The disclosure pertains to monitoring multi-emitter laser diode systems.
High power industrial laser systems have been developed that combine optical power from a plurality of laser diodes for purposes such as materials processing and laser pumping. However, component failure in multi-diode, high power laser systems is often undetectable. In a many-diode system, the failure of a single diode can be difficult to detect, and the overall system can continue to operate, at least temporarily, with a failed or failing laser diode. For high power systems, such undetected laser diode failures are detected only upon eventual system failures, some of which are catastrophic. Laser power continues to be produced even during failure, and the continued production of high optical powers can cause damage to laser systems or injure system operators. Conventional systems monitor an output beam to detect system failures. For a many-diode system, this is generally not effective because for a large number (N) of laser diodes, failure of a single laser diode produces only a reduction in power that is proportional to N−1, which is often practically undetectable.
In view of the shortcomings of conventional systems, improved systems, apparatus, and methods are needed that permit sensitive, rapid determination of laser diode failure. In addition, methods and apparatus are needed that can reconfigure laser diode based systems in response to failures.
Methods and apparatus are disclosed herein that permit rapid, accurate detection of laser diode failure in multi-diode laser systems. The disclosed methods and systems can avoid laser system damage by de-energizing laser diodes or laser diode arrays that appear to be failed, so that system operation can continue. In addition, in some examples, current operating conditions (or conditions prior to failure) are determined so that the loss of de-energized components is compensated. In other examples, systems are configured to permit convenient laser or laser module replacement in the event of laser failure or degradation. In other alternatives, systems are tolerant to a number of laser failures, and system operation halts only when a predetermined number of lasers fail.
Apparatus comprise a plurality of laser diodes and associated laser drivers configured to produce an optical beam. A detection system is configured to receive portions of optical beams for each of the laser diodes and produce corresponding detector output signals associated with each of the optical beams. A processor is coupled to the laser drivers, the detection system, and the memory so as to establish at least one characteristic parameter for each of the laser diodes. A memory is configured to store at least one characteristic parameter for each of laser diodes. In some examples, the processor is configured to establish a plurality of drive currents for each of the laser diodes and receive detector signals associated with detected optical power at each of the plurality of drive currents for each of the laser diodes. The processor further determines the at least one characteristic parameter based on values associated with the plurality of drive currents and the received signals. In some embodiments, at least one characteristic parameter is associated with a dependence of laser power on drive current. In some alternatives, the processor is coupled to store drive current values and associated received detector signals in the memory. In other examples, the processor is configured to periodically establish a plurality of drive currents for each of the laser diodes and receive signals associated with detected optical power at each of the plurality of drive currents for each of the laser diodes, and store the at least one characteristic parameter in the memory. In some examples, at least one characteristic parameter is associated with a polynomial approximation to laser power as a function of drive current for each of the lasers. In additional examples, a comparator is coupled to the processor, and configured to compare a detector output signal and a reference signal based on at least one characteristic parameter. According to some examples, the processor is configured to terminate operation of a selected laser diode if a detector output signal is less than the reference signal. In still further examples, the detection system includes a photodetector corresponding to each of the laser diodes of the plurality of laser diodes. In typical embodiments, the laser drivers are configured to apply modulated drive currents to the laser diodes, and corresponding detector output signal portions associated with each of the laser diodes are identified based on modulations applied to the laser diodes.
In further examples, the plurality of laser diodes includes a first linear array of laser diodes and a second linear array of laser diodes, and a beam interleaver configured to reflect beams associated with the first linear array and transmit beams associated with the second linear array to the output beam. The detection system includes a first linear array of photodetectors and a second linear array of photodetectors corresponding to the first linear array of laser diodes and the second linear array of laser diodes, respectively, and configured to receive portions of corresponding optical beams for each of the laser diodes. At least one of the first linear array of photodetectors or the second linear array of photodetectors receives the corresponding optical beam portions from the interleaver by transmission or reflection. In further examples, first and second aperture plates are situated at the first and second linear arrays of photodetector, and have first and second linear arrays of apertures corresponding to the photodetectors of the first linear array and the second linear array, respectively. In other embodiments, the processor is configured so that a laser drive current is applied to a selected laser diode, and the detected signal is associated with one or more photodetectors corresponding to laser diodes other than the selected laser diode. In some cases, the detected signal is associated with at least one photodetector adjacent the photodetector associated with the selected laser diode. In still other examples, the processor is configured to issue an alert if the detected signal is greater than a predetermined value. According to other examples, the processor is configured so that laser drive currents are serially applied to each of the laser diodes, and serially detected signals are obtained from one or more photodetectors corresponding to laser diodes other than a currently selected laser diode.
Methods comprise establishing a reference level associated with each of a plurality of laser diodes, wherein the reference level is based on detected optical signals associated with each of the laser diodes at respective photodetectors. The laser diodes are energized, and measured optical signals associated with each of the laser diodes are compared with corresponding reference levels. Based on the comparisons, a channel error is identified. In some examples, the reference level is established based on a polynomial fit to laser power as a function of drive current.
Apparatus comprise a plurality of optical emitters and a plurality of optical detectors, each corresponding to a respective optical emitter and each situated in an optical path associated with the respective optical emitter. A controller is configured to energize a selected optical emitter and receive detector signals associated with optical detectors corresponding to at least one of the unselected optical emitters. Based on the received detector signal, the processor identifies a channel error. According to some examples, a display is coupled to the controller, wherein the controller is configured to indicate received detected signal values for the plurality of detectors with the display. In some cases, the controller is operable so that the display includes a user interface area associated with user selection of the selected optical emitter with a computer pointing device.
The foregoing and other objects, features, and advantages of the disclosed technology will become more apparent from the following detailed description, which proceeds with reference to the accompanying figures.
As used in this application and in the claims, the singular forms “a,” “an,” and “the” include the plural forms unless the context clearly dictates otherwise. Additionally, the term “includes” means “comprises.” Further, the term “coupled” does not exclude the presence of intermediate elements between the coupled items.
The systems, apparatus, and methods described herein should not be construed as limiting in any way. Instead, the present disclosure is directed toward all novel and non-obvious features and aspects of the various disclosed embodiments, alone and in various combinations and sub-combinations with one another. The disclosed systems, methods, and apparatus are not limited to any specific aspect or feature or combinations thereof, nor do the disclosed systems, methods, and apparatus require that any one or more specific advantages be present or problems be solved. Any theories of operation are to facilitate explanation, but the disclosed systems, methods, and apparatus are not limited to such theories of operation.
Although the operations of some of the disclosed methods are described in a particular, sequential order for convenient presentation, it should be understood that this manner of description encompasses rearrangement, unless a particular ordering is required by specific language set forth below. For example, operations described sequentially may in some cases be rearranged or performed concurrently. Moreover, for the sake of simplicity, the attached figures may not show the various ways in which the disclosed systems, methods, and apparatus can be used in conjunction with other systems, methods, and apparatus. Additionally, the description sometimes uses terms like “produce” and “provide” to describe the disclosed methods. These terms are high-level abstractions of the actual operations that are performed. The actual operations that correspond to these terms will vary depending on the particular implementation and are readily discernible by one of ordinary skill in the art.
In some examples, values, procedures, or apparatus are referred to as “lowest”, “best”, “minimum,” or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, or otherwise preferable to other selections. In the described examples, laser diode operation is monitored to identify power levels that are less than reference values. Such monitoring permits identification of failing diodes and damage to optical components and other system changes. In other examples, laser diode operation is monitored with respect to high and/or low reference values. The embodiments below can be implemented in hardware, software, or a combination of both. In some examples, programmable logic devices or general purpose processors can be used. While parallel acquisition of data values is often preferred, either serial or parallel data acquisition can be used.
The beam from the lens 103 is directed to a beam interleaver 132 that reflects a portion of the beam from the lens 103 to a detector assembly 134 that is similar to the detector assembly 124. The beam interleaver 132 has a transmissive area such as an anti-reflection coated area situated to transmit the beam from the lens 103 and a reflective area defined by high reflectivity dielectric coating to reflect the beam received from the beam splitter 122 so as to propagate to a beam interleaver 136. The transmissive/reflective areas of the beam interleaver 132 are offset in the x-direction according to the x-offset of the axes 102, 103. In some cases, dielectric coatings exhibit wavelength sensitivity, and dielectric coatings are preferably selected to exhibit low wavelength sensitivity so that laser diode wavelength shifts as a function of temperature do not appear as actual laser output power changes.
The beam from the lens 104 is directed to a beam splitter 142 that reflects a portion of the beam from the lens 104 to the beam interleaver 136 and transmits a portion to a detector assembly 144 that is similar to the detector assemblies 124, 134. The beam interleaver 136 has one or more transmissive areas such as anti-reflection coated areas situated to transmit the beams from the lenses 102, 103. One or more reflective areas are defined by a high reflectivity dielectric coating that is situated to reflect the beam received from the beam splitter 142. As a result, beams from the lenses 102, 103, 104 are combined to propagate as spatially offset beams in a direction 150. A detector/amplifier control 152 is coupled to amplify, buffer, and record detected beam powers reported by the detector assemblies 124, 134, 144. Typically laser diodes are arranged in rows extending in the x-direction, and lenses 102, 103, 104 represent one of many lenses in particular rows.
In another example, combined beam powers are obtained with a configuration in which beams from three rows of twelve laser diodes per row are combined as spatially offset co-propagating beams as shown in
With reference to
With reference to
One approach to evaluating multiple emitters is illustrated in
In some examples, it is convenient to provide a dedicated photodetector for each emitter, or to evaluate emitters by sequentially measuring emitter performance such as output power at one or more emitter drive levels. In other examples, properties of one or more or all emitters can be evaluated in parallel while the emitters are operational using one or several detectors. With reference to
In operation, a monitoring method 900B includes obtaining optical power and drive current levels for some or all detectors, either in parallel or in series at 908. Measured optical powers are compared with reference values at 910. Reference values are conveniently obtained by retrieving model data and determining an expected optical power at a particular drive current so as to establish a reference value. If measured power is greater than the reference value, operation continues at 912. If the measured optical power is less than the reference value, a corresponding emitter is shut down at 914. If backups are available at 916, a backup emitter can be initiated at 920. If no backup is available, operation can be halted at 918, if desired. Undesired scattering can be similarly monitored by detecting optical power at detectors other than a detector associated with an emitter to determine possible increases in scattered power. A threshold or reference value for scattering be established, and system operation continued, reconfigured, or terminated.
With reference to
Having described and illustrated the principles of the disclosed technology with reference to the illustrated embodiments, it will be recognized that the illustrated embodiments can be modified in arrangement and detail without departing from such principles. For instance, elements of the illustrated embodiments shown in software may be implemented in hardware and vice-versa. Also, the technologies from any example can be combined with the technologies described in any one or more of the other examples. It will be appreciated that procedures and functions such as those described with reference to the illustrated examples can be implemented in a single hardware or software module, or separate modules can be provided. The particular arrangements above are provided for convenient illustration, and other arrangements can be used. We claim as our invention all that comes within the scope and spirit of the appended claims.
This application is a continuation of U.S. patent application Ser. No. 13/828,336 filed Mar. 14, 2013, which is incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
3748015 | Offner | Jul 1973 | A |
3773404 | Moore | Nov 1973 | A |
4293186 | Offner | Oct 1981 | A |
4377339 | Coppock | Mar 1983 | A |
4492427 | Lewis et al. | Jan 1985 | A |
4536639 | Crahay | Aug 1985 | A |
4688904 | Hirose et al. | Aug 1987 | A |
4711535 | Shafer | Dec 1987 | A |
4932747 | Russell et al. | Jun 1990 | A |
5153773 | Muraki et al. | Oct 1992 | A |
5224200 | Rasmussen et al. | Jun 1993 | A |
5517359 | Gelbart | May 1996 | A |
5586132 | Levy | Dec 1996 | A |
5619245 | Kessler et al. | Apr 1997 | A |
5638220 | Ohtomo et al. | Jun 1997 | A |
5673135 | Yoshino et al. | Sep 1997 | A |
5719704 | Shiraishi et al. | Feb 1998 | A |
5936761 | Kubota et al. | Aug 1999 | A |
6040553 | Ross | Mar 2000 | A |
6114088 | Wolk et al. | Sep 2000 | A |
6169565 | Ramanujan et al. | Jan 2001 | B1 |
6498680 | Zhou | Dec 2002 | B1 |
6509547 | Bernstein et al. | Jan 2003 | B1 |
6529542 | Karlsen et al. | Mar 2003 | B1 |
6531681 | Markle et al. | Mar 2003 | B1 |
6560039 | Webb et al. | May 2003 | B1 |
6618174 | Parker et al. | Sep 2003 | B2 |
6678308 | Matthews | Jan 2004 | B1 |
6707532 | Suzuki | Mar 2004 | B2 |
6873398 | Sievers | Mar 2005 | B2 |
6980295 | Lerner | Dec 2005 | B2 |
6985226 | Lerner | Jan 2006 | B2 |
7006217 | Lerner | Feb 2006 | B2 |
7158215 | Harned | Jan 2007 | B2 |
7167630 | Eyal et al. | Jan 2007 | B2 |
7253376 | Zhang et al. | Aug 2007 | B2 |
RE39846 | Tanitsu et al. | Sep 2007 | E |
7277229 | Kato | Oct 2007 | B2 |
7293882 | Lerner | Nov 2007 | B2 |
7317469 | Kim | Jan 2008 | B2 |
7355800 | Anikitchev | Apr 2008 | B2 |
7418172 | Tanaka et al. | Aug 2008 | B2 |
7502537 | Kurahashi | Mar 2009 | B2 |
7519493 | Atwell et al. | Apr 2009 | B2 |
7545403 | Kang et al. | Jun 2009 | B2 |
7545446 | Lerner et al. | Jun 2009 | B2 |
7704666 | Noh et al. | Apr 2010 | B2 |
7745991 | Yamazaki et al. | Jun 2010 | B2 |
7776493 | Kang et al. | Aug 2010 | B2 |
7792249 | Gertner et al. | Sep 2010 | B2 |
7821718 | Govyadinov et al. | Oct 2010 | B1 |
7847940 | Karasyuk et al. | Dec 2010 | B2 |
7851725 | Dane et al. | Dec 2010 | B2 |
7885012 | Reynolds | Feb 2011 | B2 |
7892382 | Bellmann et al. | Feb 2011 | B2 |
7970040 | Sprangle | Jun 2011 | B1 |
7995298 | Chen | Aug 2011 | B2 |
8062986 | Khrapko et al. | Nov 2011 | B2 |
8483533 | Mehl | Jul 2013 | B1 |
8821963 | Tanaka et al. | Sep 2014 | B2 |
20030016450 | Bluemel et al. | Jan 2003 | A1 |
20030128543 | Rekow | Jul 2003 | A1 |
20030202251 | Yamazaki | Oct 2003 | A1 |
20030226834 | Ishikawa | Dec 2003 | A1 |
20040036961 | McGuire | Feb 2004 | A1 |
20040065646 | Halpin | Apr 2004 | A1 |
20040090609 | Komatsuda | May 2004 | A1 |
20040223330 | Broude et al. | Nov 2004 | A1 |
20040258377 | Berkey et al. | Dec 2004 | A1 |
20050045604 | Talwar et al. | Mar 2005 | A1 |
20050098260 | Chen | May 2005 | A1 |
20060012842 | Abu-Ageel | Jan 2006 | A1 |
20060102605 | Adams et al. | May 2006 | A1 |
20060176912 | Anikitchev | Aug 2006 | A1 |
20060246693 | Tanaka et al. | Nov 2006 | A1 |
20070063226 | Tanaka et al. | Mar 2007 | A1 |
20070084837 | Kosmowski | Apr 2007 | A1 |
20070147065 | Nagata | Jun 2007 | A1 |
20070153847 | Faircloth et al. | Jul 2007 | A1 |
20080025732 | Hattori | Jan 2008 | A1 |
20080137042 | Alasaarela | Jun 2008 | A1 |
20080210671 | Jennings et al. | Sep 2008 | A1 |
20080268201 | Fiacco et al. | Oct 2008 | A1 |
20080308534 | Li et al. | Dec 2008 | A1 |
20090046923 | Chang et al. | Feb 2009 | A1 |
20090127477 | Tanaka | May 2009 | A1 |
20090168149 | Petersson et al. | Jul 2009 | A1 |
20090236495 | Jennings et al. | Sep 2009 | A1 |
20090296751 | Kewitsch et al. | Dec 2009 | A1 |
20100033508 | Mizushima | Feb 2010 | A1 |
20100048036 | Tanaka et al. | Feb 2010 | A1 |
20100097680 | Naftali et al. | Apr 2010 | A1 |
20100140478 | Wilson et al. | Jun 2010 | A1 |
20100171931 | Kessler | Jul 2010 | A1 |
20100254717 | Miller | Oct 2010 | A1 |
20100328610 | Silverstein | Dec 2010 | A1 |
20110043900 | Bayramian | Feb 2011 | A1 |
20120045169 | Hu | Feb 2012 | A1 |
20120057345 | Kuchibhotla | Mar 2012 | A1 |
20120069861 | Neuberger | Mar 2012 | A1 |
20120248078 | Zediker et al. | Oct 2012 | A1 |
20120268836 | Mercado | Oct 2012 | A1 |
20120273269 | Rinzler et al. | Nov 2012 | A1 |
20130058092 | Anisimov | Mar 2013 | A1 |
20130077147 | Efimov | Mar 2013 | A1 |
20130107360 | Kurtz et al. | May 2013 | A1 |
Number | Date | Country |
---|---|---|
101529288 | Sep 2009 | CN |
101656394 | Feb 2010 | CN |
103227417 | Jul 2013 | CN |
05-277776 | Oct 1993 | JP |
2000-343257 | Dec 2000 | JP |
3563065 | Sep 2004 | JP |
2006-278491 | Oct 2006 | JP |
2014013833 | Jan 2014 | JP |
WO 2011142849 | Nov 2011 | WO |
Entry |
---|
First Office Action from the State Intellectual Property Office of the People's Republic of China for Chinese App. No. 201510120720.6, dated Sep. 15, 2017, 13 pages. |
Erdmann, et al., “Coherence management for microlens laser beam homogenizers,” Proceedings of SPIE, 4775:145-154 (Aug. 2002). |
First Office Action from the State Intellectual Property Office of the People's Republic of China for Chinese App. No. 201380012279.9, dated Oct. 26, 2015, 4 pages (w/ an Eng. translation). |
French et al., “Absorption Edge and Band Gap of SiO2 Fused Silica Glass,” Ceramic Transactions, 28:63-80 (1992). |
International Search Report and Written Opinion for International Application No. PCT/US2013/033424, 9 pages, dated Jul. 18, 2013. |
Positive Light, Inc. “Relay Imaging in Rod Amplifier Systems,” Technical Bulletin, 2 pages, (May 2002). |
Schmitt et al., “Illumination uniformity of laserfusion pellets using induced spatial incoherence,” Journal of Applied Physics, 60:6-13 (Jul. 1, 1986). |
Second Office Action (with an English translation) from the State Intellectual Property Office of the People's Republic of China for Chinese App. No. 201510120720.6, dated Jun. 8, 2018, 8 pages. |
Number | Date | Country | |
---|---|---|---|
20160209267 A1 | Jul 2016 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13828336 | Mar 2013 | US |
Child | 15079664 | US |