Adapter assemblies for surgical devices

Information

  • Patent Grant
  • 11883013
  • Patent Number
    11,883,013
  • Date Filed
    Monday, April 13, 2020
    4 years ago
  • Date Issued
    Tuesday, January 30, 2024
    3 months ago
Abstract
An adapter assembly includes a base member, a housing, and a locking mechanism. The base member defines a longitudinal axis. The housing is rotatably secured to the base member and is rotatable in relation to the base member between a plurality of positions. The locking mechanism is supported on the housing and includes a locking member and a button. The locking member is moveable from a locked position in which a lock of the locking member is engaged with the base member to secure the housing in one of the plurality of positions to an unlocked position in which the housing is rotatable in relation to the base member. The button is positioned on the base member and is depressible to translate the locking member in a direction parallel to the longitudinal axis from the locked position to the unlocked position.
Description
BACKGROUND
1. Technical Field

The present disclosure relates generally to adapter assemblies for selectively connecting end effectors to actuation units of surgical devices. More specifically, the present disclosure relates to adapter assemblies having a locking mechanism for rotationally securing a housing to a base.


2. Background of Related Art

Powered devices for use in surgical procedures typically convert rotational motion from an actuation assembly to linear motion for effectuating one or more functions, e.g., clamping, stapling, cutting. To permit rotational alignment of an end effector attached to the actuation assembly without the operator having to manipulate the actuation assembly in an uncomfortable or awkward position, adapter assemblies have been developed for enabling selective rotation of the end effector relative to the actuation assembly. Such adapter assemblies generally include a base that is fixedly secured to the actuation assembly and a body to which an end effector is attached that is rotatable relative to the base and the actuation assembly.


It would be beneficial to provide a surgical device including an adapter assembly with a locking mechanism that facilitates selective rotation of the body relative to the base but resists rotating forces that a clinician may exert on the body during use to prevent inadvertent rotation of the body relative to the base.


SUMMARY

This disclosure relates generally to adapter assemblies including a base member, a housing, and a locking mechanism for selectively securing the housing in a plurality of radial positions relative to the base member. The base member is securable to an actuation handle for actuating a tool assembly supported by the adapter assembly. The rotation of the housing affects the position of the end effector relative to the actuation handle.


In an aspect of the present disclosure, an adapter assembly includes a base member, a housing, and a locking mechanism. The base member defines a longitudinal axis of the adapter assembly. The housing is rotatably secured to the base member and is rotatable in relation to the base member between a plurality of positions. The locking mechanism is supported on the housing and includes a locking member and a button. The locking member is moveable from a locked position in which a lock of the locking member is engaged with the base member to secure the housing in one of the plurality of positions to an unlocked position in which the housing is rotatable in relation to the base member. The button is positioned on the base member and is depressible to translate the locking member in a direction parallel to the longitudinal axis from the locked position to the unlocked position.


In aspects, the locking member has a boss and the button defines a cam slot that receives the boss. The button may have an undepressed position in which the boss is positioned adjacent a first end of the cam slot and a depressed position in which the boss is positioned adjacent a second end of the cam slot. Walls defining the cam slot can engage the boss as the button is moved towards the depressed position to translate the locking member in the direction parallel to the longitudinal axis as the boss moves towards the second end of the cam slot. The adapter assembly may include a biasing member disposed between the button and the locking member that urges the button towards the undepressed position.


In some aspects, the base member includes an annular flange that defines first and second cutouts. The locking member may have a lock body, a distal leg, and a proximal leg. The distal and proximal legs may define a gap therebetween. In the unlocked position of the locking member, the annular flange may be rotatable within the gap. The lock of the locking member may extend proximally from the distal leg and be disposable within one of the first or second cutouts to secure the housing in one of the plurality of positions. The annular flange may define a third cutout that is diametrically opposed to the first cutout with the second cutout positioned between the first and third cutouts. The second cutout may be equidistant from the first and third cutouts.


In certain aspects, the housing defines a channel and the button is disposed within the channel.


In particular aspects, the adapter assembly includes a coupling body that extends from the housing and is rotatably fixed to the housing. The coupling body may have a proximal portion that includes a tab. The housing may define a recess that receives the tab to rotatably fix the coupling body to the housing.


In another aspect of the present disclosure, a surgical device includes a handle, a tool assembly, and an adapter assembly. The adapter assembly interconnects the handle and the tool assembly. The adapter assembly includes a base member, a housing, and a locking mechanism. The base member defines a longitudinal axis and the housing is rotatably secured to the base member. The housing is rotatable in relation to the base member between a plurality of positions such that rotation of the housing affects a position of the tool assembly relative to the handle. The locking mechanism is supported on the housing and includes a locking member and a button. In a locked position of the locking member, a lock of the locking member is engaged with the base member to secure the housing in one of the plurality of positions. In an unlocked position the housing is rotatable in relation to the base member. The button is positioned on the base member and is depressible to translate the locking member in a direction parallel to the longitudinal axis from the locked position to the unlocked position.


In aspects, the surgical device includes an extension assembly that includes a shaft having first and second ends. The first end of the shaft may be releasably coupled to a distal end of the adapter assembly and the second end of the shaft may support the tool assembly. The shaft may be curved between the first and second ends.


In some aspects, the adapter assembly includes a coupling body that extends from the base member. The coupling body may be rotatably fixed to the housing.


In certain aspects, the adapter assembly includes a coupling assembly that extends proximally from the base member and is releasably secured to the handle. The adapter assembly may include a drive assembly that extends through the coupling assembly, the base member, and the housing. The handle may engage the drive assembly to actuate the tool assembly. The drive assembly may include first and second connectors that are disposed within the coupling assembly. The first connector may be offset form the longitudinal axis.


In another aspect of the present disclosure, a method of reposition a tool assembly supported by an adapter is disclosed. The adapter defines a longitudinal axis and is coupled to a handle that is configured to actuate the tool assembly. The method includes depressing a button of the adapter, rotating the handle relative to the housing, and releasing the button. Depressing the button translates a locking member in a direction parallel to the longitudinal axis from a locked position, in which the handle is rotatably fixed relative to a housing of the adapter in a first position, to an unlocked position. Rotating the handle relative to the housing includes rotating a base member of the adapter within the housing with the locking member in the unlocked position such that the tool assembly is repositioned about relative to the handle. Releasing the button allows the locking member to return to the locked position with the housing rotatably fixed to the handle in a second position different from the first position.


In aspects, depressing the button of the adapter includes walls defining a cam slot of the button engaging a boss of the locking member to translate the locking member towards the unlocked position.


In some aspects, the method includes rotating the handle to the second position after releasing the button. Rotating the handle to the second position may include the locking member transitioning to the locked position when the handle reaches the second position. The locking member may provide feedback with the handle reaches the second position.


Further, to the extent consistent, any of the aspects described herein may be used in conjunction with any or all of the other aspects described herein.





BRIEF DESCRIPTION OF THE DRAWINGS

Various aspects of the present disclosure are described hereinbelow with reference to the drawings, which are incorporated in and constitute a part of this specification, wherein:



FIG. 1 is a side, perspective view of a surgical device including an exemplary embodiment of an adapter assembly provided in accordance with the present disclosure;



FIG. 2 is an enlarged, perspective, cutaway view of a proximal portion of the adapter assembly of FIG. 1;



FIG. 3 is a cross-sectional view taken along section line 3-3 of FIG. 2;



FIG. 4 is a perspective, exploded view of a locking mechanism and a base member of the adapter assembly of FIG. 3;



FIG. 5 is a front perspective view of the base member of FIG. 4;



FIG. 6 is a side, perspective view from the proximal end of the base member of FIG. 4;



FIG. 7 is a top perspective view of a locking member of the locking mechanism of FIG. 4;



FIG. 8 is a bottom perspective view of the locking member of the locking mechanism of FIG. 4;



FIG. 9 is a bottom perspective view of a button of the locking mechanism of FIG. 4;



FIG. 10 is a top perspective view of the button of the locking mechanism of FIG. 4;



FIG. 11 is a side view of the proximal portion of the adapter assembly shown in FIG. 2 with a housing of the adapter assembly removed and the locking mechanism in a locked position;



FIG. 12 is a cross-sectional view taken along section line 12-12 of FIG. 3;



FIG. 13 is a side view of the proximal portion of the adapter assembly with a housing of the adapter assembly removed and the locking mechanism in an unlocked position;



FIG. 14 is a side cross-sectional view of the proximal portion of the adapter assembly of FIG. 13;



FIG. 15 is a cross-sectional view taken along section line 15-15 of FIG. 3;



FIG. 16 is a cross-sectional view taken along section line 16-16 of FIG. 15;



FIG. 17 is a perspective view of the base member and the body of the adapter assembly shown in FIG. 1 in a first radial position relative to one another; and



FIG. 18 is a perspective view of the base member and the body of the adapter assembly shown in FIG. 17 in a second radial position relative to one another.





DETAILED DESCRIPTION OF EMBODIMENTS

This disclosure relates generally to adapter assemblies that include a base member, a housing, and a locking mechanism for selectively securing the housing in a plurality of radial positions about the base member. The base member can be selectively coupled to an actuation assembly such that the base member is rotatably fixed to the actuation assembly. The housing is rotatable about the base member such that a tool assembly supported by the housing of the adapter assembly is repositionable relative to the actuation assembly. The locking mechanism is provided to selectively lock the orientation of the housing relative to the base member and includes a locking member and a button. In embodiments, the locking member is slidable in a direction parallel to a longitudinal axis defined by the adapter assembly between a locked position and an unlocked position. The button may define a cam slot that receives a boss of the locking member such that walls defining the cam slot engage the boss to translate the locking member between the locked and unlocked positions.


Embodiments of the presently disclosed adapter assembly are now described in detail with reference to the drawings in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein, the term “clinician” refers to a doctor, a nurse, or any other care provider and may include support personnel. Throughout this description, the term “proximal” refers to the portion of the device or component thereof that is closest to the clinician and the term “distal” refers to the portion of the device or component thereof that is farthest from the clinician.


Referring to FIGS. 1 and 2, a surgical device 1 including an exemplary adapter assembly 10 is provided in accordance with the present disclosure. As shown, the adapter assembly 10 is releasably coupled to an actuation assembly 300 in the form of a powered handle. The actuation assembly 300 includes a coupler 310 and actuation controls 320. The actuation controls 320 are operable to selectively activate motors (not explicitly shown) that rotate drive shafts 84a-c (FIG. 15) to actuate functions of an end effector or tool assembly 380 (e.g., drawing an anvil 392 towards a loading unit 390, firing staples from the loading unit 390, extending a knife from the loading unit 390, etc.). For a detailed description of the structure and function of an exemplary powered handle, please refer to U.S. Pat. No. 9,055,943 (“the '943 Patent”), the entire contents of which are incorporated herein by reference. It is contemplated that the adapter assembly 10 can be configured for selective connection to a manually actuated actuation assembly such as described in U.S. Pat. No. 8,789,737, the entire contents of which are incorporated herein by reference.


The adapter assembly 10 includes a proximal end portion or base 20 that is releasably received by the coupler 310. An elongate coupling body 70 extends distally from the base 20 and has a distal end 90 configured for releasable connection with an extension assembly 290. The extension assembly 290 has a distal portion configured for releasable connection with the tool assembly 380. In exemplary embodiments, the tool assembly 380 includes a loading unit 390 and an anvil 392 for applying a circular array of staples (not shown) to tissue (not shown).


Alternatively, the elongate coupling body 70 and the extension assembly 290 can be integrally formed. In embodiments, the extension assembly 290, and/or the elongate coupling body 70, includes a shaft 292 that extends from the distal end 90 of the adapter assembly 10 to the tool assembly 380. As shown, the shaft 292 has a first end 292a and a second end 292b and a curved central section between the first and second ends 292a, 292b; however, it is contemplated that the shaft 292 can be substantially linear or have any suitable configuration between the first and second ends 292a, 292b. For a detailed description of an exemplary extension assembly and tool assembly reference can be made to the '943 Patent.


Although aspects of the present disclosure will be shown and described as relates to the adapter assembly 10, it is envisioned that the aspects of the present disclosure may be adapted for use with adapter assemblies having an alternative configuration. For a detailed description of exemplary adapter assemblies and exemplary extension assemblies reference can be made to commonly owned U.S. patent application Ser. No. 14/875,766 (“the '766 Application”), filed Oct. 6, 2015, the content of which is incorporated by reference herein in its entirety.


With reference to FIGS. 2 and 3, the adapter assembly 10 includes the base 20 and a rotation assembly 40. The base 20 includes a coupling assembly 22 and a base member 50. The base 20 defines a longitudinal axis X-X (FIG. 3) of the adapter assembly 10. The rotation assembly 40 includes a housing 42 that is rotatably supported about the base 20 and an elongate coupling body 70 that extends distally from the housing 42. The adapter assembly 10 also includes a drive assembly 80 (FIG. 3) that extends through the coupling assembly 22, the housing 42, and the elongate coupling body 70 to transfer power from the coupler 310 (FIG. 1) of the actuation assembly 300 to the tool assembly 380 (FIG. 1). The coupling assembly 22 is configured to releasably secure the adapter assembly 10 to the coupler 310 of the actuation assembly 300 (FIG. 1).


Briefly, the drive assembly 80 of the adapter assembly 10 includes first, second, and third connectors 82a, 82b, 82c (FIG. 2) configured for operable connection with first, second, and third drive shafts (not shown) of the actuation assembly 300. As shown in FIG. 3, the second connector 82b is operably connected to an elongate drive shaft 84b of the drive assembly 80 for transferring rotational motion from the actuation assembly 300 through the adapter assembly 10. Each of the first and third connectors 82a, 82c are operably connected to planetary gear assemblies 86 (FIG. 16) supported within the adapter assembly 10. The planetary gear assemblies 86 are configured to convert the rotational motion from the drive shafts of the actuation assembly 300 to longitudinal motion of the drive shafts 84a-c to facilitate operation of the tool assembly 380. For a detailed description of exemplary adapter assemblies, including an exemplary coupling assembly and exemplary drive assemblies, please refer to the '766 Application, the content of which was previously incorporated by reference herein.


With reference to FIGS. 2-4, the rotation assembly 40 of the adapter assembly 10 includes the housing 42 that is rotatably supported on the base member 50 and a locking mechanism 60 disposed within the housing 42. The housing 42 supports the elongate coupling body 70. As will be described in further detail below, the locking mechanism 60 has a locked position (FIG. 3) in which the housing 42 is rotationally secured relative to the base member 50 and an unlocked position (FIG. 13) in which the housing 42 is rotatable about the longitudinal axis X-X in relation to the base member 50. As described in further detail below, the tool assembly 380 is rotatably fixed to a distal portion of the extension assembly 290 which is rotatably fixed to the distal portion of the elongate coupling body 70. As such, rotation of the housing 42 about the longitudinal axis X-X of the adapter assembly 10 causes the tool assembly 380 (FIG. 1), which defines a longitudinal axis Y-Y (FIG. 1), to rotate about the longitudinal axis X-X of the adapter assembly 10 to facilitate repositioning of the tool assembly 380 relative to the actuation assembly 300. This enables a clinician to orient the tool assembly 380 relative to the actuation assembly 300 without changing the orientation of the actuation assembly 300.


The housing 42 may be formed from a first body shell 44 and a second body shell 46. Each of the first and second body shells 44, 46 form approximately half of the housing 42 and are joined together by fasteners 47. Alternatively, the first and second body shells 44 and 46 may be secured together by welding or the like. Each of the first and second body shells 44, 46 define a recess 48 (FIG. 3) that extends about the elongate coupling body 70. The elongate coupling body 70 has an outer surface that includes tabs 72 that are received within a respective one of the recesses 48 to rotatably fix the elongate coupling body 70 to the housing 42.


Referring to FIGS. 4 and 5, the base member 50 includes a substantially cylindrical member 120 defining longitudinal openings 122a, 122b, 122c that are configured to receive the drive assembly 80 (FIG. 3). The base member 50 also includes proximal and distal annular flanges 124, 126 and further defines proximal and distal annular grooves 125, 127. The proximal annular flange 124 facilitates attachment of the base member 50 to the coupling assembly 22. The proximal annular groove 125 accommodates an annular retention flange 49 (FIG. 3) of the housing 42 to longitudinally secure the housing 42 relative to the base member 50 while allowing the housing 42 to rotate about the base member 50.


With reference to FIGS. 4-6, the distal annular flange 126 and the distal annular groove 127 of the base member 50 operate in combination with the locking mechanism 60 to secure the housing 42 in fixed rotational orientation relative to the base member 50. In particular, the distal annular flange 126 of the base member 50 defines a plurality of lock cutouts, e.g., first, second, and third lock cutouts 152a-c, that are configured to receive a lock 156 of the locking mechanism 60 as described in greater detail below to retain the housing 42 in one of a plurality of fixed positions in relation to the base member 50. As shown the first and third lock cutouts 152a, 152c are diametrically opposed to one another and the second lock cutout 152b oriented halfway between the first and third lock cutouts 152a, 152c. It is envisioned that the distal annular flange 126 may define any number of lock cutouts which may be arranged in any suitable configuration. For example, the lock cutouts may be arranged in set intervals, uniformly or randomly spaced, and, where the drive assembly 80 permits, the lock cutouts may be formed to extend entirely around the distal annular flange 126 to permit locking of the housing 42 in any three-hundred sixty degree (360°) orientation about the base member 50.


Referring now to FIGS. 4 and 7-10, in embodiments, the locking mechanism 60 includes the locking member 150, a button 160, and biasing members 179. With particular reference to FIGS. 7 and 8, the locking member 150 includes a body 153, a distal leg 154, and a proximal leg 158. The body 153 defines a body axis B-B that passes through the distal and proximal legs 154, 158. The body 153 includes a finger 153a that extends over the distal leg 154 and bosses 157 that extend from the body 153 in a direction orthogonal to the body axis B-B. The distal leg 154 includes a stop 155 and a lock 156. The stop 155 forms a T-shape with the distal leg 154 and has a width greater than the width of the lock cutouts 152a-c such that the stop 155 prevents the distal leg 154 from passing entirely through the lock cutouts 152a-c. The lock 156 is sized and dimensioned to be positioned within a respective one of the lock cutouts 152a-c when the locking member 150 is in a locked position to prevent rotation of the housing 42 relative to the base member 50. The lock 156 extends proximally from the distal leg 154 and is configured such that when the lock 156 is positioned in a respective one of the lock cutouts 152a-c, the stop 155 abuts the distal annular flange 126. The proximal leg 158 includes a foot 159 that is positioned within the distal annular groove 127 of the base member 50. The distal leg 154 and the proximal leg 158 define a gap 151 therebetween that is sized and dimensioned to allow the distal annular flange 126 to rotate within the gap 151 when the locking member 150 is in an unlocked position as shown in FIG. 13.


Referring now to FIGS. 9 and 10, the button 160 has a button body 161 that defines blind holes 162, an opening 163, and camming slots 164. The opening 163 extends inward from a bottom surface 161a of the button body 161 to define a distal opening 163a in a distal surface 161b of the body 161. The distal opening 163a includes a shelf 163b opposite the bottom surface 161a of the button body 161. The blind holes 162 extend substantially vertically from the bottom surface 161a of the button body 161 on either side of the opening 163 in a direction orthogonal to a plane defined by the bottom surface 161a. The blind holes 162 may be substantially cylindrical and are sized to receive the biasing members 179 (FIG. 4).


The camming slots 164 pass entirely through side surfaces 161d of the button body 161. The camming slots 164 extend from a first end 164a of the button body 161 adjacent the bottom surface 161a of the button body 161 and a proximal surface 161e of the button body 161 to a second end 164b of the button body 161 adjacent the distal surface 161b and a top surface 161c of the button body 161 such that the cam slots 164 are inclined distally upward when the button 160 is viewed in profile. The camming slots 164 are in communication with the opening 163 and configured to receive the bosses 157 of the locking member 150 such that vertical movement of the button 160 (i.e., movement substantially towards and away from the longitudinal axis X-X as viewed in FIG. 11) affects longitudinal translation of the locking member 150 as described in detail below.


Referring to FIGS. 3, 11, and 12, the locking mechanism 60 is disposed in a channel 142 defined in the housing 42. The locking mechanism 60 is positioned on the base member 50 adjacent the distal annular flange 126. In a locked position of the locking mechanism 60, the lock 156 is disposed within one of the lock cutouts 152a-c defined in the distal annular flange 126 to rotatably fix the orientation of the housing 42 relative to the base member 50. The button 160 is positioned radially outward of the locking member 150 such that the body 153 of the locking member 150 is disposed within the opening 163 of the button 160. When the body 153 is disposed within the opening 163, the bosses 157 of the locking member 150 are slidingly received within the cam slots 164. In addition, the biasing members 179 are received within the blind holes 162 to urge the button 160 away from the locking member 150. In this position, the locking member 150, due to engagement with the portion of the button 160 defining the cam slots 164, is urged proximally to the locked position.


With particular reference to FIG. 12, the biasing members 179 are supported on a ledge 144 of the body shell 44 to bias the button 160 away from the locking member 150. However, it is contemplated that the biasing members 179 may be supported by and be slidable along a top surface of the stop 155.


Briefly referring back to FIG. 3, the finger 153a of the locking member 150 extends distally within the opening 163 of the button 160 such that the finger 153a is positioned over the shelf 163b of the button 160 to retain the button 160 within the channel 142 of the housing 42. In addition, the proximal surface 161e (FIG. 9) of the button 160 can include a retention hook 166 that extends proximally from the proximal surface 161e of the button 160 into engagement with the housing 42 to retain the button 160 within the channel 142.


Referring to FIG. 11, in the unlocked position of the locking mechanism 60, the button 160 is urged upwardly by the biasing members 179 such that the locking member 150 is cammed by the bosses 157 to a proximal position. In the proximal position, the lock 156 is positioned within a lock cutout 152a-c of the flange 126 of the base member 50 to prevent rotation of the housing 42 in relation to the base member 50. Referring now to FIGS. 13 and 14, to move the lock mechanism 60 to the unlocked position, the button 160 is depressed within the channel 142 of the housing 42 against the bias members 179. As the button 160 is depressed, the button 160 is confined to substantially vertical movement (movement towards and away from the longitudinal axis X-X) within the channel 142 of the housing 42. As the button 160 is depressed, the bosses 157 slide within the cam slots 164 to affect distal longitudinal movement of the locking member 150 relative to the housing 42. Specifically, walls defining the cam slots 164 engage the bosses 157 to translate the locking member 150 in a direction substantially parallel to the longitudinal axis X-X. As the locking member 150 moves distally relative to the button 160, the lock 156 moves from within a cutout 152a-c to a position distal of the distal annular flange 126, and thus out of the lock cutout 152a-c. In this position, the housing 42 is free to rotate about the base member 50. As the locking member 150 moves distally, the foot 159 of the proximal leg 158 slides within the distal annular groove 127 and may abut the distal annular flange 126 to limit distal movement of the locking member 150. In embodiments, contact between the foot 159 of the locking member 150 with the distal annular flange 126 may provide tactile feedback to a clinician that the button 160 is fully depressed and/or that the locking mechanism 60 is in the unlocked position. In addition, when the button 160 is fully depressed, the body 153 of the locking member 150 may engage a roof 163c of the opening 163 to limit depression of the button 160 and/or distal movement of the locking member 150.


With reference to FIGS. 15-18, with the locking mechanism 60 in the unlocked position, the housing 42 is rotatable about the base member 50, the coupling assembly 22, and the drive assembly 80. Rotation of the housing 42 also rotates the elongate coupling body 70 about the longitudinal axis X-X through the engagement of the tabs 72 (FIG. 14) with the housing 42.


With particular reference to FIGS. 17 and 18, when the housing 42 is rotated from a first radial position (FIG. 17) to a second radial position (FIG. 18), the extension assembly 290 is rotated with the distal end 90 of the elongate coupling body 70. The extension assembly 290 has a tool coupler 294 on a distal portion thereof that releasably secures the tool assembly 380 (FIG. 1) to the extension assembly 290. As shown, rotation of the housing 42 about the longitudinal axis X-X of the adapter assembly 10 changes the position of the tool coupler 294, and thus, the position of a tool assembly 380 secured to the tool coupler 294, relative to the coupling assembly 22. As the housing 42 is rotated, the drive assembly 80 maintains its position relative to the coupling assembly 22. It will be appreciated that when the coupling assembly 22 is secured to the actuation assembly 300 (FIG. 1), rotation of the housing 42 in relation to the actuation assembly 300 allows a clinician to reposition the tool assembly 380 (FIG. 1) without having to reposition the actuation assembly 300.


If the housing 42 is rotated relative to the base member 50 with the lock cutouts 152a-c misaligned with the lock 156 and the button 160 is released, the lock 156 will abut the distal annular flange 126 until the lock 156 is aligned with one of the lock cutouts 152a-c. When the lock 156 is aligned with one of the lock cutouts 152a-c, the biasing members 179 will urge the button 160 away from the longitudinal axis X-X and affect proximal movement of the locking member 150 such that the lock 156 will slide into the aligned lock cutout 152a-c. When the lock 156 slides into the aligned lock cutout 152a-c, the slider 155 may contact the distal annular flange 126 to provide audible indicia (a “click”) that the housing 42 is rotationally secured to the base member 50.


While rotation of the housing 42 about the base member 50 is detailed above, it is contemplated that the base member 50 may be rotated within the housing 42 such that the actuation assembly 300 is repositionable relative to the tool assembly 380 while tool assembly 380 remains substantially stationary within a surgical site.


The rotation assembly can be incorporated into surgical instrument such as ultrasonic cutting instruments, surgical staplers, surgical clip appliers, and the like. In one example, the surgical instrument has a circular anvil and circular staple cartridge for applying circular rows of staples, as is known. Linear endoscopic staplers are another example. The rotation assembly can be incorporated into an elongate shaft of a manually operated or motorized surgical instrument. The elongate shaft can be integral with the handle or can be provided as an adapter that attaches to a handle, and also attaches to a loading unit. Furthermore, the rotation assembly can be incorporated into a device for use with a robotic surgical system.


Any of the components described herein may be fabricated from either metals, plastics, resins, composites or the like taking into consideration strength, durability, wearability, weight, resistance to corrosion, ease of manufacturing, cost of manufacturing, and the like.


While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Any combination of the above embodiments is also envisioned and is within the scope of the appended claims. The present disclosure is not limited to circular stapling loading units, but has application to loading units for linear stapling or other types of instruments, such as electrocautery or ultrasonic instruments. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope of the claims appended hereto.

Claims
  • 1. An adapter assembly comprising: a base member defining a longitudinal axis;a housing rotatably secured to the base member, the housing rotatable in relation to the base member between a plurality of positions; anda locking mechanism supported on the housing, the locking mechanism including: a locking member moveable from a locked position in which a lock of the locking member is engaged with the base member to secure the housing in one of the plurality of positions to an unlocked position in which the housing is rotatable in relation to the base member; anda button positioned on the base member and depressible to translate the locking member in a direction parallel to the longitudinal axis from the locked position to the unlocked position.
  • 2. The adapter assembly according to claim 1, wherein the locking member has a boss, and wherein the button defines a cam slot that receives the boss.
  • 3. The adapter assembly according to claim 2, wherein the button has an undepressed position in which the boss is positioned adjacent a first end of the cam slot and a depressed position in which the boss is positioned adjacent a second end of the cam slot, and wherein walls defining the cam slot engage the boss as the button is moved towards the depressed position to translate the locking member in the direction parallel to the longitudinal axis as the boss moves towards the second end of the cam slot.
  • 4. The adapter assembly according to claim 3, further comprising a biasing member disposed between the button and the locking member, the biasing member urging the button towards the undepressed position.
  • 5. The adapter assembly according to claim 1, wherein the base member includes an annular flange defining a first cutout and a second cutout.
  • 6. The adapter assembly according to claim 5, wherein the locking member has a lock body, a distal leg, and a proximal leg, the distal and proximal legs defining a gap therebetween, the annular flange rotatable within the gap when the locking member is in the unlocked position.
  • 7. The adapter assembly according to claim 6, wherein the lock of the locking member extends proximally from the distal leg and is disposable within one of the first or second cutouts to secure the housing in one of the plurality of positions.
  • 8. The adapter assembly according to claim 5, wherein the annular flange defines a third cutout, the first and third cutouts diametrically opposing one another with the second cutout positioned between the first and third cutouts.
  • 9. The adapter assembly according to claim 8, wherein the second cutout is equidistant from the first and third cutouts.
  • 10. The adapter assembly according to claim 1, wherein the housing defines a channel, the button disposed within the channel.
  • 11. The adapter assembly according to claim 1, further comprising a coupling body extending from the housing, the coupling body rotatably fixed to the housing.
  • 12. The adapter assembly according to claim 11, wherein the coupling body has a proximal portion including a tab, and the housing defines a recess that receives the tab to rotatably fix the coupling body to the housing.
  • 13. An adapter assembly comprising: a base member defining a longitudinal axis;a housing rotatably secured to the base member, the housing rotatable in relation to the base member between a plurality of positions; anda locking mechanism supported on the housing, the locking mechanism including: a locking member moveable from a locked position to an unlocked position, the locking member engaged with the base member in the locked position to secure the housing in one of the plurality of positions; anda button positioned on the base member, the button being movable to move the locking member from the locked position to the unlocked position.
  • 14. The adapter assembly according to claim 13, wherein the locking member has a boss and the button defines a cam slot that receives the boss.
  • 15. The adapter assembly according to claim 14, wherein the button is moveable from an undepressed position to a depressed position in relation to the boss to translate the locking member from the locked position to the unlocked position.
  • 16. The adapter assembly according to claim 15, further comprising a biasing member disposed between the button and the locking member, the biasing member urging the button towards the undepressed position.
  • 17. The adapter assembly according to claim 13, wherein the housing defines a channel and the button is disposed within the channel.
  • 18. The adapter assembly according to claim 13, wherein the base member includes an annular flange defining a first cutout and a second cutout.
  • 19. The adapter assembly according to claim 18, wherein the locking member has a lock body, a distal leg, and a proximal leg, the distal and proximal legs defining a gap, the annular flange rotatable within the gap when the locking member is in the unlocked position.
  • 20. The adapter assembly according to claim 19, wherein the lock of the locking member extends proximally from the distal leg and is disposable within one of the first or second cutouts to secure the housing in one of the plurality of positions.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 15/229,220, filed Aug. 5, 2016, the disclosure of which is incorporated by reference herein in its entirety.

US Referenced Citations (461)
Number Name Date Kind
2777340 Hettwer et al. Jan 1957 A
2957353 Babacz Oct 1960 A
3111328 Di Rito et al. Nov 1963 A
3695058 Keith, Jr. Oct 1972 A
3734515 Dudek May 1973 A
3759336 Marcovitz et al. Sep 1973 A
4162399 Hudson Jul 1979 A
4606343 Conta et al. Aug 1986 A
4705038 Sjostrom et al. Nov 1987 A
4722685 de Estrada et al. Feb 1988 A
4823807 Russell et al. Apr 1989 A
4874181 Hsu Oct 1989 A
5129118 Walmesley Jul 1992 A
5129570 Schulze et al. Jul 1992 A
5152744 Krause et al. Oct 1992 A
5301061 Nakada et al. Apr 1994 A
5312023 Green et al. May 1994 A
5326013 Green et al. Jul 1994 A
5350355 Sklar Sep 1994 A
5383874 Jackson et al. Jan 1995 A
5383880 Hooven Jan 1995 A
5389098 Tsuruta et al. Feb 1995 A
5395033 Byrne et al. Mar 1995 A
5400267 Denen et al. Mar 1995 A
5411508 Bessler et al. May 1995 A
5413267 Solyntjes et al. May 1995 A
5427087 Ito et al. Jun 1995 A
5433721 Hooven et al. Jul 1995 A
5467911 Tsuruta et al. Nov 1995 A
5476379 Disel Dec 1995 A
5487499 Sorrentino et al. Jan 1996 A
5514157 Nicholas et al. May 1996 A
5518163 Hoover May 1996 A
5518164 Hooven May 1996 A
5526822 Burbank et al. Jun 1996 A
5529235 Boiarski et al. Jun 1996 A
5535934 Boiarski et al. Jul 1996 A
5535937 Boiarski et al. Jul 1996 A
5540375 Bolanos et al. Jul 1996 A
5540706 Aust et al. Jul 1996 A
5542594 McKean et al. Aug 1996 A
5549637 Crainich Aug 1996 A
5553675 Pitzen et al. Sep 1996 A
5562239 Boiarski et al. Oct 1996 A
5564615 Bishop et al. Oct 1996 A
5609560 Ichikawa et al. Mar 1997 A
5626587 Bishop et al. May 1997 A
5632432 Schulze et al. May 1997 A
5645209 Green et al. Jul 1997 A
5647526 Green et al. Jul 1997 A
5653374 Young et al. Aug 1997 A
5658300 Bito et al. Aug 1997 A
5662662 Bishop et al. Sep 1997 A
5667517 Hooven Sep 1997 A
5693042 Boiarski et al. Dec 1997 A
5704534 Huitema et al. Jan 1998 A
5713505 Huitema Feb 1998 A
5762603 Thompson Jun 1998 A
5779130 Alesi et al. Jul 1998 A
5782396 Mastri et al. Jul 1998 A
5782397 Koukline Jul 1998 A
5792573 Pitzen et al. Aug 1998 A
5797536 Smith et al. Aug 1998 A
5820009 Melling et al. Oct 1998 A
5863159 Lasko Jan 1999 A
5908427 McKean et al. Jun 1999 A
5954259 Viola et al. Sep 1999 A
5964774 McKean et al. Oct 1999 A
5993454 Longo Nov 1999 A
6010054 Johnson et al. Jan 2000 A
6017354 Culp et al. Jan 2000 A
6032849 Mastri et al. Mar 2000 A
6045560 McKean et al. Apr 2000 A
6090123 Culp et al. Jul 2000 A
6126651 Mayer Oct 2000 A
6129547 Cise et al. Oct 2000 A
6165169 Panescu et al. Dec 2000 A
6239732 Cusey May 2001 B1
6241139 Milliman et al. Jun 2001 B1
6250532 Green Jun 2001 B1
6264086 McGuckin, Jr. Jul 2001 B1
6264087 Whitman Jul 2001 B1
6302311 Adams et al. Oct 2001 B1
6315184 Whitman Nov 2001 B1
6321855 Barnes Nov 2001 B1
6329778 Culp et al. Dec 2001 B1
6343731 Adams et al. Feb 2002 B1
6348061 Whitman Feb 2002 B1
6368324 Dinger et al. Apr 2002 B1
6371909 Hoeg et al. Apr 2002 B1
6434507 Clayton et al. Aug 2002 B1
6443973 Whitman Sep 2002 B1
6461372 Jensen et al. Oct 2002 B1
6488197 Whitman Dec 2002 B1
6491201 Whitman Dec 2002 B1
6533157 Whitman Mar 2003 B1
6537280 Dinger et al. Mar 2003 B2
6610066 Dinger et al. Aug 2003 B2
6611793 Burnside et al. Aug 2003 B1
6645218 Cassidy et al. Nov 2003 B1
6654999 Stoddard et al. Dec 2003 B2
6698643 Whitman Mar 2004 B2
6699177 Wang et al. Mar 2004 B1
6716233 Whitman Apr 2004 B1
6743240 Smith et al. Jun 2004 B2
6783533 Green et al. Aug 2004 B2
6792390 Burnside et al. Sep 2004 B1
6793652 Whitman et al. Sep 2004 B1
6817508 Racenet et al. Nov 2004 B1
6830174 Hillstead et al. Dec 2004 B2
6846308 Whitman et al. Jan 2005 B2
6846309 Whitman et al. Jan 2005 B2
6849071 Whitman et al. Feb 2005 B2
6860892 Tanaka et al. Mar 2005 B1
6899538 Matoba May 2005 B2
6905057 Swayze et al. Jun 2005 B2
6959852 Shelton, IV et al. Nov 2005 B2
6964363 Wales et al. Nov 2005 B2
6981628 Wales Jan 2006 B2
6981941 Whitman et al. Jan 2006 B2
6986451 Mastri et al. Jan 2006 B1
6988649 Shelton, IV et al. Jan 2006 B2
7032798 Whitman et al. Apr 2006 B2
RE39152 Aust et al. Jun 2006 E
7055731 Shelton, IV et al. Jun 2006 B2
7059508 Shelton, IV et al. Jun 2006 B2
7077856 Whitman Jul 2006 B2
7111769 Wales et al. Sep 2006 B2
7122029 Koop et al. Oct 2006 B2
7140528 Shelton, IV Nov 2006 B2
7141049 Stern et al. Nov 2006 B2
7143923 Shelton, IV et al. Dec 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7143926 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7172104 Scirica et al. Feb 2007 B2
7225964 Mastri et al. Jun 2007 B2
7238021 Johnson Jul 2007 B1
7246734 Shelton, IV Jul 2007 B2
7252660 Kunz Aug 2007 B2
7328828 Ortiz et al. Feb 2008 B2
7364061 Swayze et al. Apr 2008 B2
7380695 Doll et al. Jun 2008 B2
7380696 Shelton, IV et al. Jun 2008 B2
7404508 Smith et al. Jul 2008 B2
7407078 Shelton, IV et al. Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
7419080 Smith et al. Sep 2008 B2
7422139 Shelton, IV et al. Sep 2008 B2
7431189 Shelton, IV et al. Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7448525 Shelton, IV et al. Nov 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7464847 Viola et al. Dec 2008 B2
7464849 Shelton, IV et al. Dec 2008 B2
7481347 Roy Jan 2009 B2
7481824 Boudreaux et al. Jan 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7549564 Boudreaux Jun 2009 B2
7565993 Milliman et al. Jul 2009 B2
7568603 Shelton, IV et al. Aug 2009 B2
7575144 Ortiz et al. Aug 2009 B2
7588175 Timm et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7637409 Marczyk Dec 2009 B2
7641093 Doll et al. Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7670334 Tueil et al. Mar 2010 B2
7673780 Shelton, IV et al. Mar 2010 B2
7699835 Lee et al. Apr 2010 B2
7721931 Shelton, IV et al. May 2010 B2
7738971 Swayze et al. Jun 2010 B2
7740159 Shelton, IV et al. Jun 2010 B2
7743960 Whitman et al. Jun 2010 B2
7758613 Whitman Jul 2010 B2
7766210 Shelton, IV et al. Aug 2010 B2
7770773 Whitman et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7793812 Moore et al. Sep 2010 B2
7799039 Shelton, IV et al. Sep 2010 B2
7802712 Milliman et al. Sep 2010 B2
7803151 Whitman Sep 2010 B2
7822458 Webster et al. Oct 2010 B2
7845534 Viola et al. Dec 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7857185 Swayze et al. Dec 2010 B2
7870989 Viola et al. Jan 2011 B2
7900805 Shelton, IV et al. Mar 2011 B2
7905897 Whitman et al. Mar 2011 B2
7918230 Whitman et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922719 Ralph et al. Apr 2011 B2
7947034 Whitman May 2011 B2
7951071 Whitman et al. May 2011 B2
7954682 Giordano et al. Jun 2011 B2
7959051 Smith et al. Jun 2011 B2
7963433 Whitman et al. Jun 2011 B2
7967178 Scirica et al. Jun 2011 B2
7967179 Olson et al. Jun 2011 B2
7992758 Whitman et al. Aug 2011 B2
8011550 Aranyi et al. Sep 2011 B2
8016178 Olson et al. Sep 2011 B2
8016855 Whitman et al. Sep 2011 B2
8020743 Shelton, IV Sep 2011 B2
8025199 Whitman et al. Sep 2011 B2
8035487 Malackowski Oct 2011 B2
8052024 Viola et al. Nov 2011 B2
8052636 Moll Nov 2011 B2
8114118 Knodel et al. Feb 2012 B2
8127975 Olson et al. Mar 2012 B2
8132705 Viola et al. Mar 2012 B2
8152516 Harvey et al. Apr 2012 B2
8157150 Viola et al. Apr 2012 B2
8157151 Ingmanson et al. Apr 2012 B2
8182494 Yencho et al. May 2012 B1
8186555 Shelton, IV et al. May 2012 B2
8186587 Zmood et al. May 2012 B2
8220367 Hsu Jul 2012 B2
8235273 Olson et al. Aug 2012 B2
8241322 Whitman et al. Aug 2012 B2
8272554 Whitman et al. Sep 2012 B2
8292150 Bryant Oct 2012 B2
8292888 Whitman Oct 2012 B2
8342379 Whitman et al. Jan 2013 B2
8348130 Shah et al. Jan 2013 B2
8348855 Hillely et al. Jan 2013 B2
8353440 Whitman et al. Jan 2013 B2
8357144 Whitman et al. Jan 2013 B2
8365633 Simaan et al. Feb 2013 B2
8365972 Aranyi et al. Feb 2013 B2
8371492 Aranyi et al. Feb 2013 B2
8372057 Cude et al. Feb 2013 B2
8391957 Carlson et al. Mar 2013 B2
8403926 Nobis et al. Mar 2013 B2
8418904 Wenchell et al. Apr 2013 B2
8424739 Racenet et al. Apr 2013 B2
8454585 Whitman Jun 2013 B2
8505802 Viola et al. Aug 2013 B2
8517241 Nicholas et al. Aug 2013 B2
8523043 Ullrich et al. Sep 2013 B2
8551076 Duval et al. Oct 2013 B2
8561871 Rajappa et al. Oct 2013 B2
8561874 Scirica Oct 2013 B2
8602287 Yates et al. Dec 2013 B2
8623000 Humayun et al. Jan 2014 B2
8627995 Smith et al. Jan 2014 B2
8632463 Drinan et al. Jan 2014 B2
8636766 Milliman et al. Jan 2014 B2
8647258 Aranyi et al. Feb 2014 B2
8652121 Quick et al. Feb 2014 B2
8657174 Yates et al. Feb 2014 B2
8657177 Scirica et al. Feb 2014 B2
8672206 Aranyi et al. Mar 2014 B2
8679098 Hart Mar 2014 B2
8696552 Whitman Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8715306 Faller et al. May 2014 B2
8758391 Swayze et al. Jun 2014 B2
8789737 Hodgkinson et al. Jul 2014 B2
8806973 Ross et al. Aug 2014 B2
8808311 Heinrich et al. Aug 2014 B2
8820605 Shelton, IV Sep 2014 B2
8851355 Aranyi et al. Oct 2014 B2
8858571 Shelton, IV et al. Oct 2014 B2
8875972 Weisenburgh, II et al. Nov 2014 B2
8888762 Whitman Nov 2014 B2
8893946 Boudreaux et al. Nov 2014 B2
8899462 Kostrzewski et al. Dec 2014 B2
8905289 Patel et al. Dec 2014 B2
8919630 Milliman Dec 2014 B2
8931680 Milliman Jan 2015 B2
8939344 Olson et al. Jan 2015 B2
8950646 Viola Feb 2015 B2
8960519 Whitman et al. Feb 2015 B2
8961396 Azarbarzin et al. Feb 2015 B2
8967443 McCuen Mar 2015 B2
8968276 Zemlok et al. Mar 2015 B2
8968337 Whitfield et al. Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
9016545 Aranyi et al. Apr 2015 B2
9023014 Chowaniec et al. May 2015 B2
9033868 Whitman et al. May 2015 B2
9055943 Zemlok Jun 2015 B2
9064653 Prest et al. Jun 2015 B2
9072515 Hall et al. Jul 2015 B2
9113847 Whitman et al. Aug 2015 B2
9113875 Viola et al. Aug 2015 B2
9113876 Zemlok et al. Aug 2015 B2
9113899 Garrison et al. Aug 2015 B2
9216013 Scirica et al. Dec 2015 B2
9241712 Zemlok et al. Jan 2016 B2
9282961 Whitman et al. Mar 2016 B2
9282963 Bryant Mar 2016 B2
9295522 Kostrzewski Mar 2016 B2
9307986 Hall et al. Apr 2016 B2
9629633 Williams et al. Apr 2017 B2
10485549 Williams Nov 2019 B2
10653398 Williams May 2020 B2
10751058 Cabrera Aug 2020 B2
11284896 Williams Mar 2022 B2
11406391 Williams Aug 2022 B2
11559302 Timm Jan 2023 B2
11559303 Shelton, IV Jan 2023 B2
20010031975 Whitman et al. Oct 2001 A1
20020049454 Whitman et al. Apr 2002 A1
20020165541 Whitman Nov 2002 A1
20030038938 Jung et al. Feb 2003 A1
20030165794 Matoba Sep 2003 A1
20040034369 Sauer et al. Feb 2004 A1
20040111012 Whitman Jun 2004 A1
20040133189 Sakurai Jul 2004 A1
20040153124 Whitman Aug 2004 A1
20040176751 Weitzner et al. Sep 2004 A1
20040193146 Lee et al. Sep 2004 A1
20050125027 Knodel et al. Jun 2005 A1
20050131442 Yachia et al. Jun 2005 A1
20060142656 Malackowski et al. Jun 2006 A1
20060142740 Sherman et al. Jun 2006 A1
20060142744 Boutoussov Jun 2006 A1
20060259073 Miyamoto et al. Nov 2006 A1
20060278680 Viola et al. Dec 2006 A1
20060284730 Schmid et al. Dec 2006 A1
20070023476 Whitman et al. Feb 2007 A1
20070023477 Whitman et al. Feb 2007 A1
20070029363 Popov Feb 2007 A1
20070084897 Shelton et al. Apr 2007 A1
20070102472 Shelton May 2007 A1
20070152014 Gillum et al. Jul 2007 A1
20070175947 Ortiz et al. Aug 2007 A1
20070175949 Shelton et al. Aug 2007 A1
20070175950 Shelton et al. Aug 2007 A1
20070175951 Shelton et al. Aug 2007 A1
20070175955 Shelton et al. Aug 2007 A1
20070175961 Shelton et al. Aug 2007 A1
20070270784 Smith et al. Nov 2007 A1
20080029570 Shelton et al. Feb 2008 A1
20080029573 Shelton et al. Feb 2008 A1
20080029574 Shelton et al. Feb 2008 A1
20080029575 Shelton et al. Feb 2008 A1
20080058801 Taylor et al. Mar 2008 A1
20080109012 Falco et al. May 2008 A1
20080110958 McKenna et al. May 2008 A1
20080147089 Loh et al. Jun 2008 A1
20080167736 Swayze et al. Jul 2008 A1
20080185419 Smith et al. Aug 2008 A1
20080188841 Tomasello et al. Aug 2008 A1
20080197167 Viola et al. Aug 2008 A1
20080208195 Shores et al. Aug 2008 A1
20080237296 Boudreaux et al. Oct 2008 A1
20080251561 Eades et al. Oct 2008 A1
20080255413 Zemlok et al. Oct 2008 A1
20080255607 Zemlok Oct 2008 A1
20080262654 Omori et al. Oct 2008 A1
20080308603 Shelton et al. Dec 2008 A1
20090012533 Barbagli et al. Jan 2009 A1
20090090763 Zemlok et al. Apr 2009 A1
20090099876 Whitman Apr 2009 A1
20090138006 Bales et al. May 2009 A1
20090171147 Lee et al. Jul 2009 A1
20090182193 Whitman et al. Jul 2009 A1
20090209946 Swayze et al. Aug 2009 A1
20090209990 Yates et al. Aug 2009 A1
20090254094 Knapp et al. Oct 2009 A1
20090299141 Downey et al. Dec 2009 A1
20100023022 Zeiner et al. Jan 2010 A1
20100069942 Shelton, IV Mar 2010 A1
20100193568 Scheib et al. Aug 2010 A1
20100211053 Ross et al. Aug 2010 A1
20100225073 Porter et al. Sep 2010 A1
20110071508 Duval et al. Mar 2011 A1
20110077673 Grubac et al. Mar 2011 A1
20110121049 Malinouskas et al. May 2011 A1
20110125138 Malinouskas et al. May 2011 A1
20110139851 McCuen Jun 2011 A1
20110155783 Rajappa et al. Jun 2011 A1
20110155786 Shelton, IV Jun 2011 A1
20110172648 Jeong Jul 2011 A1
20110174009 Izuka et al. Jul 2011 A1
20110174099 Ross et al. Jul 2011 A1
20110184245 Kia et al. Jul 2011 A1
20110204119 McCuen Aug 2011 A1
20110218522 Whitman Sep 2011 A1
20110276057 Conlon et al. Nov 2011 A1
20110290854 Timm et al. Dec 2011 A1
20110295242 Spivey et al. Dec 2011 A1
20110295269 Swensgard et al. Dec 2011 A1
20120000962 Racenet et al. Jan 2012 A1
20120074199 Olson et al. Mar 2012 A1
20120089131 Zemlok et al. Apr 2012 A1
20120104071 Bryant May 2012 A1
20120116368 Viola May 2012 A1
20120143002 Aranyi et al. Jun 2012 A1
20120172924 Allen, IV Jul 2012 A1
20120184946 Price Jul 2012 A1
20120211542 Racenet Aug 2012 A1
20120223121 Viola et al. Sep 2012 A1
20120245428 Smith et al. Sep 2012 A1
20120253329 Zemlok et al. Oct 2012 A1
20120310220 Malkowski et al. Dec 2012 A1
20120323226 Chowaniec et al. Dec 2012 A1
20120330285 Hartoumbekis et al. Dec 2012 A1
20130093149 Saur et al. Apr 2013 A1
20130181035 Milliman Jul 2013 A1
20130184704 Beardsley et al. Jul 2013 A1
20130214025 Zemlok et al. Aug 2013 A1
20130274722 Kostrzewski et al. Oct 2013 A1
20130282052 Aranyi et al. Oct 2013 A1
20130292451 Viola et al. Nov 2013 A1
20130313304 Shelton, IV et al. Nov 2013 A1
20130317486 Nicholas et al. Nov 2013 A1
20130319706 Nicholas et al. Dec 2013 A1
20130324978 Nicholas et al. Dec 2013 A1
20130324979 Nicholas et al. Dec 2013 A1
20130334281 Williams Dec 2013 A1
20140012236 Williams et al. Jan 2014 A1
20140012237 Pribanic et al. Jan 2014 A1
20140012289 Snow et al. Jan 2014 A1
20140025046 Williams et al. Jan 2014 A1
20140110455 Ingmanson et al. Apr 2014 A1
20140207125 Applegate et al. Jul 2014 A1
20140207182 Zergiebel et al. Jul 2014 A1
20140207185 Goble et al. Jul 2014 A1
20140236174 Williams et al. Aug 2014 A1
20140276932 Williams et al. Sep 2014 A1
20140299647 Scirica et al. Oct 2014 A1
20140303668 Nicholas et al. Oct 2014 A1
20140358129 Zergiebel et al. Dec 2014 A1
20140361068 Aranyi et al. Dec 2014 A1
20140365235 DeBoer et al. Dec 2014 A1
20140373652 Zergiebel et al. Dec 2014 A1
20150014392 Williams et al. Jan 2015 A1
20150048144 Whitman Feb 2015 A1
20150076205 Zergiebel Mar 2015 A1
20150080912 Sapre Mar 2015 A1
20150112381 Richard Apr 2015 A1
20150122870 Zemlok et al. May 2015 A1
20150133224 Whitman et al. May 2015 A1
20150150547 Ingmanson et al. Jun 2015 A1
20150150574 Richard et al. Jun 2015 A1
20150157320 Zergiebel et al. Jun 2015 A1
20150157321 Zergiebel et al. Jun 2015 A1
20150164502 Richard et al. Jun 2015 A1
20150201931 Zergiebel et al. Jul 2015 A1
20150272577 Zemlok et al. Oct 2015 A1
20150297199 Nicholas et al. Oct 2015 A1
20150303996 Calderoni Oct 2015 A1
20150320420 Penna et al. Nov 2015 A1
20150327850 Kostrzewski Nov 2015 A1
20150342601 Williams et al. Dec 2015 A1
20150342603 Zergiebel et al. Dec 2015 A1
20150374366 Zergiebel et al. Dec 2015 A1
20150374370 Zergiebel et al. Dec 2015 A1
20150374371 Richard et al. Dec 2015 A1
20150374372 Zergiebel et al. Dec 2015 A1
20150374449 Chowaniec et al. Dec 2015 A1
20150380187 Zergiebel et al. Dec 2015 A1
20160095585 Zergiebel et al. Apr 2016 A1
20160095596 Scirica et al. Apr 2016 A1
20160106406 Cabrera et al. Apr 2016 A1
20160113648 Zergiebel et al. Apr 2016 A1
20160113649 Zergiebel et al. Apr 2016 A1
Foreign Referenced Citations (18)
Number Date Country
2451558 Jan 2003 CA
1547454 Nov 2004 CN
1957854 May 2007 CN
101495046 Jul 2009 CN
102247182 Nov 2011 CN
102008053842 May 2010 DE
0705571 Apr 1996 EP
1563793 Aug 2005 EP
1769754 Apr 2007 EP
2316345 May 2011 EP
2668910 Dec 2013 EP
3123960 Feb 2017 EP
3278745 Feb 2018 EP
2333509 Feb 2010 ES
2005125075 May 2005 JP
20120022521 Mar 2012 KR
2011108840 Sep 2011 WO
2012040984 Apr 2012 WO
Non-Patent Literature Citations (46)
Entry
Chinese Office Action dated Dec. 3, 2021, issued in corresponding CN Appln. No. 201710646803, 5 pages.
Chinese Office Action corresponding to International Application No. CN 201310125449.6 dated Feb. 3, 2016.
Extended 2016 European Search Report corresponding to International Application No. EP 15 19 0245.9 dated Jan. 28, 2016.
Extended European Search Report corresponding to International Application No. EP 15 16 7793.7 dated Apr. 5, 2016.
European Office Action corresponding to International Application No. EP 14 18 4882.0 dated Apr. 25, 2016.
Extended European Search Report corresponding to International Application No. EP 14 19 6704.2 dated Sep. 24, 2015.
International Search Report and Written Opinion corresponding to Int'l Appln. No. PCT/US2015/051837, dated Dec. 21, 2015.
Extended European Search Report corresponding to International Application No. EP 14 19 7563.1 dated Aug. 5, 2015.
Partial European Search Report corresponding to International Application No. EP 15 19 0643.5 dated Feb. 26, 2016.
Extended European Search Report corresponding to International Application No. EP 15 16 6899.3 dated Feb. 3, 2016.
Extended European Search Report corresponding to International Application No. EP 14 19 9783.3 dated Dec. 22, 2015.
Extended European Search Report corresponding to International Application No. EP 15 17 3807.7 dated Nov. 24, 2015.
Extended European Search Report corresponding to International Application No. EP 15 19 0760.7 dated Apr. 1, 2016.
Extended European Search Report corresponding to International Application No. EP 15 17 3803.6 dated Nov. 24, 2015.
Extended European Search Report corresponding to International Application No. EP 15 17 3804.4 dated Nov. 24, 2015.
Extended European Search Report corresponding to International Application No. EP 15 18 8539.9 dated Feb. 17, 2016.
Extended European Search Report corresponding to International Application No. EP 15 17 3910.9 dated Nov. 13, 2015.
European Office Action corresponding to International Application No. EP 14 15 2236.7 dated Aug. 11, 2015.
Extended European Search Report corresponding to International Application No. EP 15 18 4915.5 dated Jan. 5, 2016.
Chinese Office Action corresponding to counterpart Int'l Appln. No. CN 201310369318.2 dated Jun. 28, 2016.
Chinese Office Action (with English translation), dated Jul. 4, 2016, corresponding to Chinese Patent Application No. 2015101559718; 23 total pages.
European Search Report EP 15 156 035.6 dated Aug. 10, 2016.
U.S. Appl. No. 14/875,766, filed Oct. 6, 2015.
Extended European Search Report corresponding to International Application No. EP 14 18 4882.0 dated May 12, 2015.
Canadian Office Action corresponding to International Application No. CA 2640399 dated May 7, 2015.
Japanese Office Action corresponding to International Application No. JP 2011-197365 dated Mar. 23, 2015.
Japanese Office Action corresponding to International Application No. JP 2011-084092 dated May 20, 2015.
Japanese Office Action corresponding to International Application No. JP 2014-148482 dated Jun. 2, 2015.
Extended European Search Report corresponding to International Application No. EP 14 18 9358.6 dated Jul. 8, 2015.
Extended European Search Report corresponding to International Application No. EP 14 19 6148.2 dated Apr. 23, 2015.
Partial European Search Report corresponding to International Application No. EP 14 19 6704.2 dated May 11, 2015.
Australian Office Action corresponding to International Application No. AU 2010241367 dated Aug. 20, 2015.
Partial European Search Report corresponding to International Application No. EP 14 19 9783.3 dated Sep. 3, 2015.
Extended European Search Report corresponding to International Application No. EP 15 16 9962.6 dated Sep. 14, 2015.
Extended European Search Report corresponding to International Application No. EP 15 15 1076.5 dated Apr. 22, 2015.
Japanese Office Action corresponding to International Application No. JP 2011-084092 dated Jan. 14, 2016.
Extended European Search Report corresponding to International Application No. EP 12 19 7970.2 dated Jan. 28, 2016.
Chinese Office Action corresponding to International Application No. CN 201210560638.1 dated Oct. 21, 2015.
European Office Action corresponding to International Application No. EP 14 15 9056.2 dated Oct. 26, 2015.
Australian Examination Report No. 1 corresponding to International Application No. AU 2015200153 dated Dec. 11, 2015.
Australian Examination Report No. 1 corresponding to International Application No. AU 2014204542 dated Jan. 7, 2016.
Extended European Search Report corresponding to International Application No. EP 15 19 0245.9 dated Jan. 28, 2016.
Partial European Search Report dated Dec. 22, 2017, issued in EP Application No. 17184857.
Partial European Search Report corresponding to counterpart International Application No. EP 14 19 97833 dated Sep. 3, 2015.
Extended European Search Report corresponding to counterpart International Application No. EP 15 16 9962.6 dated Sep. 14, 2015.
European Search Report dated Dec. 1, 2020, issued in corresponding EP Appln. No. 17 184 857, 5 pages.
Related Publications (1)
Number Date Country
20200237351 A1 Jul 2020 US
Continuations (1)
Number Date Country
Parent 15229220 Aug 2016 US
Child 16846628 US