Actuated support platform for video system

Abstract
An actuated support frame for transmitting motion to a seat with respect to a ground as a function of motion signals associated with video output, comprises a frame. The frame is expandable/retractable along translational degrees of freedom. Support surfaces are provided on the frame. The support surfaces are displaceable with respect to one another by expansion/retraction of the frame so as to be sized to support a seat. Actuators are provided between the frame and the ground. The actuators receive signals and selectively displace the frame with respect to the ground in synchronization with a video output, whereby a seat supported on the frame is displaceable within the frame. A method for installing a seating system of a motion simulator system is also provided.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The present invention generally relates to motion simulators and, more particularly, to a structural configuration of a motion simulator system receiving motion signals as a function of actions taking place in a video output.


2. Background Art


Home video games and home video systems have for years been limited to sight and sound interaction with a viewer. For instance, in response to the play of a gamer, video games will produce visual and sound response. In order to increase the sensation procured by video games, gamers often have recourse to arcades, wherein some video games are equipped with force feedback interfaces, by which a feel is added to the visual and sound response.


Due to the popularity of home video games and home video systems, force feedback interfaces have been developed and are readily available to provide the feel to viewers. For instance, BattleChair™ is a chair provided with a variety of speakers by which the sound output of a video output is transmitted to the chair and its occupant. More specifically, the BattleChair™ is hollow and has a subwoofer and three-way speakers that will cause the chair to vibrate as a function of the sound transmitted from the video output. Accordingly, the BattleChair™ provides a feel of the game to the gamer during play. In arcades, some force feedback interfaces include gamer-receiving receptacles, wherein the gamer is seated. In order to fully procure the feel of the game to the gamer, gamer-receiving receptacles often provide support to the gamer's limbs, whereby the gamer is in a position of weightlessness.


Similar technologies have been brought to homes, but these types of force feedback interfaces are bulky and heavy. Owners of these types of interfaces must dedicate a fair amount of floor space—often a room—to have such interfaces at home. Such interfaces are not easily displaced and are hence impractical.


A motion simulator is described in US patent Application Publication No. US 2004/0229192, by Roy et al., as published on Nov. 18, 2004. The motion simulator has a seating portion supported on a floor by actuators. In an embodiment thereof, the actuators are an integral part of the seating portion, whereby a consumer purchases the motion simulator as an integral system of a seating portion with actuators.


However, the consumer may desire motion simulators that will not be restricted to specific designs, so as to match his/her existing home decoration/style. It is contemplated to provide force feedback interfaces, such as motion simulators, that are less invasive in view of domestic use.


SUMMARY OF INVENTION

It is therefore an aim of the present invention to provide an actuated support platform for a motion simulator, which addresses issues associated with the prior art.


It is a further aim of the present invention a method of installing a seating system of a motion simulation system.


Therefore, in accordance with the present invention, there is provided an actuated support frame for transmitting motion to a seat with respect to a ground as a function of motion signals associated with video output, comprising: a frame, the frame being expandable/retractable along at least one translational degree of freedom; support surfaces on the frame, the support surfaces being displaceable with respect to one another by expansion/retraction of the frame so as to be sized to support a seat; and at least one actuator between the frame and the ground, the actuator being adapted to receive signals, to selectively displace the frame with respect to the ground in synchronization with a video output; whereby a seat supported on the frame is displaceable within the frame.


Further in accordance with the present invention, there is provided a method for installing a seating system of a motion simulator system, comprising the steps of: providing an actuated support frame having an expandable/retractable frame with actuators; positioning the actuated support frame on the ground such that the actuators can displace the frame with respect to the ground; adjusting a size of the frame as a function of width and length dimensions of a seat to be supported by the frame; positioning the seat on the frame; and connecting the actuators to a signal source in synchronization with a selected video output; whereby actuation of the actuators displaces the seat with respect to the ground in synchronization with the selected video output.





BRIEF DESCRIPTION OF THE DRAWINGS

Having thus generally described the nature of the invention, reference will now be made to the accompanying drawings, showing by way of illustration a preferred embodiment thereof and in which:



FIG. 1 is a front perspective view of an actuated support platform for a motion simulator, in accordance with a first preferred embodiment of the present invention;



FIG. 2 is a rear perspective view of the actuated support platform of FIG. 1, illustrating a relation between an actuation module and a frame;



FIG. 3 is a perspective view of the actuation module of the actuated support platform of FIG. 1, without any cover;



FIG. 4 is a perspective view of an actuated support platform having a pair of actuation modules, in accordance with a second preferred embodiment of the present invention;



FIG. 5 is a front perspective view of the actuated support platform of FIG. 1, with an alternative frame;



FIG. 6 is an assembly view of the actuated support platform of FIG. 1, with a seat; and



FIG. 7 is an assembly view of the actuated support platform of FIG. 4, with a seat.





DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to the drawings, and more particularly to FIG. 1, an actuated support platform in accordance with a preferred embodiment of the present invention is generally shown at 10. The support platform 10 has a frame 12 and actuator module 14.


The frame 12 is provided to support a seat A, as illustrated in FIG. 6. The frame 12 is the interface between the seat and the actuator module 14 and the ground.


The actuator module 14 is connected to a video system, game console or the like, so as to receive actuation signals or similar protocol to displace the seat A (FIG. 6) as a function of the video output of a monitor (e.g., screen, television) associated with the video output of the video system, game console or the like. Video output relates throughout to audio and/or video output produced by a video system, such as a game console, video disk player, VHS, HD television or the like.


Referring to FIG. 1, the frame 12 has a generally rectangular shape having four tubular members 20. The tubular members 20 are interrelated to one another by the end connectors 21. The end connectors 21 include the end connectors 21A at a proximal end of the frame 12, and the end connectors 21B at a distal end of the frame 12.


A support or leg 21C is typically provided on the tubular member 20 between the end connectors 21A, so as to support the platform 10 at a front end on the ground. The end connectors 21B are both rigidly connected to the actuator module 14, so as to relate the frame 12 to the actuator module 14 for transmission of movement therebetween.


The end connector members 21 each have a pair of frame housings 22 in which the tubular members 20 are received. Accordingly, because of the telescopic relation between the tubular members 20 and the frame housings 22, the frame has two translational degrees-of-freedom, and is thus expandable/retractable along the X axis and the Y axis.


Support plates 23 are provided at the four corners of the frame 12. The support plates 23 are related to the frame 12 by tubular members 24 received in support housings 25 of the end connectors 21. Accordingly, the telescopic relation between the tubular members 24 and the support housings 25 enables translation of the support plates 23 along the X axis.


Therefore, because of the X- and Y-axis translational degrees of freedom, the frame 12 is sizeable as a function of the seat that will be used with the actuated support platform 10. As shown in FIG. 6, the seat A has four legs B (three of which are visible), each one of the legs B being positioned on top of the one of the support plates 23. Once the frame 12 has been adjusted in dimensions to support the seat A, the tubular members 20/24 are preferably secured to the end connectors 21 (e.g., using some bolts or other suitable fasteners).


The seat A being positioned on the frame 12 is thus subjected to the action of the actuation module 14. Accordingly, an occupant (or occupants) of the seat A will be subjected to the movements caused by the actuation module 14.


It is pointed out that a support plane (i.e., support surface) of the support plates 23 is lower than the upper surfaces of the tubular members 20/frame housings 22. Accordingly, the seat A is close to the ground in this configuration, whereby the support platform 10 is generally discreet.


It is however contemplated to position the support plane of the support plates 23 above the upper surfaces of the tubular members 20/frame housings 22. In such a way, seats without four protruding legs, such as the legs B, can be supported by the support platform 10.


Although not shown, various configurations can be provided on the support plates 23 to ensure that the seat A remains secured to the frame 12. For instance, concavities can be provided in the support plates 23 to coact with gravity to maintain the seat A in position with respect to the frame 12.


Referring to FIG. 1, the actuation module 14 is provided with a cover 40 that will accommodate the various components of the actuation module 14. Referring to FIG. 2, the cover 40 is removed to expose a pair of actuators 41. The actuators 41 are inverted, in that the output shafts 42 face toward the ground whereas the casings 43 of the actuators 41 are secured to a casing 44 of the actuation module 14.


Accordingly, the output shafts 42 support the support platform 10 at the distal end of the frame 12. Actuation of the actuators 41, whether individually or in combination, will result in movement of the frame 12, and thus of the seat A supported by the frame 12.


Although a pair of actuators 41 are illustrated in FIG. 2, it is pointed out one or more actuators could be provided with platform 10. The platform 10 with a pair of actuators 41 moves in two degrees of freedom (e.g., pitch and roll), whereas a platform 10 with a single actuator 41 would be displaceable along a single degree of freedom (e.g., pitch). As will be described hereinafter, more actuators can be used to provide an additional degree of freedom.


As shown in FIG. 3, the casing 44 may support electronic components 45, which interconnect the actuators 41 to the motion simulator command system (e.g., as a function of the video output). The electronic components 45 provide power to the actuators 41.


It is pointed out that the frame 12′ illustrated in FIG. 2 is slightly different than the frame 12 of FIG. 1. However, the frame 12′ is also expandable/retractable along the X and Y axes, and thus along two translational degrees of freedom. Accordingly, the frame 12′ may also be adjusted to the dimensions of a seat.


The frame 12′ of FIGS. 2 and 5 has a pair of end sub-frames 60 interconnected by a pair of tubular members 61. The tubular members 61 are telescopically mounted to the sub-frames 60 such that the frame 12′ is expandable/retractable along the Y axis.


Similarly, support plates 62 are positioned at the four corners of the frame 12′. The support plates 62 are equipped with tubular members 63 so as to be telescopically related to the sub-frames 60. Accordingly, the support plates 62 are displaceable along the X axis to adjust the frame 12′ to the width of a seat (such as the seat A of FIG. 6).


A leg 64 is shown in FIG. 5 as secured to a proximal sub-frame 60. The actuation module 14 is fixed to the distal sub-frame 60. Therefore, the frame 12′ is supported on the ground by the leg 64 and the pair of output shafts (FIG. 2). Fasteners 65 are provided in the sub-frames 60, so as to releasably lock the tubular members 61 to the sub-frames 60 for a suitable dimension of the frame 12′. Similar fasteners 66 are provided to releasably lock the support plates 62 to the sub-frames 60.


The frames 12 and 12′ are typically used to support relative small seats, such as one- and two-seaters, with the actuation module 14 being positioned at a back of the seat A. Referring to FIGS. 4 and 7, an alternative embodiment of the support platform 10 is illustrated, in which a pair of actuation modules 14 are provided on the sub-frames 60 to form a frame 12″, so as to support larger seats, such as seat A1 of FIG. 7.


The support platform of FIG. 7 has a pair of sub-frames 60, with each sub-frame 60 being provided with an actuation module 14. The sub-frames 60 are similar to the distal sub-frame 60 of FIGS. 2 and 5, whereby like elements will bear like reference numerals. The use of a pair of the actuation module 14 enables movements of the platform 10 along three degrees of freedom (e.g., pitch, roll and a translation along the Z axis).


The sub-frames 60 are interrelated by the tubular members 61 which enable expansion of the frame 12″ along the X axis. The support plates 62 are displaceable along the Y axis such that the frame 12″ is expandable/retractable in two translational degrees of freedom. The frame 12″ is supported by the four output shafts of the two actuation modules 14.


In view of the embodiments illustrated in FIGS. 1 to 7, a method for installing a seating system (i.e., the actuated support platform 10 with the seats A, A1) is as follows. The actuated support frame 10 is positioned on the ground such that the actuators 40 of the actuation module(s) 14 can displace the frame 12/12′/12″ with respect to the ground. The size of the frame 12/12′/12″ is adjusted as a function of width and length dimensions of the seat A/A1 to be supported by the frame 12/12′/12″, and the frame 12/12′/12″ is locked in position (e.g., using fasteners 65 and 66). The seat A/A1 is then positioned on the frame 12/12′/12″. Once the actuators 40 are connected to a selected video output, the actuated support frame 10 can be used to displace the seat A/A1 with respect to the ground.

Claims
  • 1. An actuated support frame and chair assembly for transmitting motion to a chair with respect to a ground as a function of motion signals associated with video output, comprising: an actuated support frame comprising: a frame, the frame being expandable/retractable along at least one translational degree of freedom, support surfaces at corners of the frame and lying concurrently in a support plane, the support surfaces being displaceable with respect to one another in the support plane by expansion/retraction of the frame so as to be sized to support a chair, andat least two actuators interconnected by the frame and being positioned between the frame and the ground, the actuators each being in an actuated casing secured directly to the frame with one of the actuated casing on each lateral side of the frame, and each actuator comprising an output shaft against the ground, the actuator being adapted to receive signals, to selectively displace the frame with respect to the ground in synchronization with a video output; anda chair for seating at least one person, the chair comprising a base with an undersurface facing the ground to define a bottom of the chair and with an upper surface for supporting a seated person, and a backrest projecting upwardly from a rear side of the chair, the chair being positioned on top of the frame on the support surfaces with corners of the chair superposed with the corners of the frame and with the undersurface of the base being above the support plane;whereby the chair and the frame move concurrently with respect to the ground in synchronization with the video output.
  • 2. The assembly according to claim 1, wherein the frame is expandable/retractable along two translational degrees of freedom, so as to adjust to a width and a length of the chair received thereon.
  • 3. The assembly according to claim 1, wherein structural members of the frame are in telescopic relation so as to provide the at least one degree of freedom.
  • 4. The assembly according to claim 3, wherein the support surfaces on the frame are below an upper surface of the structural members defining a remainder of the frame.
  • 5. The assembly according to claim 1, wherein a leg is provided on the frame, such that the frame is supported to the ground by the leg and the at least two actuators.
  • 6. The assembly according to claim 5, wherein the leg is on a front end of the frame, and the at least two actuators are mounted to respective rear lateral ends of the frame.
  • 7. The assembly according to claim 1, comprising four of the actuator, with a first and a second of the actuators being positioned adjacent to front corners of the frame, and with a third and a fourth of the actuators being positioned adjacent to rear corners of the frame.
  • 8. The assembly according to claim 1, wherein pairs of the actuators on a same lateral side of the frame are enclosed in a single casing, with the casing being connected to the frame.
  • 9. A method for installing a seating system of a motion simulator system, comprising: providing an actuated support frame having an expandable/retractable frame with actuators, with an actuated casing of each said actuator secured directly to the frame and an output shaft projecting downwardly from each said actuated casing;providing a chair comprising a base with an undersurface facing the ground and with an upper surface for supporting a seated person, and a backrest projecting upwardly from a rear side of the base;positioning the actuated support frame with the output shafts on the ground such that the actuators can displace the frame with respect to the ground;adjusting a size of the frame as a function of width and length dimensions of the base of the chair to be supported by the frame;positioning the undersurface of the base of the chair on top of the frame;connecting the actuators to a signal source in synchronization with a selected video output; anddisplacing concurrently the frame and the chair with respect to the ground by actuating the actuators in synchronization with the selected video output.
  • 10. The method according to claim 9, wherein the step of adjusting the size of the frame includes locking the frame in a selected size.
US Referenced Citations (67)
Number Name Date Kind
3577659 Kail May 1971 A
3736602 Miller Jun 1973 A
4038710 Tambascio Aug 1977 A
4113223 Kakizaki Sep 1978 A
4263683 Knoke Apr 1981 A
4584896 Letovsky Apr 1986 A
4710128 Wachsmuth et al. Dec 1987 A
5109952 Starks et al. May 1992 A
5168514 Horton et al. Dec 1992 A
5199875 Trumbull Apr 1993 A
5226816 Hawkins Jul 1993 A
5384704 Snyder et al. Jan 1995 A
5419613 Wedeking May 1995 A
5433670 Trumbull Jul 1995 A
5496220 Engstrand Mar 1996 A
5499920 Trumbull Mar 1996 A
5509631 De Salvo Apr 1996 A
5511979 Perfect et al. Apr 1996 A
5527184 Trumbull Jun 1996 A
5567157 Salmon, Jr. et al. Oct 1996 A
5584697 Trumbull Dec 1996 A
5605462 Denne Feb 1997 A
5722897 Engstrand Mar 1998 A
5806113 McMahan et al. Sep 1998 A
5853330 Engstrand Dec 1998 A
5954508 Lo et al. Sep 1999 A
5970537 Hanes et al. Oct 1999 A
5996145 Taylor Dec 1999 A
6027342 Brown Feb 2000 A
6039653 Engstrand Mar 2000 A
6077078 Alet et al. Jun 2000 A
6083106 McDowell Jul 2000 A
6089663 Hill Jul 2000 A
6092873 Downey et al. Jul 2000 A
6094180 Mead, Jr. et al. Jul 2000 A
6106298 Pollak Aug 2000 A
6139324 Roy et al. Oct 2000 A
6224380 Lo et al. May 2001 B1
6283757 Meghnot et al. Sep 2001 B1
6371766 Doll et al. Apr 2002 B1
6396462 Mead, Jr. et al. May 2002 B1
6445960 Borta Sep 2002 B1
6585515 Roy et al. Jul 2003 B1
6659773 Roy et al. Dec 2003 B2
6662560 Roy et al. Dec 2003 B2
6774870 Mead et al. Aug 2004 B2
6923773 Leivseth et al. Aug 2005 B2
7155762 Harrow Jan 2007 B2
7195486 McGraw Mar 2007 B2
7402041 Nelms et al. Jul 2008 B2
20010017482 Roy et al. Aug 2001 A1
20010036868 Roy et al. Nov 2001 A1
20020113469 Stern et al. Aug 2002 A1
20020164560 Borta Nov 2002 A1
20030180693 Mulder et al. Sep 2003 A1
20040029094 McGraw Feb 2004 A1
20040068211 Leivseth et al. Apr 2004 A1
20040229192 Roy et al. Nov 2004 A1
20050069839 Denne Mar 2005 A1
20050142520 Kim Jun 2005 A1
20060200054 Talish et al. Sep 2006 A1
20060200287 Parison et al. Sep 2006 A1
20060256234 Roy et al. Nov 2006 A1
20060256972 Roy et al. Nov 2006 A1
20070059668 Mallaci et al. Mar 2007 A1
20070129596 Dickie Jun 2007 A1
20080109265 Roy et al. May 2008 A1
Foreign Referenced Citations (1)
Number Date Country
11-235471 Aug 1999 JP
Non-Patent Literature Citations (2)
Entry
Battlechair™, Mikedewolfe, Review, http://www.game-boyz.com/content/node/506, Oct. 9, 2009, 3 pages.
International Search Report, PCT/CA2006/001902, Feb. 7, 2007, 4 pages.
Related Publications (1)
Number Date Country
20070122793 A1 May 2007 US