The invention relates to an active carbon unit in accordance with the introductory clause of Claim 1.
For reasons of environmental protection, an escape of hydrocarbon components must be restricted from the fuel container of a tank system which is connected with the ambient atmosphere to balance out different filling levels, temperature fluctuations, evaporations etc. Legal requirements also stipulate a tightness check of the tank system which is to be carried out in an automated manner.
From the document U.S. Pat. No. 6,390,073 B1 a tank system of a motor vehicle is known with an active carbon filter unit which consists of a housing, forming internally two chambers intended to receive active carbon, which are connected with each other via a gap, wherein one chamber is provided with connections for those ducts which are connected with the head space of a fuel container and those which are connected with a suction region of an internal combustion engine. The other chamber, at its end facing away from the gap and with the intermediate arrangement of a first electrically actuatable valve and of a filter, is provided with an air-removal duct leading into the free atmosphere. This first valve is designed as a structural unit which is able to be inserted into a cylindrical recess of the housing and is constructed such that it opens in the idle state and closes when live. It is additionally designed with the requirement that the opening process, which is initiated by a spring, is assisted by the vacuum of the said suction region. A second electrically actuatable valve is situated in the duct which connects the first chamber with the said suction region.
During refuelling when the engine is at a standstill, the first vale is in the open position, so that air enriched with hydrocarbons can be displaced out of the head space of the fuel container and can escape into the atmosphere via the chambers, containing active carbon, and the filter, with a hydrocarbon component being retained adsorptively. When the engine is running, vice versa the air is drawn in via the filter and the open first valve, wherein in the region of the chambers hydrocarbon components which are still bonded are entrained as a result of desorption and are introduced via the open second valve into the combustion chamber of the engine.
Through the fact that firstly the first and subsequently the second valve are transferred into a closed position, so that the tank system, when the engine is running, is temporarily entirely exposed to the effect of the engine vacuum, a defined underpressure is developed within the tank system, so that the course of the reduction of a differential pressure to the ambient atmosphere provides indications for any unacceptable leakages which may be present.
A feature of this known active carbon filter unit is that to constitute the different forms of operation of aeration and air removal, of flushing and of a tightness check within the tank system a cooperation of structural elements, to be mounted individually, is also necessary outside the active carbon filter unit. In individual cases, this can entail a great effort with regard to installation and in the tightness check, which is ultimately based on a comparison with a standard pressure distribution, it can make costly adjustment operations necessary which are adapted individually to the installation situation. A function check of the cooperating components of the tank system during the air removal operation or a flushing operation and a tightness check can also prove to be comparatively laborious.
With this background, the object of the invention is to develop an active carbon unit of the type described in the introduction with regard to a simplified manageability concerning installation, in particular with regard to a simpler structure of the tank system. This problem is solved in such an active carbon unit by the features of the characterizing clause of Claim 1.
Accordingly, the concept of a control module, hence of a structural element which is, moreover, separable from the housing of the active carbon unit conceptually and concretely, into which at least the valves constituting or separating the connections to the ambient atmosphere and to the suction region of the internal combustion engine are structurally integrated, is essential to the invention. For the construction of the tank system, the installation of valves is dispensed with in the course of ducts through which these connections are constituted. This brings about a simplification on installation, but in particular the advantage that the functionality of valves and sensors is able to be checked outside the active carbon filter. Furthermore, a structural unit consisting of the housing with inserted control module, can also be checked before installation into a vehicle. In each case, the control module is in operative connection with the housing and can be exchanged easily in the case of breakdown. The type of connection can consist of an aggregation with regard to components—however, the connection can be of a merely functional nature.
According to the features of Claims 2 or 3, the control module can be insertable into a recess of the housing and in this inserted state can be able to be secured reliably in a suitable manner. It can also be in detachable connection with the housing in another manner. For example, a separate housing which is in detachable connection with the housing of the active carbon filter unit can be provided for the control module.
The features of Claims 4 to 6 are directed to a further development of the control module, which aim to include further functions of the tank system of a technical nature concerning control or measurement or respectively monitoring. In this context, it is essential that these are integrated in an exchangeably arranged structural group. In detail, this can be a non-return valve here, the use of which is known as such, namely in order to absorb pressure peaks of the combustion chamber of the engine. It may further concern sensors for picking up pressure and temperature of the gas atmosphere of the tank system, hence as a whole all the structural groups or structural elements inhibiting or releasing the gas flow within the tank system and detecting its data, in particular of a thermal nature. These are therefore combined in the control module, so that the structure of the housing is, moreover, comparatively simple.
The features of Claims 7 and 8 are directed to variants for accommodating the air filter. This can likewise be included into the control module—however, it can also be constituted by a part of the housing.
The features of Claims 9 and 10 are directed to further features of the control module. Accordingly, a housing part is situated on this, which forms an interface for all electrical leads of the technical type concerning measurement, control and energy supply, with a plug connection being able to be provided here, for example. This uniform electrical connection site offers, at the same time, possibilities for a standardized fault check in the dismantled state of the control module.
The features of Claims 11 and 12 are directed to the development of the control module, in so far as its suitability is concerned for carrying out a tightness check of the tank system, running in an automated manner. For this purpose, a measurement chamber is arranged, the gas atmosphere of which, moreover, corresponds to that of the tank system and which is in operative connection with the said sensors. To carry out a tightness check, which is based on the temporary constitution of a partial vacuum by means of the suction region of the internal combustion engine and the evaluation of its chronological sequence, a superordinate control containing a computer system is necessary, which triggers the process of the tightness check and, by means of comparative data, makes possible a statement concerning the result of the tightness check.
The features of Claims 13 and 14 are directed to further developments of the control module or of the housing, the at least one chamber of which, holding an active carbon filling, in each case forms a section of the flow path which is to be constituted within the active carbon unit, and namely both during the aeration and air removal of the tank system and also during the tightness check.
By means of the above explanations, it can be seen that by the active carbon unit according to the invention a structural element is made available which is distinguished by a higher degree of aggregation of functional elements of a tank system compared with the prior art. In particular, due to the exchangeability of the control module, advantages are produced of a technical nature concerning installation, and also in the diagnosis of faults, because a checking of all functions of the control module can be carried out in the dismantled state.
Furthermore, the advantage is produced of a housing, moreover, which is provided very simply, so that it is possible to be able to use the control module in different housings, which only have to be equipped with means for fastening or holding and with interfaces of a flow path for the integration of a chamber containing active carbon.
The invention will be described in further detail below with reference to the example embodiment illustrated in the drawings, in which:
In
A further air duct 5, connected to the active carbon unit, leads into the free atmosphere via a valve 6 and an air filter 7. The active carbon unit 3 connects with the suction pipe 11 via another air duct 8, in the course of which a valve 9 and a non-return valve 10 are arranged following one another in the direction of the suction pipe 11 of an internal combustion engine which is not illustrated in the drawing.
A sensor, connected with the active carbon filter unit, intended to detect a differential pressure between the tank system and the surrounding atmosphere, is designated by 12, the function of which will likewise be described in further detail below.
As can be seen with the aid of
The control module 15 consists of an elongated, globally cylindrical base body 18, at one end of which a connection 19 is situated for the duct 8, with reference being made, moreover, to
According to the invention, the valve 6 is integrated into the control module 15 and is characterized by a valve plate 20 which is to be actuated electromagnetically and is movable in the axial direction of the base body 18, which valve plate 20 is arranged in the input region of the air filter 7, for cooperation with a valve seat surface 21 in the form of a circular ring.
According to the invention, the valve 9 is integrated into the control module 15 and is characterized by a valve plate 22, to be actuated electromagnetically and likewise movable in the axial direction of the base body 18, which is arranged for cooperation with a valve seat surface 24 formed by an end face of a tube element 23.
According to the invention, finally, the non-return valve 10 is integrated into the control module 15 and is characterized by a valve plate 25, likewise movable in the axial direction of the base body, which is arranged for cooperation with a valve seat surface 26 formed by the other end face of the tube element 23 and in the illustration in the drawing according to
A housing part formed on the base body 18, integrating at least the electrical connections of the valves 6, 9, is designated by 27.
In this respect, it is essential that the control module 15 is a component which is able to be inserted independently detachably into the recess 14 of the housing 13, and is therefore arranged so as to be exchangeable and in particular able to be produced independently of the housing. This unites several structural elements which are required for the operation of the tank system, including the control, measurement and monitoring functions associated therewith.
A housing part which is likewise arranged on the base body 18 with intermediate arrangement of a cylindrical section 29 is designated by 28, in which the sensors 4, 12 are held. Connections for measurement and/or energy supply lines of these sensors can likewise be held in the housing part 27.
As can be seen by means of
On the side of the air filter 7, delimited substantially by the walls of the recess 14 and those of the control module 15, a chamber 38 is arranged, which is in continuous connection with the chamber 37 via an opening 39 and which, moreover, is connected with the ambient atmosphere via the air filter 7, according to the position of the valve 6.
On the side of the housing part 27, inside the control module 15 a chamber 40 is arranged, in continuous connection with the chamber 36 via openings 41, communicating with each other, of the base body 18 of the control module and of the walls of the recess 14. The chamber 40, moreover, is in continuous communication with the connection 17, according to the position of the valve 9 and of the non-return valve 10. A constant connection exists between the chamber 36 and the connection 17, which is intended for the connection with the head space of the fuel container 1 (
Openings in the intermediate base 35, via which continuous connections are arranged between the chambers 32, 27 and 31,36, are not illustrated in the drawing.
As can be seen with the aid of
1 Fuel container
2 Ventilation duct
3 Active carbon unit
4 Sensor
5 Air duct
6 Valve
7 Air filter
8 Air duct
9 Valve
10 Non-return valve
11 Suction pipe
12 Sensor
13 Housing
14 Mounting
15 Control module
16 Connection
17 Connection
18 Base body
19 Connection
20 Valve plate
21 Valve seat surface
22 Valve plate
23 Pipe element
24 Valve seat surface
25 Valve plate
26 Valve seat surface
27 Housing part
28 Housing part
29 Intermediate section
30 Intermediate wall
31 Chamber
32 Chamber
33 Base
34 Opening
35 Intermediate base
36 Chamber
37 Chamber
38 Chamber
39 Opening
40 Chamber
41 Opening
42 Opening
43 Measurement chamber
44 Arrow
45 Arrow
Number | Date | Country | |
---|---|---|---|
61056960 | May 2008 | US |