, T101A, F103S, I114V, I128T, I128A, T133A, or T133N. Our nomenclature is consistent with that of the scientific literature, where the single letter code of the amino acid in the wild-type or reference sequence is followed by its position within the sequence and then by the single letter code of the amino acid with which it is replaced. Thus, A1T designates a substitution of the alanine residue a position 1 with threonine. Other mutant polypeptides within the scope of the invention include those that include a mutant of SEQ ID NO:2 having substitutions at V69 (e.g. A) and Q74 (e.g., P). For example, the amino acid sequence can include one of the following sets of mutations with respect to SEQ ID NO:2: (a) K64R, V69A, and Q74P; (b) V69A, Q74P, and T101A; (c) V69A, Q74P, and I128T; (d) N30D, V69A, Q74P, and F103S; (e) K49E, V69A, A73V, and K76E; (f) V69A, Q74P, T101A, and T133N; (g) N30S, V69A, Q74P, and I128A; (h) V69A, Q74P, N88D, and S99P; (i) N30S, V69A, Q74P, and I128T; (j) K9T, Q11R, K35R, V69A, and Q74P; (k) A1T, M46L, K49R, E61D, V69A, and H79R; (1) K48E, E68D, N71T, N90H, F103S, and I114V; (m) S4P, T10A, Q11R, V69A, Q74P, N88D, and T133A; (n) E15K, N30S Y31H, K35R, K48E, V69A, Q74P, and I92T; (o) N30S, E68D, V69A, N71A, Q74P, S75P, K76R, and N90H; (p) N30S, Y31C, T37A, V69A, A73V, Q74P, H79R, and I128T; (q) N26D, N29S, N30S, K54R, E67G, V69A, Q74P, and I92T; (r) K8R, Q13R, N26D, N30T, K35R, T37R, V69A, Q74P, and I92T; and (s) N29S, Y31H, K35R, T37A, K48E, V69A, N71R, Q74P, N88D, and I89V. SEQ ID NO:2 is disclosed in U.S. Pat. No. 7,569,215, which is incorporated herein by reference as an exemplary IL-2 polypeptide sequence that can be used in the invention.


As noted above, any of the mutant IL-2 polypeptides disclosed herein can include the sequences described; they can also be limited to the sequences described and otherwise identical to SEQ ID NO:1. Moreover, any of the mutant IL-2 polypeptides described herein can optionally include a substitution of the cysteine residue at position 125 with another residue (e.g., serine) and/or can optionally include a deletion of the alanine residue at position 1 of SEQ ID NO:1.


The mutant IL-2 polypeptides disclosed herein can bind to the IL-2Rα subunit with a Kd of less than about 28 nM (e.g., less than about 25 nM; less than about 5 nM; about 1 nM; less than about 500 pM; or less than about 100 pM). More specifically, a mutant IL-2 polypeptide can have an affinity equilibrium constant less than 1.0 nM (e.g., about 0.8, 0.6, 0.4, or 0.2 nM). Affinity can also be expressed as a relative rate of dissociation from an IL-2Rα subunit or from an IL-2 receptor complex (e.g., a complex expressed on the surface of a cell or otherwise membrane bound). For example, the mutant IL-2 polypeptides can dissociate from, e.g., IL-2Rα, at a decreased rate relative to a wild-type polypeptide or to an IL-2 based therapeutic, e.g., IL-2*. Alternatively, affinity can be characterized as the time, or average time, an IL-2* polypeptide persists on, for example, the surface of a cell expressing an IL-2R. For example, an IL-2*polypeptide can persist on the receptor for at least about 2, 5, 10, 50, 100, or 250 times (or more).


Disclosed are materials, compositions, and components that can be used for, can be used in conjunction with, can be used in preparation for, or are products of the disclosed methods and compositions. These and other materials are disclosed herein, and it is understood that when combinations, subsets, interactions, groups, etc. of these materials are disclosed that while specific reference of each various individual and collective combinations and permutations of these compounds may not be explicitly disclosed, each is specifically contemplated and described herein. For example, if a method is disclosed and discussed and a number of modifications that can be made to a number of molecules including the method are discussed, each and every combination and permutation of the method, and the modifications that are possible are specifically contemplated unless specifically indicated to the contrary. Likewise, any subset or combination of these is also specifically contemplated and disclosed. This concept applies to all aspects of this disclosure including, but not limited to, steps in methods using the disclosed compositions. Thus, if there are a variety of additional steps that can be performed, it is understood that each of these additional steps can be performed with any specific method steps or combination of method steps of the disclosed methods, and that each such combination or subset of combinations is specifically contemplated and should be considered disclosed.


Publications cited herein and the material for which they are cited are hereby specifically incorporated by reference in their entireties.


EXAMPLES

The following are examples of methods and compositions of the invention. It is understood that various other embodiments may be practiced, given the general description provided herein.


Example 1: Detection of IL-2, IL-2 Mutein, IL-2Rα and IL-2R7 in Fusion Proteins by ELISA

IL-2 mutein is detected with a commercially available antibody, e.g., the anti-IL-2 monoclonal (JES6-1A12) (BD Pharmingen; San Jose, Calif.). A positive control is used to show whether the monoclonal antibody recognizes the cytokine or mutein. Antibodies against IL-2Rα and IL-2Rγ chain are also used. Wells of a 96-well plate are coated with an antibody (2.5 μg/ml) in PBS. Wells are blocked with 5% non-fat milk in PBS with 0.2% Tween®20 (PBS-M-Tw) and fusion proteins are added for 1-2 hours at 37° C. After washing, an anti-IL-2 biotin-labeled antibody, e.g., JES5H4 (BD Pharmingen) is added and binding is detected using Strepavidin HRP (Southern Biotechnology Associates; Birmingham, Ala.). The ELISA plate is developed by adding 50 μl O-phenylenediamine (OPD) (Sigma-Aldrich) in 0.1M Citrate pH 4.5 and 0.04% H2O2, stopped by adding 50 μl/well 2N H2SO4 and the absorbance was read at 490 nm.


Example 2: Protease Cleavage of Fusion Protein by MMP9 Protease

One of skill in the art would be familiar with methods of setting up protein cleavage assay. 100 ug of protein in 1×PBS pH 7.4 were cleaved with 1 μg active MMP9 (Sigma catalog #SAE0078-50 or Enzo catalog BML-SE360) and incubated at room temperature for up to 16 hours. Digested protein is subsequently used in functional assays or stored at −80° C. prior to testing. Extent of cleavage was monitored by SDS PAGE using methods well known in the art. As shown in FIGS. 10, 13, 18A, 18B, 24B, 24C, and 27A full cleavage of the fusion proteins by MMP9 protease is seen.


Example 3: CTLL-2 Assay

CTLL2 cells (ATCC) were plated in suspension at a concentration of 500,000 cells/well in culture media with or without 40 mg/ml human serum albumin (HSA) and stimulated with a dilution series of recombinant hIL2 or activatable hIL2 for 72 hours at 37° C. and 5% CO2. Activity of uncleaved and cleaved activatable hIL2 was tested. Cleaved activatable hIL2 was generated by incubation with active MMP9. Cell activity was assessed using a CellTiter-Glo (Promega) luminescence-based cell viability assay.


Example 4: Protease Cleavage of the IL-2/IL-2Rα/IL-2Rγ Chimeric Polypeptide Results in Increased Accessibility to Antibodies and Biologically Active IL-2 Mutein

The IL-2 mutein fusion proteins are biochemically characterized before and after cleavage with a protease, e.g., PSA. Immunoblot analyses will show that the fusion proteins can be cleaved by PSA and that there is an increase in intensity of the predicted low molecular weight cleavage product of approximately 20 kDa reactive with an anti-IL-2 antibody after treatment of the samples with PSA. The degree of cleavage is dependent upon the amount of PSA as well as the time of incubation. Interestingly, when the fusion protein is analyzed before and after PSA treatment by ELISA, it was found that the apparent amount of IL-2 is increased after PSA cleavage. In this experiment, there is an approximately 2 or 4-fold increase in the apparent amount of IL-2 detected using this sandwich ELISA depending on the construct, suggesting that the antibody binding is partially hindered in the intact fusion protein. Aliquots of the same samples are also analyzed after PSA treatment using the CTLL-2 cell line that requires IL-2 for growth and survival and the viability of cells can be ascertained using the colorimetric MTT assay. In this assay, the more a supernatant can be diluted, the more biologically active IL-2 it contains, and there is an increase in the amount of biologically active IL-2 after PSA cleavage. The amount of IL-2 mutein increase will suggest that after PSA cleavage there is an increase in the predicted low molecular weight cleavage fragment of approximately 20 kDa reactive with an anti-IL-2 antibody, an increase in antibody accessibility, and most importantly, an increase in the amount of biologically active IL-2 mutein.


Example 5. In Vivo Delivery of a Protease Activated Fusion Protein Results in Decreased Tumor Growth

The chimeric polypeptide is examined to determine if it could have biological effects in vivo. For these experiments a system is used in which tumor cells injected intraperitoneally rapidly and preferentially attach and grow initially on the milky spots, a series of organized immune aggregates found on the omentum (Gerber et al., Am. J. Pathol. 169:1739-52 (2006)). This system offers a convenient way to examine the effects of fusion protein treatment on tumor growth since fusion proteins can be delivered intraperitoneally multiple times and tumor growth can be analyzed by examining the dissociated omental cells. For these experiments, the Colon 38 cell line, a rapidly growing tumor cell line that expresses both MMP2 and MMP9 in vitro, may be used. The omental tissue normally expresses a relatively small amount of MMP2 and MMP9, but, when Colon 38 tumor is present on the omentum, MMP levels increase. Using this tumor model, the ability of IL-2 mutein fusion proteins to affect tumor growth is examined. Colon 38 cells are injected intraperitoneally, allowed to attach and grow for 1 day, and then treated daily with fusion protein interaperitoneally. At day 7, the animals are sacrificed and the omenta examined for tumor growth using flow cytometry and by a colony-forming assay.


Example 6: Construction of an Exemplary Activatable IL2 Protein Targeting CD20

Generation of an Activatable IL2 Domain


An IL-2 polypeptide capable of binding to CD20 polypeptide present in a tumor or on a tumor cell is produced as follows. A nucleic acid is produced that contains nucleic acid sequences: (1) encoding an IFNγ polypeptide sequence and (2) one or more polypeptide linkers. Activatable interleukin plasmid constructs can have optional Flag, His or other affinity tags, and are electroporated into HEK293 or other suitable human or mammalian cell lines and purified. Validation assays include T cell activation assays using T cells responsive to IFNγ stimulation in the presence of a protease.


Generation of a scFv CD20 Binding Domain


CD20 is one of the cell surface proteins present on B-lymphocytes. CD20 antigen is found in normal and malignant pre-B and mature B lymphocytes, including those in over 90% of B-cell non-Hodgkin's lymphomas (NHL). The antigen is absent in hematopoietic stem cells, activated B lymphocytes (plasma cells) and normal tissue. As such, several antibodies mostly of murine origin have been described: 1FS, 2B8/C2B8, 2H7, and 1H4.


Human or humanized anti-CD20 antibodies are therefore used to generate scFv sequences for CD20 binding domains of an activatable interleukin protein. DNA sequences coding for human or humanized VL and VH domains are obtained, and the codons for the constructs are, optionally, optimized for expression in cells from Homo sapiens. The order in which the VL and VH domains appear in the scFv is varied (i.e., VL-VH, or VH-VL orientation), and three copies of the “G4S” (SEQ ID NO.: 449) or “G4S” (SEQ ID NO.: 449) subunit (G4S)3 (SEQ ID NO.: 452) connect the variable domains to create the scFv domain. Anti-CD20 scFv plasmid constructs can have optional Flag, His or other affinity tags, and are electroporated into HEK293 or other suitable human or mammalian cell lines and purified. Validation assays include binding analysis by FACS, kinetic analysis using Proteon, and staining of CD20-expressing cells.


Cloning of DNA Expression Constructs Encoding the Activatable IL2 Protein


The activatable IL2 construct with protease cleavage site domains are used to construct an activatable interleukin protein in combination with an anti-CD20 scFv domain and a serum half-life extension element (e.g., a HSA binding peptide or VH domain). For expression of an activatable interleukin protein in CHO cells, coding sequences of all protein domains are cloned into a mammalian expression vector system. In brief, gene sequences encoding the activatable interleukin domain, serum half-life extension element, and CD20 binding domain along with peptide linkers L1 and L2 are separately synthesized and subcloned. The resulting constructs are then ligated together in the order of CD20 binding domain—L1-IL2 subunit 1-L2-protease cleavage domain—L3-IL2 subunit 2-L4-anti-CD20 scFv-L5-serum half-life extension element to yield a final construct. All expression constructs are designed to contain coding sequences for an N-terminal signal peptide and a C-terminal hexahistidine (6×His)-tag (SEQ ID NO. 354) to facilitate protein secretion and purification, respectively.


Expression of Activatable IL2 Proteins in Stably Transfected CHO Cells


A CHO cell expression system (Flp-In®, Life Technologies), a derivative of CHO-K1 Chinese Hamster ovary cells (ATCC, CCL-61) (Kao and Puck, Proc. Natl. Acad Sci USA 1968; 60(4):1275-81), is used. Adherent cells are subcultured according to standard cell culture protocols provided by Life Technologies.


For adaption to growth in suspension, cells are detached from tissue culture flasks and placed in serum-free medium. Suspension-adapted cells are cryopreserved in medium with 10% DMSO.


Recombinant CHO cell lines stably expressing secreted activatable interleukin proteins are generated by transfection of suspension-adapted cells. During selection with the antibiotic Hygromycin B viable cell densities are measured twice a week, and cells are centrifuged and resuspended in fresh selection medium at a maximal density of 0.1×106 viable cells/mL. Cell pools stably expressing activatable interleukin proteins are recovered after 2-3 weeks of selection at which point cells are transferred to standard culture medium in shake flasks. Expression of recombinant secreted proteins is confirmed by performing protein gel electrophoresis or flow cytometry. Stable cell pools are cryopreserved in DMSO containing medium.


Activatable IL2 proteins are produced in 10-day fed-batch cultures of stably transfected CHO cell lines by secretion into the cell culture supernatant. Cell culture supernatants are harvested after 10 days at culture viabilities of typically >75%. Samples are collected from the production cultures every other day and cell density and viability are assessed. On day of harvest, cell culture supernatants are cleared by centrifugation and vacuum filtration before further use.


Protein expression titers and product integrity in cell culture supernatants are analyzed by SDS-PAGE.


Purification of Activatable IL2 Proteins


Activatable IL2 proteins are purified from CHO cell culture supernatants in a two-step procedure. The constructs are subjected to affinity chromatography in a first step followed by preparative size exclusion chromatography (SEC) on Superdex 200 in a second step. Samples are buffer-exchanged and concentrated by ultrafiltration to a typical concentration of >1 mg/mL. Purity and homogeneity (typically >90%) of final samples are assessed by SDS PAGE under reducing and non-reducing conditions, followed by immunoblotting using an anti-HSA or anti idiotype antibody as well as by analytical SEC, respectively. Purified proteins are stored at aliquots at −80° C. until use.


Example 7: Determination of Antigen Affinity by Flow Cytometry

The activatable interleukin proteins of Example 6 are tested for their binding affinities to human CD20+ cells and cynomolgus CD20+ cells.


CD20+ cells are incubated with 100 μL of serial dilutions of the activatable interleukin proteins of Example 1 and at least one protease. After washing three times with FACS buffer the cells are incubated with 0.1 mL of 10 μg/mL mouse monoclonal anti-idiotype antibody in the same buffer for 45 min on ice. After a second washing cycle, the cells are incubated with 0.1 mL of 15 μg/mL FITC-conjugated goat anti-mouse IgG antibodies under the same conditions as before. As a control, cells are incubated with the anti-His IgG followed by the FITC-conjugated goat anti-mouse IgG antibodies without the activatable IL2 proteins. The cells were then washed again and resuspended in 0.2 mL of FACS buffer containing 2 μg/mL propidium iodide (PI) in order to exclude dead cells. The fluorescence of 1×104 living cells is measured using a Beckman-Coulter FC500 MPL flow cytometer using the MXP software (Beckman-Coulter, Krefeld, Germany) or a Millipore Guava EasyCyte flow cytometer using the Incyte software (Merck Millipore, Schwalbach, Germany). Mean fluorescence intensities of the cell samples are calculated using CXP software (Beckman-Coulter, Krefeld, Germany) or Incyte software (Merck Millipore, Schwalbach, Germany). After subtracting the fluorescence intensity values of the cells stained with the secondary and tertiary reagents alone the values are then used for calculation of the KD values with the equation for one-site binding (hyperbola) of the GraphPad Prism (version 6.00 for Windows, GraphPad Software, La Jolla California USA).


CD20 binding and crossreactivity are assessed on the human CD20+ tumor cell lines. The KD ratio of crossreactivity is calculated using the KD values determined on the CHO cell lines expressing either recombinant human or recombinant cynomolgus antigens.


Example 8: Cytotoxicity Assay

The activatable interleukin protein of Example 6 is evaluated in vitro on its mediation of immune response to CD20+ target cells.


Fluorescence labeled CD20+ REC-1 cells (a Mantle cell lymphoma cell line, ATCC CRL-3004) are incubated with isolated PBMC of random donors or CB15 T-cells (standardized T-cell line) as effector cells in the presence of the activatable IL2 protein of Example 5 and at least one protease. After incubation for 4 h at 37° C. in a humidified incubator, the release of the fluorescent dye from the target cells into the supernatant is determined in a spectrofluorimeter. Target cells incubated without the activatable IL2 protein of Example land target cells totally lysed by the addition of saponin at the end of the incubation serve as negative and positive controls, respectively.


Based on the measured remaining living target cells, the percentage of specific cell lysis is calculated according to the following formula: [1−(number of living targets(sample)/number of living targets(spontaneous))]×100%. Sigmoidal dose response curves and EC50 values are calculated by non-linear regression/4-parameter logistic fit using the GraphPad Software. The lysis values obtained for a given antibody concentration are used to calculate sigmoidal dose-response curves by 4 parameter logistic fit analysis using the Prism software.


Example 9: Pharmacokinetics of Activatable Interleukin Proteins

The activatable interleukin protein of Example 6 is evaluated for half-time elimination in animal studies.


The activatable IL2 protein is administered to cynomolgus monkeys as a 0.5 mg/kg bolus injection into the saphenous vein. Another cynomolgus monkey group receives a comparable IL2 construct in size, but lacking a serum half-life extension element. A third and fourth group receive an IL2 construct with serum half-life extension element and a cytokine with CD20 and serum half-life extension elements respectively, and both comparable in size to the activatable interleukin protein. Each test group consists of 5 monkeys. Serum samples are taken at indicated time points, serially diluted, and the concentration of the proteins is determined using a binding ELISA to CD20.


Pharmacokinetic analysis is performed using the test article plasma concentrations. Group mean plasma data for each test article conforms to a multi-exponential profile when plotted against the time post-dosing. The data are fit by a standard two-compartment model with bolus input and first-order rate constants for distribution and elimination phases. The general equation for the best fit of the data for i.v. administration is: c(t)=Ae−αt+Be−βt, where c(t) is the plasma concentration at time t, A and B are intercepts on the Y-axis, and α and β are the apparent first-order rate constants for the distribution and elimination phases, respectively. The α-phase is the initial phase of the clearance and reflects distribution of the protein into all extracellular fluid of the animal, whereas the second or β-phase portion of the decay curve represents true plasma clearance. Methods for fitting such equations are well known in the art. For example, A=DN(α−k21)/(α−β), B=DN(β−k21)/(α−β), and α and β (for α>β) are roots of the quadratic equation: r2+(k12+k21+k10)r+k21k10=0 using estimated parameters of V=volume of distribution, k10=elimination rate, k12=transfer rate from compartment 1 to compartment 2 and k21=transfer rate from compartment 2 to compartment 1, and D=the administered dose.


Data analysis: Graphs of concentration versus time profiles are made using KaleidaGraph (KaleidaGraph™ V. 3.09 Copyright 1986-1997. Synergy Software. Reading, Pa.). Values reported as less than reportable (LTR) are not included in the PK analysis and are not represented graphically. Pharmacokinetic parameters are determined by compartmental analysis using WinNonlin software (WinNonlin® Professional V. 3.1 WinNonlin™ Copyright 1998-1999. Pharsight Corporation. Mountain View, Calif.). Pharmacokinetic parameters are computed as described in Ritschel W A and Kearns G L, 1999, IN: Handbook Of Basic Pharmacokinetics Including Clinical Applications, 5th edition, American Pharmaceutical Assoc., Washington, D.C.


It is expected that the activatable interleukin protein of Example 5 has improved pharmacokinetic parameters such as an increase in elimination half-time as compared to proteins lacking a serum half-life extension element.


Example 10: Xenograft Tumor Model

The activatable IL2 protein of Example 6 is evaluated in a xenograft model.


Female immune-deficient NOD/scid mice are sub-lethally irradiated (2 Gy) and subcutaneously inoculated with 4×106 Ramos RA1 cells into the right dorsal flank. When tumors reach 100 to 200 mm3, animals are allocated into 3 treatment groups. Groups 2 and 3 (8 animals each) are intraperitoneally injected with 1.5×107 activated human T-cells. Three days later, animals from Group 3 are subsequently treated with a total of 9 intravenous doses of 50 sg activatable interleukin protein of Example 1 (qd×9d). Groups 1 and 2 are only treated with vehicle. Body weight and tumor volume are determined for 30 days.


It is expected that animals treated with the activatable interleukin protein of Example 5 have a statistically significant delay in tumor growth in comparison to the respective vehicle-treated control group.


While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.


Example 11: Mouse IFNγ WEHI Cell Survival Assay

WEHI279 cells (ATCC) were plated in suspension at a concentration of 25,000 cells/well in culture media with or without 1.5% human serum albumin (HSA) and stimulated with a dilution series of recombinant mIFNγ or inducible mIFNγ for 72 hours at 37° C. and 5% CO2. Activity of uncleaved and cleaved inducible mIFNγ was tested. Cleaved inducible mIFNg was generated by incubation with active MMP9. Cell survival was assessed using a CellTiter-Glo (Promega) luminescence-based cell viability assay. The EC50 values for cleaved inducible mIFNg molecules were at least 100× more potent than un-cleaved inducible mIFNg molecules. As shown in FIGS. 16A-16F, greater inducibility was seen in assays wherein the culture media contained human serum albumin.


Example 12: Mouse IFNγ B16 Reporter and Mouse IFNα/β B16 Reporter Cell Assays

B16-Blue IFNγ cells (InvivoGen) were plated at a concentration of 75,000 cells/well in culture media with or without 1.5% human serum albumin (HSA) and stimulated with a dilution series of recombinant mIFNγ or inducible mIFNγ for 24 hours at 37° C. and 5% CO2. Activity of uncleaved and cleaved inducible mIFNγ was tested. Cleaved inducible mIFNγ was generated by incubation with active MMP9. Supernatants were harvested, and SEAP activation was assessed by adding QUANTI-Blue Reagent (InvivoGen), incubating at 37° C. for 2 hours, and measuring absorbance at 620 nm. Results are shown in FIGS. 17A-17F, 19A, 19B, 22A, 22B, 23A, 23B, and 28A-28N. This experiment was repeated with for IFNα fusion proteins using B16-Blue IFNα/β cells. The EC50 values for cleaved inducible mIFNα molecules were at least 100× more potent than un-cleaved inducible mIFNα molecules.


B16-Blue IFN-α/p cells (InvivoGen) were plated in suspension at a density of 75,000 cells/well in culture media with or without 15 mg/ml mouse serum albumin (HSA) and stimulated with a dilution series of recombinant mouse IFNα (or IFNβ) and activatable mouse IFNα (or IFNβ) for 20-24 hours at 37° C. and 5% CO2. Activity of uncleaved and cleaved activatable IFNα (or IFNβ) was tested. Cleaved inducible IFNα (or IFNβ) was generated by incubation with active recombinant protease. Stimulation of B16-Blue IFN-α/β cells with IFNα (or IFNβ) induces expression of Secreted Alkaline Phosphatase (SEAP) from an ISRE-ISG54-SEAP reporter. IFNα (or IFNβ) activity was assessed by quantification of SEAP activity using the reagent QUANTI-Blue (InvivoGen), a colorimetric based assay. Results are shown in FIGS. 10A-10J.


Example 13. In Vivo Delivery of a Protease Activated Fusion Protein Results in Decreased Tumor Growth

The chimeric polypeptide is examined to determine if it could have biological effects in vivo. For these experiments a system is used in which tumor cells injected intraperitoneally rapidly and preferentially attach and grow initially on the milky spots, a series of organized immune aggregates found on the omentum (Gerber et al., Am. J. Pathol. 169:1739-52 (2006)). This system offers a convenient way to examine the effects of fusion protein treatment on tumor growth since fusion proteins can be delivered intraperitoneally multiple times and tumor growth can be analyzed by examining the dissociated omental cells. For these experiments, the Colon 38 cell line, a rapidly growing tumor cell line that expresses both MMP2 and MMP9 in vitro, may be used. The omental tissue normally expresses a relatively small amount of MMP2 and MMP9, but, when Colon 38 tumor is present on the omentum, MMP levels increase. Using this tumor model, the ability of IFN fusion proteins to affect tumor growth is examined. Colon 38 cells are injected intraperitoneally, allowed to attach and grow for 1 day, and then treated daily with fusion protein interaperitoneally. At day 7, the animals are sacrificed and the omenta examined for tumor growth using flow cytometry and by a colony-forming assay.


Example 13b: The Chimeric Polypeptide was Examined to Determine its Biological Effects In Vivo

The MC38 cell line, a rapidly growing colon adenocarcinoma cell line that expresses MMP9 in vitro, was used. Using this tumor model, the ability of IFNγ fusion proteins to affect tumor growth was examined. MC38 cells were injected subcutaneously, allowed to grow for 10-14 days, and then treated with fusion protein twice weekly intraperitoneally for a total of four doses, at the levels shown in FIG. 21A-21C. As a comparator, wild-type mIFNγ was administered at the dose levels indicated, twice daily for 2 weeks on a 5 day on/2 day off schedule (10 total doses). Tumor growth and body weight were monitored approximately twice per week for two weeks.


Example 14: Construction of an Exemplary IFNγ Protein Targeting CD20

Generation of an Activatable Cytokine Domain


An IFNγ polypeptide capable of binding to CD20 polypeptide present in a tumor or on a tumor cell is produced as follows. A nucleic acid is produced that contains nucleic acid sequences: (1) encoding an IFNγ polypeptide sequence and (2) one or more polypeptide linkers. Activatable IFNγ plasmid constructs can have optional Flag, His or other affinity tags, and are electroporated into HEK293 or other suitable human or mammalian cell lines and purified. Validation assays include T cell activation assays using T cells responsive to IFNγ stimulation in the presence of a protease.


Generation of a scFv CD20 Binding Domain


CD20 is one of the cell surface proteins present on B-lymphocytes. CD20 antigen is found in normal and malignant pre-B and mature B lymphocytes, including those in over 90% of B-cell non-Hodgkin's lymphomas (NHL). The antigen is absent in hematopoietic stem cells, activated B lymphocytes (plasma cells) and normal tissue. As such, several antibodies mostly of murine origin have been described: 1F5, 2B8/C2B8, 2H7, and 1H4.


Human or humanized anti-CD20 antibodies are therefore used to generate scFv sequences for CD20 binding domains of an activatable IFNγ protein. DNA sequences coding for human or humanized VL and VH domains are obtained, and the codons for the constructs are, optionally, optimized for expression in cells from Homo sapiens. The order in which the VL and VH domains appear in the scFv is varied (i.e., VL-VH, or VH-VL orientation), and three copies of the “G4S” (SEQ ID NO.: 449) or “G4S” (SEQ ID NO.: 449) subunit (G4S)3 (SEQ ID NO.: 452) connect the variable domains to create the scFv domain. Anti-CD20 scFv plasmid constructs can have optional Flag, His or other affinity tags, and are electroporated into HEK293 or other suitable human or mammalian cell lines and purified. Validation assays include binding analysis by FACS, kinetic analysis using Proteon, and staining of CD20-expressing cells.


Cloning of DNA Expression Constructs Encoding the Activatable IFNγ Protein


The activatable IFNγ construct with protease cleavage site domains are used to construct an activatable IFNγ protein in combination with an anti-CD20 scFv domain and a serum half-life extension element (e.g., a HSA binding peptide or VH domain), with the domains organized. For expression of an activatable IFNγ protein in CHO cells, coding sequences of all protein domains are cloned into a mammalian expression vector system. In brief, gene sequences encoding the activatable IFNγ domain, serum half-life extension element, and CD20 binding domain along with peptide linkers L1 and L2 are separately synthesized and subcloned. The resulting constructs are then ligated together in the order of CD20 binding domain—L1-IFNγ subunit 1-L2-protease cleavage domain—L3-IFNγ subunit2-L4-anti-CD20 scFv-L5-serum half-life extension element to yield a final construct. All expression constructs are designed to contain coding sequences for an N-terminal signal peptide and a C-terminal hexahistidine (6×His)-tag (SEQ ID NO.: 354) to facilitate protein secretion and purification, respectively.


Expression of Activatable IFNγ Proteins in Stably Transfected CHO Cells


A CHO cell expression system (Flp-In®, Life Technologies), a derivative of CHO-K1 Chinese Hamster ovary cells (ATCC, CCL-61) (Kao and Puck, Proc. Natl. Acad Sci USA 1968; 60(4):1275-81), is used. Adherent cells are subcultured according to standard cell culture protocols provided by Life Technologies.


For adaption to growth in suspension, cells are detached from tissue culture flasks and placed in serum-free medium. Suspension-adapted cells are cryopreserved in medium with 10% DMSO.


Recombinant CHO cell lines stably expressing secreted activatable IFNγ proteins are generated by transfection of suspension-adapted cells. During selection with the antibiotic Hygromycin B viable cell densities are measured twice a week, and cells are centrifuged and resuspended in fresh selection medium at a maximal density of 0.1×106 viable cells/mL. Cell pools stably expressing activatable IFNγ proteins are recovered after 2-3 weeks of selection at which point cells are transferred to standard culture medium in shake flasks. Expression of recombinant secreted proteins is confirmed by performing protein gel electrophoresis or flow cytometry. Stable cell pools are cryopreserved in DMSO containing medium.


Activatable IFNγ proteins are produced in 10-day fed-batch cultures of stably transfected CHO cell lines by secretion into the cell culture supernatant. Cell culture supernatants are harvested after 10 days at culture viabilities of typically >75%. Samples are collected from the production cultures every other day and cell density and viability are assessed. On day of harvest, cell culture supernatants are cleared by centrifugation and vacuum filtration before further use.


Protein expression titers and product integrity in cell culture supernatants are analyzed by SDS-PAGE.


Purification of Activatable IFNγ Proteins


Activatable IFNγ proteins are purified from CHO cell culture supernatants in a two-step procedure. The constructs are subjected to affinity chromatography in a first step followed by preparative size exclusion chromatography (SEC) on Superdex 200 in a second step. Samples are buffer-exchanged and concentrated by ultrafiltration to a typical concentration of >1 mg/mL. Purity and homogeneity (typically >90%) of final samples are assessed by SDS PAGE under reducing and non-reducing conditions, followed by immunoblotting using an anti-HSA or anti idiotype antibody as well as by analytical SEC, respectively. Purified proteins are stored at aliquots at −80° C. until use.


Example 15: Determination of Antigen Affinity by Flow Cytometry

The activatable IFNγ proteins of Example 1 are tested for their binding affinities to human CD20+ cells and cynomolgus CD20+ cells.


CD20+ cells are incubated with 100 μL of serial dilutions of the activatable IFNγ proteins of Example 1 and at least one protease. After washing three times with FACS buffer the cells are incubated with 0.1 mL of 10 μg/mL mouse monoclonal anti-idiotype antibody in the same buffer for 45 min on ice. After a second washing cycle, the cells are incubated with 0.1 mL of 15 μg/mL FITC-conjugated goat anti-mouse IgG antibodies under the same conditions as before. As a control, cells are incubated with the anti-His IgG followed by the FITC-conjugated goat anti-mouse IgG antibodies without the activatable IFNγ proteins. The cells were then washed again and resuspended in 0.2 mL of FACS buffer containing 2 μg/mL propidium iodide (PI) in order to exclude dead cells. The fluorescence of 1×104 living cells is measured using a Beckman-Coulter FC500 MPL flow cytometer using the MXP software (Beckman-Coulter, Krefeld, Germany) or a Millipore Guava EasyCyte flow cytometer using the Incyte software (Merck Millipore, Schwalbach, Germany). Mean fluorescence intensities of the cell samples are calculated using CXP software (Beckman-Coulter, Krefeld, Germany) or Incyte software (Merck Millipore, Schwalbach, Germany). After subtracting the fluorescence intensity values of the cells stained with the secondary and tertiary reagents alone the values are then used for calculation of the KD values with the equation for one-site binding (hyperbola) of the GraphPad Prism (version 6.00 for Windows, GraphPad Software, La Jolla California USA).


CD20 binding and crossreactivity are assessed on the human CD20+ tumor cell lines. The KD ratio of crossreactivity is calculated using the KD values determined on the CHO cell lines expressing either recombinant human or recombinant cynomolgus antigens.


Example 16: Cytotoxicity Assay

The activatable IFNγ protein of Example 5 is evaluated in vitro on its mediation of immune response to CD20+ target cells.


Fluorescence labeled CD20+ REC-1 cells (a Mantle cell lymphoma cell line, ATCC CRL-3004) are incubated with isolated PBMC of random donors or CB15 T-cells (standardized T-cell line) as effector cells in the presence of the activatable IFNγ protein of Example 5 and at least one protease. After incubation for 4 h at 37° C. in a humidified incubator, the release of the fluorescent dye from the target cells into the supernatant is determined in a spectrofluorimeter. Target cells incubated without the activatable IFNγ protein of Example 5 and target cells totally lysed by the addition of saponin at the end of the incubation serve as negative and positive controls, respectively.


Based on the measured remaining living target cells, the percentage of specific cell lysis is calculated according to the following formula: [1−(number of living targets(sample)/number of living targets(spontaneous))]×100%. Sigmoidal dose response curves and EC50 values are calculated by non-linear regression/4-parameter logistic fit using the GraphPad Software. The lysis values obtained for a given antibody concentration are used to calculate sigmoidal dose-response curves by 4 parameter logistic fit analysis using the Prism software.


Example 17: Pharmacokinetics of Activatable IFNγ Proteins

The activatable IFNγ protein of Example 5 is evaluated for half-time elimination in animal studies.


The activatable IFNγ protein is administered to cynomolgus monkeys as a 0.5 mg/kg bolus injection into the saphenous vein. Another cynomolgus monkey group receives a comparable cytokine in size, but lacking a serum half-life extension element. A third and fourth group receive a cytokine with serum half-life extension elements and a cytokine with CD20 and serum half-life extension elements respectively, and both comparable in size to the activatable IFNγ protein. Each test group consists of 5 monkeys. Serum samples are taken at indicated time points, serially diluted, and the concentration of the proteins is determined using a binding ELISA to CD20.


Pharmacokinetic analysis is performed using the test article plasma concentrations. Group mean plasma data for each test article conforms to a multi-exponential profile when plotted against the time post-dosing. The data are fit by a standard two-compartment model with bolus input and first-order rate constants for distribution and elimination phases. The general equation for the best fit of the data for i.v. administration is: c(t)=Ae−αt+Be−βt, where c(t) is the plasma concentration at time t, A and B are intercepts on the Y-axis, and α and β are the apparent first-order rate constants for the distribution and elimination phases, respectively. The α-phase is the initial phase of the clearance and reflects distribution of the protein into all extracellular fluid of the animal, whereas the second or β-phase portion of the decay curve represents true plasma clearance. Methods for fitting such equations are well known in the art. For example, A=DN(α−k21)/(α−β), B=DN(β−k21)/(α−β), and α and β (for α>β) are roots of the quadratic equation: r2+(k12+k21+k10)r+k21k10=0 using estimated parameters of V=volume of distribution, k10=elimination rate, k12=transfer rate from compartment 1 to compartment 2 and k21=transfer rate from compartment 2 to compartment 1, and D=the administered dose.


Data analysis: Graphs of concentration versus time profiles are made using KaleidaGraph (KaleidaGraph™ V. 3.09 Copyright 1986-1997. Synergy Software. Reading, Pa.). Values reported as less than reportable (LTR) are not included in the PK analysis and are not represented graphically. Pharmacokinetic parameters are determined by compartmental analysis using WinNonlin software (WinNonlin® Professional V. 3.1 WinNonlin™ Copyright 1998-1999. Pharsight Corporation. Mountain View, Calif.). Pharmacokinetic parameters are computed as described in Ritschel W A and Kearns G L, 1999, IN: Handbook Of Basic Pharmacokinetics Including Clinical Applications, 5th edition, American Pharmaceutical Assoc., Washington, D.C.


It is expected that the activatable IFNγ protein of Example 5 has improved pharmacokinetic parameters such as an increase in elimination half-time as compared to proteins lacking a serum half-life extension element.


Example 18: Xenograft Tumor Model

The activatable IFNγ protein of Example 5 is evaluated in a xenograft model.


Female immune-deficient NOD/scid mice are sub-lethally irradiated (2 Gy) and subcutaneously inoculated with 4×106 Ramos RA1 cells into the right dorsal flank. When tumors reach 100 to 200 mm3, animals are allocated into 3 treatment groups. Groups 2 and 3 (8 animals each) are intraperitoneally injected with 1.5×107 activated human T-cells. Three days later, animals from Group 3 are subsequently treated with a total of 9 intravenous doses of 50 sg activatable IFNγ protein of Example 5 (qd×9d). Groups 1 and 2 are only treated with vehicle. Body weight and tumor volume are determined for 30 days.


It is expected that animals treated with the activatable IFNγ protein of Example 5 have a statistically significant delay in tumor growth in comparison to the respective vehicle-treated control group.


While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.


Example 19: HEK-Blue Assay

HEK-Blue IL12 cells (InvivoGen) were plated in suspension at a concentration of 50,000 cells/well in culture media with or without 15 or 40 mg/ml human serum albumin (HSA) and stimulated with a dilution series of recombinant hIL12, chimeric IL12 (mouse p35/human p40) or activatable hIL12 for 20-24 hours at 37° C. and 5% CO2. Activity of uncleaved and cleaved activatable hIL12 was tested. Cleaved inducible hIL12 was generated by incubation with active MMP9. IL12 activity was assessed by quantification of Secreted Alkaline Phosphatase (SEAP) activity using the reagent QUANTI-Blue (InvivoGen), a colorimetric based assay. Results are shown in FIGS. 7A-7Q, 11A-11B, 12A-12F, 15A-15D, and 26A-26D.


HEK-Blue IL2 cells (InvivoGen) were plated in suspension at a concentration of 50,000 cells/well in culture media with or without 15-40 mg/ml human serum albumin (HSA) and stimulated with a dilution series of recombinant hIL2 or activatable hIL2 for 24 hours at 37° C. and 5% CO2. Activity of uncleaved and cleaved activatable hIL2 was tested. Cleaved inducible hIL2 was generated by incubation with active MMP9. IL12 activity was assessed by quantification of Secreted Alkaline Phosphatase (SEAP) activity using the reagent QUANTI-Blue (InvivoGen), a colorimetric based assay. Exemplary results are shown in FIGS. 1A-1F and FIGS. 24A-24D.


HEK-Blue IFN-α/b cells (InvivoGen) were plated in suspension at a density of 50,000 cells/well in culture media with or without 15 mg/ml human serum albumin (HSA) and stimulated with a dilution series of recombinant human IFNa (or IFNb) and activatable human IFNa (or IFNb) for 20-24 hours at 37° C. and 5% CO2. Activity of uncleaved and cleaved activatable IFNa (or IFNb) was tested. Cleaved inducible IFNa (or IFNb) was generated by incubation with active recombinant protease. Stimulation of HEK-Blue IFN-α/β cells with IFNα (or IFNβ) induces expression of Secreted Alkaline Phosphatase (SEAP) from an ISG54-SEAP reporter. IFNα (or IFNβ) activity was assessed by quantification of SEAP activity using the reagent QUANTI-Blue (InvivoGen), a colorimetric based assay. Results are shown in FIGS. 36A-36H.


Example 20: Splenocyte T-Blast Assay

T-Blasts were induced from murine splenocytes with a 6-day incubation with PHA and a 24 hr incubation with recombinant hIL12. Tblasts were then plated in suspension at a concentration of 200,000 cells/well in culture media with or without 40 mg/ml human serum albumin (HSA) and stimulated with a dilution series of recombinant hIL12 or chimeric IL12 (mouse p35/human p40) or mouse IL12 for 72 hours at 37° C. and 5% CO2. Activity of uncleaved and cleaved IL12 fusion proteins was tested. Cleaved inducible hIL12 was generated by incubation with active MMP9. IL12 activity was assessed by downstream quantification of IFNγ production using a mIFNγ alpha ELISA.


Example 21: In Vivo Delivery of a Protease Activated Fusion Protein Results in Decreased Tumor Growth

The chimeric polypeptide is examined to determine if it could have biological effects in vivo. For these experiments a system is used in which tumor cells injected intraperitoneally rapidly and preferentially attach and grow initially on the milky spots, a series of organized immune aggregates found on the omentum (Gerber et al., Am. J. Pathol. 169:1739-52 (2006)). This system offers a convenient way to examine the effects of fusion protein treatment on tumor growth since fusion proteins can be delivered intraperitoneally multiple times and tumor growth can be analyzed by examining the dissociated omental cells. For these experiments, the Colon 38 cell line, a rapidly growing tumor cell line that expresses both MMP2 and MMP9 in vitro, may be used. The omental tissue normally expresses a relatively small amount of MMP2 and MMP9, but, when Colon 38 tumor is present on the omentum, MMP levels increase. Using this tumor model, the ability of IL-2 mutein fusion proteins to affect tumor growth is examined. Colon 38 cells are injected intraperitoneally, allowed to attach and grow for 1 day, and then treated daily with fusion protein interaperitoneally. At day 7, the animals are sacrificed and the omenta examined for tumor growth using flow cytometry and by a colony-forming assay.


Example 22: Construction of an Exemplary Activatable Interleukin Protein Targeting CD20

Generation of an Activatable Interleukin Domain


The human IL-12p35 chain canonical sequence is Uniprot Accession No. P29459. The human IL-12p40 chain canonical sequence is Uniprot Accession No. P29460. IL-12p35 and IL-12p40 are cloned into an expression construct. A protease cleavage site is included between the IL-12p35 and IL-12p40 domains. An IL-12 polypeptide capable of binding to CD20 polypeptide present in a tumor or on a tumor cell is produced as follows. A nucleic acid is produced that contains nucleic acid sequences: (1) encoding an IFNγ polypeptide sequence and (2) one or more polypeptide linkers. Activatable interleukin plasmid constructs can have optional Flag, His or other affinity tags, and are electroporated into HEK293 or other suitable human or mammalian cell lines and purified. Validation assays include T cell activation assays using T cells responsive to IL-12 stimulation in the presence of a protease.


Generation of a scFv CD20 Binding Domain


CD20 is one of the cell surface proteins present on B-lymphocytes. CD20 antigen is found in normal and malignant pre-B and mature B lymphocytes, including those in over 90% of B-cell non-Hodgkin's lymphomas (NHL). The antigen is absent in hematopoietic stem cells, activated B lymphocytes (plasma cells) and normal tissue. As such, several antibodies mostly of murine origin have been described: 1F5, 2B8/C2B8, 2H7, and 1H4.


Human or humanized anti-CD20 antibodies are therefore used to generate scFv sequences for CD20 binding domains of an activatable interleukin protein. DNA sequences coding for human or humanized VL and VH domains are obtained, and the codons for the constructs are, optionally, optimized for expression in cells from Homo sapiens. The order in which the VL and VH domains appear in the scFv is varied (i.e., VL-VH, or VH-VL orientation), and three copies of the “G4S” (SEQ ID NO.: 449) or “G4S” (SEQ ID NO.: 449) subunit (G4S)3 (SEQ ID NO.: 452) connect the variable domains to create the scFv domain. Anti-CD20 scFv plasmid constructs can have optional Flag, His or other affinity tags, and are electroporated into HEK293 or other suitable human or mammalian cell lines and purified. Validation assays include binding analysis by FACS, kinetic analysis using Proteon, and staining of CD20-expressing cells.


Cloning of DNA Expression Constructs Encoding the Activatable Interleukin Protein


The activatable interleukin construct with protease cleavage site domains are used to construct an activatable interleukin protein in combination with an anti-CD20 scFv domain and a serum half-life extension element (e.g., a HSA binding peptide or VH domain). For expression of an activatable interleukin protein in CHO cells, coding sequences of all protein domains are cloned into a mammalian expression vector system. In brief, gene sequences encoding the activatable interleukin domain, serum half-life extension element, and CD20 binding domain along with peptide linkers L1 and L2 are separately synthesized and subcloned. The resulting constructs are then ligated together in the order of CD20 binding domain—L1-IL-12p35-L2-protease cleavage domain—L3-IL-12p40-L4-anti-CD20 scFv-L5-serum half-life extension element to yield a final construct. All expression constructs are designed to contain coding sequences for an N-terminal signal peptide and a C-terminal hexahistidine (6×His)-tag (SEQ ID NO.: 354) to facilitate protein secretion and purification, respectively.


Expression of Activatable Interleukin Proteins in Stably Transfected CHO Cells


A CHO cell expression system (Flp-In®, Life Technologies), a derivative of CHO-K1 Chinese Hamster ovary cells (ATCC, CCL-61) (Kao and Puck, Proc. Natl. Acad Sci USA 1968; 60(4):1275-81), is used. Adherent cells are subcultured according to standard cell culture protocols provided by Life Technologies.


For adaption to growth in suspension, cells are detached from tissue culture flasks and placed in serum-free medium. Suspension-adapted cells are cryopreserved in medium with 10% DMSO.


Recombinant CHO cell lines stably expressing secreted activatable interleukin proteins are generated by transfection of suspension-adapted cells. During selection with the antibiotic Hygromycin B viable cell densities are measured twice a week, and cells are centrifuged and resuspended in fresh selection medium at a maximal density of 0.1×106 viable cells/mL. Cell pools stably expressing activatable interleukin proteins are recovered after 2-3 weeks of selection at which point cells are transferred to standard culture medium in shake flasks. Expression of recombinant secreted proteins is confirmed by performing protein gel electrophoresis or flow cytometry. Stable cell pools are cryopreserved in DMSO containing medium.


Activatable interleukin proteins are produced in 10-day fed-batch cultures of stably transfected CHO cell lines by secretion into the cell culture supernatant. Cell culture supernatants are harvested after 10 days at culture viabilities of typically >75%. Samples are collected from the production cultures every other day and cell density and viability are assessed. On day of harvest, cell culture supernatants are cleared by centrifugation and vacuum filtration before further use.


Protein expression titers and product integrity in cell culture supernatants are analyzed by SDS-PAGE.


Purification of Activatable Interleukin Proteins


Activatable interleukin proteins are purified from CHO cell culture supernatants in a two-step procedure. The constructs are subjected to affinity chromatography in a first step followed by preparative size exclusion chromatography (SEC) on Superdex 200 in a second step. Samples are buffer-exchanged and concentrated by ultrafiltration to a typical concentration of >1 mg/mL. Purity and homogeneity (typically >90%) of final samples are assessed by SDS PAGE under reducing and non-reducing conditions, followed by immunoblotting using an anti-HSA or anti idiotype antibody as well as by analytical SEC, respectively. Purified proteins are stored at aliquots at −80° C. until use.


Example 23: Determination of Antigen Affinity by Flow Cytometry

The activatable interleukin proteins of Example 5 are tested for their binding affinities to human CD20+ cells and cynomolgus CD20+ cells.


CD20+ cells are incubated with 100 μL of serial dilutions of the activatable interleukin proteins of Example 5 and at least one protease. After washing three times with FACS buffer the cells are incubated with 0.1 mL of 10 μg/mL mouse monoclonal anti-idiotype antibody in the same buffer for 45 min on ice. After a second washing cycle, the cells are incubated with 0.1 mL of 15 μg/mL FITC-conjugated goat anti-mouse IgG antibodies under the same conditions as before. As a control, cells are incubated with the anti-His IgG followed by the FITC-conjugated goat anti-mouse IgG antibodies without the activatable interleukin proteins. The cells were then washed again and resuspended in 0.2 mL of FACS buffer containing 2 μg/mL propidium iodide (PI) in order to exclude dead cells. The fluorescence of 1×104 living cells is measured using a Beckman-Coulter FC500 MPL flow cytometer using the MXP software (Beckman-Coulter, Krefeld, Germany) or a Millipore Guava EasyCyte flow cytometer using the Incyte software (Merck Millipore, Schwalbach, Germany). Mean fluorescence intensities of the cell samples are calculated using CXP software (Beckman-Coulter, Krefeld, Germany) or Incyte software (Merck Millipore, Schwalbach, Germany). After subtracting the fluorescence intensity values of the cells stained with the secondary and tertiary reagents alone the values are then used for calculation of the KD values with the equation for one-site binding (hyperbola) of the GraphPad Prism (version 6.00 for Windows, GraphPad Software, La Jolla California USA).


CD20 binding and crossreactivity are assessed on the human CD20+ tumor cell lines. The KD ratio of crossreactivity is calculated using the KD values determined on the CHO cell lines expressing either recombinant human or recombinant cynomolgus antigens.


Example 24: Cytotoxicity Assay

The activatable interleukin protein of Example 5 is evaluated in vitro on its mediation of immune response to CD20+ target cells.


Fluorescence labeled CD20+ REC-1 cells (a Mantle cell lymphoma cell line, ATCC CRL-3004) are incubated with isolated PBMC of random donors or CB15 T-cells (standardized T-cell line) as effector cells in the presence of the activatable interleukin protein of Example 5 and at least one protease. After incubation for 4 h at 37° C. in a humidified incubator, the release of the fluorescent dye from the target cells into the supernatant is determined in a spectrofluorimeter. Target cells incubated without the activatable interleukin protein of Example 5 and target cells totally lysed by the addition of saponin at the end of the incubation serve as negative and positive controls, respectively.


Based on the measured remaining living target cells, the percentage of specific cell lysis is calculated according to the following formula: [1−(number of living targets(sample)/number of living targets(spontaneous))]×100%. Sigmoidal dose response curves and EC50 values are calculated by non-linear regression/4-parameter logistic fit using the GraphPad Software. The lysis values obtained for a given antibody concentration are used to calculate sigmoidal dose-response curves by 4 parameter logistic fit analysis using the Prism software.


Example 25: Pharmacokinetics of Activatable Interleukin Proteins

The activatable interleukin protein of Example 5 is evaluated for half-time elimination in animal studies.


The activatable interleukin protein is administered to cynomolgus monkeys as a 0.5 mg/kg bolus injection into the saphenous vein. Another cynomolgus monkey group receives a comparable cytokine in size, but lacking a serum half-life extension element. A third and fourth group receive a cytokine with serum half-life extension elements and a cytokine with CD20 and serum half-life extension elements respectively, and both comparable in size to the activatable interleukin protein. Each test group consists of 5 monkeys. Serum samples are taken at indicated time points, serially diluted, and the concentration of the proteins is determined using a binding ELISA to CD20.


Pharmacokinetic analysis is performed using the test article plasma concentrations. Group mean plasma data for each test article conforms to a multi-exponential profile when plotted against the time post-dosing. The data are fit by a standard two-compartment model with bolus input and first-order rate constants for distribution and elimination phases. The general equation for the best fit of the data for i.v. administration is: c(t)=Ae−αt+Be−βt, where c(t) is the plasma concentration at time t, A and B are intercepts on the Y-axis, and α and β are the apparent first-order rate constants for the distribution and elimination phases, respectively. The α-phase is the initial phase of the clearance and reflects distribution of the protein into all extracellular fluid of the animal, whereas the second or β-phase portion of the decay curve represents true plasma clearance. Methods for fitting such equations are well known in the art. For example, A=DN(α−k21)/(α−β), B=DN(β−k21)/(α−β), and α and β (for α>β) are roots of the quadratic equation: r2+(k12+k21+k10)r+k21k10=0 using estimated parameters of V=volume of distribution, k10=elimination rate, k12=transfer rate from compartment 1 to compartment 2 and k21=transfer rate from compartment 2 to compartment 1, and D=the administered dose.


Data analysis: Graphs of concentration versus time profiles are made using KaleidaGraph (KaleidaGraph™ V. 3.09 Copyright 1986-1997. Synergy Software. Reading, Pa.). Values reported as less than reportable (LTR) are not included in the PK analysis and are not represented graphically. Pharmacokinetic parameters are determined by compartmental analysis using WinNonlin software (WinNonlin® Professional V. 3.1 WinNonlin™ Copyright 1998-1999. Pharsight Corporation. Mountain View, Calif.). Pharmacokinetic parameters are computed as described in Ritschel W A and Kearns G L, 1999, IN: Handbook Of Basic Pharmacokinetics Including Clinical Applications, 5th edition, American Pharmaceutical Assoc., Washington, D.C.


It is expected that the activatable interleukin protein of Example 5 has improved pharmacokinetic parameters such as an increase in elimination half-time as compared to proteins lacking a serum half-life extension element.


Example 26: Xenograft Tumor Model

The activatable interleukin protein of Example 5 is evaluated in a xenograft model.


Female immune-deficient NOD/scid mice are sub-lethally irradiated (2 Gy) and subcutaneously inoculated with 4×106 Ramos RA1 cells into the right dorsal flank. When tumors reach 100 to 200 mm3, animals are allocated into 3 treatment groups. Groups 2 and 3 (8 animals each) are intraperitoneally injected with 1.5×107 activated human T-cells. Three days later, animals from Group 3 are subsequently treated with a total of 9 intravenous doses of 50 μg activatable interleukin protein of Example 5 (qd×9d). Groups 1 and 2 are only treated with vehicle. Body weight and tumor volume are determined for 30 days.


It is expected that animals treated with the activatable interleukin protein of Example 5 have a statistically significant delay in tumor growth in comparison to the respective vehicle-treated control group.


While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.


Example 27: MC38 Experiments

The MC38 cell line, a rapidly growing colon adenocarcinoma cell line that expresses MMP9 in vitro, was used. Using this tumor model, the ability of fusion proteins to affect tumor growth was examined.


Example 27a: MC38 IL-2POC











Agents and Treatment:















Formulation




Gr.
N
Agent
dose
Route
Schedule
















1#

10
Vehicle

ip
biwk × 3













2
7
ACP16
700
μg/animal
ip
biwk × 3


3
7
ACP16
230
μg/animal
ip
biwk × 3


4
7
ACP16
70
μg/animal
ip
biwk × 3


5
7
ACP16
55
ug/animal
ip
biwk × 3


6
7
ACP16
17
μg/animal
ip
biwk × 3


7
7
ACP132
361
μg/animal
ip
biwk × 3


8
7
ACP132
119
μg/animal
ip
biwk × 3


9
7
ACP132
36
μg/animal
ip
biwk × 3


10 
7
ACP132
28
μg/animal
ip
biwk × 3


11 
7
ACP132
9
μg/animal
ip
biwk × 3


12 
7
ACP21
540
μg/animal
ip
biwk × 3


13 
7
ACP21
177
μg/animal
ip
biwk × 3


14 
7
ACP21
54
μg/animal
ip
biwk × 3


15 
7
ACP21
42
μg/animal
ip
biwk × 3


16 
7
ACP21
13
μg/animal
ip
biwk × 3






#ControlGroup








Procedures:


Mice were anaesthetized with isoflurane for implant of cells to reduce the ulcerations. 308 CR female C57BI/6 mice were set up with 5×105 MC38 tumor cells in 0% Matrigel sc in flank. Cell Injection Volume was 0.1 mL/mouse. Mouse age at start date was 8 to 12 weeks. Pair matches were performed when tumors reach an average size of 100-150 mm3 and begin treatment. Body weights were taken at initiation and then biweekly to the end. Caliper measurements were taken biweekly to the end. Any adverse reactions were to be reported immediately. Any individual animal with a single observation of >than 30% body weight loss or three consecutive measurements of >25% body weight loss was euthanized. Any group with a mean body weight loss of >20% or >10% mortality stopped dosing; the group was not euthanized and recovery is allowed. Within a group with >20% weight loss, individuals hitting the individual body weight loss endpoint were euthanized. If the group treatment related body weight loss is recovered to within 10% of the original weights, dosing resumed at a lower dose or less frequent dosing schedule. Exceptions to non-treatment body weight % recovery were allowed on a case-by-case basis. Endpoint was tumor growth delay (TGD). Animals were monitored individually. The endpoint of the experiment was a tumor volume of 1500 mm3 or 45 days, whichever comes first. Responders were followed longer. When the endpoint was reached, the animals are to be euthanized.


Results are shown in FIG. 35.


Example 27b: MC38 IL-2 POC. Treatment with ACP16, ACP124 and ACP130











Agents and Treatment:















Formulation




Gr.
N
Agent
dose
Route
Schedule
















1#

12
Vehicle

ip
biwk × 2













2
8
ACP16
4.4
μg/animal
ip
biwk × 2


3
8
ACP16
17
μg/animal
ip
biwk × 2


4
8
ACP16
70
μg/animal
ip
biwk × 2


5
8
ACP16
232
μg/animal
ip
biwk × 2


6
8
ACP130
19
μg/animal
ip
biwk × 2


7
8
ACP130
45
μg/animal
ip
biwk × 2


8
8
ACP130
180
μg/animal
ip
biwk × 2


9
8
ACP130
600
μg/animal
ip
biwk × 1


12 
8
ACP124
17
μg/animal
ip
biwk × 2


13 
8
ACP124
70
μg/animal
ip
biwk × 2


14 
8
ACP124
230
μg/animal
ip
biwk × 2


15 
8
ACP124
700
μg/animal
ip
biwk × 2


16 
8
IL-2-
12
μg/animal
ip
bid × 5 then 2-day




WTI



pause then bid × 5








then 2-day pause


17 
8
IL-2-
36
μg/animal
ip
bid × 5 then 2-day




WTI



pause then bid × 5








then 2-day pause






#ControlGroup








Procedures:


Mice were anaesthetized with isoflurane for implant of cells to reduce the ulcerations. 308 CR female C57BL/6 mice were set up with 5×105 MC38 tumor cells in 0% Matrigel sc in flank. Cell Injection Volume was 0.1 mL/mouse. Mouse age at start date was 8 to 12 weeks. Pair matches were performed when tumors reach an average size of 100-150 mm3 and begin treatment. Body weights were taken at initiation and then biweekly to the end. Caliper measurements were taken biweekly to the end. Any adverse reactions were to be reported immediately. Any individual animal with a single observation of >than 30% body weight loss or three consecutive measurements of >25% body weight loss was euthanized. Any group with a mean body weight loss of >20% or >10% mortality stopped dosing; the group was not euthanized and recovery is allowed. Within a group with >20% weight loss, individuals hitting the individual body weight loss endpoint were euthanized. If the group treatment related body weight loss is recovered to within 10% of the original weights, dosing resumed at a lower dose or less frequent dosing schedule. Exceptions to non-treatment body weight % recovery were allowed on a case-by-case basis. Endpoint was tumor growth delay (TGD). Animals were monitored individually. The endpoint of the experiment was a tumor volume of 1500 mm3 or 45 days, whichever comes first. Responders were followed longer. When the endpoint was reached, the animals are to be euthanized.


Results are shown in FIGS. 31A-31C and FIGS. 32B-32C. Survival curves are shown in FIGS. 34A-34D.


Example 27c: MC38 IFNa and IL-12











Agents and Treatment:















Formulation




Gr.
N
Agent
dose
Route
Schedule
















1#

12
Vehicle

ip
biwk × 3













2
8
ACP11
17.5
μg/animal
ip
biwk × 3


3
8
ACP11
175
μg/animal
ip
biwk × 3


4
8
ACP11
525
μg/animal
ip
biwk × 3


5
8
ACP31
33
μg/animal
ip
biwk × 3


6
8
ACP31
110
μg/animal
ip
biwk × 3


7
8
ACP31
330
μg/animal
ip
biwk × 3


8
8
ACP131
1
μg/animal
ip
bid × 5 then 2-day








pause then bid × 5








then 2-day pause


9
8
ACP131
10
μg/animal
ip
bid × 5 then 2-day








pause then bid × 5








then 2-day pause


10 
8
ACP131
30
μg/animal
ip
bid × 5 then 2-day








pause then bid × 5








then 2-day pause


11 
8
mIFNa1-
1
μg/animal
ip
bid × 5 then 2-day




WTI



pause then bid × 5








then 2-day pause


12 
8
mIFNa1-
10
μg/animal
ip
bid × 5 then 2-day




WTI



pause then bid × 5








then 2-day pause


13 
8
IL-12-
2
μg/animal
ip
bid × 5 then 2-day




HM-



pause then bid × 5




WTI



then 2-day pause


14 
8
IL-12-
10
μg/animal
ip
bid × 5 then 2-day




HM-



pause then bid × 5




WTI



then 2-day pause


15 
8
ACP131
5
μg/animal
itu
bid × 5 then 2-day








pause then bid × 5








then 2-day pause






#ControlGroup








Procedures:


Mice were anaesthetized with isoflurane for implant of cells to reduce the ulcerations. 308 CR female C57BL6 mice were set up with 5×105 MC38 tumor cells in 0% Matrigel sc in flank. Cell Injection Volume was 0.1 mL/mouse. Mouse age at start date was 8 to 12 weeks. Pair matches were performed when tumors reach an average size of 100-150 mm3 and begin treatment. Body weights were taken at initiation and then biweekly to the end. Caliper measurements were taken biweekly to the end. Any adverse reactions were to be reported immediately. Any individual animal with a single observation of >than 30% body weight loss or three consecutive measurements of >25% body weight loss was euthanized. Any group with a mean body weight loss of >20% or >10% mortality stopped dosing; the group was not euthanized and recovery is allowed. Within a group with >20% weight loss, individuals hitting the individual body weight loss endpoint were euthanized. If the group treatment related body weight loss is recovered to within 10% of the original weights, dosing resumed at a lower dose or less frequent dosing schedule. Exceptions to non-treatment body weight % recovery were allowed on a case-by-case basis. Endpoint was tumor growth delay (TGD). Animals were monitored individually. The endpoint of the experiment was a tumor volume of 1500 mm3 or 45 days, whichever comes first. Responders were followed longer. When the endpoint was reached, the animals are to be euthanized. Results are show in in FIGS. 29A-29B, and 30.


Example 27d: Treatment with ACP16, ACP132, and ACP21











Agents and Treatment:















Formulation




Gr.
N
Agent
dose
Route
Schedule
















1#

10
Vehicle

ip
biwk × 2













2
7
ACP16
17
μg/animal
ip
biwk × 2


3
7
ACP16
55
μg/animal
ip
biwk × 2


4
7
ACP16
70
μg/animal
ip
biwk × 2


5
7
ACP16
230
μg/animal
ip
biwk × 2


6
7
ACP132
9
μg/animal
ip
biwk × 2


7
7
ACP132
28
μg/animal
ip
biwk × 1


8
7
ACP132
36
μg/animal
ip
biwk × 1


9
7
ACP132
119
μg/animal
ip
biwk × 1


10 
7
ACP21
13
μg/animal
ip
biwk × 2


11 
7
ACP21
42
μg/animal
ip
biwk × 2


12 
7
ACP21
54
μg/animal
ip
biwk × 2


13 
7
ACP21
177
μg/animal
ip
biwk × 2










Procedure


Mice were anaesthetized with isoflurane for implant of cells to reduce the ulcerations. CR female C57BL/6 mice were set up with 5×105 MC38 tumor cells in 0% Matrigel sc in flank. Cell Injection Volume was 0.1 mL/mouse. Mouse age at start date was 8 to 12 weeks. Pair matches were performed when tumors reach an average size of 100-150 mm3 and begin treatment. ACP16 was dosed at 17, 55, 70, or 230 μg/animal; ACP132 was dosed at 9, 28, 36, or 119 ug/animal; ACP21 was dosed at 13, 42, 54, or 177 μg/animal. Body weights were taken at initiation and then biweekly to the end. Caliper measurements were taken biweekly to the end. Any adverse reactions were to be reported immediately. Any individual animal with a single observation of >than 30% body weight loss or three consecutive measurements of >25% body weight loss was euthanized. Any group with a mean body weight loss of >20% or >10% mortality stopped dosing; the group was not euthanized and recovery is allowed. Within a group with >20% weight loss, individuals hitting the individual body weight loss endpoint were euthanized. If the group treatment related body weight loss is recovered to within 10% of the original weights, dosing resumed at a lower dose or less frequent dosing schedule. Exceptions to non-treatment body weight % recovery were allowed on a case-by-case basis. Endpoint was tumor growth delay (TGD). Animals were monitored individually. The endpoint of the experiment was a tumor volume of 1500 mm3 or 45 days, whichever comes first. Responders were followed longer. When the endpoint was reached, the animals are to be euthanized. Results are shown in FIG. 35.


Example 27e: MC38 Rechallenge

Cured mice (ACP16-treated) from Example 27b were rechallenged with tumor implantation to determine whether anti-tumor memory had been established from the initial treatments.












Agents and Treatment:















Formulation




Gr.
N
Agent
dose
Route
Schedule
















1#

33
No







Treatment













2
7
ACP16
70
μg/animal
ip
(ACP16 biwk × 2)


3
8
ACP16
232
μg/animal
ip
(ACP16 biwk × 2)


5
5
IL-2-WTI
12
μg/animal
ip
(IL-2-WTI bid × 5 then








2-day pause then bid ×








5 then 2-day pause)


6
7
IL-2-WTI
36
μg/animal
ip
(IL-2-WTI bid × 5 then








2-day pause then bid ×








5 then 2-day pause)






#ControlGroup








Procedures:


Mice were anaesthetized with isoflurane for implant of cells to reduce the ulcerations. This portion of the study began on the day of implant (Day 1). Group 1 consisted of 33 CR female C57BL6 mice set up with 5×105 MC38 tumor cells in 0% Matrigel subcutaneously in the flank. Groups 2-6 consisted of 33 CR female C57BI/6 mice set up with 5×105 MC38 tumor cells in 0% Matrigel sc in the left flank. The tumors from the previous MC38 experiment (Example 27b) were implanted in the right flank of each animal. Cell Injection Volume was 0.1 mL/mouse. Age of control mice at initiation was 14 to 17 weeks. These mice were age matched to mice from the previous MC38 experiment (Example 27b). No dosing of active agent occurred during rechallenge. Body Weights were take biweekly until end, as were caliper measurements. Any adverse reactions or death were reported immediately. Any individual animal with a single observation of >than 30% body weight loss or three consecutive measurements of >25% body weight loss was euthanized. Endpoint was tumor growth delay (TGD). Animals were monitored individually. The endpoint of the experiment was a tumor volume of 1000 mm3 or 45 days, whichever comes first. Responders were followed longer when possible. When the endpoint is reached, the animals were euthanized. Results are shown in FIG. 33.


Example 27f: Treatment with ACP10, ACP11











Agents and Treatment:















Formulation




Gr.
N
Agent
dose
Route
Schedule
















1#

12
Vehicle

ip
biwk × 2













2
8
ACP11
175
μg/animal
ip
biwk × 2


3
8
ACP11
300
μg/animal
ip
biwk × 2


4
8
ACP10
5
μg/animal
ip
biwk × 2


5
8
ACP10
10
μg/animal
ip
biwk × 2


6
8
ACP10
43
μg/animal
ip
biwk × 2


7
8
ACP10
43
μg/animal
ip
qwk × 2


8
8
ACP10
172
μg/animal
ip
biwk × 2


9
8
IL-12-
5
μg/animal
ip
bid for 5 days




HM-WTI



first day 1 dose








then 2-day pause








then bid for 5








days first day 1








dose then 2-day








pause


10 
8
IL-12-
20
μg/animal
ip
bid for 5 days




HM-WTI



first day 1 dose








then 2-day pause








then bid for 5








days first day 1








dose then 2-day








pause










Procedures


Mice were anaesthetized with isoflurane for implant of cells to reduce the ulcerations. CR female C57BL/6 mice were set up with 5×105 MC38 tumor cells in 0% Matrigel sc in flank. Cell Injection Volume was 0.1 mL/mouse. Mouse age at start date was 8 to 12 weeks. Pair matches were performed when tumors reach an average size of 100-150 mm3 and begin treatment. ACP11 was dosed at 175 or 300 μg/animal; ACP10 was dosed at 5, 10, 43, or 172 ug/animal; IL-12-HM-WTI was dosed at 5 or 20 ug/animal. Body weights were taken at initiation and then biweekly to the end. Caliper measurements were taken biweekly to the end. Any adverse reactions were to be reported immediately. Any individual animal with a single observation of >than 30% body weight loss or three consecutive measurements of >25% body weight loss was euthanized. Any group with a mean body weight loss of >20% or >10% mortality stopped dosing; the group was not euthanized and recovery is allowed. Within a group with >20% weight loss, individuals hitting the individual body weight loss endpoint were euthanized. If the group treatment related body weight loss is recovered to within 10% of the original weights, dosing resumed at a lower dose or less frequent dosing schedule. Exceptions to non-treatment body weight % recovery were allowed on a case-by-case basis. Endpoint was tumor growth delay (TGD). Animals were monitored individually. The endpoint of the experiment was a tumor volume of 1500 mm3 or 45 days, whichever comes first. Responders were followed longer. When the endpoint was reached, the animals are to be euthanized. Results are shown in FIG. 45 and FIGS. 46A-46D.


Example 27g: Treatment with ACP16, APC153, ACP155, ACP156 and ACP292











Agents and Treatment:















Formulation




Gr.
N
Agent
dose
Route
Schedule
















1#

12
Vehicle

ip
biwk × 2













2
8
ACP16
17
μg/animal
ip
biwk × 2


3
8
ACP16
55
μg/animal
ip
biwk × 2


4
8
ACP16
230
μg/animal
ip
biwk × 2


5
8
ACP155
55
μg/animal
ip
biwk × 2


6
8
ACP155
230
μg/animal
ip
biwk × 2


7
8
ACP153
55
μg/animal
ip
biwk × 2


8
8
ACP153
230
μg/animal
ip
biwk × 2


9
8
ACP156
55
μg/animal
ip
biwk × 2


10 
8
ACP156
230
μg/animal
ip
biwk × 2


11 
8
ACP292
45
μg/animal
ip
biwk × 2


12 
8
ACP292
186
μg/animal
ip
biwk × 2










Procedures:


Mice were anaesthetized with isoflurane for implant of cells to reduce the ulcerations. CR female C57BL/6 mice were set up with 5×105 MC38 tumor cells in 0% Matrigel sc in flank. Cell Injection Volume was 0.1 mL/mouse. Mouse age at start date was 8 to 12 weeks. Pair matches were performed when tumors reach an average size of 100-150 mm3 and begin treatment. ACP16 was dosed at 17, 55 or 230 μg/animal; ACP153, ACP155 and ACP156 were dosed at 55 or 230 μg/animal; ACP292 was dosed at 45 or 186 μg/animal. Body weights were taken at initiation and then biweekly to the end. Caliper measurements were taken biweekly to the end. Any adverse reactions were to be reported immediately. Any individual animal with a single observation of >than 30% body weight loss or three consecutive measurements of >25% body weight loss was euthanized. Any group with a mean body weight loss of >20% or >10% mortality stopped dosing; the group was not euthanized and recovery is allowed. Within a group with >20% weight loss, individuals hitting the individual body weight loss endpoint were euthanized. If the group treatment related body weight loss is recovered to within 10% of the original weights, dosing resumed at a lower dose or less frequent dosing schedule. Exceptions to non-treatment body weight % recovery were allowed on a case-by-case basis. Endpoint was tumor growth delay (TGD). Animals were monitored individually. The endpoint of the experiment was a tumor volume of 1500 mm3 or 45 days, whichever comes first. Responders were followed longer. When the endpoint was reached, the animals are to be euthanized. Results are shown in FIGS. 49A-49I.


Example 27h: Treatment with ACP16, APC302 and ACP314











Agents and Treatment:















Formulation




Gr.
N
Agent
dose
Route
Schedule
















1#

12
Vehicle

ip
biwk × 2













2
9
ACP16
55
μg/animal
ip
biwk × 2


3
9
ACP16
230
μg/animal
ip
biwk × 2


4
9
ACP302
33
μg/animal
ip
biwk × 2


5
9
ACP302
106
μg/animal
ip
biwk × 2


6
9
ACP302
442
μg/animal
ip
biwk × 2


7
9
ACP302
1,344
μg/animal
ip
biwk × 2


8
9
ACP314
21
μg/animal
ip
biwk × 2


9
9
ACP314
68
μg/animal
ip
biwk × 2


10 
9
ACP314
283
μg/animal
ip
biwk × 2


11 
9
ACP314
861
μg/animal
ip
biwk × 2










Procedures:


Mice were anaesthetized with isoflurane for implant of cells to reduce the ulcerations. CR female C57BL/6 mice were set up with 5×105 MC38 tumor cells in 0% Matrigel sc in flank. Cell Injection Volume was 0.1 mL/mouse. Mouse age at start date was 8 to 12 weeks. Pair matches were performed when tumors reach an average size of 100-150 mm3 and begin treatment. ACP16 was dosed at 55 or 230 μg/animal; ACP302 was dosed at 33, 106, 442 or 1344 ug/animal; ACP314 was dosed at 21, 68, 283 or 861 μg/animal. Body weights were taken at initiation and then biweekly to the end. Caliper measurements were taken biweekly to the end. Any adverse reactions were to be reported immediately. Any individual animal with a single observation of >than 30% body weight loss or three consecutive measurements of >25% body weight loss was euthanized. Any group with a mean body weight loss of >20% or >10% mortality stopped dosing; the group was not euthanized and recovery is allowed. Within a group with >20% weight loss, individuals hitting the individual body weight loss endpoint were euthanized. If the group treatment related body weight loss is recovered to within 10% of the original weights, dosing resumed at a lower dose or less frequent dosing schedule. Exceptions to non-treatment body weight % recovery were allowed on a case-by-case basis. Endpoint was tumor growth delay (TGD). Animals were monitored individually. The endpoint of the experiment was a tumor volume of 1500 mm3 or 45 days, whichever comes first. Responders were followed longer. When the endpoint was reached, the animals are to be euthanized. Results are shown in FIG. 50A-50B.


Example 27i: Treatment with ACP339











Agents and Treatment:















Formulation




Gr.
N
Agent
dose
Route
Schedule
















1#

12
Vehicle

ip
biwk × 2













2
9
ACP339
55
μg/animal
ip
biwk × 2


3
9
ACP339
230
μg/animal
ip
biwk × 2


4
9
ACP339
700
μg/animal
ip
biwk × 2










Procedures:


Mice were anaesthetized with isoflurane for implant of cells to reduce the ulcerations. CR female C57BL/6 mice were set up with 5×105 MC38 tumor cells in 0% Matrigel sc in flank. Cell Injection Volume was 0.1 mL/mouse. Mouse age at start date was 8 to 12 weeks. Pair matches were performed when tumors reach an average size of 100-150 mm3 and begin treatment. ACP339 was dosed at 55, 230 or 700 μg/animal. Body weights were taken at initiation and then biweekly to the end. Caliper measurements were taken biweekly to the end. Any adverse reactions were to be reported immediately. Any individual animal with a single observation of >than 30% body weight loss or three consecutive measurements of >25% body weight loss was euthanized. Any group with a mean body weight loss of >20% or >10% mortality stopped dosing; the group was not euthanized and recovery is allowed. Within a group with >20% weight loss, individuals hitting the individual body weight loss endpoint were euthanized. If the group treatment related body weight loss is recovered to within 10% of the original weights, dosing resumed at a lower dose or less frequent dosing schedule. Exceptions to non-treatment body weight % recovery were allowed on a case-by-case basis. Endpoint was tumor growth delay (TGD). Animals were monitored individually. The endpoint of the experiment was a tumor volume of 1500 mm3 or 45 days, whichever comes first. Responders were followed longer. When the endpoint was reached, the animals are to be euthanized. Results are shown in FIGS. 51A-51C.


Example 28: CT26 Experiments

The CT26 cell line, a rapidly growing colon adenocarcinomacell line that expresses MMP9 in vitro, was used. Using this tumor model, the ability of fusion proteins to affect tumor growth was examined.


Example 28a: Treatment with ACP16 Alone or in Combination with Anti-PD1 Antibody











Agents and Treatment:















Formulation




Gr.
N
Agent
dose
Route
Schedule






1#

12
vehicle 1 //
na //
ip //
days 1, 4, 8, 11 //




vehicle 2
na
ip
days 3, 6, 10, 13


2
10
vehicle 1 //
na //
ip //
days 1, 4, 8, 11 //




ACP16
70 μg/animal
ip
days 3, 6, 10, 13


3
10
vehicle 1 //
na //
ip //
days 1, 4, 8, 11 //




ACP16
232 μg/animal
ip
days 3, 6, 10, 13


4
10
vehicle 1 //
na //
ip //
days 1, 4, 8, 11 //




ACP16
500 μg/animal
ip
days 3, 6, 10, 13


5
10
anti-PD-1
200 μg/animal //
ip //
days 1, 4, 8, 11 //




RMP1-14 //
na
ip
days 3, 6, 10, 13




vehicle 2


6
10
anti-PD-1
200 μg/animal //
ip //
days 1, 4, 8, 11 //




RMP1-14 //
70 μg/animal
ip
days 3, 6, 10, 13




ACP16


7
10
anti-PD-1
200 μg/animal //
ip //
days 1, 4, 8, 11 //




RMP1-14 //
232 μg/animal
ip
days 3, 6, 10, 13




ACP16


8
10
anti-PD-1
200 μg/animal //
ip //
days 1, 4, 8, 11 //




RMP1-14 //
500 μg/animal
ip
days 3, 6, 10, 13




ACP16


9
10
vehicle 1 //
na //
ip //
days 1, 4, 8, 11 //




IL-2
12 μg/animal
ip
bid × 5 first day 1







dose per week × 2


10 
10
anti-PD-1
200 μg/animal //
ip //
days 1, 4, 8, 11 //




RMP1-14 //
12 μg/animal
ip
bid × 5 first day 1




IL-2


dose per week × 2










Procedures:


Mice were anaesthetized with isoflurane for implant of cells to reduce the ulcerations. CR female BALB/c mice were set up with 3×105 CT26 tumor cells in 0% Matrigel sc in flank. Cell Injection Volume was 0.1 mL/mouse. Mouse age at start date was 8 to 12 weeks. Pair matches were performed when tumors reach an average size of 100-150 mm3 and begin treatment. ACP 16 was dosed at 70, 230 or 500 μg/animal with or without anti-PD-1 antibody (RMP1-14) at 200 μg/animal. Body weights were taken at initiation and then biweekly to the end. Caliper measurements were taken biweekly to the end. Any adverse reactions were to be reported immediately. Any individual animal with a single observation of >than 30% body weight loss or three consecutive measurements of >25% body weight loss was euthanized. Any group with a mean body weight loss of >20% or >10% mortality stopped dosing; the group was not euthanized and recovery is allowed. Within a group with >20% weight loss, individuals hitting the individual body weight loss endpoint were euthanized. If the group treatment related body weight loss is recovered to within 10% of the original weights, dosing resumed at a lower dose or less frequent dosing schedule. Exceptions to non-treatment body weight % recovery were allowed on a case-by-case basis. Endpoint was tumor growth delay (TGD). Animals were monitored individually. The endpoint of the experiment was a tumor volume of 1500 mm3 or 45 days, whichever comes first. Responders were followed longer. When the endpoint was reached, the animals are to be euthanized. Results are shown in FIGS. 47A-47D and FIGS. 48A-48B.


Example 29. Human Tblast Assay

IL-2 T-Blast Assay. Pre-stimulated T cells (T-blasts) were used to assess the activity of inducible IL-2 fusion proteins. T-Blasts were induced from human PBMCs with a 3-day incubation with PHA. Tblasts were then plated in suspension at a concentration of 50,000 or 75,000 cells/well in X-VIVO culture media (containing human serum albumin) and stimulated with a dilution series of recombinant IL-2 fusion proteins or human IL-2 for 72 hours at 37° C. and 5% CO2. Activity of uncleaved and cleaved IL-2 fusion proteins was tested. Cleaved inducible IL-2 was generated by incubation with active MMP9. IL-2 activity was assessed measuring proliferation with CellTiter-Glo. Exemplary results are shown in FIG. 3A-3I.


IL-12 T-Blast Assay. T-Blasts were induced from human PBMCs through PHA stimulation for 72 hours. T-blasts were then washed and frozen prior use. For the assay, T-Blasts were thaw and plated in suspension at 100,000 cells/well in culture media containing human albumin and stimulated with a dilution series of recombinant hIL12 or chimeric IL12 (mouse p35/human p40) indukines or hIL12 indukines for 72 hours at 37° C. and 5% CO2. Activity of uncleaved and cleaved IL12 fusion proteins was tested. Cleaved inducible hIL12 was generated by incubation with active MMP9 enzyme. IL12 activity was assessed by quantification of IFNγ production in supernatants using a hIFNγ Alpha-LISA kit. Exemplary results are shown in FIGS. 8A-8D.


Example 30. Luciferase Reporter Assay

IL-2 luciferase reporter cells (Promega), purchased from the manufacturer in a “Thaw and Use” format, were plated according to the manufacturer's directions and stimulated with a dilution series of recombinant hIL-2 or activatable hIL-2 for 6 hours at 37° C. and 5% CO2. Activity of uncleaved and cleaved activatable IL-2 was tested. Cleaved inducible IL-2 was generated by incubation with active MMP9. IL-2 activity was assessed by quantification of luciferase activity using Bio-Glo™ Reagent (Promega), which allows for the measurement of luciferase activity by luminescence readout. Results are shown in FIGS. 2A-2J.


IL12 luciferase reporter cells (Promega), purchased from the manufacturer in a “Thaw and Use” format, were plated according to the manufacturer's directions and stimulated with a dilution series of recombinant hIL12 or activatable hIL12 for 6 hours at 37° C. and 5% CO2. Activity of uncleaved and cleaved activatable IL12 was tested. Cleaved inducible IL12 was generated by incubation with active MMP9. IL12 activity was assessed by quantification of luciferase activity using Bio-Glo™ Reagent (Promega), which allows for the measurement of luciferase activity by luminescence readout. Results are shown in FIGS. 9A-9C.


Example 31. MC38 Experiments











Agents and Treatment:












Group
N
Agent
Dose
Route
Schedule















1
12
vehicle

ip
biwk × 2













2
8
WW0417
55
μg/animal
ip
biwk × 2


3
8
WW0517
55
μg/animal
ip
biwk × 2


4
8
WW0517
230
μg/animal
ip
biwk × 2


5
8
WW0517
700
μg/animal
ip
biwk × 2


6
8
WWW0520/0523
76
μg/animal
ip
biwk × 2


7
8
WWW0520/0523
315
μg/animal
ip
biwk × 2


8
8
WWW0520/0523
959
μg/animal
ip
biwk × 2


9
8
WWW0548/0524
88
μg/animal
ip
biwk × 2


10
8
WWW0548/0524
368
μg/animal
ip
biwk × 2


11
8
WWW0548/0524
1,120
μg/animal
ip
biwk × 2


12
8
WWW0548/0556
113
μg/animal
ip
biwk × 2


13
8
WWW0548/0556
474
μg/animal
ip
biwk × 2


14
8
WWW0548/0556
1,442
μg/animal
ip
biwk × 2


15
8
WW0475
68
μg/animal
ip
biwk × 2


16
8
WW0475
283
μg/animal
ip
biwk × 2


17
8
WW0475
861
μg/animal
ip
biwk × 2


10
8
WW0619
17
μg/animal
ip
biwk × 2


11
8
WW0619
35
μg/animal
ip
biwk × 2


12
8
WW0619
70
μg/animal
ip
biwk × 2


13
8
WW0619
700
μg/animal
ip
biwk × 2


14
8
WW0621/0523
24
μg/animal
ip
biwk × 2


15
8
WW0621/0523
48
μg/animal
ip
biwk × 2


16
8
WW0621/0523
96
μg/animal
ip
biwk × 2


17
8
WW0621/0523
960
μg/animal
ip
biwk × 2










Procedures:


Mice were anaesthetized with isoflurane for implant of cells to reduce the ulcerations. 308 CR female C57BL/6 mice were set up with 5×10 MC38 tumor cells in 0% Matrigel sc in flank. Cell Injection Volume was 0.1 mL/mouse. Mouse age at start date was 8 to 12 weeks. Pair matches were performed when tumors reach an average size of 100-150 mm3 and begin treatment. Body weights were taken at initiation and then biweekly to the end. Caliper measurements were taken biweekly to the end. Any adverse reactions were to be reported immediately. Any individual animal with a single observation of >than 30% body weight loss or three consecutive measurements of >25% body weight loss was euthanized. Any group with a mean body weight loss of >20% or >10% mortality stopped dosing; the group was not euthanized, and recovery is allowed. Within a group with >20% weight loss, individuals hitting the individual body weight loss endpoint were euthanized. If the group treatment related body weight loss is recovered to within 10% of the original weights, dosing resumed at a lower dose or less frequent dosing schedule. Exceptions to non-treatment body weight % recovery were allowed on a case-by-case basis. Endpoint was tumor growth delay (TGD). Animals were monitored individually. The endpoint of the experiment was a tumor volume of 1500 mm3 or 45 days, whichever comes first. Responders were followed longer. When the endpoint was reached, the animals are to be euthanized. Results are shown in FIGS. 4-6.


Sample fusion protein constructs are detailed in Table 3. In table 3, “L” is an abbreviation of “linker”, and “cleav. link.” is an abbreviation of “cleavable linker”. Other abbreviations “mIFNg” indicates mouse interferon gamma (IFNg); “hAlbumin” indicates human serum albumin (HSA); “mAlbumin” indicates mouse serum albumin.


Example 32. Human Interferon PBMC Assay

Human PBMCs were isolated form blood obtained from healthy donors. After isolation, PBMCs were cryopreserved until the assay was performed. For the assay, PBMCs were thawed and plated in suspension at 100,000 cells/well in X-Vivo media supplemented with 1.5% of human serum albumin. % well round bottom plates were used for the assay. Cells were stimulated with a dilution series of recombinant human IFNα and activatable human IFNα for 48 hours at 37° C. and 5% CO2. Activity of uncleaved and cleaved activatable IFNα was tested. Cleaved inducible IFNα was generated by incubation with active recombinant protease. PBMC supernatants were collected and amounts of CXCL-10 (IP-10) produced were quantified using AlphaLISA as a measure of response. Results are shown in FIGS. 38A-38C.









TABLE 3







CONSTRUCT PERMUTATION TABLE (“6xHis” disclosed as SEQ ID NO: 354)








Construct



Name
Construct Description





ACP01
(anti-HSA)-(cleav. link.)-mouse IFNg-(cleav. link.)-(anti-HSA)-6xHis


ACP02
(anti-HSA)-(cleav. link.)-mouse IFNg-(cleav. link.)-mouse IFNg-(cleav. link.)-(anti-HSA)-



6xHis


ACP03
(anti-HSA)-(cleav. link.)-mouse IFNg-mouse IFNg-(cleav. link.)-(anti-HSA)-6xHis


ACP50
(anti-EpCAM)-(anti-HSA)-(cleav. link.)-mouse IFNg-mouse IFNg-(cleav. link.)-(anti-HSA)-



6xHis


ACP51
(anti-EpCAM)-Linker-(anti-HSA)-(cleav. link.)-mIFNg-(cleav. link.)-(anti-HSA)-6xHis


ACP52
(anti-HSA)-(cleav. link.)-mIFNg-(cleav. link.)-(anti-HSA)-Linker-(anti-EpCAM)-6xHis


ACP53
mAlbumin-(cleav. link.)-mIFNg-(cleav. link.)-mAlbumin-6xHis


ACP54
mAlbumin-(cleav. link.)-mIFNg-Linker-mIFNg-(cleav. link.)-mAlbumin-6xHis


ACP30
(anti-HSA)-(cleav. link.)-mouse IFNg-(cleav. link.)-(anti-HSA)-(cleav. link.)-mouse IFNg-



(cleav. link.)-(anti-HSA)-6xHis


ACP55
(anti-HSA)-(cleav. link.)-mouse IFNg-(cleav. link.)-(anti-HSA)-(cleav. link.)-mouse IFNg-



(cleav. link.)-(anti-HSA)-6xHis-C-tag


ACP56
(anti-FOLR1)-Linker-(anti-HSA)-(cleav. link.)-mIFNg-(cleav. link.)-(anti-HSA)-6xHis


ACP57
(anti-HSA)-(cleav. link.)-mIFNg-(cleav. link.)-(anti-HSA)-Linker-(anti-FOLR1)-6xHis


ACP58
(anti-HSA)-(cleav. link.)-mIFNg-(cleav. link.)-mIFNg-(cleav. link.)-(anti-HSA)-Linker-(anti-



EpCAM)-6xHis


ACP59
(anti-FOLR1)-Linker-(anti-HSA)-(cleav. link.)-mIFNg-(cleav. link.)-mIFNg-(cleav. link.)-



(anti-HSA)-6xHis


ACP60
(anti-HSA)-(cleav. link.)-mIFNg-(cleav. link.)-mIFNg-(cleav. link.)-(anti-HSA)-Linker-(anti-



FOLR1)-6xHis


ACP61
(anti-HSA)-(cleav. link.)-mIFNg-(cleav. link.)-mIFNg-(cleav. link.)-(anti-HSA)-Linker-



FN(CGS-2)-6xHis


ACP63
anti-FN CGS-2 scFv (Vh/Vl)-6xHis


ACP69
(anti-HSA)-(cleav. link.)-mouse IFNg-(cleav. link.)-(anti-HSA)-(cleav. link.)-mouse IFNg


ACP70
mouse IFNg-(cleav. link.)-(anti-HSA)-(cleav. link.)-mouse IFNg-(cleav. link.)-(anti-HSA)


ACP71
mouse IFNg-(cleav. link.)-mAlbumin-(cleav. link.)-mouse IFNg-(cleav. link.)-mAlbumin


ACP72
mAlbumin-(cleav. link.)-mouse IFNg-(cleav. link.)-mAlbumin-(cleav. link.)-mouse IFNg


ACP73
mAlbumin-(cleav. link.)-mouse IFNg-(cleav. link.)-mAlbumin-(cleav. link.)-mouse IFNg-



(cleav. link.)-mAlbumin


ACP74
mAlbumin-(cleav. link.)-mouse IFNg-(cleav. link.)-5mer linker-mAlbumin-5mer linker-(cleav.



link.)-mouse IFNg-(cleav. link.)-mAlbumin


ACP75
mAlbumin-(cleav. link.)-mouse IFNg-(cleav. link.)-10mer linker-mAlbumin-10mer linker-



(cleav. link.)-mouse IFNg-(cleav. link.)-mAlbumin


ACP78
(anti-HSA)-Linker-mouse_IFNg-Linker-(anti-HSA)-Linker-mouse_IFNg-Linker-(anti-



HSA)_(non-cleavable_control)


ACP134
Anti-HSA-(cleav. link.)-mouse_IFNg-(cleav. link.)-anti-HSA-(cleav. link.)-mouse_IFNg-



(cleav. link.)-anti-HSA-L-anti-FOLR1


ACP135
Anti-FOLR1-L-HSA-(cleav. link.)-mouse_IFNg-(cleav. link.)-HSA-(cleav. link.)-mouse_IFNg-



(cleav. link.)-HSA


ACP04
human p40-murine p35-6xHis


ACP05
human p40-human p35-6xHis


ACP34
mouse p35-(cleav. link.)-mouse p40-6xHis


ACP35
mouse p35-GS-(cleav. link.)-GS-mouse p40-6xHis


ACP36
(anti-HSA)-(Cleav. Linker)-mouse p40-mouse p35-(Cleav. Linker)-(anti-HSA)-6xHis


ACP37
(anti-EpCAM)-(anti-HSA)-(Cleav. Linker)-mouse p40-mouse p35-(Cleav. Linker)-(anti-HSA)-



6xHis


ACP79
(anti-EpCAM)-Linker-(anti-HSA)-(cleav. link.)-mIL12-(cleav. link.)-(Anti-HSA)-6xHis


ACP80
(anti-HSA)-(cleav. link.)-mIL12-(cleav. link.)-(anti-HSA)-Linker-(anti-EpCAM)-6xHis


ACP06
Blocker12-Linker-(cleav. link.)-human p40-Linker-mouse p35-(cleav. link.)-(anti-HSA)-6xHis


ACP07
Blocker12-Linker-(cleav. link.)-human p40-Linker-mouse p35-(cleav. link.)-(anti-HSA)-



Linker-(anti-FOLR1)-6xHis


ACP08
(anti-FOLR1)-Linker-Blocker12-Linker-(cleav. link.)-human p40-Linker-mouse p35-(cleav.



link.)-(anti-HSA)-6xHis


ACP09
(anti-HSA)-Linker-Blocker12-Linker-(cleav. link.)-human p40-Linker-mouse p35-6xHis


ACP10
(anti-HSA)-(cleav. link.)-human p40-L-mouse p35-(cleav. link.)-Linker-Blocker12-6xHis


ACP11
Human_p40-Linker-mouse_p35-(cleav. link.)-Linker-Blocker12-Linker-(anti-HSA)-6xHis


ACP91
human_p40-Linker-mouse_p35-Linker-Linker-Blocker-Linker-(anti-HSA)_(non-



cleavable_control)


ACP136
human p40-L-mouse p35-(cleav. link.)-Blocker


ACP138
human_p40-L-mouse_p35-(cleav. link.)-Blocker-L-(anti-HSA)-L-FOLR1


ACP139
Anti-FOLR1-L-human_p40-L-mouse_p35-(cleav. link.)-Blocker12-L-(anti-HSA)


ACP140
Anti-FOLR1-(cleav. link.)-human_p40-L-mouse_p35-(cleav. link.)-Blocker12-L-(anti-HSA)


ACP12
(anti-EpCAM)-IL2-(cleav. link.)-(anti-HSA)-blocker2-6xHis


ACP13
(anti-EpCAM)-Blocker2-(anti-HSA)-(cleav. link.)-IL2-6xHis


ACP14
Blocker2-Linker-(cleav. link.)-IL2- (cleav. link.)-(anti-HSA)-6xHis


(WW0045)


ACP15
Blocker2-Linker-(anti-HSA)-Linker-(cleav. link.)- IL2 -6xHis


(WW0047)


ACP16
IL2-(cleav. link.)-(anti-HSA)-Linker-(cleav. link.)-Blocker2-6xHis


(WW0048)


ACP17
(anti-EpCAM)-Linker-IL2-(cleav. link.)-(anti-HSA)-Linker-(cleav. link.)-Blocker2-6xHis


ACP18
(anti-EpCAM)-Linker-IL2-(cleav. link.)-(anti-HSA)-Linker-vh(cleav. link.)vl-6xHis


ACP19
IL2-(cleav. link.)-Linker-Blocker2-Linker-(anti-HSA)-Linker-(anti-EpCAM) -6xHis


ACP20
IL2-(cleav. link.)-Blocker2-6xHis


(WW0056)


ACP21
IL2-(cleav. link.)-Linker-Blocker2-6xHis


(WW0057)


ACP22
IL2-(cleav. link.)-Linker-blocker-(cleav. link.)-(anti-HSA)-Linker-(anti-EpCAM)-6xHis


ACP23
(anti-FOLR1)-(cleav. link.)-Blocker2-Linker-(cleav. link.)-(anti-HSA)-(cleav. link.)- IL2-6xHis


ACP24
(Blocker2)-(cleav. link.)-(IL2)-6xHis


(WW0074)


ACP25
Blocker2-Linker-(cleav. link.)-IL2-6xHis


(WW0075)


ACP26
(anti-EpCAM)-Linker-IL2-(cleav. link.)-(anti-HSA)-Linker-blocker(NARA1 Vh/Vl)


ACP27
(anti-EpCAM)-Linker-IL2-(cleav. link.)-(anti-HSA)-Linker-blocker(NARA1 Vl/Vh)


ACP28
IL2-(cleav. link.)-Linker-Blocker2-(NARA1 Vh/Vl)-Linker-(anti-HSA)-Linker-(anti-EpCAM)


ACP29
IL2-(cleav. link.)-Linker-Blocker2-(NARA1 Vl/Vh)-Linker-(anti-HSA)-Linker-(anti-EpCAM)


ACP38
IL2-(cleav. link.)-blocker-(anti-HSA)-(anti-EpCAM)-6xHis


ACP39
(anti-EpCAM)-(cleav. link.)-(anti-HSA)-(cleav. link.)-Blocker2-(cleav. link.)-IL-2-6xHis


ACP40
CD25ecd-Linker-(cleav. link.)-IL2-6xHis


(WW0076)


ACP41
IL2-(cleav. link.)-Linker-CD25ecd-6xHis


(WW0077)


ACP42
(anti-HSA)-Linker-CD25ecd-Linker-(cleav. link.)-IL2-6xHis


(WW0078)


ACP43
IL2-(cleav. link.)-Linker-CD25ecd-Linker-(anti-HSA)-6xHis


(WW0079)


ACP44
IL2-(cleav. link.)-Linker-CD25ecd-(cleav. link.)-(anti-HSA)-6xHis


(WW0080)


ACP45
(anti-HSA)-(cleav. link.)-Blocker2-Linker-(cleav. link.)-IL2-6xHis


(WW0046)


ACP46
IL2-(cleav. link.)-linkerL-vh(cleav. link.)vl-Linker-(anti-HSA)-L-(anti-EpCAM)-6xHis


ACP47
(anti-EpCAM)-Linker-IL2-(Cleavable Linker)-(anti-HSA)-Linker-Blocker2-6xHis


ACP48
IL2-(cleav. link.)-Blocker2-Linker-(anti-HSA)-6xHis


(WW0054)


ACP49
IL2-(cleav. link.)-Linker-Blocker2-Linker-(anti-HSA)-6xHis


(WW0055)


ACP92
(anti-HSA)-(16mer Cleav. Link.)-IL2-(16mer Cleav. Link.)-(anti-HSA)-6XHis


ACP93
(anti-EpCAM)-(anti-HSA)-(anti-EpCAM)-Blocker2-(cleav. link.)-IL2-6xHis


ACP94
(anti-EpCAM)-(anti-HSA)-Blocker2-(cleav. link.)-IL2-6xHis


ACP95
(anti-EpCAM)-(anti-HSA)-(cleav. link.)-IL2-6xHis


ACP96
(anti-EpCAM)-(16mer cleav. link.)-IL2-(16mer cleav. link.)-(anti-HSA)


ACP97
(anti-EpCAM)-(anti-HSA)-(cleav. link.)-IL2-(cleav. link.)-(anti-HSA)-6xHis


ACP99
(anti-EpCAM)-Linker-IL2-(cleav. link.)-(anti-HSA)-6xHis


ACP100
(anti-EpCAM)-Linker-IL2-6xHis


ACP101
IL2-(cleav. link.)-(anti-HSA)-6xHis


(WW0061)


ACP102
(anti-EpCAM)-(cleav. link.)-IL2-(cleav. link.)-(anti-HSA)-Linker-blocker-6xHis


ACP103
IL2-(cleav. link.)-Linker-Blocker2-Linker-(anti-HSA)-Linker-(antiI-FOLR1)-6xHis


ACP104
(anti-FOLR1)-IL2-(cleav. link.)-(anti-HSA)-Linker-Blocker2-6xHis


ACP105
Blocker2-Linker-(cleav. link.)-IL2-(cleav. link.)-(anti-HSA)-Linker-(anti-FOLR1)-6xHis


ACP106
(anti-FOLR1)-Linker-(anti-HSA)-(cleav. link.)-blocker-Linker-(cleav. link.)-IL2 -6xHis


ACP107
Blocker2-Linker-(anti-HSA)-(cleav. link.)-IL2-Linker-(anti-FOLR1)-6xHis


ACP108
(anti-EpCAM)-IL2-(Dually cleav. link.)-(anti-HSA)-Linker-blocker-6xHis


ACP117
anti-FN CGS-2 scFv (Vh/Vl)-6xHis


ACP118
NARA1 Vh/Vl non-cleavable


ACP119
NARA1 Vh/Vl cleavable


ACP120
NARA1 Vl/Vh non-cleavable


ACP121
NARA1 Vl/Vh cleavable


ACP124
IL2-Linker-(anti-HSA)-Linker-Linker-blocker_(non-cleavable_control)


(WW0159)


ACP132
IL2-L-HSA


(WW0177)


ACP141
IL2-L-human_Albumin


(WW0178)


ACP142
IL2-(cleav. link.)-human_Albumin


(WW0179)


ACP144
IL2-(cleav. link.)-HSA-(cleav.-link.)blocker-L-(anti-FOLR1)


ACP145
Anti-FOLR1-L-IL2-(cleav. link.)-HSA-Linker-(cleav. link.)-blocker2


ACP146
Anti-FOLR1-(cleav. link)-IL2-(cleav. link.)-HSA-Linker-(cleav. link.)-blocker2


ACP133
IL2-6x His


(WW0196)


ACP147
IL2-(cleav. Linker)-(anti-HSA)-Linker-(cleav. link.)-blocker2-L-(anti-EpCAM)


ACP148
(anti-EpCAM)-L-IL2-(cleav. link.)-(anti-HSA)-L-(cleav. Linker)-blocker2


ACP149
(anti-EpCAM)-(cleav. link.)-IL2-(cleav. Linker)-(anti-HSA)-L-(cleav. Linker)-blocker2


ACP31
(anti-HSA)-(cleav. link.)-mIFNa1-(cleav. link.)-(anti-HSA)


ACP32
(anti-HSA)-(cleav. link.)-mIFNa1(N + C trunc)-(cleav. link.)-(anti-HSA)


ACP33
(anti-HSA)-(cleav. link.)-mIFNa1(C trunc)-(cleav. link.)-(anti-HSA)


ACP131
mIFNa1


ACP125
Anti-HSA-(cleav. link.)-mIFNa1


ACP126
mIFNa1-(cleav. link.)-(anti-HSA)


ACP127
Mouse_Albumin-(cleav. Link.)-mIFNa1-(cleav link)-mouse_Albumin


ACP128
Mouse_Albumin-(cleav. link.)-mIFNa1


ACP129
mIFNa1-(cleav. link.)-mAlb


ACP150
(Anti-FOLR1)-L-(anti-HSA)-(cleav. Link.)-mIFNa1-(cleav. Link.)-(anti-HSA)


ACP151
Anti-FOLR1-L-(anti-HSA)-(cleav. Link.)-mIFNa1-(cleav. Link.)-(anti-HSA)-L-(anti-FOLR1)


ACP152
(anti-HSA)-L-mIFNa1-L-(anti-HSA)_(non-cleavable_control)


ACP153
IL2-(cleav. link.)-(anti-HSA)-linker(cleav. link.)-blocker2


(WW0201)


ACP154
IL2-(cleav. link.)-(anti-HSA)-linker(cleav. link.)-blocker2


(WW0202)


ACP155
IL2-(cleav. link.)-(anti-HSA)-linker(cleav. link.)-blocker2


(WW0203)


ACP156
IL2-X-anti-HSA-LX-blocker_(X = Linker4_Blocker = Vh-Vl)


(WW0204)


ACP157
IL2-X-anti-HSA-LX-blocker_(X = Linker5_Blocker = Vh-Vl)


(WW0205)


ACP200
mAlb(D3)-X-mouse-IFNa-X-mAlb(D3)_(X = Linker 1)


ACP201
mAlb(D1-L-D3)-X-mouse-IFNa-X-mAlb(D1-L-D3)_(X = Linker 1)


ACP202
HSA-X-mIFNa1-X-HSA_(X = Linker 1 + 17aa)


ACP203
HSA-X-mIFNa1-X-HSA_(X = Linker 2)


ACP204
HSA-X-mIFNa1-X-HSA_(X = Linker 3)


ACP205
HSA-X-mIFNa1-X-HSA_(X = Linker 4)


ACP206
HSA-X-Human_IFNA2b-X-HSA_(X = Linker 2)


ACP207
HSA-X-Human_IFNA2b-X-HSA_(X = Linker 3)


ACP208
HSA-X-Human_IFNA2b-X-HSA_(X = Linker 4)


ACP211
HSA-X-mouse-IFNg-X-IFNa-X-mouse-IFNg-X-HSA_(X = Linker 1)


ACP213
mAlb(D3)-X-mouse-IFNg-X-mAlb(D3)-X-mouse-IFNg-X-mAlb(D3)_(X = Linker 1)


ACP214
mAlb(D1-L-D3)-X-mouse-IFNg-X-mAlb(D1-L-D3)-X-mouse-IFNg-X-mAlb(D1-L-



D3)_(X = Linker 1)


ACP215
HSA-X-mouse-IFNg-X-HSA-X-mouse-IFNg-X-HSA_(X = Linker 1 + 17aa)


ACP240
HSA-L-human_p40-L-mouse_p35-LL-Blocker_(non-cleavable; Blocker = Vl/Vh)


ACP241
mAlb-X-human_p40-L-mouse_p35-XL-Blocker_(X = Linker 1; Blocker = Vl/Vh)


ACP242
human_p40-L-mouse_p35-XL-Blocker-X-mAlb_(X = Linker 1; Blocker = Vl/Vh)


ACP243
mIgG1_Fc-X-human_p40-L-mouse_p35-XL-Blocker_(X = Linker 1; Blocker = Vl/Vh)


ACP244
human_p40-L-mouse_p35-XL-Blocker-X-mIgG1_Fc_(X = Linker 1; Blocker = Vl/Vh)


ACP245
HSA-X-human_p40-L-mouse_p35-XL-Blocker(cleavable)_(X = Linker 1; Blocker = Vl-X-Vh)


ACP247
HSA-X-human_p40-L-mouse_p35-XL-Blocker_(Blocker = 3CYT5; X = Linker 1)


ACP284
HSA-X-mouse_p35-XL-Blocker_(Blocker = Vl/Vh; X = Linker 1)


ACP285
HSA-X-human_p40_C199S-L-mouse_p35_C92S-XL-Blocker_(Blocker = _Vl/Vh; X = Linker 1)


ACP286
HSA-X-human p40-L(4xG4S (SEQ ID NO: 453))-mouse p35-XL-Blocker_(Blocker =



Vl/Vh; X = Linker 1)


ACP287
HSA-X-human_p40_mouse_p35-XL-Blocker_(Blocker = Vl/Vh_VH44-



VL100 disulfide; X = Linker 1)


ACP288
HSA-X-human_p40_mouse_p35-XL-Blocker_(Blocker = Vl/Vh_VH105-



VL43_disulfide; X = Linker 1)


ACP289
Geneart_WW0048_IL2-X-HSA-LX-blocker_Fusion_protein-6xHis


(WW0233)


ACP290
IL2-X-HSA-LX-blocker_(X = Linker 1; Blocker = 3TOW69)


(WW0234)


ACP291
IL2-X-HSA-LX-blocker_(X = Linker 1; Blocker = 3TOW85)


(WW0235)


ACP292
IL2-X-HSA-LX-blocker_(X = Linker 1; Blocker = 2TOW91)


(WW0236)


ACP296
IL2-X-HSA-LX-blocker(cleavable)_(X = Linker 1; Blocker = Vh-X-Vl)


(WW0250)


ACP297
IL2-X-HSA-LX-blocker(A46L)_(X = Linker 1; Blocker = Vh/Vl)


(WW0251)


ACP298
IL2-X-HSA-LX-blocker(A46G)_(X = Linker 1; Blocker = Vh/Vl)


(WW0252)


ACP299
IL2(Cys145Ser)-X-HSA-LX-blocker_(X = Linker 1; Blocker = Vh/Vl)


(WW0253)


ACP300
IL2-X-hAlb-LX-blocker_(X = Linker 1; Blocker = Vh/Vl)


(WW0255)


ACP302
IL2-X-mAlb-LX-blocker_(X = Linker 1; Blocker = Vh/Vl)


(WW0296)


ACP303
mAlb-X-IL2(Nterm-41)-X-mALB_(X = Linker 1)


ACP304
IL2-X-HSA-LX-blocker-XL-CD25ecd_(X = Linker 1; Blocker = Vh/Vl)


(WW0302)


ACP305
CD25ecd-LX-IL2-X-HSA-LX-blocker_(X = Linker 1; Blocker = Vh/Vl)


(WW0303)


ACP306
IL2-XL-CD25ecd-X-HSA-LX-blocker_(X = Linker 1; Blocker = Vh/Vl)


(WW0304)


ACP309
IL2-X-HSA-LX-blocker(A46S)_(X = Linker 1; Blocker = Vh/Vl)


(WW0307)


ACP310
IL2-X-HSA-LX-blocker(QAPRL_FR2)_(X = Linker 1; Blocker = Vh/Vl)


(WW0308)


ACP311
IL2-X-IgG4_Fc(S228P)-LX-Blocker_(X = Linker 1; Blocker = Vh/Vl)


(WW0316)


ACP312
IgG4_Fc(S228P)-X-IL2-LX-Blocker_(X = Linker 1; Blocker = Vh/Vl)


(WW0317)


ACP313
IL2-XL-Blocker-X-IgG4_Fc(S228P)_(X = Linker 1; Blocker = Vh/Vl)


(WW0318)


ACP314
mIgG1_Fc-X-IL2-LX-Blocker_(X = Linker 1; Blocker = Vh/Vl)


(WW0354)


ACP336
IL2-X-anti-HSA-LX-blocker_(Blocker = VHVL.F2.high.A02_Vh-X-Vl_A46S; X = Linker 2)


(WW0414)


ACP337
IL2-X-anti-HSA-LX-blocker_(Blocker = VHVL.F2.high.A02_Vh/Vl_A46S; X = Linker 2)


(WW0415)


ACP338
IL2-X-anti-HSA-LX-blocker_(Blocker = VHVL.F2.high.F03_Vh-X-Vl; X = Linker 2)


(WW0416)


ACP339
IL2-X-anti-HSA-LX-blocker_(Blocker = VHVL.F2.high.F03_Vh/Vl; X = Linker 2)


(WW0417)


ACP340
IL2-X-anti-HSA-LX-blocker_(Blocker = Hu2TOW91_B; X = Linker 2)


(WW0418)


ACP341
IL2-X-anti-HSA-LX-blocker_(Blocker = Hu3TOW85_A; X = Linker 2)


(WW0419)


ACP342
CD25ecd_C213S-LX-IL2-X-anti-HSA-LX-blocker_(Blocker = VHVL.F2.high.A02_Vh-X-


(WW0420)
Vl_A46S; X = Linker 2)


ACP343
CD25ecd_C213S-LX-IL2-X-anti-HSA-LX-


(WW0421)
blocker_(Blocker = VHVL.F2.high.A02_Vh/Vl_A46S; X = Linker 2)


ACP344
CD25ecd_C213S-LX-IL2-X-anti-HSA-LX-blocker_(Blocker = VHVL.F2.high.F03_Vh-X-


(WW0422)
Vl; X = Linker 2)


ACP345
CD25ecd_C213S-LX-IL2-X-anti-HSA-LX-blocker_(Blocker = VHVL.F2.high.F03_Vh/Vl; X =


(WW0423)
Linker 2)


ACP346
CD25ecd_C213S-LX-IL2-X-anti-HSA-LX-blocker_(Blocker = Hu2TOW91_B; X = Linker 2)


(WW0424)


ACP347
CD25ecd_C213S-LX-IL2-X-anti-HSA-LX-blocker_(Blocker = Hu3TOW85_A; X = Linker 2)


(WW0425)


ACP348
IgG4_Fc(S228P)-X-IL2-LX-Blocker_(Blocker = VHVL.F2.high.A02_Vh-X-Vl_A46S; X =


(WW0426)
Linker 2)


ACP349
IgG4_Fc(S228P)-X-IL2-LX-Blocker_(Blocker = VHVL.F2.high.A02_Vh\Vl_A46S; X = Linker


(WW0427)
2)


ACP350
IgG4_Fc(S228P)-X-IL2-LX-Blocker_(Blocker = VHVL.F2.high.F03_Vh-X-Vl; X = Linker 2)


(WW0428)


ACP351
IgG4_Fc(S228P)-X-IL2-LX-Blocker_(Blocker = VHVL.F2.high.F03_Vh\Vl; X = Linker 2)


(WW0429)


ACP352
IgG4_Fc(S228P)-X-IL2-LX-Blocker_(Blocker = Hu2TOW91_B; X = Linker 2)


(WW0430)


ACP353
IgG4_Fc(S228P)-X-IL2-LX-Blocker_(Blocker = Hu3TOW85_A; X = Linker 2)


(WW0431)


ACP354
IgG4_Fc(S228P)-X-CD25ecd_C213S-LX-IL2-LX-Blocker_(Blocker = VHVL.F2.high.A02_Vh-


(WW0432)
X-Vl_A46S; X = Linker 2)


ACP355
IgG4_Fc(S228P)-X-CD25ecd_C213S-LX-IL2-LX-


(WW0433)
Blocker_(Blocker = VHVL.F2.high.A02_Vh\Vl_A46S; X = Linker 2)


ACP356
IgG4_Fc(S228P)-X-CD25ecd_C213S-LX-IL2-LX-Blocker_(Blocker = VHVL.F2.high.F03_Vh-


(WW0434)
X-Vl; X = Linker 2)


ACP357
IgG4_Fc(S228P)-X-CD25ecd_C213S-LX-IL2-LX-


(WW0435)
Blocker_(Blocker = VHVL.F2.high.F03_Vh\Vl; X = Linker 2)


ACP358
IgG4_Fc(S228P)-X-CD25ecd_C213S-LX-IL2-LX-Blocker_(Blocker = Hu2TOW91_B; X =


(WW0436)
Linker 2)


ACP359
IgG4_Fc(S228P)-X-CD25ecd_C213S-LX-IL2-LX-Blocker_(Blocker = Hu3TOW85_A; X =


(WW0437)
Linker 2)


ACP371
IL2-X-anti-HSA-LX-blocker_(Blocker = Vh/Vl_VH44-VL100_disulfide; X = Linker 2)


(WW0513)


ACP372
IL2-X-anti-HSA-LX-blocker_(Blocker = Vh/Vl_VH105-VL43_disulfide; X = Linker 2)


(WW0514)


ACP373
IL2-X-anti-HSA-LX-blocker_(Blocker = VHVL.F2.high.A02_Vh/Vl_VH44-


(WW0515)
VL100_disulfide; X = Linker 2)


ACP374
IL2-X-anti-HSA-LX-blocker_(Blocker = VHVL.F2.high.A02_Vh/Vl_VH105-


(WW0516)
VL43_disulfide; X = Linker 2)


ACP375
IL2-X-anti-HSA-LX-blocker_(Blocker = VHVL.F2.high.F03_Vh/Vl_VH44-


(WW0517)
VL100_disulfide; X = Linker 2)


ACP376
IL2-X-anti-HSA-LX-blocker_(Blocker = VHVL.F2.high.F03_Vh/Vl_VH105-VL43_disulfide X =


(WW0521)
Linker 2)


ACP377
IL2-X-anti-HSA-LX-blocker_(Blocker = Hu2TOW91_A; X = Linker 2)


(WW0519)


ACP378
IL2-X-anti-HSA-LX-Heavy_blocker_Fab_(Blocker = VH-CH1; X = Linker 2)


(WW0520)


ACP379
IgG4_Fc(S228P)-X-IL2-LX-Heavy_blocker_Fab_(Blocker = VH-CH1; X = Linker 2)


(WW0521)


ACP383
IgG4_Fc(S228P)-X-IL2-LX-blocker_(Blocker = Vh/Vl_VH44-VL100_disulfide; X = LINKER 2)


(WW0525)


ACP38
IgG4_Fc(S228P)-X-IL2-LX-blocker_(Blocker = Vh/Vl_VH105-VL43_disulfide; X = MMP14-1)


(WW05264)


ACP385
IgG4_Fc(S228P)-X-IL2-LX-blocker_(Blocker = VHVL.F2.high.A02_Vh/Vl_VH44-


(WW0527)
VL100_disulfide; X = LINKER 2)


ACP386
IgG4_Fc(S228P)-X-IL2-LX-blocker_(Blocker = VHVL.F2.high.A02_Vh/Vl_VH105-


(WW0528)
VL43_disulfide; X = Linker 2)


ACP387
IgG4_Fc(S228P)-X-IL2-LX-blocker_(Blocker = VHVL.F2.high.F03_Vh/Vl_VH44-


(WW0529)
VL100_disulfide; X = Linker 2)


ACP388
IgG4_Fc(S228P)-X-IL2-LX-blocker_(Blocker = VHVL.F2.high.F03_Vh/Vl_VH105-


(WW0530)
VL43_disulfide; X = Linker 2)


ACP389
IgG4_Fc(S228P)-X-IL2-LX-blocker_(Blocker = Hu2TOW91_A; X = Linker 2)


(WW0531)


ACP390
IL2-X-anti-HSA-LX-blocker_(Blocker = VHVL.F2.high.A02_Vh/Vl_A46S_VH44-


(WW0532)
VL100_disulfide; X = Linker 2)


ACP391
IgG4_Fc(S228P)-X-IL2-LX-blocker_(Blocker = VHVL.F2.high.A02_Vh/Vl_A46S_VH44-


(WW0533)
VL100_disulfide; X = Linker 2)


ACP392
IL2-XL-CD25ecd_C213S-X-HSA-LX-


(WW0534)
blocker_(Blocker = VHVL.F2.high.A02_Vh_G44C_Vl_A46S_G100C; X = Linker 2)


ACP393
IL2-XL-CD25ecd_C213S-X-HSA-LX-


(WW0535)
blocker_(Blocker = VHVL.F2.high.A02_Vh_Q105C_Vl_A43C; X = Linker 2)


ACP394
IL2-XL-CD25ecd_C213S-X-HSA-LX-


(WW0536)
blocker_(Blocker = VHVL.F2.high.F03_Vh_G44C_Vl_G100C; X = Linker 2)


ACP395
IL2-XL-CD25ecd_C213S-X-HSA-LX-


(WW0537)
blocker_(Blocker = VHVL.F2.high.F03_Vh_Q105C_Vl_A43C; X = Linker 2)


ACP396
IL2-XL-CD25ecd_C213S-X-HSA-LX-blocker_(Blocker = Hu2TOW91_A; X = Linker 2)


(WW0538)


ACP397
IL2-XL-CD25ecd_C213S-X-HSA-LX-blocker_(Blocker = Hu2TOW91_B; X = Linker 2)


(WW0539)


ACP398
IL2-XL-CD25ecd_C213S-X-HSA-LX-Heavy_blocker_Fab_(Blocker = VH-CH1; X = Linker 2)


(WW0540)


ACP399
Blocker-XL-HSA-X-IL2(Nterm-41)-X-



HSA_(Blocker = VHVL.F2.high.A02_Vh_G44C_Vl_A46S_G100C; X = Linker 2)


ACP400
Blocker-XL-HSA-X-IL2(Nterm-41)-X-



HSA_(Blocker = VHVL.F2.high.A02_Vh_Q105C_Vl_A43C; X = Linker 2)


ACP401
Blocker-XL-HSA-X-IL2(Nterm-41)-X-



HSA_(Blocker = VHVL.F2.high.F03_Vh_G44C_Vl_G100C; X = Linker 2)


ACP402
Blocker-XL-HSA-X-IL2(Nterm-41)-X-



HSA_(Blocker = VHVL.F2.high.F03_Vh_Q105C_Vl_A43C; X = Linker 2)


ACP403
Blocker-XL-HSA-X-IL2(Nterm-41)-X-HSA_(Blocker = Hu2TOW91_A; X = Linker 2)


ACP404
Blocker-XL-HSA-X-IL2(Nterm-41)-X-HSA_(Blocker = Hu2TOW91_B; X = Linker 2)


ACP405
Heavy_Blocker_Fab-XL-HSA-X-IL2(Ntenn-41)-X-HSA_(Blocker = VH-CH1; X = Linker 2)


ACP406
mIgG1_Fc(S228P)-X-IL2-LX-Heavy_blocker_Fab_(Blocker = VH-CH1; X = Linker 2)


(WW0548)


ACP407
mIgG1_Fc(S228P)-X-IL2-LX-blocker_(Blocker = VHVL.F2.high.A02_Vh/Vl_VH44-


(WW0549)
VL100_disulfide; X = Linker 2)


ACP408
mIgG1_Fc(S228P)-X-IL2-LX-blocker_(Blocker = VHVL.F2.high.A02_Vh/Vl_A46S_VH44-


(WW0550)
VL100_disulfide; X = Linker 2)


ACP409
mIgG1_Fc(S228P)-X-IL2-LX-blocker_(Blocker = VHVL.F2.high.A02_Vh/Vl_VH105-


(WW0551)
VL43_disulfidel; X = Linker 2)


ACP410
mIgG1_Fc(S228P)-X-IL2-LX-blocker_(Blocker = VHVL.F2.high.F03_Vh/Vl_VH44-


(WW0552)
VL100_disulfidel; X = Linker 2)


ACP411
mIgG1_Fc(S228P)-X-IL2-LX-blocker_(Blocker = VHVL.F2.high.F03_Vh/Vl_VH105-


(WW0553)
VL43_disulfidel; X = Linker 2)


ACP412
mIgG1_Fc(S228P)-X-IL2-LX-blocker_(Blocker = Hu2TOW91_A; X = Linker 2)


(WW0554)


ACP413
CD25_213S-L-Kappa_blocker_Fab_(Blocker = VHVL.F2.high.A02_A46S_Kappa)


(WW0555)


ACP414
CD25_213S-L-Kappa_blocker_Fab_(Blocker = VHVL.F2.high.F03_Kappa)


(WW0556)


ACP415
IL2-XL-blocker-L-CD25_213S-X-


(WW0557)
HSA_Blocker = VHVL.F2.high.A02_Vh_G44C_Vl_A46S_G100C; X = Linker 2)


ACP416
IL2-XL-blocker-L-CD25_213S-X-


(WW0558)
HSA_(Blocker = VHVL.F2.high.A02_Vh_Q105C_Vl_A43C; X = Linker 2)


ACP417
IL2-XL-blocker-L-CD25_213S-X-


(WW0559)
HSA_(Blocker = VHVL.F2.high.F03_Vh_G44C_Vl_G100C; X = Linker 2)


ACP418
IL2-XL-blocker-L-CD25_213S-X-


(WW0560)
HSA_(Blocker = VHVL.F2.high.F03_Vh_Q105C_Vl_A43C; X = Linker 2)


ACP419
IL2-XL-blocker-L-CD25_213S-X-HSA_(Blocker = Hu2TOW91_A; X = Linker 2)


(WW0561)


ACP420
IL2-XL-blocker-L-CD25_213S-X-HSA_(Blocker = Hu2TOW91_B; X = Linker 2)


(WW0562)


ACP421
HSA-X-blocker-L-CD25_213S-LX-


(WW0563)
IL2_(Blocker = VHVL.F2.high.A02_Vh_G44C_Vl_A46S_G100C; X = Linker 2)


ACP422
HSA-X-blocker-L-CD25_213S-LX-


(WW0564)
IL2_(Blocker = VHVL.F2.high.A02_Vh_Q105C_Vl_A43C; X = Linker 2)


ACP423
HSA-X-blocker-L-CD25_213S-LX-


(WW0565)
IL2_(Blocker = VHVL.F2.high.F03_Vh_G44C_Vl_G100C; X = Linker 2)


ACP424
HSA-X-blocker-L-CD25_213S-LX-


(WW0566)
IL2_(Blocker = VHVL.F2.high.F03_Vh_Q105C_Vl_A43C; X = Linker 2)


ACP425
HSA-X-blocker-L-CD25_213S-LX-IL2_(Blocker = Hu2TOW91_A; X = Linker 2)


(WW0567)


ACP426
HSA-X-blocker-L-CD25_213S-LX-IL2_(Blocker = Hu2TOW91_B; X = Linker 2)


(WW0568)


ACP427
IL2-X-anti-HSA-LX-Blocker1-L-


(WW0569)
Blocker2_(Blocker1 = VHVL.F2.high.A02_Vh_G44C_Vl_A46S_G100C,



Blocker2 = Hu2TOW91_A; X = Linker 2)


ACP428
IL2-X-anti-HSA-LX-Blocker1-L-


(WW0570)
Blocker2_(Blocker1 = VHVL.F2.high.A02_Vh_Q105C_Vl_A43C,



Blocker2 = Hu2TOW91_A; X = Linker 2)


ACP429
IL2-X-anti-HSA-LX-Blocker1-L-


(WW0571)
Blocker2_(Blocker1 = VHVL.F2.high.F03_Vh_G44C_Vl_G100C,



Blocker2 = Hu2TOW91_A; X = Linker 2)


ACP430
IL2-X-anti-HSA-LX-Blocker1-L-


(WW0572)
Blocker2_(Blocker1 = VHVL.F2.high.F03_Vh_Q105C_Vl_A43C,



Blocker2 = Hu2TOW91_A; X = Linker 2)


ACP431
IL2-X-anti-HSA-LX-Blocker1-L-


(WW0573)
Blocker2_(Blocker1 = VHVL.F2.high.A02_Vh_G44C_Vl_A46S_G100C,



Blocker2 = Hu2TOW91_B; X = Linker 2)


ACP432
IL2-X-anti-HSA-LX-Blocker1-L-


(WW0574)
Blocker2_(Blocker1 = VHVL.F2.high.A02_Vh_Q105C_Vl_A43C,



Blocker2 = Hu2TOW91_B; X = Linker 2)


ACP433
IL2-X-anti-HSA-LX-Blocker1-L-


(WW0575)
Blocker2_(Blocker1 = VHVL.F2.high.F03_Vh_G44C_Vl_G100C,



Blocker2 = Hu2TOW91_B; X = Linker 2)


ACP434
IL2-X-anti-HSA-LX-Blocker1-L-


(WW0576)
Blocker2_(Blocker1 = VHVL.F2.high.F03_Vh_Q105C_Vl_A43C,



Blocker2 = Hu2TOW91_B; X = Linker 2)


ACP439
IL2-X-anti-HSA-LX-blocker_(Blocker = VHVL.F2.high.C07_Vh/Vl; X = Linker 2)


(WW0581)


ACP440
IL2-X-anti-HSA-LX-blocker_(Blocker = VHVL.F2.high.C07_Vh/Vl_A46S; X = Linker 2)


(WW0582)


ACP441
IL2-X-anti-HSA-LX-blocker_(Blocker = VHVL.F2.high.C07_Vh/Vl_A46L; X = Linker 2)


(WW0583)


ACP442
IL2-X-anti-HSA-LX-blocker_(Blocker = VHVL.F2.high.C07_Vh/Vl_A46S_VH44-


(WW0584)
VL100_disulfide; X = Linker 2)


ACP443
IL2-X-anti-HSA-LX-blocker_(Blocker = VHVL.F2.high.C07_Vh/Vl_A46L_VH44-


(WW0585)
VL100_disulfide; X = Linker 2)


ACP444
IL2-X-anti-HSA-LX-blocker_(Blocker = VHVL.F2.high.C07_Vh/Vl_VH105-


(WW0586)
VL43_disulfide; X = Linker 2)


ACP445
IL2-X-anti-HSA-LX-blocker_(Blocker = VHVL.F2.high.A02_Vh-X-Vl_A46L; X = Linker 2)


(WW0587)


ACP446
IL2-X-anti-HSA-LX-blocker_(Blocker = VHVL.F2.high.A02_Vh/Vl_A46L; X = Linker 2)


(WW0588)


ACP447
IL2-X-anti-HSA-LX-blocker_(Blocker = VHVL.F2.high.A02_Vh/Vl_A46L_VH44-


(WW0589)
VL100_disulfide; X = Linker 2)


ACP451
IL2-X-anti-HSA-LX-blocker_(Blocker = VHVL.F2.high.A02_Vh/Vl_A46S; X = Linker 3)


(WW0615)


ACP452
IL2-X-anti-HSA-LX-blocker_(Blocker = VHVL.F2.high.F03_Vh/Vl; X = Linker 3)


(WW0616)


ACP453
IL2-X-anti-HSA-LX-blocker_(Blocker = VHVL.F2.high.A02_Vh/Vl_A46S_VH44-


(WW0617)
VL100_disulfide; X = Linker 3)


ACP454
IL2-X-anti-HSA-LX-blocker_(Blocker = VHVL.F2.high.A02_Vh/Vl_VH105-


(WW0618)
VL43_disulfidel; X = Linker 3)


ACP455
IL2-X-anti-HSA-LX-blocker_(Blocker = VHVL.F2.high.F03_Vh/Vl_VH44-


(WW0619)
VL100_disulfide; X = Linker 3)


ACP456
IL2-X-anti-HSA-LX-blocker_(Blocker = VHVL.F2.high.F03_Vh/Vl_VH105-


(WW0620)
VL43_disulfideX = Linker 3)


ACP457
IL2-X-anti-HSA-LX-Heavy_blocker_Fab_(Blocker = VH-CH1; X = Linker 3)


(WW0621)


ACP458
IgG4_Fc(S228P)-X-IL2-LX-Heavy_blocker_Fab_(Blocker = VH-CH1; X = Linker 3)


(WW0622)


ACP459
IgG4_Fc(S228P)-X-IL2-LX-Blocker_(Blocker = VHVL.F2.high.A02_Vh\Vl_A46S; X = Linker 3)


(WW0623)


ACP460
IgG4_Fc(S228P)-X-IL2-LX-Blocker_(Blocker = VHVL.F2.high.F03_Vh\Vl; X = Linker 3)


(WW0624)


ACP461
IgG4_Fc(S228P)-X-IL2-LX-blocker_(Blocker = VHVL.F2.high.A02_Vh/Vl_A46S_VH44-


(WW0625)
VL100_disulfide; X = Linker 3)


ACP462
IgG4_Fc(S228P)-X-IL2-LX-blocker_(Blocker = VHVL.F2.high.A02_Vh/Vl_VH105-


(WW0626)
VL43_disulfidel; X = Linker 3)


ACP463
IgG4_Fc(S228P)-X-IL2-LX-blocker_(Blocker = VHVL.F2.high.F03_Vh/Vl_VH44-


(WW0627)
VL100_disulfidel; X = Linker 3)


ACP464
IgG4_Fc(S228P)-X-IL2-LX-blocker_(Blocker = VHVL.F2.high.F03_Vh/Vl_VH105-


(WW0628)
VL43_disulfidel; X = Linker 3)


ACP465
mIgG1_Fc-X-IL2-LX-Blocker_(Blocker = VHVL.F2.high.A02_Vh\Vl_A46S; X = Linker 3)


(WW0629)


ACP466
mIgG1_Fc-X-IL2-LX-Blocker_(Blocker = VHVL.F2.high.F03_Vh\Vl; X = Linker 3)


(WW0630)


ACP467
mIgG1_Fc-X-IL2-LX-blocker_(Blocker = VHVL.F2.high.A02_Vh/Vl_A46S_VH44-


(WW0631)
VL100_disulfide; X = Linker 3)


ACP468
mIgG1_Fc-X-IL2-LX-blocker_(Blocker = VHVL.F2.high.A02_Vh/Vl_VH105-


(WW0632)
VL43_disulfidel; X = Linker 3)


ACP469
mIgG1_Fc-X-IL2-LX-blocker_(Blocker = VHVL.F2.high.F03_Vh/Vl_VH44-


(WW0633)
VL100_disulfidel; X = Linker 3)


ACP470
mIgG1_Fc-X-IL2-LX-blocker_(Blocker = VHVL.F2.high.F03_Vh/Vl_VH105-


(WW0634)
VL43_disulfidel; X = Linker 3)


ACP471
mIgG1_Fc-X-IL2-LX-Heavy_blocker_Fab_(Blocker = VH-CH1; X = Linker 3)


(WW0642)


WW0301
IL2-X-anti-HSA-LL-blocker_(X = Linker1_Blocker = Vh-Vl)


WW0353
IL2-X-mIgG1_Fc-LX-Blocker_(X = Linker1_Blocker = Vh-Vl)


WW0355
IL2-XL-Blocker-X-mIgG1_Fc_(X = Linker1_Blocker = Vh-Vl)


WW0365
IL-2-L-anti-HSA-LX-Blocker_(instead_of_WW0048_IL2-X-anti-HSA-LX-



blocker)_(X = Linker1)


WW0366
IL-2-X-anti-HSA_(GeneArt_version_of_WW0061)_(X = Linker1)


WW0472
mIgG1_Fc-X-IL2-LX-Blocker_(Blocker = VHVL.F2.high.A02_Vh-X-Vl_A46S_X = Linker2)


WW0473
mIgG1_Fc-X-IL2-LX-Blocker_(Blocker = VHVL.F2.high.A02_Vh-Vl_A46S_X = Linker2)


WW0474
mIgG1_Fc-X-IL2-LX-Blocker_(Blocker = VHVL.F2.high.F03_Vh-X-Vl_X = Linker2)


WW0475
mIgG1_Fc-X-IL2-LX-Blocker_(Blocker = VHVL.F2.high.F03_Vh-Vl_X = Linker2)


WW0476
mIgG1_Fc-X-IL2-LX-Blocker_(Blocker = Hu2TOW91_B_X = Linker2)


WW0477
mIgG1_Fc-X-IL2-LX-Blocker_(Blocker = Hu3TOW85_A_X = Linker2)


WW0641
anti-HSA-X-human_p40_mouse_p35-XL-Blocker_(Blocker = Vl/Vh_VH105-



VL43_disulfide; X = Linker1)


WW0649
anti-HSA-X-human_p40-L-mouse_p35-XL-Blocker_(Blocker = Vl/Vh_X = Linker2)


WW0650
anti-HSA-X-human_p40-L-Human_p35-XL-Blocker_(Blocker = Vl/Vh_X = Linker2)


WW0651
anti-HSA-X-human_p40-L-mouse_p35-XL-Blocker_(Blocker = Vl/Vh_X = Linker3)


WW0652
anti-HSA-X-human_p40-L-Human_p35-XL-Blocker_(Blocker = Vl/Vh_X = Linker3)


WW0662
anti-HSA-X-human_p40-L-mouse_p35-XL-



Blocker_(Blocker = Opt1_Hv_D53E_D61E_Vl/Vh_X = Linker2)


WW0663
anti-HSA-X-human_p40-L-human_p35-XL-



Blocker_(Blocker = Opt1_Hv_D53E_D61E_Vl/Vh_X = Linker2)


WW0664
anti-HSA-X-human_p40-L-mouse_p35-XL-Blocker_(Blocker = Opt2_Lv_N31E-



Hv_D53E_D61E_Vl/Vh_X = Linker2)


WW0665
anti-HSA-X-human_p40-L-human_p35-XL-Blocker_(Blocker = Opt2_Lv_N31E-



Hv_D53E_D61E_Vl/Vh_X = Linker2)


WW0666
anti-HSA-X-human_p40-L-mouse_p35-XL-Blocker_(Blocker = Opt3_LV_S30D-



Hv_D53E_D61E_Vl/Vh_X = Linker2)


WW0667
anti-HSA-X-human_p40-L-human_p35-XL-Blocker_(Blocker = Opt3_LV_S30D-



Hv_D53E_D61E_Vl/Vh_X = Linker2)


WW0668
anti-HSA-X-human_p40-L-mouse_p35-XL-



Blocker_(Blocker = Opt4_LV_S30D_N31E_Vl/Vh_X = Linker2)


WW0669
anti-HSA-X-human_p40-L-human_p35-XL-



Blocker_(Blocker = Opt4_LV_S30D_N31E_Vl/Vh_X = Linker2)


WW0670
anti-HSA-X-human_p40-L-mouse_p35-XL-Blocker_(Blocker = Opt5_Lv_S30D_N31E-



Hv_D53E_D61E_Vl/Vh_X = Linker2)


WW0672
anti-HSA-X-human_p40-L-mouse_p35-XL-



Blocker_(Blocker = Opt6_Lv_R27E_T32D(LCharge_16(combo2))_Vl/Vh_X = Linker2)


WW0673
anti-HSA-X-human_p40-L-human_p35-XL-



Blocker_(Blocker = Opt6_Lv_R27E_T32D(LCharge_16(combo2))_Vl/Vh_X = Linker2)


WW0674
anti-HSA-X-human_p40-L-mouse_p35-XL-Blocker_(Blocker = Opt7_Lv_S30E-



Hv_D53E_D61E_Vl/Vh_X = Linker2)


WW0675
anti-HSA-X-human_p40-L-human_p35-XL-Blocker_(Blocker = Opt7_Lv_S30E-



Hv_D53E_D61E_Vl/Vh_X = Linker2)


WW0676
anti-HSA-X-human_p40-L-mouse_p35-XL-Blocker_(Blocker = Opt8_Lv_S30E



N31E_Vl/Vh_X = Linker2)


WW0677
anti-HSA-X-human_p40-L-human_p35-XL-Blocker_(Blocker = Opt8_Lv_S30E



N31E_Vl/Vh_X = Linker2)


WW0678
anti-HSA-X-human_p40-L-mouse_p35-XL-Blocker_(Blocker = Opt9_Lv_N31E-



Hv_D53E_Vl/Vh_X = Linker2)


WW0679
anti-HSA-X-human_p40-L-human_p35-XL-Blocker_(Blocker = Opt9_Lv_N31E-



Hv_D53E_Vl/Vh_X = Linker2)


WW0680
anti-HSA-X-human_p40-L-mouse_p35-XL-



Blocker_(Blocker = Opt1_Hv_D53E_D61E_Vl/Vh_X = Linker3


WW0681
anti-HSA-X-human_p40-L-human_p35-XL-



Blocker_(Blocker = Opt1_Hv_D53E_D61E_Vl/Vh_X = Linker3)


WW0682
anti-HSA-X-human_p40-L-mouse_p35-XL-Blocker_(Blocker = Opt2_Lv_N31E-



Hv_D53E_D61E_Vl/Vh_X = Linker3


WW0683
anti-HSA-X-human_p40-L-human_p35-XL-Blocker_(Blocker = Opt2_Lv_N31E-



Hv_D53E_D61E_Vl/Vh_X = Linker3)


WW0684
anti-HSA-X-human_p40-L-mouse_p35-XL-Blocker_(Blocker = Opt3_LV_S30D-



Hv_D53E_D61E_Vl/Vh_X = Linker3


WW0685
anti-HSA-X-human_p40-L-human_p35-XL-Blocker_(Blocker = Opt3_LV_S30D-



Hv_D53E_D61E_Vl/Vh_X = Linker3)


WW0686
anti-HSA-X-human_p40-L-mouse_p35-XL-



Blocker_(Blocker = Opt4_LV_S30D_N31E_Vl/Vh_X = Linker3


WW0687
anti-HSA-X-human_p40-L-human_p35-XL-



Blocker_(Blocker = Opt4_LV_S30D_N31E_Vl/Vh_X = Linker3)


WW0688
anti-HSA-X-human_p40-L-mouse_p35-XL-Blocker_(Blocker = Opt5_Lv_S30D_N31E-



Hv_D53E_D61E_Vl/Vh_X = Linker3


WW0689
anti-HSA-X-human_p40-L-human_p35-XL-Blocker_(Blocker = Opt5_Lv_S30D_N31E-



Hv_D53E_D61E_Vl/Vh_X = Linker3)


WW0690
anti-HSA-X-human_p40-L-mouse_p35-XL-



Blocker_(Blocker = Opt6_Lv_R27E_T32D(LCharge_16(combo2))_Vl/Vh_X = Linker3


WW0691
anti-HSA-X-human_p40-L-human_p35-XL-



Blocker_(Blocker = Opt6_Lv_R27E_T32D(LCharge_16(combo2))_Vl/Vh_X = Linker3)


WW0692
anti-HSA-X-human_p40-L-mouse_p35-XL-Blocker_(Blocker = Opt7_Lv_S30E-



Hv_D53E_D61E_Vl/Vh_X = Linker3


WW0693
anti-HSA-X-human_p40-L-human_p35-XL-Blocker_(Blocker = Opt7_Lv_S30E-



Hv_D53E_D61E_Vl/Vh_X = Linker3)


WW0694
anti-HSA-X-human_p40-L-mouse_p35-XL-



Blocker_(Blocker = Opt8_Lv_S30E_N31E_Vl/Vh_X = Linker3


WW0695
anti-HSA-X-human_p40-L-human_p35-XL-



Blocker_(Blocker = Opt8_Lv_S30E_N31E_Vl/Vh_X = Linker3)


WW0698
anti-HSA-X-human_p40-L-mouse_p35-XL-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_IGLC2-01_X = Linker2)


WW0699
anti-HSA-X-human_p40-L-human_p35-XL-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_IGLC2-01_X = Linker2)


WW0700
anti-HSA-X-human_p40-L-mouse_p35-XL-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_N31E_IGLC2-01_X = Linker2)


WW0701
anti-HSA-X-human_p40-L-human_p35-XL-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_N31E_IGLC2-01_X = Linker2)


WW0702
anti-HSA-X-human_p40-L-mouse_p35-XL-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_S30D_IGLC2-01_X = Linker2)


WW0703
anti-HSA-X-human_p40-L-human_p35-XL-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_S30D_IGLC2-01_X = Linker2)


WW0704
anti-HSA-X-human_p40-L-mouse_p35-XL-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_S30D_N31E_IGLC2-01_X = Linker2)


WW0705
anti-HSA-X-human_p40-L-human_p35-XL-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_S30D_N31E_IGLC2-01_X = Linker2)


WW0706
anti-HSA-X-human_p40-L-mouse_p35-XL-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_R27E_T32D_IGLC2-01_X = Linker2)


WW0707
anti-HSA-X-human_p40-L-human_p35-XL-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_R27E_T32D_IGLC2-01_X = Linker2)


WW0708
anti-HSA-X-human_p40-L-mouse_p35-XL-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_S30E_IGLC2-01_X = Linker2)


WW0709
anti-HSA-X-human_p40-L-human_p35-XL-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_S30E_IGLC2-01_X = Linker2)


WW0710
anti-HSA-X-human_p40-L-mouse_p35-XL-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_S30E_N31E_IGLC2-01_X = Linker2)


WW0711
anti-HSA-X-human_p40-L-human_p35-XL-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_S30E_N31E_IGLC2-01_X = Linker2)


WW0712
anti-HSA-X-human_p40-L-mouse_p35-XL-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_IGLC2-01_X = Linker3)


WW0713
anti-HSA-X-human_p40-L-human_p35-XL-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_IGLC2-01_X = Linker3)


WW0714
anti-HSA-X-human_p40-L-mouse_p35-XL-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_N31E_IGLC2-01_X = Linker3)


WW0715
anti-HSA-X-human_p40-L-human_p35-XL-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_N31E_IGLC2-01_X = Linker3)


WW0716
anti-HSA-X-human_p40-L-mouse_p35-XL-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_S30D_IGLC2-01_X = Linker3)


WW0717
anti-HSA-X-human_p40-L-human_p35-XL-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_S30D_IGLC2-01_X = Linker3)


WW0718
anti-HSA-X-human_p40-L-mouse_p35-XL-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_S30D_N31E_IGLC2-01_X = Linker3)


WW0719
anti-HSA-X-human_p40-L-human_p35-XL-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_S30D_N31E_IGLC2-01_X = Linker3)


WW0720
anti-HSA-X-human_p40-L-mouse_p35-XL-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_R27E_T32D_IGLC2-01_X = Linker3)


WW0721
anti-HSA-X-human_p40-L-human_p35-XL-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_R27E_T32D_IGLC2-01_X = Linker3)


WW0722
anti-HSA-X-human_p40-L-mouse_p35-XL-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_S30E_IGLC2-01_X = Linker3)


WW0723
anti-HSA-X-human_p40-L-human_p35-XL-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_S30E_IGLC2-01_X = Linker3)


WW0724
anti-HSA-X-human_p40-L-mouse_p35-XL-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_S30E_N31E_IGLC2-01_X = Linker3)


WW0725
anti-HSA-X-human_p40-L-human_p35-XL-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_S30E_N31E_IGLC2-01_X = Linker3)


WW0726
Fab_Heavy_Blocker_(Blocker = IL-12_Heavy_Fab_IgG1_Fab)


WW0727
Fab_Heavy_Blocker_(Blocker = IL-12_Heavy_Fab_D53E_D61E_IgG1_Fab)


WW0728
Fab_Heavy_Blocker_(Blocker = IL-12_Heavy_Fab_D53E_IgG1_Fab)


WW0765
human_p40-L-mouse_p35-X-anti-HSA-L-



Blocker_(Blocker = Opt1_Hv_D53E_D61E_Vl/Vh_X = Linker2)


WW0766
human_p40-L-human_p35-X-anti-HSA-L-



Blocker_(Blocker = Opt1_Hv_D53E_D61E_Vl/Vh_X = Linker2)


WW0767
human_p40-L-mouse_p35-X-anti-HSA-L-Blocker_(Blocker = Opt5_Lv_S30D_N31E-



Hv_D53E_D61E_Vl/Vh_X = Linker2)


WW0768
human_p40-L-human_p35-X-anti-HSA-L-Blocker_(Blocker = Opt5_Lv_S30D_N31E-



Hv_D53E_D61E_Vl/Vh_X = Linker2)


WW0769
human_p40-L-mouse_p35-X-anti-HSA-L-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_IGLC2-01_X = Linker2)


WW0770
human_p40-L-human_p35-X-anti-HSA-L-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_IGLC2-01_X = Linker2)


WW0771
human_p40-L-mouse_p35-X-anti-HSA-L-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_S30D_N31E_IGLC2-01_X = Linker2)


WW0772
human_p40-L-human_p35-X-anti-HSA-L-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_S30D_N31E_IGLC2-01_X = Linker2)


WW0796
human_p40-L-mouse_p35-X-anti-HSA-L-Blocker_(Blocker = Opt1_Hv_D53E_D61E_Vl-



Vh_X = Linker3)


WW0797
human_p40-L-human_p35-X-anti-HSA-L-Blocker_(Blocker = Opt1_Hv_D53E_D61E_Vl-



Vh_X = Linker3)


WW0798
human_p40-L-mouse_p35-X-anti-HSA-L-Blocker_(Blocker = Opt5_Lv_S30D_N31E-



Hv_D53E_D61E_Vl-Vh_X = Linker3)


WW0799
human_p40-L-human_p35-X-anti-HSA-L-Blocker_(Blocker = Opt5_Lv_S30D_N31E-



Hv_D53E_D61E_Vl-Vh_X = Linker3)


WW0800
human_p40-L-mouse_p35-X-anti-HSA-L-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_IGLC2-01_X = Linker3)


WW0801
human_p40-L-human_p35-X-anti-HSA-L-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_IGLC2-01_X = Linker3)


WW0802
human_p40-L-mouse_p35-X-anti-HSA-L-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_S30D_N31E_IGLC2-01_X = Linker3)


WW0803
human_p40-L-human_p35-X-anti-HSA-L-



Fab_Lambda_Blocker_(Blocker = Lambda_Fab_S30D_N31E_IGLC2-01_X = Linker3)


WW0643
HSA-X-mIFNa11-X-HSA_(X = Linker2)


WW0644
HSA-X-mIFNa11-X-HSA_(X = Linker3)


WW0645
HSA-X-Human_IFNA14-X-HSA_(X = Linker2)


WW0646
HSA-X-Human_IFNA14-X-HSA_(X = Linker3)


WW0647
Mouse_IFNA11


WW0648
Human_IFNA14


WW0781
HSA-X-Human_IFNA2b_T129E-X-HSA_(X = Linker2)


WW0782
HSA-X-Human_IFNA14_N95D-X-HSA_(X = Linker2)


WW0783
HSA-X-Human_IFNA14_N25D_S27P_N95D-X-HSA_(X = Linker2)


WW0784
Human_IFNA2b_T129E


WW0785
Human_IFNA14_N95D


WW0786
Human_IFNA14_N25D_S27P_N95D


WW0815
mAlb-X-mIFNa1-X-mAlb_(X = Linker3)


WW0816
mAlb-X-mIFNa11-X-mAlb_(X = Linker3)


WW0817
anti-HSA-X-mIFNa1-X-mAlb_(X = Linker3)


WW0818
anti-HSA-X-mIFNa11-mAlb_(X = Linker3)


WW0819
mAlb-X-mIFNa1-X-anti-HSA_(X = Linker3)


WW0820
mAlb-X-mIFNa11-anti-HSA_(X = Linker3)


WW0821
Alb-X-Human_IFNA2b-X-Alb_(X = Linker3)


WW0822
Alb-X-Human_IFNA14-X-Alb_(X = Linker3)


WW0831
Alb-X-IFNa8-X-Alb_(X = Linker3)


WW0832
Alb-X-IFNa16-Alb_(X = Linker3)


WW0833
Anti-HSA-X-IFNa8-X-anti-HSA_(X = Linker3)


WW0834
Anti-HSA-X-IFNa16-X-anti-HSA_(X = Linker3)


WW0737
HSA-X-mIFNb-X-HSA_(X = Linker2)


WW0738
HSA-X-mIFNb-X-HSA_(X = Linker3)


WW0739
HSA-X-mIFNb_C38S-X-HSA_(X = Linker2)


WW0740
HSA-X-mIFNb_C38S-X-HSA_(X = Linker3)


WW0741
HSA-X-Human_IFNB-X-HSA_(X = Linker2)


WW0742
HSA-X-Human_IFNB-X-HSA_(X = Linker3)


WW0743
HSA-X-Human_IFNB_C38S-X-HSA_(X = Linker2)


WW0744
HSA-X-Human_IFNB_C38S-X-HSA_(X = Linker3)


WW0745
Mouse_IFNb


WW0746
Mouse_IFNb_C38S


WW0747
Human_IFNB


WW0748
Human_IFNAB_C38S


WW0787
HSA-X-Human_IFNB_N101Q-X-HSA_(X = Linker2)


WW0788
HSA-X-Human_IFNB_N101Q_C38S-X-HSA_(X = Linker2)


WW0789
Human_IFNB_N101Q


WW0790
Human_IFNB_C38S_N101Q


WW0729
IL2-L-anti-HSA-LL-Heavy_blocker_Fab_(Blocker = VH-CH1_non-cleavable)


WW0734
IL2-X-anti-HSA-LL-Heavy_blocker_Fab_(Blocker = VH-CH1_X = Linker1)


WW0735
IL2-X-anti-HSA-LL-Heavy_blocker_Fab_(Blocker = VH-CH1_X = Linker2)


WW0736
IL2-X-anti-HSA-LL-Heavy_blocker_Fab_(Blocker = VH-CH1_X = Linker3)


WW0792
Anti-IL-2_Fab_Heavy_IgG1_Blocker_His_tag


WW0061
IL2-X-anti-HSA_Fusion_(X = Linker1)


ACP293
3TOW69sdAb


(WW0237)


ACP294
3TOW85sdAb


(WW0238)


ACP295
2TOW91sdAb


(WW0239)


ACP315
Hu2TOW91_A


(WW0368)


ACP316
Hu2TOW91_B


(WW0369)


ACP317
Hu2TOW91_C


(WW0370)


ACP318
Hu2TOW91_D


(WW0371)


ACP319
HE_LM_2TOW91


(WW0372)


ACP320
HE_L_2TOW91


(WW0373)


ACP321
Hu3TOW85_A


(WW0374)


ACP322
Hu3TOW85_B


(WW0375)


ACP323
Hu3TOW85_C


(WW0376)


ACP324
Hu3TOW85_D


(WW0377)


ACP325
HE_LM_3TOW85


(WW0378)


ACP326
HE_L_3TOW85


(WW0379)


ACP327
HE_LM_R45L_3TOW85


(WW0380)


ACP328
Hu3TOW69_A


(WW0381)


ACP329
Hu3TOW69_B


(WW0382)


ACP330
Hu3TOW69_C


(WW0383)


ACP331
Hu3TOW69_D


(WW0384)


ACP332
Hu3TOW69_E


(WW0385)


ACP333
HE_LM_3TOW69


(WW0386)


ACP334
HE_L_3TOW69


(WW0387)


ACP335
HE_LM_R45L_3TOW69


(WW0388


ACP360
Vh-Vl_3xG4S_A46S (“3xG4S” is disclosed as SEQ ID NO: 452)


(WW0438)


ACP361
Vh-Vl_3xG4S_A46S (“3xG4S” is disclosed as SEQ ID NO: 452)


(WW0439)


ACP362
Vh-X-Vl_X = Linker2


(WW0440)


ACP363
Vh-X-Vl_X = Linker2_A46S


(WW0441)


ACP364
VHVL.F2.high.A02_Vh-Vl_3xG4S (“3xG4S” is disclosed as SEQ ID NO: 452)


(WW0442)


ACP365
VHVL.F2.high.A02_Vh-Vl_3xG4S_A46S (“3xG4S” is disclosed as SEQ ID NO: 452)


(WW0443)


ACP366
VHVL.F2.high.A02_Vh-X-Vl_X = Linker2


(WW0444)


ACP367
VHVL.F2.high.A02_Vh-X-Vl_X = Linker2_A46S


(WW0445)


ACP368
VHVL.F2.high.F03_Vh-Vl_3xG4S (“3xG4S” is disclosed as SEQ ID NO: 452)


(WW0446)


ACP369
VHVL.F2.high.F03_Vh-X-Vl_X = Linker2


(WW0449)


ACP370
VHVL.F2.high.C07_Vh-Vl_3xG4S (“3xG4S” is disclosed as SEQ ID NO: 452)


(WW0450)


ACP380
Kappa_blocker_Fab_(Blocker = Kappa)


(WW0522)


ACP381
Kappa_blocker_Fab_(Blocker = VHVL.F2.high.A02_A46S_Kappa)


(WW0523)


ACP382
Kappa_blocker_Fab_(Blocker = VHVL.F2.high.F03_Kappa)


(WW0524)


ACP434
IL2-X-anti-HSA-LX-Blocker1-L-


(WW0576)
Blocker2_(Blocker1 = VHVL.F2.high.F03_Vh_Q105C_Vl_A43C_Blocker2 = Hu2TOW91_B_X =



Linker2)


ACP435
Kappa_blocker1_Fab-L-


(WW0577)
blocker2_(Blocker1 = VHVL.F2.high.A02_A46S_Kappa_Blocker2 = Hu2TOW91_A)


ACP436
Kappa_blocker1_Fab-L-


(WW0578)
blocker2_(Blocker1 = VHVL.F2.high.A02_A46S_Kappa_Blocker2 = Hu2TOW91_B)


ACP437
Kappa_blocker1_Fab-L-


(WW0579)
blocked_(Blocker1 = VHVL.F2.high.F03_Kappa_Blocker2 = Hu2TOW91_A)


ACP438
Kappa_blocker1_Fab-L-


(WW0580)
blocker2_(Blocker1 = VHVL.F2.high.F03_Kappa_Blocker2 = Hu2TOW91_B)


ACP448
Kappa_blocker_Fab_(Blocker = VHVL.F2.high.C07_A46S_Kappa)


(WW0590)


ACP449
Kappa_blocker_Fab_(Blocker = VHVL.F2.high.C07_A46L_Kappa)


(WW0591)


ACP450
Kappa_blocker_Fab_(Blocker = VHVL.F2.high.A02_A46L_Kappa)


(WW0592)



















Sequence table









SEQ




ID




NO.
Name
Sequence












1
Human IL-2
MYRMQLLSCI ALSLALVTNS APTSSSTKKT QLQLEHLLLD LQMILNGINN




YKNPKLTRML TFKFYMPKKA TELKHLQCLE EELKPLEEVL NLAQSKNFHL




RPRDLISNIN VIVLELKGSE TTFMCEYADE TATIVEFLNR WITFCQSIISTLT





2
Human
MKWVTFISLL FLFSSAYSRG VFRRDAHKSE VAHRFKDLGE ENFKALVLIA



serum
FAQYLQQCPF EDHVKLVNEV TEFAKTCVAD ESAENCDKSL HTLFGDKLCT



albumin
VATLRETYGE MADCCAKQEP ERNECFLQHK DDNPNLPRLV RPEVDVMCTA




FHDNEETFLK KYLYEIARRH PYFYAPELLF FAKRYKAAFT ECCQAADKAA




CLLPKLDELR DEGKASSAKQ GLKCASLQKF GERAFKAWAV ARLSQRFPKA




EFAEVSKLVT DLTKVHTECC HGDLLECADD RADLAKYICE NQDSISSKLK




ECCEKPLLEK SHCIAEVEND EMPADLPSLA ADFVGSKDVC KNYAEAKDVF




LGMFLYEYAR RHPDYSVVLL LRLAKTYETT LEKCCAAADP HECYAKVFDE




FKPLVEEPQN LIKQNCELFE QLGEYKFQNA LLVRYTKKVP QVSTPTLVEV




SRNLGKVGSK CCKHPEAKRM PCAEDCLSVF LNQLCVLHEK TPVSDRVTKC




CTESLVNGRPCFSALEVDETYVPKEFNAETFTFHADICTL SEKERQIKKQTALV




ELVKHK PKATKEQLKAVMDDFAAFVEKCCKADDKET




CFAEEGKKLVAASQAALGL





45
ACP12
QVQLQESGGGLVQAGGSLRLSCAASGRIFSIDIMSWYRQAPGKQRELVARITR



(IL2 fusion
GGTISYDDSVKGRFTISRDNAKNTVYLQMNSLKPEDTGVYYCNALYGTDYW



protein)
GKGTQVTVSSggggsggggsggggsaptsssticktqlqlehllldlqmilnginnyknpkltrmlfficfympkk




atellchlqcleeelkpleevinlaqsknfhlrprdlisninvivlelkgsettfmceyadetative




flnrwitfcqsiistltSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQ




APGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTA




VYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggsEVQLVESGGGLVQPGGSLR




LSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRD




NAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGS




GGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKASQNVGTNVGWYQQKPGK




APKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYT




FGGGTKVEIKHHHHHH





46
ACP13
QVQLQESGGGLVQAGGSLRLSCAASGRIFSIDIMSWYRQAPGKQRELVARITR



(IL2 fusion
GGTISYDDSVKGRFTISRDNAKNTVYLQMNSLKPEDTGVYYCNALYGTDYW



protein)
GKGTQVTVSSggggsggggsggggsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSY




TLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNS




LRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDI




QMTQSPSSLSASVGDRVTITCKASQNVGTNVGWYQQKPGKAPKALIYSASFR




YSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKgg




ggsggggsggggsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGK




GLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYC




TIGGSLSVSSQGTLVTVSSSGGPGPAGMKGLPGSaptsssticktqlqlehllldlqmilnginny




knpkltrmlfficfympkkatellchlqcleeelkpleevinlaqsknfblrprdlisninvivlelk




gsettfmceyadetativeflnrwitfcqsiistltHHHHHH





47
ACP14
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAID



(IL2 fusion
SSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDAL



protein)
DYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCK




ASQNVGTNVGWYQQKPGKAPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSL




WW0045QPEDFATYYCQQYYTYPYTFGGGTKVEIKggggsggggsggggsggggsggggsggggsSG




GPGPAGMKGLPGSaptsssticktqlqlehllldlqmilnginnyknpkltrmifficfympkkatelkhlqcleee




lkpleevinlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltSGGPGPAGM




KGLPGSEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLE




WVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIG




GSLSVSSQGTLVTVSSHHHHHH





48
ACP15
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAID



(IL2 fusion
SSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDAL



protein)
DYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCK



(WW0047)
ASQNVGTNVGWYQQKPGKAPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQYYTYPYTFGGGTKVEIKggggsggggsggggsggggsggggsggggsEV




QLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGS




GRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQ




GTLVTVSSggggsggggsggggsSGGPGPAGMKGLPGSaptssstkktqlqlehllldlqmilnginn




yknpkltrinlifkfympkkatelkhlqcleeelkpleevinlaqsknfhlrprdlisninvivlelkgsettfmceyadetat




iveflnrwitfcqsiistltHHHHHH





49
ACP16
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(IL2 fusion
dlisninvivlelkgsetlfmceyadetativeflnrwitfcqsiistltSGGPGPAGMKGLPGSEVQLVES



protein)
GGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTL



(WW0048)
YAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVT




VSSggggsggggsggggsggggsggggsggggsSGGPGPAGMKGLPGSEVQLVESGGGLV




QPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRG




RFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVS




SGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKASQNVGTNVGWY




QQKPGKAPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQ




YYTYPYTFGGGTKVEIKHHHHHH





50
ACP17
QVQLQESGGGLVQAGGSLRLSCAASGRIFSIDIMSWYRQAPGKQRELVARITR



(IL2 fusion
GGTISYDDSVKGRFTISRDNAKNTVYLQMNSLKPEDTGVYYCNALYGTDYW



protein)
GKGTQVTVSSggggsggggsggggsaptssstkktqlqlehllldlqmilnginnyknpkltrmilfklympkk




atelkhlqcleeelkpleevinlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfc




qsiistltSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQ




APGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTA




VYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggsggggsggggsggggsSGGPGPAG




MKGLPGSEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGL




EWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAR




DSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVG




DRVTITCKASQNVGTNVGWYQQKPGKAPKALIYSASFRYSGVPSRFSGSGSGT




DFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKHHHHHH





51
ACP18
QVQLQESGGGLVQAGGSLRLSCAASGRIFSIDIMSWYRQAPGKQRELVARITR



(IL2 fusion
GGTISYDDSVKGRFTISRDNAKNTVYLQMNSLKPEDTGVYYCNALYGTDYW



protein)
GKGTQVTVSSggggsggggsggggsaptssstkktqlqlehllldlqmilnginnyknpkltrmilfklympkk




atelkhlqcleeelkpleevinlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitf




cqsiistltSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQ




APGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTA




VYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggsggggsggggsggggsEVQLVESG




GGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPD




TVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTT




VTVSSsggpgpagmkglpgsDIQMTQSPSSLSASVGDRVTITCKASQNVGTNVGWY




QQKPGKAPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQ




YYTYPYTFGGGTKVEIKHHHHHH





52
ACP19
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevi



(IL2 fusion
nlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltSGGPGPAG



protein)
MKGLPGSggggsggggsggggsggggsggggsggggsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVR




QAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTA




VYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSS




LSASVGDRVTITCKASQNVGTNVGWYQQKPGKAPKALIYSASFRYSGVPSRFS




GSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKggggsggggsggg




gsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSI




SGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSV




SSQGTLVTVSSggggsggggsggggsQVQLQESGGGLVQAGGSLRLSCAASGRIFSID




IMSWYRQAPGKQRELVARITRGGTISYDDSVKGRFTISRDNAKNTVYLQMNSL




KPEDTGVYYCNALYGTDYWGKGTQVTVSSHHHHHH**





53
ACP20
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleev



(IL2 fusion
dinlaqsknfhlrprlisninvivlelkgsetifmceyadetativeflnrwitfcqsiistltSGGPGPA



protein)
GGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSP



(WW0056)
GMKGLPGSEVQLVESDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGT




TVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKASQNVGTN




VGWYQQKPGKAPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATY




YCQQYYTYPYTFGGGTKVEIKHHHHHH





54
ACP21
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr




dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltSGGPGPAGMKGLPGSggggsggggs



(IL2 fusion
ggggsggggsggggsggggsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVR



protein)
QAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTA



(WW0057)
VYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSS




LSASVGDRVTITCKASQNVGTNVGWYQQKPGKAPKALIYSASFRYSGVPSRFS




GSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKHHHHHH





55
ACP22
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(IL2 fusion
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltSGGPGPAGMKGLPGSggggsggggs



protein)
ggggsggggsggggsggggsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVR




QAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTA




VYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSS




LSASVGDRVTITCKASQNVGTNVGWYQQKPGKAPKALIYSASFRYSGVPSRFS




GSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKSGGPGPAGM




KGLPGSEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLE




WVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIG




GSLSVSSQGTLVTVSSggggsggggsggggsQVQLQESGGGLVQAGGSLRLSCAASG




RIFSIDIMSWYRQAPGKQRELVARITRGGTISYDDSVKGRFTISRDNAKNTVYL




QMNSLKPEDTGVYYCNALYGTDYWGKGTQVTVSSHHHHHH





56
ACP23
QVQLQESGGGLAQAGGSLSLSCAASGFTVSNSVMAWYRQTPGKQREFVAIIN



(IL2 fusion
SVGSTNYADSVKGRFTISRDNAKNTVYLQMNNLKPEDTAVYVCNRNFDRIY



protein)
WGQGTQVTVSSSGGPGPAGMKGLPGSEVQLVESGGGLVQPGGSLRLSCAASG




FTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLY




LQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGG




GGSDIQMTQSPSSLSASVGDRVTITCKASQNVGTNVGWYQQKPGKAPKALIYS




ASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKV




EIKggggsggggsggggsggggsggggsggggsSGGPGPAGMKGLPGSEVQLVESGGGLVQ




PGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKG




RFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSSGGPGPAGMKG




LPGSaptssstldctqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkple




evinlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltHHHHHH





57
ACP24
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAID



(IL2 fusion
SSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDAL



protein)
DYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCK



(WW0074)
ASQNVGTNVGWYQQKPGKAPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQYYTYPYTFGGGTKVEIKSGGPGPAGMKGLPGSaptssstIcktqlql




ehllldlqmilnginnyknpkltrmlfficfympldcatelkittqcleeelkpleevinlaqsknf




ittrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltHHHHHH





58
ACP25
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAID



(IL2 fusion
SSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDAL



protein)
DYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCK



(WW0075)
ASQNVGTNVGWYQQKPGKAPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQYYTYPYTFGGGTKVEIKggggsggggsggggsggggsggggsggggsSG




GPGPAGMKGLPGSaptssstIcktqlqlehllldlqmilnginnyknpkftrmltfkfympkkatelkhlqcleee




lkpleevinlaqsknflilmrdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltHHHHHH





59
ACP26
QVQLQESGGGLVQAGGSLRLSCAASGRIFSIDIMSWYRQAPGKQRELVARITR



(IL2 fusion
GGTISYDDSVKGRFTISRDNAKNTVYLQMNSLKPEDTGVYYCNALYGTDYW



protein)
GKGTQVTVSSggggsggggsggggsaptssstIcktqlqlehllldlqmilnginnyknpkltrmltficfympkk




atelkittqcleeelkpleevinlaqsknfittrprdlisninvivlelkgsettfmceyadetativeflnrwi




tfcqsiistltSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQ




APGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTA




VYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggsggggsQVQLQQSGAELVRPGT




SVKVSCKASGYAFTNYLIEWVKQRPGQGLEWIGVINPGSGGTNYNEKFKGKA




TLTADKSSSTAYMQLSSLTSDDSAVYFCARWRGDGYYAYFDVWGAGTTVTV




SSggggsggggsggggsDIVLTQSPASLAVSLGQRATISCKASQSVDYDGDSYMNWY




QQKPGQPPKLLIYAASNLESGIPARFSGSGSGTDFTLNIHPVEEEDAATYYCQQ




SNEDPYTFGGGTKLEIKHHHHHHEPEA





60
ACP27
QVQLQESGGGLVQAGGSLRLSCAASGRIFSIDIMSWYRQAPGKQRELVARITR



(IL2 fusion
GGTISYDDSVKGRFTISRDNAKNTVYLQMNSLKPEDTGVYYCNALYGTDYW



protein)
GKGTQVTVSSggggsggggsggggsaptssstkktqlqlehllldlqmilnginnyknpkltrmltfklympkk




atelkhlqcleeelkpleevinlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfc




qsiistltSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQ




APGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTA




VYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggsggggsDIVLTQSPASLAVSLG




QRATISCKASQSVDYDGDSYMNWYQQKPGQPPKLLIYAASNLESGIPARFSGS




GSGTDFTLNIHPVEEEDAATYYCQQSNEDPYTFGGGTKLElKggggsggggsggggs




QVQLQQSGAELVRPGTSVKVSCKASGYAFTNYLIEWVKQRPGQGLEWIGVIN




PGSGGTNYNEKFKGKATLTADKSSSTAYMQLSSLTSDDSAVYFCARWRGDG




YYAYFDVWGAGTTVTVSSHHHHHHEPEA





61
ACP28
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsk



(IL2 fusion
nfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltSGGPGPAGMKGLPGSggg



protein)
gsggggsggggsggggsggggsQVQLQQSGAELVRPGTSVKVSCKASGYAFTNYLIEWVKQRP




GQGLEWIGVINPGSGGTNYNEKFKGKATLTADKSSSTAYMQLSSLTSDDSAV




YFCARWRGDGYYAYFDVWGAGTTVTVSSggggsggggsggggsDIVLTQSPASLAV




SLGQRATISCKASQSVDYDGDSYMNWYQQKPGQPPKLLIYAASNLESGIPARF




SGSGSGTDFTLNIHPVEEEDAATYYCQQSNEDPYTFGGGTKLEIKggggsggggsgg




ggsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSS




ISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSV




SSQGTLVTVSSggggsggggsggggsQVQLQESGGGLVQAGGSLRLSCAASGRIFSID




IMSWYRQAPGKQRELVARITRGGTISYDDSVKGRFTISRDNAKNTVYLQMNSL




KPEDTGVYYCNALYGTDYWGKGTQVTVSSHHHHHHEPEA





62
ACP29
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinla



(IL2 fusion
qsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltSGGPGPAGMKGLP



protein)
GSggggsggggsggggsggggsggggsDIVLTQSPASLAVSLGQRATISCKASQSVDYDGDSYMNWYQ




QKPGQPPKLLIYAASNLESGIPARFSGSGSGTDFTLNIHPVEEEDAATYYCQQS




NEDPYTFGGGTKLEIKggggsggggsggggsQVQLQQSGAELVRPGTSVKVSCKASG




YAFTNYLIEWVKQRPGQGLEWIGVINPGSGGTNYNEKFKGKATLTADKSSST




AYMQLSSLTSDDSAVYFCARWRGDGYYAYFDVWGAGTTVTVSSggggsggggsg




gggsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVS




SISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLS




VSSQGTLVTVSSggggsggggsggggsQVQLQESGGGLVQAGGSLRLSCAASGRIFSI




DIMSWYRQAPGKQRELVARITRGGTISYDDSVKGRFTISRDNAKNTVYLQMN




SLKPEDTGVYYCNALYGTDYWGKGTQVTVSSHHHHHHEPEA





63
IL2Ra
10  20   30    40   50




MDSYLLMWGL LTFIMVPGCQ AELCDDDPPE IPHATFKAMA YKEGTMLNCE




  60  70    80   90  100




CKRGFRRIKS GSLYMLCTGN SSHSSWDNQC QCTSSATRNT TKQVTPQPEE




  110  120   130  140  150




QKERKTTEMQ SPMQPVDQAS LPGHCREPPP WENEATERIY HFVVGQMVYY




  160  170   180  190  200




QCVQGYRALH RGPAESVCKM THGKTRWTQP QLICTGEMET SQFPGEEKPQ




  210  220  230  240   250




ASPEGRPESE TSCLVTTTDF QIQTEMAATM ETSIFTTEYQ VAVAGCVFLL




  260  270




ISVLLLSGLT WQRRQRKSRR TI





64
IL2Rb
10  20   30    40  50




MAAPALSWRL PLLILLLPLA TSWASAAVNG TSQFTCFYNS RANISCVWSQ




  60   70   80   90    100




DGALQDTSCQ VHAWPDRRRW NQTCELLPVS QASWACNLIL GAPDSQKLTT




  110   120   130  140  150




VDIVTLRVLC REGVRWRVMA IQDFKPFENL RLMAPISLQV VHVETHRCNI




  160   170   180  190   200




SWEISQASHY FERHLEFEAR TLSPGHTWEE APLLTLKQKQ EWICLETLTP




  210   220  230   240   250




DTQYEFQVRV KPLQGEFTTW SPWSQPLAFR TKPAALGKDT IPWLGHLLVG




  260   270  280   290   300




LSGAFGFIIL VYLLINCRNT GPWLKKVLKC NTPDPSKFFS QLSSEHGGDV




  310   320  330   340   350




QKWLSSPFPS SSFSPGGLAP EISPLEVLER DKVTQLLLQQ DKVPEPASLS




  360   370  380   390   400




SNHSLTSCFT NQGYFFFHLP DALEIEACQV YFTYDPYSEE DPDEGVAGAP




  410   420  430   440   450




TGSSPQPLQP LSGEDDAYCT FPSRDDLLLF SPSLLGGPSP PSTAPGGSGA




  460   470  480   490   500




GEERMPPSLQ ERVPRDWDPQ PLGPPTPGVP DLVDFQPPPE LVLREAGEEV




  510   520  530   540   550




PDAGPREGVS FPWSRPPGQG EFRALNARLP LNTDAYLSLQ ELQGQDPTHL




V





65
IL2Rg
10  20   30    40  50




MLKPSLPFTS LLFLQLPLLG VGLNTTILTP NGNEDTTADF FLTTMPTDSL




  60   70   80   90    100




SVSTLPLPEV QCFVFNVEYM NCTWNSSSEP QPTNLTLHYW YKNSDNDKVQ




  110    120   130  140  150




KCSHYLFSEE ITSGCQLQKK EIHLYQTFVV QLQDPREPRR QATQMLKLQN




  160    170   180  190  200




LVIPWAPENL TLHKLSESQL ELNWNNRFLN HCLEHLVQYR TDWDHSWTEQ




  210    220   230  240  250




SVDYRHKFSL PSVDGQKRYT FRVRSRFNPL CGSAQHWSEW SHPIHWGSNT




  260    270   280  290  300




SKENPFLFAL EAVVISVGSM GLIISLLCVY FWLERTMPRI PTLKNLEDLV




  310    320  330  340   350




TEYHGNFSAW SGVSKGLAES LQPDYSERLC LVSEIPPKGG ALGEGPGASP




  360




CNQHSPYWAP PCYTLKPET





66
ACP04
iwelkkdvyvveldwypdapgemvvitcdtpeedgitwadqssevlgsgktltiqvkefgdagqytchkggevlshs



(human
llllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwlttistdltfsvkssrgssdpqgvtcgaatlsaervrgd



p40/murine
nkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssffirdiikpdppknlqlkplknsrqvevsweypdt



p35 IL12
wstphsyfsltfcvqvqgkskrekkdwftdktsatvicrknasisvraqthyyssswsewasvpcsggggsggggsggggs



fusion
rvipvsgparclsqsrnllkttddmvktareklkhysctaedidheditrdqtstlktclplelhknesclatretssttrgs



protein)
clppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqiildkgmlvaidelmqslnhngetlrqkppvgead




pyrvkmklcillhafstrvvtinrvmgylssaHHHHHH





67
ACP05
iwelkkdvyvveldwypdapgemvvitcdtpeedgitwadqssevlgsgktltiqvkefgdagqytchkggevlshs



(human
llllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwlttistdltfsvkssrgssdpqgvtcgaatlsaervrgd



p40/murine
nkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssffirdiikpdppknlqlkplknsrqvevsweypdt



p35 IL12
wstphsyfsltfcvqvqgkskrekkdwftdktsatvicrknasisvraqthyyssswsewasvpcsggggsggggsgg



fusion
ggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypctseeidheditkdktstveaclpleltknesclnsre



protein)
tsfitngsclasrktsfmmalclssiyedlkmyqvefktmnakllmdpkrqifldqnmlavidelmqalnfnsetvpqk




ssleepdfyktkiklcillhafriravtidrvmsylnasHHHHHH





68
ACP06
QSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQLPGTAPKLLIYYNDQ



(human
RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLFGTGTK



p40/murine
VTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWV



p35 IL12
RQAPGKGLEWVAFIRYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAE



fusion
DTAVYYCKTHGSHDNWGQGTMVTVSSggggsggggsggggsggggsggggsggggsSGG



protein)
PGPAGMKGLPGSiwelkkdvyvveldwypdapgemvvitcdtpeedgitwtldqssevlgsgktltiqvkef




gdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwlttistdltfsvkssrgssd




pqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssffirdiikpdppknlql




kplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisvraqthyyssswsew




asvpcsggggsggggsggggsrvipvsgparclsqsrnllkttddmvktareklkhysctaedidheditrdqtstlktcl




plelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqiildkgmlvaidelm




qslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssaSGGPGPAGMKGLPGSEVQ




LVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGR




DTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGT




LVTVSSHHHHHHEPEA





69
ACP07
QSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQLPGTAPKLLIYYNDQ



(human
RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLFGTGTK



p40/murine
VTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWV



p35 IL12
RQAPGKGLEWVAFIRYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAE



fusion
DTAVYYCKTHGSHDNWGQGTMVTVSSggggsggggsggggsggggsggggsggggsSGG



protein)
PGPAGMKGLPGSiwelkkdvyvveldwypdapgemvvitcdtpeedgitwtldqssevlgsgktltiqvkef




gdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwlttistdltfsvkssrgssd




pqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavificlkyenytssffirdiikpdppknlql




kplknsrqvevsweypdtwstphsyfshfcvqvqgkskrekkdrvftdktsatvicrknasisvraqchyyssswsew




asvpcsggggsggggsggggsrvipvsgparclsqsrnllkttddmvktareklkhysctaedidheditrdqtstlktcl




plelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqiildkgmlvaidelm




qslnhngetlrqkppvgeadpyrvkmlcicillhafstrvvtinrvmgylssaSGGPGPAGMKGLPGSEVQ




LVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGR




DTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGT




LVTVSSggggsggggsggggsQVQLQESGGGLAQAGGSLSLSCAASGFTVSNSVMA




WYRQTPGKQREFVAIINSVGSTNYADSVKGRFTISRDNAKNTVYLQMNNLKP




EDTAVYVCNRNFDRIYWGQGTQVTVSSHHHHHHEPEA





70
ACP08
QVQLQESGGGLAQAGGSLSLSCAASGFTVSNSVMAWYRQTPGKQREFVAIIN



(human
SVGSTNYADSVKGRFTISRDNAKNTVYLQMNNLKPEDTAVYVCNRNFDRIY



p40/murine
WGQGTQVTVSSggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNIGSN



p35 IL12
TVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAEDEA



fusion
DYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVVQPG



protein)
RSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYDGSNKYYADSVKG




RFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVSSggg




gsggggsggggsggggsggggsggggsSGGPGPAGMKGLPGSiwelkkdvyvveldwypdapgemv




vltcdtpeedgitwtldqssevlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktf




liceaknysgrftcwwlttistdiffsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpiev




mvdavhklkyenytssffirdiikpdppknlqlkplknsrqvevsweypdtwstphsyfshfcvqvqgkskrekkdr




vftdktsatvicrknasisvraqchyyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrnllkttdd




mvktareklkhysctaedidheditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkm




yqtefclainaalqnhnhqqiildkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinry




mgylssaSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFG




MSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNS




LRPEDTAVYYCTIGGSLSVSSQGTLVTVSSHHHHHHEPEA





71
ACP09
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS



(human
GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS



p40/murine
SQGTLVTVSSggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTV



p35 IL12
KWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAEDEADY



fusion
YCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVVQPGRS



protein)
LRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYDGSNKYYADSVKGRF




TISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVSSggggsg




gggsggggsggggsggggsggggsSGGPGPAGMKGLPGSiwelkkdvyvveldwypdapgemvvitc




dtpeedgitwadqssevlgsgktltiqvkefgdagqytchkggevlshsllllhldcedgiwstdilkdqkepknktflice




aknysgrftcwwlttistdiffsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmv




davhklkyenytssffirdiikpdppknlqlkplknsrqvevsweypdtwstphsyfslifcvqvqgkskrekkdrvftd




ktsatvicrknasisvraqthyyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrnllkttddmvkt




areklkhysctaedidheditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtef




qainaalqnhnhqqiildkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgyls




saHHHHHHEPEA





72
ACP10
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS



(human
GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS



p40/murine
SQGTLVTVSSSGGPGPAGMKGLPGSiwelkkdvyvveldwypdapgemvvitcdtpeedgitwtl



p35 IL12
dqssevlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcw



fusion
wittistdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyeny



protein)
tssffirdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrkna




sisvraqthyyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrnllkttddmvktareklkhyscta




edidheditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnh




qqiildkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssaSGGPGPA




GMKGLPGSggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCS




GSRSNIGSNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAIT




GLQAEDEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVES




GGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYDGSNK




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGT




MVTVSSHHHHHHEPEA





73
ACP11
iwelkkdvyvveldwypdapgemvvitcdtpeedgitwadqssevlgsgktltiqvkefgdagqytchkggevlshs



(human
llllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwlttistdltfsvkssrgssdpqgvtcgaatlsaervrgd



p40/murine
nkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssffirdiikpdppknlqlkplknsrqvevsweypdt



p35 IL12
wstphsyfsltfcvqvqgkskrekkdivfldktsatvicrknasisvraqthyyssswsewasvpcsggggsggggsggggsr



fusion
vipvsgparclsqsrnllkttddmvktareklkhysctaedidheditrdqtstlktclplelhknesclatretssttrgs



protein)
clppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqiildkgmlvaidelmqslnhngetlrqkppvgead




pyrvkmklcillhafstrvvtinrvmgylssaSGGPGPAGMKGLPGSggggsggggsggggsggggsggg




gsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQLPGTAPKLLI




YYNDQRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLF




GTGTKVTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG




MHWVRQAPGKGLEWVAFIRYDGSNKYYADSVKGRFTISRDNSKNTLYLQMN




SLRAEDTAVYYCKTHGSHDNWGQGTMVTVSSggggsggggsggggsEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS




HHHHHHEPEA





74
IL12 p40
        10         20         30         40         50



human
MCHQQLVISW FSLVFLASPL VAIWELKKDV YVVELDWYPD APGEMVVLTC



(Uniprot
        60         70         80         90        100



(Accession
DTPEEDGITH TLDQSSEVLG SGKTLTIQVK EFGDAGQYTC HYGGEYLSHS



No.
       110        120        130        140        150



P29460
LLLHSKKEDG IWSTDILKDQ KEPKNKTFLR CEAKNYSGRF TCWWLTTIST




       160        170        180        190        200




DLTFSVKSSR GSSDPQGVTC GAATLSAERV RGDMKEYEYS VECQEDSACP




       210        220        230        240        250




AAEESLPIEV MVDAVHKLKY ENYTSSFFIR DIIKPDPPKN LQLKPLKNSR




       260        270        280        290        300




QVEVSWEVPD TWSTPHSYFS LTFCVQVQGK SKRSKKDRVF TDKTSATVIC




       310        320




RKNASISVRA QDRYYSSSWS EWASVPCS





75
IL12p35
        10         20         30         40         50



mouse
MCQSRYLLFL ATLALLNHLS LARVIPVSGP ARCLSQSRNL LKTTDDMVKT



(Uniprot
        60         70         80         90        100



Accession
AREKLKHYSC TAEDIIHEDI TRDQTSTLKT CLPLELHKNE SCLATRETSS



No.
       110        120        130        140        150



P43430
TIRGSCLPPQ KTSLMNTLCL GSIYEDLKMY QTEFQAINAA LQNHNHQQII




       160        170        180        190        200




LDKGMLVAID ELMQSLNHNG ETLRQKPPVG EADPYRVKMK LCILLHAFST




       210




RVVTINRVMG YLSSA





76
IL12Rb-2

custom character
custom character
custom character
custom character
custom character






custom character
custom character
custom character
custom character
custom character






custom character
custom character
custom character
custom character
custom character






custom character
custom character
custom character
custom character
custom character






custom character
custom character
custom character
custom character
custom character






custom character
custom character
custom character
custom character
custom character






custom character
custom character
custom character
custom character
custom character






custom character
custom character
custom character
custom character
custom character






custom character
custom character
custom character
custom character
custom character






custom character
custom character
custom character
custom character
custom character






custom character
custom character
custom character
custom character
custom character






custom character
custom character
custom character
custom character
custom character






custom character
custom character
custom character
custom character
custom character






custom character
custom character
custom character
custom character
custom character






custom character
custom character
custom character
custom character
custom character






custom character
custom character
custom character
custom character
custom character






custom character
custom character
custom character
custom character
custom character






custom character






77
IL-12Rb1
        10         20         30         40         50




MEPLVTWVVP LLFLFLLSRQ GAACRTSECC FQDPPYPDAD SGSASGPRDL




        60         70         80         90        100




RCYRISSDRY ECSWQYEGPT AGVSHFLRCC LSSGRCCYFA AGSATRLQFS




       110        120        130        140        150




DQAGVSVLYT VTLWVESWAR MQTEKSPEVT LQLYNSVKYE PPLGDIKVSK




       160        170        180        190        200




LAGQLRMEWE TPDNQVGAEV QFRHRTPSSP WKLGDCGPQD DDIESCLCPL




       210        220        230        240        250




EMNVAQKFQL PRRQLGSQGS SWSKWSSPVC VPPENPPQPQ VRESVEQLGQ




       260        270        280        290        300




DGRRRLTLKE QPTQLELPEG CQGLAPGIEV TYRLQLHMLS CPCKAKATRT




       310        320        330        340        350




LHLGKMPYLS GAAYNVAVIS SNQFGPGLNQ TWHIPADTHT EPVALNISVG




       360        370        380        390        400




TNGTTMYWPA RAQSMTYCIE WQPVGQDGGL ATCSLTAPQD PDPAGMATYS




       410        420        430        440        450




WSRESGAMGQ EKCYYITIFA SAHPEKLTLW STVLSTYKFG GNASAAGTPH




       460        470        480        490        500




HVSVKNHSLD SVSVDWAPSL LSTCPGVLKE YVVRCRDEDS KQVSEHPVQP




       510        520        530        540        550




TETQVTLSGL RAGVAYTVQV RADTAWLRGV WSQPQRFSIE VQVSDWLIFF




       560        570        580        590        600




ASLGSFLSIL LVGVLGYLGL MRAARHLCPP LPIPCASSAI EEPGGKETWQ




       610        620        630        640        650




WINPVDFQEE ASLQEALVVE MSWDKGERTE PLEKTELPEG APELALDTEL




       660




SLEDGDRCKA KM





78
IL-12p35
        10         20         30         40         50



human
MCHQQLVISW FSLVFLASPL VAINELKKDV YVVEVDWTYD APGEMVVLTC



(Uniprot
        60         70         80         90        100



accession
DTPEEDDITW TLDQSSEVLG SGKTLTIQVK EFGDAGQYTC HKGGEVLSHS



no.
       110        120        130        140        150



P29459)
LLLLHKKEDG IWSTDILKDQ KEPKNKTFLR CEAKNYSGRF TCWWLTTIST




       160        170        180        190        200




DLTFSVKSSR GSSDPQGVTC GAATLSAERV RDGNKEYEYS VECQEDSACP




       210        220        230        240        250




AAEESLPIEV MVDAVHKLYK ENYTSSFFIR DIIKPDPPKN LQLKPLKNSR




       260        270        280        290        300




QVEVSWEYPD TWSTPHSYFS LTFCVQVQGK SKREKKDRVF TDKTSATVIC




       310        320




RKNASISVRA QDRYYSSSWS EWASVPCS





79
IL-12p40
        10         20         30         40         50



mouse
MCPQKLTISW FAIVLLVSPL MAMWELEKDV YVVEVDWTPD APGETVNLTC



(Uniprot
        60         70         80         90        100



accession
DTPEEDDITW TSDQRHGVIG SGKTLTITVK ELFDAGQYTC HKGGETLSKS



no.
       110        120        130        140        150



P43432)
HLLLHKKENG IWSTEILKNF KNKTFLKCEA PNYSGRFTCS WLVQRNMDLK




       160        170        180        190        200




FNIKSSSSSP DSRAVTCGMA SLSAEKVTLD QRDYEKYSVS CQEDVTCPTA




       210        220        230        240        250




EETLPIELAL EARQQNKYEN YSTSFFIRDI IKPDPPKNLQ MKPLKNSQVE




       260        270        280        290        300




VSWEYPDSWS TPHSYFSLKF FVRIQRKKEK MKETEEGCNQ KGAFLVEKTS




       310        320        330




TEVQCKGGNV CVQAQDRYYN SSCSKWACVP CRVRS





80
ACP01
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS



(mouse
GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS



IFNg
SQGTLVTVSSSGGPGPAGMKGLPGShgtviesleslnnyfnssgidveekslfldiwrnwqkdgdm



fusion
kilqsqiisfylrlfevlkdnqaisnnisvieshlittffsnskakkdafmsiakfevnnpqvqrqafnelirvvh



protein)
celpessIrkrkrsrcSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFG




MSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNS




LRPEDTAVYYCTIGGSLSVSSQGTLVTVSSHHHHHH





81
ACP02
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS



(mouse
GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS



IFNg
SQGTLVTVSSSGGPGPAGMKGLPGShgtviesleslnnyfnssgidveekslfldiwrnwqkdgdmkilqsqiis



fusion
fylrlfevlkdnqaisnnisvieshlittffsnskakkdafmsiakfevnnpqvqrqafnelirvvhqllpesslr



protein)
krkrsrcSGGPGPAGMKGLPGShgtviesleslnnyfnssgidveekslfldiwrnwqkdgdmkilqsqiisf




ylrlfevlkdnqaisnnisvieshlittffsnskakkdafmsiakfevnnpqvqrqafnelirvvhqllpess




likrkrsrcSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVR




QAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDT




AVYYCTIGGSLSVSSQGTLVTVSSHHHHHH





82
ACP03
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS



(mouse
GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS



IFNg
SQGTLVTVSSSGGPGPAGMKGLPGShgtviesleslnnyfnssgidveekslfldiwrnwqkdgdmilqsqiis



fusion
kfylrlfevlkdnqaisnnisvieshlittffsnskaldcdafmsiakfevnnpqvqrqafnelirvvhqllpesslr



protein)
krkrsrcggggsggggsggggshgtviesleslnnyfnssgidveekslfldiwrnwqkdgdmkilqsqiisfylrlfevl




kdnqaisnnisvieshlittffsnskaldcdafmsiakfevnnpqvqrqafnelirvvhqllpesslrkrkrsrcSGGPGP




AGMKGLPGSEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGK




GLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYC




TIGGSLSVSSQGTLVTVSSHHHHHH





83
Human
        10         20         30         40         50



IFN-g
MKYTSYILAF QLCIVLGSLG CYCQDPYVKE AENLKKYFNA GHSDVADNGT



(Uniprot
        60         70         80         90        100



60Accession
LFLGILKNWK EESDRKIMQS QIVSFYFKLF KNFKDDQSIQ KSVETIKEDM



No.
       110        120        130        140        150



P01579)
NVKFFNSNKK KRDDFEKLTN YSVTDLNVQR KAIHELIQVM AELSPAAKTG




              160




KRKRSQMLFR GRRASQ





84
Mouse
        10         20         30         40         50



IFNg
MNATHCILAL QLFLMAVSGC YCHGTVIESL ESLNNYFNSS GIDVEEKSLF



(Uniprot
        60         70         80         90        100



Accession
LDIWRNQQKD GDMKILQSQI ISFYLRLFEV LKDNQAISNN ISVIESHLIT



No.
       110        120        130        140        150



P01580)
TFFSNSKAKK DAFMSIAKFE VNNPQVQRQA FNELIRVVHQ LLPESSLRKR




KRSRC





85
ACP30
mdmrvpaqllglllwlrgarcEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVR



(mouse
QAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDT



IFNg
AVYYCTIGGSLSVSSQGTLVTVSSSGGPGPAGMKGLPGShgtviesleslnnyfnssgidv



fusion
eekslfldiwrnwqkdgdmkilqsqiisfylrlfevlkdnqaisnnisvieshlittffsnskaldcdafmsiakfevnnpq



protein)
vqrqafnelirvvhqllpesslrkrkrsrcSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLR




LSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISR




DNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSSGGPGPAGM




KGLPGShgtviesleslnnyfnssgidveekslfldiwrnwqkdgdmkilqsqiisfylrlfevlkdnqaisnnisvie




shlittffsnskakkdafmsiakfevnnpqvqrqafnelirvvhcillpesslikrkrsrcSGGPGPAGMKGLPG




SEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSHHHHHH





86
ACP31
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS



(mouse
GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS



IFNal
SQGTLVTVSSSGGPGPAGMKGLPGScdlpqthnlinkraltlkqmrrlsplsclkdrkdfgfpqekvd



fusion
aqqikkagaipvlseltqqilniftskdssaawnttlldsfendlhqqlndlqgclmqqvgvqefpltqedallavrkyfhri



protein)
tvylrekkhspcawevvraevwralsssanvlgrlreekSGGPGPAGMKGLPGSEVQLVESGGGL




VQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESV




KGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSHH




HHHHEPEA





87
ACP32
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS



(mouse
GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS



IFNal
SQGTLVTVSSSGGPGPAGMKGLPGScdlpqthnlinkraltlkqmrrlsplsclkdrkdfgfpqekvd



fusion
aqqikkagaipvlseltqqilniftskdssaawnttlldsfendlhqqlndlqgclmqqvgvqefpltqedallavrkyfhri



protein)
tvylrekkhspcawevvraevwralsssanvSGGPGPAGMKGLPGSEVQLVESGGGLVQPGN




SLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFT




ISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSHHHHHHE




PEA





88
IFNgR1
        10         20         30         40         50




MALLFLLPLV MQGVSRAEMG TADLGPSSVP IPTNVTIESY NMNPIVYWEY




        60         70         80         90        100




QIMPQVPVFT VEVKNYGVKN SEWIDACINI SHYYCNISDH VGDPSNSLWV




       110        120        130        140        150




RVKARVGQKE SAYAKSEEFA VCRDGKIGPP KLDIRKEEKQ IMIDIFHPSV




       160        170        180        190        200




FVNGDEQEVD YDPETTCYIR VYNVYVRMNG SEIQYKILTQ KEDDCDEIQC




       210        220        230        240        250




QLAIPVSSLN SQYCVSAEGV LHVWGVTTEK SKEVCITIFN SSIKGSLWIP




       260        270        280        290        300




VVAALLLFLV LSLVFICFYI KKINPLKEKS IILPKSLISV VRSAILETKP




       310        320        330        340        350




ESKYVSLITS YQPFSLEKEV VCEEPLSPAT VPGMHTEDNP QKVEHTEELS




       360        370        380        390        400




SITEVVTTEE NIPDVVPGSH LTPIERESSS PLSSNQSEPG SIALMSYHSR




       410        420        430        440        450




MCSESDHSRN GFDTDSSCLE SHSSLSDSEF PPNNKGEIKT EGQELITVIK




       460        470        480        490        500




APTSFGYDKP HVLVDLLVDD SGKESLTGYR PTEDSKEFS





89
IFNgR2
        10         20         30         40         50




MRPTLLWSLL LLLGVFAAAA AAPPDPLSQL PAPQHPKIRL YNAEQVLSWE




        60         70         80         90        100




PVALSNSTRP VVYQVQFKYI DSKWFTADIM SIGVNCTQIT ATECDFTAAS




       110        120        130        140        150




PSAGFPMDFN VTLRLRAELG ALHSAWVTMP WFQHYRNVTV GPPENIEVTP




       160        170        180        190        200




GEGSLIIRFS SPFDIADTST AFFCYYVHYW EKGGIQQVKG PFRSNSISLD




       210        220        230        240        250




NLKPSRVYCL QVQAQLLWNK SNIFRVGHLS NISCYEIMAD ASTELQQVIL




       260        270        280        290        300




ISVGTFSLLS VLAGACFFLV LKYRGLIKYW FHTPPSIPLQ IEEYLKDPTQ




       310        320        330        340        350




FILEALDKDS SPKDDVWDGV SIISFPEKEQ EDVLQTL





90
ACP51
QVQLQESGGGLVQAGGSLRLSCAASGRIFSIDIMSWYRQAPGKQRELVARITR



Mouse IFG
GGTISYDDSVKGRFTISRDNAKNTVYLQMNSLKPEDTGVYYCNALYGTDYW



fusion
GKGTQVTVSSggggsggggsggggsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKF



protein
GMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMN




SLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSSGGPGPAGMKGLPGShgtvieslesln




nyfnssgidveekslfldiwrnwqkdgdmkilqsqiisfylrlfevlkdnqaisnnisvieshlittffsnskakkdafmsi




akfevnnpqvqrqafnelirvvhqllpessIrkrkrsrcSGGPGPAGMKGLPGSEVQLVESGGGLV




QPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVK




GRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSHHH




HHH





91
ACP52
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS



Mouse IFG
GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS



fusion
SQGTLVTVSSSGGPGPAGMKGLPGShgtviesleslnnyfnssgidveekslfldiwrnwqkdgdm



protein
kilqsqiisfylrlfevlkdnqaisnnisvieshlittffsnskakkdafmsiakfevnnpqvqrqafnelirvvhq




llpessIrkrkrsrcSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFG




MSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNS




LRPEDTAVYYCTIGGSLSVSSQGTLVTVSSSGGPGPAGMKGLPGSEVQLVESG




GGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLY




AESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTV




SSggggsggggsggggsQVQLQESGGGLVQAGGSLRLSCAASGRIFSIDIMSWYRQA




PGKQRELVARITRGGTISYDDSVKGRFTISRDNAKNTVYLQMNSLKPEDTGVY




YCNALYGTDYWGKGTQVTVSSHHHHHH





92
ACP53
eahkseiahryndlgeqhfkglvliafsqylqkcsydehaklvqevtdfaktcvadesaancdkslhtlfgdklcaipnlr



Mouse IFG
enygeladcctkqepemecflqlikddnpslppferpeaeamctsfkenpttfmghylhevarrlipyfyapellyyaeq



fusion
yneiltqccaeadkescltpkldgvkekalvssvrqrmkcssmqkfgerafkawavarlsqtfpnadfaeitklatdltkv



protein
nkecchgdllecaddraelakymcenqatissklqtccdkpllkkahclsevehdtmpadlpaiaadfVedqevckny




aeakdvflgtflyeysrrhpdysvslllrlakkyeatlekccaeanppacygtvlaefqplveepknlvktncdlyeklgey




gfqnailvrytqkapqvstpUveaamlgrvgtkcctlpedqrlpcvedylsailnrvcllhektpvsehvtkccsgslver




rpcfsaltvdetyvpkefkaetftflisdictlpekekqikkqtalaelvkhkpkataeqlktvmddfaqfldtcckaadkdt




cfstegpnlvtrckdalaSGGPGPAGMKGLPGShgtviesleshmyfiissgidveekslfldiwrnwqkdgdmkilqsq




iisfylrlfevlkdiiqaismiisvieshlittffsiiskakkdafmsiakfevmipqvqrqafnelirvvliqllpes




slrkrkrsrcSGGPGPAGMKGLPGSeahkseiahiyndlgeqhfkglvliafsqylqkcsydehaklvqevtd




faktcvadesaancdkslhtlfgdklcaipnlrenygeladcctkqepemecflqhkddnpslppferpeaeamctslk




enpttfmghylhevarrhpyiyapellyyaeqyneiltqccaeadkescltpkldgvkekalvssvrqrmkcssmqkf




gcrafkawavarlsqtfpnadfaeitklatdltkvnkecchgdllecaddrackikymccnqatissklqtccdkpllkka




hclsevehdtmpadlpaiaadfVedqevcknyaeakdvflgtflyeysrrhpdysvslllrlakkyeatlekccaeanpp




acygtvlaefqplveepknlvktncdlyeklgeygfqnailvrytqkapqvstpUveaamlgrvgtkcctlpedqrlpcv




edylsailnrvcllhcktpvsehvtkccsgslverrpcfsaltvdetyvpkefkaetftnisdictlpekekqikkqtalaelv




klikpkalaeqlktvmddfaqfldtcckaadkdtcfstegpulvtrckdalaHHHHHH





93
ACP54
eahkseiahiyndlgeqhfkglvliafsqylqkcsydehaklvqevtdfaktcvadesaancdkslhtlfgdklcaipnlr



Mouse IFG
enygeladcctkqepemecflqhkddnpslppferpeaeamctsfkenpttfmghylhevarrhpyfyapellyyaeq



fusion
yneiltqccaeadkescltpkldgvkekalvssviqrmkcssmqkfgerafkawavarlsqtfpnadfaeitklatdltkv



protein
nkecchgdllecaddraelakymcenqatissklqtccdkpllkkahclsevehdtmpadlpaiaadfVedqevckny




aeakdvflgtflyeysrrhpdysvslllrlakkyeatlekccaeanppacygtvlaefqplveepkiilvktncdlyeklgey




gfqnailviytqkapqvstptiveaarnlgrvgtkcctlpedqrlpcvedylsailmvcllhektpvsehvtkccsgslver




rpcfsaltvdetyvpkefkaetftfhsdictlpekekqikkqtalaelvkhkpkataeqlktvmddfaqfldtcckaadkdt




cfstegpnlvtrckdalaSGGPGPAGMKGLPGShgtvieslesliinyfussgidveekslfldiwrnwqkdgd




mkilqsqiisfylrlfevlkdnqaismiisvieshlittffsnskakkdafnisiakfevmipqvqrqafnelirvvhqllpes




slrkrkrsrcggggsggggsggggshgtviesleslnnyfnssgidveekslfldiwmwqkdgdmkilqsqiisfylrlf




evlkdnqaisnnisvieshlittffsnskakkdafmsiakfevnnpqvqrqafnelirvvhqllpesslrkrkrsrcSGGP




GPAGMKGLPGSeahkseiahiyndlgeqhfkglvliafsqylqkcsydehaklvqevtdfaktcvadesaanc




dkslhtlfgdklcaipiilrenygeladcclkqepeniecflqhkddnpslppferpeaeamctsfkenpttfmghylhev




arrhpyfyapellyyaeqyneiltqccaeadkescltpkldgvkekalvssvrqnnkcssmqkfgerafkawavarlsq




tfpnadfaeitklatdltkvnkecchgdllecaddraelakymcenqatissklqtccdkpllkkahclsevehdtmpadl




paiaadfvedqevckiiyaeakdvflgtflyeysrrhpdysvslllrlakkyeatlekccaeanppacygtvlaefqplvee




pknlvktncdlyeklgeygfqnailviytqkapqvstptlveaamlgrvgtkcctlpedqrlpcvedylsailnrvcllhe




ktpvsehvtkccsgslverrpcfsaltvdetyvpkefkaetftfhsdictlpekekqikkqtalaelvkhkpkataeqlktv




mddfaqfldtcckaadkdtcfstegpnlvtrckdalaHHHHHH





94
ACP50
mdmrvpaqllglllwlrgarcQVQLQESGGGLVQAGGSLRLSCAASGRIFSIDIMSWYR



Mouse
QAPGKQRELVARITRGGTISYDDSVKGRFTISRDNAKNTVYLQMNSLKPEDTG



IFG
VYYCNALYGTDYWGKGTQVTVSSggggsggggsggggsEVQLVESGGGLVQPGNS



fusion
LRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTI



protein
SRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSSGGPGPAG




MKGLPGShgtviesleslnnyfrissgidveekslfldiwrnwqkdgdmkilqsqiisfylrlfevlkdnqaisnnisvies




hlittffsnskaldcdafmsiakfevnnpqvqrqafnelirvvhqllpesslitcrlcrsreggggsggggsggggshgtv




iesleslnnyfussgidveekslfldiwrnwqkdgdmkilqsqiisfylrlfevlkdnqaisnnisvieshlittffsnskak




lulafmsiakfevnnpqvqrqafnelirvvhqllpesslrkrkrsrcSGGPGPAGMKGLPGSEVQLVES




GGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTL




YAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVT




VSSHHHHHH





95
ACP55
mdmrvpaqllglllwlrgarcEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVR



Mouse
QAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDT



IFG
AVYYCTIGGSLSVSSQGTLVTVSSSGGPGPAGMKGLPGShgtviesleslnnyfnssgidv



fusion
eekslfldiwrnwqkdgdmkilqsqiisfylrlfevlkdnqaisnnisvieshlittffsnskaldcdafmsiakfevnnpq



protein
vqrqafnelirvvhqllpesslrkrkrsrcSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLR




LSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISR




DNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSSGGPGPAGM




KGLPGShgtviesleslnnyfrissgidveekslfldiwrnwqkdgdmkilqsqiisfylrlfevlkdnqaisnnisvie




shlittffsnskakkdafmsiakfevnnpqvqrqafnelirvvhqllpesslrkrkrsrcSGGPGPAGMKGLPG




SEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSHHHHHH





96
ACP56
mclmrvpaqllglllwlrgarcQVQLQESGGGLAQAGGSLSLSCAASGFTVSNSVMAWY



Mouse IFG
RQTPGKQREFVAIINSVGSTNYADSVKGRFTISRDNAKNTVYLQMNNLKPEDT



fusion
AVYVCNRNFDRIYWGQGTQVTVSSggggsggggsggggsEVQLVESGGGLVQPGNS



protein
LRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTI




SRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSSGGPGPAG




MKGLPGShgtviesleslnnyfrissgidveekslfldiwrnwqkdgdmkilqsqiisfylrlfevlkdnqaisnnisv




ieshlittffsnskakkdafmsiakfevnnpqvqrqafnelirvvhqllpesslrkrkrsrcSGGPGPAGMKGLP




GSEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSS




ISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSV




SSQGTLVTVSSHHHHHHEPEA





97
ACP57
mdmrvpaqllglllwlrgarcEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVR



Mouse
QAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDT



IFG
AVYYCTIGGSLSVSSQGTLVTVSSSGGPGPAGMKGLPGShgtviesleslnnyfnssgidv



fusion
eekslfldiwrnwqkdgdmkilqsqiisfylrlfevlkdnqaisnnisvieshlittffsnskaldcdafmsiakfevnnpq



protein
vqrqafnelirvvhqllpesslrkrkrsrcSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLR




LSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISR




DNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsgggg




sQVQLQESGGGLAQAGGSLSLSCAASGFTVSNSVMAWYRQTPGKQREFVAIIN




SVGSTNYADSVKGRFTISRDNAKNTVYLQMNNLKPEDTAVYVCNRNFDRIY




WGQGTQVTVSSHHHHHHEPEA





98
ACP58
mdmrvpaqllglllwlrgarcEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVR



Mouse
IFGQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDT



fusion
AVYYCTIGGSLSVSSQGTLVTVSSSGGPGPAGMKGLPGShgtviesleslnnyfnssgidv



protein
eekslfldiwrnwqkdgdmkilqsqiisfylrlfevlkdnqaisnnisvieshlittffsnskaldcdafmsiakfevnnpq




vqrqafnelirvvhqllpesshicrkrsrcSGGPGPAGMKGLPGShgtviesleslnnyfrissgidveekslfldi




wrnwqkdgdmkilqsqiisfylrlfevlkdnqaisnnisvieshlittffsnskaldcdafmsiakfevnnpqvqrqafnel




irvvhqllpesslrkrkrsrcSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLRLSCAAS




GFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTT




LYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggsQVQLQ




ESGGGLVQAGGSLRLSCAASGRIFSIDIMSWYRQAPGKQRELVARITRGGTISY




DDSVKGRFTISRDNAKNTVYLQMNSLKPEDTGVYYCNALYGTDYWGKGTQV




TVSSHHHHHHEPEA





99
ACP59
mclmrvpaqllglllwlrgarcQVQLQESGGGLAQAGGSLSLSCAASGFTVSNSVMAWY



Mouse IFG
RQTPGKQREFVAIINSVGSTNYADSVKGRFTISRDNAKNTVYLQMNNLKPEDT



fusion
AVYVCNRNFDRIYWGQGTQVTVSSggggsggggsggggsEVQLVESGGGLVQPGNS



protein
LRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTI




SRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSSGGPGPAG




MKGLPGShgtviesleslnnyfrissgidveekslfldiwrnwqkdgdmkilqsqiisfylrlfevlkdnqaisnnisv




ieshlittffsnskakkdafmsiakfevnnpqvqrqafnelirvvhqllpesslrkrkrsrcSGGPGPAGMKGLP




GShgtviesleslnnyfrissgidveekslfldiwrnwqkdgdmkilqsqiisfylrlfevlkdnqaisnnisviesh




littffsnskakkdafmsiakfevnnpqvqrqafnelirvvhqllpesslikrkrsrcSGGPGPAGMKGLPGSEVQ




LVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGR




DTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGT




LVTVSSHHHHHHEPEA





100
ACP60
mdmrvpaqllglllwlrgarcEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVR



Mouse
QAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDT



IFG
AVYYCTIGGSLSVSSQGTLVTVSSSGGPGPAGMKGLPGShgtviesleslnnyfnssgidv



fusion
eekslfldiwrnwqkdgdmkilqsqiisfylrlfevlkdnqaisnnisvieshlittffsnskaldcdafmsiakfevnnpq



protein
vqrqafnelirvvhqllpesshicrkrsrcSGGPGPAGMKGLPGShgtviesleslnnyfrissgidveekslfldi




wrnwqkdgdmkilqsqiisfylrlfevlkdnqaisnnisvieshlittffsnskaldcdafmsiakfevnnpqvqrqafnel




irvvhqllpesslikrkrsrcSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLRLSCAAS




GFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTT




LYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggsQVQLQ




ESGGGLAQAGGSLSLSCAASGFTVSNSVMAWYRQTPGKQREFVAIINSVGSTN




YADSVKGRFTISRDNAKNTVYLQMNNLKPEDTAVYVCNRNFDRIYWGQGTQ




VTVSSHHHHHHEPEA





101
ACP61
mdmrvpaqllglllwlrgarcEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVR



Mouse IFG
QAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDT



fusion
AVYYCTIGGSLSVSSQGTLVTVSSSGGPGPAGMKGLPGShgtviesleslnnyfnssgidv



protein
eekslfldiwrnwqkdgdmkilqsqiisfylrlfevlkdnqaisnnisvieshlittffsnskaldcdafmsiakfevnnpq




vqrqafnelirvvhqllpesslikrkrsrcSGGPGPAGMKGLPGShgtviesleslnnyfnssgidveekslfldi




wrnwqkdgdmkilqsqiisfylrlfevlkdnqaisnnisvieshlittffsnskaldcdafmsiakfevnnpqvqrqafnel




irvvhqllpesslikrkrsrcSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLRLSCAAS




VGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTT




LYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggsEVQLV




ESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVRQAPGKGLEWVSAISGSGGS




TYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARGVGAFRPYRKH




EWGQGTLVTVSRggggsggggsggggsSSELTQDPAVSVALGQTVRITCQGDSLRSY




YASWYQQKPGQAPVLVIYGKNNRPSGIPDRFSGSSSGNTASLTTTGAQAEDEA




DYYCNSSPFEENLVVFGGGTKLTVLHHHHHHEPEA





102
ACP63
mdmrvpaqllglllwlrgarcEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVR



Anti-FN
QAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAED



CGS-2
TAVYYCARGVGAFRPYRKHEWGQGTLVTVSRggggsggggsggggsSSELTQDPAV



scFv
SVALGQTVRITCQGDSLRSYYASWYQQKPGQAPVLVIYGKNNRPSGIPDRFSG




SSSGNTASLTTTGAQAEDEADYYCNSSPFEHNLVVFGGGTKLTVLHHHHHHE




PEA





103
ACP69
mdmrvpaqllglllwlrgarcEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVR



Mouse IFG
QAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDT



fusion
AVYYCTIGGSLSVSSQGTLVTVSSSGGPGPAGMKGLPGShgtviesleslnnyfnssgidv



protein
eekslfldiwrnwqkdgdmkilqsqiisfylrlfevlkdnqaisnnisvieshlittffsnskaldcdafmsiakfevnnpq




vqrqafnelirvvhqllpesslikrkrsrcSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLR




LSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISR




DNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSSGGPGPAGM




KGLPGShgtviesleslnnyfnssgidveekslfldiwrnwqkdgdmkilqsqiisfylrlfevlkdnqaisnnisvie




shlittffsnskakkdafmsiakfevnnpqvqrqafnelirvvhqllpesshkrkrsrcHHHHHHEPEA





104
ACP70
mdmrvpaqllglllwlrgarchgtviesleslnnyfnssgidveekslfkliwrnwqkdgdmkilqsqiisfylrlfevlk



Mouse IFG
dnqaisnnisvieshlittffsnskakkdafmsiakfevnnpqvqrqafnelirvvhqllpesshkrkrsrcSGGPGP



fusion
AGMKGLPGSEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGK



protein
GLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYC




TIGGSLSVSSQGTLVTVSSSGGPGPAGMKGLPGShgtviesleslnnyfnssgidveekslfldi




wrnwqkdgdmkilqsqiisfylrlfevlkdnqaisnnisvieshlittffsnskaldcdafmsiakfevnnpqvqrqafnel




irvvhqllpesslikrkrsrcSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLRLSCAAS




GFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTT




LYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSHHHHHHEPEA





105
ACP71
mdmrvpaqllglllwlrgarchgtviesleslnnyfnssgidveekslfldiwrnwqkdgdmkilqsqiisfylrlfevlk



Mouse IFG
dnqaisnnisvieshlittffsnskakkdafmsiakfevnnpqvqrqafnelirvvhqllpesshkrkrsrcSGGPGP



fusion
AGMKGLPGSEAHKSEIAHRYNDLGEQHFKGLVLIAFSQYLQKCSYDEHAKLV




QEVTDFAKTCVADESAANCDKSLHTLFGDKLCAIPNLRENYGELADCCTKQE




PERNECFLQHKDDNPSLPPFERPEAEAMCTSFKENPTTFMGHYLHEVARRHPY




proteinFYAPELLYYAEQYNEILTQCCAEADKESCLTPKLDGVKEKALVSSVRQRMKC




SSMQKFGERAFKAWAVARLSQTFPNADFAEITKLATDLTKVNKECCHGDLLE




CADDRAELAKYMCENQATISSKLQTCCDKPLLKKAHCLSEVEHDTMPADLPA




IAADFVEDQEVCKNYAEAKDVFLGlFLYEYSRRHPDYSVSLLLRLAKKYEAT




LEKCCAEANPPACYGTVLAEFQPLVEEPKNLVKTNCDLYEKLGEYGFQNAILV




RYTQKAPQVSTPTLVEAARNLGRVGTKCCTLPEDQRLPCVEDYLSAILNRVCL




LHEKTPVSEHVIKCCSGSLVERRPCFSALTVDETYVPKEFKAETFTFHSDICTL




PEKEKQIKKQTALAELVKHKPKATAEQLKTVMDDFAQFLDTCCKAADKDTCF




STEGPNLVTRCKDALASGGPGPAGMKGLPGShgtviesleslnnyfassgidveekslfldiwrn




wqkdgdmkilqsqiisfylrlfevlkdnqaisnnisvieshlittffsnskaldcdafmsiakfevnnpqvqr




qafneliryvhqllpesslrkrkrsrcSGGPGPAGMKGLPGSEAHKSEIAHRYNDLGEQHFKGLVLIAF




SQYLQKCSYDEHAKLVQEVTDFAKTCVADESAANCDKSLHTLFGDKLCAIPN




LRENYGELADCCTKQEPERNECFLQHKDDNPSLPPFERPEAEAMCTSFKENPT




TFMGHYLHEVARRHPYFYAPELLYYAEQYNEILTQCCAEADKESCLTPKLDG




VKEKALVSSVRQRMKCSSMQKFGERAFKAWAVARLSQTFPNADFAEITKLAT




DLTKVNKECCHGDLLECADDRAELAKYMCENQATISSKLQTCCDKPLLKKAH




CLSEVEHDTMPADLPAIAADFVEDQEVCKNYAEAKDVFLGTFLYEYSRRHPD




YSVSLLLRLAKKYEATLEKCCAEANPPACYGTVLAEFQPLVEEPKNLVKTNC




DLYEKLGEYGFQNAILVRYTQKAPQVSTPTLVEAARNLGRVGTKCCTLPEDQ




RLPCVEDYLSAILNRVCLLHEKTPVSEHVTKCCSGSLVERRPCFSALTVDETYV




PKEFKAETFTFHSDICTLPEKEKQIKKQTALAELVKHKPKATAEQLKTVMDDF




AQFLDTCCKAADKDTCFSTEGPNLVTRCKDALAHHHHHHEPEA





106
ACP72
mdmrvpaqllglllwlrgarcEAHKSEIAHRYNDLGEQHFKGLVLIAFSQYLQKCSYDE



Mouse IFG
HAKLVQEVTDFAKTCVADESAANCDKSLHTLFGDKLCAIPNLRENYGELADC



fusion
CTKQEPERNECFLQHKDDNPSLPPFERPEAEAMCTSFKENPTTFMGHYLHEVA



protein
RRHPYFYAPELLYYAEQYNEILTQCCAEADKESCLTPKLDGVKEKALVSSVRQ




RMKCSSMQKFGERAFKAWAVARLSQTFPNADFAEITKLATDLTKVNKECCH




GDLLECADDRAELAKYMCENQATISSKLQTCCDKPLLKKAHCLSEVEHDTMP




ADLPAIAADFVEDQEVCKNYAEAKDVFLGTFLYEYSRRHPDYSVSLLLRLAK




KYEATLEKCCAEANPPACYGTVLAEFQPLVEEPKNLVKTNCDLYEKLGEYGF




QNAILVRYTQKAPQVSTPTLVEAARNLGRVGTKCCTLPEDQRLPCVEDYLSAI




LNRVCLLHEKTPVSEHVTKCCSGSLVERRPCFSALTVDETYVPKEFKAETFTFH




SDICTLPEKEKQIKKQTALAELVKHKPKATAEQLKTVMDDFAQFLDTCCKAA




DKDTCFSTEGPNLVTRCKDALASGGPGPAGMKGLPGShgtviesleslnnythssgidveekslfld




iwrnwqkdgdmkilqsqiisfylrlfevlkdnqaisnnisvieshlittffsnskakkdafmsiakfevnnpqvq




rqafnelirvvhqllpesslitcrkrsrcSGGPGPAGMKGLPGSEAHKSEIAHRYNDLGEQHFK




GLVLIAFSQYLQKCSYDEHAKLVQEVTDFAKTCVADESAANCDKSLHTLFGD




KLCAIPNLRENYGELADCCTKQEPERNECFLQHKDDNPSLPPFERPEAEAMCT




SFKENPTTFMGHYLHEVARRHPYFYAPELLYYAEQYNEILTQCCAEADKESCL




TPKLDGVKEKALVSSVRQRMKCSSMQKFGERAFKAWAVARLSQTFPNADFA




EITKLATDLTKVNKECCHGDLLECADDRAELAKYMCENQATISSKLQTCCDK




PLLKKAHCLSEVEHDTMPADLPAIAADFVEDQEVCKNYAEAKDVFLGTFLYE




YSRRHPDYSVSLLLRLAKKYEATLEKCCAEANPPACYGTVLAEFQPLVEEPKN




LVKTNCDLYEKLGEYGFQNAILVRYTQKAPQVSTPTLVEAARNLGRVGTKCC




TLPEDQRLPCVEDYLSAILNRVCLLHEKTPVSEHVTKCCSGSLVERRPCFSALT




VDETYVPKEFKAETFTFHSDICTLPEKEKQIKKQTALAELVKHKPKATAEQLK




TVMDDFAQFLDTCCKAADKDTCFSTEGPNLVTRCKDALASGGPGPAGMKGLPGShgtvie




sleslnnyfassgidveekslfldiwrnwqkdgdmkilqsqiisfylrlfevlkdnqaisnnisvieshlitt




ffsnskakkdafmsiakfevnnpqvqrqafnelirvvhqllpesslrkrkrsrcHHHHHHEPEA





107
ACP73
mdmrvpaqllglllwlrgarcEAHKSEIAHRYNDLGEQHFKGLVLIAFSQYLQKCSYDE



Mouse IFG
HAKLVQEVTDFAKTCVADESAANCDKSLHTLFGDKLCAIPNLRENYGELADC



fusion
CTKQEPERNECFLQHKDDNPSLPPFERPEAEAMCTSFKENPTTFMGHYLHEVA




RRHPYFYAPELLYYAEQYNEILTQCCAEADKESCLTPKLDGVKEKALVSSVRQ




RMKCSSMQKFGERAFKAWAVARLSQTFPNADFAEITKLATDLTKVNKECCH




proteinGDLLECADDRAELAKYMCENQATISSKLQTCCDKPLLKKAHCLSEVEHDTMP




ADLPAIAADFVEDQEVCKNYAEAKDVFLGTFLYEYSRRHPDYSVSLLLRLAK




KYEATLEKCCAEANPPACYGTVLAEFQPLVEEPKNLVKTNCDLYEKLGEYGF




QNAILVRYTQKAPQVSTPTLVEAARNLGRVGTKCCTLPEDQRLPCVEDYLSAI




LNRVCLLHEKTPVSEHVTKCCSGSLVERRPCFSALTVDETYVPKEFKAETFTFH




SDICTLPEKEKQIKKQTALAELVKHKPKATAEQLKTVMDDFAQFLDTCCKAA




DKDTCFSTEGPNLVTRCKDALASGGPGPAGMKGLPGShgtviesleslnnythssgidvee




kslfldiwrnwqkdgdmkilqsqiisfylrlfevlkdnqaisnnisvieshlittffsnskakkdafms




iakfevnnpqvqrqafnelirvvhqllpesslitcrkrsrcSGGPGPAGMKGLPGSEAHKSEIAHRYNDLGEQHFK




GLVLIAFSQYLQKCSYDEHAKLVQEVTDFAKTCVADESAANCDKSLHTLFGD




KLCAIPNLRENYGELADCCTKQEPERNECFLQHKDDNPSLPPFERPEAEAMCT




SFKENPTTFMGHYLHEVARRHPYFYAPELLYYAEQYNEILTQCCAEADKESCL




TPKLDGVKEKALVSSVRQRMKCSSMQKFGERAFKAWAVARLSQTFPNADFA




EITKLATDLTKVNKECCHGDLLECADDRAELAKYMCENQATISSKLQTCCDK




PLLKKAHCLSEVEHDTMPADLPAIAADFVEDQEVCKNYAEAKDVFLGTFLYE




YSRRHPDYSVSLLLRLAKKYEATLEKCCAEANPPACYGTVLAEFQPLVEEPKN




LVKTNCDLYEKLGEYGFQNAILVRYTQKAPQVSTPTLVEAARNLGRVGTKCC




TLPEDQRLPCVEDYLSAILNRVCLLHEKTPVSEHVTKCCSGSLVERRPCFSALT




VDETYVPKEFKAETFTFHSDICTLPEKEKQIKKQTALAELVKHKPKATAEQLK




TVMDDFAQFLDTCCKAADKDTCFSTEGPNLVTRCKDALASGGPGPAGMKGL




PGShgtviesleslnnyfrissgidveekslfldiwrnwqkdgdmkilqsqiisfylrlfevlkdnqaisnnisvieshlitt




ffsnskaldcdafmsiakfevnnpqvqrqafnelirvvhqllpesslrkrkrsrcSGGPGPAGMKGLPGSEA




HKSEIAHRYNDLGEQHFKGLVLIAFSQYLQKCSYDEHAKLVQEVTDFAKTCV




ADESAANCDKSLHTLFGDKLCAIPNLRENYGELADCCTKQEPERNECFLQHK




DDNPSLPPFERPEAEAMCTSFKENPTTFMGHYLHEVARRHPYFYAPELLYYAE




QYNEILTQCCAEADKESCLTPKLDGVKEKALVSSVRQRMKCSSMQKFGERAF




KAWAVARLSQIFPNADFAEITKLATDLTKVNKECCHGDLLECADDRAELAKY




MCENQATISSKLQTCCDKPLLKKAHCLSEVEHDTMPADLPAIAADFVEDQEV




CKNYAEAKDVFLGTFLYEYSRRHPDYSVSLLLRLAKKYEATLEKCCAEANPP




ACYGTVLAEFQPLVEEPKNLVKTNCDLYEKLGEYGFQNAILVRYTQKAPQVS




TPTLVEAARNLGRVGTKCCTLPEDQRLPCVEDYLSAILNRVCLLHEKTPVSEH




VTKCCSGSLVERRPCFSALTVDETYVPKEFKAETFTFHSDICTLPEKEKQIKKQ




TALAELVKHKPKATAEQLKTVMDDFAQFLDTCCKAADKDTCFSTEGPNLVTR




CKDALAHHHHHHEPEA





108
ACP74
mdmrvpaqllglllwlrgarcEAHKSEIAHRYNDLGEQHFKGLVLIAFSQYLQKCSYDE



Mouse IFG
HAKLVQEVTDFAKTCVADESAANCDKSLHTLFGDKLCAIPNLRENYGELADC



fusion
CTKQEPERNECFLQHKDDNPSLPPFERPEAEAMCTSFKENPTTFMGHYLHEVA



protein
RRHPYFYAPELLYYAEQYNEILTQCCAEADKESCLTPKLDGVKEKALVSSVRQ




RMKCSSMQKFGERAFKAWAVARLSQTFPNADFAEITKLATDLTKVNKECCH




GDLLECADDRAELAKYMCENQATISSKLQTCCDKPLLKKAHCLSEVEHDTMP




ADLPAIAADFVEDQEVCKNYAEAKDVFLGTFLYEYSRRHPDYSVSLLLRLAK




KYEATLEKCCAEANPPACYGTVLAEFQPLVEEPKNLVKTNCDLYEKLGEYGF




QNAILVRYTQKAPQVSTPTLVEAARNLGRVGTKCCTLPEDQRLPCVEDYLSAI




LNRVCLLHEKTPVSEHVTKCCSGSLVERRPCFSALTVDETYVPKEFKAETFTFH




SDICTLPEKEKQIKKQTALAELVKHKPKATAEQLKTVMDDFAQFLDTCCKAA




DKDTCFSTEGPNLVTRCKDALASGGPGPAGMKGLPGShgtviesleslnnythssgidvee




kslfldiwrnwqkdgdmkilqsqiisfylrlfevlkdnqaisnnisvieshlittffsnskakkdafmsiakfevnnpqvq




rqafnelirvvhqllpesslitcrkrsrcSGGPGPAGMKGLPGSggggsEAHKSEIAHRYNDLGEQ




HFKGLVLIAFSQYLQKCSYDEHAKLVQEVTDFAKTCVADESAANCDKSLHTL




FGDKLCAIPNLRENYGELADCCTKQEPERNECFLQHKDDNPSLPPFERPEAEA




MCTSFKENPTTFMGHYLHEVARRHPYFYAPELLYYAEQYNEILTQCCAEADK




ESCLTPKLDGVKEKALVSSVRQRMKCSSMQKFGERAFKAWAVARLSQTFPN




ADFAEITKLATDLTKVNKECCHGDLLECADDRAELAKYMCENQATISSKLQT




CCDKPLLKKAHCLSEVEHDTMPADLPAIAADFVEDQEVCKNYAEAKDVFLGT




FLYEYSRRHPDYSVSLLLRLAKKYEATLEKCCAEANPPACYGTVLAEFQPLVE




EPKNLVKTNCDLYEKLGEYGFQNAILVRYTQKAPQVSTPTLVEAARNLGRVG




TKCCTLPEDQRLPCVEDYLSAILNRVCLLHEKTPVSEHVTKCCSGSLVERRPCF




SALTVDETYVPKEFKAETFTFHSDICTLPEKEKQIKKQTALAELVKHKPKATAE




QLKTVMDDFAQFLDTCCKAADKDTCFSTEGPNLVTRCKDALAggggsSGGPGP




AGMKGLPGShgtviesleslnnythssgidveekslfldiwrnwqk




dgdmkilqsqiisfylrlfevlkdnqaisn




nisvieshlittffsnslcaldcdafmsiakfevnnpqvqrqafne




lirvvhqllpesslrkrkrsrcSGGPGPAGMK




GLPGSEAHKSEIAHRYNDLGEQHFKGLVLIAFSQYLQKCSYDEHAKLVQEVTD




FAKTCVADESAANCDKSLHTLFGDKLCAIPNLRENYGELADCCTKQEPERNEC




FLQHKDDNPSLPPFERPEAEAMCTSFKENPTTFMGHYLHEVARRHPYFYAPEL




LYYAEQYNEILTQCCAEADKESCLTPKLDGVKEKALVSSVRQRMKCSSMQKF




GERAFKAWAVARLSQTFPNADFAEITKLATDLTKVNKECCHGDLLECADDRA




ELAKYMCENQATISSKLQTCCDKPLLKKAHCLSEVEHDTMPADLPAIAADFVE




DQEVCKNYAEAKDVFLGTFLYEYSRRHPDYSVSLLLRLAKKYEATLEKCCAE




ANPPACYGTVLAEFQPLVEEPKNLVKTNCDLYEKLGEYGFQNAILVRYTQKA




PQVSTPTLVEAARNLGRVGTKCCTLPEDQRLPCVEDYLSAILNRVCLLHEKTP




VSEHVTKCCSGSLVERRPCFSALTVDETYVPKEFKAETFTFHSDICTLPEKEKQI




KKQTALAELVKHKPKATAEQLKTVMDDFAQFLDTCCKAADKDTCFSTEGPN




LVTRCKDALAHHHHHHEPEA





109
ACP75
mdmrvpaqllglllwlrgarcEAHKSEIAHRYNDLGEQHFKGLVLIAFSQYLQKCSYDE



Mouse IFG
HAKLVQEVTDFAKTCVADESAANCDKSLHTLFGDKLCAIPNLRENYGELADC



fusion
CTKQEPERNECFLQHKDDNPSLPPFERPEAEAMCTSFKENPTTFMGHYLHEVA




RRHPYFYAPELLYYAEQYNEILTQCCAEADKESCLTPKLDGVKEKALVSSVRQ




RMKCSSMQKFGERAFKAWAVARLSQTFPNADFAEITKLATDLTKVNKECCH




proteinGDLLECADDRAELAKYMCENQATISSKLQTCCDKPLLKKAHCLSEVEHDTMP




ADLPAIAADFVEDQEVCKNYAEAKDVFLGTFLYEYSRRHPDYSVSLLLRLAK




KYEATLEKCCAEANPPACYGTVLAEFQPLVEEPKNLVKTNCDLYEKLGEYGF




QNAILVRYTQKAPQVSTPTLVEAARNLGRVGTKCCTLPEDQRLPCVEDYLSAI




LNRVCLLHEKTPVSEHVTKCCSGSLVERRPCFSALTVDETYVPKEFKAETFTFH




SDICTLPEKEKQIKKQTALAELVKHKPKATAEQLKTVMDDFAQFLDTCCKAA




DKDTCFSTEGPNLVTRCKDALASGGPGPAGMKGLPGShgtviesleslnnyth




ssgidveekslfldiwrnwqkdgdmkilqsqiisfylrlfevlkdnqaisnni




svieshlittffsnskakkdafmsiakfevnnpqvqrqafnelirvvhq




llpesshicrkrsrcSGGPGPAGMKGLPGSggggsggggsEAHKSEIAHRYND




LGEQHFKGLVLIAFSQYLQKCSYDEHAKLVQEVTDFAKTCVADESAANCDKS




LHTLFGDKLCAIPNLRENYGELADCCTKQEPERNECFLQHKDDNPSLPPFERPE




AEAMCTSFKENPTTFMGHYLHEVARRHPYFYAPELLYYAEQYNEILTQCCAE




ADKESCLTPKLDGVKEKALVSSVRQRMKCSSMQKFGERAFKAWAVARLSQT




FPNADFAEITKLATDLTKVNKECCHGDLLECADDRAELAKYMCENQATISSKL




QTCCDKPLLKKAHCLSEVEHDTMPADLPAIAADFVEDQEVCKNYAEAKDVFL




GTFLYEYSRRHPDYSVSLLLRLAKKYEATLEKCCAEANPPACYGTVLAEFQPL




VEEPKNLVKTNCDLYEKLGEYGFQNAILVRYTQKAPQVSTPTLVEAARNLGR




VGTKCCTLPEDQRLPCVEDYLSAILNRVCLLHEKTPVSEHVTKCCSGSLVERR




PCFSALTVDETYVPKEFKAETFTFHSDICTLPEKEKQIKKQTALAELVKHKPKA




TAEQLKTVMDDFAQFLDTCCKAADKDTCFSTEGPNLVTRCKDALAggggsgggg




sSGGPGPAGMKGLPGShgtviesleslnnythssgidveekslfldiwrnwq




kdgdmkilqsqiisfylrlfe




vlkdnqaisnnisvieshlittffsnskakkdafmsiakfevnnpqvqrqaf




nelirvvhqllpesslikrkrsrcSGGP




GPAGMKGLPGSEAHKSEIAHRYNDLGEQHFKGLVLIAFSQYLQKCSYDEHAK




LVQEVTDFAKTCVADESAANCDKSLHTLFGDKLCAIPNLRENYGELADCCTK




QEPERNECFLQHKDDNPSLPPFERPEAEAMCTSFKENPTTFMGHYLHEVARRH




PYFYAPELLYYAEQYNEILTQCCAEADKESCLTPKLDGVKEKALVSSVRQRM




KCSSMQKFGERAFKAWAVARLSQIFPNADFAEITKLATDLTKVNKECCHGDL




LECADDRAELAKYMCENQATISSKLQTCCDKPLLKKAHCLSEVEHDTMPADL




PAIAADFVEDQEVCKNYAEAKDVFLGIFLYEYSRRHPDYSVSLLLRLAKKYE




ATLEKCCAEANPPACYGTVLAEFQPLVEEPKNLVKTNCDLYEKLGEYGFQNAI




LVRYTQKAPQVSTPTLVEAARNLGRVGTKCCTLPEDQRLPCVEDYLSAILNRV




CLLHEKTPVSEHVTKCCSGSLVERRPCFSALTVDETYVPKEFKAETFTFHSDIC




TLPEKEKQIKKQTALAELVKHKPKATAEQLKTVMDDFAQFLDTCCKAADKDT




CFSTEGPNLVTRCKDALAHHHHHHEPEA





110
ACP78
mdmrvpaqllglllwlrgarcEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVR



Mouse IFG
QAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDT



fusion
AVYYCTIGGSLSVSSQGTLVTVSSggggsggggsgggg



protein
shgtviesleslnnythssgidveekslfld




iwrnwqkdgdmkilqsqiisfylrlfevlkdnqaisnnisv




ieshlittffsnskaldcdafmsiakfevnnpqvqrqafne




lirvvhqllpesslrkrkrsreggggsggggsggggsEVQLVESGGGLVQPGNSLRLSCAASGFTF




SKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYL




QMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggshgtviesleslnn




ythssgidveekslildiwrnwqkdgdmkilqsqiisfylrlfevlkd




nqaisnnisvieshlittffsnskakkdafmsia




kfevnnpqvqrqafnelirvvhqllpesslrkrkrsreggggsggggsggggsEVQLVESGGGLVQPGNS




LRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTI




SRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSHHHHHHEP




EA





111
ACP 134
mdmrvpaqllglllwlrgarcEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVR



Mouse IFG
QAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDT



fusion
AVYYCTIGGSLSVSSQGTLVTVSSSGGPGPAGMKGLPGShgtviesleslnnyfnssgidv



protein
eekslfldiwrnwqkdgdmkilqsqiisfylrlfevlkdnqaisn




nisvieshlittffsnskaldcdafmsiakfevnnpq




vqrqafnelirvvhqllpesshkrkrsrcSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLR




LSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISR




DNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSSGGPGPAGM




KGLPGShgtviesleslnnyfnssgidveekslfldiwrnwqkdgdmkilqsqiisfylrlfevlkdnqaisnnisvie




shlittffsnskakkdafmsiakfevnnpqvqrqafnelirvvhqllpesshkrkrsrcSGGPGPAGMKGLPG




SEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSggggsggggsggggsQVQLQESGGGLAQAGGSLSLSCAASGFTVSNS




VMAWYRQTPGKQREFVAIINSVGSTNYADSVKGRFTISRDNAKNTVYLQMNN




LKPEDTAVYVCNRNFDRIYWGQGTQVTVSSHHHHHHEPEA





112
ACP135
mdmrvpaqllglllwlrgarcQVQLQESGGGLAQAGGSLSLSCAASGFTVSNSVMAWY



Mouse IFG
RQTPGKQREFVAIINSVGSTNYADSVKGRFTISRDNAKNTVYLQMNNLKPEDT



fusion
AVYVCNRNFDRIYWGQGTQVTVSSggggsggggsggggsEVQLVESGGGLVQPGNS



protein
LRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTI




SRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSSGGPGPAG




MKGLPGShgtviesleslnnyfnssgidveekslfldiwrnwqkdgdmkilqsqiisfylrlfevlkdnqaisnnisv




ieshlittffsnskakkdafmsiakfevnnpqvqrqafnelirvvhqllpesshkrkrsrcSGGPGPAGMKGLP




GSEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSS




ISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSV




SSQGTLVTVSSSGGPGPAGMKGLPGShgtviesleslnnyfnssgidveekslfldiwrnwqkdgd




mkilqsqiisfylrlfevlkdnqaisnnisvieshlittffsnskakkda




fmsiakfevnnpqvqrqafnelirvvhqllpes




shkrkrsrcSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLRLSCAASGFTFSKF




GMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMN




SLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSHHHHHHEPEA





113
ACP34
mdmrvpaqllglllwlrgarcrvipvsgparclsqsrnllkttddmvktareklkhysctaedidheditrdqtstlktclp



Mouse IL-
lelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqiildkgmlvaidelmq



12 fusion
slnhngetlrqkppvgeadpyrvkmklcillhafstryvtinrvmgylssaSGGPGPAGMKGLPGSmwele



protein
kdvyvvevdwtpdapgetvnitcdtpeedditwtsdqrhgvigsgktltitykefldagqytchkggetlshshlllhkke




ngiwsteilknfknktflkceapnysgrftcswlvqrnmdlkfnikssssspdsravtcgmaslsaekvtldqrdyekys




vscqedvtcptaeetlpielalearqqnkyenystsffirdiikpdppknlqmkplknsqvevsweypdswstphsyfsl




kffvriqrkkekmketeegcnqkgaflvektstevqckggnvcvqaqchyynsscskwacvpervrsHHHHHH





114
ACP35
mdmrvpaqllglllwlrgarcrvipvsgparclsqsrnllkttddmvktareklkhysctaedidheditrdqtstlktclp



Mouse IL-
lelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqiildkgmlvaidelmq



12 fusion
slnhngetlrqkppvgeadpyrvkmklcillhafstryvtinrvmgylssaggggsggggsggggsSGGPGPAG



protein
MKGLPGSggggsggggsggggsmwelekdvyvvevdwtpdapgetvnitcdtpeedditwtsdqrhgvigsg




ktltitykefldagqytchkggetlshshlllhkkengiwsteilknfkatflkceapnysgrftcswlvqrnmdlkfnik




ssssspdsravtcgmaslsaekvtldqrdyekysyscqedvtcptaeetlpielalearqqnkyenystsffirdiikpdpp




knlqmkplknsqvevsweypdswstphsyfslkffvriqrkkekmketeegcnqkgaflvektstevqckggnvcv




qaqdryynsscskwacvpervrsHHHHHH





115
ACP36
mdmrvpaqllglllwlrgarcEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVR



Mouse IL-
QAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDT



12 fusion
AVYYCTIGGSLSVSSQGTLVTVSSSGGPGPAGMKGLPGSmwelekdvyvvevdwtpd



protein
apgetvnhcdtpeedditwtsdqrhgvigsgktltitykefldagqytchkggetlshshlllhkkengiwsteilknfkn




kffikceapnysgrftcswlvqrnmdlkfnikssssspdsravtcgmaslsaekvtldqrdyekysyscqedvtcptaee




tlpielalearqqnkyenystsffirdiikpdppknlqmkplknsqvevsweypdswstphsyfslkffvriqrkkekm




keteegcnqkgaflvektstevqckggnvcvqaqchyynsscskwacvpervrsggggsggggsggggsrvipvsgparcl




sqsrifilkttddmvktareklkhysctaedidheditrdqtstlktclplelhknesclatretssttrgsclppqktsl




mmticlgsiyedlkmyqtefciainaalqnhnhqqiildkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmkl




cillhafstryvtinrvmgylssaSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLRLSC




AASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNA




KTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSHHHHHH





116
ACP37
mdmrvpaqllglllwlrgarcQVQLQESGGGLVQAGGSLRLSCAASGRIFSIDIMSWYR



Mouse IL-
QAPGKQRELVARITRGGTISYDDSVKGRFTISRDNAKNTVYLQMNSLKPEDTG



12 fusion
VYYCNALYGTDYWGKGTQVTVSSggggsggggsggggsEVQLVESGGGLVQPGNS



protein
LRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTI




SRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSSGGPGPAG




MKGLPGSmwelekdvyvvevdwtpdapgetvnitcdtpeedditwtsdqrhgvigsgktltitykefldagqytc




hkggetlshshlllhkkengiwsteilknfknktflkceapnysgrftcswlvqrnmdlkfnikssssspdsravtcgmas




Vlsaekvtldqrdyekysyscqedvtcptaeetlpielalearqqnkyenystsffirdiikpdppknlqmkplknsqvevs




weypdswstphsyfslkffvriqrkkekmketeegcnqkgaflvektstevqckggnvcvqaqchyynsscskwac




vpervrsggggsggggsggggsrvipvsgparclsqsnillkttddmvktareklkhysctaedidheditrdqtstlktcl




plelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefciainaalqnhnhqqiildkgmlvaidelm




qslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssaSGGPGPAGMKGLPGSEVQ




LVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGR




DTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGT




LVTVSSHHHHHH





117
ACP79
mdmrvpaqllglllwlrgarcQVQLQESGGGLVQAGGSLRLSCAASGRIFSIDIMSWYR



Mouse IL-
QAPGKQRELVARITRGGTISYDDSVKGRFTISRDNAKNTVYLQMNSLKPEDTG



12 fusion
VYYCNALYGTDYWGKGTQVTVSSggggsggggsggggsEVQLVESGGGLVQPGNS



protein
LRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTI




SRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSSGGPGPAG




MKGLPGSmwelekdvyvvevdwtpdapgetvnitcdtpeedditwtsdqrhgvigsgktltitykefldagqytc




hkggetlshshlllhkkengiwsteilknfknktflkceapnysgrftcswlvqrnmdlkfnikssssspdsravtcgmas




lsaekvtldqrdyekysyscqedvtcptaeetlpielalearqqnkyenystsffirdiikpdppknlqmkplknsqvevs




weypdswstphsyfslkffvriqrkkekmketeegcnqkgaflvektstevqckggnvcvqaqchyynsscskwac




vpervrsggggsggggsggggsrvipvsgparclsqsnillkttddmvktareklkhysctaedidheditrdqtstlktcl




plelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefciainaalqnhnhqqiildkgmlvaidelm




qslnhngetlrqkppvgeadpyrvkmlcicillhafstrvvtinrvmgylssaSGGPGPAGMKGLPGSEVQ




LVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGR




DTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGT




LVTVSSHHHHHH





118
ACP80
mdmrvpaqllglllwlrgarcEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVR



Mouse IL-
QAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDT



12 fusion
AVYYCTIGGSLSVSSQGTLVTVSSSGGPGPAGMKGLPGSmwelekdvyvvevdwtpd



protein
apgetvnhcdtpeedditwtsdqrhgvigsgktltitykefldagqytchkggetlshshlllhkkengiwsteilknfkn




kffikceapnysgrftcswlvqrnmdlkfnikssssspdsravtcgmaslsaekvtldqrdyekysyscqedvtcptaee




tlpielalearqqnkyenystsffirdiikpdppknlqmkplknsqvevsweypdswstphsyfslkffvriqrkkekm




keteegcnqkgaflvektstevqckggnvcvqaqdwynsscskwacvpervrsggggsggggsggggsrvipvsgparc




lsqsnillkttddmvktareklkhysctaedidheditrdqtstlktclplelhknesclatretssttrgsclppqktsl




mmticlgsiyedlkmyqtefciainaalqnhnhqqiildkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmkl




cillhafstrvvtinrvmgylssaSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLRLSC




AASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNA




KTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggsQV




QLQESGGGLVQAGGSLRLSCAASGRIFSIDIMSWYRQAPGKQRELVARITRGG




TISYDDSVKGRFTISRDNAKNTVYLQMNSLKPEDTGVYYCNALYGTDYWGK




GTQVTVSSHHHHHH





119
ACP91
mdmrvpaqllglllwlrgarciwelkkdvyvveldwypdapgemvvitcdtpeedgitwildqssevlgsgkfltiqv



Chimeric
kefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwlttistditfsvkssrg



IL-12
ssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssffirdiikpdppkn



fusion
lqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisvraqchyysssws



protein
ewasvpcsggggsggggsggggsrvipvsgparclsqsnillkttddmvktareklkhysctaedidheditrdqtstlkt




clplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqiildkgmlvaidel




mqslnhngetlrqkppvgeadpyrvkmklcillhafstivvtinrvmgylssaggggsggggsggggsggggsgggg




sggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQ




QLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQS




YDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLS




CAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYDGSNKYYADSVKGRFTISRD




NSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVSSggggsggggsgg




ggsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSS




ISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSV




SSQGTLVTVSSHHHHHHEPEA





120
ACP136
mdmrvpaqllglllwlrgarciwelkkdvyvveldwypdapgemvvitcdtpeedgitwtldqssevlgsgkfltiqv



Chimeric
kefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwlttistditfsvkssrg



IL-12
ssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklIcyenytssffirdiikpdppkn



fusion
lqlkplknsrqvevsweypdtwstphsyfshfcvqvqgkskrekkdrvftdktsatvicrknasisvraqchyysssws



protein
ewasvpcsggggsggggsggggsrvipvsgparclsqsnillkttddmvktareklkhysctaedidheditrdqtstlkt




clplelhIcnesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqiildkgmlvaidel




mqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssaSGGPGPAGMKGLPGSggg




gsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVK




WYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYY




CQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVVQPGRSL




RLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYDGSNKYYADSVKGRFTI




SRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVSSHHHHH




HEPEA





121
ACP138
mdmrvpaqllglllwlrgarciwelkkdvyvveldwypdapgemvvlicdtpeedgitwtldqssevlgsgktltiqv



Chimeric
kefgdagqytchkggevlshsllllhIckedgiwstdilkdqkepknktflrceaknysgrftcwwlttistditfsvkssrg



IL-12
ssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklIcyenytssffirdiikpdppkn



fusion
lqlkplknsrqvevsweypdtwstphsyfshfcvqvqgkskrekkdrvftdktsatvicrknasisvraqchyysssws



protein
ewasvpcsggggsggggsggggsrvipvsgparclsqsnillkttddmvktareklkhysctaedidheditrdqtstlkt




clplelhIcnesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqiildkgmlvaidel




mqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssaSGGPGPAGMKGLPGSggg




gsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVK




WYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYY




CQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVVQPGRSL




RLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYDGSNKYYADSVKGRFTI




SRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVSSggggsggg




gsggggsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEW




VSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGS




LSVSSQGTLVTVSSggggsggggsggggsQVQLQESGGGLAQAGGSLSLSCAASGFT




VSNSVMAWYRQTPGKQREFVAIINSVGSTNYADSVKGRFTISRDNAKNTVYL




QMNNLKPEDTAVYVCNRNFDRIYWGQGTQVTVSSHHHHHHEPEA





122
ACP139
mdmrvpaqllglllwlrgarcQVQLQESGGGLAQAGGSLSLSCAASGFTVSNSVMAWY



Chimeric
RQTPGKQREFVAIINSVGSTNYADSVKGRFTISRDNAKNTVYLQMNNLKPEDT



IL-12
AVYVCNRNFDRIYWGQGTQVTVSSggggsggggsggggsiwelIckdvyvveldwypdapgem



fusion
vvitcdtpeedgitwadqssevlgsgktltiqvkefgdagqytchkggevlshsllllhldcedgiwstdilkdqkepknk



protein
tflrceaknysgrftcwwlttistclitfsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpie




vmvdavhklIcyenytssffirdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkd




rvftdktsatvicrknasisvraqdryyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrnllkttdd




mvktareklkhysctaedidheditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkm




yqtefgainaalqnhnhqqiildkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinry




mgylssaSGGPGPAGMKGLPGSggggsggggsggggsggggsggggsggggsQSVLTQPPSVS




GAPGQRVTISCSGSRSNIGSNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFS




GSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggg




gsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLE




WVAFIRYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKT




HGSHDNWGQGTMVTVSSggggsggggsggggsEVQLVESGGGLVQPGNSLRLSCA




ASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAK




TTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSHHHHHHEPEA





123
ACP140
mdmrvpaqllglllwlrgarcQVQLQESGGGLAQAGGSLSLSCAASGFTVSNSVMAWY



Chimeric
RQTPGKQREFVAIINSVGSTNYADSVKGRFTISRDNAKNTVYLQMNNLKPEDT



IL-
AVYVCNRNFDRIYWGQGTQVTVSSSGGPGPAGMKGLPGSiwelkkcIvyvveldwyp



12
dapgemvvitcdtpeedgitwtldqssevlgsgktltiqvkefgdagqytchkggevlshsllllhIckedgiwstdilkdq



fusion
kepknkttflrceaknysgrftcwwlttistdiffsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpa



protein
aeeslpievmvdavhklIcyenytssffirdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgk




skrekkdrvftdktsatvicrknasisvraqchyyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsr




nllkttddmvktareklkhysctaedidheditrdqtstlktclplelhIcnesclatretssttrgsclppqktslmmticlgsi




yedlkmyqtefgainaalqnhnhqqiildkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstry




vtinrvmgylssaSGGPGPAGMKGLPGSggggsggggsggggsggggsggggsggggsQSVLTQP




PSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQLPGTAPKLLIYYNDQRPSGVPD




RFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLFGTGTKVTVLgggg




sggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKG




LEWVAFIRYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYC




KTHGSHDNWGQGTMVTVSSggggsggggsggggsEVQLVESGGGLVQPGNSLRLSC




AASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNA




KTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSHHHHHHEPEA





124
ACP38
mclmrvpaqllglllwlrgarcaptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcle



IL-2 fusion
eelkpleevinlaqsknfhlrprdlisninvivlelkgsetlfmceyadetativeflnrwitfcqsiistltSGGPGPAG



protein
MKGLPGSEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGL




EWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAR




DSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVG




DRVTITCKASQNVGTNVGWYQQKPGKAPKALIYSASFRYSGVPSRFSGSGSGT




DFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKggggsggggsggggsEVQLV




ESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDT




LYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLV




TVSSggggsggggsggggsQVQLQESGGGLVQAGGSLRLSCAASGRlFSIDIMSWYR




QAPGKQRELVARITRGGTISYDDSVKGRFTISRDNAKNTVYLQMNSLKPEDTG




VYYCNALYGTDYWGKGTQVTVSSHHHHHH





125
ACP39
mdmrvpaqllglllwlrgarcQVQLQESGGGLVQAGGSLRLSCAASGRIFSIDIMSWYR



IL-2
QAPGKQRELVARITRGGTISYDDSVKGRFTISRDNAKNTVYLQMNSLKPEDTG



fusion
VYYCNALYGTDYWGKGTQVTVSSSGGPGPAGMKGLPGSEVQLVESGGGLVQ



protein
PGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKG




RFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSSGGPG




PAGMKGLPGSEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPG




KGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYY




CARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSA




SVGDRVTITCKASQNVGTNVGWYQQKPGKAPKALIYSASFRYSGVPSRFSGSG




SGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKSGGPGPAGMKGL




PGSaptssstkktqlqlehllldlqmilnginnyknpkltrmltfklympkkatelkhlqcleeelkpleevinlaqsknf




hlrprdlisninvivlelkgsetlfmceyadetativeflnrwitfcqsiistltHHHHHH**





126
ACP40
mdmrvpaqllglllwlrgarcelcdddppeiphatfkamaykegtmlnceckrgfrriksgslymktgnsshsswd



IL-2 fusion
nqcqctssatrnttkqvtpqpeeqkerkttemqspmqpvdqaslpghcrepppweneateriyhfvvgqmvyyqcv




qgyralhrgpaesvckmthgktrwtqpqlictgemetsqfpgeekpqaspegrpesetsclvtddfqiqtemaatmets




proteiniftteyqggggsggggsggggsggggsggggsggggsSGGPGPAGMKGLPGSaptssstkktqlqlehllld




lqmilnginnyknpkltrmlffidympldcatelkhlqcleeelkpleevinlaqsknfhlrprdlisninvivlelkgsettf




mceyadetativeflnrwitfcqsiistltHHHHHH





127
ACP41
mclmrvpaqllglllwlrgarcaptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcle



IL-2 fusion
eelkpleevinlaqsknfhlrprdlisninvivlelkgsetlfmceyadetativeflnrwitfcqsiistltSGGPGPAG



protein
MKGLPGSggggsggggsggggsggggsggggsggggselcdddppeiphallkamaykegtmlnceckrgfr



(WW0076)
riksgslymlctgnsshsswdnqcqctssatrnttkqvtpqpeeqkerkttemqspmqpvdqaslpghcrepppwen




eateriyhfvvgqmvyyqcvqgyralhrgpaesvclunthgktrwtqpqlictgemetsqfpgeekpqaspegrpese




tsclvtdclfqiqtemaatmetsiftteyqHHHHHH





128
ACP42
mdmrvpaqllglllwlrgarcEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVR



IL-2
QAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDT



fusion
AVYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggselcdddppeiphatfkamaykegtmln



protein
ceckrgfrriksgslymktgnsshsswdnqcqctssatrnttkqvtpqpeeqkerkttemqspmqpvdqaslpghcre



(WW0078)
pppweneateriyhfvvgqmvyyqcvqgyralhrgpaesvckmthgktrwtqpqlictgemetsqfpgeekpqasp




egrpesetsclvtdclfqiqtemaatmetsiftteyqggggsggggsggggsggggsggggsggggsSGGPGPAG




MKGLPGSaptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinl




aqsknfblrprdlisninvivlelkgsetlfmceyadetativeflnrwitfcqsiistltHHHHHH





129
ACP43
mclmrvpaqllglllwlrgarcaptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcle



IL-2 fusion
eelkpleevinlaqsknfhlrprdlisninvivlelkgsetlfmceyadetativeflnrwitfcqsiistltSGGPGPAG



protein
MKGLPGSggggsggggsggggsggggsggggsggggselcdddppeiphallkamaykegtmlnceckrgfr



(WW0079)
riksgslymlctgnsshsswdnqcqctssatrnttkqvtpqpeeqkerkttemqspmqpvdqaslpghcrepppwen




eateriyhfvvgqmvyyqcvqgyralhrgpaesvclunthgktrwtqpqlictgemetsqfpgeekpqaspegrpese




tsclvtddfqiqtemaatmetsiftteyqggggsggggsggggsEVQLVESGGGLVQPGNSLRLSCA




ASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAK




TTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSHHHHHH





130
ACP44
mclmrvpaqllglllwlrgarcaptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcle



IL-2 fusion
eelkpleevinlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltSGGPGPAG



protein
MKGLPGSggggsggggsggggsggggsggggsggggselcdddppeiphatikamaykegtmlnceckrgfr



(WW0080)
riksgslymlctgnsshsswdnqcqctssatrnttkqvtpqpeeqkerkttemqspmqpvdqaslpghcrepppwen




eateriyhfvvgqmvyyqcvqgyralhrgpaesvckmthgktrwtqpqlictgemetsqfpgeekpqaspegrpese




tsclvtddfqiqtemaatmetsiftteyqSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLR




LSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISR




DNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSHHHHHH





131
ACP45
mdmrvpaqllglllwlrgarcEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVR



IL-2
QAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDT



fusion
AVYYCTIGGSLSVSSQGTLVTVSSSGGPGPAGMKGLPGSEVQLVESGGGLVQP



(WW0046)
proteinGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRF




TISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSG




GGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKASQNVGTNVGWYQQ




KPGKAPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYY




TYPYTFGGGTKVEIKggggsggggsggggsggggsggggsggggsSGGPGPAGMKGLPGSa




ptssstkktqlqlehllldlqmilnginnyknpkihmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrprd




lisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltHHHHHH





132
ACP46
mclmrvpaqllglllwlrgarcaptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcle



IL-2 fusion
eelkpleevinlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltSGGPGPAG



protein
MKGLPGSggggsggggsggggsggggsggggsggggsEVQLVESGGGLVQPGGSLRLSCA




ASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKN




SLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSsggpgpagmkglp




gsDIQMTQSPSSLSASVGDRVTITCKASQNVGTNVGWYQQKPGKAPKALIYSA




SFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEI




KggggsggggsggggsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQA




PGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAV




YYCTIGGSLSVSSQGTLVTVSSggggsggggsggggsQVQLQESGGGLVQAGGSLRL




SCAASGRIFSIDIMSWYRQAPGKQRELVARITRGGTISYDDSVKGRFTISRDNA




KNTVYLQMNSLKPEDTGVYYCNALYGTDYWGKGTQVTVSSHHHHHH





133
ACP47
mdmrvpaqllglllwlrgarcQVQLQESGGGLVQAGGSLRLSCAASGRIFSIDIMSWYR



IL-2
QAPGKQRELVARITRGGTISYDDSVKGRFTISRDNAKNTVYLQMNSLKPEDTG



fusion
VYYCNALYGTDYWGKGTQVTVSSggggsggggsggggsaptssstkktqlqlehllldlqmilngin




proteinnyknpkltrmltfklympldcatelkhlqcleeelkpleevinlaqsknfhlrprd




lisninvivlelkgsettfmceyadet




ativeflnrwitfcqsiistltSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLRLSCAAS




GFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTT




LYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggsggggsgg




ggsggggsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLE




WVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARD




SNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGD




RVTITCKASQNVGTNVGWYQQKPGKAPKALIYSASFRYSGVPSRFSGSGSGTD




FTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKHHHHHH



134ACP48
mclmrvpaqllglllwlrgarcaptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcle



IL-2 fusion
eelkpleevinlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltSGGPGPAG



protein
MKGLPGSEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGL



(WW0054)
EWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAR




DSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVG




DRVTITCKASQNVGTNVGWYQQKPGKAPKALIYSASFRYSGVPSRFSGSGSGT




DFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKggggsggggsggggsEVQLV




ESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDT




LYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLV




TVSSHHHHHH





135
ACP49
mclmrvpaqllglllwlrgarcaptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcle



IL-2 fusion
eelkpleevinlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltSGGPGPAG



protein
MKGLPGSggggsggggsggggsggggsggggsggggsEVQLVESGGGLVQPGGSLRLSCA



(WW0055)
ASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKN




SLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGG




SGGGGSDIQMTQSPSSLSASVGDRVTITCKASQNVGTNVGWYQQKPGKAPKA




LIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGG




TKVEIKggggsggggsggggsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSW




VRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPE




DTAVYYCTIGGSLSVSSQGTLVTVSSHHHHHH





136
ACP92
mdmrvpaqllglllwlrgarcEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVR



IL-2 fusion
QAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDT




proteinAVYYCTIGGSLSVSSQGTLVTVSSSGGPGPAGMKGLPGSaptssstkktqlqlehllldlqm




ilnginnyknpklirmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrprdlisninvivlelkgsettfmce




yadetativeflnrwitfcqsiistltSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLRLSC




AASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNA




KTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSHHHHHH





137
ACP93
mdmrvpaqllglllwlrgarcQVQLQESGGGLVQAGGSLRLSCAASGRIFSIDIMSWYR



IL-2 fusion
QAPGKQRELVARITRGGTISYDDSVKGRFTISRDNAKNTVYLQMNSLKPEDTG



protein
VYYCNALYGTDYWGKGTQVTVSSgsgsgsgsgsgsgsgsEVQLVESGGGLVQPGNS




LRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTI




SRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSgsgsgsgsgsgs




gsgsQVQLQESGGGLVQAGGSLRLSCAASGRIFSIDIMSWYRQAPGKQRELVAR




ITRGGTISYDDSVKGRFTISRDNAKNTVYLQMNSLKPEDTGVYYCNALYGTD




YWGKGTQVTVSSgsgsgsgsgsgsgsgsEVQLVESGGGLVQPGGSLRLSCAASGFTFS




SYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQM




NSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGS




DIQMTQSPSSLSASVGDRVTITCKASQNVGTNVGWYQQKPGKAPKALIYSASF




RYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIK




SGGPGPAGMKGLPGSaptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcl




eeelkpleevinlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwilfcqsiistltHHHHHH





138
ACP94
mdmrvpaqllglllwlrgarcQVQLQESGGGLVQAGGSLRLSCAASGRIFSIDIMSWYR



IL-2 fusion
QAPGKQRELVARITRGGTISYDDSVKGRFTISRDNAKNTVYLQMNSLKPEDTG



protein
VYYCNALYGTDYWGKGTQVTVSSgsgsgsgsgsgsgsgsEVQLVESGGGLVQPGNS




LRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTI




SRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSgsgsgsgsgsgs




gsgsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVA




AIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNW




DALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTI




TCKASQNVGTNVGWYQQKPGKAPKALIYSASFRYSGVPSRFSGSGSGTDFTLT




ISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKSGGPGPAGMKGLPGSaptssstk




ktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfblrprdlisninv




ivlelkgsettfmceyadetativeflnrwitfcqsiistltHHHHHH





139
ACP95
mdmrvpaqllglllwlrgarcQVQLQESGGGLVQAGGSLRLSCAASGRIFSIDIMSWYR



IL-2 fusion
QAPGKQRELVARITRGGTISYDDSVKGRFTISRDNAKNTVYLQMNSLKPEDTG



protein
VYYCNALYGTDYWGKGTQVTVSSgsgsgsgsgsgsgsgsEVQLVESGGGLVQPGNS




LRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTI




SRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSSGGPGPAG




MKGLPGSaptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinl




aqsknfblrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltHHHHHH





140
ACP96
mdmrvpaqllglllwlrgarcQVQLQESGGGLVQAGGSLRLSCAASGRIFSIDIMSWYR



IL-2 fusion
QAPGKQRELVARITRGGTISYDDSVKGRFTISRDNAKNTVYLQMNSLKPEDTG



protein
VYYCNALYGTDYWGKGTQVTVSSSGGPGPAGMKGLPGSaptssstkktqlqlehllldlq




milnginnyknpklirmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrprdlisninvivlelkgsettfm




ceyadetativeflnrwitfcqsiistltSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLRL




SCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRD




NAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSHHHHHH





141
ACP97
mdmrvpaqllglllwlrgarcQVQLQESGGGLVQAGGSLRLSCAASGRIFSIDIMSWYR



IL-2 fusion
QAPGKQRELVARITRGGTISYDDSVKGRFTISRDNAKNTVYLQMNSLKPEDTG



protein
VYYCNALYGTDYWGKGTQVTVSSggggsggggsggggsEVQLVESGGGLVQPGNS




LRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTI




SRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSSGGPGPAG




MKGLPGSaptsssticktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelklilqcleeelkpleevinl




aqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltSGGPGPAGMKGLPGS




EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSHHHHHH





142
ACP99
mdmrvpaqllglllwlrgarcQVQLQESGGGLVQAGGSLRLSCAASGRIFSIDIMSWYR



IL-2 fusion
QAPGKQRELVARITRGGTISYDDSVKGRFTISRDNAKNTVYLQMNSLKPEDTG



protein
VYYCNALYGTDYWGKGTQVTVSSggggsggggsggggsaptsssticktqlqlehllldlqmilngin




nyknpkltrmltficfympkkatelkhlqcleeelkpleevinlaqsknfhlrprdlisninvivlelkgsettfmceyadet




ativeflnrwitfcqsiistltSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLRLSCAAS




GFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTT




LYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSHHHHHH





143
ACP100
mdmrvpaqllglllwlrgarcQVQLQESGGGLVQAGGSLRLSCAASGRIFSIDIMSWYR



IL-2 fusion
QAPGKQRELVARITRGGTISYDDSVKGRFTISRDNAKNTVYLQMNSLKPEDTG



protein
VYYCNALYGTDYWGKGTQVTVSSggggsggggsggggsaptsssticktqlqlehllldlqmilngin




nyknpkltrinifficfympldcatelkhlqcleeelkpleevinlaqsknfhlrprdlisninvivlelkgset




tfmceyadetativeflnrwitfcqsiistltHHHHHH





144
ACP101
mdmrvpaqllglllwlrgarcaptsssticktqlqlehllldlqmilnginnyknpkltrmlafympkkatelkhlqcle



(WW0061)
eelkpleevinlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltSGGPGPAG



IL-2 fusion
MKGLPGSEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGL



protein
EWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTI




GGSLSVSSQGTLVTVSSHHHHHH





145
ACP102
mdmrvpaqllglllwlrgarcQVQLQESGGGLVQAGGSLRLSCAASGRIFSIDIMSWYR



IL-2 fusion
QAPGKQRELVARITRGGTISYDDSVKGRFTISRDNAKNTVYLQMNSLKPEDTG



protein
VYYCNALYGTDYWGKGTQVTVSSSGGPGPAGMKGLPGSaptsssticktqlqlehllldlq




milnginnyknpkltrmlafympkkatelkhlqcleeelkpleevinlaqsknfhliprdlisninvivlelkgsettfm




ceyadetativeflnrwitfcqsiistltSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLRL




SCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRD




NAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggs




ggggsggggsggggsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPG




KGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYY




CARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSA




SVGDRVTITCKASQNVGTNVGWYQQKPGKAPKALIYSASFRYSGVPSRFSGSG




SGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKHHHHHH





146
ACP103
mdmrvpaqllglllwlrgarcaptsssticktqlqlehllldlqmilnginnyknpkltrmla



IL-2 fusion
fympkkatelkhlqcleeelkpleevinlaqsknfhlrprdlisninvivlelkgsettfmcey



protein
adetativeflnrwitfcqsiistltSGGPGPAGMKGLPGSggggsggggsggggsggggsggggsg




gggsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVR




GRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGG




SGGGGSDIQMTQSPSSLSASVGDRVTITCKASQNVGTNVGWYQQKPGKAPKA




LIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGG




TKVEIKggggsggggsggggsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSW




VRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPE




DTAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggsQVQLQESGGGLAQAGG




SLSLSCAASGFTVSNSVMAWYRQTPGKQREFVAIINSVGSTNYADSVKGRFTIS




RDNAKNTVYLQMNNLKPEDTAVYVCNRNFDRIYWGQGTQVTVSSHHHHHH





147
ACP104
mdmrvpaqllglllwlrgarcQVQLQESGGGLAQAGGSLSLSCAASGFTVSNSVMAWY



IL-2 fusion
RQTPGKQREFVAIINSVGSTNYADSVKGRFTISRDNAKNTVYLQMNNLKPEDT



protein
AVYVCNRNFDRIYWGQGTQVTVSSaptsssticktqlqlehllldlqmilnginnyknpkltrmltfkfy




mpkkatelklilqcleeelkpleevlnlaqsknflilrprdlisninvivlelkgsettfmceyadetati




veflnrvvitfcqsiieflnrwitfcqsiistltSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLRLSC




AASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLR




PEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggsggggsggggsggggsEVQL




VESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYT




YSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWG




QGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKASQNV




GTNVGWYQQKPGKAPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDF




ATYYCQQYYTYPYTFGGGTKVEIKHHHHHH





148
ACP105
mdmrvpaqllglllwlrgarcEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVR



IL-2 fusion
QAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTA



protein
VYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSS




LSASVGDRVTITCKASQNVGTNVGWYQQKPGKAPKALIYSASFRYSGVPSRFS




GSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKggggsggggsggg




gsggggsggggsggggsSGGPGPAGMKGLPGSaptsssticktqlqlehllldlqmilnginnyknpkltrml




tflcfympkkatelkhlqcleeelkpleevinlaqsknfhlrprdlisninvivlelkgsettfmceyadeta




tiveflnrwitfcqsiistltSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFG




MSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNS




LRPEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggsQVQLQESGGGLA




QAGGSLSLSCAASGFTVSNSVMAWYRQTPGKQREFVAIINSVGSTNYADSVK




GRFTISRDNAKNTVYLQMNNLKPEDTAVYVCNRNFDRIYWGQGTQVTVSSH




HHHHH





149
ACP106
mdmrvpaqllglllwlrgarcQVQLQESGGGLAQAGGSLSLSCAASGFTVSNSVMAWY



IL-2 fusion
RQTPGKQREFVAIINSVGSTNYADSVKGRFTISRDNAKNTVYLQMNNLKPEDT



protein
AVYVCNRNFDRIYWGQGTQVTVSSggggsggggsggggsEVQLVESGGGLVQPGNS




LRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTI




SRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSSGGPGPAG




MKGLPGSEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGL




EWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCAR




DSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVG




DRVTITCKASQNVGTNVGWYQQKPGKAPKALIYSASFRYSGVPSRFSGSGSGT




DFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKggggsggggsggggsggggsgg




ggsggggsSGGPGPAGMKGLPGSaptsssticktqlqlehllldlqmilnginnyknpkltrmltfkfympkk




atelkhlqcleeelkpleevinlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwil




fcqsiistltHHHHHH





150
ACP107
mdmrvpaqllglllwlrgarcEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVR



IL-2 fusion
QAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTA



protein
VYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSS




LSASVGDRVTITCKASQNVGTNVGWYQQKPGKAPKALIYSASFRYSGVPSRFS




GSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKggggsggggsggg




gsggggsggggsggggsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQA




PGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAV




YYCTIGGSLSVSSQGTLVTVSSSGGPGPAGMKGLPGSaptsssticktqlqlehllldlqmilng




innyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhliprdlisninvivlelkgse




ettfmceyadtativeflnrwitfcqsiistltggggsggggsggggsQVQLQESGGGLAQAGGSLSLSCAASGFT




VSNSVMAWYRQTPGKQREFVAIINSVGSTNYADSVKGRFTISRDNAKNTVYL




QMNNLKPEDTAVYVCNRNFDRIYWGQGTQVTVSSHHHHHH





151
ACP108
mdmrvpaqllglllwlrgarcQVQLQESGGGLVQAGGSLRLSCAASGRIFSIDIMSWYR



IL-2 fusion
QAPGKQRELVARITRGGTISYDDSVKGRFTISRDNAKNTVYLQMNSLKPEDTG



protein
VYYCNALYGTDYWGKGTQVTVSSggggsggggsggggsaptsssticktqlqlehllldlqmilngin




nyknpkltrmltfklympldcatelkhlqcleeelkpleevinlaqsknfhlrprdlisninvivlelkgsett




fmceyadetativeflnrwitfcqsiistltSGGPGPAGMKGLPGSrgetgpaaPGSEVQLVESGGGLVQPGNS




LRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTI




SRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsg




gggsggggsggggsggggsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQ




APGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAV




YYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSL




SASVGDRVTITCKASQNVGTNVGWYQQKPGKAPKALIYSASFRYSGVPSRFSG




SGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKHHHHHH





152
ACP117
mdmrvpaqllglllwlrgarcEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMSWVR



Anti-FN
QAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAED



CGS-2
PEATAVYYCARGVGAFRPYRKHEWGQGTLVTVSRggggsggggsggggsSSELTQDPAV



scFv
SVALGQTVRITCQGDSLRSYYASWYQQKPGQAPVLVIYGKNNRPSGIPDRFSG




SSSGNTASLTTTGAQAEDEADYYCNSSPFEHNLVVFGGGTKLTVLHHHHHHE





153
ACP118
mdmrvpaqllglllwlrgarcQVQLQQSGAELVRPGTSVKVSCKASGYAFTNYLIEWV



NARA1
KQRPGQGLEWIGVINPGSGGTNYNEKFKGKATLTADKSSSTAYMQLSSLTSD



Vh/Vl non-
DSAVYFCARWRGDGYYAYFDVWGAGTTVTVSSggggsggggsggggsDIVLTQSP



cleavable
ASLAVSLGQRATISCKASQSVDYDGDSYMNWYQQKPGQPPKLLIYAASNLES




GIPARFSGSGSGTDFTLNIHPVEEEDAATYYCQQSNEDPYTFGGGTKLEIKHHH




HHHEPEA





154
ACP119
mdmrvpaqllglllwlrgarcQVQLQQSGAELVRPGTSVKVSCKASGYAFTNYLIEWV



NARA1
KQRPGQGLEWIGVINPGSGGTNYNEKFKGKATLTADKSSSTAYMQLSSLTSD



Vh/Vl
DSAVYFCARWRGDGYYAYFDVWGAGTTVTVSSSGGPGPAGMKGLPGSDIVL



cleavable
TQSPASLAVSLGQRATISCKASQSVDYDGDSYMNWYQQKPGQPPKLLIYAAS




NLESGIPARFSGSGSGTDFTLNIHPVEEEDAATYYCQQSNEDPYTFGGGTKLEI




KHHHHHHEPEA





155
ACP120
mdmrvpaqllglllwlrgarcDIVLTQSPASLAVSLGQRATISCKASQSVDYDGDSYMN



NARA1
WYQQKPGQPPKLLIYAASNLESGIPARFSGSGSGTDFTLNIHPVEEEDAATYYC



Vl/Vh non-
QQSNEDPYTFGGGTKLEIKggggsggggsggggsQVQLQQSGAELVRPGTSVKVSCK



cleavable
ASGYAFTNYLIEWVKQRPGQGLEWIGVINPGSGGTNYNEKFKGKATLTADKS




SSTAYMQLSSLTSDDSAVYFCARWRGDGYYAYFDVWGAGTTVTVSSHHHHH




HEPEA





156
ACP121
mdmrvpaqllglllwlrgarcDIVLTQSPASLAVSLGQRATISCKASQSVDYDGDSYMN



NARA1
WYQQKPGQPPKLLIYAASNLESGIPARFSGSGSGTDFTLNIHPVEEEDAATYYC



Vl/Vh
QQSNEDPYTFGGGTKLEIKSGGPGPAGMKGLPGSQVQLQQSGAELVRPGTSV



cleavable
KVSCKASGYAFTNYLIEWVKQRPGQGLEWIGVINPGSGGTNYNEKFKGKATL




TADKSSSTAYMQLSSLTSDDSAVYFCARWRGDGYYAYFDVWGAGTTVTVSS




HHHHHHEPEA





157
ACP124
mdmrvpaqllglllwlrgarcaptssstkktqlqlehllldlqmilnginnyknpkltrmilfkfympkkatelkhlqcle



IL-2 fusion
eelkpleevinlaqsknfhlrprdlisninvivlelkgsetlfmceyadetativeflnrwitfcqsiistliggggsggggsg



protein
gggsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVS



(WW0159)
SISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLS




VSSQGTLVTVSSHHHHHHEPEA





158
ACP132
mdmrvpaqllglllwlrgarcaptssstkktqlqlehllldlqmilnginnyknpkltrmilfkfympkkatelkhlqcle



IL-2 fusion
eelkpleevinlaqsknfhlrprdlisninvivlelkgsetlfmceyadetativeflnrwitfcqsiistliggggsggggsg



protein
gggsdahksevahrfkdlgeenfkalvliafaqylqqcpfedhvklvnevtefaktcvadesaencdkslhtlfgdklctv



(WW0177)
atlretygemadccakqepernecflqhkddnpnlprlvrpevdvmctafhdneeffildcylyeiarrhpyfyapellff




akrykaafteccqaadkaacllpkldelrdegkassakqrlkcaslqkfgerafkawavarlsqrfpkaefaevsklvtdlt




kyhtecchgdllecaddradlakyicenqdsissklkeccekpllekshciaevendempadlpslaadfveskdvckn




yaeakdvflgmflyeyarrhpdysvvillrlaktyettlekccaaadphecyakvfdefkplveepqnlikqncelfeqlg




eykfqnallviytldwpqvstptivevsrnlgkvgskcckhpeakrmpcaedylsvvinqlcvlhektpvsdrvtkcct




esknrrpcfsalevdetyvpkefnaetflfhadictlsekerqildcqtalvelvldikpkatkeqlkavmddfaafvekcc




kaddketcfaeegkklvaasqaalglHHHHHHEPEA





159
ACP141
mdmrvpaqllglllwlrgarcaptssstkktqlqlehllldlqmilnginnyknpkltrmilfkfympkkatelkhlqcle



IL-2 fusion
eelkpleevinlaqsknfhlrprdlisninvivlelkgsetlfmceyadetativeflnrwitfcqsiistliggggsggggsg



protein
gggsdahksevahrfkdlgeenfkalvliafaqylqqcpfedhvklvnevtefaktcvadesaencdkslhtlfgdklctv



(WW0178)
atlretygemadccakqepernecflqhkddnpnlprlvrpevdvmctafhdneeffildcylyeiarrhpyfyapellff




akrykaafteccqaadkaacllpkldelrdegkassakqrlkcaslqkfgerafkawavarlsqrfpkaefaevsklvtdlt




kyhtecchgdllecaddradlakyicenqdsissklkeccekpllekshciaevendempadlpslaadfveskdvckn




yaeakdvflgmflyeyarrhpdysvvillrlaktyettlekccaaadphecyakvfdefkplveepqnlikqncelfeqlg




eykfqnallviytldwpqvstptivevsrnlgkvgskcckhpeakrmpcaedylsvvinqlcvlhektpvsdrvtkcct




esknrrpcfsalevdetyvpkefnaetflfhadictlsekerqildcqtalvelvldikpkatkeqlkavmddfaafvekcc




kaddketcfaeegkklvaasqaalglHHHHHHEPEA





160
ACP142
mdmrvpaqllglllwlrgarcaptssstIcktqlqlehllldlqmilnginnyknpkltrmilflcfympkkatelkhlqcle



IL-2 fusion
eelkpleevinlaqsknfhlrprdlisninvivlelkgsetlfmceyadetativeflnrwitfcqsiistltSGGPGPAG



protein
MKGLPGSdaliksevahrfkdlgeenfkalvliafaqylqqcpfedhvklvnevtefaktcvadesaencdkslhtlf



(WW0179)
gdkletvatlretygemadccakqepernecflqhkddnpnlprlvrpevdvmctafhdneeffildcylyeiarrhpyf




yapellffakrykaafteccqaadkaacllpkldelrdegkassakqrlkcaslqkfgerafkawavarlsqrfpkaefaev




sklvtdltkvhtecchgdllecaddradlakyicenqdsissklkeccekpllekshciaevendempadlpslaadfves




kdvcknyaeakdvflgmflyeyarrhpdysvvillrlaktyettlekccaaadphecyakvfdefkplveepqnlikqn




celfeqlgeykfqnallviytkkvpqvstptivevsrnlgIcvgskcckhpeakrmpcaedylsvvinqlcvlhektpvs




drytkcctesknripcfsalevdetyvpkefnaelftfhadictlsekerqildcqtalvelvkhkpkatkeqlkavmdclfa




afvekcckaddketcfaeegIcklvaasqaalglHHHHHHEPEA





161
ACP144
mdmrvpaqllglllwlrgarcaptssstIcktqlqlehllldlqmilnginnyknpkltrmilflcfympkkatelkhlqcle



IL-2 fusion
eelkpleevinlaqsknfhlrprdlisninvivlelkgsetlfmceyadetativeflnrwitfcqsiistltSGGPGPAG



protein
MKGLPGSEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGL




EWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTI




GGSLSVSSQGTLVTVSSggggsggggsggggsggggsggggsggggsSGGPGPAGMKGLPG




SEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAI




DSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDA




LDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITC




KASQNVGTNVGWYQQKPGKAPKALIYSASFRYSGVPSRFSGSGSGTDFTLTIS




SLQPEDFATYYCQQYYTYPYTFGGGTKVEIKggggsggggsggggsQVQLQESGGG




LAQAGGSLSLSCAASGFTVSNSVMAWYRQTPGKQREFVAIINSVGSTNYADS




VKGRFTISRDNAKNTVYLQMNNLKPEDTAVYVCNRNFDRIYWGQGTQVTVS




SHHHHHHEPEA





162
ACP145
mdmrvpaqllglllwlrgarcQVQLQESGGGLAQAGGSLSLSCAASGFTVSNSVMAWY



IL-2 fusion
RQTPGKQREFVAIINSVGSTNYADSVKGRFTISRDNAKNTVYLQMNNLKPEDT



protein
AVYVCNRNFDRIYWGQGTQVTVSSggggsggggsggggsaptssstldctqlqlehllldlqmilngi




nnyknpkltrmltfkfympldcatelkhlqcleeelkpleevinlaqsknflilrprdlisninvivlelkgsetlfmceyade




tativeflnrwitfcqsiistltSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLRLSCAAS




GFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTT




LYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggsggggsgg




ggsggggsSGGPGPAGMKGLPGSEVQLVESGGGLVQPGGSLRLSCAASGFTFSSY




TLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNS




LRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDI




QMTQSPSSLSASVGDRVTITCKASQNVGTNVGWYQQKPGKAPKALIYSASFR




YSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKH




HHHHHEPEA





163
ACP146
mdmrvpaqllglllwlrgarcQVQLQESGGGLAQAGGSLSLSCAASGFTVSNSVMAWY



IL-2 fusion
RQTPGKQREFVAIINSVGSTNYADSVKGRFTISRDNAKNTVYLQMNNLKPEDT



protein
AVYVCNRNFDRIYWGQGTQVTVSSSGGPGPAGMKGLPGSaptssstIcktqlqlehllldlqmilngimi




ykiipkltrmltfkfSmpkkatelklilqcleeelkpleevlnlaqsknflilrprdlisninvivlelkgsettfm




ceyadetativeflnrwitfcqsiistltSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLRL




SCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRD




NAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggs




ggggsggggsggggsSGGPGPAGMKGLPGSEVQLVESGGGLVQPGGSLRLSCAASG




FTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLY




LQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGG




GGSDIQMTQSPSSLSASVGDRVTITCKASQNVGTNVGWYQQKPGKAPKALIYS




ASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKV




EIKHHHHHHEPEA





164
ACP133
mdmrvpaqllglllwlrgarcaptssstIcktqlqlehllldlqmilnginnyknpkltrmilfkfympkkatelkhlqcle



(WW0196)
eelkpleevinlaqsknfhlrprdlisninvivlelkgsetlfmceyadetativeflnrwitfcqsiistltHHHHHH



IL-2-6xHis




(“6xHis”




disclosed




as SEQ ID




NO.: 354)






165
ACP147
mdmrvpaqllglllwlrgarcaptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcle



IL-2 fusion
eelkpleevinlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltSGGPGPAG



protein
MKGLPGSEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGL




EWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTI




GGSLSVSSQGTLVTVSSggggsggggsggggsggggsggggsggggsSGGPGPAGMKGLPG




SEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAI




DSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDA




LDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITC




KASQNVGTNVGWYQQKPGKAPKALIYSASFRYSGVPSRFSGSGSGTDFTLTIS




SLQPEDFATYYCQQYYTYPYTFGGGTKVEIKggggsggggsggggsQVQLQESGGG




LVQAGGSLRLSCAASGRIFSIDIMSWYRQAPGKQRELVARITRGGTISYDDSVK




GRFTISRDNAKNTVYLQMNSLKPEDTGVYYCNALYGTDYWGKGTQVTVSSH




HHHHHEPEA





166
ACP148
mdmrvpaqllglllwlrgarcQVQLQESGGGLVQAGGSLRLSCAASGRIFSIDIMSWYR



IL-2
QAPGKQRELVARITRGGTISYDDSVKGRFTISRDNAKNTVYLQMNSLKPEDTG



fusion
VYYCNALYGTDYWGKGTQVTVSSggggsggggsggggsaptsssticktqlqlehllldlqmilngin



protein
nyknpkltrmlificlympldcatelkhlqcleeelkpleevinlaqsknfhlrprdlisninvivlelkgsettfmceyadet




ativeflnrwitfcqsiistltSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLRLSCAAS




GFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTT




LYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggsggggsgg




ggsggggsSGGPGPAGMKGLPGSEVQLVESGGGLVQPGGSLRLSCAASGFTFSSY




TLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNS




LRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDI




QMTQSPSSLSASVGDRVTITCKASQNVGTNVGWYQQKPGKAPKALIYSASFR




YSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKH




HHHHHEPEA





167
ACP149
mdmrvpaqllglllwlrgarcQVQLQESGGGLVQAGGSLRLSCAASGRIFSIDIMSWYR



IL-2 fusion
QAPGKQRELVARITRGGTISYDDSVKGRFTISRDNAKNTVYLQMNSLKPEDTG




proteinVYYCNALYGTDYWGKGTQVTVSSSGGPGPAGMKGLPGSaptsssticktqlqlehllldlq




milnginnyknpkltrmlafympkkatelkhlqcleeelkpleevinlaqsknfhlrprdlisninvivlelkgsettfm




ceyadetativeflnrwitfcqsiistltSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLRL




SCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRD




NAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggs




ggggsggggsggggsSGGPGPAGMKGLPGSEVQLVESGGGLVQPGGSLRLSCAASG




FTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLY




LQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGG




GGSDIQMTQSPSSLSASVGDRVTITCKASQNVGTNVGWYQQKPGKAPKALIYS




ASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKV




EIKHHHHHHEPEA





168
ACP33
mdmrvpaqllglllwlrgarcEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVR



Mouse
QAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDT



IFNa-
AVYYCTIGGSLSVSSQGTLVTVSSSGGPGPAGMKGLPGScdlpqthnlrnkraltllvqmrr



fusion
lsplsclkdrkdfgfpqekvdaqqildcaqaipvlseltqqilniftskdssaawnttlldsfendlhqqlndlqgclmqqvg



protein
vqefpltqedallavrkythritvylrekkhspcawevvraevwralsssanvSGGPGPAGMKGLPGSEV




QLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGS




GRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQ




GTLVTVSSHHHHHHEPEA





169
ACP131
mdmrvpaqllglllwlrgarcallpqthnlinkralfilvqmrrlsplsclkdrkcifgfpqekvdaqqildcaqaipvlsel



Mouse
tqqilniftskdssaawnttlldsfendlhqqlndlqgclmqqvgvqefpltqedallavrkyfhritvylrekkhspcawe



IFNa
vvraevwralsssanvlgrlreekHHHHHHEPEA





170
ACP125
mdmrvpaqllglllwlrgarcEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVR



Mouse
QAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDT



IFNa-
AVYYCTIGGSLSVSSQGTLVTVSSSGGPGPAGMKGLPGScdlpqthnlrnkraltllvqmrr



fusion
lsplsclkdrkdfgfpqekvdaqqikkactaipvlseltqqilniftskdssaawnttlldsfcndlhqqlndlqgclmqqvg



protein
vqefpltqedallavrIcyfhritvylrekkhspcawevvraevwralsssamIgrlreekHHHHHHEPEA





171
ACP126
mdmrvpaqllginiwlrgarccdlpqthnlrnkraltllvqmrrlsplsclkdrkdfgfpqekvdaqqikkaqaipvlel



Mouse
tqqilniftskdssaawnttlldsfcndlhqqlndlqgclmqqvgvqefpltqedallavrIcyfhritvylrekkhspcawe



IFNa-
vvraevwralsssamIgrlreekSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLRLSC



fusion
AASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNA



protein
KTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSHHHHHHEPEA





172
ACP127
mdmrvpaqllglllwlrgarcEAHKSEIAHRYNDLGEQHFKGLVLIAFSQYLQKCSYDE



Mouse
HAKLVQEVTDFAKTCVADESAANCDKSLHTLFGDKLCAIPNLRENYGELADC



IFNa-
CTKQEPERNECFLQHKDDNPSLPPFERPEAEAMCTSFKENPTTFMGHYLHEVA



fusion
RRHPYFYAPELLYYAEQYNEILTQCCAEADKESCLTPKLDGVKEKALVSSVRQ



protein
RMKCSSMQKFGERAFKAWAVARLSQTFPNADFAEITKLATDLTKVNKECCH




GDLLECADDRAELAKYMCENQATISSKLQTCCDKPLLKKAHCLSEVEHDTMP




ADLPAIAADFVEDQEVCKNYAEAKDVFLGTFLYEYSRRHPDYSVSLLLRLAK




KYEATLEKCCAEANPPACYGTVLAEFQPLVEEPKNLVKTNCDLYEKLGEYGF




QNAILVRYTQKAPQVSTPTLVEAARNLGRVGTKCCTLPEDQRLPCVEDYLSAI




LNRVCLLHEKTPVSEHVTKCCSGSLVERRPCFSALTVDETYVPKEFKAETFTFH




SDICTLPEKEKQIKKQTALAELVKHKPKATAEQLKTVMDDFAQFLDTCCKAA




DKDTCFSTEGPNLVTRCKDALASGGPGPAGMKGLPGScdlpqthnlinkraltllvqmrrls




plsclkdrkcifgfpqekvdaqqikkactaipvlseltqqilniftskdssaawnttlldsfcndlhqqlndlqgclmqqvgv




qefpltqedallavrIcythritvylrekkhspcawevvraevwralsssamIgrlreekSGGPGPAGMKGLP




GSEAHKSEIAHRYNDLGEQHFKGLVLIAFSQYLQKCSYDEHAKLVQEVTDFA




KTCVADESAANCDKSLHTLFGDKLCAIPNLRENYGELADCCTKQEPERNECFL




QHKDDNPSLPPFERPEAEAMCTSFKENPTTFMGHYLHEVARRHPYFYAPELLY




YAEQYNEILTQCCAEADKESCLTPKLDGVKEKALVSSVRQRMKCSSMQKFGE




RAFKAWAVARLSQTFPNADFAEITKLATDLTKVNKECCHGDLLECADDRAEL




AKYMCENQATISSKLQTCCDKPLLKKAHCLSEVEHDTMPADLPAIAADFVED




QEVCKNYAEAKDVFLGTFLYEYSRRHPDYSVSLLLRLAKKYEATLEKCCAEA




NPPACYGTVLAEFQPLVEEPKNLVKTNCDLYEKLGEYGFQNAILVRYTQKAP




QVSTPTLVEAARNLGRVGTKCCTLPEDQRLPCVEDYLSAILNRVCLLHEKTPV




SEHVTKCCSGSLVERRPCFSALTVDETYVPKEFKAETFTFHSDICTLPEKEKQIK




KQTALAELVKHKPKATAEQLKTVMDDFAQFLDTCCKAADKDTCFSTEGPNL




VTRCKDALAHHHHHHEPEA





173
ACP128
mdmrvpaqllglllwlrgarcEAHKSEIAHRYNDLGEQHFKGLVLIAFSQYLQKCSYDE



Mouse
HAKLVQEVTDFAKTCVADESAANCDKSLHTLFGDKLCAIPNLRENYGELADC



IFNa-
CTKQEPERNECFLQHKDDNPSLPPFERPEAEAMCTSFKENPTTFMGHYLHEVA



fusion
RRHPYFYAPELLYYAEQYNEILTQCCAEADKESCLTPKLDGVKEKALVSSVRQ



protein
RMKCSSMQKFGERAFKAWAVARLSQTFPNADFAEITKLATDLTKVNKECCH




GDLLECADDRAELAKYMCENQATISSKLQTCCDKPLLKKAHCLSEVEHDTMP




ADLPAIAADFVEDQEVCKNYAEAKDVFLGTFLYEYSRRHPDYSVSLLLRLAK




KYEATLEKCCAEANPPACYGTVLAEFQPLVEEPKNLVKTNCDLYEKLGEYGF




QNAILVRYTQKAPQVSTPTLVEAARNLGRVGTKCCTLPEDQRLPCVEDYLSAI




LNRVCLLHEKTPVSEHVTKCCSGSLVERRPCFSALTVDETYVPKEFKAETFTFH




SDICTLPEKEKQIKKQTALAELVKHKPKATAEQLKTVMDDFAQFLDTCCKAA




DKDTCFSTEGPNLVTRCKDALASGGPGPAGMKGLPGScdlpqthnlinkraltllvqmrrls




plsclkdrkcifgfpqekvdaqqikkactaipvlseltqqilniftskdssaawnttlldsfcndlhqqlndlqgclmqqvgv




qefpltqedallavrIcythritvylrekkhspcawevvraevwralsssamIgrlreekHHHHHHEPEA





174
ACP129
mdmrvpaqllglllwlrgarccdlpqtlmlmkraltllvqmrrlsplsclkdrkdfgfpqekvdaqqikkactaipvlsel



Mouse
tqqilniftskdssaawnttlldsfcndlhqqlndlqgclmqqvgvqefpltqedallavrIcyfhritvylrekkhspcawe



IFNa-
vvraevwralsssamIgrlreekSGGPGPAGMKGLPGSEAHKSEIAHRYNDLGEQHFKGL



fusion
VLIAFSQYLQKCSYDEHAKLVQEVTDFAKTCVADESAANCDKSLHTLFGDKL



protein
CAIPNLRENYGELADCCTKQEPERNECFLQHKDDNPSLPPFERPEAEAMCTSF




KENPTTFMGHYLHEVARRHPYFYAPELLYYAEQYNEILTQCCAEADKESCLTP




KLDGVKEKALVSSVRQRMKCSSMQKFGERAFKAWAVARLSQTFPNADFAEIT




KLATDLTKVNKECCHGDLLECADDRAELAKYMCENQATISSKLQTCCDKPLL




KKAHCLSEVEHDTMPADLPAIAADFVEDQEVCKNYAEAKDVFLGTFLYEYSR




RHPDYSVSLLLRLAKKYEATLEKCCAEANPPACYGTVLAEFQPLVEEPKNLVK




TNCDLYEKLGEYGFQNAILVRYTQKAPQVSTPTLVEAARNLGRVGTKCCTLP




EDQRLPCVEDYLSAILNRVCLLHEKTPVSEHVTKCCSGSLVERRPCFSALTVDE




TYVPKEFKAETFTFHSDICTLPEKEKQIKKQTALAELVKHKPKATAEQLKTVM




DDFAQFLDTCCKAADKDTCFSTEGPNLVTRCKDALAHHHHHHEPEA





175
ACP150
mdmrvpaqllglllwlrgarcQVQLQESGGGLAQAGGSLSLSCAASGFTVSNSVMAWY



Mouse
RQTPGKQREFVAIINSVGSTNYADSVKGRFTISRDNAKNTVYLQMNNLKPEDT



IFNa-
AVYVCNRNFDRIYWGQGTQVTVSSggggsggggsggggsEVQLVESGGGLVQPGNS



fusion
LRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTI



protein
SRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSSGGPGPAG




MKGLPGScdlpqthnlinkraltllvqmrrlsplsclkdrkclfgfpqekvdaqqikkapipvlseltqqilniftskd




ssaawnttlldsfcndlhqqlndlqgclmqqvgvqefpltqedallavrkythritvylrekichspcawevvraevwral




sssanylgrlreekSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLRLSCAASGFTF




SKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYL




QMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSHHHHHHEPEA





176
ACP151
mdmrvpaqllglllwlrgarcEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVR



Mouse
QAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDT



IFNa-
AVYYCTIGGSLSVSSQGTLVTVSSSGGPGPAGMKGLPGScdlpqthnlinkraltllvqmrr



fusion
lsplsclkdrkdfgfpqekvdaqqikkaqaipvlseltqqilniftskdssaawnttlldsfcndlhqqlndlqgclmqqvg



protein
vqefpltqedallavrkyfhritvylrekkhspcawevvraevwralsssanylgrlreekSGGPGPAGMKGLP




GSEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSS




ISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSV




SSQGTLVTVSSggggsggggsggggsQVQLQESGGGLAQAGGSLSLSCAASGFTVSN




SVMAWYRQTPGKQREFVAIINSVGSTNYADSVKGRFTISRDNAKNTVYLQMN




NLKPEDTAVYVCNRNFDRIYWGQGTQVTVSSHHHHHHEPEA





177
ACP152
mdmrvpaqllglllwlrgarcEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVR



Mouse
QAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDT



IFNa-
AVYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggscdlpqthnlinkraltllvqmrrlsplscl



fusion
kdrkdfgfpqekvdaqqikkacjaipvlseltqqilniftskdssaawnttlldsfcndlhqqlndlqgclmqqvgvqefpl



protein
tqedallavrkyfhritvylrekkhspcawevvraevwralsssanylgrlreekggggsggggsggggsEVQLVE




SGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTL




YAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVT




VSSHHHHHHEPEA





178
ACP153
mdmrvpaqllglllwlrgarcaptsssildctqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcle



(WW0201)
eelkpleevinlaqsknfhlrprdlisninvivlelkgsetifmceyadetativeflnrwitfcqsiistltsgGPAGL



(IL-2
YAQpgsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLE



Conju-
WVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIG



gate)
GSLSVSSQGTLVTVSSggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsEV




QLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSS




YTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDY




WGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKAS




QNVGTNVGWYQQKPGKAPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQP




EDFATYYCQQYYTYPYTFGGGTKVEIKHHHHHHEPEA





179
ACP154
mdmrvpaqllglllwlrgarcaptsssildctqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcle



(WW0202)
eelkpleevinlaqsknfhlrprdlisninvivlelkgsetifmceyadetativeflnrwitfcqsiistltsggpPGGPA



(IL-2
GIGpgsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEW



Conju-g
VSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGS



ate)
LSVSSQGTLVTVSSggggsggggsggggsggggsggggsggggssggpPGGPAGIGpgsEVQLV




ESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTY




SPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQ




GTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKASQNVG




TNVGWYQQKPGKAPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFA




TYYCQQYYTYPYTFGGGTKVEIKHHHHHHEPEA





180
ACP155
mdmrvpaqllglllwlrgarcaptssstkktqlqlehllldlqmilnginnyknpkltrmilfkfympkkatelkhlqcle



(WW0203)
eelkpleevinlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpALFKSS



(IL-2
FPpgsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWV



Conju-
SSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSL



gate)
SVSSQGTLVTVSSggggsggggsggggsggggsggggsggggssggpALFKSSFPpgsEVQLVE




SGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYS




PDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQG




TTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKASQNVGT




NVGWYQQKPGKAPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFAT




YYCQQYYTYPYTFGGGTKVEIKHHHHHHEPEA





181
ACP156
mdmrvpaqllglllwlrgarcaptssstkktqlqlehllldlqmilnginnyknpkltrmilfkfympkkatelkhlqcle



(WW0204)
eelkpleevinlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpPLAQK



(IL-2
LKSSpgsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLE



Conju-
WVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIG



gate)
GSLSVSSQGTLVTVSSggggsggggsggggsggggsggggsggggssggpPLAQKLKSSpgsEV




QLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSS




YTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDY




WGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKAS




QNVGTNVGWYQQKPGKAPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQP




EDFATYYCQQYYTYPYTFGGGTKVEIKHHHHHHEPEA





182
ACP157
mdmrvpaqllglllwlrgarcaptssstkktqlqlehllldlqmilnginnyknpkltrmilfkfympkkatelkhlqcle



(WW0205)
eelkpleevinlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpPGGPA



(IL-2
GIGalfkssfpPLAQKLKSSpgsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGM



Conju-
SWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSL



gate)
RPEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggsggggsggggsggggssggp




PGGPAGIGalfkssfpPLAQKLKSSpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFS




SYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQM




NSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGS




DIQMTQSPSSLSASVGDRVTITCKASQNVGTNVGWYQQKPGKAPKALIYSASF




RYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIK




HHHHHHEPEA





183
Not assigned






184
Not assigned






185
Not assigned






186
Not assigned






187
Not assigned






188
Not assigned






189
Not assigned






190
Not assigned






191
Blocker 2
mdmrvpaqllglllwlrgarcEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVR



(IL2
QAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTA



blocker)
VYYCARDSNWDALDYWGQGTTVTVSSggggsggggsggggsDIQMTQSPSSLSASV




GDRVTITCKASQNVGTNVGWYQQKPGKAPKALIYSASFRYSGVPSRFSGSGSG




TDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKHHHHHH




mdmrvpaqllglllwlrgarcQSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQ





192
Blocker 12




(IL-12
LPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSY



blocker)
DRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSC




AASGFTFSSYGMHWVRQAPGKGLEWVAFIRYDGSNKYYADSVKGRFTISRDN




SKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVSSHHHHHH





193
Human IF
cdlpqthslgsrrtlmllaqmrrislfsclkdrhdfgfpqeefgnqfqkaetipvlhemiqqifhlfstkdssaawdetlldk



NA2b
fytelyqqlndleacviqgvgvtetplmkedsilavrkyfqritlylkekkyspcawevvraeimrsfslstnlqesliske




HHHHHH**





194
ACP239-
iwelkkdvyvveldwypdapgemvvltcdtpeedgitwtldqssevlgsgktltiqvkefgdagqytchkggevlshs



geneart
llllhkkedgiwstdilkdqkepknkffirceaknysgrftcwwlttistdltfsvkssrgssdpqgvtcgaatlsaervrgd




nkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssffirdiikpdppknlqlkplknsrqvevsweypdt




wstphsyfshfcvqvqgkskrekkdwftdktsatvicrknasisvraqdryyssswsewasvpcsggggsggggsggggsr




vipvsgparclsqsrnllkttddmvktareklkhysctaedidheditrdqtstlktclplelhknesclatretssttrgs




clppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqiildkgmlvaidelmqslnhngetlrqkppvgead




pyrvkmklcillhafstrvvtinrvmgylssahhhhhh





195
3CYT5_sd
QVQLQESGGGLVQAGGSLRLSCAASGRTFSSVYDMGWFRQAPGKDREFVARI




AbTESARNTRYADSVRGRFTISRDNAKNTVYLQMNNLELEDAAVYYCAADPQT




VVVGTPDYWGQGTQVTVSSAAAYPYDVPDYGSHHHHHH





196
ACP248
QSVLTQPPSVSGAPGQRVTISCtGSsSNIGSNTVKWYQQLPGTAPKLLIYgNDQR




PSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPAyvFGTGTKVT




VLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQ




APGKGLEWVAFIRYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDT




AVYYCKTHGSHDNWGQGTMVTVSSHHHHHH





197
ACP249
QSVLTQPPSVSGAPGQRVTISCtGSsSNIGSNTVKWYQQLPGTAPKLLIYYNDQ




RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPAyvFGTGTK




VTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWV




RQAPGKGLEWVAFIRYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAE




DTAVYYCKTHGSHDNWGQGTMVTVSSHHHHHH





198
ACP250
QSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQLPGTAPKLLIYYNDQ




RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLFGTGTK




VTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYaMHWV




RQAPGKGLEWVAvIsYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAE




DTAVYYCarHGSHDNWGQGTMVTVSSHHHHHH





199
ACP251
QSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQLPGTAPKLLIYYNDQ




RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLFGTGTK




VTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWV




RQAPGKGLEWVAFIRYeGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAE




DTAVYYCKTHGSHDNWGQGTMVTVSSHHHHHH





200
ACP252
QSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQLPGTAPKLLIYYNDQ




RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLFGTGTK




VTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWV




RQAPGKGLEWVAFIRYDGSNKYYAeSVKGRFTISRDNSKNTLYLQMNSLRAE




DTAVYYCKTHGSHDNWGQGTMVTVSSHHHHHH





201
ACP253
QSVLTQPPSVSGAPGQRVTISCSGSRSNIGSqTVKWYQQLPGTAPKLLIYYNDQ




RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYeRYTHPALLFGTGTKV




TVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR




QAPGKGLEWVAFIRYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAED




TAVYYCKTHGSHDNWGQGTMVTVSSHHHHHH





202
ACP254
QSVLTQPPSVSGAPGQRVTISCSGSRSNIGSqTVKWYQQLPGTAPKLLIYYNDQ




RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYsRYTHPALLFGTGTKV




TVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR




QAPGKGLEWVAFIRYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAED




TAVYYCKTHGSHDNWGQGTMVTVSSHHHHHH





203
ACP255
QSVLTQPPSVSGAPGQRVTISCSGSeSNIGSNTVKWYQQLPGTAPKLLIYYNDQ




RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLFGTGTK




VTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWV




RQAPGKGLEWVAFIRYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAE




DTAVYYCKTHGSHDNWGQGTMVTVSSHHHHHH





204
ACP256
QSVLTQPPSVSGAPGQRVTISCSGSsSNIGSNTVKWYQQLPGTAPKLLIYYNDQ




RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLFGTGTK




VTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWV




RQAPGKGLEWVAFIRYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAE




DTAVYYCKTHGSHDNWGQGTMVTVSSHHHHHH





205
ACP257
QSVLTQPPSVSGAPGQRVTISCSGSRSNIGdNTVKWYQQLPGTAPKLLIYYNDQ




RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLFGTGTK




VTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWV




RQAPGKGLEWVAFIRYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAE




DTAVYYCKTHGSHDNWGQGTMVTVSSHHHHHH





206
ACP258
QSVLTQPPSVSGAPGQRVTISCSGSRSNIGeNTVKWYQQLPGTAPKLLIYYNDQ




RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLFGTGTK




VTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWV




RQAPGKGLEWVAFIRYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAE




DTAVYYCKTHGSHDNWGQGTMVTVSSHHHHHH





207
ACP259
QSVLTQPPSVSGAPGQRVTISCSGSRSNIGSdTVKWYQQLPGTAPKLLIYYNDQ




RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLFGTGTK




VTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWV




RQAPGKGLEWVAFIRYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAE




DTAVYYCKTHGSHDNWGQGTMVTVSSHHHHHH





208
ACP260
QSVLTQPPSVSGAPGQRVTISCSGSRSNIGSeTVKWYQQLPGTAPKLLIYYNDQ




RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLFGTGTK




VTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWV




RQAPGKGLEWVAFIRYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAE




DTAVYYCKTHGSHDNWGQGTMVTVSSHHHHHH





209
ACP261
QSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNdVKWYQQLPGTAPKLLIYYNDQ




RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLFGTGTK




VTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWV




RQAPGKGLEWVAFIRYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAE




DTAVYYCKTHGSHDNWGQGTMVTVSSHHHHHH





210
ACP262
QSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVdWYQQLPGTAPKLLIYYNDQ




RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLFGTGTK




VTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWV




RQAPGKGLEWVAFIRYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAE




DTAVYYCKTHGSHDNWGQGTMVTVSSHHHHHH





211
ACP263
QSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVeWYQQLPGTAPKLLIYYNDQ




RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLFGTGTK




VTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWV




RQAPGKGLEWVAFIRYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAE




DTAVYYCKTHGSHDNWGQGTMVTVSSHHHHHH





212
ACP264
QSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQLPGTAPKLLIYYNDQ




dPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLFGTGTK




VTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWV




RQAPGKGLEWVAFIRYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAE




DTAVYYCKTHGSHDNWGQGTMVTVSSHHHHHH





213
ACP265
QSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQLPGTAPKLLIYYNDQ




ePSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLFGTGTK




VTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWV




RQAPGKGLEWVAFIRYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAE




DTAVYYCKTHGSHDNWGQGTMVTVSSHHHHHH





214
ACP266
QSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQLPGTAPKLLIYYNDQ




RPdGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLFGTGTK




VTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWV




RQAPGKGLEWVAFIRYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAE




DTAVYYCKTHGSHDNWGQGTMVTVSSHHHHHH





215
ACP267
QSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQLPGTAPKLLIYYNDQ




RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDeYTHPALLFGTGTK




VTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWV




RQAPGKGLEWVAFIRYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAE




DTAVYYCKTHGSHDNWGQGTMVTVSSHHHHHH





216
ACP268
QSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQLPGTAPKLLIYYNDQ




RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTdPALLFGTGTK




VTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWV




RQAPGKGLEWVAFIRYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAE




DTAVYYCKTHGSHDNWGQGTMVTVSSHHHHHH





217
ACP269
QSVLTQPPSVSGAPGQRVTISCSGSeSNIGSNTVKWYQQLPGTAPKLLIYYNDQ




ePSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDeYTHPALLFGTGTKV




TVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVR




QAPGKGLEWVAFIRYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAED




TAVYYCKTHGSHDNWGQGTMVTVSSHHHHHH





218
ACP270
QSVLTQPPSVSGAPGQRVTISCSGSeSNIGSNdVKWYQQLPGTAPKLLIYYNDQ




RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLFGTGTK




VTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWV




RQAPGKGLEWVAFIRYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAE




DTAVYYCKTHGSHDNWGQGTMVTVSSHHHHHH





219
ACP271
QSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQLPGTAPKLLIYYNDQ




RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLFGTGTK




VTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFeSYGMHWV




RQAPGKGLEWVAFIRYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAE




DTAVYYCKTHGSHDNWGQGTMVTVSSHHHHHH





220
ACP272
QSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQLPGTAPKLLIYYNDQ




RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLFGTGTK




VTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSeYGMHWV




RQAPGKGLEWVAFIRYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAE




DTAVYYCKTHGSHDNWGQGTMVTVSSHHHHHH





221
ACP273
QSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQLPGTAPKLLIYYNDQ




RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLFGTGTK




VTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSdYGMHWV




RQAPGKGLEWVAFIRYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAE




DTAVYYCKTHGSHDNWGQGTMVTVSSHHHHHH





222
ACP274
QSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQLPGTAPKLLIYYNDQ




RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLFGTGTK




VTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWV




RQAPGKGLEWVAFIeYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAE




DTAVYYCKTHGSHDNWGQGTMVTVSSHHHHHH





223
ACP275
QSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQLPGTAPKLLIYYNDQ




RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLFGTGTK




VTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWV




RQAPGKGLEWVAFIdYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAE




DTAVYYCKTHGSHDNWGQGTMVTVSSHHHHHH





224
ACP276
QSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQLPGTAPKLLIYYNDQ




RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLFGTGTK




VTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWV




RQAPGKGLEWVAFIRYDGSNdYYADSVKGRFTISRDNSKNTLYLQMNSLRAE




DTAVYYCKTHGSHDNWGQGTMVTVSSHHHHHH





225
ACP277
QSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQLPGTAPKLLIYYNDQ




RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLFGTGTK




VTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWV




RQAPGKGLEWVAFIRYDGSNeYYADSVKGRFTISRDNSKNTLYLQMNSLRAE




DTAVYYCKTHGSHDNWGQGTMVTVSSHHHHHH





226
ACP278
QSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQLPGTAPKLLIYYNDQ




RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLFGTGTK




VTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWV




RQAPGKGLEWVAFIRYDGSNKYYADSVeGRFTISRDNSKNTLYLQMNSLRAE




DTAVYYCKTHGSHDNWGQGTMVTVSSHHHHHH





227
ACP279
QSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQLPGTAPKLLIYYNDQ




RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLFGTGTK




VTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWV




RQAPGKGLEWVAFIRYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAE




DTAVYYCKTHGSeDNWGQGTMVTVSSHHHHHH





228
ACP280
QSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQLPGTAPKLLIYYNDQ




RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLFGTGTK




VTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWV




RQAPGKGLEWVAFIeYDGSNKYYADSVeGRFTISRDNSKNTLYLQMNSLRAED




TAVYYCKTHGSHDNWGQGTMVTVSSHHHHHH





229
ACP281
QSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQLPGTAPKLLIYYNDQ




RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLFGTGTK




VTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWV




RQAPGKGLEWVAFIeYDGSNKYYADSVeGRFTISRDNSKNTLYLQMNSLRAED




TAVYYCKTHGSeDNWGQGTMVTVSSHHHHHH





230
ACP282
QSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQLPGTAPKLLIYYNDQ




RPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLFGTGTK




VTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWV




RQAPGKGLEWVAFIRYDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAE




DTAVYYCKTHGSHDNWGQGTMVTVSSHHHHHH





231
ACP283
iwelkkdvyvveldwypdapgemvvitcdtpeedgitwddqssevlgsgktltiqvkefgdagqytchkggevlshs



(WW0617)
sgrftcwwlttistdltfsvkssrgssdpqgvtcgaatlsaervrgdllllhkkedgiwstdilkdqkepknktflrceakny




nkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssffirdiikpdppknlqlkplknsrqvevsweypdt




wstphsyfshfcvqvqgkskrekkdrvftdktsatvicrknasisvraqMyyssswsewasvpcs





232
3TOW69sd
QVQLQESGGGLVQTGGSLRLSCTTSGTIFSGYTMGWYRQAPGEQRELVAVISG



Ab
GGDTNYADSVKGRFTISRDNTKDTMYLQMNSLKPEDTAVYYCYSREVTPPW




KLYWGQGTQVTVSSAAAYPYDVPDYGSHHHHHH





233
3TOW85sd
QVQLQESGGGLVQEGGSLRLSCAASERIFSTDVMGWYRQAAEKQRELVAVVS



Ab
ARGTTNYLDAVKGRFTISRDNARNTLTLQMNDLKPEDTASYYCYVRETTSPW




RIYWGQGTQVTVSSAAAYPYDVPDYGSHHHHHH





234
2T0W91sd
QVQLQESGGGLVQAGGSLRLSCAASGSlFSANAMGWYRQAPGKQRELVAVIS



Ab
SGGSTNYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCMYSGSYYY




TPNDYWGQGTQVTVSSAAAYPYDVPDYGSHHHHHH





235
ACP301
evqlvesggglvqpggslrlscaasgftfssytlawvrqapgkglewvaaidsssytyspdtvrgrftisrdnaknslylq




mnslraedtavyycardsnwdaldywgqgttvtvssggggsggggsggggsdiqmtqspsslsasvgdrvtitckasq




nvgtnvgwyqqkpgkapkaliysasflysgvpsrfsgsgsgtdftltisslqpecifatyycqqyytypylfgggtkveik




hhhhhh





236
Hu2TOW9
evqllesggglvqpggslrlscaasGSIFSANAMGwYrqapgkQReLvAVISSGGSTNYADSVK



1_A
GrftisrdnskntVylqmnslraedtavyycMYSGSYYYTPNDYwgqgtivtvssAAAYPYDVPD




YGSHHHHHH**





237
Hu2TOW9
evqllesggglvqpggslrlscaasGSIFSANAMGwYrqapgkgleLvAVISSGGSTNYADSVKG



1_B
rftisrdnskntVylqmnslraedtavyycMYSGSYYYTPNDYwgqgtivtvssAAAYPYDVPDY




GSHHHHHH**





238
Hu2TOW9
evqllesggglvqpggslrlscaasGSIFSANAMGwvrqapgkglewvsVISSGGSTNYADSVKGrf



1_C
tisrdnskntlylqmnslraedtavyycMYSGSYYYTPNDYwgqgtivtvssAAAYPYDVPDYGS




HHHHHH**





239
Hu2TOW9
QvqllesggglvqpggslrlscaasGSIFSANAMGwYrqapgkQReLvAVISSGGSTNYADSVK



1_D
GrftisrdnskntVylqmnslraedtavyycMYSGSYYYTPNDYwgqgtivtvssAAAYPYDVPD




YGSHHHHHH**





240
HE_LM_2
evqllesggglvqpggslrlscaasgSIfsANamGwYrqapgkgReLvAVissggstNyadsvkgrftisrdns



TOW91
kntVylqmnslraedtavyycMYSGSYYYTPNDYWgqgtivtvssAAAYPYDVPDYGSHHH




HHH**





241
HE_LM_2T
QvqllesggglvqAggslrlscaasgSIfsANamGwYrqapgkQReLvAVissggstNyadsvkgrftisrdn



OW91
skntVylqmnslraedtavyycMYSGSYYYTPNDYwgqgtivtvssAAAYPYDVPDYGSHHH




HHH**





242
Hu3TOW8
evqllesggglvqpggslrlscaasERIFSTDVMGwYrqapgkQReLvAVVSARGTTNYLDAV



5_A
KGrftisrdnskntlylqmnslraedtavyycYVRETTSPWRIYwgqgtivtvssAAAYPYDVPDYG




SHHHHHH**





243
Hu3TOW8
evqllesggglvqpggslrlscaasERIFSTDVMGwYrqapgkgleLvAVVSARGTTNYLDAVK



5_B
GrftisrdnskntlylqmnslraedtavyycYVRETTSPWRIYwgqgtivtvssAAAYPYDVPDYGS




HHHHHH**





244
Hu3TOW8
evqllesggglvqpggslrlscaasERIFSTDVMGwvrqapgkglewvsVVSARGTTNYLDAVKG



5_C
rftisrdnskntlylqmnslraedtavyycYVRETTSPWRIYwgqgtivtvssAAAYPYDVPDYGSH




HHHHH**





245
Hu3TOW8
QvqllesggglvqpggslrlscaasERIFSTDVMGwYrqapgkQReLvAVVSARGTTNYLDAV



5_D
KGrftisrdnskntlylqmnslraedtavyycYVRETTSPWRIYwgqgtivtvssAAAYPYDVPDYG




SHHHHHH**





246
HE_LM_3
evqllesggglvqpggslrlscaasERIfsTDVmGwYrqapgkgReLvAVVsARgTtNyLdsvkgrftisr



TO1T85
dnskntlylqmnslraedtavyycYVRETTSPWRIywgqgtivtvssAAAYPYDVPDYGSHHHH




HH**





247
HE_L_3T
QvqllesggglvqEggslrlscaasERIfsTDVmGwYrqaAgkQReLvAVVsARgTtNyLdAvkgrf



OW85
tisrdnskntlylqmnslraedtaSyycYVRETTSPWRIywgqgtivtvssAAAYPYDVPDYGSHH




HHHH**





248
HE_LM_R
evqllesggglvqpggslrlscaasERIfsTDVmGwYrqapgkgleLvAVVsARgTtNyLdsvkgrftisr



45L_3TO
dnskntlylqmnslraedtavyycYVRETTSPWRIywgqgtivtvssAAAYPYDVPDYGSHHHH



W85
HH**





249
Hu3TOW6
evqllesggglvqpggslrlscaTsGTIFSGYTMGwYrqapgkQReLvAVISGGGDTNYADSV



9_A
KGrftisrdnskDtMylqmnslraedtavyycYSREVTPPWKLYwgqgtivtvssAAAYPYDVPD




YGSHHHHHH**





250
Hu3TOW6
evqllesggglvqpggslrlscaTsGTIFSGYTMGwYrqapgkgleLvAVISGGGDTNYADSVK



9_B
GrftisrdnskDtMylqmnslraedtavyycYSREVTPPWKLYwgqgtivtvssAAAYPYDVPDY




GSHHHHHH**





251
Hu3TOW6
evqllesggglvqpggslrlscaasGTIFSGYTMGwvrqapgkglewvsVISGGGDTNYADSVKGr



9_C
ftisrdnskntlylqmnslraedtavyycYSREVTPPWKLYwgqgtivtvssAAAYPYDVPDYGSH




HHHHH**





252
Hu3TOW6
QvqllesggglvqpggslrlscaTsGTIFSGYTMGwYrqapgkQReLvAVISGGGDTNYADSV



9_D
KGrftisrdnskDtMylqmnslraedtavyycYSREVTPPWKLYwgqgtivtvssAAAYPYDVPD




YGSHHHHHH**





253
Hu3TOW6
evqllesggglvqpggslrlscaTsGTIFSGYTMGwYrqapgkQReLvAVISGGGDTNYADSV



9_E
KGrftisrdnskntMylqmnslraedtavyycYSREVTPPWKLYwgqgtivtvssAAAYPYDVPD




YGSHHHHHH**





254
HE_LM_3
evqllesggglvqpggslrlscaTsgTIfsGyTmGwYrqapgkgReLvAVisGggDtNyadsvkgrftisrd



TO1T69
nskntMylqmnslraedtavyycYSREVTPPWKLywgqgtivtvssAAAYPYDVPDYGSHHH




HHH**





255
HE_L_3T
QvqllesggglvqTggslrlscaTsgTIfsGyTmGwYrqapgkQReLvAVisGggDtNyadsvkgrftisr



OW69
dnskDtMylqmnslraedtavyycYSREVTPPWKLywgqgtivtvssAAAYPYDVPDYGSHH




HHHH**





256
HE_LM_R
evqllesggglvqpggslrlscaTsgTIfsGyTmGwYrqapgkgleLvAVisGggDtNyadsvkgrftisrdn



45L_3TO
skntMylqmnslraedtavyycYSREVTPPWKLywgqgtivtvssAAAYPYDVPDYGSHHHH



W69
HH**





257
ACP363
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAID



(WW0441)
SSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDAL




DYWGQGTTVTVSSggggsggggsggggsDIQMTQSPSSLSASVGDRVTITCKAREKL




WSAVAWYQQKPGKAPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDF




ATYYCQQYYTYPYTFGGGTKVEIKHHHHHH





258
ACP364
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAID



(WW0442)
SSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDAL




DYWGQGTTVTVSSggggsggggsggggsDIQMTQSPSSLSASVGDRVTITCKAREKL




WSAVAWYQQKPGKAPKsLIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDF




ATYYCQQYYTYPYTFGGGTKVEIKHHHHHH





259
ACP367
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAID



(WW0445)
SSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDAL




DYWGQGTTVTVSSggggsggggsggggsDIQMTQSPSSLSASVGDRVTITCKVTEKV




WGNVAWYQQKPGKAPISLIYSPSLRKSGVPSRFSGSGSGTDFTLTISSLQPEDF




ATYYCQQYYTYPYTFGGGTKVEIKHHHHHH





260
ACP369
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAID



(WW0449)
SSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDAL




DYWGQGTTVTVSSggggsggggsggggsDIQMTQSPSSLSASVGDRVTITCKSSEKL




WANVAWYQQKPGKAPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPED




FATYYCQQYYTYPYTFGGGTKVEIKHHHHHH





261
ACP370
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAID



(WW0450)
SSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDAL




DYWGQGTTVTVSSggggsggggsggggsDIQMTQSPSSLSASVGDRVTITCKSSEKL




WANVAWYQQKPGKAPKsLIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDF




ATYYCQQYYTYPYTFGGGTKVEIKHHHHHH





262
ACP380
DIQMTQSPSSLSASVGDRVTITCKASQNVGTNVGWYQQKPGKAPKALIYSASF



(WW0522)
RYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKr




tvaapsvfifppsdeqlksgtasvvellnnfypreakvqwkvdnalqsgnsqesvteqdskdstyslsstltlskadyekh




kvyacevthqglsspvtksfnrgec





263
ACP381
DIQMTQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPGKAPKsLIYSASF



(WW0523)
RYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKr




tvaapsvfifppsdeqlksgtasvvellnnfypreakvqwkvdnalqsgnsqesvteqdskdstyslsstltlskadyekh




kvyacevthqglsspvtksfnrgec





264
ACP382
DIQMTQSPSSLSASVGDRVTITCKVTEKVWGNVAWYQQKPGKAPISLIYSPSL



(WW0524)
RKSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKr




tvaapsvfifppsdeqlksgtasvvellnnfypreakvqwkvdnalqsgnsqesvteqdskdstyslsstltlskadyekh




kvyacevthqglsspvtksfnrgec





265
ACP435
DIQMTQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPGKAPKsLIYSASF




RYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKr




tvaapsvfifppsdeqlksgtasvvellnnfypreakvqwkvdnalqsgnsqesvteqdskdstyslsstltlskadyekh




kvyacevthqglsspvtksfnrgecggggsggggsggggsggggsggggsggggsevqllesggglvqpggslrlsca




asgsifsanamgwyrqapgkrirelvavissggstnyadsvkgrftisrdnskntvylqmnslraedtavyycmysgsy




yytpndywgqgtivtvss**





266
ACP436
DIQMTQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPGKAPKsLIYSASF



(WW0578)
RYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKr




tvaapsvfifppsdeqlksgtasvvellnnfypreakvqwkvdnalqsgnsqesvteqdskdstyslsstltlskadyekh




kvyacevthqglsspvtksfnrgecggggsggggsggggsggggsggggsggggsevqllesggglvqpggslrlsca




asgsifsanamgwyrqapgkglelvavissggstnyadsvkgrftisrdnskntvylqmnslraedtavyycmysgsy




yytpndywgqgtivtvss**





267
ACP437
DIQMTQSPSSLSASVGDRVTITCKVTEKVWGNVAWYQQKPGKAPISLIYSPSL



(WW0579)
RKSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKr




tvaapsvfifppsdeqlksgtasvvellnnfypreakvqwkvdnalqsgnsqesvteqdskdstyslsstltlskadyekh




kvyacevthqglsspvtksfnrgecggggsggggsggggsggggsggggsggggsevqllesggglvqpggslrlsca




asgsifsanamgwyrqapglairelvavissggstnyadsvkgrftisrdnskntvylqmnslraedtavyycmysgsy




yytpndywgqgtivtvss**





268
ACP438
DIQMTQSPSSLSASVGDRVTITCKVTEKVWGNVAWYQQKPGKAPISLIYSPSL



(WW0580)
RKSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKr




tvaapsvfifppsdeqlksgtasvvellnnfypreakvqwkvdnalqsgnsqesvteqdskdstyslsstltlskadyekh




kvyacevthqglsspvtksfnrgecggggsggggsggggsggggsggggsggggsevqllesggglvqpggslrlsca




asgsifsanamgwyrqapgkglelvavissggstnyadsvkgrftisrdnskntvylqmnslraedtavyycmysgsy




yytpndywgqgtivtvss**





269
ACP448
DIQMTQSPSSLSASVGDRVTITCKSSEKLWANVAWYQQKPGKAPKsLIYSASF



(WW0590)
RYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKr




tvaapsvfifppsdeqlksgtasvvcllnnfypreakvqwkvdnalqsgnsqesvteqdskdstyslsstltlskadyekh




kvyacevthqglsspvtksfnrgec**





270
ACP449
DIQMTQSPSSLSASVGDRVTITCKSSEKLWANVAWYQQKPGKAPKLLIYSASF



(WW0591)
RYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKr




tvaapsvfifppsdeqlksgtasvvcllnnfypreakvqwkvdnalqsgnsqesvteqdskdstyslsstltlskadyekh




kvyacevthqglsspvtksfnrgec**





271
ACP450
DIQMTQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPGKAPKLLIYSASF



(WW0592)
RYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKr




tvaapsvfifppsdeqlksgtasvvcllnnfypreakvqwkvdnalqsgnsqesvteqdskdstyslsstltlskadyekh




kvyacevthqglsspvtksfnrgec**





272
ACP439
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0581)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGS




LRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISR




DNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGG




SGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKSSEKLWANVAWYQQKPG




KAPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYP




YTFGGGTKVEIK





273
ACP440
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0582)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGS




LRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISR




DNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGG




SGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKSSEKLWANVAWYQQKPG




KAPKsLIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPY




TFGGGTKVEIK





274
ACP441
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0583)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGS




LRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISR




DNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGG




SGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKSSEKLWANVAWYQQKPG




KAPKLLIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPY




TFGGGTKVEIK





275
ACP442
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0584)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGS




LRLSCAASGFTFSSYTLAWVRQAPGKcLEWVAAIDSSSYTYSPDTVRGRFTISR




DNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGG




SGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKSSEKLWANVAWYQQKPG




KAPKsLIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPY




TFGcGTKVEIK





276
ACP443
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0585)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGS




LRLSCAASGFTFSSYTLAWVRQAPGKcLEWVAAIDSSSYTYSPDTVRGRFTISR




DNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGG




SGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKSSEKLWANVAWYQQKPG




KAPKLLIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPY




TFGcGTKVEIK





277
ACP444
aptsssticktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr




(WW0586)dlisninvivlelkgsettfmceyadetativeflnrwiticqsiistltsggpGPAGLYAQpgsEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGS




LRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISR




DNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGcGTTVTVSSGGGG




SGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKSSEKLWANVAWYQQKPG




KcPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPY




TFGGGTKVEIK





278
ACP445
aptsssticktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0587)
dlisninvivlelkgsettfmceyadetativeflnrwiticqsiistltsggpGPAGLYAQpgsEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGS




LRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISR




DNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSsggpG




PAGLYAQpgsDIQMTQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPGKA




PKLLIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTF




GGGTKVEIK





279
ACP446
aptsssticktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0588)
dlisninvivlelkgsettfmceyadetativeflnrwiticqsiistltsggpGPAGLYAQpgsEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGS




LRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISR




DNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGG




SGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPG




KAPKLLIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPY




TFGGGTKVEIK





280
ACP447
aptsssticktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0589)
dlisninvivlelkgsettfmceyadetativeflnrwiticqsiistltsggpGPAGLYAQpgsEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGS




LRLSCAASGFTFSSYTLAWVRQAPGKcLEWVAAIDSSSYTYSPDTVRGRFTISR




DNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGG




SGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPG




KAPKLLIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPY




TFGcGTKVEIK





281
ACP451
aptsssticktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0615)
dlisninvivlelkgsettfmceyadetativeflnrwiticqsiistltsggpALFKSSFPpgsEVQLVESGGG




LVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAES




VKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSgg




ggsggggsggggsggggsggggsggggssggpALFKSSFPpgsEVQLVESGGGLVQPGGSLRL




SCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDN




AKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSG




GGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPGKA




PKsLIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTF




GGGTKVEIK**





282
ACP452
aptsssticktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0616)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpALFKSSFPpgsEVQLVESGGG




LVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAES




VKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSgg




ggsggggsggggsggggsggggsggggssggpALFKSSFPpgsEVQLVESGGGLVQPGGSLRL




SCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDN




AKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSG




GGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKVTEKVWGNVAWYQQKPGK




APISLIYSPSLRKSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTF




GGGTKVEIK**





283
ACP453
aptsssticktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0617)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpALFKSSFPpgsEVQLVESGGG




LVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAES




VKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSgg




ggsggggsggggsggggsggggsggggssggpALFKSSFPpgsEVQLVESGGGLVQPGGSLRL




SCAASGFTFSSYTLAWVRQAPGKcLEWVAAIDSSSYTYSPDTVRGRFTISRDNA




KNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGG




GGSGGGGSDIQMTQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPGKAP




KsLIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFG




cGTKVEIK**





284
ACP454
aptsssticktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0618)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpALFKSSFPpgsEVQLVESGGG




LVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAES




VKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSgg




ggsggggsggggsggggsggggsggggssggpALFKSSFPpgsEVQLVESGGGLVQPGGSLRL




SCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDN




AKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGcGTTVTVSSGGGGSG




GGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPGKc




PKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTF




GGGTKVEIK**





285
ACP455
aptsssticktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr




dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpALFKSSFPpgsEVQLVESGGG



(WW0619)
LVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAES




VKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSgg




ggsggggsggggsggggsggggsggggssggpALFKSSFPpgsEVQLVESGGGLVQPGGSLRL




SCAASGFTFSSYTLAWVRQAPGKcLEWVAAIDSSSYTYSPDTVRGRFTISRDNA




KNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGG




GGSGGGGSDIQMTQSPSSLSASVGDRVTITCKVTEKVWGNVAWYQQKPGKA




PISLIYSPSLRKSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFG




cGTKVEIK**





441
ACP456
aptsssticktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr




dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpALFKSSFPpgsEVQLVESGGG



(WW0620)
LVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAES




VKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSgg




ggsggggsggggsggggsggggsggggssggpALFKSSFPpgsEVQLVESGGGLVQPGGSLRL




SCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDN




AKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGcGTTVTVSSGGGGSG




GGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKVTEKVWGNVAWYQQKPGKc




PISLIYSPSLRKSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFG




GGTKVEIK**





286
ACP457
aptsssticktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0621)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpALFKSSFPpgsEVQLVESGGG




LVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAES




VKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSgg




ggsggggsggggsggggsggggsggggssggpALFKSSFPpgsEVQLVESGGGLVQPGGSLRL




SCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDN




AKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSastkgpsvfp




lapsskstsggtaalgclvkdyfpepvtvswnsgaltsgvhtfpavlqssglyslssvvtvpssslgtqtyicnvnhkpsnt




kvdkrvepksc**





287
ACP458
eskygppcppcpapeflggpsvflfppkpkdtlmisrtpevtcvvvdvsqedpevqfnwyvdgvevhnaktkpree



(WW0622)
qfnstyrvvsyltvlhqdwhigkeykckvsnkglpssiektiskakgqprepqvytlppsqeemtlmqvsltclvkgfy




psdiavewesngqpennykappvldsdgsfflysrltvdksrwqegnvfscsvmhealhnhytqkslslslgksggp




ALFKSSFPpgsaptssstkktqlqlehllldlqmilnginnyknpkltrmltfklympkkatelkhlqcleeelkplee




vinlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltggggsggggsggggsggg




gsggggsggggssggpALFKSSFPpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSY




TLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNS




LRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSastkgpsvfplapsskstsggtaalgclv




kdyfpepvtvswnsgaltsgvhtfpavlqssglyslssvvtvpssslgtqtyicnvnhkpsntkvdkrvepksc**





288
ACP459
eskygppcppcpapeflggpsvflfppkpkdtlmisrtpevtcvvvdvsqedpevqfnwyvdgvevhnaktkpree



(WW0623)
qfnstyrvvsyltvlhqdwlngkeykckvsnkglpssiektiskakgqprepqvytlppsqeemtknqvsltclvkgfy




psdiavewesngqpennykappvldsdgsfflysrltvdksrwqegnvfscsvmhealhnhytqkslslslgksggp




ALFKSSFPpgsaptssstkktqlqlehllldlqmilnginnyknpkltrmltfklympkkatelkhlqcleeelkplee




vinlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltggggsggggsggggsggg




gsggggsggggssggpALFKSSFPpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSY




TLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNS




LRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDI




QMTQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPGKAPKsLIYSASFRY




SGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIK**





289
ACP460
eskygppcppcpapeflggpsvflfppkpkdtlmisrtpevtcvvvdvsqedpevqfnwyvdgvevhnaktkpree



(WW0624)
qfnstyrvvsyltvlhqdwlngkeykckvsnkglpssiektiskakgqprepqvytlppsqeemtknqvsltclvkgfy




psdiavewesngqpennykappvldsdgsfflysrltvdksrwqegnvfscsvmhealhnhytqkslslslgksggp




ALFKSSFPpgsaptssstkktqlqlehllldlqmilnginnyknpkltrmltfklympkkatelkhlqcleeelkplee




vinlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltggggsggggsggggsggg




gsggggsggggssggpALFKSSFPpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSY




TLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNS




LRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDI




QMTQSPSSLSASVGDRVTITCKVTEKVWGNVAWYQQKPGKAPISLIYSPSLRK




SGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIK**





290
ACP461
eskygppcppcpapeflggpsvflfppkpkdtlmisrtpevtcvvvdvsqedpevqfnwyvdgvevhnaktkpree



(WW0625)
qfnstyrvvsyltvlhqdwlngkeykckvsnkglpssiektiskakgqprepqvytlppsqeemtknqvsltclvkgfy




psdiavewesngqpennykappvldsdgsfflysrltvdksrwqegnvfscsvmhealhnhytqkslslslgksggp




ALFKSSFPpgsaptssstkktqlqlehllldlqmilnginnyknpkltrmltfklympkkatelkhlqcleeelkplee




vinlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltggggsggggsggggsggg




gsggggsggggssggpALFKSSFPpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSY




TLAWVRQAPGKcLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSL




RAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQ




MTQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPGKAPKsLIYSASFRYS




GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGcGTKVEIK**





291
ACP462
eskygppcppcpapeflggpsvflfppkpkdtlmisrtpevtcvvvdvsqedpevqfnwyvdgvevhnaktkpree



(WW0626)
qfnstyrvvsyltvlhqdwlngkeykckvsnkglpssiektiskakgqprepqvytlppsqeemtknqvsltclvkgfy




psdiavewesngqpennykappvldsdgsfflysrltvdksrwqegnvfscsvmhealhnhytqkslslslgksggp




ALFKSSFPpgsaptssstkktqlqlehllldlqmilnginnyknpkltrmltfklympkkatelkhlqcleeelkplee




vinlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltggggsggggsggggsggg




gsggggsggggssggpALFKSSFPpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSY




TLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNS




LRAEDTAVYYCARDSNWDALDYWGcGTTVTVSSGGGGSGGGGSGGGGSDIQ




MTQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPGKcPKALIYSASFRYS




GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIK**





292
ACP463
eskygppcppcpapeflggpsvflfppkpkdtlmisrtpevtcvvvdvsqedpevqfnwyvdgvevhnaktkpree



(WW0627)
qfnstyrvvsyltvlhqdwlngkeykckvsnkglpssiektiskakgqprepqvytlppsqeemtknqvsltclvkgfy




psdiavewesngqpennykappvldsdgsfflysrltvdksrwqegnvfscsvmhealhnhytqkslslslgksggp




ALFKSSFPpgsaptssstkktqlqlehllldlqmilnginnyknpkltrmltfklympkkatelkhlqcleeelkplee




vinlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltggggsggggsggggsggg




gsggggsggggssggpALFKSSFPpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSY




TLAWVRQAPGKcLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSL




RAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQ




MTQSPSSLSASVGDRVTITCKVTEKVWGNVAWYQQKPGKAPISLIYSPSLRKS




GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGcGTKVEIK**





293
ACP464
eskygppcppcpapeflggpsvflfppkpkdtlmisrtpevtcyvvdvsqedpevqfnwyydgvevhnaktkpree



(WW0628)
qfnstyrvvsyltvlhqdwingkeykcicvsnkglpssiektiskakgqprepqvytlppsqeemtlmqvsltclvkgfy




psdiavewesngqpennykappvldsdgsfflysrltvdksrwqegnvfscsvmhealhnhytqkslslslgksggp




ALFKSSFPpgsaptsssticktqlqlehllldlqmilnginnyknpkltrmlfficfympkkatelkhlqcleeelkplee




vinlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwilfcqsiistltggggsggggsggggsggg




gsggggsggggssggpALFKSSFPpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSY




TLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNS




LRAEDTAVYYCARDSNWDALDYWGcGTTVTVSSGGGGSGGGGSGGGGSDIQ




MTQSPSSLSASVGDRVTITCKVTEKVWGNVAWYQQKPGKcPISLIYSPSLRKS




GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIK**





294
ACP465
vprdcgckpcictypevssvfifppkpkdvltitltpkvtcyvvdiskddpevqfswfvddvevhtaqtqpreeqfnsif



(WW0629)
rsyselpimhqdwingkefkcrynsaafpapiektisktkgrpkapqvytipppkeqmakdkvsltcmitcapeditv




ewqwngqpaenykntqpimdtdgsyfvysklnvqksnweagniftcsvlheglhnhhtekslshspgksggpAL




FKSSFPpgsaptsssticktqlqlehllldlqmilnginnyknpklbnillfldympkkatelkhlqcleeelkpleevin




laqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwilfcqsiistltggggsggggsggggsggggsg




gggsggggssggpALFKSSFPpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTL




AWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLR




AEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQM




TQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPGKAPKsLIYSASFRYSG




VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIK**





295
ACP466
vprdcgckpcictypevssvfifppkpkdvltitltpkvtcyvvdiskddpevqfswfvddvevhtaqtqpreeqfnsif



(WW0630)
rsyselpimhqdwingkefkcrynsaafpapiektisktkgrpkapqvytipppkeqmakdkvsltcmitcapeditv




ewqwngqpaenykntqpimdtdgsyfvysklnvqksnweagniftcsvlheglhnhhtekslshspgksggpAL




FKSSFPpgsaptsssticktqlqlehllldlqmilnginnyknpklbnillfldympkkatelkhlqcleeelkpleevin




laqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwilfcqsiistltggggsggggsggggsggggsg




gggsggggssggpALFKSSFPpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTL




AWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLR




AEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQM




TQSPSSLSASVGDRVTITCKVTEKVWGNVAWYQQKPGKAPISLIYSPSLRKSG




VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIK**





296
ACP467
vprdcgckpcictypevssvfifppkpkdvltitltpkvtcyvvdiskddpevqfswfvddvevhtaqtqpreeqfnsif



(WW0631)
rsyselpimhqdwingkefkcrynsaafpapiektisktkgrpkapqvytipppkeqmakdkvsltcmitcapeditv




ewqwngqpaenykntqpimdtdgsyfvysklnvqksnweagniftcsvlheglhnhhtekslshspgksggpAL




FKSSFPpgsaptsssticktqlqlehllldlqmilnginnyknpklbnillfldympkkatelkhlqcleeelkpleevin




laqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwilfcqsiistltggggsggggsggggsggggsg




gggsggggssggpALFKSSFPpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTL




AWVRQAPGKcLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLR




AEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQM




TQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPGKAPKsLIYSASFRYSG




VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGcGTKVEIK**





297
ACP468
vprdcgckpcictypevssvfifppkpkdvltitltpkvtcyvvdiskddpevqfswfvddvevhtaqtqpreeqfnsif



(WW0632)
rsyselpimhqdwingkefkcrynsaafpapiektisktkgrpkapqvytipppkeqmakdkvsltcmitcapeditv




ewqwngqpaenykntqpimdtdgsyfvysklnvqksnweagniftcsvlheglhnhhtekslshspgksggpAL




FKSSFPpgsaptsssticktqlqlehllldlqmilnginnyknpklbnillfldympkkatelkhlqcleeelkpleevin




laqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwilfcqsiistltggggsggggsggggsggggsg




gggsggggssggpALFKSSFPpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTL




AWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLR




AEDTAVYYCARDSNWDALDYWGcGTTVTVSSGGGGSGGGGSGGGGSDIQMT




QSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPGKcPKALIYSASFRYSGV




PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIK**





298
ACP469
vprdcgckpcictypevssvfifppkpkdvltitltpkvtcyvvdiskddpevqfswfvddvevhtaqtqpreeqfnsif



(WW0633)
rsyselpimhqdwingkefkcrynsaafpapiektisktkgrpkapqvytipppkeqmakdkvsltcmitcapeditv




ewqwngqpaenykntqpimdtdgsyfvysklnvqksnweagniftcsvlheglhnhhtekslshspgksggpAL




FKSSFPpgsaptssstkktqlqlehllldlqmilngiimyknpklliiiiltfkfympkkatelkhlqcleeelkpleevin




laqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwilfcqsiistltggggsggggsggggsggggsg




gggsggggssggpALFKSSFPpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTL




AWVRQAPGKcLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLR




AEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQM




TQSPSSLSASVGDRVTITCKVTEKVWGNVAWYQQKPGKAPISLIYSPSLRKSG




VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGcGTKVEIK**





299
ACP470
vprdcgckpcictypevssvfifppkpkdvltitltpkvtcyvvdiskddpevqfswfvddvevhtaqtqpreeqfnslf



(WW0634)
rsyselpimhqdwingkefkcrynsaafpapiektisktkgrpkapqvytipppkeqmakdkvsltcmitcapeditv




ewqwngqpaenykntqpimdtdgsyfvysklnvqksnweagntftcsvlheglhnhhtekslshspgksggpAL




FKSSFPpgsaptsssticktqlqlehllldlqmilnginnyknpklbnillfldympkkatelkhlqcleeelkpleevin




laqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwilfcqsiistltggggsggggsggggsggggsg




gggsggggssggpALFKSSFPpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTL




AWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLR




AEDTAVYYCARDSNWDALDYWGcGTTVTVSSGGGGSGGGGSGGGGSDIQMT




QSPSSLSASVGDRVTITCKVTEKVWGNVAWYQQKPGKcPISLIYSPSLRKSGVP




SRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIK**





300
ACP471
mdmrvpaqllglllwlrgarcvprdcgckpcictvpevssvfifppkpkdvltitltpkvtcvvvdiskddpevqfswf



(WW0642)
vddveyhtaqtqpreeqfnslfrsyselpimhqdwingkefkcrynsaafpapiektisktkgrpkapqvytipppkeq




makdkvsltcmitdffpeditvewqwngqpaenykntqpimdtdgsyfvysklnvqknweagntftcsvlheglh




nhhtekslshspgksggpALFKSSFPpgsaptsssticktqlqlehllldlqmilnginnyknpkltrmllfldympk




katelkhlqcleeelkpleevinlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwilfcqsiistltg




gggsggggsggggsggggsggggsggggssggpALFKSSFPpgsEVQLVESGGGLVQPGGSLR




LSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRD




NAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSastkgpsv




fplapsskstsggtaalgclykdyfpepvtvswnsgaltsgvhtipavlqssglyslssvvtvpssslgtqtyicnvnhkps




nticvdkrvepksc**





301
ACP382
DIQMTQSPSSLSASVGDRVTITCKVTEKVWGNVAWYQQKPGKAPISLIYSPSL



(WW0524)
RKSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKr




tvaapsvfifppsdeqlksgtasvvcllnaypreakvqwkvdnalqsgnsqesvteqdskdstyslsstltlskadyekh




kvyacevthqglsspvtksfnrgec**





302
ACP383
eskygppcppcpapeflggpsvflfppkpkdtlmisrtpevtcyvvdvsqedpevqfnwyydgvevhnaktkpree



(WW0525)
qfnstyrvvsyltvlhqdwingkeykcicvsnkglpssiektiskakgqprepqvytlppsqeemtlmqvsltclvkgfy




psdiavewesngqpennykappvldsdgsfflysrltvdksrwqegnvfscsvmhealhnhytqkslslslgksggp




GPAGLYAQpgsaptsssticktqlqlehllldlqmilnginnyknpkltrmllfklympldcatelkhlqcleeelkpl




eevinlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwilfcqsiistltggggsggggsggggsgg




ggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFS




SYTLAWVRQAPGKcLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQM




NSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGS




DIQMTQSPSSLSASVGDRVTITCKASQNVGTNVGWYQQKPGKAPKALIYSASF




RYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGcGTKVEIK*




*





303
ACP384
eskygppcppcpapeflggpsvflfppkpkdtlmisrtpevtcyvvdvsqedpevqfnwyydgvevhnaktkpree



(WW0526)
qfnstyrvvsyltvlhqdwingkeykcicvsnkglpssiektiskakgqprepqvytlppsqeemtlmqvsltclvkgfy




psdiavewesngqpennykappvldsdgsfflysrltvdksrwqegnvfscsvmhealhnhytqkslslslgksggp




GPAGLYAQpgsaptsssticktqlqlehllldlqmilnginnyknpkltrmltfkfympldcatelkhlqcleeelkpl




eevinlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwilfcqsiistltggggsggggsggggsgg




ggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFS




SYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQM




NSLRAEDTAVYYCARDSNWDALDYWGcGTTVTVSSGGGGSGGGGSGGGGSD




IQMTQSPSSLSASVGDRVTITCKASQNVGTNVGWYQQKPGKcPKALIYSASFR




YSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIK**





304
ACP385
eskygppcppcpapeflggpsvflfppkpkdtlmisrtpevtcyvvdvsqedpevqfnwyydgvevhnaktkpree



(WW0527)
qfnstyrvvsyltvlhqdwingkeykcicvsnkglpssiektiskakgqprepqvytlppsqeemtlmqvsltclvkgfy




psdiavewesngqpennykappvldsdgsfflysrltvdksrwqegnvfscsvmhealhnhytqkslslslgksggp




GPAGLYAQpgsaptsssticktqlqlehllldlqmilnginnyknpkltrmllfklympldcatelkhlqcleeelkpl




eevinlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwilfcqsiistltggggsggggsggggsgg




ggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFS




SYTLAWVRQAPGKcLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQM




NSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGS




DIQMTQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPGKAPKALIYSASF




RYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGcGTKVEIK*




*





305
ACP386
eskygppcppcpapeflggpsvflfppkpkdtlmisrtpevtcvvvdvsqedpevqfnwyvdgvevhnaktkpree



(WW0528)
qfnstyrvvsyltvlhqdwingkeykckvsnkglpssiektiskakgqprepqvytlppsqeemtlmqvsltclvkgfy




psdiavewesngqpennykttppvldsdgsfflysrltvdksrwqegnvfscsvmhealhnhytqkslslslgksggp




GPAGLYAQpgsaptssstIcktqlqlehllldlqmilnginnyknpkltrmltfkfympldcatelkhlqcleeelkpl




eevinlaqsknfldrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltggggsggggsggggsgg




ggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFS




SYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQM




NSLRAEDTAVYYCARDSNWDALDYWGcGTTVTVSSGGGGSGGGGSGGGGSD




IQMTQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPGKcPKALIYSASFR




YSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIK**





306
ACP387
eskygppcppcpapeflggpsvflfppkpkdtlmisrtpevtcvvvdvsqedpevqfnwyvdgvevhnaktkpree



(WW0529)
qfnstyrvvsyltvlhqdwingkeykckvsnkglpssiektiskakgqprepqvytlppsqeemtlmqvsltclvkgfy




psdiavewesngqpennykttppvldsdgsfflysrltvdksrwqegnvfscsvmhealhnhytqkslslslgksggp




GPAGLYAQpgsaptssstIcktqlqlehllldlqmilnginnyknpkltrmltfkfympldcatelkhlqcleeelkpl




eevinlaqsknfldrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltggggsggggsggggsgg




ggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFS




SYTLAWVRQAPGKcLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQM




NSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGS




DIQMTQSPSSLSASVGDRVTITCKVTEKVWGNVAWYQQKPGKAPISLIYSPSL




RKSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGcGTKVEIK*




*





307
ACP388
eskygppcppcpapeflggpsvflfppkpkdtlmisrtpevtcvvvdvsqedpevqfnwyvdgvevhnaktkpree



(WW0530)
qfnstyrvvsyltvlhqdwingkeykckvsnkglpssiektiskakgqprepqvytlppsqeemtlmqvsltclvkgfy




psdiavewesngqpennykttppvldsdgsfflysrltvdksrwqegnvfscsvmhealhnhytqkslslslgksggp




GPAGLYAQpgsaptssstIcktqlqlehllldlqmilnginnyknpkltrmlfficfympldcatelkhlqcleeelkpl




eevinlaqsknfldrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltggggsggggsggggsgg




ggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFS




SYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQM




NSLRAEDTAVYYCARDSNWDALDYWGcGTTVTVSSGGGGSGGGGSGGGGSD




IQMTQSPSSLSASVGDRVTITCKVTEKVWGNVAWYQQKPGKcPISLIYSPSLRK




SGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIK**





308
ACP389
eskygppcppcpapeflggpsvflfppkpkdtlmisrtpevtcvvvdvsqedpevqfnwyvdgvevhnaktkpree



(WW0531)
qfnstyrvvsyltvlhqdwingkeykckvsnkglpssiektiskakgqprepqvytlppsqeemtlmqvsltclvkgfy




psdiavewesngqpennykttppvldsdgsfflysrltvdksrwqegnvfscsvmhealhnhytqkslslslgksggp




GPAGLYAQpgsaptssstIcktqlqlehllldlqmilnginnyknpkltrmltfkfympldcatelkhlqcleeelkpl




eevinlaqsknfldrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltggggsggggsggggsgg




ggsggggsggggssggpGPAGLYAQpgsevqllesggglvqpggslrlscaasgsifsanamgwyrqapgkqr




elvavissggstnyadsvkgrftisrdnskntvylqmnstraedtavyycmysgsyyytpndywgqgtivtvss**





309
ACP390
aptssstIcktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0532)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGS




LRLSCAASGFTFSSYTLAWVRQAPGKcLEWVAAIDSSSYTYSPDTVRGRFTISR




DNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGG




SGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPG




KAPKsLIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPY




TFGcGTKVEIK**





310
ACP391
eskygppcppcpapeflggpsvflfppkpkdtlmisrtpevtcvvvdvsqedpevqfnwyvdgvevhnaktkpree



(WW0533)
qfnstyrvvsyltvlhqdwingkeykckvsnkglpssiektiskakgqprepqvytlppsqeemtlmqvsltclvkgfy




psdiavewesngqpennykttppvldsdgsfflysrltvdksrwqegnvfscsvmhealhnhytqkslslslgksggp




GPAGLYAQpgsaptssstkktqlqlehllldlqmilnginnyknpkltrmlfficfympldcatelkhlqcleeelkpl




eevinlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistliggggsggggsggggsgg




ggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFS




SYTLAWVRQAPGKcLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQM




NSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGS




DIQMTQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPGKAPKsLIYSASF




RYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGcGTKVEIK*




*





311
ACP392
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0534)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsggggsggggsggg




gsggggsggggsggggselcdddppeiphatfkamaykegtmlnceckrgfrriksgslymlctgnsshsswdnqc




qctssatrnttkqvtpqpeeqkerkttemqspmqpvdqaslpghcrepppweneateriyhfvvgqmvyyqcvqgy




ralhrgpaesvckmthgktrwtqpqlictgemetsqfpgeekpqaspegrpesetsSlvtncifqiqtemaatmetsiftt




eyqsggpGPAGLYAQpgsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWV




RQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPED




TAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggsggggsggggsggggssggpGPAG




LYAQpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKcLE




WVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARD




SNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGD




RVTITCKAREKLWSAVAWYQQKPGKAPKsLIYSASFRYSGVPSRFSGSGSGTD




FTLTISSLQPEDFATYYCQQYYTYPYTFGcGTKVEIK**





312
ACP393
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0535)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsggggsggggsggg




gsggggsggggsggggselcdddppeiphatfkamaykegtmlnceckrgfrriksgslymlctgnsshsswdnqc




qctssatrnttkqvtpqpeeqkerkttemqspmqpvdqaslpghcrepppweneateriyhfvvgqmvyyqcvqgy




ralhrgpaesvckmthgktrwtqpqlictgemetsqfpgeekpqaspegrpesetsSlvtncifqiqtemaatmetsiftt




eyqsggpGPAGLYAQpgsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWV




RQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPED




TAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggsggggsggggsggggssggpGPAG




LYAQpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLE




WVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARD




SNWDALDYWGcGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDR




VTITCKAREKLWSAVAWYQQKPGKcPKALIYSASFRYSGVPSRFSGSGSGTDF




TLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIK**





313
ACP394
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0536)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsggggsggggsggg




gsggggsggggsggggselcdddppeiphatfkamaykegtmlnceckrgfrriksgslymlctgnsshsswdnqc




qctssatrnttkqvtpqpeeqkerkttemqspmqpvdqaslpghcrepppweneateriyhfvvgqmvyyqcvqgy




ralhrgpaesvckmthgktrwtqpqlictgemetsqfpgeekpqaspegrpesetsSlvtncifqiqtemaatmetsiftt




eyqsggpGPAGLYAQpgsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWV




RQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPED




TAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggsggggsggggsggggssggpGPAG




LYAQpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKcLE




WVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARD




SNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGD




RVTITCKVTEKVWGNVAWYQQKPGKAPISLIYSPSLRKSGVPSRFSGSGSGTD




FTLTISSLQPEDFATYYCQQYYTYPYTFGcGTKVEIK**





314
ACP395
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0537)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsggggsggggsggg




gsggggsggggsggggselcdddppeiphatfkamaykegtmlnceckrgfrriksgslymlctgnsshsswdnqc




qctssatrnttkqvtpqpeeqkerkttemqspmqpvdqaslpghcrepppweneateriyhfvvgqmvyyqcvqgy




ralhrgpaesvckmthgktrwtqpqlictgemetsqfpgeekpqaspegrpesetsSlvtncifqiqtemaatmetsiftt




eyqsggpGPAGLYAQpgsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWV




RQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPED




TAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggsggggsggggsggggssggpGPAG




LYAQpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLE




WVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARD




SNWDALDYWGcGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDR




VTITCKVTEKVWGNVAWYQQKPGKcPISLIYSPSLRKSGVPSRFSGSGSGTDFT




LTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIK**





315
ACP396
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0538)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsggggsggggsggg




gsggggsggggsggggselcdddppeiphatfkamaykegtmlnceckrgfrriksgslymlctgnsshsswdnqc




qctssatrnttkqvtpqpeeqkerkttemqspmqpvdqaslpghcrepppweneateriyhfvvgqmvyyqcvqgy




ralhrgpaesvckmthgktrwtqpqlictgemetsqfpgeekpqaspegrpesetsSlytttclfqiqtemaatmetsiftt




eyqsggpGPAGLYAQpgsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWV




RQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPED




TAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggsggggsggggsggggssggpGPAG




LYAQpgsevqllesggglvqpggslrlscaasgsifsanamgwyrqapgkqrelvavissggstnyadsvkgrftisr




dnskntvylqmnslraedtavyycmysgsyyytpndywgqgtivtvss**





316
ACP397
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0539)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsggggsggggsggg




gsggggsggggsggggselcdddppeiphatfkamaykegtmlnceckrgfrriksgslymlctgnsshsswdnqc




qctssatrnttkqvtpqpeeqkerkttemqspmqpvdqaslpghcrepppweneateriyhfvvgqmvyyqcvqgy




ralhrgpaesvckmthgktrwtqpqlictgemetsqfpgeekpqaspegrpesetsSlytttclfqiqtemaatmetsiftt




eyqsggpGPAGLYAQpgsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWV




RQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPED




TAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggsggggsggggsggggssggpGPAG




LYAQpgsevqllesggglvqpggslrlscaasgsifsanamgwyrqapgkglelvavissggstnyadsvkgrftisr




dnskntvylqmnslraedtavyycmysgsyyytpndywgqgtivtvss**





317
ACP398
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0540)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsggggsggggsggg




gsggggsggggsggggselcdddppeiphatfkamaykegtmlnceckrgfrriksgslymlctgnsshsswdnqc




qctssatrnttkqvtpqpeeqkerkttemqspmqpvdqaslpghcrepppweneateriyhfvvgqmvyyqcvqgy




ralhrgpaesvckmthgktrwtqpqlictgemetsqfpgeekpqaspegrpesetsSlytttclfqiqtemaatmetsiftt




eyqsggpGPAGLYAQpgsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWV




RQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPED




TAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggsggggsggggsggggssggpGPAG




LYAQpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLE




WVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARD




SNWDALDYWGQGTTVTVSSastkgpsvfplapsskstsggtaalgclvkdyfpepvtvswnsgaltsgv




htfpavlqssglyslssvvtvpssslgtqtyicnvnhkpsntkvdkrvepksc**





318
ACP399
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKcLEWVAAIDS




SSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALD




YWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKA




REKLWSAVAWYQQKPGKAPKsLIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQ




PEDFATYYCQQYYTYPYTFGcGTKVEIKsggpGPAGLYAQpgsggggsggggsggggsg




gggsggggsggggsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPG




KGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYY




CTIGGSLSVSSQGTLVTVSSsggpGPAGLYAQpgsfficlympkkatelkhlqcleeelkpleevinl




aqsknfhlrprdlisninvivlelkgsetlfmceyadetativeflnrwitfcqsiistltGGssstldctqlqle




hllldlqmilnginnyknpkltrmlsggpGPAGLYAQpgsEVQLVESGGGLVQPGNSLRLSCAASGFTFS




KFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQ




MNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS**





319
ACP400
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAID




SSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDAL




DYWGcGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKA




REKLWSAVAWYQQKPGKcPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQ




PEDFATYYCQQYYTYPYTFGGGTKVEIKsggpGPAGLYAQpgsggggsggggsggggsg




gggsggggsggggsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPG




KGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYY




CTIGGSLSVSSQGTLVTVSSsggpGPAGLYAQpgsfficlympkkatelkhlqcleeelkpleevinl




aqsknfhlrprdlisninvivlelkgsetlfmceyadetativeflnrwitfcqsiistltGGssstldctqlq




lehllldlqmilnginnyknpkltrmlsggpGPAGLYAQpgsEVQLVESGGGLVQPGNSLRLSCAASGFTFS




KFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQ




MNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS**





320
ACP401
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKcLEWVAAIDS




SSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALD




YWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKV




TEKVWGNVAWYQQKPGKAPISLIYSPSLRKSGVPSRFSGSGSGTDFTLTISSLQ




PEDFATYYCQQYYTYPYTFGcGTKVEIKsggpGPAGLYAQpgsggggsggggsggggsg




gggsggggsggggsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPG




KGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYY




CTIGGSLSVSSQGTLVTVSSsggpGPAGLYAQpgsdklympkkatelkhlqcleeelkpleevinl




aqsknfhlrprdlisninvivlelkgsetifmceyadetativeflnrwitfcqsiistltGGssstkktqlqlehll




ldlqmilnginnyknpkltrmlsggpGPAGLYAQpgsEVQLVESGGGLVQPGNSLRLSCAASGFTFS




KFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQ




MNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS**





321
ACP402
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAID




SSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDAL




DYWGcGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKV




TEKVWGNVAWYQQKPGKcPISLIYSPSLRKSGVPSRFSGSGSGTDFTLTISSLQP




EDFATYYCQQYYTYPYTFGGGTKVEIKsggpGPAGLYAQpgsggggsggggsggggsgg




ggsggggsggggsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGK




GLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYC




TIGGSLSVSSQGTLVTVSSsggpGPAGLYAQpgstfklympkkatelkhlqcleeelkpleevinla




qsknfldrprdlisninvivlelkgsellfmceyadetativeflnrwitfcqsiistltGGssstkktqlqlehlll




dlqmilnginnyknpkltrmlsggpGPAGLYAQpgsEVQLVESGGGLVQPGNSLRLSCAASGFTFS




KFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQ




MNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS**





322
ACP403
evqllesggglvqpggslrlscaasgsifsanamgwyrqapgkqrelvavissggstnyadsvkgrftisrdnskntvyl




qmnslraedtavyycmysgsyyytpndywgqgtivtvsssggpGPAGLYAQpgsggggsggggsggggsg




gggsggggsggggsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPG




KGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYY




CTIGGSLSVSSQGTLVTVSSsggpGPAGLYAQpgsdklympkkatelkhlqcleeelkpleevinl




aqsknfhlrprdlisninvivlelkgsetifmceyadetativeflnrwideqsiistltGGssstkktqlqlehllldlqmiln




ginnyknpkltrmlsggpGPAGLYAQpgsEVQLVESGGGLVQPGNSLRLSCAASGFTFS




KFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQ




MNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS**





323
ACP404
evqllesggglvqpggslrlscaasgsifsanamgwyrqapgkglelvavissggstnyadsvkgrftisrdnskntvyl




qmnslraedtavyycmysgsyyytpndywgqgtivtvsssggpGPAGLYAQpgsggggsggggsggggsg




gggsggggsggggsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPG




KGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYY




CTIGGSLSVSSQGTLVTVSSsggpGPAGLYAQpgsdklympkkatelkhlqcleeelkpleevinl




aqsknfhlrprdlisninvivlelkgsetifmceyadetativeflnrwideqsiistltGGssstkktqlqlehllldlqmiln




ginnyknpkltrmlsggpGPAGLYAQpgsEVQLVESGGGLVQPGNSLRLSCAASGFTFS




KFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQ




MNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS**





324
ACP405
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAID




SSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDAL




DYWGQGTTVTVSSastkgpsvfplapsskstsggtaalgclvkdyfpepvtvswnsgaltsgvhtfpavlqss




glyslssvvtvpssslgtqtyicnvnhkpsntkvdkrvepkscsggpGPAGLYAQpgsggggsggggsggggs




ggggsggggsggggsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAP




GKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVY




YCTIGGSLSVSSQGTLVTVSSsggpGPAGLYAQpgstildympkkatelkhlqcleeelkpleevl




nlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltGGssstkktqlq




lehllldlqmilnginnyknpkltrmlsggpGPAGLYAQpgsEVQLVESGGGLVQPGNSLRLSCAASGFTF




SKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYL




QMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS**





325
ACP406
vprdcgckpcictypevssvfifppkpkdvltitltpkvtcwvdiskddpevqfswfvddvevhtaqtqpreeqfnstf



(WW0548)
rsyselpimhqdwingkefkcrynsaafpapiektisktkgrpkapqvytipppkeqmakdkvsltcmitdffpeditv




ewqwngqpaenykntqpimdtdgsyfyysklnvqksnweagniftcsvlheglhnhhtekslshspgksggpGP




AGLYAQpgsaptsssticktqlqlehllldlqmilnginnyknpkltrmifficfympkkatelkhlqcleeelkpleev




lnlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwilfcqsiistltggggsggggsggggsggggs




ggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYT




LAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSL




RAEDTAVYYCARDSNWDALDYWGQGTTVTVSSastkgpsvfplapsskstsggtaalgclvk




dyfpepvtvswnsgaltsgvhdpavlqssglyslssvvtvpssslgtqtyicnvnhkpsnticvdlavepksc**





326
ACP407
vprdcgckpcictypevssvfifppkpkdvltitltpkvtcwvdiskddpevqfswfvddvevhtaqtqpreeqfnsif



(WW0549)
rsyselpimhqdwingkefkcrynsaafpapiektisktkgrpkapqvytipppkeqmakdkvsltcmitcapeditv




ewqwngqpaenykntqpimdtdgsyfyysklnvqksnweagniftcsvlheglhnhhtekslshspgksggpGP




AGLYAQpgsaptsssticktqlqlehllldlqmilnginnyknpkltrmifficfympkkatelkhlqcleeelkpleev




lnlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwilfcqsiistltggggsggggsggggsggggs




ggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYT




LAWVRQAPGKcLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLR




AEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQM




TQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPGKAPKALIYSASFRYSG




VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGcGTKVEIK**





327
ACP408
vprdcgckpcictypevssvfifppkpkdvltitltpkvtcwvdiskddpevqfswfvddvevhtaqtqpreeqfnsif



(WW0550)
rsyselpimhqdwingkefkcrynsaafpapiektisktkgrpkapqvytipppkeqmakdkvsltcmitcapeditv




ewqwngqpaenykntqpimdtdgsyfyysklnvqksnweagniftcsvlheglhnhhtekslshspgksggpGP




AGLYAQpgsaptsssticktqlqlehllldlqmilnginnyknpkltrmifficfympkkatelkhlqcleeelkpleev




lnlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwilfcqsiistltggggsggggsggggsggggs




ggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYT




LAWVRQAPGKcLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLR




AEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQM




TQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPGKAPKsLIYSASFRYSG




VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGcGTKVEIK**





328
ACP409
vprdcgckpcictypevssvfifppkpkdvltitltpkvtcwvdiskddpevqfswfvddvevhtaqtqpreeqfnsif



(WW0551)
rsyselpimhqdwingkefkcrynsaafpapiektisktkgrpkapqvytipppkeqmakdkvsltcmitcapeditv




ewqwngqpaenykntqpimdtdgsyfyysklnvqksnweagniftcsvlheglhnhhtekslshspgksggpGP




AGLYAQpgsaptsssticktqlqlehllldlqmilnginnyknpkltrmifficfympkkatelkhlqcleeelkpleev




lnlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwilfcqsiistltggggsggggsggggsggggs




ggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYT




LAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSL




RAEDTAVYYCARDSNWDALDYWGcGTTVTVSSGGGGSGGGGSGGGGSDIQ




MTQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPGKcPKALIYSASFRYS




GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIK**





329
ACP410
vprdcgckpcictypevssvfifppkpkdvltitltpkvtcwvdiskddpevqfswfvddvevhtaqtqpreeqfnsif



(WW0552)
rsyselpimhqdwingkefkcrynsaafpapiektisktkgrpkapqvytipppkeqmakdkvsltcmitcapeditv




ewqwngqpaenykntqpimdtdgsyfyysklnvqksnweagniftcsvlheglhnhhtekslshspgksggpGP




AGLYAQpgsaptsssticktqlqlehllldlqmilnginnyknpkltrmifficfympkkatelkhlqcleeelkpleev




lnlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwilfcqsiistltggggsggggsggggsggggs




ggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYT




LAWVRQAPGKcLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLR




AEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQM




TQSPSSLSASVGDRVTITCKVTEKVWGNVAWYQQKPGKAPISLIYSPSLRKSG




VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGcGTKVEIK**





330
ACP411
vprdcgckpcictypevssvfifppkpkdvltitltpkvtcwvdiskddpevqfswfvddvevhtaqtqpreeqfnsif



(WW0553)
rsyselpimhqdwingkefkcrynsaafpapiektisktkgrpkapqvytipppkeqmakdkvsltcmitcapeditv




ewqwngqpaenykntqpimdtdgsyfyysklnvqksnweagniftcsvlheglhnhhtekslshspgksggpGP




AGLYAQpgsaptsssticktqlqlehllldlqmilnginnyknpkltrmifficfympkkatelkhlqcleeelkpleev




lnlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwilfcqsiistltggggsggggsggggsggggs




ggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYT




LAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSL




RAEDTAVYYCARDSNWDALDYWGcGTTVTVSSGGGGSGGGGSGGGGSDIQ




MTQSPSSLSASVGDRVTITCKVTEKVWGNVAWYQQKPGKcPISLIYSPSLRKS




GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIK**





331
ACP412
vprdcgckpcictypevssvfifppkpkdvltitltpkvtcwvdiskddpevqfswfvddvevhtaqtqpreeqfnstf



(WW0554)
rsyselpimhqdwhigkefkcrynsaafpapiektisktkgrpkapqvytipppkeqmakdkvsltcmitclffpeditv




ewqwngqpaenykntqpimdtdgsyfvysklnvqksnweagntftcsvlheglhnhhtekslshspgksggpGP




AGLYAQpgsaptsssticktqlqlehllldlqmilnginnyknpkltrmlafympkkatelkhlqcleeelkpleev




lnlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltggggsggggsggggsggggs




ggggsggggssggpGPAGLYAQpgsevqllesggglvqpggslrlscaasgsifsanamgwyrqapgkqrelv




avissggstnyadsvkgrftisrdnskntvylqmnslraedtavyycmysgsyyytpndywgqgtivtvss**





332
ACP413
elcdddppeiphafficamaykegtmlnceckrgfrriksgslymlctgnsshsswdnqcqctssatrnttkqvtpqpee



(WW0555)
qkerkttemqspmqpvdqaslpghcrepppweneateriyhfvvgqmvyyqcvqgyralhrgpaesvckmthgk




trwtqpqlictgemetsqfpgeekpqaspegrpesetsSlvtttclfqiqtemaatmetsiftteyqggggsggggsgggg




sggggsggggsggggsDIQMTQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPG




KAPKsLIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPY




TFGGGTKVEIKrtvaapsvfifppsdeqlksgtasvvcllnnfypreakvqwkvdnalqsgnsqesvteqdskd




styslsstifiskadyekhkvyacevthqglsspvtksfnrgec**





333
ACP414
elcdddppeiphatfkamaykegtmlnceckrgfrriksgslymlctgnsshsswdnqcqctssatrnttkqvtpqpee



(WW0556)
qkerkttemqspmqpvdqaslpghcrepppweneateriyhfvvgqmvyyqcvqgyralhrgpaesvckmthgk




trwtqpqlictgemetsqfpgeekpqaspegrpesetsSlvtttclfqiqtemaatmetsiftteyqggggsggggsgggg




sggggsggggsggggsDIQMTQSPSSLSASVGDRVTITCKVTEKVWGNVAWYQQKP




GKAPISLIYSPSLRKSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYP




YTFGGGTKVEIKrtvaapsvfifppsdeqlksgtasvvcllnaypreakvqwkvdnalqsgnsqesvteqds




kdstyslsstltlskadyekhkvyacevthqglsspvtksfnrgec**





334
ACP415
aptsssticktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0557)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsggggsggggsggg




gsggggsggggsggggsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQA




PGKcLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVY




YCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLS




ASVGDRVTITCKAREKLWSAVAWYQQKPGKAPKsLIYSASFRYSGVPSRFSGS




GSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGcGTKVEIKggggsggggsggggsgg




ggsggggsggggsggggsggggsggggselcdddppeiphatfkamaykegtmlnceckrgfrriksgslymlctg




nsshsswdnqcqctssatrnttkqvtpqpeeqkerkttemqspmqpvdqaslpghcrepppweneateriyhfvvgq




mvyyqcvqgyralhrgpaesvckmthgktrwtqpqlictgemetsqfpgeekpqaspegrpesetsSlvMdfqiqte




maatmetsiftteyqsggpGPAGLYAQpgsEVQLVESGGGLVQPGNSLRLSCAASGFTFS




KFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQ




MNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS**





335
ACP416
aptsssticktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0558)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsggggsggggsggg




gsggggsggggsggggsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQA




PGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVY




YCARDSNWDALDYWGcGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSA




SVGDRVTITCKAREKLWSAVAWYQQKPGKcPKALIYSASFRYSGVPSRFSGSG




SGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKggggsggggsggggsggg




gsggggsggggsggggsggggsggggselcdddppeiphatfkamaykegtmlnceckrgfrriksgslymlctgns




shsswdnqcqctssatrnttkqvtpqpeeqkerkttemqspmqpvdqaslpghcrepppweneateriyhfvvgqm




vyyqcvqgyralhrgpaesvckmthgktrwtqpqlictgemetsqfpgeekpqaspegrpesetsSlvtttdfqiqtem




aatmetsiftteyqsggpGPAGLYAQpgsEVQLVESGGGLVQPGNSLRLSCAASGFTFSK




FGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQM




NSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS**





336
ACP417
aptsssticktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0559)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsggggsggggsggg




gsggggsggggsggggsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQA




PGKcLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVY




YCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLS




ASVGDRVTITCKVTEKVWGNVAWYQQKPGKAPISLIYSPSLRKSGVPSRFSGS




GSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGcGTKVEIKggggsggggsggggsgg




ggsggggsggggsggggsggggsggggselcdddppeiphatfkamaykegtmlnceckrgfrriksgslymlctg




nsshsswdnqcqctssatrnttkqvtpqpeeqkerkttemqspmqpvdqaslpghcrepppweneateriyhfvvgq




mvyyqcvqgyralhrgpaesvckmthgktrwtqpqlictgemetsqfpgeekpqaspegrpesetsSlvMdfqiqte




maatmetsiftteyqsggpGPAGLYAQpgsEVQLVESGGGLVQPGNSLRLSCAASGFTFS




KFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQ




MNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS**





337
ACP418
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0560)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsggggsggggsggg




gsggggsggggsggggsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQA




PGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVY




YCARDSNWDALDYWGcGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSA




SVGDRVTITCKVTEKVWGNVAWYQQKPGKcPISLIYSPSLRKSGVPSRFSGSGS




GTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKggggsggggsggggsgggg




sggggsggggsggggsggggsggggselcdddppeiphatikamaykegtmlnceckrgfrriksgslymlctgnss




hsswdnqcqctssatrnttkqvtpqpeeqkerkttemqspmqpvdqaslpghcrepppweneateriyhfvvgqmv




yyqcvqgyralhrgpaesvckmthgktrwtqpqlictgemetsqfpgeekpqaspegrpesetsSlvtddfqiqtema




atmetsiftteyqsggpGPAGLYAQpgsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKF




GMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMN




SLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS**





338
ACP419
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0561)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsggggsggggsggg




gsggggsggggsggggsevqllesggglvqpggslrlscaasgsifsanamgwyrqapgkqrelvavissggstnyad




svkgrftisrdnskntvylqmnslraedtavyycmysgsyyytpndywgqgtivtvssggggsggggsggggsggg




gsggggsggggsggggsggggsggggselcdddppeiphatfkamaykegtmlnceckrgfrriksgslymlctgns




shsswdnqcqctssatrnttkqvtpqpeeqkerkttemqspmqpvdqaslpghcrepppweneateriyhfvvgqm




vyyqcvqgyralhrgpaesvckmthgktrwtqpqlictgemetsqfpgeekpqaspegrpesetsSlvtddfqiqtem




aatmetsiftteyqsggpGPAGLYAQpgsEVQLVESGGGLVQPGNSLRLSCAASGFTFSK




FGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQM




NSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS**





339
ACP420
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0562)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsggggsggggsggg




gsggggsggggsggggsevqllesggglvqpggslrlscaasgsifsanamgwyrqapgkglelvavissggstnyad




svkgrftisrdnskntvylqmnslraedtavyycmysgsyyytpndywgqgtivtvssggggsggggsggggsggg




gsggggsggggsggggsggggsggggselcdddppeiphatfkamaykegtmlnceckrgfrriksgslymlctgns




shsswdnqcqctssatrnttkqvtpqpeeqkerkttemqspmqpvdqaslpghcrepppweneateriyhfvvgqm




vyyqcvqgyralhrgpaesvckmthgktrwtqpqlictgemetsqfpgeekpqaspegrpesetsSlvtddfqiqtem




aatmetsiftteyqsggpGPAGLYAQpgsEVQLVESGGGLVQPGNSLRLSCAASGFTFSK




FGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQM




NSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS**





340
ACP421
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS



(WW0563)
GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFS




SYTLAWVRQAPGKcLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQM




NSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGS




DIQMTQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPGKAPKsLIYSASF




RYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGcGTKVEIKg




gggsggggsggggsggggsggggsggggsggggsggggsggggselcdddppeiphatfkamaykegtmlncec




krgfrriksgslymlctgnsshsswdnqcqctssatrnttkqvtpqpeeqkerkttemqspmqpvdqaslpghcrepp




pweneateriyhfvvgqmvyyqcvqgyralhrgpaesvckmthgktrwtqpqlictgemetsqfpgeekpqaspeg




rpesetsSlvtddfqiqtemaatmetsiftteyqggggsggggsggggsggggsggggsggggssggpGPAGLY




AQpgsaptssstkktqlqlehllldlqmilnginnyknpkltrmlafympkkatelkhlqcleeelkpleevinlaqsk




nfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitieqsiistlt**





341
ACP422
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS



(WW0564)
GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFS




SYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQM




NSLRAEDTAVYYCARDSNWDALDYWGcGTTVTVSSGGGGSGGGGSGGGGSD




IQMTQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPGKcPKALIYSASFR




YSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKgg




ggsggggsggggsggggsggggsggggsggggsggggsggggselcdddppeiphatfkamaykegtmlnceck




rgfrriksgslymlctgnsshsswdnqcqctssatrnttkqvtpqpeeqkerkttemqspmqpvdqaslpghcreppp




weneateriyhfvvgqmvyyqcvqgyralhrgpaesvckmthgktrwtqpqlictgemetsqfpgeekpqaspegr




pesetsSlytttclfqiqtemaatmetsiftteyqggggsggggsggggsggggsggggsggggssggpGPAGLYA




Qpgsaptssstkktqlqlehllldlqmilnginnyknpkltrmlfficfympkkatelkhlqcleeelkpleevinlaqsknf




hlrprdlisninvivlelkgsetlfmceyadetativeflnrwitfcqsiistlt**





342
ACP423
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS



(WW0565)
GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFS




SYTLAWVRQAPGKcLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQM




NSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGS




DIQMTQSPSSLSASVGDRVTITCKVTEKVWGNVAWYQQKPGKAPISLIYSPSL




RKSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGcGTKVEIKg




gggsggggsggggsggggsggggsggggsggggsggggsggggselcdddppeiphatfkamaykegtmlncec




krgfrriksgslymktgnsshsswdnqcqctssatrnttkqvtpqpeeqkerkttemqspmqpvdqaslpghcrepp




pweneateriyhfvvgqmvyyqcvqgyralhrgpaesvckmthgktrwtqpqlictgemetsqfpgeekpqaspeg




rpesetsSlvMdfqiqtemaatmetsiftteyqggggsggggsggggsggggsggggsggggssggpGPAGLY




AQpgsaptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsk




nfhlrprdlisninvivlelkgsetlfmceyadetativeflnrwitfcqsiistlt**





343
ACP424
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS



(WW0566)
GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFS




SYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQM




NSLRAEDTAVYYCARDSNWDALDYWGcGTTVTVSSGGGGSGGGGSGGGGSD




IQMTQSPSSLSASVGDRVTITCKVTEKVWGNVAWYQQKPGKcPISLIYSPSLRK




SGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKggg




gsggggsggggsggggsggggsggggsggggsggggsggggselcdddppeiphatikamaykegtmlnceckr




gfrriksgslymktgnsshsswdnqcqctssatrnttkqvtpqpeeqkerkttemqspmqpvdqaslpghcrepppw




eneateriyhfvvgqmvyyqcvqgyralhrgpaesvckmthgktrwtqpqlictgemetsqfpgeekpqaspegrpe




setsSlytttclfqiqtemaatmetsiftteyqggggsggggsggggsggggsggggsggggssggpGPAGLYAQ




pgsaptssstkktqlqlehllldlqmilnginnyknpkltrmltfklympldcatelkhlqcleeelkpleevinlaqsknfh




lrprdlisninvivlelkgsetlfmceyadetativeflnrwitfcqsiistlt**





344
ACP425
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS



(WW0567)
GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsevqllesggglvqpggslrlscaasgsifsanamgwyrqapgkq




relvavissggstnyadsvkgrftisrdnskntvylqmnslraedtavyycmysgsyyytpndywgqgtivtvssggg




gsggggsggggsggggsggggsggggsggggsggggsggggselcdddppeiphatikamaykegtmlnceckr




gfrriksgslymlctgnsshsswdnqcqctssatrnttkqvtpqpeeqkerkttemqspmqpvdqaslpghcrepppw




eneateriyhfvvgqmvyyqcvqgyralhrgpaesvckmthgktrwtqpqlictgemetsqfpgeekpqaspegrpe




setsSlytttclfqiqtemaatmetsiftteyqggggsggggsggggsggggsggggsggggssggpGPAGLYAQ




pgsaptssstkktqlqlehllldlqmilnginnyknpkltrmltfklympldcatelkhlqcleeelkpleevinlaqsknfh




lrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistlt**





345
ACP426
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS



(WW0568)
GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsevqllesggglvqpggslrlscaasgsifsanamgwyrqapgkg




lelvavissggstnyadsvkgrftisrdnskntvylqmnslraedtavyycmysgsyyytpndywgqgtivtvssgggg




sggggsggggsggggsggggsggggsggggsggggsggggselcdddppeiphatfkamaykegtmlnceckrgf




rriksgslymlctgnsshsswdnqcqctssatrnttkqvtpqpeeqkerkttemqspmqpvdqaslpghcrepppwe




neateriyhfvvgqmvyyqcvqgyralhrgpaesvckmthgktrwtqpqlictgemetsqfpgeekpqaspegrpes




etsSlytttclfqiqtemaatmetsiftteyqggggsggggsggggsggggsggggsggggssggpGPAGLYAQp




gsaptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlr




prdlisninvivlelkgsetlfmceyadetativeflnrwitfcqsiistlt**





346
ACP427
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0569)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGS




LRLSCAASGFTFSSYTLAWVRQAPGKcLEWVAAIDSSSYTYSPDTVRGRFTISR




DNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGG




SGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPG




KAPKsLIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPY




TFGcGTKVEIKggggsggggsggggsggggsggggsggggsevqllesggglvqpggslrlscaasgsifsana




mgwyrqapgkqrelvavissggstnyadsvkgrftisrdnskntvylqmnslraedtavyycmysgsyyytpndyw




gqgtivtvss**





347
ACP428
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0570)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGS




LRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISR




DNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGcGTTVTVSSGGGG




SGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPG




KcPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPY




TFGGGTKVEIKggggsggggsggggsggggsggggsggggsevqllesggglvqpggslrlscaasgsifsan




amgwyrqapgkqrelvavissggstnyadsvkgrftisrdnskntvylqmnslraedtavyycmysgsyyytpndy




wgqgtivtvss**





348
ACP429
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0571)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGS




LRLSCAASGFTFSSYTLAWVRQAPGKcLEWVAAIDSSSYTYSPDTVRGRFTISR




DNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGG




SGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKVTEKVWGNVAWYQQKP




GKAPISLIYSPSLRKSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYP




YTFGcGTKVEIKggggsggggsggggsggggsggggsggggsevqllesggglvqpggslrlscaasgsifsa




namgwyrqapgkqrelvavissggstnyadsvkgrftisrdnskntvylqmnslraedtavyycmysgsyyytpndy




wgqgtivtvss**





349
ACP430
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0572)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGS




LRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISR




DNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGcGTTVTVSSGGGG




SGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKVTEKVWGNVAWYQQKP




GKcPISLIYSPSLRKSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPY




TFGGGTKVEIKggggsggggsggggsggggsggggsggggsevqllesggglvqpggslrlscaasgsifsan




amgwyrqapgkqrelvavissggstnyadsvkgrftisrdnskntvylqmnslraedtavyycmysgsyyytpndy




wgqgtivtvss**





350
ACP431
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0573)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGS




LRLSCAASGFTFSSYTLAWVRQAPGKcLEWVAAIDSSSYTYSPDTVRGRFTISR




DNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGG




SGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPG




KAPKsLIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPY




TFGcGTKVEIKggggsggggsggggsggggsggggsggggsevqllesggglvqpggslrlscaasgsifsana




mgwyrqapgkglelvavissggstnyadsvkgrftisrdnskntvylqmnslraedtavyycmysgsyyytpndyw




gqgtivtvss**





351
ACP432
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0574)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGS




LRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISR




DNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGcGTTVTVSSGGGG




SGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPG




KcPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPY




TFGGGTKVEIKggggsggggsggggsggggsggggsggggsevqllesggglvqpggslrlscaasgsifsan




amgwyrqapgkglelvavissggstnyadsvkgrftisrdnskntvylqmnslraedtavyycmysgsyyytpndy




wgqgtivtvss**





352
ACP433
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0575)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGS




LRLSCAASGFTFSSYTLAWVRQAPGKcLEWVAAIDSSSYTYSPDTVRGRFTISR




DNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGG




SGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKVTEKVWGNVAWYQQKP




GKAPISLIYSPSLRKSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYP




YTFGcGTKVEIKggggsggggsggggsggggsggggsggggsevqllesggglvqpggslrlscaasgsifsa




namgwyrqapgkglelvavissggstnyadsvkgrftisrdnskntvylqmnslraedtavyycmysgsyyytpndy




wgqgtivtvss**





353
ACP434
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr




(WW0576)dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGS




LRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISR




DNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGcGTTVTVSSGGGG




SGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKVTEKVWGNVAWYQQKP




GKcPISLIYSPSLRKSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPY




TFGGGTKVEIKggggsggggsggggsggggsggggsggggsevqllesggglvqpggslrlscaasgsifsan




amgwyrqapgkglelvavissggstnyadsvkgrftisrdnskntvylqmnslraedtavyycmysgsyyytpndy




wgqgtivtvss**





265
ACP435
DIQMTQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPGKAPKsLIYSASF



(WW0577)
RYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKr




tvaapsvfifppsdeqlksgtasvvellnaypreakvqwkvdnalqsgnsqesvteqdskdstyslsstltlskadyekh




kvyacevthqglsspvtksfmgecggggsggggsggggsggggsggggsggggsevqllesggglvqpggslrlsca




asgsifsanamgwyrqapgkqrelvavissggstnyadsvkgrftisrdnskntvylqmnslraedtavyycmysgsy




yytpndywgqgtivtvss**





355
ACP371
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0513)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGS




LRLSCAASGFTFSSYTLAWVRQAPGKcLEWVAAIDSSSYTYSPDTVRGRFTISR




DNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGG




SGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKASQNVGTNVGWYQQKPG




KAPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYP




YTFGcGTKVEIK**





356
ACP372
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0514)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGS




LRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISR




DNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGcGTTVTVSSGGGG




SGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKASQNVGTNVGWYQQKPG




KcPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPY




TFGGGTKVEIK**





357
ACP373
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0515)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGS




LRLSCAASGFTFSSYTLAWVRQAPGKcLEWVAAIDSSSYTYSPDTVRGRFTISR




DNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGG




SGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPG




KAPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYP




YTFGcGTKVEIK**





358
ACP374
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0516)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGS




LRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISR




DNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGcGTTVTVSSGGGG




SGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPG




KcPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPY




TFGGGTKVEIK**





359
ACP375
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0517)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGS




LRLSCAASGFTFSSYTLAWVRQAPGKcLEWVAAIDSSSYTYSPDTVRGRFTISR




DNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGG




SGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKVTEKVWGNVAWYQQKP




GKAPISLIYSPSLRKSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYP




YTFGcGTKVEIK**





360
ACP376
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0521)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGS




LRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISR




DNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGcGTTVTVSSGGGG




SGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKVTEKVWGNVAWYQQKP




GKcPISLIYSPSLRKSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPY




TFGGGTKVEIK**





361
ACP377
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0519)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsevqllesggglvqpggslrlscaasgsi




fsanamgwyrqapgkqrelvavissggstnyadsvkgrftisrdnskntvylqmnslraedtavyycmysgsyyytp




ndywgqgtivtvss**





362
ACP378
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0520)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGS




LRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISR




DNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSastkgps




vfplapsskstsggtaalgclvkdyfpepvtvswnsgaltsgvhtfpavlqssglyslssvvtvpssslgtqtyicnvnhkp




sntkvdkrvepksc**





363
ACP379
eskygppcppcpapeflggpsvflfppkpkdtlmisrtpevtcvvvdvsqedpevqfnwyvdgvevhnaktkpree



(WW0521)
qfnstyrvvsyltvlhqdwingkeykckvsnkglpssiektiskakgqprepqvytlppsqeemtlmqvsltclvkgfy




psdiavewesngqpennykttppvldsdgsfflysrltvdksrwqegnvfscsvmhealhnhytqkslslslgksggp




GPAGLYAQpgsaptssstkktqlqlehllldlqmilnginnyknpkltrmlfficfympldcatelkhlqcleeelkpl




eevinlaqsknfhlrprdlisninvivlelkgsetlfmceyadetativeflnrwitfcqsiistltggggsggggsggggsgg




ggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFS




SYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQM




NSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSastkgpsvfplapsskstsggtaal




gclvkdyfpepvtvswnsgaltsgvhtfpavlqssglyslssvvtvpssslgtqtyicnvnhkpsntkvdkrvepksc**





364
ACP368
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAID




(WW0446)SSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDAL




DYWGQGTTVTVSSsggpGPAGLYAQpgsDIQMTQSPSSLSASVGDRVTITCKVTE




KVWGNVAWYQQKPGKAPISLIYSPSLRKSGVPSRFSGSGSGTDFTLTISSLQPE




DFATYYCQQYYTYPYTFGGGTKVEIKHHHHHH





365
ACP365
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAID



(WW0443)
SSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDAL




DYWGQGTTVTVSSsggpGPAGLYAQpgsDIQMTQSPSSLSASVGDRVTITCKARE




KLWSAVAWYQQKPGKAPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPE




DFATYYCQQYYTYPYTFGGGTKVEIKHHHHHH





366
ACP366
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAID



(WW0444)
SSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDAL




DYWGQGTTVTVSSsggpGPAGLYAQpgsDIQMTQSPSSLSASVGDRVTITCKARE




KLWSAVAWYQQKPGKAPKsLIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPE




DFATYYCQQYYTYPYTFGGGTKVEIKHHHHHH





367
ACP284
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSSGGPGPAGMKGLPGSwipvsgparclsquallkttddmvktareklkhysctaedi




dheditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqi




ildkgmlvaidelmqslahngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssaSGGPGPAG




MKGLPGSggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGS




RSNIGSNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGL




QAEDEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGG




GVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYDGSNKYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMV




TVSS





368
ACP285
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSSGGPGPAGMKGLPGSiwelkkdvyvveldwypdapgemvvltcdtpeedgitwtl




dqssevlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrcealmysgrftcw




wittistdilfsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsaSpaaeeslpievmvdavhklkyeny




tssffirdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltkvqvqgkskrekkdrvftdktsatvicrkna




sisvramthyyssswsewasvpcsggggsggggsggggsrvipvsgparclsquallkttddmvktareklkhyscta




edidheditrdqtstlktclplelhknesSlatretssttrgsclppqktslmmticlgsiyedllanyqtefgainaalqnhnh




qqiildkgmlvaidelmqslahngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssaSGGPGPA




GMKGLPGSggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCS




GSRSNIGSNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAIT




GLQAEDEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVES




GGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYDGSNK




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGT




MVTVSS





369
ACP286
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSSGGPGPAGMKGLPGSiwelkkdvyvveldwypdapgemvvltcdtpeedgitwtl




dqssevlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrcealmysgrftcw




wittistdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyeny




tssffirdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrkna




sisvracichyyssswsewasvpcsggggsggggsggggsggggsrvipvsgparclsqsrffilkttddmvktareklk




hysctaedidheditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefclainaal




qnhnhqqiildkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssaSGG




PGPAGMKGLPGSggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVT




ISCSGSRSNIGSNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSAS




LAITGLQAEDEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQ




LVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYDG




SNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWG




QGTMVTVSS





370
ACP287
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSSGGPGPAGMKGLPGSiwelkkdvyvveldwypdapgemvvltcdtpeedgitwtl




dqssevlgsgkiltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrcealmysgrftcw




wittistditfsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyeny




tssffirdiikpdppknlqlkplknsrqvevsweypdtwstphsyfslffevqvqgkskrekkdrvftdktsatvicrkna




sisvracichyyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsmllkttddmvktareklkhyscta




edidheditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnh




qqiildkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssaSGGPGPA




GMKGLPGSggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCS




GSRSNIGSNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAIT




GLQAEDEADYYCQSYDRYTHPALLFGcGTKVTVLggggsggggsggggsQVQLVES




GGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKcLEWVAFIRYDGSNKY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTM




VTVSS





371
ACP288
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSSGGPGPAGMKGLPGSiwelkkdvyvveldwypdapgemvvltcdtpeedgitwtl




dqssevlgsgkiltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrcealmysgrftcw




wittistdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyeny




tssffirdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrkna




sisvracichyyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsmllkttddmvktareklkhyscta




edidheditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnh




qqiildkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmkillhafstrvvtinrvmgylssaSGGPGPA




GMKGLPGSggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCS




GSRSNIGSNTVKWYQQLPGTcPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAIT




GLQAEDEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVES




GGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYDGSNK




YYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGcGT




MVTVSS





372
ACP289
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0233)
dlisninvivlelkgsettfmceyadetativeflnrwirdeqsiistltsggpgpagmkglpgsevqlvesggglvqpgns




lrlscaasgftiskfgmswvrqapgkglewvssisgsgrdtlyaesvkgrftisrdnakttlylqmnslrpedtavyyctig




gslsyssqgtivtvssggggsggggsggggsggggsggggsggggssggpgpagmkglpgsevqlvesggglvqpg




gslrlscaasgftfssytlawvrqapgkglewvaaidsssytyspdtvrgrftisrdnaknslylqmnslraedtavyycar




dsnwdaldywgqgttvtvssggggsggggsggggsdiqmtqspsslsasvgdrvtitckasqnvgtnvgwyqqkpg




kapkaliysasfrysgvpsrfsgsgsgtdftltisslqpedfatyycqqyytypyttggtkveikhhhhhh





373
ACP290
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0234)
dlisninvivlelkgsettfmceyadetativeflnrwirdeqsiistltsggpgpagmkglpgsevqlvesggglvqpgns




lrlscaasgftiskfgmswvrqapgkglewvssisgsgrdtlyaesvkgrftisrdnakttlylqmnslrpedtavyyctig




gslsyssqgtivtvssggggsggggsggggsggggsggggsggggssggpgpagmkglpgQVQLQESGGG




LVQTGGSLRLSCTTSGTIFSGYTMGWYRQAPGEQRELVAVISGGGDTNYADS




VKGRFTISRDNTKDTMYLQMNSLKPEDTAVYYCYSREVTPPWKLYWGQGTQ




VTVSSAAAYPYDVPDYGSHHHHHH





374
ACP291
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqskahlrpr



(WW0235)
dlisninvivlelkgsettfmceyadetativeflnrwitieqsiistltsggpgpagmkglpgsevqlvesggglvqpgns




lrlscaasgitiskfgmswvrqapgkglewvssisgsgrdtlyaesvkgrftisrdnakttlylqmnslrpedtavyyctig




gslsyssqgtivtvssggggsggggsggggsggggsggggsggggssggpgpagmkglpgQVQLQESGGG




LVQEGGSLRLSCAASERIFSTDVMGWYRQAAEKQRELVAVVSARGTTNYLDA




VKGRFTISRDNARNTLTLQMNDLKPEDTASYYCYVRETTSPWRIYWGQGTQV




TVSSAAAYPYDVPDYGSHHHHHH





375
ACP292
aptssstkktqlqlehllldlqmilnginnyknpkltrmltildympldcatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0236)
dlisninvivlelkgsettfmceyadetativeflnrwiticqsiistltsggpgpagmkglpgsevqlvesggglvqpgns




lrlscaasgfifskfgmswvrqapgkglewvssisgsgrdtlyaesvkgrftisrdnakttlylqmnslrpedtavyyctig




gslsyssqgtivtvssggggsggggsggggsggggsggggsggggssggpgpagmkglpgQVQLQESGGG




LVQAGGSLRLSCAASGSIFSANAMGWYRQAPGKQRELVAVISSGGSTNYADS




VKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCMYSGSYYYTPNDYWGQGT




QVTVSSAAAYPYDVPDYGSHHHHHH





376
ACP296
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0250)
dlisninvivlelkgsettfmceyadetativeflnrwiticqsiistltSGGPGPAGMKGLPGSEVQLVES




GGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTL




YAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVT




VSSggggsggggsggggsggggsggggsggggsSGGPGPAGMKGLPGSEVQLVESGGGLV




QPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRG




RFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVS




SSGGPGPAGMKGLPGSDIQMTQSPSSLSASVGDRVTITCKASQNVGTNVGWY




QQKPGKAPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQ




YYTYPYTFGGGTKVEIKHHHHHHEPEA**





377
ACP297
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0251)
dlisninvivlelkgsettfmceyadetativeflnrwiticqsiistltSGGPGPAGMKGLPGSEVQLVES




GGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTL




YAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVT




VSSggggsggggsggggsggggsggggsggggsSGGPGPAGMKGLPGSEVQLVESGGGLV




QPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRG




RFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVS




SGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKASQNVGTNVGWY




QQKPGKAPKLLIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQ




YYTYPYTFGGGTKVEIKHHHHHHEPEA**





378
ACP298
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0252)
dlisninvivlelkgsettfmceyadetativeflnrwiticqsiistltSGGPGPAGMKGLPGSEVQLVES




GGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTL




YAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVT




VSSggggsggggsggggsggggsggggsggggsSGGPGPAGMKGLPGSEVQLVESGGGLV




QPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRG




RFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVS




SGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKASQNVGTNVGWY




QQKPGKAPKGLIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQ




YYTYPYTFGGGTKVEIKHHHHHHEPEA**





379
ACP299
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0253)
dlisninvivlelkgsettfmceyadetativeflnrwitiSqsiistltSGGPGPAGMKGLPGSEVQLVES




GGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTL




YAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVT




VSSggggsggggsggggsggggsggggsggggsSGGPGPAGMKGLPGSEVQLVESGGGLV




QPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRG




RFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVS




SGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKASQNVGTNVGWY




QQKPGKAPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQ




YYTYPYTFGGGTKVEIKHHHHHHEPEA**





380
ACP300
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0255)
dlisninvivlelkgsettfmceyadetativeflnrwiticqsiistltSGGPGPAGMKGLPGSdahksevahrf




kdlgeenfkalvliafaqylqqcpfedhvklvnevtefaktcvadesaencdkslhtlfgdklctvatlretygemadcca




kqepernecflqhkddnpnlprlvrpevdvmctafhdneeffildcylyeiarrhpyfyapellffakrykaafteccqaa




dkaacllpkldelrdegkassakqrlkcaslqkfgerafkawavarlsqrfpkaefaevsklvtdltkvhtecchgdlleca




ddradlakyicenqdsissklkeccekpllekshciaevendempadlpslaacIfveskdvcknyaeakdvflgmfly




eyarrhpdysvvlllrlaktyettlekccaaadphecyalcvfdefkplveepqnlikqncelfeqlgeykfqnallviyildc




vpqvstptivevsralglcvgskcckhpeakrmpcaedylsvvinqlcvlhektpvsdrytkccteslvarrpcfsalevd




etyvpkefnaaftfhadictlsekerqikkqtalvelvlchkpkatkeqlkavmddfaafvekcckaddketcfaeegldc




lvaasqaalglggggsggggsggggsggggsggggsggggsSGGPGPAGMKGLPGSEVQLVESGG




GLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDT




VRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTV




TVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKASQNVGTNVG




WYQQKPGKAPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYC




QQYYTYPYTFGGGTKVEIKHHHHHHEPEA**





381
ACP302
aptsssildctqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0296)
dlisninvivlelkgsettfmceyadetativeflnrwiticqsiistltSGGPGPAGMKGLPGSEAHKSEIA




HRYNDLGEQHFKGLVLIAFSQYLQKCSYDEHAKLVQEVTDFAKTCVADESAA




NCDKSLHTLFGDKLCAIPNLRENYGELADCCTKQEPERNECFLQHKDDNPSLP




PFERPEAEAMCTSFKENPTTFMGHYLHEVARRHPYFYAPELLYYAEQYNEILT




QCCAEADKESCLTPKLDGVKEKALVSSVRQRMKCSSMQKFGERAFKAWAVA




RLSQTFPNADFAEITKLATDLTKVNKECCHGDLLECADDRAELAKYMCENQA




TISSKLQTCCDKPLLKKAHCLSEVEHDTMPADLPAIAADFVEDQEVCKNYAEA




KDVFLGTFLYEYSRRHPDYSVSLLLRLAKKYEATLEKCCAEANPPACYGTVL




AEFQPLVEEPKNLVKTNCDLYEKLGEYGFQNAILVRYTQKAPQVSTPTLVEAA




RNLGRVGTKCCTLPEDQRLPCVEDYLSAILNRVCLLHEKTPVSEHVTKCCSGS




LVERRPCFSALTVDETYVPKEFKAETFTFHSDICTLPEKEKQIKKQTALAELVK




HKPKATAEQLKTVMDDFAQFLDTCCKAADKDTCFSTEGPNLVTRCKDALAgg




ggsggggsggggsggggsggggsggggsSGGPGPAGMKGLPGSEVQLVESGGGLVQPGGS




LRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISR




DNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGG




SGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKASQNVGTNVGWYQQKPG




KAPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYP




YTFGGGTKVEIKHHHHHH**





382
ACP303
EAHKSEIAHRYNDLGEQHFKGLVLIAFSQYLQKCSYDEHAKLVQEVTDFAKT




CVADESAANCDKSLHTLFGDKLCAIPNLRENYGELADCCTKQEPERNECFLQH




KDDNPSLPPFERPEAEAMCTSFKENPTTFMGHYLHEVARRHPYFYAPELLYYA




EQYNEILTQCCAEADKESCLTPKLDGVKEKALVSSVRQRMKCSSMQKFGERA




FKAWAVARLSQTFPNADFAEITKLATDLTKVNKECCHGDLLECADDRAELAK




YMCENQATISSKLQTCCDKPLLKKAHCLSEVEHDTMPADLPAIAADFVEDQE




VCKNYAEAKDVFLGTFLYEYSRRHPDYSVSLLLRLAKKYEATLEKCCAEANP




PACYGTVLAEFQPLVEEPKNLVKTNCDLYEKLGEYGFQNAILVRYTQKAPQV




STPTLVEAARNLGRVGTKCCTLPEDQRLPCVEDYLSAILNRVCLLHEKTPVSE




HVTKCCSGSLVERRPCFSALTVDETYVPKEFKAETFTFHSDICTLPEKEKQIKK




QTALAELVKHKPKATAEQLKTVMDDFAQFLDTCCKAADKDTCFSTEGPNLVT




RCKDALASGGPGPAGMKGLPGSfficfympldcatelkhlqcleeelkpleevinlaqsknfhlrprdlis




ninvivlelkgsettfmceyadetativeflnrwilfcqsiistltGGsssticktqlqlehllldlqmilnginnyknpkltrm




ISGGPGPAGMKGLPGSEAHKSEIAHRYNDLGEQHFKGLVLIAFSQYLQKCSYD




EHAKLVQEVTDFAKTCVADESAANCDKSLHTLFGDKLCAIPNLRENYGELAD




CCTKQEPERNECFLQHKDDNPSLPPFERPEAEAMCTSFKENPFITMGHYLHEV




ARRHPYFYAPELLYYAEQYNEILTQCCAEADKESCLTPKLDGVKEKALVSSVR




QRMKCSSMQKFGERAFKAWAVARLSQlFPNADFAEITKLATDLTKVNKECC




HGDLLECADDRAELAKYMCENQATISSKLQTCCDKPLLKKAHCLSEVEHDTM




PADLPAIAADFVEDQEVCKNYAEAKDVFLGlFLYEYSRRHPDYSVSLLLRLAK




KYEATLEKCCAEANPPACYGTVLAEFQPLVEEPKNLVKTNCDLYEKLGEYGF




QNAILVRYTQKAPQVSTPTLVEAARNLGRVGTKCCTLPEDQRLPCVEDYLSAI




LNRVCLLHEKTPVSEHVTKCCSGSLVERRPCFSALTVDETYVPKEFKAETFTFH




SDICTLPEKEKQIKKQTALAELVKHKPKATAEQLKTVMDDFAQFLDTCCKAA




DKDTCFSTEGPNLVTRCKDALAHHHHHH**





383
ACP304
aptsssildctqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0302)
dlisninvivlelkgsettfmceyadetativeflnrwiticqsiistltSGGPGPAGMKGLPGSEVQLVES




GGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTL




YAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVT




VSSggggsggggsggggsggggsggggsggggsSGGPGPAGMKGLPGSEVQLVESGGGLV




QPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRG




RFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVS




SGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKASQNVGTNVGWY




QQKPGKAPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQ




YYTYPYTFGGGTKVEIKSGGPGPAGMKGLPGSggggsggggsggggsggggsggggsggg




gselcdddppeiphatfkamaykegtmlnceckrgfrriksgslymktgnsshsswdnqcqctssatrnttkqvtpqp




eeqkerkttemqspmqpvdqaslpghcrepppweneateriyhfvvgqmvyyqcvqgyralhrgpaesvclunth




gktrwtqpqlictgemetsqfpgeekpqaspegrpesetsclvtltdfqiqtemaatmetsiftteyqHHHHHH**





384
ACP305
elcdddppeiphatfkamaykegtmlnceckrgfrriksgslymktgnsshsswdnqcqctssatrnttkqvtpqpee



(WW0303)
qkerkttemqspmqpvdqaslpghcrepppweneateriyhfvvgqmvyyqcvqgyralhrgpaesvckmthgk




trwtqpqlictgemetsqfpgeekpqaspegrpesetsclvtttdfqiqtemaatmetsiftteyqggggsggggsgggg




sggggsggggsggggsSGGPGPAGMKGLPGSaptssstlthqlqlehllldlqmilnginnyknpkltrmlIf




kfympkkatelkhlqcleeelkpleevinlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfc




qsiistltSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFG




MSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNS




LRPEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggsggggsggggsggggsSG




GPGPAGMKGLPGSEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQ




APGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAV




YYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSL




SASVGDRVTITCKASQNVGTNVGWYQQKPGKAPKALIYSASFRYSGVPSRFSG




SGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKHHHHHH**





385
ACP306
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0304)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltSGGPGPAGMKGLPGSggggsggggs




ggggsggggsggggsggggselcdddppeiphatfkamaykegtmlnceckrgfrriksgslymktgnsshsswd




nqcqctssatrnttkqvtpqpeeqkerkttemqspmqpvdqaslpghcrepppweneateriyhfvvgqmvyyqcv




qgyralhrgpaesvckmthgktrwtqpqlictgemetsqfpgeekpqaspegrpesetsclvtttdfqiqtemaatmets




iftteyqSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFG




MSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNS




LRPEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggsggggsggggsggggsSG




GPGPAGMKGLPGSEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQ




APGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAV




YYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSL




SASVGDRVTITCKASQNVGTNVGWYQQKPGKAPKALIYSASFRYSGVPSRFSG




SGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKHHHHHH**




386ACP307EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSSGGPGPAGMKGLPGSfficlympldcatelkhlqcleeelkpleevinlaqsknfhlrpr




dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistitGGssstkktqlqlehllldlqmilnginnyknpkl




trmlSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMS




WVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLR




PEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggsggggsggggsggggsSGGP




GPAGMKGLPGSEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAP




GKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVY




YCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLS




ASVGDRVTITCKASQNVGTNVGWYQQKPGKAPKALIYSASFRYSGVPSRFSGS




GSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKHHHHHH**





387
ACP308
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAID




SSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDAL




DYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCK




ASQNVGTNVGWYQQKPGKAPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSL




QPEDFATYYCQQYYTYPYTFGGGTKVEIKSGGPGPAGMKGLPGSggggsggggsg




gggsggggsggggsggggsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVR




QAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDT




AVYYCTIGGSLSVSSQGTLVTVSSSGGPGPAGMKGLPGStfkfympkkatelkhlqcleee




lkpleevinlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltGGssstkktqlqle




hllldlqmilnginnyknpkltrmlSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLRLS




CAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDN




AKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSHHHHHH**






ACP309
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr


388
(WW0307)
dlisninvivlelkgsetlfmceyadetativeflnrwitfcqsiistltSGGPGPAGMKGLPGSEVQLVES




GGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTL




YAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVT




VSSggggsggggsggggsggggsggggsggggsSGGPGPAGMKGLPGSEVQLVESGGGLV




QPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRG




RFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVS




SGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKASQNVGTNVGWY




QQKPGKAPKSLIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQY




YTYPYTFGGGTKVEIKHHHHHH**





389
ACP310
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0308)
dlisninvivlelkgsetlfmceyadetativeflnrwitfcqsiistltSGGPGPAGMKGLPGSEVQLVES




GGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTL




YAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVT




VSSggggsggggsggggsggggsggggsggggsSGGPGPAGMKGLPGSEVQLVESGGGLV




QPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRG




RFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVS




SGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKASQNVGTNVGWY




QQKPGQAPRLLIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQY




YTYPYTFGGGTKVEIKHHHHHH**





390
ACP311
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0316)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltSGGPGPAGMKGLPGSeskygppcpp




cpapeflggpsvflfppkpkdtlmisrtpevtcvvvdvsqedpevqfnwyvdgvevhnaktkpreeqfnstyrvvsvl




tvlhqdwingkeykckvsnkglpssiektiskakgqprepqvytlppsqeemtknqvsltclvkgfypsdiavewesn




gqpennykttppvldsdgsfflysrltvdksrwqegnvfscsvmhealhnhytqkslslslgkggggsggggsggggs




ggggsggggsggggsSGGPGPAGMKGLPGSEVQLVESGGGLVQPGGSLRLSCAASG




FTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLY




LQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGG




GGSDIQMTQSPSSLSASVGDRVTITCKASQNVGTNVGWYQQKPGKAPKALIYS




ASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKV




EIKHHHHHH**





391
ACP312
eskygppcppcpapeflggpsvflfppkpkdtlmisrtpevtcvvvdvsqedpevqfnwyvdgvevhnaktkpree



(WW0317)
qfnstyrvvsyltvlhqdwhigkeykckvsnkglpssiektiskakgqprepqvytlppsqeemtknqvsltclvkgfy




psdiavewesngqpennyklippvldsdgsfflysrltvdksrwqegnvfscsvmhealhnhytqkslslslgkSGG




PGPAGMKGLPGSaptssstkktqlqlehllldlqmilnginnyknpkltrmltfklympkkatelkhlqcleeel




kpleevinlaqsknfblrprdlisninvivlelkgsellfmceyadetativeflnrwitfcqsiistliggggsggggsgggg




sggggsggggsggggsSGGPGPAGMKGLPGSEVQLVESGGGLVQPGGSLRLSCAASG




FTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLY




LQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGG




GGSDIQMTQSPSSLSASVGDRVTITCKASQNVGTNVGWYQQKPGKAPKALIYS




ASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKV




EIKHHHHHH**





392
ACP313
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0318)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltSGGPGPAGMKGLPGSggggsggggs




ggggsggggsggggsggggsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVR




QAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTA




VYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSS




LSASVGDRVTITCKASQNVGTNVGWYQQKPGKAPKALIYSASFRYSGVPSRFS




GSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKSGGPGPAGM




KGLPGSeskygppcppcpapeflggpsvflfppkpkdtlmisrtpevtcwvdvsqedpevqfnwyvdgvevh




naktkpreeqfnstyrvvsyltvlhqdwhigkeykckvsnkglpssiektiskakgqprepqvytlppsqeemtknqv




sliclvkgypsdiavewesngqpennyklippvldsdgsfflysrltvdksrwqegnvfscsvmhealhnhytqkslsl




slgIcHHHHHH**





393
ACP314
vprdcgckpcictypevssvfifppkpkdvltitltpkvtcwvdiskddpevqfswfvddvevhtaqtqpreeqfnslf



(WW0354)
rsyselpimhqdwingkefkcrynsaafpapiektisktkgrpkapqvytipppkeqmakdkvsltcmitclffpeditv




ewqwngqpaenykntqpimdtdgsyfyysklnvqksnweagnIftcsvlheglhnhhtekslshspgkSGGPG




PAGMKGLPGSaptssstIcktqlqlehllldlqmilnginnyknpkltrmlffidympkkatelkhlqcleeelkple




evinlaqsknfhlrprdlisninvivlelkgsetlfmceyadetativeflnrwilfcqsiistltggggsggggsggggsgg




ggsggggsggggsSGGPGPAGMKGLPGSEVQLVESGGGLVQPGGSLRLSCAASGFT




FSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQ




MNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGG




SDIQMTQSPSSLSASVGDRVTITCKASQNVGTNVGWYQQKPGKAPKALIYSAS




FRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEI




KHHHHHH**





394
ACP336
aptssstIcktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0414)
dlisninvivlelkgsetlfmceyadetativeflnrwilfcqsiistltsggpGPAGLYAQpgsEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGS




LRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISR




DNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSsggpG




PAGLYAQpgsDIQMTQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPGKA




PKsLIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTF




GGGTKVEIK**





395
ACP337
aptssstIcktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0415)
dlisninvivlelkgsetlfmceyadetativeflnrwilfcqsiistltsggpGPAGLYAQpgsEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGS




LRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISR




DNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGG




SGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPG




KAPKsLIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPY




TFGGGTKVEIK**





396
ACP338
aptssstIcktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0416)
dlisninvivlelkgsetlfmceyadetativeflnrwilfcqsiistltsggpGPAGLYAQpgsEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGS




LRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISR




DNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSsggpG




PAGLYAQpgsDIQMTQSPSSLSASVGDRVTITCKVTEKVWGNVAWYQQKPGK




APISLIYSPSLRKSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTF




GGGTKVEIK**





397
ACP339
aptssstIcktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0417)
dlisninvivlelkgsetlfmceyadetativeflnrwilfcqsiistltsggpGPAGLYAQpgsEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGS




LRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISR




DNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGG




SGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKVTEKVWGNVAWYQQKP




GKAPISLIYSPSLRKSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYP




YTFGGGTKVEIK**





398
ACP340
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0418)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsevqllesggglvqpggslrlscaasgsi




fsanamgwyrqapgkglelvavissggstnyadsvkgrftisrdnskntvylqmnslraedtavyycmysgsyyytp




ndywgqgtivtvss**





399
ACP341
aptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrpr



(WW0419)
dlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistltsggpGPAGLYAQpgsEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsevqllesggglvqpggslrlscaaseri




fstdvmgwyrqapgkqrelvavvsargttnyldavkgrftisrdnskntlylqmnslraedtavyycyvrettspwriy




wgqgtivtvss**





400
ACP342
elcdddppeiphatfkamaykegtmlnceckrgfrriksgslymlctgnsshsswdnqcqctssatrnttkqvtpqpee



(WW0420)
qkerkttemqspmqpvdqaslpghcrepppweneateriyhfvvgqmvyyqcvqgyralhrgpaesvckmthgk




trwtqpqlictgemetsqfpgeekpqaspegrpesetsSlvtdclfqiqtemaatmetsiftteyqggggsggggsgggg




sggggsggggsggggssggpGPAGLYAQpgsaptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfy




mpkkatelkhlqcleeelkpleevinlaqsknfhlrprdlisninvivlelkgsetlfmceyadetativeflnrwitfcqsii




stltsggpGPAGLYAQpgsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWV




RQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPED




TAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggsggggsggggsggggssggpGPAG




LYAQpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLE




WVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARD




SNWDALDYWGQGTTVTVSSsggpGPAGLYAQpgsDIQMTQSPSSLSASVGDRVT




ITCKAREKLWSAVAWYQQKPGKAPKsLIYSASFRYSGVPSRFSGSGSGTDFTLT




ISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIK**





401
ACP343
elcdddppeiphatfkamaykegtmlnceckrgfrriksgslymlctgnsshsswdnqcqctssatrnttkqvtpqpee



(WW0421)
qkerkttemqspmqpvdqaslpghcrepppweneateriyhfvvgqmvyyqcvqgyralhrgpaesvckmthgk




trwtqpqlictgemetsqfpgeekpqaspegrpesetsSlvtdclfqiqtemaatmetsiftteyqggggsggggsgggg




sggggsggggsggggssggpGPAGLYAQpgsaptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfy




mpkkatelkhlqcleeelkpleevinlaqsknfhlrprdlisninvivlelkgsetlfmceyadetativeflnrwitfcqsii




stltsggpGPAGLYAQpgsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWV




RQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPED




TAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggsggggsggggsggggssggpGPAG




LYAQpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLE




WVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARD




SNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGD




RVTITCKAREKLWSAVAWYQQKPGKAPKsLIYSASFRYSGVPSRFSGSGSGTD




FTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIK**





402
ACP344
elcdddppeiphatfkamaykegtmlnceckrgfrriksgslymlctgnsshsswdnqcqctssatrnttkqvtpqpee



(WW0422)
qkerkttemqspmqpvdqaslpghcrepppweneateriyhfvvgqmvyyqcvqgyralhrgpaesvckmthgk




trwtqpqlictgemetsqfpgeekpqaspegrpesetsSlvtdclfqiqtemaatmetsiftteyqggggsggggsgggg




sggggsggggsggggssggpGPAGLYAQpgsaptssstkktqlqlehllldlqmilnginnyknpkltrmilfkfy




mpkkatelkhlqcleeelkpleevinlaqsknfhlrprdlisninvivlelkgsetlfmceyadetativeflnrwitfcqsii




stltsggpGPAGLYAQpgsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWV




RQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPED




TAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggsggggsggggsggggssggpGPAG




LYAQpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLE




WVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARD




SNWDALDYWGQGTTVTVSSsggpGPAGLYAQpgsDIQMTQSPSSLSASVGDRVT




ITCKVTEKVWGNVAWYQQKPGKAPISLIYSPSLRKSGVPSRFSGSGSGTDFTLT




ISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIK**





403
ACP345
elcdddppeiphatfkamaykegtmlnceckrgfrriksgslymlctgnsshsswdnqcqctssatrnttkqvtpqpee



(WW0423)
qkerkttemqspmqpvdqaslpghcrepppweneateriyhfvvgqmvyyqcvqgyralhrgpaesvckmthgk




trwtqpqlictgemetsqfpgeekpqaspegrpesetsSlvtdclfqiqtemaatmetsiftteyqggggsggggsgggg




sggggsggggsggggssggpGPAGLYAQpgsaptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfy




mpkkatelkhlqcleeelkpleevinlaqsknfblrprdlisninvivlelkgsetlfmceyadetativeflnrwilleqsii




stltsggpGPAGLYAQpgsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWV




RQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPED




TAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggsggggsggggsggggssggpGPAG




LYAQpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLE




WVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARD




SNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGD




RVTITCKVTEKVWGNVAWYQQKPGKAPISLIYSPSLRKSGVPSRFSGSGSGTD




FTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIK**





404
ACP346
elcdddppeiphatflcamaykegtmlnceckrgfrriksgslymktgnsshsswdnqcqctssatrnttkqvtpqpee



(WW0424)
qkerkttemqspmqpvdqaslpghcrepppweneateriyhfvvgqmvyyqcvqgyralhrgpaesvckmthgk




trwtqpqlictgemetsqfpgeekpqaspegrpesetsSlvtttclfqiqtemaatmetsiftteyqggggsggggsgggg




sggggsggggsggggssggpGPAGLYAQpgsaptsssticktqlqlehllldlqmilnginnyknpkltrmilflcfy




mpkkatelkhlqcleeelkpleevinlaqsknfblrprdlisninvivlelkgsetlfmceyadetativeflnrwilleqsii




stltsggpGPAGLYAQpgsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWV




RQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPED




TAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggsggggsggggsggggssggpGPAG




LYAQpgsevqllesggglvqpggslrlscaasgsifsanamgwyrqapgkglelvavissggstnyadsvkgrftisr




dnskntvylqmnslraedtavyycmysgsyyytpndywgqgtivtvss**





405
ACP347
elcdddppeiphatflcamaykegtmlnceckrgfrriksgslymktgnsshsswdnqcqctssatrnttkqvtpqpee



(WW0425)
qkerkttemqspmqpvdqaslpghcrepppweneateriyhfvvgqmvyyqcvqgyralhrgpaesvckmthgk




trwtqpqlictgemetsqfpgeekpqaspegrpesetsSlvtttclfqiqtemaatmetsiftteyqggggsggggsgggg




sggggsggggsggggssggpGPAGLYAQpgsaptsssticktqlqlehllldlqmilnginnyknpkltrmilflcfy




mpkkatelkhlqcleeelkpleevinlaqsknfblrprdlisninvivlelkgsetlfmceyadetativeflnrwilleqsii




stltsggpGPAGLYAQpgsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWV




RQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPED




TAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsggggsggggsggggsggggssggpGPAG




LYAQpgsevqllesggglvqpggslrlscaaserifstdvmgwyrqapgkqrelvavvsargttnyldavkgrftisrd




nskntlylqmnslraedtavyycyvrettspwriywgqgilvtvss**





406
ACP348
eskygppcppcpapeflggpsvflfppkpkdtlmisrtpevtcvvvdvsqedpevqfnwyvdgvevhnaktkpree



(WW0426)
qfnstyrvvsyltvlhqdwhigkeykcicvsnkglpssiektiskakgqprepqvytlppsqeemilmqvsltclvkgfy




psdiavewesngqpennykappvldsdgsfflysrltvdksrwqegnvfscsvmhealhnhytqkslslslgksggp




GPAGLYAQpgsaptsssticktqlqlehllldlqmilnginnyknpkltrmltfkfympldcatelkhlqcleeelkpl




eevinlaqsknfhlrprdlisninvivlelkgsetlfmceyadetativeflnrwitfcqsiistliggggsggggsggggsgg




ggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFS




SYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQM




NSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSsggpGPAGLYAQpgsDIQ




MTQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPGKAPKsLIYSASFRYS




GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIK**





407
ACP349
eskygppcppcpapeflggpsvflfppkpkdtlmisrtpevtcvvvdvsqedpevqfnwyvdgvevhnaktkpree



(WW0427)
qfnstyrvvsyltvlhqdwhigkeykcicvsnkglpssiektiskakgqprepqvytlppsqeemilmqvsltclvkgfy




psdiavewesngqpennykappvldsdgsfflysrltvdksrwqegnvfscsvmhealhnhytqkslslslgksggp




GPAGLYAQpgsaptsssticktqlqlehllldlqmilnginnyknpkltrmilfklympldcatelkhlqcleeelkpl




eevinlaqsknfhlrprdlisninvivlelkgsetlfmceyadetativeflnrwitfcqsiistliggggsggggsggggsgg




ggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFS




SYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQM




NSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGS




DIQMTQSPSSLSASVGDRVTITCKAREKLWSAVAWYQQKPGKAPKsLIYSASF




RYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIK




**





408
ACP350
eskygppcppcpapeflggpsvflfppkpkdtlmisrtpevtcvvvdvsqedpevqfnwyvdgvevhnaktkpree



(WW0428)
qfnstyrvvsyltvlhqdwhigkeykcicvsnkglpssiektiskakgqprepqvytlppsqeemilmqvsltclvkgfy




psdiavewesngqpennykappvldsdgsfflysrltvdksrwqegnvfscsvmhealhnhytqkslslslgksggp




GPAGLYAQpgsaptsssticktqlqlehllldlqmilnginnyknpkltrmltfkfympldcatelkhlqcleeelkpl




eevinlaqsknfhlrprdlisninvivlelkgsetlfmceyadetativeflnrwitfcqsiistliggggsggggsggggsgg




ggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFS




SYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQM




NSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSsggpGPAGLYAQpgsDIQ




MTQSPSSLSASVGDRVTITCKVTEKVWGNVAWYQQKPGKAPISLIYSPSLRKS




GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIK**





409
ACP351
eskygppcppcpapeflggpsvflfppkpkdtlmisrtpevtcvvvdvsqedpevqfnwyvdgvevhnaktkpree



(WW0429)
qfnstyrvvsyltvlhqdwhigkeykckvsnkglpssiektiskakgqprepqvytlppsqeemilmqvsltclvkgfy




psdiavewesngqpennykttppvldsdgsfflysrltvdksrwqegnvfscsvmhealhnhytqkslslslgksggp




GPAGLYAQpgsaptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympldcatelkhlqcleeelkpl




eevinlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistliggggsggggsggggsgg




ggsggggsggggssggpGPAGLYAQpgsEVQLVESGGGLVQPGGSLRLSCAASGFTFS




SYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQM




NSLRAEDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGS




DIQMTQSPSSLSASVGDRVTITCKVTEKVWGNVAWYQQKPGKAPISLIYSPSL




RKSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIK




**





410
ACP352
eskygppcppcpapeflggpsvflfppkpkdtlmisrtpevtcvvvdvsqedpevqfnwyvdgvevhnaktkpree



(WW0430)
qfnstyrvvsyltvlhqdwhigkeykckvsnkglpssiektiskakgqprepqvytlppsqeemilmqvsltclvkgfy




psdiavewesngqpennykttppvldsdgsfflysrltvdksrwqegnvfscsvmhealhnhytqkslslslgksggp




GPAGLYAQpgsaptssstkktqlqlehllldlqmilnginnyknpkltrmltfklympldcatelkhlqcleeelkpl




eevinlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistliggggsggggsggggsgg




ggsggggsggggssggpGPAGLYAQpgsevqllesggglvqpggslrlscaasgsifsanamgwyrqapgkgl




elvavissggstnyadsvkgrftisrdnskntvylqmnslraedtavyycmysgsyyytpndywgqgtivtvss**





411
ACP353
eskygppcppcpapeflggpsvflfppkpkdtlmisrtpevtcvvvdvsqedpevqfnwyvdgvevhnaktkpree



(WW0431)
qfnstyrvvsyltvlhqdwhigkeykckvsnkglpssiektiskakgqprepqvytlppsqeemilmqvsltclvkgfy




psdiavewesngqpennykttppvldsdgsfflysrltvdksrwqegnvfscsvmhealhnhytqkslslslgksggp




GPAGLYAQpgsaptssstkktqlqlehllldlqmilnginnyknpkltrmltfkfympldcatelkhlqcleeelkpl




eevinlaqsknfhlrprdlisninvivlelkgsettfmceyadetativeflnrwitfcqsiistliggggsggggsggggsgg




ggsggggsggggssggpGPAGLYAQpgsevqllesggglvqpggslrlscaaserifstdvmgwyrqapgkqr




elvavvsargttnyldavkgrftisrdnskntlylqmnslraedtavyycyvrettspwriywgqgtivtvss**





412
ACP354
eskygppcppcpapeflggpsvflfppkpkdtlmisrtpevtcvvvdvsqedpevqfnwyvdgvevhnaktkpree



(WW0432)
qfnstyrvvsyltvlhqdwhigkeykckvsnkglpssiektiskakgqprepqvytlppsqeemilmqvsltclvkgfy




psdiavewesngqpennykttppvldsdgsfflysrltvdksrwqegnvfscsvmhealhnhytqkslslslgksggp




GPAGLYAQpgselcdddppeiphalfkamaykegtmlnceckrgfrriksgslymlctgnsshsswdnqcqcts




satrnttkqvtpqpeeqkerkttemqspmqpvdqaslpghcrepppweneateriyhfvvgqmvyyqcvqgyralh




rgpaesvckmthgktrwtqpqlictgemetsqfpgeekpqaspegrpesetsSlvtddfqiqtemaatmetsiftteyq




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsaptssstkktqlqlehllldlqmilngin




nyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfblrprdlisninvivlelkgsettfmceyadet




ativeflnrwitfcqsiistliggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsEVQLV




ESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTY




SPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQ




GTTVTVSSsggpGPAGLYAQpgsDIQMTQSPSSLSASVGDRVTITCKAREKLWSA




VAWYQQKPGKAPKsLIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATY




YCQQYYTYPYTFGGGTKVEIK**





413
ACP355
eskygppcppcpapeflggpsvflfppkpkdtlmisrtpevtcvvvdvsqedpevqfnwyvdgvevhnaktkpree



(WW0433)
qfnstyrvvsyltvlhqdwhigkeykckvsnkglpssiektiskakgqprepqvytlppsqeemilmqvsltclvkgfy




psdiavewesngqpennykttppvldsdgsfflysrltvdksrwqegnvfscsvmhealhnhytqkslslslgksggp




GPAGLYAQpgselcdddppeiphalfkamaykegtmlnceckrgfrriksgslymlctgnsshsswdnqcqcts




satrnttkqvtpqpeeqkerkttemqspmqpvdqaslpghcrepppweneateriyhfvvgqmvyyqcvqgyralh




rgpaesvckmthgktrwtqpqlictgemetsqfpgeekpqaspegrpesetsSlvtddfqiqtemaatmetsiftteyq




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsaptssstkktqlqlehllldlqmilngin




nyknpkltrmltfkfympkkatelkhlqcleeelkpleevinlaqsknfhlrprdlisninvivlelkgsettfmceyadet




ativeflnrwitfcqsiistliggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsEVQLV




ESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTY




SPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQ




GTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKAREKLW




SAVAWYQQKPGKAPKsLIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFAT




YYCQQYYTYPYTFGGGTKVEIK**





414
ACP356
eskygppcppcpapeflggpsvflfppkpkdtlmisrtpevtcvvvdvsqedpevqfnwyvdgvevhnaktkpree



(WW0434)
qfnstyrvvsyltvlhqdwhigkeykckvsnkglpssiektiskakgqprepqvytlppsqeemtknqvsltclvkgfy




psdiavewesngqpennykappvldsdgsfflysrltvdksrwqegnvfscsvmhealhnhytqkslslslgksggp




GPAGLYAQpgselcdddppeiphalfkamaykegtmlnceckrgfrriksgslymlctgnsshsswdnqcqcts




satrnttkqvtpqpeeqkerkttemqspmqpvdqaslpghcrepppweneateriyhfvvgqmvyyqcvqgyralh




rgpaesvclunthgktrwtqpqlictgemetsqfpgeekpqaspegrpesetsSlytttdfqiqtemaatmetsiftteyq




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsaptssstkktqlqlehllldlqmilngin




nyknpkltrmlfficfympldcatelkhlqcleeelkpleevinlaqsknfhlrprdlisninvivlelkgsettfmceyadet




ativeflnrwitfcqsiistltggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsEVQLV




ESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTY




SPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQ




GTTVTVSSsggpGPAGLYAQpgsDIQMTQSPSSLSASVGDRVTITCKVTEKVWGN




VAWYQQKPGKAPISLIYSPSLRKSGVPSRFSGSGSGTDFTLTISSLQPEDFATYY




CQQYYTYPYTFGGGTKVEIK**





415
ACP357
eskygppcppcpapeflggpsvflfppkpkdtlmisrtpevtcvvvdvsqedpevqfnwyvdgvevhnaktkpree



(WW0435)
qfnstyrvvsyltvlhqdwhigkeykckvsnkglpssiektiskakgqprepqvytlppsqeemtknqvsltclvkgfy




psdiavewesngqpennykappvldsdgsfflysrltvdksrwqegnvfscsvmhealhnhytqkslslslgksggp




GPAGLYAQpgselcdddppeiphalfkamaykegtmlnceckrgfrriksgslymlctgnsshsswdnqcqcts




satrnttkqvtpqpeeqkerkttemqspmqpvdqaslpghcrepppweneateriyhfvvgqmvyyqcvqgyralh




rgpaesvclunthgktrwtqpqlictgemetsqfpgeekpqaspegrpesetsSlytttdfqiqtemaatmetsiftteyq




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsaptssstkktqlqlehllldlqmilngin




nyknpkltrmlfficfympkkatelkhlqcleeelkpleevinlaqsknfhlrprdlisninvivlelkgsettfmceyadet




ativeflnrwitfcqsiistltggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsEVQLV




ESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTY




SPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQ




GTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKVTEKV




WGNVAWYQQKPGKAPISLIYSPSLRKSGVPSRFSGSGSGTDFTLTISSLQPEDF




ATYYCQQYYTYPYTFGGGTKVEIK**





416
ACP358
eskygppcppcpapeflggpsvflfppkpkdtlmisrtpevtcvvvdvsqedpevqfnwyvdgvevhnaktkpree



(WW0436)
qfnstyrvvsyltvlhqdwhigkeykckvsnkglpssiektiskakgqprepqvytlppsqeemtknqvsltclvkgfy




psdiavewesngqpennykappvldsdgsfflysrltvdksrwqegnvfscsvmhealhnhytqkslslslgksggp




GPAGLYAQpgselcdddppeiphalfkamaykegtmlnceckrgfrriksgslymlctgnsshsswdnqcqcts




satrnttkqvtpqpeeqkerkttemqspmqpvdqaslpghcrepppweneateriyhfvvgqmvyyqcvqgyralh




rgpaesvclunthgktrwtqpqlictgemetsqfpgeekpqaspegrpesetsSlytttdfqiqtemaatmetsiftteyq




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsaptssstkktqlqlehllldlqmilngin




nyknpkltrmlfficfympldcatelkhlqcleeelkpleevinlaqsknfhlrprdlisninvivlelkgsettfmceyadet




ativeflnrwitfcqsiistltggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsevqllesg




gglvqpggslrlscaasgsifsanamgwyrqapgkglelvavissggstnyadsvkgrftisrdnskntvylqmnslrae




dtavyycmysgsyyytpndywgqgtivtvss**





417
ACP359
eskygppcppcpapeflggpsvflfppkpkdtlmisrtpevtcvvvdvsqedpevqfnwyvdgvevhnaktkpree



(WW0437)
qfnstyrvvsyltvlhqdwhigkeykckvsnkglpssiektiskakgqprepqvytlppsqeemtknqvsltclvkgfy




psdiavewesngqpennykappvldsdgsfflysrltvdksrwqegnvfscsvmhealhnhytqkslslslgksggp




GPAGLYAQpgselcdddppeiphatfkamaykegtmlnceckrgfrriksgslymlctgnsshsswdnqcqcts




satrnttkqvtpqpeeqkerkttemqspmqpvdqaslpghcrepppweneateriyhfvvgqmvyyqcvqgyralh




rgpaesvclunthgktrwtqpqlictgemetsqfpgeekpqaspegrpesetsSlytttdfqiqtemaatmetsiftteyq




ggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsaptssstkktqlqlehllldlqmilngin




nyknpkltrmlfficfympldcatelkhlqcleeelkpleevinlaqsknfhlrprdlisninvivlelkgsettfmceyadet




ativeflnrwitfcqsiistltggggsggggsggggsggggsggggsggggssggpGPAGLYAQpgsevqllesg




gglvqpggslrlscaaserifstdvmgwyrqapgkqrelvavvsargttnyldavkgrftisrdnskntlylqmnslraed




tavyycyvrettspwriywgqgtivtvss**





418
ACP360
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAID



(WW0438)
SSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDAL




DYWGQGTTVTVSSggggsggggsggggsDIQMTQSPSSLSASVGDRVTITCKASQNV




GTNVGWYQQKPGKAPKsLIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDF




ATYYCQQYYTYPYTFGGGTKVEIKHHHHHH**





419
ACP361
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAID



(WW0439)
SSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDAL




DYWGQGTTVTVSSsggpGPAGLYAQpgsDIQMTQSPSSLSASVGDRVTITCKASQ




NVGTNVGWYQQKPGKAPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPE




DFATYYCQQYYTYPYTFGGGTKVEIKHHHHHH**





420
ACP362
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAID



(WW0440)
SSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDAL




DYWGQGTTVTVSSsggpGPAGLYAQpgsDIQMTQSPSSLSASVGDRVTITCKASQ




NVGTNVGWYQQKPGKAPKsLIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPE




DFATYYCQQYYTYPYTFGGGTKVEIKHHHHHH**





421
ACP200
lveepknlyktncdlyeklgeygfqnailvlytqkapqvstptiveaarnlgrvgtkcctlpedqrlpcvedylsailnrycl




lhektpvsehytkccsgslverrpcfsaltvdetyvpkefkaaftfhsdictlpekekqikkqtalaelvkhkpkataeqlk




tvmdclfaqfldtcckaadkdtcfstegpnlvtrckdalaSGGPGPAGMKGLPGScdlpqthnlinkraltllyq




mrrlsplsclkdrkclfgfpqekvdaqqikkaqaipvlseltqqilniftskdssaawnttlldsfcndlhqqlndlqgclmq




qvgvqefpltqedallavrkyfhrityylrelcichspcawevvraevwralsssanylgrlreekSGGPGPAGMK




GLPGSlveepknlyktncdlyeklgeygfqnailvrytqkapqvstptiveaarnlgrvgtkcctlpedqrlpcvedyl




sailnrycllhektpvsehytkccsgslverrpcfsaltvdetyvpkefkaelftihsdictlpekekqikkqtalaelvklikp




kataeqlktvmddfaqfldtcckaadkdtcfstegpnlvtrckdalaHHHHHH**





422
ACP201
eahkseialuyndlgeqhfkglvliafsqylqkcsydehaklvqevtdfaktcvadesaancdkslhtlfgdklcaipnlr




enygeladcctkqepernecflqhkddnpslppferpeaeamctsfkenptlfmghylhevarrhpyfyapellyyaeq




yneiltqccaeadkescltpkldgykekalvssvrqGGGGSGGGGSGGSlveepknlyktncdlyeklgeygf




qnailvlytqkapqvstptiveaarnlgrvgtkcctlpedqrlpcvedylsailnrycllhektpvsehytkccsgslverrp




cfsaltvdetyvpkefkaallfhsdictlpekekqikkqtalaelvklikpkataeqlktvmddfaqfldtcckaadkdtcf




stegpnlvtrckdalaSGGPGPAGMKGLPGScdlpqtlmlinkraltllvqmrrlsplsclkdrkdfgfpqekv




daqqikkagaipvlseltqqilniftskdssaawnifildsfcndlhqqlndlqgclmqqvgvqefpltqedallavrkyfh




rityylrekkhspcawevvraevwralsssanylgrlreekSGGPGPAGMKGLPGSeahkseialllyndlge




qhflcglvliafsqylqkcsydehaklvqevtclfaktcvadesaancdkslhtlfgdklcaipnlrenygeladcctkqepe




rnecflqhkddnpslppferpeaeamctsfkenptlfmghylhevarrhpyfyapellyyaeqyneiltqccaeadkes




cltpkldgykekalvssvrqGGGGSGGGGSGGSlveepknlyktncdlyeklgeygfqnailviytqkapqvs




tptiveaarnlgrvgtkcctlpedqrlpcvedylsailnrycllhektpvsehytkccsgslverrpcfsaltvdetyvpkefk




aelltihsdictlpekekqikkqtalaelvklikpkataeqlktvmddfaqfldtcckaadkdtcfstegpnlvtrckdalaH




HHHHH**





423
ACP202
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSggggsgggSGGPGPAGMKGLPGSggggsgggscdlpqamlinkraltllvqmrrls




plsclkdrkclfgfpqekvdaqqikkagaipvlseltqqilniftskdssaawnttlldsfcndlhqqlndlqgclmqqvgv




qefpltqedallavrkyfhrityylrelcichspcawevvraevwralsssanylgrlreekggggsgggSGGPGPAG




MKGLPGSggggsgggsEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVR




QAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDT




AVYYCTIGGSLSVSSQGTLVTVSSHHHHHH**





424
ACP203
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgscdlpqtlmlinkraltllvqmrrlsplsclkdrkdfgfpqekvdaq




qikkagaipvlseltqqilniftskdssaawnifildsfcndlhqqlndlqgclmqqvgvqefpltqedallavrkyfhritv




ylrelcichspcawevvraevwralsssanylgrlreeksggpGPAGLYAQpgsEVQLVESGGGLVQP




GNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKG




RFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS**





425
ACP204
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgscdlpqthnlinkraltllvqmrrlsplsclkdrkdfgfpqekvdaqqi




klcaqaipvlseltqqilniftskdssaawnttlldsfcndlhqqlndlqgclmqqvgvqefpltqedallavrkyfhrityyl




rekkhspcawevvraevwralsssanylgrlreeksggpALFKSSFPpgsEVQLVESGGGLVQPGNS




LRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTI




SRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS**





426
ACP205
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpPLAQKLKSSpgscdlpqthnlinkraltllvqmrrlsplsclkdrkdfgfpqekvdaq




qikkagaipvlseltqqilniftskdssaawnifildsfcndlhqqlndlqgclmqqvgvqefpltqedallavrkyfhritv




ylrelcichspcawevvraevwralsssanylgrlreeksggpPLAQKLKSSpgsEVQLVESGGGLVQP




GNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKG




RFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS**





427
ACP206
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgscdlpqthslgsrrtlmllaqmrrislfsclkdrhdfgfpqeefgnqf




qkaetipvlhemiqqifnlfstkdssaawdetlldkfytelyqqlndleacviqgvgvtetplmkedsilavrkyfqritlyl




kekkyspcawevvraeimrsfslstnlqesliskesggpGPAGLYAQpgsEVQLVESGGGLVQPGN




SLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFT




ISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS**





428
ACP207
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgscdlpqthslgsrrtlmllaqmrrislfsclkdrhdfgfpqeefgnqfq




kaetipvlhemiqqifnlfstkdssaawdetlldkfytelyqqlndleacviqgvgvtetplmkedsilavrkyfqritlylk




ekkyspcawevvraeimrsfslstnlqesliskesggpALFKSSFPpgsEVQLVESGGGLVQPGNSL




RLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTIS




RDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS**





429
ACP208
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpPLAQKLKSSpgscdlpqthslgsrrtlmllaqmrrislfsclkdrhdfgfpqeefgnqf




qkaetipvlhemiqqifnlfstkdssaawdetlldkfytelyqqlndleacviqgvgvtetplmkedsilavrkyfqritlyl




kekkyspcawevvraeimrsfslstnlqesliskesggpPLAQKLKSSpgsEVQLVESGGGLVQPG




NSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRF




TISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS**





430
ACP211
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSSGGPGPAGMKGLPGShgtviesleslnnyfnssgidveekslfldiwrnwqkdgdm




kilqsqiisfylrlfevlkdnqaisnnisvieshlittffsnskakkdafmsiakfevnnpqvqrqafnelirvvhqllpesslr




krkrsrcSGGPGPAGMKGLPGScdlpqthnlinkraltllvqmrrlsplsclkdrkclfgfpqekvdaqqikka




qaipvlseltqqilniftskdssaawnttlldsfcndlhqqlndlqgclmqqvgvqefpltqedallavrkyfhritvylrek




khspcawevvraevwralsssanvlgrlreekSGGPGPAGMKGLPGShgtviesleslnnyfnssgidveek




slfldiwrnwqkdgdmkilqsqiisfylrlfevlkdnqaisnnisvieshlittffsnskaldcdafmsiakfevnnpqvqr




qafnelirvvhqllpesshkrkrsrcSGGPGPAGMKGLPGSEVQLVESGGGLVQPGNSLRLS




CAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISRDN




AKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSHHHHHH





431
ACP213
lveepknlvktncdlyeklgeygfqnailviytqkapqvstptiveaarnlgrvgtkcctlpedqrlpcvedylsailnrvcl




lhektpvsehytkccsgslverrpcfsaltvdetyvpkefkaelftfhsdictlpekekqikkqtalaelvkhkpkataeqlk




tvmdclfaqfldtcckaadkdtcfstegpnlvtrckdalaSGGPGPAGMKGLPGShgtviesleslnnyfnssgi




dveekslfldiwrnwqkdgdmkilqsqiisfylrlfevlkdnqaisnnisvieshlittffsnskaldcdafmsiakfevnn




pqvqrqafnelirvvhqllpesshkrkrsrcSGGPGPAGMKGLPGSlveepknlvktncdlyeklgeygfqn




ailvlytqkapqvstptiveaarnlgrvgtkcctlpedqrlpcvedylsailnrycllhektpvsehvtkccsgslverrpcfs




altvdetyvpkefkaelft-fhsdictlpekekqikkqtalaelvklikpkataeqlktvmddfaqfldtcckaadkdtcfste




gpnlvtrckdalaSGGPGPAGMKGLPGShgtviesleslnnyfnssgidveekslfldiwrnwqkdgdmkil




qsqiisfylrlfevlkdnqaisnnisvieshlittffsnskakkdafmsiakfevnnpqvqrqafnelirvvhqllpesshkr




krsrcSGGPGPAGMKGLPGSlveepknlvktncdlyeklgeygfqnailviytqkapqvstptiveaarnlgr




vgtkcctlpedqrlpcvedylsailnrycllhektpvsehvtkccsgslverrpcfsaltvdetyvpkefkaelftfhsdictl




pekekqikkqtalaelvklikpkataeqlktvmddfaqfldtcckaadkdtcfstegpnlvtrckdalaHHHHHH**





432
ACP214
eahkseialllyndlgeqhflcglvliafsqylqkcsydehaklvqevtdfaktcvadesaancdkslhtlfgdklcaipnlr




enygeladcctkqepernecflqhkddnpslppferpeaeamctsfkenpttfmghylhevarrhpyfyapellyyaeq




yneiltqccaeadkescltpkldgvkekalvssvrqGGGGSGGGGSGGSlveepknlvktncdlyeklgeygf




qnailvlytqkapqvstptiveaarnlgrvgtkcctlpedqrlpcvedylsailnrycllhektpvsehytkccsgslverrp




cfsaltvdetyvpkefkaetflfhsdictlpekekqikkqtalaelvkhkpkataeqlktvmddfaqfldtcckaadkdtcf




stegpnlvtrckdalaSGGPGPAGMKGLPGShgtviesleslnnyfnssgidveekslfldiwrnwqkdgdm




kilqsqiisfylrlfevlkdnqaisnnisvieshlittffsnskakkdafmsiakfevnnpqvqrqafnelirvvhqllpesslr




krkrsrcSGGPGPAGMKGLPGSeahkseialuyndlgeqhfkglvliafsqylqkcsydehaklvqevtdfa




ktcvadesaancdkslhtlfgdklcaipnlrenygeladcctkqepernecflqhkddnpslppferpeaeamctsfken




pttfmghylhevarrhpyfyapellyyaeqyneiltqccaeadkescltpkldgvkekalvssvrqGGGGSGGGG




SGGSlveepknlvktncdlyeklgeygfqnailviytqkapqvstptiveaarnlgrvgtkcctlpedqrlpcvedylsa




ilnrycllhektpvsehytkccsgslverrpcfsaltvdetyvpkefkaelftfhsdictlpekekqikkqtalaelvkhkpk




ataeqlktvmddfaqfldtcckaadkdtcfstegpnlvtrckdalaSGGPGPAGMKGLPGShgtviesleslnn




yfnssgidveekslfldiwrnwqkdgdmkilqsqiisfylrlfevlkdnqaisnnisvieshlittffsnskakkdafmsia




kfevnnpqvqrqafnelirvvhqllpesslrlukrsrcSGGPGPAGMKGLPGSeahkseiahryndlgeqhflc




glvliafsqylqkcsydehaklvqevtdfaktcvadesaancdkslhtlfgdklcaipnlrenygeladcctkqepernec




flqhkddnpslppferpeaeamctsfkenptlfmghylhevarrhpyfyapellyyaeqyneiltqccaeadkescltpk




ldukekalvssvrqGGGGSGGGGSGGSlveepknlvktncdlyeklgeygfqnailviytqkapqvstptiv




eaarnlgrvgtkcctlpedqrlpcvedylsailnrycllhektpvsehytkccsgslverrpcfsaltvdetyvpkefkaelft




fhsdictlpekekqikkqtalaelvkhkpkataeqlktvmddfaqfldtcckaadkdtcfstegpnlvtrckdalaHHH




HHH**





433
ACP215
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSggggsgggSGGPGPAGMKGLPGSggggsgggshgtviesleslnnyfnssgidvee




kslfldiwrnwqkdgdmkilqsqiisfylrlfevlkdnqaisnnisvieshlittffsnskakkdafmsiakfevnnpqvq




rqafnelirvvhqllpesshkrkrsrcggggsgggSGGPGPAGMKGLPGSggggsgggsEVQLVESG




GGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLY




AESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTV




SSggggsgggSGGPGPAGMKGLPGSggggsgggshgtviesleslnnyfnssgidveekslfldiwrnwq




kdgdmkilqsqiisfylrlfevlkdnqaisnnisvieshlitlffsnskaldcdafmsiakfevnnpqvqrqafneffivvhq




llpesshkrkrsrcggggsgggSGGPGPAGMKGLPGSggggsgggsEVQLVESGGGLVQPGN




SLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFT




ISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSHHHHHH*




*





434
ACP240
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSggggsggggsggggsiwelkkdvyvveldwypdapgemvvltcdtpeedgitwtldqssevl




gsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwlttistd




llfsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssffirdi




ikpdppknlqlkplknsrqvevsweypdtwstphsyfsitfcvqvqgkskrekkdrvftdkisatvicrknasisvraqd




iyyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrnllkttddmvktareklkhysctaedidhedi




trdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqiildkg




mlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstryvtimvmgylssaggggsggggsggggsg




gggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNT




VKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAEDEAD




YYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVVQPGR




SLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYDGSNKYYADSVKGR




FTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVSSHHH




HHH





435
ACP241
EAHKSEIAHRYNDLGEQHFKGLVLIAFSQYLQKCSYDEHAKLVQEVTDFAKT




CVADESAANCDKSLHTLFGDKLCAIPNLRENYGELADCCTKQEPERNECFLQH




KDDNPSLPPFERPEAEAMCTSFKENPTTFMGHYLHEVARRHPYFYAPELLYYA




EQYNEILTQCCAEADKESCLTPKLDGVKEKALVSSVRQRMKCSSMQKFGERA




FKAWAVARLSQTFPNADFAEITKLATDLTKVNKECCHGDLLECADDRAELAK




YMCENQATISSKLQTCCDKPLLKKAHCLSEVEHDTMPADLPAIAADFVEDQE




VCKNYAEAKDVFLGTFLYEYSRRHPDYSVSLLLRLAKKYEATLEKCCAEANP




PACYGTVLAEFQPLVEEPKNLVKTNCDLYEKLGEYGFQNAILVRYTQKAPQV




STPTLVEAARNLGRVGTKCCTLPEDQRLPCVEDYLSAILNRVCLLHEKTPVSE




HVTKCCSGSLVERRPCFSALTVDETYVPKEFKAETFTFHSDICTLPEKEKQIKK




QTALAELVKHKPKATAEQLKTVMDDFAQFLDTCCKAADKDTCFSTEGPNLVT




RCKDALASGGPGPAGMKGLPGSiwelkkdvyvveldwypdapgemvvitcdtpeedgitwadqs




sevlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwltt




istdltfsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf




firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisv




raqthyyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrifilkttddmvktareklkhysctaedi




dheditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqi




ildkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstryvtinrvmgylssaSGGPGPAG




MKGLPGSggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGS




RSNIGSNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGL




QAEDEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGG




GVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYDGSNKYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMV




TVSSHHHHHH**





436
ACP242
iwelkkdvyvveldwypdapgemvvitcdtpeedgitwtldqssevlgsgktltiqvkefgdagqytchkggevlshs




llllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwlttistdltfsvkssrgssdpqgvtcgaatlsaervrgd




nkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssffirdiikpdppknlqlkplknsrqvevsweypdt




wstphsyfsltkvqvqgkskrekkdivftdktsatvicrknasisvraqchyyssswsewasvpcsggggsggggsgg




ggsrvipvsgparclsqsrnllkttddmvktareklkhysctaedidheditrdqtstlktclplelhknesclatretss




ttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqiildkgmlvaidelmqslnhngetlrqkppvgead




pyrvkmklcillhafstryvtinrvmgylssaSGGPGPAGMKGLPGSggggsggggsggggsggggsggg




gsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQLPGTAPKLLI




YYNDQRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLF




GTGTKVTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG




MHWVRQAPGKGLEWVAFIRYDGSNKYYADSVKGRFTISRDNSKNTLYLQMN




SLRAEDTAVYYCKTHGSHDNWGQGTMVTVSSSGGPGPAGMKGLPGSEAHKS




EIAHRYNDLGEQHFKGLVLIAFSQYLQKCSYDEHAKLVQEVTDFAKTCVADE




SAANCDKSLHTLFGDKLCAIPNLRENYGELADCCTKQEPERNECFLQHKDDNP




SLPPFERPEAEAMCTSFKENPTTFMGHYLHEVARRHPYFYAPELLYYAEQYNE




ILTQCCAEADKESCLTPKLDGVKEKALVSSVRQRMKCSSMQKFGERAFKAWA




VARLSQTFPNADFAEITKLATDLTKVNKECCHGDLLECADDRAELAKYMCEN




QATISSKLQTCCDKPLLKKAHCLSEVEHDTMPADLPAIAADFVEDQEVCKNY




AEAKDVFLGTFLYEYSRRHPDYSVSLLLRLAKKYEATLEKCCAEANPPACYG




TVLAEFQPLVEEPKNLVKTNCDLYEKLGEYGFQNAILVRYTQKAPQVSTPTLV




EAARNLGRVGTKCCTLPEDQRLPCVEDYLSAILNRVCLLHEKTPVSEHVTKCC




SGSLVERRPCFSALTVDETYVPKEFKAETFTFHSDICTLPEKEKQIKKQTALAEL




VKHKPKATAEQLKTVMDDFAQFLDTCCKAADKDTCFSTEGPNLVTRCKDAL




AHHHHHH**





437
ACP243
vprdcgckpcictypevssvfifppkpkdvititltpkvtcvvvdiskddpevqfswfvddvevhtaqtqpreeqfnstf




rsyselpimhqdwingkefkcrynsaafpapiektisktkgrpkapqvytipppkeqmakdkvsltcmitclffpeditv




ewqwngqpaenykntqpimdtdgsyfvyskinvqksnweagniftcsvlheglhnhhtekslshspgkSGGPG




PAGMKGLPGSiwellckdvyvveldwypdapgemvvitcdtpeedgitwtldqssevlgsgktltiqvkefgda




gqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwlttistdltfsvkssrgssdpqg




vtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssffirdiikpdppknlqlkplk




nsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisvraqthyyssswsewasvp




csggggsggggsggggsrvipvsgparclsqsrifilkttddmvktareklkhysctaedidheditrdqtstlktclplelh




knesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqiildkgmlvaidelmqslnh




ngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssaSGGPGPAGMKGLPGSggggsgggg




sggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQ




QLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQS




YDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLS




CAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYDGSNKYYADSVKGRFTISRD




NSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVSSHHHHHH**





438
ACP244
iwelkkdvyvveldwypdapgemvvitcdtpeedgitwtldqssevlgsgktltiqvkefgdagqytchkggevlshs




llllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwlttistdltfsvkssrgssdpqgvtcgaatlsaervrgd




nkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssffirdiikpdppknlqlkplknsrqvevsweypdt




wstphsyfsltkvqvqgkskrekkdwftdktsatvicrknasisvraqthyyssswsewasvpcsggggsggggsgg




ggsrvipvsgparclsqsrnllkttddmvktareklkhysctaedidheditrdqtstlktclplelhknesclatretsst




trgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqiildkgmlvaidelmqslnhngetlrqkppvgead




pyrvkmklcillhafstrvvtinrvmgylssaSGGPGPAGMKGLPGSggggsggggsggggsggggsggg




gsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQLPGTAPKLLI




YYNDQRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYTHPALLF




GTGTKVTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGFTFSSYG




MHWVRQAPGKGLEWVAFIRYDGSNKYYADSVKGRFTISRDNSKNTLYLQMN




SLRAEDTAVYYCKTHGSHDNWGQGTMVTVSSSGGPGPAGMKGLPGSvprdcgc




kpcictypevssvfifppkpkdvltitltpkvtcwvdiskddpevqfswfvddvevhtaqtqpreeqfnstfrsyselpi




mhqdwhigkefkcrynsaafpapiektisktkgrpkapqvytipppkeqmakdkvsltcmitdffpeditvewqwn




gqpaenykntqpimdtdgsyfvysklnvqksnweagntftcsvlheglhnhhtekslshspgkHHHHHH**





439
ACP245
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSSGGPGPAGMKGLPGSiwelkkdvyvveldwypdapgemvvltcdtpeedgitwtl




dqssevlgsgkiltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknkffirceaknysgrftcw




wittistdiffsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyeny




tssffirdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltkvqvqgkskrekkdrvftdktsatvicrkna




sisvraqthyyssswsewasvpcsggggsggggsggggsrvipvsgparclsqunllkttddmvktareklkhyscta




edidheditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnh




qqiildkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssaSGGPGPA




GMKGLPGSggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCS




GSRSNIGSNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAIT




GLQAEDEADYYCQSYDRYTHPALLFGTGTKVTVLSGGPGPAGMKGLPGSQV




QLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYD




GSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNW




GQGTMVTVSSHHHHHH





440
ACP247
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSSGGPGPAGMKGLPGSiwelkkdvyvveldwypdapgemvvltcdtpeedgitwtl




dqssevlgsgkiltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknkifirceaknysgrftcw




wittistdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyeny




tssffirdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltkvqvqgkskrekkdrvftdktsatvicrkna




sisvraqthyyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrnllkttddmvktareklkhyscta




edidheditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnh




qqiildkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssaSGGPGPA




GMKGLPGSggggsggggsggggsggggsggggsggggsQVQLQESGGGLVQAGGSLRLSC




AASGRTFSSVYDMGWFRQAPGKDREFVARITESARNTRYADSVRGRFTISRDN




AKNTVYLQMNNLELEDAAVYYCAADPQTVVVGTPDYWGQGTQVTVSSHHH




HHH





636
WW0301
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATEL




KHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEY




ADETATIVEFLNRWITFCQSIISTLTSGGPGPAGMKGLPGSEVQLVESGGGLVQ




PGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKG




RFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSGGGGS




GGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSEVQLVESGGGL




VQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVR




GRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTV




SSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKASQNVGTNVGW




YQQKPGKAPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQ




QYYTYPYTFGGGTKVEIKHHHHHH





637
WW0353
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATEL




KHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEY




ADETATIVEFLNRWITFCQSIISTLTSGGPGPAGMKGLPGSVPRDCGCKPCICTV




PBVSSVFIFPPKPKDVLTITLTPKVTCVVVDISKDDPEVQFSWFVDDVEVHTAQ




TQPREEQFNSTFRSVSELPIMHQDWLNGKEFKCRVNSAAFPAPIEKTISKTKGR




PKAPQVYTIPPPKEQMAKDKVSLTCMITDFFPEDITVEWQWNGQPAENYKNT




QPIMDTDGSYFVYSKLNVQKSNWEAGNTFTCSVLHEGLHNHHTEKSLSHSPG




KGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSSGGPGPAGMKGLPGSEVQLV




ESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTY




SPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQ




GTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKASQNVG




TNVGWYQQKPGKAPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFA




TYYCQQYYTYPYTFGGGTKVEIKHHHHHH





638
WW0355
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATEL




KHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEY




ADETATIVEFLNRWITFCQSIISTLTSGGPGPAGMKGLPGSGGGGSGGGGSGGG




GSGGGGSGGGGSGGGGSEVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLA




WVRQAPGKGLEWVAAIDSSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRA




EDTAVYYCARDSNWDALDYWGQGTTVTVSSGGGGSGGGGSGGGGSDIQMT




QSPSSLSASVGDRVTITCKASQNVGTNVGWYQQKPGKAPKALIYSASFRYSGV




PSRFSGSGSGTDFTLTISSLQPEDFATYYCQQYYTYPYTFGGGTKVEIKSGGPG




PAGMKGLPGSVPRDCGCKPCICTVPEVSSVFIFPPKPKDVLTITLTPKVTCVVV




DISKDDPEVQFSWFVDDVEVHTAQTQPREEQFNSlFRSVSELPIMHQDWLNGK




EFKCRVNSAAFPAPIEKTISKTKGRPKAPQVYTIPPPKEQMAKDKVSLTCMITD




FFPEDITVEWQWNGQPAENYKNTQPIMDTDGSYFVYSKLNVQKSNWEAGNT




FTCSVLHEGLHNHHTEKSLSHSPGKHHHHHH





639
WW0365
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATEL




KHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEY




ADETATIVEFLNRWITFCQSIISTLTGGGSGGGSGGGSGGGSEVQLVESGGGLV




QPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVK




GRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSGGG




GSGGGGSGGGGSGGGGSGGGGSGGGGSSGGPGPAGMKGLPGSEVQLVESGG




GLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDT




VRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTV




TVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKASQNVGTNVG




WYQQKPGKAPKALIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYC




QQYYTYPYTFGGGTKVEIKHHHHHHEPEA





640
WW0366
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATEL




KHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEY




ADETATIVEFLNRWITFCQSIISTLTSGGPGPAGMKGLPGSEVQLVESGGGLVQ




PGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKG




RFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSHHHH




HHEPEA





641
WW0472
VPRDCGCKPCICTVPEVSSVFIFPPKPKDVLTITLTPKVTCVVVDISKDDPEVQF




SWFVDDVEVHTAQTQPREEQFNSTFRSVSELPIMHQDWLNGKEFKCRVNSAA




FPAPIEKTISKTKGRPKAPQVYTIPPPKEQMAKDKVSLTCMITDFFPEDITVEWQ




WNGQPAENYKNTQPIMDTDGSYFVYSKLNVQKSNWEAGNTFTCSVLHEGLH




NHHTEKSLSHSPGKSGGPGPAGLYAQPGSAPTSSSTKKTQLQLEHLLLDLQMI




LNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSK




NFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTL




TGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSSGGPGPAGLYAQPGSEVQLV




ESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTY




SPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQ




GTTVTVSSSGGPGPAGLYAQPGSDIQMTQSPSSLSASVGDRVTITCKAREKLW




SAVAWYQQKPGKAPKSLIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFA




TYYCQQYYTYPYTFGGGTKVEIK





642
WW0473
VPRDCGCKPCICTVPEVSSVFIFPPKPKDVLTITLTPKVTCVVVDISKDDPEVQF




SWFVDDVEVHTAQTQPREEQFNSTFRSVSELPIMHQDWLNGKEFKCRVNSAA




FPAPIEKTISKTKGRPKAPQVYTIPPPKEQMAKDKVSLTCMITDFFPEDITVEWQ




WNGQPAENYKNTQPIMDTDGSYFVYSKLNVQKSNWEAGNTFTCSVLHEGLH




NHHTEKSLSHSPGKSGGPGPAGLYAQPGSAPTSSSTKKTQLQLEHLLLDLQMI




LNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSK




NFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTL




TGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSSGGPGPAGLYAQPGSEVQLV




ESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTY




SPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQ




GTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKAREKLW




SAVAWYQQKPGKAPKSLIYSASFRYSGVPSRFSGSGSGTDFTLTISSLQPEDFA




TYYCQQYYTYPYTFGGGTKVEIK





643
WW0474
VPRDCGCKPCICTVPEVSSVFIFPPKPKDVLTITLTPKVTCVVVDISKDDPEVQF




SWFVDDVEVHTAQTQPREEQFNSTFRSVSELPIMHQDWLNGKEFKCRVNSAA




FPAPIEKTISKTKGRPKAPQVYTIPPPKEQMAKDKVSLTCMITDFFPEDITVEWQ




WNGQPAENYKNTQPIMDTDGSYFVYSKLNVQKSNWEAGNTFTCSVLHEGLH




NHHTEKSLSHSPGKSGGPGPAGLYAQPGSAPTSSSTKKTQLQLEHLLLDLQMI




LNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSK




NFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTL




TGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSSGGPGPAGLYAQPGSEVQLV




ESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTY




SPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQ




GTTVTVSSSGGPGPAGLYAQPGSDIQMTQSPSSLSASVGDRVTITCKVTEKVW




GNVAWYQQKPGKAPISLIYSPSLRKSGVPSRFSGSGSGTDFTLTISSLQPEDFAT




YYCQQYYTYPYTFGGGTKVEIK





644
WW0475
VPRDCGCKPCICTVPEVSSVFIFPPKPKDVLTITLTPKVTCVVVDISKDDPEVQF




SWFVDDVEVHTAQTQPREEQFNSTFRSVSELPIMHQDWLNGKEFKCRVNSAA




FPAPIEKTISKTKGRPKAPQVYTIPPPKEQMAKDKVSLTCMITDFFPEDITVEWQ




WNGQPAENYKNTQPIMDTDGSYFVYSKLNVQKSNWEAGNTFTCSVLHEGLH




NHHTEKSLSHSPGKSGGPGPAGLYAQPGSAPTSSSTKKTQLQLEHLLLDLQMI




LNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSK




NFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTL




TGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSSGGPGPAGLYAQPGSEVQLV




ESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTY




SPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQ




GTTVTVSSGGGGSGGGGSGGGGSDIQMTQSPSSLSASVGDRVTITCKVTEKV




WGNVAWYQQKPGKAPISLIYSPSLRKSGVPSRFSGSGSGTDFTLTISSLQPEDF




ATYYCQQYYTYPYTFGGGTKVEIK





645
WW0476
VPRDCGCKPCICTVPEVSSVFIFPPKPKDVLTITLTPKVTCVVVDISKDDPEVQF




SWFVDDVEVHTAQTQPREEQFNSTFRSVSELPIMHQDWLNGKEFKCRVNSAA




FPAPIEKTISKTKGRPKAPQVYTIPPPKEQMAKDKVSLTCMITDFFPEDITVEWQ




WNGQPAENYKNTQPIMDTDGSYFVYSKLNVQKSNWEAGNTFTCSVLHEGLH




NHHTEKSLSHSPGKSGGPGPAGLYAQPGSAPTSSSTKKTQLQLEHLLLDLQMI




LNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSK




NFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTL




TGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSSGGPGPAGLYAQPGSEVQLL




ESGGGLVQPGGSLRLSCAASGSIFSANAMGWYRQAPGKGLELVAVISSGGSTN




YADSVKGRFTISRDNSKNTVYLQMNSLRAEDTAVYYCMYSGSYYYTPNDYW




GQGTLVTVSS





646
WW0477
VPRDCGCKPCICTVPEVSSVFIFPPKPKDVLTITLTPKVTCVVVDISKDDPEVQF




SWFVDDVEVHTAQTQPREEQFNSTFRSVSELPIMHQDWLNGKEFKCRVNSAA




FPAPIEKTISKTKGRPKAPQVYTIPPPKEQMAKDKVSLTCMITDFFPEDITVEWQ




WNGQPAENYKNTQPIMDTDGSYFVYSKLNVQKSNWEAGNTFTCSVLHEGLH




NHHTEKSLSHSPGKSGGPGPAGLYAQPGSAPTSSSTKKTQLQLEHLLLDLQMI




LNGINNYKNPKLTRMLTFKFYMPKKATELKHLQCLEEELKPLEEVLNLAQSK




NFHLRPRDLISNINVIVLELKGSETTFMCEYADETATIVEFLNRWITFCQSIISTL




TGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSSGGPGPAGLYAQPGSEVQLL




ESGGGLVQPGGSLRLSCAASERIFSTDVMGWYRQAPGKQRELVAVVSARGTT




NYLDAVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCYVRETTSPWRIYWG




QGTLVTVSS





647
WW0649
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS



Monomeric
GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS



IL-12
SQGTLVTVSSsgGPAGLYAQpgsiwelkkdvyvveldwypdapgemvvltcdtpeedgitwildqs



(chimeric)
sevlgsgktltiqvkefgdagqytchkggevlshsllllhldcedgiwstdilkdqkepluildflrceaknysgrftcwwltt



poly-
istdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf



peptide,
firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsitfcvqvqgkskrekkdrvftdktsatvicrknasisv



anti-HSA
raqdiyyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrnllkttddmvktareklkhysctaedi



sdAb, scFv
dheditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqi



Blocker, 2
ildkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssasggpGPAGLY



cleavage
AQpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSN



sites
IGSNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAE




DEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVV




QPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYDGSNKYYADS




VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVS




S**





454
WW0650
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsiwelkkdvyvveldwypdapgemvvltcdtpeedgitwildqs




sevlgsgktltiqvkefgdagqytchkggevlshsllllhldcedgiwstdilkdqkepluildflrceaknysgrftcwwltt




istdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf




firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsitfcvqvqgkskrekkdrvftdktsatvicrknasisv




raqdiyyssswsewasvpcsggggsggggsggggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypc




tseeidheditkdktstveaclpleltknesclnsretsfitngsclasrktsfmmalclssiyedlkmyqvefktmnakllm




dpkrqifldqnmlavidelmqalnfnsetvpqkssleepdfyktkiklcillhafriravtidrvmsylnassggpGPA




GLYAQpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSG




SRSNIGSNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITG




LQAEDEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESG




GGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYDGSNKY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTM




VTVSS**





455
WW0651
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgsiwelkkdvyvveldwypdapgemvvitcdtpeedgitwildqss




evlgsglaltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwltti




stdiffsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssff




irdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsitfcvqvqgkskrekkdrvftdktsatvicrknasisvr




aqdiyyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrnllkttddmvktareklkhysctaedid




heditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqiil




dkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssasggpALFKSSF




PpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNI




GSNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAE




DEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVV




QPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYDGSNKYYADS




VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVS




S**





456
WW0652
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgsiwelkkdvyvveldwypdapgemvvitcdtpeedgitwildqss




evlgsglaltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwltti




stdiffsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssff




irdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsitfcvqvqgkskrekkdrvftdktsatvicrknasisvr




aqdiyyssswsewasvpcsggggsggggsggggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypct




seeidheditkdktstveaclpleltknesclnsretsfitngsclasrktsfmmalclssiyedlkmyqvefktmnakllm




dpkrqifldqnmlavidelmqalnfnsetvpqkssleepdfyktkiklcillhafriravtidrvmsylnassggpALFK




SSFPpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRS




NIGSNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQ




AEDEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGG




VVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYDGSNKYYA




DSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVT




VSS**





457
WW0662
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsiwelkkdvyvveldwypdapgemvvitcdtpeedgitwtldqs




sevlgsgktltiqvkefgdagqytchkggevlshsllllhIckedgiwstdilkdqkepknkiflrceaknysgrftcwwltt




istdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf




firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisv




raqchyyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrffilkttddmvktareklkhysctaedi




dheditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqi




ildkgmlvaidelmqslnhngethqkppvgeadpyrvkmklcillhafstryvtinrvmgylssasggpGPAGLY




AQpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSN




IGSNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAE




DEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVV




QPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYeGSNKYYAeSV




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVSS




**





458
WW0663
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsiwelkkdvyvveldwypdapgemvvitcdtpeedgitwtldqs




sevlgsgktltiqvkefgdagqytchkggevlshsllllhIckedgiwstdilkdqkepknkiflrceaknysgrftcwwltt




istdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf




firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisv




raqchyyssswsewasvpcsggggsggggsggggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypc




tseeidheditkdktstveaclpleltknesclnsretsfitngsclasrktsfmmalcissiyedlkmyqvefktmnakllm




dpkrqifldqnmlavidelmqalnfnsetvpqkssleepdfyktkiklcillhafriravtidrvmsylnassggpGPA




GLYAQpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSG




SRSNIGSNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITG




LQAEDEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESG




GGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYeGSNKYY




AeSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMV




TVSS**





459
WW0664
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsiwelkkdvyvveldwypdapgemvvitcdtpeedgitwtldqs




sevlgsgktltiqvkefgdagqytchkggevlshsllllhIckedgiwstdilkdqkepknkiflrceaknysgrftcwwltt




istdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf




firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisv




raqchyyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrffilkttddmvktareklkhysctaedi




dheditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqi




ildkgmlvaidelmqslnhngethqkppvgeadpyrvkmklcillhafstryvtinrvmgylssasggpGPAGLY




AQpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSN




IGSeTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAE




DEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVV




QPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYeGSNKYYAeSV




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVSS




**





460
WW0665
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsiwelkkdvyvveldwypdapgemvvitcdtpeedgitwtldqs




sevlgsgktltiqvkefgdagqytchkggevlshsllllhIckedgiwstdilkdqkepknkiflrceaknysgrftcwwltt




istdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf




firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisv




raqchyyssswsewasvpcsggggsggggsggggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypc




tseeidheditkdktstveaclpleltknesclnsretsfitngsclasrktsfmmalcissiyedlkmyqvefktmnakllm




dpkrqifldqnmlavidelmqalnfnsetvpqkssleepdfyktkiklcillhafriravtidrvmsylnassggpGPA




GLYAQpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSG




SRSNIGSeTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITG




LQAEDEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESG




GGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYeGSNKYY




AeSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMV




TVSS**





461
WW0666
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsiwelkkdvyvveldwypdapgemvvltcdtpeedgitwtldqs




sevlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknkiflrceaknysgrftcwwltt




istdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf




firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsitfcvqvqgkskrekkdrvftdktsatvicrknasisv




raqdryyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrifilkttddmvktareklkhysctaedi




dheditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqi




ildkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssasggpGPAGLY




AQpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSN




IGdNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAE




DEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVV




QPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYeGSNKYYAeSV




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVSS




**





462
WW0667
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsiwelkkdvyvveldwypdapgemvvltcdtpeedgitwtldqs




sevlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknkiflrceaknysgrftcwwltt




istdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf




firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsitfcvqvqgkskrekkdrvftdktsatvicrknasisv




raqdryyssswsewasvpcsggggsggggsggggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypc




tseeidheditkdktstveaclpleltknesclnsretsfitngsclasrktsfmmalclssiyedlkmyqvefktmnakllm




dpkrqifldqnmlavidelmqalnfnsetvpqkssleepdfyktkiklcillhafriravtidrvmsylnassggpGPA




GLYAQpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSG




SRSNIGdNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITG




LQAEDEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESG




GGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYeGSNKYY




AeSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMV




TVSS**





463
WW0668
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsiwelkkdvyvveldwypdapgemvvltcdtpeedgitwtldqs




sevlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknkiflrceaknysgrftcwwltt




istdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf




firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsitfcvqvqgkskrekkdrvftdktsatvicrknasisv




raqdryyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrifilkttddmvktareklkhysctaedi




dheditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqi




ildkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssasggpGPAGLY




AQpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSN




IGdeTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAE




DEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVV




QPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYDGSNKYYADS




VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVS




S**





464
WW0669
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsiwelkkdvyvveldwypdapgemvvltcdtpeedgitwtldqs




sevlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknkiflrceaknysgrftcwwltt




istdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf




firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsitfcvqvqgkskrekkdrvftdktsatvicrknasisv




raqdryyssswsewasvpcsggggsggggsggggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypc




tseeidheditkdktstveaclpleltknesclnsretsfitngsclasrktsfmmalclssiyedlkmyqvefktmnakllm




dpkrqifldqnmlavidelmqalnfnsetvpqkssleepdfyktkiklcillhafriravtidrvmsylnassggpGPA




GLYAQpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSG




SRSNIGdeTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITG




LQAEDEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESG




GGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYDGSNKY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTM




VTVSS**





465
WW0670
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsiwelkkdvyvveldwypdapgemvvltcdtpeedgitwtldqs




sevlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknkiflrceaknysgrftcwwltt




istdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf




firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsitfcvqvqgkskrekkdrvftdktsatvicrknasisv




raqdryyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrifilkttddmvktareklkhysctaedi




dheditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqi




ildkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssasggpGPAGLY




AQpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSN




IGdeTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAE




DEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVV




QPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYeGSNKYYAeSV




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVSS




**





466
WW0671
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsiwelkkdvyvveldwypdapgemvvltcdtpeedgitwtldqs




sevlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknkiflrceaknysgrftcwwltt




istdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf




firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsitfcvqvqgkskrekkdrvftdktsatvicrknasisv




raqdryyssswsewasvpcsggggsggggsggggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypc




tseeidheditkdktstveaclpleltknesclnsretsfitngsclasrktsfmmalclssiyedlkmyqvefktmnakllm




dpkrqifldqnmlavidelmqalnfnsetvpqkssleepdfyktkiklcillhafriravtidrvmsylnassggpGPA




GLYAQpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSG




SRSNIGdeTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITG




LQAEDEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESG




GGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYeGSNKYY




AeSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMV




TVSS**





467
WW0672
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsiwelkkdvyvveldwypdapgemvvltcdtpeedgitwtldqs




sevlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknkiflrceaknysgrftcwwltt




istdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf




firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsitfcvqvqgkskrekkdrvftdktsatvicrknasisv




raqdryyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrifilkttddmvktareklkhysctaedi




dheditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqi




ildkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssasggpGPAGLY




AQpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSeSN




IGSNdVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAE




DEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVV




QPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYDGSNKYYADS




VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVS




S**





468
WW0673
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsiwelkkdvyvveldwypdapgemvvltcdtpeedgitwtldqs




sevlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknkiflrceaknysgrftcwwltt




istdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf




firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsitfcvqvqgkskrekkdrvftdktsatvicrknasisv




raqdryyssswsewasvpcsggggsggggsggggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypc




tseeidheditkdktstveaclpleltknesclnsretsfitngsclasrktsfmmalclssiyedlkmyqvefktmnakllm




dpkrqifldqnmlavidelmqalnfnsetvpqkssleepdfyktkiklcillhafriravtidrvmsylnassggpGPA




GLYAQpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSG




SeSNIGSNdVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITG




LQAEDEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESG




GGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYDGSNKY




YADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTM




VTVSS**





469
WW0674
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsiwelkkdvyvveldwypdapgemvvltcdtpeedgitwtldqs




sevlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknkiflrceaknysgrftcwwltt




istdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf




firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsitfcvqvqgkskrekkdrvftdktsatvicrknasisv




raqdryyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrifilkttddmvktareklkhysctaedi




dheditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqi




ildkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssasggpGPAGLY




AQpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSN




IGeNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAE




DEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVV




QPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYeGSNKYYAeSV




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVSS




**





470
WW0675
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsiwelkkdvyvveldwypdapgemvvltcdtpeedgitwtldqs




sevlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknkiflrceaknysgrftcwwltt




istdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf




firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsitfcvqvqgkskrekkdrvftdktsatvicrknasisv




raqdryyssswsewasvpcsggggsggggsggggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypc




tseeidheditkdktstveaclpleltknesclnsretsfitngsclasrktsfmmalclssiyedlkmyqvefktmnakllm




dpkrqifldqnmlavidelmqalnfnsetvpqkssleepdfyktkiklcillhafriravtidrvmsylnassggpGPA




GLYAQpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSG




SRSNIGeNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITG




LQAEDEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESG




GGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYeGSNKYY




AeSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMV




TVSS**





471
WW0676
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsiwelkkdvyvveldwypdapgemvvltcdtpeedgitwtldqs




sevlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknkiflrceaknysgrftcwwltt




istdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf




firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsitfcvqvqgkskrekkdrvftdktsatvicrknasisv




raqdryyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrifilkttddmvktareklkhysctaedi




dheditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqi




ildkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssasggpGPAGLY




AQpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSN




IGeeTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAE




DEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVV




QPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYDGSNKYYADS




VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVS




S**





472
WW0677
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsiwelkkdvyvveldwypdapgemvvltcdtpeedgitwtldqs




sevlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknkiflrceaknysgrftcwwltt




istdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf




firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisv




raqdryyssswsewasvpcsggggsggggsggggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypc




tseeidheditkdktstveaclpleltknesclnsretsfitngsclasrktsfmmalcissiyedlkmyqvefktmnakllm




dpkrqifldqnmlavidelmqalnfnsetvpqkssleepdfyktkiklcillhafriravtidrvmsylnassggpGPA




GLYAQpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSG




SRSNIGeeTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGL




QAEDEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGG




GVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYDGSNKYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMV




TVSS**





473
WW0678
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsiwelkkdvyvveldwypdapgemvvitcdtpeedgitwtldqs




sevlgsgktltiqvkefgdagqytchkggevlshsllllhIckedgiwstdilkdqkepknktflrceaknysgrftcwwltt




istdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf




firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisv




raqdryyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrifilkttddmvktareklkhysctaedi




dheditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqi




ildkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstryvtinrvmgylssasggpGPAGLY




AQpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSN




IGSeTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAE




DEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVV




QPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYeGSNKYYADSV




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVSS




**





474
WW0679
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsiwelkkdvyvveldwypdapgemvvitcdtpeedgitwtldqs




sevlgsgktltiqvkefgdagqytchkggevlshsllllhIckedgiwstdilkdqkepknktflrceaknysgrftcwwltt




istdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf




firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisv




raqdryyssswsewasvpcsggggsggggsggggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypc




tseeidheditkdktstveaclpleltknesclnsretsfitngsclasrktsfmmalcissiyedlkmyqvefktmnakllm




dpkrqifldqnmlavidelmqalnfnsetvpqkssleepdfyktkiklcillhafriravtidrvmsylnassggpGPA




GLYAQpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSG




SRSNIGSeTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITG




LQAEDEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESG




GGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYeGSNKYY




ADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMV




TVSS**





475
WW0680
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgsiwelkkdvyvveldwypdapgemvvitcdtpeedgitwtldqss




evlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwltti




stdiffsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssff




irdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisvr




aqdryyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrnllkttddmvktareklkhysctaedid




heditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqiil




dkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstryvtinrvmgylssasggpALFKSSF




PpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNI




GSNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAE




DEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVV




QPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYeGSNKYYAeSV




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVSS




**





476
WW0681
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgsiwelkkdvyvveldwypdapgemvvlicdtpeedgitwtldqss




evlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwltti




stdltfsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssff




irdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisvr




aqthyyssswsewasvpcsggggsggggsggggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypct




seeidheditkdktstveaclpleltknesclnsretsfitngsclasrktsfmmalclssiyedlkmyqvefktmnakllm




dpkrqifldqnmlavidelmqalnfnsetvpqkssleepdfyktkiklcillhafriravtidrvmsylnassggpALFK




SSFPpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRS




NIGSNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQ




AEDEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGG




VVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYeGSNKYYAe




SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTV




ss**





477
WW0682
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgsiwelkkdvyvveldwypdapgemvvlicdtpeedgitwtldqss




evlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwltti




stdltfsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssff




irdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisvr




aqthyyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrnllkttddmvktareklkhysctaedid




heditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefciainaalqnhnhqqiil




dkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssasggpALFKSSF




PpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNI




GSeTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAE




DEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVV




QPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYeGSNKYYAeSV




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVSS


**







635
WW0683
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgsiwelkkdvyvveldwypdapgemvvlicdtpeedgitwtldqss




evlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwltti




stdltfsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssff




irdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisvr




aqthyyssswsewasvpcsggggsggggsggggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypct




seeidheditkdktstveaclpleltknesclnsretsfitngsclasrktsfmmalclssiyedlkmyqvefktmnakllm




dpkrqifldqnmlavidelmqalnfnsetvpqkssleepdfyktkiklcillhafriravtidrvmsylnassggpALFK




SSFPpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRS




NIGSeTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQA




EDEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGV




VQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYeGSNKYYAeS




VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVS




S**





478
WW0684
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgsiwelkkdvyvveldwypdapgemvvlicdtpeedgitwtldqss




evlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwltti




stdltfsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssff




irdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisvr




aqthyyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrnllkttddmvktareklkhysctaedid




heditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefciainaalqnhnhqqiil




dkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssasggpALFKSSF




PpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNI




GdNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAE




DEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVV




QPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYeGSNKYYAeSV




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVSS




**





479
WW0685
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgsiwelkkdvyvveldwypdapgemvvlicdtpeedgitwtldqss




evlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwltti




stdllfsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssff




irdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisvr




aqdlyyssswsewasvpcsggggsggggsggggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypct




seeidheditkdktstveaclpleltknesclnsretsfitngsclasrktsfmmalclssiyedlkmyqvefktmnakllm




dpkrqifldqnmlavidelmqalnfnsetvpqkssleepdfyktkiklcillhafriravtidrvmsylnassggpALFK




SSFPpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRS




NIGdNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQA




EDEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGV




VQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYeGSNKYYAeS




VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVS




S**





480
WW0686
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgsiwelkkdvyvveldwypdapgemvvlicdtpeedgitwtldqss




evlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwltti




stdllfsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssff




irdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisvr




aqdlyyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrnllkttddmvktareklkhysctaedid




heditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqiil




dkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssasggpALFKSSF




PpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNI




GdeTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAED




EADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVVQ




PGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYDGSNKYYADSV




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVSS




**





481
WW0687
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgsiwelkkdvyvveldwypdapgemvvlicdtpeedgitwtldqss




evlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwltti




stdllfsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssff




irdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisvr




aqdlyyssswsewasvpcsggggsggggsggggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypct




seeidheditkdktstveaclpleltknesclnsretsfitngsclasrktsfmmalclssiyedlkmyqvefktmnakllm




dpkrqifldqnmlavidelmqalnfnsetvpqkssleepdfyktkiklcillhafriravtidrvmsylnassggpALFK




SSFPpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRS




NIGdeTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQA




EDEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGV




VQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYDGSNKYYAD




SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTV




SS**





482
WW0688
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgsiwelkkdvyvveldwypdapgemvvlicdtpeedgitwtldqss




evlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwltti




stdllfsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssff




irdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisvr




aqdlyyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrnllkttddmvktareklkhysctaedid




heditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqiil




dkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssasggpALFKSSF




PpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNI




GdeTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAED




EADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVVQ




PGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYeGSNKYYAeSVK




GRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVSS**





483
WW0689
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgsiwelkkdvyvveldwypdapgemvvitcdtpeedgitwtldqss




evlgsgktltiqvkefgdagqytchkggevlshsllllhlckedgiwstdilkdqkepknklflrceaknysgrftcwwltti




stdiffsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssff




irdiikpdppknlqlkplknsrqvevsweypdtwstphsyfslIfcvqvqgkskrekkdryftdktsatvicrknasisvr




aqdwyssswsewasvpcsggggsggggsggggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypct




seeidheditkdktstveaclpleltknesclnsretsfitngsclasrktsfmmalclssiyedllunyqveflamnakllm




dpkrqindqnmlavidelmqalnfnsetvpqkssleepdfyktkiklcillhafriravtidrvmsylnassggpALFK




SSFPpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRS




NIGdeTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQA




EDEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGV




VQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYeGSNKYYAeS




VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVS




S**





484
WW0690
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgsiwelkkdvyvveldwypdapgemvvitcdtpeedgitwtldqss




evlgsgktltiqvkefgdagqytchkggevlshsllllhlckedgiwstdilkdqkepknklflrceaknysgrftcwwltti




stdiffsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssff




irdiikpdppknlqlkplknsrqvevsweypdtwstphsyfslIfcvqvqgkskrekkdryftdktsatvicrknasisvr




aqdwyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsnillkttddmvktareklkhysctaedid




heditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefriainaalqnhnhqqiil




dkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssasggpALFKSSF




PpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSeSNIG




SNdVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAED




EADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVVQ




PGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYDGSNKYYADSV




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVSS




**





485
WW0691
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgsiwelkkdvyvveldwypdapgemvvitcdtpeedgitwtldqss




evlgsgktltiqvkefgdagqytchkggevlshsllllhlckedgiwstdilkdqkepknklflrceaknysgrftcwwltti




stdiffsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssff




irdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsiticvqvqgkskrekkdryftdktsatvicrknasisvr




aqdwyssswsewasvpcsggggsggggsggggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypct




seeidheditkdktstveaclpleltknesclnsretsfitngsclasrktsfmmalclssiyedllunyqveflamnakllm




dpkrqindqnmlavidelmqalnfnsetvpqkssleepdfyktkiklcillhafriravtidrvmsylnassggpALFK




SSFPpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSeS




NIGSNdVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQA




EDEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGV




VQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYDGSNKYYAD




SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTV




SS**





486
WW0692
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgsiwelkkdvyvveldwypdapgemvvitcdtpeedgitwtldqss




evlgsgktltiqvkefgdagqytchkggevlshsllllhlckedgiwstdilkdqkepknklflrceaknysgrftcwwltti




stdiffsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssff




irdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsiticvqvqgkskrekkdryftdktsatvicrknasisvr




aqdwyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsnillkttddmvktareklkhysctaedid




heditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefriainaalqnhnhqqiil




dkgmlvaidelmqslnhngethqkppvgeadpyrvkmklcillhafstryvtinrvmgylssasggpALFKSSF




PpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNI




GeNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAE




DEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVV




QPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYeGSNKYYAeSV




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVSS




**





487
WW0693
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgsiwelkkdvyvveldwypdapgemvvitcdtpeedgitwtldqss




evlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwltti




stcliffsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssff




irdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisvr




aqchyyssswsewasvpcsggggsggggsggggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypct




seeidheditkdktstveaclpleltknesclnsretsfitngsclasrktsfmmalclssiyedllunyqveflamnakllm




dpkrqifldqnmlavidelmqalnfnsetvpqkssleepdfyktkiklcillhafriravtidrvmsylnassggpALFK




SSFPpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRS




NIGeNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQA




EDEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGV




VQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYeGSNKYYAeS




VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVS




S**





488
WW0694
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgsiwelkkdvyvveldwypdapgemvvitcdtpeedgitwtldqss




evlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwltti




stcliffsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssff




irdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisvr




aqchyyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsmllkttddmvktareklkhysctaedid




heditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqiil




dkgmlvaidelmqslnhngethqkppvgeadpyrvkmklcillhafstryvtinrvmgylssasggpALFKSSF




PpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNI




GeeTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAED




EADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVVQ




PGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYDGSNKYYADSV




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVSS




**





489
WW0695
GSGRDTLYAESVKGRFTIEVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




SRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgsiwelkkdvyvveldwypdapgemvvitcdtpeedgitwtldqss




evlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwltti




stcliffsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssff




irdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisvr




aqchyyssswsewasvpcsggggsggggsggggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypct




seeidheditkdktstveaclpleltknesclnsretsfitngsclasrktsfmmalclssiyedllunyqveflamnakllm




dpkrqifldqnmlavidelmqalnfnsetvpqkssleepdfyktkiklcillhafriravtidrvmsylnassggpALFK




SSFPpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRS




NIGeeTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQA




EDEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGV




VQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYDGSNKYYAD




SVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTV




SS**





490
WW0696
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgsiwelkkdvyvveldwypdapgemvvitcdtpeedgitwtldqss




evlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwltti




stcliffsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssff




irdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsitfcvqvqgkskrekkdrvftdktsatvicrknasisvr




aqdlyyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrnllkttddmvktareklkhysctaedid




heditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefciainaalqnhnhqqiil




dkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssasggpALFKSSF




PpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNI




GSeTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAE




DEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVV




QPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYeGSNKYYADSV




KGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVSS




**





491
WW0697
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgsiwelkkdvyvveldwypdapgemvvlicdtpeedgitwtldqss




evlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwltti




stdiffsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssff




irdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsitfcvqvqgkskrekkdrvftdktsatvicrknasisvr




aqdlyyssswsewasvpcsggggsggggsggggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypct




seeidheditkdktstveaclpleltknesclnsretsfitngsclasrktsfmmalclssiyedlkmyqvefktmnakllm




dpkrqifldqnmlavidelmqalnfnsetvpqkssleepdfyktkiklcillhafriravtidrvmsylnassggpALFK




SSFPpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRS




NIGSeTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQA




EDEADYYCQSYDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGV




VQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYeGSNKYYADS




VKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVS




S**





492
WW0698
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsiwelkkdvyvveldwypdapgemvvltcdtpeedgitwtldqs




sevlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknkiflrceaknysgrftcwwltt




istdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf




firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsitfcvqvqgkskrekkdrvftdktsatvicrknasisv




raqdlyyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrifilkttddmvktareklkhysctaedi




dheditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqi




ildkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssasggpGPAGLY




AQpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSN




IGSNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAE




DEADYYCQSYDRYTHPALLFGTGTKVTVLgqpkaapsvtlfppsseelqankatlyclisdfypg




avtvawkadsspvkagvettlpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





493
WW0699
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsiwelkkdvyvveldwypdapgemvvltcdtpeedgitwtldqs




sevlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknkiflrceaknysgrftcwwltt




istdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf




firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsitfcvqvqgkskrekkdrvftdktsatvicrknasisv




raqdlyyssswsewasvpcsggggsggggsggggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypc




tseeidheditkdktstveaclpleltknesclnsretsfitngsclasrktsfmmalclssiyedlkmyqvefktmnakllm




dpkrqifldqnmlavidelmqalnfnsetvpqkssleepdfyktkiklcillhafriravtidrvmsylnassggpGPA




GLYAQpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSG




SRSNIGSNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITG




LQAEDEADYYCQSYDRYTHPALLFGTGTKVTVLgqpkaapsvtlfppsseelqankatlycli




sdfypgavtvawkadsspvkagvettlpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





494
WW0700
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsiwelkkdvyvveldwypdapgemvvltcdtpeedgitwtldqs




sevlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknkiflrceaknysgrftcwwltt




istdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf




firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsitfcvqvqgkskrekkdrvftdktsatvicrknasisv




raqdryyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrifilkttddmvktareklkhysctaedi




dheditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqi




ildkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssasggpGPAGLY




AQpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSN




IGSeTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAE




DEADYYCQSYDRYTHPALLFGTGTKVTVLgqpkaapsvtlfppsseelqankatlyclisdfypg




avtvawkadsspvkagvettlpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





495
WW0701
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsiwelkkdvyvveldwypdapgemvvltcdtpeedgitwtldqs




sevlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknkffirceaknysgrftcwwltt




istdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf




firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsitfcvqvqgkskrekkdrvftdktsatvicrknasisv




raqdryyssswsewasvpcsggggsggggsggggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypc




tseeidheditkdktstveaclpleltknesclnsretsfitngsclasrktsfmmalclssiyedlkmyqvefktmnakllm




dpkrqifldqnmlavidelmqalnfnsetvpqkssleepdfyktkiklcillhafriravtidrvmsylnassggpGPA




GLYAQpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSG




SRSNIGSeTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITG




LQAEDEADYYCQSYDRYTHPALLFGTGTKVTVLgqpkaapsvtlfppsseelqankatlycli




sdfypgavtvawkadsspvkagvettlpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





496
WW0702
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsiwelkkdvyvveldwypdapgemvvltcdtpeedgitwtldqs




sevlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknkffirceaknysgrftcwwltt




istdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf




firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsitfcvqvqgkskrekkdrvftdktsatvicrknasisv




raqdryyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrifilkttddmvktareklkhysctaedi




dheditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqi




ildkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssasggpGPAGLY




AQpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSN




IGdNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAE




DEADYYCQSYDRYTHPALLFGTGTKVTVLgqpkaapsvtlfppsseelqankatlyclisdfypg




avtvawkadsspvkagvettlpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





497
WW0703
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsiwelkkdvyvveldwypdapgemvvltcdtpeedgitwtldqs




sevlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknkffirceaknysgrftcwwltt




istdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf




firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfslIfcvqvqgkskrekkdrvftdktsatvicrknasisv




raqdryyssswsewasvpcsggggsggggsggggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypc




tseeidheditkdktstveaclpleltknesclnsretsfitngsclasrktsfmmalclssiyedlkmyqvefktmnakllm




dpkrqifldqnmlavidelmqalnfnsetvpqkssleepdfyktkiklcillhafriravtidrvmsylnassggpGPA




GLYAQpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSG




SRSNIGdNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITG




LQAEDEADYYCQSYDRYTHPALLFGTGTKVTVLgqpkaapsvtlfppsseelqankatlycli




sdfypgavtvawkadsspvkagvettlpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





498
WW0704
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsiwelkkdvyvveldwypdapgemvvltcdtpeedgitwtldqs




sevlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknkffirceaknysgrftcwwltt




istdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf




firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsitfcvqvqgkskrekkdrvftdktsatvicrknasisv




raqdryyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrifilkttddmvktareklkhysctaedi




dheditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqi




ildkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssasggpGPAGLY




AQpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSN




IGdeTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAE




DEADYYCQSYDRYTHPALLFGTGTKVTVLgqpkaapsvtlfppsseelqankatlyclisdfypg




avtvawkadsspvkagvettlpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





499
WW0705
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsiwelkkdvyvveldwypdapgemvvltcdtpeedgitwtldqs




sevlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwltt




istdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf




firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsitfcvqvqgkskrekkdrvftdktsatvicrknasisv




raqdryyssswsewasvpcsggggsggggsggggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypc




tseeidheditkdktstveaclpleltknesclnsretsfitngsclasrktsfmmalclssiyedlkmyqvefktmnakllm




dpkrqifldqnmlavidelmqalnfnsetvpqkssleepdfyktkiklcillhafriravtidrvmsylnassggpGPA




GLYAQpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSG




SRSNIGdeTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITG




LQAEDEADYYCQSYDRYTHPALLFGTGTKVTVLgqpkaapsvtlfppsseelqankatlycli




sdfypgavtvawkadsspvkagvettlpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





500
WW0706
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsiwelkkdvyvveldwypdapgemvvltcdtpeedgitwtldqs




sevlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwltt




istdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf




firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsitfcvqvqgkskrekkdrvftdktsatvicrknasisv




raqdryyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrifilkttddmvktareklkhysctaedi




dheditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqi




ildkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssasggpGPAGLY




AQpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSeSN




IGSNdVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAE




DEADYYCQSYDRYTHPALLFGTGTKVTVLgqpkaapsvtlfppsseelqankatlyclisclfypg




avtvawkadsspvkagvettlpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





501
WW0707
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsiwelkkdvyvveldwypdapgemvvltcdtpeedgitwtldqs




sevlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknkffirceaknysgrftcwwltt




istdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf




firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsitfcvqvqgkskrekkdrvftdktsatvicrknasisv




raqdryyssswsewasvpcsggggsggggsggggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypc




tseeidheditkdktstveaclpleltknesclnsretsfitngsclasrktsfmmalclssiyedlkmyqvefktmnakllm




dpkrqifldqnmlavidelmqalnfnsetvpqkssleepdfyktkiklcillhafriravtidrvmsylnassggpGPA




GLYAQpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSG




SeSNIGSNdVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITG




LQAEDEADYYCQSYDRYTHPALLFGTGTKVTVLgqpkaapsvtlfppsseelqankatlycli




sdfypgavtvawkadsspvkagvettlpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





502
WW0708
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsiwelkkdvyvveldwypdapgemvvltcdtpeedgitwtldqs




sevlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknkffirceaknysgrftcwwltt




istdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf




firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsitfcvqvqgkskrekkdrvftdktsatvicrknasisv




raqdryyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrifilkttddmvktareklkhysctaedi




dheditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqi




ildkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssasggpGPAGLY




AQpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSN




IGeNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAE




DEADYYCQSYDRYTHPALLFGTGTKVTVLgqpkaapsvtlfppsseelqankatlyclisdfypg




avtvawkadsspvkagvettlpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





503
WW0709
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsiwelkkdvyvveldwypdapgemvvltcdtpeedgitwtldqs




sevlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknkffirceaknysgrftcwwltt




istdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf




firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsitfcvqvqgkskrekkdrvftdktsatvicrknasisv




raqthyyssswsewasvpcsggggsggggsggggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypc




tseeidheditkdktstveaclpleltknesclnsretsfitngsclasrktsfmmalclssiyedlkmyqvefktmnakllm




dpkrqifldqnmlavidelmqalnfnsetvpqkssleepdfyktkiklcillhafriravtidrvmsylnassggpGPA




GLYAQpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSG




SRSNIGeNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITG




LQAEDEADYYCQSYDRYTHPALLFGTGTKVTVLgqpkaapsvtlfppsseelqankatlycli




sdfypgavtvawkadsspvkagvettlpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





504
WW0710
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsiwelkkdvyvveldwypdapgemvvltcdtpeedgitwtldqs




sevlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknkffirceaknysgrftcwwltt




istdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf




firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsitfcvqvqgkskrekkdrvftdktsatvicrknasisv




raqthyyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrnllkttddmvktareklkhysctaedi




dheditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqi




ildkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssasggpGPAGLY




AQpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSN




IGeeTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAE




DEADYYCQSYDRYTHPALLFGTGTKVTVLgqpkaapsvtlfppsseelqankatlycliscifypg




avtvawkadsspvkagvettlpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





505
WW0711
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpGPAGLYAQpgsiwelkkdvyvveldwypdapgemvvltcdtpeedgitwtldqs




sevlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknkffirceaknysgrftcwwltt




istdlifsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssf




firdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsitfcvqvqgkskrekkdrvftdktsatvicrknasisv




raqthyyssswsewasvpcsggggsggggsggggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypc




tseeidheditkdktstveaclpleltknesclnsretsfitngsclasrktsfmmalclssiyedlkmyqvefktmnakllm




dpkrqifldqnmlavidelmqalnfnsetvpqkssleepdfyktkiklcillhafriravtidrvmsylnassggpGPA




GLYAQpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSG




SRSNIGeeTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGL




QAEDEADYYCQSYDRYTHPALLFGTGTKVTVLgqpkaapsvtlfppsseelqankatlyclis




dfypgavtvawkadsspvkagvettlpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





506
WW0712
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgsiwelkkdvyvveldwypdapgemvvltcdtpeedgitwtldqss




evlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwltti




stdiffsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssff




irdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsitfcvqvqgkskrekkdrvftdktsatvicrknasisvr




aqthyyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrnllkttddmvktareklkhysctaedid




heditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefciainaalqnhnhqqiil




dkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssasggpALFKSSF




PpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNI




GSNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAE




DEADYYCQSYDRYTHPALLFGTGTKVTVLgqpkaapsvtlfppsseelqankatlycliscifypg




avtvawkadsspvkagvettlpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





507
WW0713
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgsiwelkkdvyvveldwypdapgemvvlicdtpeedgitwtldqss




evlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwltti




stdllfsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssff




irdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisvr




aqdfyyssswsewasvpcsggggsggggsggggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypct




seeidheditkdktstveaclpleltknesclnsretsfitngsclasrktsfmmalclssiyedlkmyqvefktmnakllm




dpkrqifldqnmlavidelmqalnfnsetvpqkssleepdfyktkiklcillhafriravtidrvmsylnassggpALFK




SSFPpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRS




NIGSNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQ




AEDEADYYCQSYDRYTHPALLFGTGTKVTVLgqpkaapsvtlfppsseelqankatlycliscif




ypgavtvawkadsspvkagvetttpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





508
WW0714
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgsiwelkkdvyvveldwypdapgemvvlicdtpeedgitwtldqss




evlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwltti




stdllfsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssff




irdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisvr




aqdfyyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrfdlkttddmvktareklkhysctaedid




heditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefciainaalqnhnhqqiil




dkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssasggpALFKSSF




PpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNI




GSeTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAE




DEADYYCQSYDRYTHPALLFGTGTKVTVLgqpkaapsvtlfppsseelqankatlycliscifypg




avtvawkadsspvkagvettlpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





509
WW0715
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgsiwelkkdvyvveldwypdapgemvvlicdtpeedgitwtldqss




evlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwltti




stdllfsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssff




irdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisvr




aqdfyyssswsewasvpcsggggsggggsggggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypct




seeidheditkdktstveaclpleltknesclnsretsfitngsclasrktsfmmalclssiyedlkmyqvefktmnakllm




dpkrqifldqnmlavidelmqalnfnsetvpqkssleepdfyktkiklcillhafriravtidrvmsylnassggpALFK




SSFPpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRS




NIGSeTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQA




EDEADYYCQSYDRYTHPALLFGTGTKVTVLgqpkaapsvtlfppsseelqankatlyclisdfyp




gavtvawkadsspvkagvetttpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





510
WW0716
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgsiwelkkdvyvveldwypdapgemvvlicdtpeedgitwtldqss




evlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwltti




stdllfsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssff




irdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisvr




aqdfyyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrfdlkttddmvktareklkhysctaedid




heditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefciainaalqnhnhqqiil




dkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssasggpALFKSSF




PpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNI




GdNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAE




DEADYYCQSYDRYTHPALLFGTGTKVTVLgqpkaapsvtlfppsseelqankatlyclisdfypg




avtvawkadsspvkagvettlpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





511
WW0717
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgsiwelkkdvyvveldwypdapgemvvlicdtpeedgitwtldqss




evlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwltti




stdllfsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssff




irdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisvr




aqdlyyssswsewasvpcsggggsggggsggggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypct




seeidheditkdktstveaclpleltknesclnsretsfitngsclasrktsfmmalclssiyedlkmyqvefktmnakllm




dpkrqifldqnmlavidelmqalnfnsetvpqkssleepdfyktkiklcillhafriravtidrvmsylnassggpALFK




SSFPpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRS




NIGdNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQA




EDEADYYCQSYDRYTHPALLFGTGTKVTVLgqpkaapsvtlfppsseelqankatlyclisdfyp




gavtvawkadsspvkagvetttpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





512
WW0718
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgsiwelkkdvyvveldwypdapgemvvlicdtpeedgitwtldqss




evlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwltti




stdltfsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssff




irdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisvr




aqdlyyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrnllkttddmvktareklkhysctaedid




heditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefciainaalqnhnhqqiil




dkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssasggpALFKSSF




PpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNI




GdeTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAED




EADYYCQSYDRYTHPALLFGTGTKVTVLgqpkaapsvtlfppsseelqankativclisdfypga




vtvawkadsspvkagvetttpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





513
WW0719
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgsiwelkkdvyvveldwypdapgemvvlicdtpeedgitwtldqss




evlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwltti




stdltfsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssff




irdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisvr




aqdlyyssswsewasvpcsggggsggggsggggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypct




seeidheditkdktstveaclpleltknesclnsretsfitngsclasrktsfmmalclssiyedlkmyqvefktmnakllm




dpkrqifldqnmlavidelmqalnfnsetvpqkssleepdfyktkiklcillhafriravtidrvmsylnassggpALFK




SSFPpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRS




NIGdeTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQA




EDEADYYCQSYDRYTHPALLFGTGTKVTVLgqpkaapsvtlfppsseelqankatlyclisdfyp




gavtvawkadsspvkagvetttpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





514
WW0720
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgsiwelkkdvyvveldwypdapgemvvlicdtpeedgitwtldqss




evlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwltti




stdltfsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssff




irdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisvr




aqdlyyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrnllkttddmvktareklkhysctaedid




heditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqiil




dkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssasggpALFKSSF




PpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSeSNIG




SNdVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAED




EADYYCQSYDRYTHPALLFGTGTKVTVLgqpkaapsvtlfppsseelqankativclisdfypga




vtvawkadsspvkagvetttpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





515
WW0721
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgsiwelkkdvyvveldwypdapgemvvlicdtpeedgitwtldqss




evlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwltti




stdltfsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssff




irdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisvr




aqdlyyssswsewasvpcsggggsggggsggggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypct




seeidheditkdktstveaclpleltknesclnsretsfitngsclasrktsfmmalclssiyedlkmyqvefktmnakllm




dpkrqifldqnmlavidelmqalnfnsetvpqkssleepdfyktkiklcillhafriravtidrvmsylnassggpALFK




SSFPpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSeS




NIGSNdVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQA




EDEADYYCQSYDRYTHPALLFGTGTKVTVLgqpkaapsvtlfppsseelqankatlyclisdfyp




gavtvawkadsspvkagvetttpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





516
WW0722
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsgALFKSSFPpgsiwelkkdvyvveldwypdapgemvvlicdtpeedgitwtldqss




evlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwltti




stdltfsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssff




irdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisvr




aqdlyyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrnllkttddmvktareklkhysctaedid




heditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefciainaalqnhnhqqiil




dkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssasggpALFKSSF




PpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNI




GeNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAE




DEADYYCQSYDRYTHPALLFGTGTKVTVLgqpkaapsvtlfppsseelqankatlyclisdfypg




avtvawkadsspvkagvettlpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





517
WW0723
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgsiwelkkdvyvveldwypdapgemvvlicdtpeedgitwtldqss




evlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwltti




stdltfsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssff




irdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisvr




aqdlyyssswsewasvpcsggggsggggsggggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypct




seeidheditkdktstveaclpleltknesclnsretsfitngsclasrktsfmmalclssiyedlkmyqvefktmnakllm




dpkrqifldqnmlavidelmqalnfnsetvpqkssleepdfyktkiklcillhafriravtidrvmsylnassggpALFK




SSFPpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRS




NIGeNTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQA




EDEADYYCQSYDRYTHPALLFGTGTKVTVLgqpkaapsvtlfppsseelqankatlyclisdfyp




gavtvawkadsspvkagvetttpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





518
WW0724
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgsiwelkkdvyvveldwypdapgemvvlicdtpeedgitwtldqss




evlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwltti




stdltfsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssff




irdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisvr




aqdlyyssswsewasvpcsggggsggggsggggsrvipvsgparclsqsrnllkttddmvktareklkhysctaedid




heditrdqtstlktclplelhknesclatretssttrgsclppqktslmmticlgsiyedlkmyqtefciainaalqnhnhqqiil




dkgmlvaidelmqslnhngetlrqkppvgeadpyrvkmklcillhafstrvvtinrvmgylssasggpALFKSSF




PpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNI




GeeTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAED




EADYYCQSYDRYTHPALLFGTGTKVTVLgqpkaapsvtlfppsseelqankativclisdfypga




vtvawkadsspvkagvetttpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





519
WW0725
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSsggpALFKSSFPpgsiwelkkdvyvveldwypdapgemvvlicdtpeedgitwtldqss




evlgsgktltiqvkefgdagqytchkggevlshsllllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwltti




stdltfsvkssrgssdpqgvtcgaatlsaervrgdnkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssff




irdiikpdppknlqlkplknsrqvevsweypdtwstphsyfsltfcvqvqgkskrekkdrvftdktsatvicrknasisvr




aqdryyssswsewasvpcsggggsggggsggggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypct




seeidheditkdktstveaclpleltknesclnsretsfitngsclasrktsfmmalclssiyedlkmyqvefktmnakllm




dpkrqifldqnmlavidelmqalnfnsetvpqkssleepdfyktkiklcillhafriravtidrvmsylnassggpALFK




SSFPpgsggggsggggsggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRS




NIGeeTVKWYQQLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQA




EDEADYYCQSYDRYTHPALLFGTGTKVTVLgqpkaapsvtlfppsseelqankatlyclisdfyp




gavtvawkadsspvkagvetttpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





520
WW0726
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIR




YDGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHD




NWGQGTMVTVSSastkgpsvfplapsskstsggtaalgclvkdyfpepvtvswnsgaltsgvhtfpavlqssgl




yslssvvtvpssslgtqtyicnvnhkpsntkvdkrvepksc**





521
WW0727
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIR




YeGSNKYYAeSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDN




WGQGTMVTVSSastkgpsvfplapsskstsggtaalgclvkdyfpepvtvswnsgaltsgvhtfpavlqssgly




slssvvtvpssslgtqtyicnvnhkpsntkvdkrvepksc**





522
WW0728
QVQLVESGGGVVQPGRSLRLSCAASGFTFSSYGMHWVRQAPGKGLEWVAFIR




YeGSNKYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCKTHGSHDN




WGQGTMVTVSSastkgpsvfplapsskstsggtaalgclvkdyfpepvtvswnsgaltsgvhtfpavlqssgly




slssvvtvpssslgtqtyicnvnhkpsntkvdkrvepksc**





523
WW0765
iwelkkdvyvveldwypdapgemvvlicdtpeedgitwildqssevlgsgktltiqvkefgdagqytchkggevlshs




llllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwlttistdltfsvkssrgssdpqgvtcgaatlsaervrgd




nkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssffirdiikpdppknlqlkplknsrqvevsweypdt




wstphsyfshfcvqvqgkskrekkdivftdktsatvicrknasisvraqdryyssswsewasvpcsggggsggggsgg




ggsrvipvsgparclsqsrnllkttddmvktareklkhysctaedidheditrdqtstlktclplelhknesclatretssttrgs




clppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqiildkgmlvaidelmqslnhngetlrqkppvgead




pyrvkmklcillhafstryvtinrvmgylssasggpGPAGLYAQpgsEVQLVESGGGLVQPGNSL




RLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTIS




RDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsgg




ggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQLP




GTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDR




YTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAA




SGFTFSSYGMHWVRQAPGKGLEWVAFIRYeGSNKYYAeSVKGRFTlSRDNSKN




TLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVSS**





524
WW0766
iwelkkdvyvveldwypdapgemvvitcdtpeedgitwtldqssevlgsgktltiqvkefgdagqytchkggevlshs




llllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwlttistdltfsvkssrgssdpqgvtcgaatlsaervrgd




nkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssffirdiikpdppknlqlkplknsrqvevsweypdt




wstphsyfshfcvqvqgkskrekkchvftdktsatvicrknasisvraqdryyssswsewasvpcsggggsggggsgg




ggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypctseeidheditkdktstveaclpleltknesclnsre




tsfitngsclasrktsfmmalclssiyedlkmyqvefktmnakllmdpkrqifldqnmlavidelmqalnfnsetvpqk




ssleepdfyktkiklcillhafriravtidrvmsylnassggpGPAGLYAQpgsEVQLVESGGGLVQPG




NSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRF




TISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsgggg




sggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQ




QLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQS




YDRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLS




CAASGFTFSSYGMHWVRQAPGKGLEWVAFIRYeGSNKYYAeSVKGRFTISRD




NSKNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVSS**





525
WW0767
iwelkkdvyvveldwypdapgemvvitcdtpeedgitwildqssevlgsgktltiqvkefgdagqytchkggevlshs




llllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwlttistdltfsvkssrgssdpqgvtcgaatlsaervrgd




nkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssffirdiikpdppknlqlkplknsrqvevsweypdt




wstphsyfshfcvqvqgkskrekkchvftdktsatvicrknasisvraqdryyssswsewasvpcsggggsggggsgg




ggsrvipvsgparclsqsrnllkttddmvktareklkhysctaedidheditrdqtstlktclplelhknesclatretssttrgs




clppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqiildkgmlvaidelmqslnhngetlrqkppvgead




pyrvkmklcillhafstrvvtinrvmgylssasggpGPAGLYAQpgsEVQLVESGGGLVQPGNSL




RLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTIS




RDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsgg




ggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNIGdeTVKWYQQLP




GTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDR




YTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAA




SGFTFSSYGMHWVRQAPGKGLEWVAFIRYeGSNKYYAeSVKGRFTlSRDNSKN




TLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVSS**





526
WW0768
iwelkkdvyvveldwypdapgemvvitcdtpeedgitwtldqssevlgsgktltiqvkefgdagqytchkggevlshs




llllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwlttistdltfsvkssrgssdpqgvtcgaatlsaervrgd




nkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssffirdiikpdppknlqlkplknsrqvevsweypdt




wstphsyfshfcvqvqgkskrekkchvftdktsatvicrknasisvraqdryyssswsewasvpcsggggsggggsgg




ggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypctseeidheditkdktstveaclpleltknesclnsre




tsfitngsclasrktsfmmalclssiyedlkmyqvefktmnakllmdpkrqifldqnmlavidelmqalnfnsetvpqk




ssleepdfyktkiklcillhafriravtidrvmsylnassggpGPAGLYAQpgsEVQLVESGGGLVQPG




NSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRF




TISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsgggg




sggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNIGdeTVKWYQQ




LPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSY




DRYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSC




AASGFTFSSYGMHWVRQAPGKGLEWVAFIRYeGSNKYYAeSVKGRFTISRDNS




KNTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVSS**





527
WW0769
iwelkkdvyvveldwypdapgemvvitcdtpeedgitwildqssevlgsgktltiqvkefgdagqytchkggevlshs




llllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwlttistdltfsvkssrgssdpqgvtcgaatlsaervrgd




nkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssffirdiikpdppknlqlkplknsrqvevsweypdt




wstphsyfshfcvqvqgkskrekkchvftdktsatvicrknasisvraqdryyssswsewasvpcsggggsggggsgg




ggsrvipvsgparclsqsrnllkttddmvktareklkhysctaedidheditrdqtstlktclplelhknesclatretssttrgs




clppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqiildkgmlvaidelmqslnhngetlrqkppvgead




pyrvkmklcillhafstrvvtinrvmgylssasggpGPAGLYAQpgsEVQLVESGGGLVQPGNSL




RLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTIS




RDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsgg




ggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQLP




GTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDR




YTHPALLFGTGTKVTVLgqpkaapsvtlfppsseelqankatlyclisdfypgavtvawkadsspvkagv




etttpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





528
WW0770
iwelkkdvyvveldwypdapgemvvitcdtpeedgitwtldqssevlgsgktltiqvkefgdagqytchkggevlshs




llllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwlttistdltfsvkssrgssdpqgvtcgaatlsaervrgd




nkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssffirdiikpdppknlqlkplknsrqvevsweypdt




wstphsyfshfcvqvqgkskrekkdwftdktsatvicrknasisvraqdryyssswsewasvpcsggggsggggsgg




ggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypctseeidheditkdktstveaclpleltknesclnsre




tsfitngsclasrktsfmmalclssiyedlkmyqvefktmnakllmdpkrqifldqnmlavidelmqalnfnsetvpqk




ssleepdfyktkiklcillhafriravtidrvmsylnassggpGPAGLYAQpgsEVQLVESGGGLVQPG




NSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRF




TISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsgggg




sggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQ




QLPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQS




YDRYTHPALLFGTGTKVTVLgqpkaapsvtlfppsseelqankatlyclisdfypgavtvawkadsspv




kagvetttpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





529
WW0771
iwelkkdvyvveldwypdapgemvvitcdtpeedgitwtldqssevlgsgktltiqvkefgdagqytchkggevlshs




llllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwlttistdltfsvkssrgssdpqgvtcgaatlsaervrgd




nkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssffirdiikpdppknlqlkplknsrqvevsweypdt




wstphsyfshfcvqvqgkskrekkdwftdktsatvicrknasisvraqdryyssswsewasvpcsggggsggggsgg




ggsrvipvsgparclsqsrnllkttddmvktareklkhysctaedidheditrdqtstlktclplelhknesclatretssttrgs




clppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqiildkgmlvaidelmqslnhngetlrqkppvgead




pyrvkmklcillhafstryvtinrvmgylssasggpGPAGLYAQpgsEVQLVESGGGLVQPGNSL




RLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTIS




RDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsgg




ggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNIGdeTVKWYQQLP




GTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDR




YTHPALLFGTGTKVTVLgqpkaapsvtlfppsseelqankatlyclisdfypgavtvawkadsspvkagv




etttpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





530
WW0772
iwelkkdvyvveldwypdapgemvvitcdtpeedgitwtldqssevlgsgktltiqvkefgdagqytchkggevlshs




llllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwlttistdltfsvkssrgssdpqgvtcgaatlsaervrgd




nkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssffirdiikpdppknlqlkplknsrqvevsweypdt




wstphsyfshfcvqvqgkskrekkdwftdktsatvicrknasisvraqdryyssswsewasvpcsggggsggggsgg




ggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypctseeidheditkdktstveaclpleltknesclnsre




tsfitngsclasrktsfmmalclssiyedlkmyqvefktmnakllmdpkrqifldqnmlavidelmqalnfnsetvpqk




ssleepdfyktkiklcillhafriravtidrvmsylnassggpGPAGLYAQpgsEVQLVESGGGLVQPG




NSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRF




TISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsgggg




sggggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNIGdeTVKWYQQ




LPGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSY




DRYTHPALLFGTGTKVTVLgqpkaapsvtlfppsseelqankatlyclisdfypgavtvawkadsspvka




gvettlpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





531
WW0796
iwelkkdvyvveldwypdapgemvvitcdtpeedgitwtldqssevlgsgktltiqvkefgdagqytchkggevlshs




llllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwlttistdltfsvkssrgssdpqgvtcgaatlsaervrgd




nkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssffirdiikpdppknlqlkplknsrqvevsweypdt




wstphsyfshfcvqvqgkskrekkdwftdktsatvicrknasisvraqdryyssswsewasvpcsggggsggggsgg




ggsrvipvsgparclsqsrnllkttddmvktareklkhysctaedidheditrdqtstlktclplelhknesclatretssttrgs




clppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqiildkgmlvaidelmqslnhngetlrqkppvgead




pyrvkmklcillhafstrvvtinrvmgylssasggpALFKSSFPpgsEVQLVESGGGLVQPGNSLR




LSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISR




DNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsgggg




sggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQLPG




TAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRY




THPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAAS




GFTFSSYGMHWVRQAPGKGLEWVAFIRYeGSNKYYAeSVKGRFTISRDNSKN




TLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVSS**





532
WW0797
iwelkkdvyvveldwypdapgemvvItcdtpeedgitwildqssevIgsgktItiqvkefgdagqytchkggevIshs




llllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwIttistdIffsvkssrgssdpqgvtcgaatIsaervrgd




nkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssffirdiikpdppknIqlkplknsrqvevsweypdt




wstphsyfshfcvqvqgkskrekkdwftdktsatvicrknasisvraqdryyssswsewasvpcsggggsggggsgg




ggsrnIpvatpdpgmfpclhhsqnlIraysnmlqkarqtlefypctseeidheditkdktstveacIpleltknescInsre




tsfitngsclasrktsfmmalcIssiyedlkmyqvefktmnakIlmdpkrqifldqnmlavidelmqaInfnsetvpqk




ssleepdfyktkiklcillhafriravtidrvmsylnassggpALFKSSFPpgsEVQLVESGGGLVQPGN




SLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFT




ISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsg




gggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQL




PGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYD




RYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCA




ASGFTFSSYGMHWVRQAPGKGLEWVAFIRYeGSNKYYAeSVKGRFTISRDNSK




NTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVSS**





533
WW0798
iwelkkdvyvveldwypdapgemvvItcdtpeedgitwtldqssevIgsgktItiqvkefgdagqytchkggevIshs




llllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwIttistdIffsvkssrgssdpqgvtcgaatIsaervrgd




nkeyeysvecqedsacpaaeeslpievmvdavhlayenytssffirdiikpdppknIqlkplknsrqvevsweypdt




wstphsyfshfcvqvqgkskrekkdwftdktsatvicrknasisvraqdryyssswsewasvpcsggggsggggsgg




ggsrvipvsgparcIsqsrnlIkttddmvktareklkhysctaedidheditrdqtstIktclplelhknesclatretssttrgs




cIppqktsImmticlgsiyedlkmyqtefqainaalqnhnhqqiildkgmlvaidelmqslnhngetIrqkppvgead




pyrvkmklcillhafstrvvtinrvmgylssasggpALFKSSFPpgsEVQLVESGGGLVQPGNSLR




LSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISR




DNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsgggg




sggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNIGdeTVKWYQQLPGT




APKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYT




HPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCAASGF




TFSSYGMHWVRQAPGKGLEWVAFIRYeGSNKYYAeSVKGRFTISRDNSKNTL




YLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVSS**





534
WW0799
iwelkkdvyvveldwypdapgemvvItcdtpeedgitwildqssevIgsgktItiqvkefgdagqytchkggevIshs




llllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwIttistdIffsvkssrgssdpqgvtcgaatIsaervrgd




nkeyeysvecqedsacpaaeeslpievmvdavhlayenytssffirdiikpdppknIqlkplknsrqvevsweypdt




wstphsyfshfcvqvqgkskrekkdwftdktsatvicrknasisvraqdryyssswsewasvpcsggggsggggsgg




ggsrnIpvatpdpgmfpclhhsqnlIraysnmlqkarqtlefypctseeidheditkdktstveacIpleltknescInsre




tsfitngsclasrktsfmmalcIssiyedlkmyqvefktmnakIlmdpkrqifldqnmlavidelmqaInfnsetvpqk




ssleepdfyktkiklcillhafriravtidrvmsylnassggpALFKSSFPpgsEVQLVESGGGLVQPGN




SLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFT




ISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsg




gggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNIGdeTVKWYQQL




PGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYD




RYTHPALLFGTGTKVTVLggggsggggsggggsQVQLVESGGGVVQPGRSLRLSCA




ASGFTFSSYGMHWVRQAPGKGLEWVAFIRYeGSNKYYAeSVKGRFTISRDNSK




NTLYLQMNSLRAEDTAVYYCKTHGSHDNWGQGTMVTVSS**





535
WW0800
iwelkkdvyvveldwypdapgemvvitcdtpeedgitwildqssevlgsgktltiqvkefgdagqytchkggevlshs




llllhkkedgiwstdilkdqkepknkffirceaknysgrftcwwlttistdltfsvkssrgssdpqgvtcgaatlsaervrgd




nkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssffirdiikpdppknlqlkplknsrqvevsweypdt




wstphsyfshfcvqvqgkskrekkdwftdktsatvicrknasisvraqdryyssswsewasvpcsggggsggggsgg




ggsrvipvsgparclsqsrnllkttddmvktareklkhysctaedidheditrdqtstlktclplelhknesclatretssttrgs




clppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqiildkgmlvaidelmqslnhngetlrqkppvgead




pyrvkmklcillhafstrvvtinrvmgylssasggpALFKSSFPpgsEVQLVESGGGLVQPGNSLR




LSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISR




DNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsgggg




sggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQLPG




TAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRY




THPALLFGTGIKVTVLgqpkaapsvtlfppsseelqankatlycliscifypgavtvawkadsspvkagvett




tpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





536
WW0801
iwelkkdvyvveldwypdapgemvvitcdtpeedgitwildqssevlgsgktltiqvkefgdagqytchkggevlshs




llllhkkedgiwstdilkdqkepknkifirceaknysgrftcwwlttistdltfsvkssrgssdpqgvtcgaatlsaervrgd




nkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssffirdiikpdppknlqlkplknsrqvevsweypdt




wstphsyfshfcvqvqgkskrekkdwftdktsatvicrknasisvraqdryyssswsewasvpcsggggsggggsgg




ggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypctseeidheditkdktstveaclpleltknesclnsre




tsfitngsclasrktsfmmalclssiyedlkmyqvefktmnakllmdpkrqifldqnmlavidelmqalnfnsetvpqk




ssleepdfyktkiklcillhafriravtidrvmsylnassggpALFKSSFPpgsEVQLVESGGGLVQPGN




SLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFT




ISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsg




gggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNIGSNTVKWYQQL




PGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYD




RYTHPALLFGTGIKVTVLgqpkaapsvtlfppsseelqankatlyclisdfypgavtvawkadsspvkag




vettlpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





537
WW0802
iwelkkdvyvveldwypdapgemvvitcdtpeedgitwildqssevlgsgktltiqvkefgdagqytchkggevlshs




llllhkkedgiwstdilkdqkepknktflrceaknysgrftcwwlttistdltfsvkssrgssdpqgvtcgaatlsaervrgd




nkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssffirdiikpdppknlqlkplknsrqvevsweypdt




wstphsyfshfcvqvqgkskrekkchvftdktsatvicrknasisvraqdryyssswsewasvpcsggggsggggsgg




ggsrvipvsgparclsqsrnllkttddmvktareklkhysctaedidheditrdqtstlktclplelhknesclatretssttrgs




clppqktslmmticlgsiyedlkmyqtefqainaalqnhnhqqiildkgmlvaidelmqslnhngetlrqkppvgead




pyrvkmklcillhafstrvvtinrvmgylssasggpALFKSSFPpgsEVQLVESGGGLVQPGNSLR




LSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFTISR




DNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsgggg




sggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNIGdeTVKWYQQLPGT




APKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYDRYT




HPALLFGTGTKVTVLgqpkaapsvtlfppsseelqankativclisdfypgavtvawkadsspvkagvettt




pskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





538
WW0803
iwelkkdvyvveldwypdapgemvvitcdtpeedgitwfldqssevlgsgktltiqvkefgdagqytchkggevlshs




llllhkkedgiwstdilkdqkepknkffirceaknysgrftcwwlttistdltfsvkssrgssdpqgvtcgaatlsaervrgd




nkeyeysvecqedsacpaaeeslpievmvdavhklkyenytssffirdiikpdppknlqlkplknsrqvevsweypdt




wstphsyfshfcvqvqgkskrekkdwftdktsatvicrknasisvraqdryyssswsewasvpcsggggsggggsgg




ggsrnlpvatpdpgmfpclhhsqnllraysnmlqkarqtlefypctseeidheditkdktstveaclpleltknesclnsre




tsfitngsclasrktsfmmalclssiyedlkmyqvefktmnakllmdpkrqifldqnmlavidelmqalnfnsetvpqk




ssleepdfyktkiklcillhafriravtidrvmsylnassggpALFKSSFPpgsEVQLVESGGGLVQPGN




SLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKGRFT




ISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSggggsggggsg




gggsggggsggggsggggsQSVLTQPPSVSGAPGQRVTISCSGSRSNIGdeTVKWYQQL




PGTAPKLLIYYNDQRPSGVPDRFSGSKSGTSASLAITGLQAEDEADYYCQSYD




RYTHPALLFGTGTKVTVLgqpkaapsvtlfppsseelqankatlyclisdfypgavtvawkadsspvkag




vettlpskqsnnkyaassylsltpeqwkshrsyscqvthegstvektvaptecs**





539
WW0643
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSSGGPGPAGLYAQPGSCDLPHTYNLRNKRALKVLAQMRRLTPL




SCLKDRKDFGFPLEKVDAQQIQKAQSIPVLRDLTQQILNLFASKDSSAAWNAT




LLDSFCNDLHQQLNDLQGCLMQQVGVQESPLTQEDSLLAVRIYFHRITVFLRE




KKHSPCAWEVVRAEVWRALSSSANVLGRLREEKASGGPGPAGLYAQPGSEV




QLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGS




GRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQ




GTLVTVSS





540
WW0644
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSSGGPALFKSSFPPGSCDLPHTYNLRNKRALKVLAQMRRLTPLS




CLKDRKDFGFPLEKVDAQQIQKAQSIPVLRDLTQQILNLFASKDSSAAWNATL




LDSFCNDLHQQLNDLQGCLMQQVGVQESPLTQEDSLLAVRIYFHRITVFLREK




KHSPCAWEVVRAEVWRALSSSANVLGRLREEKASGGPALFKSSFPPGSEVQL




VESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGR




DTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGT




LVTVSS





541
WW0645
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSSGGPGPAGLYAQPGSCNLSQTHSLNNRRTLMLMAQMRRISPFS




CLKDRHDFEFPQEEFDGNQFQKAQAISVLHEMMQQTFNLFSTKNSSAAWDET




LLEKFYIELFQQMNDLEACVIQEVGVEETPLMNEDSILAVKKYFQRITLYLME




KKYSPCAWEVVRAEIMRSLSFSTNLQKRLRRKDSGGPGPAGLYAQPGSEVQL




VESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGR




DTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGT




LVTVSS





542
WW0646
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSSGGPALFKSSFPPGSCNLSQTHSLNNRRTLMLMAQMRRISPFSC




LKDRHDFEFPQEEFDGNQFQKAQAISVLHEMMQQTFNLFSTKNSSAAWDETL




LEKFYIELFQQMNDLEACVIQEVGVEETPLMNEDSILAVKKYFQRITLYLMEK




KYSPCAWEVVRAEIMRSLSFSTNLQKRLRRKDSGGPALFKSSFPPGSEVQLVES




GGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTL




YAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVT




VSS





543
WW0647
CDLPHTYNLRNKRALKVLAQMRRLTPLSCLKDRKDFGFPLEKVDAQQIQKAQ




SIPVLRDLTQQILNLFASKDSSAAWNATLLDSFCNDLHQQLNDLQGCLMQQV




GVQESPLTQEDSLLAVRIYFHRITVFLREKKHSPCAWEVVRAEVWRALSSSAN




VLGRLREEKAHHHHHH





544
WW0648
CNLSQTHSLNNRRTLMLMAQMRRISPFSCLKDRHDFEFPQEEFDGNQFQKAQ




AISVLHEMMQQTFNLFSTKNSSAAWDETLLEKFYIELFQQMNDLEACVIQEVG




VEETPLMNEDSILAVKKYFQRITLYLMEKKYSPCAWEVVRAEIMRSLSFSTNL




QKRLRRKDHHHHHH





545
WW0781
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSSGGPGPAGLYAQPGSCDLPQTHSLGSRRTLMLLAQMRRISLFS




CLKDRHDFGFPQEEFGNQFQKAETIPVLHEMIQQIFNLFSTKDSSAAWDETLLD




KFYTELYQQLNDLEACVIQGVGVEETPLMKEDSILAVRKYFQRITLYLKEKKY




SPCAWEVVRAEIMRSFSLSTNLQESLRSKESGGPGPAGLYAQPGSEVQLVESG




GGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLY




AESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTV




SS





546
WW0782
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSSGGPGPAGLYAQPGSCNLSQTHSLNNRRTLMLMAQMRRISPFS




CLKDRHDFEFPQEEFDGNQFQKAQAISVLHEMMQQTFNLFSTKDSSAAWDET




LLEKFYIELFQQMNDLEACVIQEVGVEETPLMNEDSILAVKKYFQRITLYLME




KKYSPCAWEVVRAEIMRSLSFSTNLQKRLRRKDSGGPGPAGLYAQPGSEVQL




VESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGR




DTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGT




LVTVSS





547
WW0783
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSSGGPGPAGLYAQPGSCDLPQTHSLNNRRTLMLMAQMRRISPFS




CLKDRHDFEFPQEEFDGNQFQKAQAISVLHEMMQQTFNLFSTKDSSAAWDET




LLEKFYIELFQQMNDLEACVIQEVGVEETPLMNEDSILAVKKYFQRITLYLME




KKYSPCAWEVVRAEIMRSLSFSTNLQKRLRRKDSGGPGPAGLYAQPGSEVQL




VESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGR




DTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGT




LVTVSS





548
WW0784
CDLPQTHSLGSRRTLMLLAQMRRISLFSCLKDRHDFGFPQEEFGNQFQKAETIP




VLHEMIQQIFNLFSTKDSSAAWDETLLDKFYTELYQQLNDLEACVIQGVGVEE




TPLMKEDSILAVRKYFQRITLYLKEKKYSPCAWEVVRAEIMRSFSLSTNLQESL




RSKEHHHHHH





549
WW0785
CNLSQTHSLNNRRTLMLMAQMRRISPFSCLKDRHDFEFPQEEFDGNQFQKAQ




AISVLHEMMQQTFNLFSTKDSSAAWDETLLEKFYIELFQQMNDLEACVIQEVG




VEETPLMNEDSILAVKKYFQRITLYLMEKKYSPCAWEVVRAEIMRSLSFSTNL




QKRLRRKDHHHHHH





550
WW0786
CDLPQTHSLNNRRTLMLMAQMRRISPFSCLKDRHDFEFPQEEFDGNQFQKAQ




AISVLHEMMQQTFNLFSTKDSSAAWDETLLEKFYIELFQQMNDLEACVIQEVG




VEETPLMNEDSILAVKKYFQRITLYLMEKKYSPCAWEVVRAEIMRSLSFSTNL




QKRLRRKDHHHHHH





551
WW0815
EAHKSEIAHRYNDLGEQHFKGLVLIAFSQYLQKCSYDEHAKLVQEVTDFAKT




CVADESAANCDKSLHTLFGDKLCAIPNLRENYGELADCCTKQEPERNECFLQH




KDDNPSLPPFERPEAEAMCTSFKENPTTFMGHYLHEVARRHPYFYAPELLYYA




EQYNEILTQCCAEADKESCLTPKLDGVKEKALVSSVRQRMKCSSMQKFGERA




FKAWAVARLSQTFPNADFAEITKLATDLTKVNKECCHGDLLECADDRAELAK




YMCENQATISSKLQTCCDKPLLKKAHCLSEVEHDTMPADLPAIAADFVEDQE




VCKNYAEAKDVFLGTFLYEYSRRHPDYSVSLLLRLAKKYEATLEKCCAEANP




PACYGTVLAEFQPLVEEPKNLVKTNCDLYEKLGEYGFQNAILVRYTQKAPQV




STPTLVEAARNLGRVGTKCCTLPEDQRLPCVEDYLSAILNRVCLLHEKTPVSE




HVTKCCSGSLVERRPCFSALTVDETYVPKEFKAETFTFHSDICTLPEKEKQIKK




QTALAELVKHKPKATAEQLKTVMDDFAQFLDTCCKAADKDTCFSTEGPNLVT




RCKDALASGGPALFKSSFPPGSCDLPQTHNLRNKRALTLLVQMRRLSPLSCLK




DRKDFGFPQEKVDAQQIKKAQAIPVLSELTQQILNIFTSKDSSAAWNTTLLDSF




CNDLHQQLNDLQGCLMQQVGVQEFPLTQEDALLAVRKYFHRITVYLREKKH




SPCAWEVVRAEVWRALSSSANVLGRLREEKSGGPALFKSSFPPGSEAHKSEIA




HRYNDLGEQHFKGLVLIAFSQYLQKCSYDEHAKLVQEVTDFAKTCVADESAA




NCDKSLHTLFGDKLCAIPNLRENYGELADCCTKQEPERNECFLQHKDDNPSLP




PFERPEAEAMCTSFKENPTTFMGHYLHEVARRHPYFYAPELLYYAEQYNEILT




QCCAEADKESCLTPKLDGVKEKALVSSVRQRMKCSSMQKFGERAFKAWAVA




RLSQTFPNADFAEITKLATDLTKVNKECCHGDLLECADDRAELAKYMCENQA




TISSKLQTCCDKPLLKKAHCLSEVEHDTMPADLPAIAADFVEDQEVCKNYAEA




KDVFLGTFLYEYSRRHPDYSVSLLLRLAKKYEATLEKCCAEANPPACYGTVL




AEFQPLVEEPKNLVKTNCDLYEKLGEYGFQNAILVRYTQKAPQVSTPTLVEAA




RNLGRVGTKCCTLPEDQRLPCVEDYLSAILNRVCLLHEKTPVSEHVTKCCSGS




LVERRPCFSALTVDETYVPKEFKAETFTFHSDICTLPEKEKQIKKQTALAELVK




HKPKATAEQLKTVMDDFAQFLDTCCKAADKDTCFSTEGPNLVTRCKDALAH




HHHHH





552
WW0816
EAHKSEIAHRYNDLGEQHFKGLVLIAFSQYLQKCSYDEHAKLVQEVTDFAKT




CVADESAANCDKSLHTLFGDKLCAIPNLRENYGELADCCTKQEPERNECFLQH




KDDNPSLPPFERPEAEAMCTSFKENPTTFMGHYLHEVARRHPYFYAPELLYYA




EQYNEILTQCCAEADKESCLTPKLDGVKEKALVSSVRQRMKCSSMQKFGERA




FKAWAVARLSQTFPNADFAEITKLATDLTKVNKECCHGDLLECADDRAELAK




YMCENQATISSKLQTCCDKPLLKKAHCLSEVEHDTMPADLPAIAADFVEDQE




VCKNYAEAKDVFLGTFLYEYSRRHPDYSVSLLLRLAKKYEATLEKCCAEANP




PACYGTVLAEFQPLVEEPKNLVKTNCDLYEKLGEYGFQNAILVRYTQKAPQV




STPTLVEAARNLGRVGTKCCTLPEDQRLPCVEDYLSAILNRVCLLHEKTPVSE




HVTKCCSGSLVERRPCFSALTVDETYVPKEFKAETFTFHSDICTLPEKEKQIKK




QTALAELVKHKPKATAEQLKTVMDDFAQFLDTCCKAADKDTCFSTEGPNLVT




RCKDALASGGPALFKSSFPPGSCDLPHTYNLRNKRALKVLAQMRRLTPLSCLK




DRKDFGFPLEKVDAQQIQKAQSIPVLRDLTQQILNLFASKDSSAAWNATLLDS




FCNDLHQQLNDLQGCLMQQVGVQESPLTQEDSLLAVRIYFHRITVFLREKKHS




PCAWEVVRAEVWRALSSSANVLGRLREEKASGGPALFKSSFPPGSEAHKSEIA




HRYNDLGEQHFKGLVLIAFSQYLQKCSYDEHAKLVQEVTDFAKTCVADESAA




NCDKSLHTLFGDKLCAIPNLRENYGELADCCTKQEPERNECFLQHKDDNPSLP




PFERPEAEAMCTSFKENPTTFMGHYLHEVARRHPYFYAPELLYYAEQYNEILT




QCCAEADKESCLTPKLDGVKEKALVSSVRQRMKCSSMQKFGERAFKAWAVA




RLSQTFPNADFAEITKLATDLTKVNKECCHGDLLECADDRAELAKYMCENQA




TISSKLQTCCDKPLLKKAHCLSEVEHDTMPADLPAIAADFVEDQEVCKNYAEA




KDVFLGTFLYEYSRRHPDYSVSLLLRLAKKYEATLEKCCAEANPPACYGTVL




AEFQPLVEEPKNLVKTNCDLYEKLGEYGFQNAILVRYTQKAPQVSTPTLVEAA




RNLGRVGTKCCTLPEDQRLPCVEDYLSAILNRVCLLHEKTPVSEHVTKCCSGS




LVERRPCFSALTVDETYVPKEFKAETFTFHSDICTLPEKEKQIKKQTALAELVK




HKPKATAEQLKTVMDDFAQFLDTCCKAADKDTCFSTEGPNLVTRCKDALAH




HHHHH





553
WW0817
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSSGGPALFKSSFPPGSCDLPQTHNLRNKRALTLLVQMRRLSPLSC




LKDRKDFGFPQEKVDAQQlKKAQAIPVLSELTQQILNIFTSKDSSAAWNTTLLD




SFCNDLHQQLNDLQGCLMQQVGVQEFPLTQEDALLAVRKYFHRITVYLREKK




HSPCAWEVVRAEVWRALSSSANVLGRLREEKSGGPALFKSSFPPGSEAHKSEI




AHRYNDLGEQHFKGLVLIAFSQYLQKCSYDEHAKLVQEVTDFAKTCVADESA




ANCDKSLHTLFGDKLCAIPNLRENYGELADCCTKQEPERNECFLQHKDDNPSL




PPFERPEAEAMCTSFKENPTTFMGHYLHEVARRHPYFYAPELLYYAEQYNEIL




TQCCAEADKESCLTPKLDGVKEKALVSSVRQRMKCSSMQKFGERAFKAWAV




ARLSQlFPNADFAEITKLATDLTKVNKECCHGDLLECADDRAELAKYMCENQ




ATISSKLQTCCDKPLLKKAHCLSEVEHDTMPADLPAIAADFVEDQEVCKNYAE




AKDVFLGIFLYEYSRRHPDYSVSLLLRLAKKYEATLEKCCAEANPPACYGTV




LAEFQPLVEEPKNLVKTNCDLYEKLGEYGFQNAILVRYTQKAPQVSTPTLVEA




ARNLGRVGTKCCTLPEDQRLPCVEDYLSAILNRVCLLHEKTPVSEHVTKCCSG




SLVERRPCFSALTVDETYVPKEFKAETFTFHSDICTLPEKEKQIKKQTALAELV




KHKPKATAEQLKTVMDDFAQFLDTCCKAADKDTCFSTEGPNLVTRCKDALA




HHHHHH





554
WW0818
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSSGGPALFKSSFPPGSCDLPHTYNLRNKRALKVLAQMRRLTPLS




CLKDRKDFGFPLEKVDAQQIQKAQSIPVLRDLTQQILNLFASKDSSAAWNATL




LDSFCNDLHQQLNDLQGCLMQQVGVQESPLTQEDSLLAVRIYFHRITVFLREK




KHSPCAWEVVRAEVWRALSSSANVLGRLREEKASGGPALFKSSFPPGSEAHK




SEIAHRYNDLGEQHFKGLVLIAFSQYLQKCSYDEHAKLVQEVTDFAKTCVAD




ESAANCDKSLHTLFGDKLCAIPNLRENYGELADCCTKQEPERNECFLQHKDD




NPSLPPFERPEAEAMCTSFKENPTTFMGHYLHEVARRHPYFYAPELLYYAEQY




NEILTQCCAEADKESCLTPKLDGVKEKALVSSVRQRMKCSSMQKFGERAFKA




WAVARLSQTFPNADFAEITKLATDLTKVNKECCHGDLLECADDRAELAKYM




CENQATISSKLQTCCDKPLLKKAHCLSEVEHDTMPADLPAIAADFVEDQEVCK




NYAEAKDVFLGTFLYEYSRRHPDYSVSLLLRLAKKYEATLEKCCAEANPPAC




YGTVLAEFQPLVEEPKNLVKTNCDLYEKLGEYGFQNAILVRYTQKAPQVSTPT




LVEAARNLGRVGTKCCTLPEDQRLPCVEDYLSAILNRVCLLHEKTPVSEHVTK




CCSGSLVERRPCFSALTVDETYVPKEFKAETFTFHSDICTLPEKEKQIKKQTAL




AELVKHKPKATAEQLKTVMDDFAQFLDTCCKAADKDTCFSTEGPNLVTRCK




DALAHHHHHH





555
WW0819
EAHKSEIAHRYNDLGEQHFKGLVLIAFSQYLQKCSYDEHAKLVQEVTDFAKT




CVADESAANCDKSLHTLFGDKLCAIPNLRENYGELADCCTKQEPERNECFLQH




KDDNPSLPPFERPEAEAMCTSFKENPTTFMGHYLHEVARRHPYFYAPELLYYA




EQYNEILTQCCAEADKESCLTPKLDGVKEKALVSSVRQRMKCSSMQKFGERA




FKAWAVARLSQTFPNADFAEITKLATDLTKVNKECCHGDLLECADDRAELAK




YMCENQATISSKLQTCCDKPLLKKAHCLSEVEHDTMPADLPAIAADFVEDQE




VCKNYAEAKDVFLGTFLYEYSRRHPDYSVSLLLRLAKKYEATLEKCCAEANP




PACYGTVLAEFQPLVEEPKNLVKTNCDLYEKLGEYGFQNAILVRYTQKAPQV




STPTLVEAARNLGRVGTKCCTLPEDQRLPCVEDYLSAILNRVCLLHEKTPVSE




HVTKCCSGSLVERRPCFSALTVDETYVPKEFKAETFTFHSDICTLPEKEKQIKK




QTALAELVKHKPKATAEQLKTVMDDFAQFLDTCCKAADKDTCFSTEGPNLVT




RCKDALASGGPALFKSSFPPGSCDLPQTHNLRNKRALTLLVQMRRLSPLSCLK




DRKDFGFPQEKVDAQQIKKAQAIPVLSELTQQILNIFTSKDSSAAWNTTLLDSF




CNDLHQQLNDLQGCLMQQVGVQEFPLTQEDALLAVRKYFHRITVYLREKKH




SPCAWEVVRAEVWRALSSSANVLGRLREEKSGGPALFKSSFPPGSEVQLVESG




GGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLY




AESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTV




SSHHHHHH





556
WW0820
EAHKSEIAHRYNDLGEQHFKGLVLIAFSQYLQKCSYDEHAKLVQEVTDFAKT




CVADESAANCDKSLHTLFGDKLCAIPNLRENYGELADCCTKQEPERNECFLQH




KDDNPSLPPFERPEAEAMCTSFKENPTTFMGHYLHEVARRHPYFYAPELLYYA




EQYNEILTQCCAEADKESCLTPKLDGVKEKALVSSVRQRMKCSSMQKFGERA




FKAWAVARLSQTFPNADFAEITKLATDLTKVNKECCHGDLLECADDRAELAK




YMCENQATISSKLQTCCDKPLLKKAHCLSEVEHDTMPADLPAIAADFVEDQE




VCKNYAEAKDVFLGTFLYEYSRRHPDYSVSLLLRLAKKYEATLEKCCAEANP




PACYGTVLAEFQPLVEEPKNLVKTNCDLYEKLGEYGFQNAILVRYTQKAPQV




STPTLVEAARNLGRVGTKCCTLPEDQRLPCVEDYLSAILNRVCLLHEKTPVSE




HVTKCCSGSLVERRPCFSALTVDETYVPKEFKAETFTFHSDICTLPEKEKQIKK




QTALAELVKHKPKATAEQLKTVMDDFAQFLDTCCKAADKDTCFSTEGPNLVT




RCKDALASGGPALFKSSFPPGSCDLPHTYNLRNKRALKVLAQMRRLTPLSCLK




DRKDFGFPLEKVDAQQIQKAQSIPVLRDLTQQILNLFASKDSSAAWNATLLDS




FCNDLHQQLNDLQGCLMQQVGVQESPLTQEDSLLAVRIYFHRITVFLREKKHS




PCAWEVVRAEVWRALSSSANVLGRLREEKASGGPALFKSSFPPGSEVQLVESG




GGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLY




AESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTV




SSHHHHHH





557
WW0821
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKT




CVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQ




HKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFF




AKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGER




AFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADL




AKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKD




VCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAAD




PHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQV




STPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVS




DRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIK




KQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKL




VAASQAALGLSGGPALFKSSFPPGSCDLPQTHSLGSRRTLMLLAQMRRISLFSC




LKDRHDFGFPQEEFGNQFQKAETIPVLHEMIQQIFNLFSTKDSSAAWDETLLDK




FYTELYQQLNDLEACVIQGVGVTETPLMKEDSILAVRKYFQRITLYLKEKKYS




PCAWEVVRAEIMRSFSLSTNLQESLRSKESGGPALFKSSFPPGSDAHKSEVAHR




FKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAENC




DKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLPR




LVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFTE




CCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVAR




LSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQDSI




SSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEAKD




VFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVFDE




FKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVSRN




LGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTESL




VNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELVKH




KPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALGL





558
WW0822
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKT




CVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQ




HKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFF




AKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGER




AFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADL




AKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKD




VCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAAD




PHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQV




STPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVS




DRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIK




KQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKL




VAASQAALGLSGGPALFKSSFPPGSCNLSQTHSLNNRRTLMLMAQMRRISPFS




CLKDRHDFEFPQEEFDGNQFQKAQAISVLHEMMQQTFNLFSTKNSSAAWDET




LLEKFYIELFQQMNDLEACVIQEVGVEETPLMNEDSILAVKKYFQRITLYLME




KKYSPCAWEVVRAEIMRSLSFSTNLQKRLRRKDSGGPALFKSSFPPGSDAHKS




EVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADE




SAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDN




PNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYK




AAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKA




WAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYIC




ENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKN




YAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECY




AKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTL




VEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVT




KCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTA




LVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAAS




QAALGL





559
WW08 31
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKT




CVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQ




HKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFF




AKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGER




AFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADL




AKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKD




VCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAAD




PHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQV




STPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVS




DRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIK




KQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKL




VAASQAALGLSGGPALFKSSFPPGSCDLPQTHSLGNRRALILLAQMRRISPFSC




LKDRHDFEFPQEEFDDKQFQKAQAISVLHEMIQQTFNLFSTKDSSAALDETLL




DEFYIELDQQLNDLESCVMQEVGVIESPLMYEDSILAVRKYFQRITLYLTEKKY




SSCAWEVVRAEIMRSFSLSINLQKRLKSKESGGPALFKSSFPPGSDAHKSEVAH




RFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESAEN




CDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPNLP




RLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAAFT




ECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWAVA




RLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICENQD




SISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYAEA




KDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAKVF




DEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVEVS




RNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKCCTE




SLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALVELV




KHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQAALG




L





560
WW0832
DAHKSEVAHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKT




CVADESAENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQ




HKDDNPNLPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFF




AKRYKAAFTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGER




AFKAWAVARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADL




AKYICENQDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKD




VCKNYAEAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAAD




PHECYAKVFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQV




STPTLVEVSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVS




DRVTKCCTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIK




KQTALVELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKL




VAASQAALGLSGGPALFKSSFPPGSCDLPQTHSLGNRRALILLAQMGRISHFSC




LKDRYDFGFPQEVFDGNQFQKAQAISAFHEMIQQTFNLFSTKDSSAAWDETLL




DKFYIELFQQLNDLEACVTQEVGVEEIALMNEDSILAVRKYFQRITLYLMGKK




YSPCAWEVVRAEIMRSFSFSTNLQKGLRRKDSGGPALFKSSFPPGSDAHKSEV




AHRFKDLGEENFKALVLIAFAQYLQQCPFEDHVKLVNEVTEFAKTCVADESA




ENCDKSLHTLFGDKLCTVATLRETYGEMADCCAKQEPERNECFLQHKDDNPN




LPRLVRPEVDVMCTAFHDNEETFLKKYLYEIARRHPYFYAPELLFFAKRYKAA




FTECCQAADKAACLLPKLDELRDEGKASSAKQRLKCASLQKFGERAFKAWA




VARLSQRFPKAEFAEVSKLVTDLTKVHTECCHGDLLECADDRADLAKYICEN




QDSISSKLKECCEKPLLEKSHCIAEVENDEMPADLPSLAADFVESKDVCKNYA




EAKDVFLGMFLYEYARRHPDYSVVLLLRLAKTYETTLEKCCAAADPHECYAK




VFDEFKPLVEEPQNLIKQNCELFEQLGEYKFQNALLVRYTKKVPQVSTPTLVE




VSRNLGKVGSKCCKHPEAKRMPCAEDYLSVVLNQLCVLHEKTPVSDRVTKC




CTESLVNRRPCFSALEVDETYVPKEFNAETFTFHADICTLSEKERQIKKQTALV




ELVKHKPKATKEQLKAVMDDFAAFVEKCCKADDKETCFAEEGKKLVAASQA




ALGL





561
WW0833
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSSGGPALFKSSFPPGSCDLPQTHSLGNRRALILLAQMRRISPFSCL




KDRHDFEFPQEEFDDKQFQKAQAISVLHEMIQQTFNLFSTKDSSAALDETLLD




EFYIELDQQLNDLESCVMQEVGVIESPLMYEDSILAVRKYFQRITLYLTEKKYS




SCAWEVVRAEIMRSFSLSINLQKRLKSKESGGPALFKSSFPPGSEVQLVESGGG




LVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAES




VKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS





562
WW0834
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSSGGPALFKSSFPPGSCDLPQTHSLGNRRALILLAQMGRISHFSCL




KDRYDFGFPQEVFDGNQFQKAQAISAFHEMIQQTFNLFSTKDSSAAWDETLLD




KFYIELFQQLNDLEACVTQEVGVEEIALMNEDSILAVRKYFQRITLYLMGKKY




SPCAWEVVRAEIMRSFSFSTNLQKGLRRKDSGGPALFKSSFPPGSEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS





563
WW0737
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSSGGPGPAGLYAQPGSINYKQLQLQERTNIRKCQELLEQLNGKIN




LTYRADFKIPMEMTEKMQKSYTAFAIQEMLQNVFLVFRNNFSSTGWNETIVV




RLLDELHQQTVFLKTVLEEKQEERLTWEMSSTALHLKSYYWRVQRYLKLMK




YNSYAWMVVRAEIFRNFLIIRRLTRNFQNSGGPGPAGLYAQPGSEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS





564
WW0738
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSSGGPALFKSSFPPGSINYKQLQLQERTNIRKCQELLEQLNGKINL




TYRADFKIPMEMTEKMQKSYTAFAIQEMLQNVFLVFRNNFSSTGWNETIVVR




LLDELHQQTVFLKTVLEEKQEERLTWEMSSTALHLKSYYWRVQRYLKLMKY




NSYAWMVVRAEIFRNFLIIRRLTRNFQNSGGPALFKSSFPPGSEVQLVESGGGL




VQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESV




KGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS





565
WW0739
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSSGGPGPAGLYAQPGSINYKQLQLQERTNIRKSQELLEQLNGKIN




LTYRADFKIPMEMTEKMQKSYTAFAIQEMLQNVFLVFRNNFSSTGWNETIVV




RLLDELHQQTVFLKTVLEEKQEERLTWEMSSTALHLKSYYWRVQRYLKLMK




YNSYAWMVVRAEIFRNFLIIRRLTRNFQNSGGPGPAGLYAQPGSEVQLVESGG




GLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYA




ESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS





566
WW0740
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSSGGPALFKSSFPPGSINYKQLQLQERTNIRKSQELLEQLNGKINL




TYRADFKIPMEMTEKMQKSYTAFAIQEMLQNVFLVFRNNFSSTGWNETIVVR




LLDELHQQTVFLKTVLEEKQEERLTWEMSSTALHLKSYYWRVQRYLKLMKY




NSYAWMVVRAEIFRNFLIIRRLTRNFQNSGGPALFKSSFPPGSEVQLVESGGGL




VQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESV




KGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSS





567
WW0741
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSSGGPGPAGLYAQPGSMSYNLLGFLQRSSNFQCQKLLWQLNGR




LEYCLKDRMNFDIPEEIKQLQQFQKEDAALTIYEMLQNIFAIFRQDSSSTGWNE




TIVENLLANVYHQINHLKTVLEEKLEKEDFTRGKLMSSLHLKRYYGRILHYLK




AKEYSHCAWTIVRVEILRNFYFINRLTGYLRNSGGPGPAGLYAQPGSEVQLVE




SGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTL




YAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVT




VSS





568
WW0742
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSSGGPALFKSSFPPGSMSYNLLGFLQRSSNFQCQKLLWQLNGRL




EYCLKDRMNFDIPEEIKQLQQFQKEDAALTIYEMLQNIFAIFRQDSSSTGWNET




IVENLLANVYHQINHLKTVLEEKLEKEDFTRGKLMSSLHLKRYYGRILHYLKA




KEYSHCAWTIVRVEILRNFYFINRLTGYLRNSGGPALFKSSFPPGSEVQLVESG




GGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLY




AESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTV




SS





569
WW0743
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSSGGPGPAGLYAQPGSMSYNLLGFLQRSSNFQSQKLLWQLNGR




LEYCLKDRMNFDIPEEIKQLQQFQKEDAALTIYEMLQNIFAIFRQDSSSTGWNE




TIVENLLANVYHQINHLKTVLEEKLEKEDFTRGKLMSSLHLKRYYGRILHYLK




AKEYSHCAWTIVRVEILRNFYFINRLTGYLRNSGGPGPAGLYAQPGSEVQLVE




SGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTL




YAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVT




VSS





570
WW0744
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSSGGPALFKSSFPPGSMSYNLLGFLQRSSNFQSQKLLWQLNGRL




EYCLKDRMNFDIPEEIKQLQQFQKEDAALTIYEMLQNIFAIFRQDSSSTGWNET




IVENLLANVYHQINHLKTVLEEKLEKEDFTRGKLMSSLHLKRYYGRILHYLKA




KEYSHCAWTIVRVEILRNFYFINRLTGYLRNSGGPALFKSSFPPGSEVQLVESG




GGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLY




AESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTV




SS





571
WW0745
INYKQLQLQERTNIRKCQELLEQLNGKINLTYRADFKIPMEMTEKMQKSYTAF




AIQEMLQNVFLVFRNNFSSTGWNETIVVRLLDELHQQTVFLKTVLEEKQEERL




TWEMSSTALHLKSYYWRVQRYLKLMKYNSYAWMVVRAEIFRNFLIIRRLTR




NFQNHHHHHH





572
WW0746
INYKQLQLQERTNIRKSQELLEQLNGKINLTYRADFKIPMEMTEKMQKSYTAF




AIQEMLQNVFLVFRNNFSSTGWNETIVVRLLDELHQQTVFLKTVLEEKQEERL




TWEMSSTALHLKSYYWRVQRYLKLMKYNSYAWMVVRAEIFRNFLIIRRLTR




NFQNHHHHHH





573
WW0747
MSYNLLGFLQRSSNFQCQKLLWQLNGRLEYCLKDRMNFDIPEEIKQLQQFQK




EDAALTIYEMLQNIFAIFRQDSSSTGWNETIVENLLANVYHQINHLKTVLEEKL




EKEDFTRGKLMSSLHLKRYYGRILHYLKAKEYSHCAWTIVRVEILRNFYFINR




LTGYLRNHHHHHH





574
WW0748
MSYNLLGFLQRSSNFQSQKLLWQLNGRLEYCLKDRMNFDIPEEIKQLQQFQKE




DAALTIYEMLQNIFAIFRQDSSSTGWNETIVENLLANVYHQINHLKTVLEEKLE




KEDFTRGKLMSSLHLKRYYGRILHYLKAKEYSHCAWTIVRVEILRNFYFINRL




TGYLRNHHHHHH





575
WW0787
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSSGGPGPAGLYAQPGSMSYNLLGFLQRSSNFQCQKLLWQLNGR




LEYCLKDRMNFDIPEEIKQLQQFQKEDAALTIYEMLQNIFAIFRQDSSSTGWQE




TIVENLLANVYHQINHLKTVLEEKLEKEDFTRGKLMSSLHLKRYYGRILHYLK




AKEYSHCAWTIVRVEILRNFYFINRLTGYLRNSGGPGPAGLYAQPGSEVQLVE




SGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTL




YAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVT




VSS





576
WW0788
EVQLVESGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSIS




GSGRDTLYAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVS




SQGTLVTVSSSGGPGPAGLYAQPGSMSYNLLGFLQRSSNFQSQKLLWQLNGR




LEYCLKDRMNFDIPEEIKQLQQFQKEDAALTIYEMLQNIFAIFRQDSSSTGWQE




TIVENLLANVYHQINHLKTVLEEKLEKEDFTRGKLMSSLHLKRYYGRILHYLK




AKEYSHCAWTIVRVEILRNFYFINRLTGYLRNSGGPGPAGLYAQPGSEVQLVE




SGGGLVQPGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTL




YAESVKGRFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVT




VSS





577
WW0789
MSYNLLGFLQRSSNFQCQKLLWQLNGRLEYCLKDRMNFDIPEEIKQLQQFQK




EDAALTIYEMLQNIFAIFRQDSSSTGWQETIVENLLANVYHQINHLKTVLEEKL




EKEDFTRGKLMSSLHLKRYYGRILHYLKAKEYSHCAWTIVRVEILRNFYFINR




LTGYLRNHHHHHH





578
WW0790
MSYNLLGFLQRSSNFQSQKLLWQLNGRLEYCLKDRMNFDIPEEIKQLQQFQKE




DAALTIYEMLQNIFAIFRQDSSSTGWQETIVENLLANVYHQINHLKTVLEEKLE




KEDFTRGKLMSSLHLKRYYGRILHYLKAKEYSHCAWTIVRVEILRNFYFINRL




TGYLRNHHHHHH





579
WW0729
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATEL




KHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEY




ADETATIVEFLNRWITFCQSIISTLTSGGPGGGGSGGGPGSEVQLVESGGGLVQ




PGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKG




RFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSGGGGS




GGGGSGGGGSGGGGSGGGGSGGGGSSGGPGGGGSGGGPGSEVQLVESGGGL




VQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVR




GRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTV




SSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVH




TFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSC





580
WW0734
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATEL




KHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEY




ADETATIVEFLNRWITFCQSIISTLTSGGPGPAGMKGLPGSEVQLVESGGGLVQ




PGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKG




RFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSGGGGS




GGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSEVQLVESGGGL




VQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVR




GRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTV




SSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVH




TFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSC





581
WW0735
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATEL




KHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEY




ADETATIVEFLNRWITFCQSIISTLTSGGPGPAGLYAQPGSEVQLVESGGGLVQP




GNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKG




RFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSGGGGS




GGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSEVQLVESGGGL




VQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVR




GRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTV




SSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVH




TFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSC





582
WW0736
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATEL




KHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEY




ADETATIVEFLNRWITFCQSIISTLTSGGPALFKSSFPPGSEVQLVESGGGLVQP




GNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKG




RFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSGGGGS




GGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSGGGGSEVQLVESGGGL




VQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAIDSSSYTYSPDTVR




GRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDALDYWGQGTTVTV




SSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVH




TFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKRVEPKSC





583
WW0792
EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYTLAWVRQAPGKGLEWVAAID




SSSYTYSPDTVRGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCARDSNWDAL




DYWGQGTTVTVSSASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVS




WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTK




VDKRVEPKSCHHHHHH





584
WW0061
APTSSSTKKTQLQLEHLLLDLQMILNGINNYKNPKLTRMLTFKFYMPKKATEL




KHLQCLEEELKPLEEVLNLAQSKNFHLRPRDLISNINVIVLELKGSETTFMCEY




ADETATIVEFLNRWITFCQSIISTLTSGGPGPAGMKGLPGSEVQLVESGGGLVQ




PGNSLRLSCAASGFTFSKFGMSWVRQAPGKGLEWVSSISGSGRDTLYAESVKG




RFTISRDNAKTTLYLQMNSLRPEDTAVYYCTIGGSLSVSSQGTLVTVSSHHHH




HH





585
ACP293
QVQLQESGGGLVQTGGSLRLSCTTSGTIFSGYTMGWYRQAPGEQRELVAVISG



(WW0237)
GGDTNYADSVKGRFTISRDNTKDTMYLQMNSLKPEDTAVYYCYSREVTPPW




KLYWGQGTQVTVSSAAAYPYDVPDYGSHHHHHH





586
ACP294
QVQLQESGGGLVQEGGSLRLSCAASERIFSTDVMGWYRQAAEKQRELVAVVS



(WW0238)
ARGTTNYLDAVKGRFTISRDNARNTLTLQMNDLKPEDTASYYCYVRETTSPW




RIYWGQGTQVTVSSAAAYPYDVPDYGSHHHHHH





587
ACP295
QVQLQESGGGLVQAGGSLRLSCAASGSlFSANAMGWYRQAPGKQRELVAVIS



(WW0239)
SGGSTNYADSVKGRFTISRDNAKNTVYLQMNSLKPEDTAVYYCMYSGSYYY




TPNDYWGQGTQVTVSSAAAYPYDVPDYGSHHHHHH





588
ACP315
EVQLLESGGGLVQPGGSLRLSCAASGSIFSANAMGWYRQAPGKQRELVAVISS



(WW0368)
GGSTNYADSVKGRFTISRDNSKNTVYLQMNSLRAEDTAVYYCMYSGSYYYTP




NDYWGQGTLVTVSSAAAYPYDVPDYGSHHHHHH





589
ACP316
EVQLLESGGGLVQPGGSLRLSCAASGSIFSANAMGWYRQAPGKGLELVAVISS



(WW0369)
GGSTNYADSVKGRFTISRDNSKNTVYLQMNSLRAEDTAVYYCMYSGSYYYTP




NDYWGQGTLVTVSSAAAYPYDVPDYGSHHHHHH





590
ACP317
EVQLLESGGGLVQPGGSLRLSCAASGSIFSANAMGWVRQAPGKGLEWVSVIS



(WW0370)
SGGSTNYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCMYSGSYYYT




PNDYWGQGTLVTVSSAAAYPYDVPDYGSHHHHHH





591
ACP318
QVQLLESGGGLVQPGGSLRLSCAASGSIFSANAMGWYRQAPGKQRELVAVIS



(WW0371)
SGGSTNYADSVKGRFTISRDNSKNTVYLQMNSLRAEDTAVYYCMYSGSYYYT




PNDYWGQGTLVTVSSAAAYPYDVPDYGSHHHHHH





592
ACP319
EVQLLESGGGLVQPGGSLRLSCAASGSIFSANAMGWYRQAPGKGRELVAVISS



(WW0372)
GGSTNYADSVKGRFTISRDNSKNTVYLQMNSLRAEDTAVYYCMYSGSYYYTP




NDYWGQGTLVTVSSAAAYPYDVPDYGSHHHHHH





593
ACP320
QVQLLESGGGLVQAGGSLRLSCAASGSIFSANAMGWYRQAPGKQRELVAVIS



(WW0373)
SGGSTNYADSVKGRFTISRDNSKNTVYLQMNSLRAEDTAVYYCMYSGSYYYT




PNDYWGQGTLVTVSSAAAYPYDVPDYGSHHHHHH





594
ACP321
EVQLLESGGGLVQPGGSLRLSCAASERIFSTDVMGWYRQAPGKQRELVAVVS



(WW0374)
ARGTTNYLDAVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCYVRETTSPW




RIYWGQGTLVTVSSAAAYPYDVPDYGSHHHHHH





595
ACP322
EVQLLESGGGLVQPGGSLRLSCAASERIFSTDVMGWYRQAPGKGLELVAVVS



(WW0375)
ARGTTNYLDAVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCYVRETTSPW




RIYWGQGTLVTVSSAAAYPYDVPDYGSHHHHHH





596
ACP323
EVQLLESGGGLVQPGGSLRLSCAASERIFSTDVMGWVRQAPGKGLEWVSVVS



(WW0376)
ARGTTNYLDAVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCYVRETTSPW




RIYWGQGTLVTVSSAAAYPYDVPDYGSHHHHHH





597
ACP324
QVQLLESGGGLVQPGGSLRLSCAASERIFSTDVMGWYRQAPGKQRELVAVVS



(WW0377)
ARGTTNYLDAVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCYVRETTSPW




RIYWGQGTLVTVSSAAAYPYDVPDYGSHHHHHH





598
ACP325
EVQLLESGGGLVQPGGSLRLSCAASERIFSTDVMGWYRQAPGKGRELVAVVS



(WW0378)
ARGTTNYLDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCYVRETTSPW




RIYWGQGTLVTVSSAAAYPYDVPDYGSHHHHHH





599
ACP326
QVQLLESGGGLVQEGGSLRLSCAASERIFSTDVMGWYRQAAGKQRELVAVVS



(WW0379)
ARGTTNYLDAVKGRFTISRDNSKNTLYLQMNSLRAEDTASYYCYVRETTSPW




RIYWGQGTLVTVSSAAAYPYDVPDYGSHHHHHH





600
ACP327
EVQLLESGGGLVQPGGSLRLSCAASERIFSTDVMGWYRQAPGKGLELVAVVS



(WW0380)
ARGTTNYLDSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCYVRETTSPW




RIYWGQGTLVTVSSAAAYPYDVPDYGSHHHHHH





601
ACP328
EVQLLESGGGLVQPGGSLRLSCATSGTIFSGYTMGWYRQAPGKQRELVAVISG



(WW0381)
GGDTNYADSVKGRFTISRDNSKDTMYLQMNSLRAEDTAVYYCYSREVTPPW




KLYWGQGTLVTVSSAAAYPYDVPDYGSHHHHHH





602
ACP329
EVQLLESGGGLVQPGGSLRLSCATSGTIFSGYTMGWYRQAPGKGLELVAVISG



(WW0382)
GGDTNYADSVKGRFTISRDNSKDTMYLQMNSLRAEDTAVYYCYSREVTPPW




KLYWGQGTLVTVSSAAAYPYDVPDYGSHHHHHH





603
ACP330
EVQLLESGGGLVQPGGSLRLSCAASGTIFSGYTMGWVRQAPGKGLEWVSVIS



(WW0383)
GGGDTNYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCYSREVTPPW




KLYWGQGTLVTVSSAAAYPYDVPDYGSHHHHHH





604
ACP331
QVQLLESGGGLVQPGGSLRLSCATSGTIFSGYTMGWYRQAPGKQRELVAVIS



(WW0384)
GGGDTNYADSVKGRFTISRDNSKDTMYLQMNSLRAEDTAVYYCYSREVTPP




WKLYWGQGTLVTVSSAAAYPYDVPDYGSHHHHHH





605
ACP332
EVQLLESGGGLVQPGGSLRLSCATSGTIFSGYTMGWYRQAPGKQRELVAVISG



(WW0385)
GGDTNYADSVKGRFTISRDNSKNTMYLQMNSLRAEDTAVYYCYSREVTPPW




KLYWGQGTLVTVSSAAAYPYDVPDYGSHHHHHH





606
ACP333
EVQLLESGGGLVQPGGSLRLSCATSGTIFSGYTMGWYRQAPGKGRELVAVISG



(WW0386)
GGDTNYADSVKGRFTISRDNSKNTMYLQMNSLRAEDTAVYYCYSREVTPPW




KLYWGQGTLVTVSSAAAYPYDVPDYGSHHHHHH





607
ACP334
QVQLLESGGGLVQTGGSLRLSCATSGTIFSGYTMGWYRQAPGKQRELVAVIS



(WW0387)
GGGDTNYADSVKGRFTISRDNSKDTMYLQMNSLRAEDTAVYYCYSREVTPP




WKLYWGQGTLVTVSSAAAYPYDVPDYGSHHHHHH





608
ACP335
EVQLLESGGGLVQPGGSLRLSCATSGTIFSGYTMGWYRQAPGKGLELVAVISG



(WW0388_
GGDTNYADSVKGRFTISRDNSKNTMYLQMNSLRAEDTAVYYCYSREVTPPW




KLYWGQGTLVTVSSAAAYPYDVPDYGSHHHHHH





609
MMP14_1
GPAGLYAQ





610
MMP9_1
GPAGMKGL





611
FAPa_1
PGGPAGIG





612
CTSL1_1
ALFKSSFP





613
CTSL1_2
ALFFSSPP





614
ADAM17_1
LAQRLRSS





615
ADAM17_2
LAQKLKSS





616
ALU30-1
GALFKSSFPSGGGPAGLYAQGGSGKGGSGK





617
ALU30-2
RGSGGGPAGLYAQGSGGGPAGLYAQGGSGK





618
ALU30-3
KGGGPAGLYAQGPAGLYAQGPAGLYAQGSR





619
ALU30-4
RGGPAGLYAQGGPAGLYAQGGGPAGLYAQK





620
ALU30-5
KGGALFKSSFPGGPAGIGPLAQKLKSSGGS





621
ALU30-6
SGGPGGPAGIGALFKSSFPLAQKLKSSGGG





622
ALU30-7
RGPLAQKLKSSALFKSSFPGGPAGIGGGGK





623
ALU30-8
GGGALFKSSFPLAQKLKSSPGGPAGIGGGR





624
ALU30-9
RGPGGPAGIGPLAQKLKSSALFKSSFPGGG





625
ALU30-10
RGGPLAQKLKSSPGGPAGIGALFKSSFPGK





626
ALU30-11
RSGGPAGLYAQALFKSSFPLAQKLKSSGGG





627
ALU30-12
GGPLAQKLKSSALFKSSFPGPAGLYAQGGR





628
ALU30-13
GGALFKSSFPGPAGLYAQPLAQKLKSSGGK





629
ALU30-14
RGGALFKSSFPLAQKLKSSGPAGLYAQGGK





630
ALU30-15
RGGGPAGLYAQPLAQKLKSSALFKSSFPGG





631
ALU30-16
SGPLAQKLKSSGPAGLYAQALFKSSFPGSK





632
ALU30-17
KGGPGGPAGIGPLAQRLRSSALFKSSFPGR





633
ALU30-18
KSGPGGPAGIGALFFSSPPLAQKLKSSGGR





634
ALU30-19
SGGFPRSGGSFNPRTFGSKRKRRGSRGGGG









INCORPORATION BY REFERENCE

The entire disclosures of all patent and non-patent publications cited herein are each incorporated by reference in their entireties for all purposes.


OTHER EMBODIMENTS

The disclosure set forth above may encompass multiple distinct inventions with independent utility. Although each of these inventions has been disclosed in its preferred form(s), the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense, because numerous variations are possible. The subject matter of the inventions includes all novel and nonobvious combinations and subcombinations of the various elements, features, functions, and/or properties disclosed herein. The following claims particularly point out certain combinations and subcombinations regarded as novel and nonobvious. Inventions embodied in other combinations and subcombinations of features, functions, elements, and/or properties may be claimed in this application, in applications claiming priority from this application, or in related applications. Such claims, whether directed to a different invention or to the same invention, and whether broader, narrower, equal, or different in scope in comparison to the original claims, also are regarded as included within the subject matter of the inventions of the present disclosure.

Claims
  • 1. A method of treating a cancer, in a human subject comprising administering to the subject in need thereof an effective amount of therapeutic combination comprising a) an inducible cytokine polypeptide, wherein the inducible cytokine polypeptide comprises a) a cytokine polypeptide; b) a cytokine blocking moiety that inhibits cytokine receptor activating activity of the cytokine polypeptide; and c) a half-life extension domain; wherein the cytokine polypeptide is operably linked to the cytokine blocking moiety through a first linker comprising a cleavable peptide and the cytokine blocking moiety is operably linked to the half-life extension domain through a second linker; andb) a cellular therapy.
  • 2. The method of claim 1, where the cellular therapy comprises T-cell therapy.
  • 3. The method of 2, wherein the T-cell therapy comprises activated T cells.
  • 4. The method of claim 2, wherein the T-cell therapy comprises CAR-T cells.
  • 5. The method of claim 1, where the cellular therapy comprises NK cells.
  • 6. The method of claim 1, wherein cytokine polypeptide comprises IL-2, IL-7, IL-12, IL-15, IL-18, IL-21, IL-23, TGF, interferon alpha, interferon beta, interferon gamma, TNF, TGFbeta, CXCL10, CCL19, CCL20, CCL21, or a mutein, a variant, an active fragment, or a subunit of any of the foregoing.
  • 7. The method of claim 1, wherein the inducible cytokine polypeptide comprises IL-2.
  • 8. The method of claim 1, wherein the inducible cytokine polypeptide comprises IL-12.
  • 9. The method of claim 1, wherein the inducible cytokine polypeptide comprises one polypeptide chain, or two or more polypeptide chains.
  • 10. The method of claim 1, wherein the cytokine blocking moiety is a ligand-binding domain or fragment of a cognate receptor for the cytokine polypeptide or an antibody or antigen-binding fragment of an antibody that binds the cytokine polypeptide.
  • 11. The method of claim 1, wherein half-life extension domain is an immunoglobulin Fc, human serum albumin or a fragment thereof that binds neonatal Fc receptor, or an antigen-binding portion of an antibody that binds to FcRn or to human serum albumin.
  • 12. The method of claim 1, wherein a) the cytokine polypeptide is an IL-2 polypeptide; b) the cytokine blocking moiety is a IL-2-binding domain or fragment of an IL-2 receptor or an antibody or antigen-binding fragment of an antibody that binds IL-2; and c) the half-life extension domain is an immunoglobulin Fc, human serum albumin or a fragment thereof that binds neonatal Fc receptor, or an antigen-binding portion of an antibody that binds to FcRn or to human serum albumin.
  • 13. The method of claim 10, wherein the cytokine blocking moiety is a IL-2-binding domain or fragment of an IL-2 receptor, and the IL-2 receptor comprises IL-2Rα (CD25), IL-2Rβ (CD122), IL-2Rγ (CD132) or combinations thereof.
  • 14. The method of claim 10, wherein the cytokine blocking moiety is an antibody or antigen-binding fragment of an antibody that binds IL-2.
  • 15. The method of claim 1, wherein a) the cytokine polypeptide is an IL-12 polypeptide; b) the cytokine blocking moiety is a IL-12-binding domain or fragment of an IL-12 receptor or an antibody or antigen-binding fragment of an antibody that binds IL-12; and c) the half-life extension domain is an immunoglobulin Fc, human serum albumin or a fragment thereof that binds neonatal Fc receptor, or an antigen-binding portion of an antibody that binds to FcRn or to human serum albumin.
  • 16. The method of claim 15, wherein the cytokine blocking moiety is a IL-12-binding domain or fragment of an IL-12 receptor, and the IL-12 receptor comprises IL-12Rβ1, IL-12Rβ2 or combinations thereof.
  • 17. The method of claim 15, wherein the cytokine blocking moiety is an antibody or antigen-binding fragment of an antibody that binds IL-12.
  • 18. The method of claim 1, wherein the cancer is characterized by solid tumors.
  • 19. The method of claim 1, wherein the inducible cytokine polypeptide comprises a substrate for a protease and has at least about 10× less cytokine receptor activating activity relative to the polypeptide that contains the cytokine that is produced by protease cleavage of the inducible cytokine polypeptide.
Parent Case Info

This application is a continuation of U.S. patent application Ser. No. 17/741,275, filed on May 10, 2022, which is a continuation of International Patent Application No. PCT/US2020/060624, filed on Nov. 14, 2020, which claims the benefit of U.S. Provisional Application No. 62/935,605, filed on Nov. 14, 2019, each of which are incorporated herein by reference.

US Referenced Citations (125)
Number Name Date Kind
4419446 Howley et al. Dec 1983 A
4560655 Baker Dec 1985 A
4601978 Karin Jul 1986 A
4657866 Kumar Apr 1987 A
4676980 Segal et al. Jun 1987 A
4767704 Cleveland Aug 1988 A
4816567 Cabilly et al. Mar 1989 A
4927762 Darfler May 1990 A
4965199 Capon et al. Oct 1990 A
5089261 Nitecki et al. Feb 1992 A
5122464 Wilson et al. Jun 1992 A
5122469 Mather et al. Jun 1992 A
5208020 Chari et al. May 1993 A
5264365 Georgiou Nov 1993 A
5416064 Chari et al. May 1995 A
5508192 Georgiou et al. Apr 1996 A
5571894 Weis et al. Nov 1996 A
5587458 King et al. Dec 1996 A
5624821 Winter et al. Apr 1997 A
5635483 Pettit et al. Jun 1997 A
5639635 Joly et al. Jun 1997 A
5641870 Rinderknecht et al. Jun 1997 A
5648237 Carter et al. Jul 1997 A
5648260 Winter et al. Jul 1997 A
5712374 Kunstmann et al. Jan 1998 A
5714586 Kunstmann et al. Feb 1998 A
5739277 Presta et al. Apr 1998 A
5767285 Hamann et al. Jun 1998 A
5770701 McGahren et al. Jun 1998 A
5770710 McGahren et al. Jun 1998 A
5773001 Hamann et al. Jun 1998 A
5780588 Pettit et al. Jul 1998 A
5834597 Tso et al. Nov 1998 A
5869046 Presta et al. Feb 1999 A
5877296 Hamann et al. Mar 1999 A
5891693 Bebbington et al. Apr 1999 A
5939598 Kucherlapati et al. Aug 1999 A
6027888 Georgiou et al. Feb 2000 A
6075181 Kucherlapati et al. Jun 2000 A
6083715 Georgiou et al. Jul 2000 A
6114598 Kucherlapati et al. Sep 2000 A
6150584 Kucherlapati et al. Nov 2000 A
6162963 Kucherlapati et al. Dec 2000 A
6165745 Ward et al. Dec 2000 A
6248516 Winter et al. Jun 2001 B1
6602684 Umana et al. Aug 2003 B1
6630579 Chari et al. Oct 2003 B2
6670147 Heidtman et al. Dec 2003 B1
6821505 Ward et al. Nov 2004 B2
6942853 Chernajovsky et al. Sep 2005 B2
7498298 Doronina et al. Mar 2009 B2
7514073 Epstein et al. Apr 2009 B2
8399219 Stagliano et al. Mar 2013 B2
8563269 Stagliano et al. Oct 2013 B2
8734774 Frelinger et al. May 2014 B2
8809504 Lauermann et al. Aug 2014 B2
8969538 Rosen et al. Mar 2015 B2
8993266 Stagliano et al. Mar 2015 B2
9206243 Leon Monzon et al. Dec 2015 B2
9309510 Porte et al. Apr 2016 B2
9453078 Stagliano et al. Sep 2016 B2
9487590 West et al. Nov 2016 B2
9517276 Lowman et al. Dec 2016 B2
9540440 Lowman et al. Jan 2017 B2
9644016 Stagliano et al. May 2017 B2
9708412 Baeuerle et al. Jul 2017 B2
9775913 Lauermann Oct 2017 B2
9856314 Lowman et al. Jan 2018 B2
9861705 Bossard et al. Jan 2018 B2
9889211 Lowman et al. Feb 2018 B2
10059762 Stagliano et al. Aug 2018 B2
10077300 Daugherty et al. Sep 2018 B2
10100106 Dubridge et al. Oct 2018 B2
10138272 Moore et al. Nov 2018 B2
10179817 Sagert et al. Jan 2019 B2
10233244 Sagert et al. Mar 2019 B2
10301380 West et al. Mar 2019 B2
10261083 Vasiljeva et al. Apr 2019 B2
10513549 Stagliano et al. Dec 2019 B2
20020164328 Shinkawa et al. Nov 2002 A1
20030139575 Gillies et al. Jul 2003 A1
20030157108 Presta et al. Aug 2003 A1
20030190311 Dall'Acqua et al. Oct 2003 A1
20040014652 Trouet et al. Jan 2004 A1
20040093621 Shitara et al. May 2004 A1
20040109865 Niwa et al. Jun 2004 A1
20040110282 Kanda et al. Jun 2004 A1
20040110682 Heidtmann et al. Jun 2004 A1
20040132140 Satoh et al. Jul 2004 A1
20040136952 Bhaskaran et al. Jul 2004 A1
20050014934 Hinton et al. Jan 2005 A1
20060166329 Rosen et al. Jul 2006 A1
20060205926 Ross et al. Sep 2006 A1
20060236411 Dreher et al. Oct 2006 A1
20070048282 Rosen et al. Mar 2007 A1
20070269422 Beimnaert et al. Nov 2007 A1
20100254944 Subramanian et al. Oct 2010 A1
20110190209 Culbertson et al. Aug 2011 A1
20130064788 Barnes et al. Mar 2013 A1
20130089516 Frelinger et al. Nov 2013 A1
20150079088 Lowman et al. Mar 2015 A1
20150087810 Moore et al. Mar 2015 A1
20160152686 Camphausen et al. Jun 2016 A1
20160194399 Irving et al. Jul 2016 A1
20160289324 Moore et al. Oct 2016 A1
20160311903 West et al. Oct 2016 A1
20160354472 Merchant et al. Dec 2016 A1
20160355587 West et al. Dec 2016 A1
20170044259 Tipton et al. Feb 2017 A1
20170096472 Rosen et al. Apr 2017 A1
20170240608 Stagliano et al. Aug 2017 A1
20180016316 Garcia et al. Jan 2018 A1
20180119128 Metzner et al. May 2018 A1
20180134789 Baeuerle et al. May 2018 A1
20180200346 Ballance et al. Jul 2018 A1
20180303952 Sagert Oct 2018 A1
20180344810 Addepalli et al. Dec 2018 A1
20190008978 Huang et al. Jan 2019 A1
20190016814 Humphrey et al. Jan 2019 A1
20190117789 Carman et al. Apr 2019 A1
20190135943 Boustany et al. May 2019 A1
20190225702 Baeuerle et al. Jul 2019 A1
20190367576 Winston Dec 2019 A1
20200044052 Bao Feb 2020 A1
20220339193 Xiao Oct 2022 A1
Foreign Referenced Citations (89)
Number Date Country
19701141 Apr 1998 DE
547163 Feb 2002 EP
1867660 Dec 2007 EP
2639241 Sep 2013 EP
3134102 Nov 2017 EP
3792277 Mar 2021 EP
198700195 Jan 1987 WO
199003430 Apr 1990 WO
199101743 Feb 1991 WO
199308829 May 1993 WO
199316185 Aug 1993 WO
199411026 May 1994 WO
199429351 Dec 1994 WO
1996027011 Sep 1996 WO
199730087 Aug 1997 WO
199858964 Dec 1998 WO
199858964 Dec 1998 WO
199922764 May 1999 WO
199951642 Oct 1999 WO
200061739 Oct 2000 WO
200130460 May 2001 WO
2001079271 Oct 2001 WO
2002022833 Mar 2002 WO
200243478 Jun 2002 WO
2002055098 Jul 2002 WO
2002076489 Oct 2002 WO
2003011878 Feb 2003 WO
200359934 Jul 2003 WO
2003084570 Oct 2003 WO
2003085119 Oct 2003 WO
2003106381 Dec 2003 WO
2004041865 May 2004 WO
2004056312 Jul 2004 WO
2005035586 Apr 2005 WO
2005035778 Apr 2005 WO
2005053742 Jun 2005 WO
20060166329 Jul 2006 WO
20060166329 Jul 2006 WO
2006106905 Oct 2006 WO
2006110728 Oct 2006 WO
2008147530 Dec 2008 WO
2009025846 Feb 2009 WO
2009103965 Aug 2009 WO
2010020766 Feb 2010 WO
2011011797 Jan 2011 WO
2011124718 Oct 2011 WO
2011123683 Oct 2011 WO
2012059486 May 2012 WO
2013163631 Oct 2013 WO
2013177187 Nov 2013 WO
2013177187 Nov 2013 WO
2014100014 Jun 2014 WO
2014120555 Aug 2014 WO
2015066279 May 2015 WO
2016200645 Dec 2016 WO
2017156178 Sep 2017 WO
2018071918 Apr 2018 WO
2018071777 Apr 2018 WO
2018136725 Apr 2018 WO
2018160754 Sep 2018 WO
2018160877 Sep 2018 WO
201808555 Nov 2018 WO
2018204528 Nov 2018 WO
2018204717 Nov 2018 WO
2018213341 Nov 2018 WO
2018236701 Dec 2018 WO
2019014586 Jan 2019 WO
2019018828 Jan 2019 WO
2019036031 Feb 2019 WO
2019094396 May 2019 WO
WO2019136305 Jul 2019 WO
2019173832 Sep 2019 WO
2019214757 Nov 2019 WO
2019222294 Nov 2019 WO
2019222295 Nov 2019 WO
2019222295 Nov 2019 WO
2019246392 Dec 2019 WO
2020069398 Feb 2020 WO
2020069398 Apr 2020 WO
2020232305 Nov 2020 WO
2020252264 Dec 2020 WO
2021016599 Jan 2021 WO
2021030483 Feb 2021 WO
2021062406 Apr 2021 WO
2021202673 Jul 2021 WO
2021202675 Jul 2021 WO
2021202678 Oct 2021 WO
2021202678 Oct 2021 WO
2002022833 Mar 2022 WO
Non-Patent Literature Citations (170)
Entry
Desnoyers et al., Tumor-Specific Activation of an EGFR-Targeting Probody Enhances Therapeutic Index, Science Translational Medicine, Oct. 16, 2013, , vol. 5, Issue 207, American Association for the Advancement of Science, USA.
Halin et al., Synergistic Therapeutic Effects of a Tumor Targeting Antibody Fragment, Fused to Interleukin 12 and to Tumor Necrosis Factor α, Cancer Research, Jun. 2003, 3202-3210, vol. 63, Issue 12, AACR, USA.
Helguera, et al “Antibody-Cytokine fusion proteins: Harnessing the combined power of cytokines and antibodies for cancer therapy” Clinical immunology 105 (3) Dec. 2002, 233-246.
Hemar et al “Endocytosis of Interleukin 2 receptors in human T lymphocytes: distinct intracellular localization and fate of the receptor alpha, beta, and gamma chains.” J. Cell Biol. 1995; 129(1): 55-64.
Hoos et al., CCR 20th Anniversary Commentary: Immune-Related Response Criteria—Capturing Clinical Activity in Immuno-Oncology, Clin Cancer Res. Nov. 15, 2015, 4989-4991, vol. 21, Issue 22, American Association of Cancer Research, USA.
Irving et al., A Clue to Antigen Receptor Tails, J Immunol, May 1, 2014, 4013-4014, vol. 192, Issue 9, The American Association of Immunologists, Inc., USA.
Jabaiah et al., Identification of protease exosite-interacting peptides that enhance substrate cleavage kinetics, Biol Chem., Sep. 2012, 933-941, vol. 393, Issue 9, ASBMB Publications, USA.
Jana et al “Interleukin-12 (IL-12), but not IL-23, induces the expression of IL-7 in microglia and macrophages: Implications for multiple sclerosis.” Immunology 2013; 141: 549-563.
Kaspar et al., The antibody-mediated targeted delivery of interleukin-15 and GM-CSF to the tumor neovasculature Inhibits tumor growth and metastasis, Cancer Res, May 15, 2007, 4940-4098, vol. 67 Issue 10, AACR. USA.
Kim et al., Novel immunocytokine IL 12-SS1 (Fv) inhibits mesothelioma tumor growth in nude mice, PLoS One, Nov. 15, 2013, 1-11, vol. 8, Issue 11, PLOS.
Klatzmann, D and Abbas, A.K. “The promise of low-dose interleukin-2 therapy for autoimmune and inflammatory diseases.” Nat. Rev. Immunol. 2015; 15: 283-294.Oh et al “IL-15 as a mediator of CD4+ help for CD8+ T cell longevity and avoidance of TRAIL-mediated apoptosis.” PNAS 2008; 105(13): 5201-5206.
Koreth et al “Interleukin-2 and Regulatory T Cells in Graft-versus-host disease.” N. Engl. J. Med. 2011; 365(22): 2055-2066.
Lasek et al “Interleukin 12: still a promising candidate for tumor immunotherapy?” Cancer Immunol Immunother (2014) 63:419-435.
Lebeau et al., Imaging a functional tumorigenic biomarker in the transformed epithelium, PNAS, Jan. 2, 2013, 93-98, vol. 110, Issue 1, National Academy of Sciences, USA.
Lin et al., Targeting Drug Conjugates to the Tumor Microenvironment: Probody Drug Conjugates, Innovations for Next-Generation Antibody-Drug Conjugates, 2018, 281-298, Humana Press, USA.
Malek, T.R. and Castro, I. Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity 2010 33(2): 153-165.
Manuale L. Penichet, “Antibody-cytokine fusion proteins for the therapy of cancer”, Immunology, 2001, pp. 91-101.
Marks-Konczalik et al “IL-2-induced cell death is inhibited in IL-15 transgenic mice.” PNAS 2000; 97(21): 11445-11450.
Mitsiades et al., Matrix Metalloproteinase-7-mediated Cleavage of Fas Ligand Protects Tumor Cells from Chemotherapeutic Drug Cytotoxicity, Cancer Research, Jan. 15, 2001, 577-581, vol. 61, AACR, USA.
Montepaone et al.“Profile of ustekinumab and its potential in the treatment of active psoriatic arthritis” Open Access Rheumatol. 2014; 6: 7-13.
Oh et al “IL-15 as a mediator of CD4+ help for CD8+ T cell longevity and avoidance of TRAIL-mediated apoptosis.” PNAS 2008; 105(13): 5201-5206.
Osorio et al., Understanding and quantifying the immune microenvironment in hepatocellular carcinoma, Transl Gastroenterol Hepatol. Dec. 24, 2018, 3:107, AME Publishing Company.
Pandya et al., PKCα Attenuates Jagged-1-Mediated Notch Signaling in ErbB-2-Positive Breast Cancer to Reverse Trastuzumab Resistance, Clin Cancer Res, 175-186, Jan. 1, 2016, vol. 22 Issue 1, AACR, USA.
Pedretti et al., Combination of temozolomide with immunocytokine F16-IL2 for the treatment of glioblastoma, Br J Cancer, Sep. 7, 2010, 827-836, vol. 103, Issue 6, SpringerNature, UK.
Polu et al., Probody therapeutics for targeting antibodies to diseased tissue, May 20, 2014, Expert Opinion on Biological Therapy, 1049-1053, vol. 14, Issue 8, Taylor & Francis Online.
Puskas et al., “Development of an attenuated interleukin-2 fusion protein that can be activated by tumour-expressed proteases,” Immunology, Mar. 23, 2011 (Mar. 23, 2011), vol. 133, pp. 206-220.
Rice et al., Bacterial display using circularly permuted outer membrane protein OmpX yields high affinity peptide ligands, Protein Sci., 825-836, Apr. 2006, vol. 15, Issue 4, Wiley.
Rochman et al. “New insights into the regulation of T cells by gamma-c family cytokines.” Nat Rev Immunol 2009; 9 (7): 480.
Rodrigo Vazquez-Lombardi et al., Molecular Engineering of Therapeutic Cytokines, Antibodies, vol. 2 No. 3, Jul. 3, 2013, pp. 426-451.
Saadoun, et al. “Regulatory T-Cell Responses to Low-Dose Interleukin-2 in HCV-Induced Vasculitis.” N. Engl. J. Med. 2011; 365(22): 2067-2077.
Sadlack et al “Ulcerative colitis-like disease in mice with a disrupted interleukin 2 gene.” Cell 1993; 75: 253-261.
Smith, T.F. and Waterman, M.S. “Comparison of biosequences.” Advances in applied mathematics 1981; 2: 482-489.
Suzuki et al. “Deregulated T cell activation and autoimmunity in Mice lacking interleukin-2 Receptor Beta.” Science 1995; 268: 1472-1476.
Trinchieri et al “The IL-2 family of heterodimeric cytokines: new players in the regulation of T cell responses.” Immunity 2003; 19: 641-644.
Uhland, Matriptase and its putative role in cancer, Cell Mol Life Sci., Dec. 2006, 2968-2978, vol. 63, Issue 24.
Ulisse et al., The urokinase plasminogen activator system: a target for anti-cancer therapy, Curr Cancer Drug Targets, Feb. 2009, 32-71, vol. 9, Issue 1, Bentham Science.
Vartak et al. Matrix metalloproteases: underutilized targets for drug delivery, J Drug Target, Jan. 2007, 1-20, vol. 15, Issue 1.
Vasiljeva et al., The multifaceted roles of tumor-associated proteases and harnessing their activity for prodrug activation, Biological Chemistry, Apr. 22, 2019, Walter de Gruyter GmbH, (abstract only).
Wang et al Structure of the Quaternary Complex of Interleukin-2 with its alpha, beta, and gamma-c receptors. Science Nov. 18, 2005 vol. 310, 1159-1163.
Willerford, et al “Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment.” Immunity 1995; 3: 521-530.
William R. Strohl, Fusion Proteins for Half-Life Extension of Biologics as a Strategy to Make Biobetters, Biodrugs, vol. 29, No. 4, Jul. 16, 2015, pp. 215-239.
Wong et al., In vivo imaging of protease activity by Probody therapeutic activation, Biochimie, Nov. 4, 2015, 62-67, vol. 122, Elsevier, USA.
Yu, A and Malek, T.R. “The Proteosome regulates receptor-mediated endocytosis of interleukin-2” The Journal of Biological Chemistry 2001; 276(1): 381-385.
Zavrsnik et al., Cystatin C deficiency suppresses tumor growth in a breast cancer model through decreased proliferation of tumor cells, Oncotarget, Apr. 24, 2017, 73793-73809, vol. 8, Issue 43, Impact Journals, LLC.
Zhao et al., FGFR1β is a driver isoform of FGFR1 alternative splicing in breast cancer cells, Oncotarget, Jan. 1, 2019, 30-44, vol. 10, Issue 1, Impact Journals, LLC.
Shinkawa et al., The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity, J. Biol. Chem., 278(5):3466-73 (2003).
Sola et al., “Effects of Glycosylation on the Stability of Protein Pharmaceuticals,” J. Pharm. Sci., 98(4): 1223-1245 (2009).
Keunok Jung et al., “Heterodimeric Fc-fused IL12 shows potent antitumor activity by generating memory CD8+ T cells”, Oncoimmunology, vol. 7, No. 7, Mar. 6, 2018, pp. e1438800, XP055653232.
Germa N L. Rosano et al., “Recombinant protein expression in Escherichia coli: advances and challenges”, Frontiers in Microbiology, vol. 5, Apr. 17, 2014 (Apr. 17, 2014), XP055474138.
Lebeau et al., Imaging Active Urokinase Plasminogen Activator in Prostate Cancer, Cancer Res, 1225-1235, vol. 75, Issue 7, AACR, USA (2015).
Giesen et al., 8089Zr-labeled anti-PD-L1 CX-072 PET imaging in human xenograft and syngeneic tumors, Annals of Oncology, Feb. 27, 2019, vol. 30, Issue Supplement 1, Oxford Academic.
Gillies, et al “Improved circulating half-life and efficacy of an antibody-interleukin 2 immunocytokine based on reduced intracellular proteolysis” Clinical Cancer Research, the American Association for Cancer Research, US, 8(1) Jan. 2002, 210-216.
Gerber et al Preferential attachment of peritoneal tumor metastases to omental immune aggregates and possible role of a unique vascular microenvironment in metastatic survival and growth. Am J Pathol 169(5): 1739-1752.
Geletu et al., Effect of Caveolin-1 upon Stat3-ptyr705 levels in breast and lung carcinoma cells., Biochem Cell Biol., Apr. 15, 2019, 1-19, Canadian Science Publishing.
Gao et al “High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response.” Nature Medicine 2015; 21(11): 1318-1325.
Fercher et al., Evolution of the magic bullet: Single chain antibody fragments for the targeted delivery of Immunomodulatory proteins, Exp Biol Med, Jan. 2018, 166-183, vol. 243, Issue 2, Sage Journals.
Erster et al., Site-specific targeting of antibody activity in vivo mediated by disease-associated proteases, Journal of Controlled Release, Aug. 10, 2012, 804-812, vol. 161, Issue 3, Elsevier, USA.
Drag et al., Emerging principles in protease-based drug discovery, Nat Rev Drug Discov., Nov. 5, 2010, 690-701, vol. 9, Issue 9, Springer Nature, USA.
Desbois et al IL-15 Trans-signaling with the superagonist RLI Promotes Effector/Memory CD8+ T cell responses and enhances antitumor activity of PD-1 antagonists. 2016 J Immunol 1-11.
Denise Skrombolas et al., Challenges and developing solutions for increasing the benefits of IL-2 treatment in tumor therapy, Expert Review of Clinical Immunology, vol. 10, No. 2, Feb. 1, 2014, pp. 207-217.
Deluca et al., Potentiation of PD-L1 blockade with a potency-matched dual cytokine-antibody fusion protein leads to cancer eradication in BALB/c-derived tumors but not in other mouse strains, Cancer Immunol Immunother, Sep. 6, 2018, 1381-1391, vol. 67, Issue 9, Springer.
Declerck et al., Proteases, extracellular matrix, and cancer: a workshop of the path B study section, Am J Pathol., Apr. 2004, 1131-1139, vol. 164, Issue 4, Elsevier, USA.
De Luca et al., Potency-matched Dual Cytokine-Antibody Fusion Proteins for Cancer Therapy. Mol Cancer Ther, Nov. 2017, 2442-2451, vol. 16, Issue 11, AACR, USA.
Darragh et al., Specific targeting of proteolytic activity for tumor detection in vivo, Cancer Res., Feb. 15, 2010, 1505-1512, vol. 70, Issue 5, AACR, USA.
Conlon et al “Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer.” J Clin Oncol 2015; 33(1): 74-82.
Boulware et al., Protease specificity determination by using cellular libraries of peptide substrates (CLiPS), PNAS, May 16, 2006, 7583-7588, vol. 103, Issue 20, National Academy of Sciences, USA.
Boulware et al., Evolutionary optimization of peptide substrates for proteases that exhibit rapid hydrolysis kinetics, Biotechnol Bioeng., Jun. 15, 2010, 339-46, vol. 106, Issue 3, Wiley, USA.
Bessard et al High antitumor activity of RLI, an interleukin-15 (IL-15)-IL-15 receptor alpha fusion protein, in metastatic melanoma and colorectal cancer. Mol Cancer Ther 2009; 8(9): 2736-2745.
Berger et al “An Operational definition of epigenetics.” Genes Dev 2009; 23: 781-783.
Agard et al., Methods for the proteomic identification of protease substrates, Curr Opin Chem Biol., Dec. 2009, 503-509, vol. 12, Issue 5-6, Elsevier, USA.
Afonina et al., Proteolytic Processing of Interleukin-1 Family Cytokines: Variations on a Common Theme, Immunity Review16 Jun. 2015, 991-1004, vol. 42, Issue 6, Elsevier, USA.
Adusumilli et al., New Cancer Immunotherapy Agents in Development: a report from an associated program of the 31stAnnual Meeting of the Society for Immunotherapy of Cancer, 2016, J Immunother Cancer, Jun. 20, 2017, 1-9, vol. 5, Issue 50, BioMed Central, USA.
Skrombolas, etl al. “Development of an Interleukin-12 Fusion Protein That Is Activated by Cleavage with Matrix Metalloproteinase 9,” Journal of Interferon & Cytokine Research, 39(4):233-245 (2019).
Berger et al “Safety and immunologic effects of IL-15 administration in nonhuman primates.” Blood 2009; 114(12): 2417-2426.
Skrombolas, et al. “Development of Protease Activated Interleukin-12 Cytokine Fusion Proteins for Tumor Immunotherapy (TUM7P.946),” The Journal of Immunology; 203:28, 192 (1 Supplement) (2014).
Skrombolas, et al. “Development of an Interleukin-12 Fusion Protein That Is Activated by Cleavage with Matrix Metalloproteinase 9,” Journal of Interferon & Cytokine Research, 39(4):233-245 (2019).
Zapata et al., “Engineering linear F(ab')2 fragments for efficient production in Escherichia coli and enhanced antiproliferative activity,” Protein Eng., 8(10):1057-1062 (1995).
Yeung et al., “Engineering Human IgG1 Affinity to Human Neonatal Fe Receptor: Impact of Affinity Improvement on Pharmacokinetics in Primates,” J. Immunol., 182:7667-7671 (2009).
Yaniv, “Enhancing elements for activation of eukaryotic promoters,” Nature 297:17-18 (1982).
Yamane-Ohnuki et al., “Production of therapeutic antibodies with controlled fucosylation,” MAbs, 1 (3):230-236 (2009).
Yamane-Ohnuki et al., “Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity,” Biotech. Bioeng., 87:614-22 (2004).
Vitetta et al., “Redesigning nature's poisons to create anti-tumor reagents,” Science, 238:1098-1104 (1987).
Verhoeven et al., “Reshaping human antibodies: grafting an antilysozyme activity,” Science, 239:1534-1536. (1988).
Urlaub et al., “Isolation of Chinese hamster cell mutants deficient in dihydrofolate reductase activity,” Proc. Natl. Acad. Sci. USA, 77:4216-4220 (1980).
Traunecker et al., “Bispecific single chain molecules (Janusins) target cytotoxic lymphocytes on HIV infected cells,” EMBO J., 10:3655-365 (1991).
Torgov et al., “Generation of an Intensely Potent Anthracycline by a Monoclonal Antibody-[3-Galactosidase Conjugate,” Bioconj. Chem., 16:717-721 (2005).
Tomizuka et al., “Double trans-chromosomic mice: Maintenance of two individual human chromosome fragments containing Ig heavy and K loci and expression of fully human antibodies,” Proc. Natl. Acad. Sci. USA, 97:722-727 (2000).
Suresh et al., “Bispecific monoclonal antibodies from hybrid hybridomas,” Methods in Enzymology, 121:210-228 (1986).
Sties et al. (eds), Basic and Clinical Immunology, 8th Edition, Appleton & Lange, Nmwalk, CT,p. 71 and Chapter 6 (1994).
Sola et al., “Modulation of protein biophysical properties by chemical glycosylation: biochemical insights and biomedical implications,” Cell. Mol. Life Sci., 64(16):2133-2152 (2007).
Simmons et al., “Expression of full-length immunoglobulins in Escherichia coli: rapid and efficient production of aglycosylated antibodies,” J. Immunol. Methods, 263:133-147 (2002).
Shields et al., “Lack of fucose on human IgG1 N-linked oligosaccharide improves binding to human Fcgamma Rlii and antibody-dependent cellular toxicity,” J. Biol. Chem., 277(30):26733-40 (2002).
Shields et al, “High resolution mapping of the binding site on human IgG1 for Fe gamma Rl, Fe gamma RlI, Fe gamma Rlii, and FcRn and design of IgG1 variants with improved binding to the Fe gamma R,” J. Biol. Chem., 276:6591-6604 (2001).
Schlapschy et al., “PASylation: a biological alternative to PEGylation for extending the plasma half-life of pharmaceutically active proteins,” Protein Eng. Des. Sel., 26(8):489-501 (2013).
Sali et al. “Characterization of a Novel Human-Specific STING Agonist that Elicits Antiviral Activity Against Emerging Alphaviruses,” PloS Pathog., 11(12):e1005324, 30 pages (2015).
Lehninger, in Biochemistry, second ed., pp. 73-75, Worth Publishers, New York (1975).
Lindmark et al., “Binding of immunoglobulins to protein A and immunoglobulin levels in mammalian sera,” J. Immunol. Meth., 62:1-13 (1983).
Lode et al., “Targeted Therapy with a Novel Enediyene Antibiotic Calicheamicin -al 1 Effectively Suppresses Growth and Dissemination of Liver Metastases in a Syngeneic Model of Murine Neuroblastoma,” Cancer Res., 58:2925-2928 (1998).
Lonberg, et al., “Antigen-specific human antibodies from mice comprising four distinct genetic modifications,” Nature 368:856-859 (1994).
Mather et al., “Culture of testicular cells in hormone-supplemented serum-free medium,” Annals N.Y. Acad. Sci., 383:44-68 (1982).
Mather, “Establishment and characterization of two distinct mouse testicular epithelial cell lines,” Biol. Reprod. 23:243-251 (1980).
Merchant et al., “An efficient route to human bispecific IgG,” Nat. Biotechnol., 16(7):677-681 (1998).
Milstein et al.,. “Hybrid hybridomas and their use in immunohistochemistry,” Nature, 305:537 (1983).
Moore et al., “A novel bispecific antibody format enables simultaneous bivalent and monovalent co-engagement of distinct target antigens,” MAbs., 3(6): 546-557 (2011).
Mori et al., “Engineering Chinese hamster ovary cells to maximize effector function of produced antibodies using FUT8 siRNA,” Biotechnol. Bioeng. 88(7):901-908 (2004).
Morimoto et al., “Single-step purification of F(ab12 fragments of mouse monoclonal antibodies (immunoglobulins G1) by hydrophobic interaction high performance liquid chromatography using TSKgel Phenyl-5PW,” Journal of Biochemical and Biophysical Methods, 24:107-117 (1992).
Nagy et al., “Stability of cytotoxic luteinizing hormone-releasing hormone conjugate (AN-152) containing doxorubicin 14-O-hemiglutarate in mouse and human serum in vitro: Implications for the design of preclinical studies,” Proc. Natl. Acad. Sci. USA, 97:829-834 (2000).
Nilvebrant et al., “The albumin-binding domain as a scaffold for protein engineering,” Comput. Struct. Biotechol. J., 6:e201303009, 8 pages (2013).
Nygren et al., “Analysis and use of the serum albumin binding domains of streptococcal protein G,” J. Mal. Recogn., 1 (2):69-74 (1988).
Okazaki et al., “Fucose depletion from human IgG1 oligosaccharide enhances binding enthalpy and association rate between IgG1 and FcgammaRlIIa,” J. Mal. Biol., 336:1239-1249 (2004).
Omasa et al., “Decrease in antithrombin Ill fucosylation by expressing GDP-fucose transporter siRNA in Chinese hamster ovary cells,” J. Biosci. Bioeng., 106(2):168-173 (2008).
Podust et al., “Extension of in vivo half-life of biologically active molecules by XTEN protein polymers,” J. Controlled Release, 240:52-66 (2016).
Proba et al., “Functional antibody single-chain fragments from the cytoplasm of Escherichia coli: influence of thioredoxin reductase (TrxB),” Gene, 159:203-7 (1995).
Ramm et al., “The periplasmic Escherichia coli peptidylprolyl cis, trans-isomerase FkpA II. Isomerase-independent chaperone activity in vitro,” J. Biol. Chem., 275:17106-17113 (2000).
Reyes et al., “Expression of human 13-interferon cDNA under the control of a thymidine kinase promoter from herpes simplex virus,” Nature, 297:598-601 (1982).
Riechmann et al., “Reshaping human antibodies for therapy,” Nature, 332:323-327 (1988).
Ridgway et al., “Knobs-into-holes' engineering of antibody CH3 domains for heavy chain heterodimerization,” Protein Eng., 9(7):617-621 (1996).
Ripka et al., “Two chinese hamster ovary glycosylation mutants affected in the conversion of GDP-man nose to GDP- fucose,” Arch. Biochem. Biophys., 249:533-545 (1986).
Roux et al., “Comparisons of the ability of human IgG3 hinge mutants, IgM, IgE, and IgA2, to form small immune complexes: a role for flexibility and geometry,” J Immunol, 161 :4083-90 (1998).
Cao, et al., “Next generation of tumor-activating type I IFN enhances anti-tumor immune responses to overcome therapy resistance”, Nature Communications, 12:5866, pp. 1-11 (2021).
Puskas et al., “Development of an attenuated interleukin-2 fusion protein that can be activated by tumour-expressed proteases,” Immunology, 133:206-220 (2011).
Dubowchik et al., “Doxorubicin Immunoconjugates Containing Bivalent, Lysosomally-Cleavable Dipeptide Linkages,” Bioorg. & Med. Chem. Letters 12:1529-1532 (2002).
Xue et al., “A tumor-specific pro-IL-12 activates preexisting cytotoxic T cells to control established tumors” Science Immunology, vol. 7, Jan. 7, 2022, pp. 1-14.
Xue et al., “Supplementary Materials for A tumor-specific pro-IL-12 activates preexisting cytotoxic T cells to control established tumors” Science Immunology, vol. 7, (2022), pp. 1-26.
Arie et al. “Chaperone function of FkpA, a heat shock prolyl isomerase, in the periplasm of Escherichia coli,”, Mol. Micro biol. 39:199-210 (2001).
Atwell et al., “Stable heterodimers from remodeling the domain interface of a homodimer using a phage display library,” J. Mol. Biol., 270(1):26-35 (1997).
Bachmann, Cellular and Molecular Biology, vol. 2 (Washington, D.C.: American Society for Microbiology), pp. 1190-1219 (1987).
Barnes et al., “Methods for growth of cultured cells in serum-free medium,” Anal. Biochem. 102:255 (1980).
Bass et al., “Hormone phage: an enrichment method for variant proteins with altered binding properties,” Proteins, 8:309-314 (1990).
Bernett et al., “Potency-reduced IL 15/IL 15Ra heterodimeric Fe-fusions display enhanced in vivo activity through Increased exposure,” Xencor, AACR (2018) Abstract #5565.
Boerner et al., “Production of antigen-specific human monoclonal antibodies from in vitro-primed human splenocytes,” J. Immunol., 147: 86 (1991).
Bothmann and Pluckthun. “Improving Expression of scFv Fragments by Coexpression of Periplasmic Chaperones,” J. Biol. Chem. 275:17100-17105 (2000).
Brennan et al., “Preparation of bispecific antibodies by chemical recombination of monoclonal immunoglobulin G1 fragments,” Science, 229:81 (1985).
Brodeur et al., Monoclonal Antibody Production Techniques and Applications, pp. 51-63 Marcel Dekker, Inc., New York, (1987).
Caescu et al., “Active site determinants of substrate recognition by the metalloproteinases TACE and ADAM10,” Biochem. J., 424(1):79-88 (2010).
Carter et al., “High level Escherichia coli expression and production of a bivalent humanized antibody fragment,” BiofTechnology 10: 163-167 (1992).
Carter et al., “Bispecific human IgG by design,” J. Immunol. Methods, 248: 7-15 (2001).
Chapman et al. “Therapeutic antibody fragments with prolonged in vivo half-lives,” Nature Biotechnol., 17:780-783 (1999).
Chari et al., “Immunoconjugates containing novel maytansinoids: promising anticancer drugs,” Cancer Res. 52:127-131 (1992).
Chen et al., “Chaperone activity of DsbC,” J. Biol. Chem. 274:19601-19605 (1999).
Choe et al. , “Fe-Binding Ligands of Immunoglobulin G: An Overview of High Affinity Proteins and Peptides,” Materials 9(12): 994 (2016).
Cunningham and Wells ,“High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis,” Science, 244:1081-1085 (1989).
Davies et al., “Antibody-antigen complexes,” Annual Rev Biochem. 59:439-473, (1990).
Dennis et al., “Albumin binding as a general strategy for improving the pharmacokinetics of proteins,” JBC 277(38): 35035-35043 (2002).
Duncan and Winter, “The binding site for C1q on IgG,” Nature 322:738-40 (1988).
Damodaran, “Protein PEGylation: An overview of chemistry and process considerations,” European Pharmaceutical Review, 15(1): 18-26 (2010).
Firan, M., et al., “The MHC class I-related receptor, FcRn, plays an essential role in the maternofetal transfer of y-globulin in humans,” Int. Immunol. 13: 993-1002 (2001).
Fishwild, D. et al., “High-avidity human IgG kappa monoclonal antibodies from a novel strain of minilocus transgenic mice,” Nature Biotechnology 14: 845-851 (1996).
Graham et al., “Characteristics of a human cell line transformed by DNA from human adenovirus type 5,” J. Gen Virol. 36:59 (1977).
Gunasekaran et al., “Enhancing antibody Fe heterodimer formation through electrostatic steering effects: applications to bispecific molecules and monovalent IgG,” J Biol Chem., 285(25): 19637-19646 (2010).
Guss et al., “Structure of the IgG-binding regions of streptococcal protein G.,” EMBO J. 5:15671575 (1986).
Guyer et al., “Immunoglobulin Binding by Mouse Intestinal Epithelial Cell Receptors,” J. Immunol. 117:587 (1976).
Ham et al., “Media and Growth Requirements,” Meth. Enz. 58:44 (1979).
Hara et al., “Overproduction of Penicillin-Binding Protein 7 Suppresses Thermosensitive Growth Defect at Low Osmolarity due to an spr Mutation of Escherichia coli,” Microbial Drug Resistance, 2:63-72 (1996).
Hinman et al., “Preparation and characterization of monoclonal antibody conjugates of the calicheamicins: a novel and potent family of antitumor antibiotics,” Cancer Res. 53:3336-3342 (1993).
Hudson et al., “Engineered antibodies,” Nat. Med., 9:129-134 (2003).
Idusogie et al., “Mapping of the C1q Binding Site on Rituxan, a Chimeric Antibody with a Human IgG1 Fe,” J. Immunol., 164:4178-4184, (2000).
Imai-Nishiya et al., “Double knockdown of a1 ,6-fucosyltransferase (FUT8) and GDP-mannose 4,6-dehydratase (GMD) in antibody-producing cells: a new strategy for generating fully non-fucosylated therapeutic antibodies with enhanced ADCC,” BMC Biotechnol., 7:84, 13 pages (2007).
Jefferis et al., “Human immunoglobulin allotypes: Possible implications for immunogenicity,” mAbs, 1 (4):332-8 (2009).
Jeffrey et al., “Dipeptide-based highly potent doxorubicin antibody conjugates,” Bioorganic & Med. Chem. Letters, 16:358-362 (2006).
Jones et al., “Replacing the complementarity-determining regions in a human antibody with those from a mouse,” Nature, 321 :522-525 (1986).
Kim et al., “Localization of the site of the murine IgG1 molecule that is involved in binding to the murine intestinal Fe receptor',” European Journal of Immunology, 24:2429-2434 (1994).
King et al., “Monoclonal Antibody Conjugates of Doxorubicin Prepared with Branched Peptide Linkers: Inhibition of Aggregation by Methoxytriethyleneglycol Chains,” J. Med. Chem., 45:4336-4343 (2002).
Klein et al., “Progress in overcoming the chain association issue in bispecific heterodimeric IgG antibodies,” MAbs, 4 (6):653-663 (2012).
Kontermann et al., “Bispecific antibodies,” Drug Discovery Today, 20(7) :838-84 7 (2015).
Kozbor et al., “A human hybrid myeloma for production of human monoclonal antibodies,” J. Immunol., 133:3001-5 (1984).
Kratz et al., “Prodrugs of anthracyclines in cancer chemotherapy,” Current Med. Chem. 13:477-523 (2006).
Krieg et al., “Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells,” PNAS, 107(26):11906-11911 (2010).
Chen, et al., “Fusion protein linkers: Property, design and functionality”, Advanced Drug Delivery Reviews, vol. 65, No. 10, (Sep. 1, 2012), pp. 1357-1369.
International Search Report and Written Opinion of PCT/US2020/060624 mailed May 20, 2021.
Related Publications (1)
Number Date Country
20230056051 A1 Feb 2023 US
Provisional Applications (1)
Number Date Country
62935605 Nov 2019 US
Continuations (2)
Number Date Country
Parent 17741275 May 2022 US
Child 17934811 US
Parent PCT/US2020/060624 Nov 2020 WO
Child 17741275 US