ACTIVATED CARBON FILTER UNIT FOR A TANK SYSTEM

Information

  • Patent Application
  • 20090293726
  • Publication Number
    20090293726
  • Date Filed
    April 28, 2009
    15 years ago
  • Date Published
    December 03, 2009
    15 years ago
Abstract
An active carbon filter unit for a tank system consists of a housing (13) in which two chambers (31, 32) are formed, carrying an active carbon filling, which form a section of a flow path which at its one end leads via a valve (6) and an air filter (7) into the ambient atmosphere and at its other end leads via a valve (9) and a non-return valve (10) to a connection for producing an underpressure or into the suction region of an internal combustion engine and via a connection (17) into the tank system. The valves (6, 9), the non-return valve (10) and a housing part (27) receiving the electrical connections thereof are part of a uniform control module (15), which is exchangeably inserted into a recess (14) of the housing (13). The control module (15) is equipped with almost all functional elements of a technical nature relating to measurement, control and energy supply which are necessary for an aeration and air removal operation, a flushing operation directed to a regeneration of the active carbon, and a tightness check of the tank system.
Description

The invention relates to an active carbon unit in accordance with the introductory clause of Claim 1.


For reasons of environmental protection, an escape of hydrocarbon components must be restricted from the fuel container of a tank system which is connected with the ambient atmosphere to balance out different filling levels, temperature fluctuations, evaporations etc. Legal requirements also stipulate a tightness check of the tank system which is to be carried out in an automated manner.


From the document U.S. Pat. No. 6,390,073 B1 a tank system of a motor vehicle is known with an active carbon filter unit which consists of a housing, forming internally two chambers intended to receive active carbon, which are connected with each other via a gap, wherein one chamber is provided with connections for those ducts which are connected with the head space of a fuel container and those which are connected with a suction region of an internal combustion engine. The other chamber, at its end facing away from the gap and with the intermediate arrangement of a first electrically actuatable valve and of a filter, is provided with an air-removal duct leading into the free atmosphere. This first valve is designed as a structural unit which is able to be inserted into a cylindrical recess of the housing and is constructed such that it opens in the idle state and closes when live. It is additionally designed with the requirement that the opening process, which is initiated by a spring, is assisted by the vacuum of the said suction region. A second electrically actuatable valve is situated in the duct which connects the first chamber with the said suction region.


During refuelling when the engine is at a standstill, the first vale is in the open position, so that air enriched with hydrocarbons can be displaced out of the head space of the fuel container and can escape into the atmosphere via the chambers, containing active carbon, and the filter, with a hydrocarbon component being retained adsorptively. When the engine is running, vice versa the air is drawn in via the filter and the open first valve, wherein in the region of the chambers hydrocarbon components which are still bonded are entrained as a result of desorption and are introduced via the open second valve into the combustion chamber of the engine.


Through the fact that firstly the first and subsequently the second valve are transferred into a closed position, so that the tank system, when the engine is running, is temporarily entirely exposed to the effect of the engine vacuum, a defined underpressure is developed within the tank system, so that the course of the reduction of a differential pressure to the ambient atmosphere provides indications for any unacceptable leakages which may be present.


A feature of this known active carbon filter unit is that to constitute the different forms of operation of aeration and air removal, of flushing and of a tightness check within the tank system a cooperation of structural elements, to be mounted individually, is also necessary outside the active carbon filter unit. In individual cases, this can entail a great effort with regard to installation and in the tightness check, which is ultimately based on a comparison with a standard pressure distribution, it can make costly adjustment operations necessary which are adapted individually to the installation situation. A function check of the cooperating components of the tank system during the air removal operation or a flushing operation and a tightness check can also prove to be comparatively laborious.


With this background, the object of the invention is to develop an active carbon unit of the type described in the introduction with regard to a simplified manageability concerning installation, in particular with regard to a simpler structure of the tank system. This problem is solved in such an active carbon unit by the features of the characterizing clause of Claim 1.


Accordingly, the concept of a control module, hence of a structural element which is, moreover, separable from the housing of the active carbon unit conceptually and concretely, into which at least the valves constituting or separating the connections to the ambient atmosphere and to the suction region of the internal combustion engine are structurally integrated, is essential to the invention. For the construction of the tank system, the installation of valves is dispensed with in the course of ducts through which these connections are constituted. This brings about a simplification on installation, but in particular the advantage that the functionality of valves and sensors is able to be checked outside the active carbon filter. Furthermore, a structural unit consisting of the housing with inserted control module, can also be checked before installation into a vehicle. In each case, the control module is in operative connection with the housing and can be exchanged easily in the case of breakdown. The type of connection can consist of an aggregation with regard to components—however, the connection can be of a merely functional nature.


According to the features of Claims 2 or 3, the control module can be insertable into a recess of the housing and in this inserted state can be able to be secured reliably in a suitable manner. It can also be in detachable connection with the housing in another manner. For example, a separate housing which is in detachable connection with the housing of the active carbon filter unit can be provided for the control module.


The features of Claims 4 to 6 are directed to a further development of the control module, which aim to include further functions of the tank system of a technical nature concerning control or measurement or respectively monitoring. In this context, it is essential that these are integrated in an exchangeably arranged structural group. In detail, this can be a non-return valve here, the use of which is known as such, namely in order to absorb pressure peaks of the combustion chamber of the engine. It may further concern sensors for picking up pressure and temperature of the gas atmosphere of the tank system, hence as a whole all the structural groups or structural elements inhibiting or releasing the gas flow within the tank system and detecting its data, in particular of a thermal nature. These are therefore combined in the control module, so that the structure of the housing is, moreover, comparatively simple.


The features of Claims 7 and 8 are directed to variants for accommodating the air filter. This can likewise be included into the control module—however, it can also be constituted by a part of the housing.


The features of Claims 9 and 10 are directed to further features of the control module. Accordingly, a housing part is situated on this, which forms an interface for all electrical leads of the technical type concerning measurement, control and energy supply, with a plug connection being able to be provided here, for example. This uniform electrical connection site offers, at the same time, possibilities for a standardized fault check in the dismantled state of the control module.


The features of Claims 11 and 12 are directed to the development of the control module, in so far as its suitability is concerned for carrying out a tightness check of the tank system, running in an automated manner. For this purpose, a measurement chamber is arranged, the gas atmosphere of which, moreover, corresponds to that of the tank system and which is in operative connection with the said sensors. To carry out a tightness check, which is based on the temporary constitution of a partial vacuum by means of the suction region of the internal combustion engine and the evaluation of its chronological sequence, a superordinate control containing a computer system is necessary, which triggers the process of the tightness check and, by means of comparative data, makes possible a statement concerning the result of the tightness check.


The features of Claims 13 and 14 are directed to further developments of the control module or of the housing, the at least one chamber of which, holding an active carbon filling, in each case forms a section of the flow path which is to be constituted within the active carbon unit, and namely both during the aeration and air removal of the tank system and also during the tightness check.


By means of the above explanations, it can be seen that by the active carbon unit according to the invention a structural element is made available which is distinguished by a higher degree of aggregation of functional elements of a tank system compared with the prior art. In particular, due to the exchangeability of the control module, advantages are produced of a technical nature concerning installation, and also in the diagnosis of faults, because a checking of all functions of the control module can be carried out in the dismantled state.


Furthermore, the advantage is produced of a housing, moreover, which is provided very simply, so that it is possible to be able to use the control module in different housings, which only have to be equipped with means for fastening or holding and with interfaces of a flow path for the integration of a chamber containing active carbon.





The invention will be described in further detail below with reference to the example embodiment illustrated in the drawings, in which:



FIG. 1 shows a circuit diagram of a tank system of a motor vehicle, including an active carbon filter unit;



FIG. 2 shows a perspective illustration of an active carbon filter unit according to the invention;



FIG. 3 shows a perspective illustration of the control module of the active carbon filter unit according to FIG. 2;



FIG. 4 shows an enlarged partially sectional illustration of the active carbon filter unit with inserted control module according to a sectional plane IV-IV of FIG. 2;



FIG. 5 shows a perspective illustration of the active carbon filter unit, in which the control module has been removed;



FIG. 6 shows an illustration of the active carbon filter unit with inserted control module in a vertical sectional plane;



FIG. 7 shows an illustration of an active carbon filter unit with inserted control module during a flushing phase in a vertical sectional plane;



FIG. 8 shows an illustration of an active carbon filter unit with inserted control module during an air-removal phase in a vertical sectional plane;



FIG. 9 shows a partial illustration of an active carbon filter unit with inserted control module in a sectional plane IX-IX of FIG. 8.





In FIG. 1 the fuel container of a tank system is designated by 1, the head space of which is connected via a ventilation duct 2 with an active carbon unit 3. A sensor detecting the temperature of the gas atmosphere of the tank system is designated by 4, the function of which will be described in further detail below. Practically, the ventilation duct can also be arranged at a different location of the tank system or of a tank duct.


A further air duct 5, connected to the active carbon unit, leads into the free atmosphere via a valve 6 and an air filter 7. The active carbon unit 3 connects with the suction pipe 11 via another air duct 8, in the course of which a valve 9 and a non-return valve 10 are arranged following one another in the direction of the suction pipe 11 of an internal combustion engine which is not illustrated in the drawing.


A sensor, connected with the active carbon filter unit, intended to detect a differential pressure between the tank system and the surrounding atmosphere, is designated by 12, the function of which will likewise be described in further detail below.


As can be seen with the aid of FIGS. 2, 3 and 5, the active carbon filter unit 3 consists of a housing 13, in the upper region of which a mounting 14 is formed for a control module 15, which is insertable detachably into this recess 14 and is fixed in the inserted position in a suitable manner which is not illustrated in the drawing. The housing 13 is provided with connections 16 for the air duct 5 and 17 for the duct 2.


The control module 15 consists of an elongated, globally cylindrical base body 18, at one end of which a connection 19 is situated for the duct 8, with reference being made, moreover, to FIG. 4 to describe its configuration.


According to the invention, the valve 6 is integrated into the control module 15 and is characterized by a valve plate 20 which is to be actuated electromagnetically and is movable in the axial direction of the base body 18, which valve plate 20 is arranged in the input region of the air filter 7, for cooperation with a valve seat surface 21 in the form of a circular ring.


According to the invention, the valve 9 is integrated into the control module 15 and is characterized by a valve plate 22, to be actuated electromagnetically and likewise movable in the axial direction of the base body 18, which is arranged for cooperation with a valve seat surface 24 formed by an end face of a tube element 23.


According to the invention, finally, the non-return valve 10 is integrated into the control module 15 and is characterized by a valve plate 25, likewise movable in the axial direction of the base body, which is arranged for cooperation with a valve seat surface 26 formed by the other end face of the tube element 23 and in the illustration in the drawing according to FIG. 4 in the direction on the right side lies under spring pre-stressing against the said valve seat surface.


A housing part formed on the base body 18, integrating at least the electrical connections of the valves 6, 9, is designated by 27.


In this respect, it is essential that the control module 15 is a component which is able to be inserted independently detachably into the recess 14 of the housing 13, and is therefore arranged so as to be exchangeable and in particular able to be produced independently of the housing. This unites several structural elements which are required for the operation of the tank system, including the control, measurement and monitoring functions associated therewith.


A housing part which is likewise arranged on the base body 18 with intermediate arrangement of a cylindrical section 29 is designated by 28, in which the sensors 4, 12 are held. Connections for measurement and/or energy supply lines of these sensors can likewise be held in the housing part 27.


As can be seen by means of FIGS. 4 and 6, the housing 13 is divided by an intermediate wall 30 into two chambers 31, 32 which are filled with active carbon and which in the region of the base 33 of the housing are connected with each other via an opening 34 or opening arrangement making possible a passage of air. Inside the housing 13, also delimited on the upper side by the facing wall of the recess 14, a chamber is arranged, delimited on the underside by an intermediate base 35, which is divided into two chambers 36, 37 by the intermediate wall 30.


On the side of the air filter 7, delimited substantially by the walls of the recess 14 and those of the control module 15, a chamber 38 is arranged, which is in continuous connection with the chamber 37 via an opening 39 and which, moreover, is connected with the ambient atmosphere via the air filter 7, according to the position of the valve 6.


On the side of the housing part 27, inside the control module 15 a chamber 40 is arranged, in continuous connection with the chamber 36 via openings 41, communicating with each other, of the base body 18 of the control module and of the walls of the recess 14. The chamber 40, moreover, is in continuous communication with the connection 17, according to the position of the valve 9 and of the non-return valve 10. A constant connection exists between the chamber 36 and the connection 17, which is intended for the connection with the head space of the fuel container 1 (FIG. 1).


Openings in the intermediate base 35, via which continuous connections are arranged between the chambers 32, 27 and 31,36, are not illustrated in the drawing.


As can be seen with the aid of FIG. 9, the chamber 38 is, in addition, in continuous connection via an opening 42 with a further measurement chamber 43, which is intended for the detection of pressure and temperature of the gas atmosphere prevailing in the chamber 38 and is accordingly in operative connection with the sensors 4, 12.



FIG. 8 shows the operating state intended for the aeration and air removal of the tank system, wherein the valve 6 is opened and the valve 9 and the non-return valve 10 are closed. According to the directions of the arrow 44, a continuous connection exists, making possible a gas exchange, starting from the head space of the fuel container 1 or of a site of the tank system having the same effect, via the connection 17, the chambers 36, 31, 32, 37 and the air filter 7 with the ambient atmosphere. Air laden with hydrocarbons from the head space can therefore flow out, according to the prevailing pressure- and temperature conditions under adsorptive bonding of a hydrocarbon component in the chambers 31, 32 until reaching a pressure equilibrium with the environment. This is a state which exists for example when refuelling the vehicle.



FIG. 7 shows the operating state intended for flushing the active carbon unit, where the engine is running, so that the non-return valve 10 and the valve 9 are in the open position, so that the chambers 40, 36, 31, 32 and 37 are acted upon with the underpressure of the suction pipe 11 of the engine via the connection 19. This underpressure brings about a drawing in of ambient air with through-flow of the chambers 31, 32, with a hydrocarbon content which is bonded here being held and supplied via the connection 19 to the combustion chamber of the engine. According to the prevailing pressure conditions, in this operating state likewise a drawing in is brought about via the connection 17 of air laden with hydrocarbons which, however, together with the air received via the air filter 7, is introduced into the combustion chamber. In each case, the active carbon component, held in the chambers 31, 32, undergoes a regeneration as a result of removal of the hydrocarbon component which was previously adsorptively bonded.



FIG. 6 shows the operating state intended for checking the tightness of the tank system, which is carried out automatically according to a presettable time interval with the cooperation of a superordinate control. For this purpose, with the engine running, firstly the valve 6 is transferred into the closed position which is shown, so that the tank system is acted upon with the underpressure of the suction pipe 11 via the connection 19 and a defined underpressure develops within the tank system. Then the valve 9 is also closed and subsequently by means of a measurement of the chronological pressure pattern by means of the sensor 12 a check is carried out as to whether if applicable a leakage exists which is not to be tolerated. The evaluation of the measurement result can be further improved by simultaneous measurement of the temperature of the gas atmosphere. Factually, the evaluation of the measurement result which is thus obtained is carried out in an automated manner by means of stored sets of comparative data also taking into account the temperature influence, with the result being able to be presented visually in a suitable manner.


LIST OF REFERENCE NUMBERS


1 Fuel container



2 Ventilation duct



3 Active carbon unit



4 Sensor



5 Air duct



6 Valve



7 Air filter



8 Air duct



9 Valve



10 Non-return valve



11 Suction pipe



12 Sensor



13 Housing



14 Mounting



15 Control module



16 Connection



17 Connection



18 Base body



19 Connection



20 Valve plate



21 Valve seat surface



22 Valve plate



23 Pipe element



24 Valve seat surface



25 Valve plate



26 Valve seat surface



27 Housing part



28 Housing part



29 Intermediate section



30 Intermediate wall



31 Chamber



32 Chamber



33 Base



34 Opening



35 Intermediate base



36 Chamber



37 Chamber



38 Chamber



39 Opening



40 Chamber



41 Opening



42 Opening



43 Measurement chamber



44 Arrow



45 Arrow

Claims
  • 1. Active carbon filter unit for a tank system consisting of a housing (13), having at least one chamber (31, 32) able to be flowed through, intended to receive an active carbon filling, in which a flow path is arranged, incorporating this chamber, which is able to be brought in connection with the tank system, the ambient atmosphere and a connection for producing an underpressure, according to the execution of an operation for air removal, aeration or flushing or of a tightness check, wherein the flow path is equipped with a first valve (6) for opening and closing the connection of the flow path with the ambient atmosphere and with a second valve (9) for opening and closing the communication to the connection for producing an underpressure, characterized by a control module (15), in operative connection with the housing (13), into which at least the valves (6, 9) are incorporated.
  • 2. Active carbon filter unit according to claim 1, characterized in that the control module (15) is detachably connected with the housing (13).
  • 3. Active carbon filter unit according to claim 1, characterized in that the control module (15) is able to be inserted into a recess (14) of the housing (13).
  • 4. Active carbon unit according to claim 1, characterized in that in addition a non-return valve (10) is incorporated into the control module (15) and namely into the communication leading to the connection for producing an underpressure.
  • 5. Active carbon unit according to claim 1, characterized in that a sensor (12) for detecting the pressure of the gas atmosphere within the tank system is incorporated into the control module (15).
  • 6. Active carbon unit according to claim 1, characterized in that a sensor (4) for detecting the temperature of the gas atmosphere within the tank system is incorporated into the control module (15).
  • 7. Active carbon unit according to claim 1, characterized in that an air filter (7) is incorporated into the control module (15).
  • 8. Active carbon unit according to claim 1, characterized in that an air filter (7) is an integral component of the housing (13).
  • 9. Active carbon unit according to claim 1, characterized in that the control module (15) is constructed as an elongated base body (18), which is in communication with a housing part (28) integrating at least the electrical connections of the valves (6, 9).
  • 10. Active carbon unit according to claim 9, characterized in that the electrical measurement, control and/or energy supply connections intended for the sensor/sensors (4, 12) are additionally arranged in the housing part (28).
  • 11. Active carbon unit according to claim 1, characterized in that in the control module (15) a measurement chamber (43) is arranged, which is in operative connection at least with one of the sensors (4, 12) and which is in continuous connection with a chamber (40) directing the gas atmosphere of the tank system, constituting a section of the said flow path.
  • 12. Active carbon unit according to claim 11, characterized in that the chamber (38) is formed inside the control module (15).
  • 13. Active carbon unit according to claim 1, characterized in that the recess (14) of the housing (13), intended to receive the control module (15), is provided with openings (41, 39) to constitute a connection with the at least one chamber (31, 32) carrying an active carbon filling, within the framework of the said flow path.
  • 14. Active carbon unit according to claim 1, characterized by connections (17, 19) for ducts intended to carry a gas, leading to the connection for producing an underpressure or to the tank system.
  • 15. Active carbon filter unit according to claim 2, wherein the control module (15) is able to be inserted into a recess (14) of the housing (13).
  • 16. Active carbon unit according claim 2, further comprising a non-return valve (10) incorporated into the control module (15) and namely into the communication leading to the connection for producing an underpressure.
  • 17. Active carbon unit according to claim 3, further comprising a non-return valve (10) incorporated into the control module (15) and namely into the communication leading to the connection for producing an underpressure.
  • 18. Active carbon unit according to claim 2 further comprising a sensor (12), for detecting the pressure of the gas atmosphere within the tank system, incorporated into the control module (15).
  • 19. Active carbon unit according to claim 3, further comprising a sensor (12), for detecting the pressure of the gas atmosphere within the tank system, incorporated into the control module (15).
  • 20. Active carbon unit according to claim 4, further comprising a sensor (12), for detecting the pressure of the gas atmosphere within the tank system, incorporated into the control module (15).
Provisional Applications (1)
Number Date Country
61056960 May 2008 US