Adaptive mapping with spatial summaries of sensor data

Information

  • Patent Grant
  • 10962376
  • Patent Number
    10,962,376
  • Date Filed
    Wednesday, March 14, 2018
    6 years ago
  • Date Issued
    Tuesday, March 30, 2021
    3 years ago
Abstract
A system and method for mapping parameter data acquired by a robot mapping system is disclosed. Parameter data characterizing the environment is collected while the robot localizes itself within the environment using landmarks. Parameter data is recorded in a plurality of local grids, i.e., sub-maps associated with the robot position and orientation when the data was collected. The robot is configured to generate new grids or reuse existing grids depending on the robot's current pose, the pose associated with other grids, and the uncertainty of these relative pose estimates. The pose estimates associated with the grids are updated over time as the robot refines its estimates of the locations of landmarks from which determines its pose in the environment. Occupancy maps or other global parameter maps may be generated by rendering local grids into a comprehensive map indicating the parameter data in a global reference frame extending the dimensions of the environment.
Description
BACKGROUND OF THE INVENTION
Field of the Invention

The invention relates to a technique for generating a map of an environment using a plurality of sub-maps. In particular, the invention relates to a system and method for combining sensor data into a plurality of sub-maps based upon the location of the sensor when the data was acquired and the certainty with its location was known.


Description of the Related Art

In the past few years, a substantial research effort has been devoted to the problem of Simultaneous Localization and Mapping (SLAM). The term “map” in the field of SLAM generally refers to a spatial arrangement of observed landmarks or features. If these landmarks correspond to obstacle locations (such as the measurements collected with a Laser Range Finder), then the “map” yields an occupancy map denoting the floor plan of the space in which the robot is operating. In other cases, in which the landmark information does not correspond to obstacle locations (such as the measurements taken with a camera), the “map” estimated with SLAM techniques is dissociated from the locations of obstacles (occupancy map). However, an occupancy map is required for the robot to properly make decisions and navigate the environment.


A number of SLAM techniques have been proposed for simultaneously estimating the poses (i.e. localization) and building the map. Some methods re-estimate past poses instead of only the latest pose as new information is collected, achieving an improvement in the estimate of the robot trajectory as the localization system is updated. Laser scans, for example, are collected as a mobile robot moves through an indoor environment. These scans are combined with odometry information to estimate the robot's trajectory to yield a map showing the floor plan of the building. As more information is collected, the accuracy of the map improves because the estimates of the past poses of the robot are improved. A disadvantage of this system is that all sensor readings and their associated poses must be stored to allow the sensor data to be re-processed when new information arrives. This results in storage requirements that grow linearly with time. There is therefore a need for a localization and mapping technique that efficiently creates an occupancy map using new information to improve accuracy of the map without the storage requirement growing linearly with time.


SUMMARY OF THE INVENTION

The invention in the preferred embodiment features a system and method for mapping parameter data acquired by a robot or other mapping system that travels through an environment. The method generally comprises: measuring parameters that characterize the environment while driving the robot through the environment; generating estimates of the current robot pose, mapping parameter data to a current grid associated with an anchor node until the estimated pose uncertainty between with the current pose and the prior anchor node exceeds a threshold. When the threshold is exceeded, the robot generates a new grid associated with a new anchor node to record parameter data. The robot repeatedly generates new grids associated with different anchor nodes for purpose of recording parameter data. The estimated positions of the anchor nodes are updated over time as the robot refines its estimates of the locations of landmarks from which it estimates its position in the environment. When an occupancy map or other global parameter map is required, the robot merges local grids into a comprehensive map indicating the parameter data in a global reference frame.


In accordance with some embodiments of the invention, the robot may map new parameter data to a new local parameter grid or to a pre-existing parameter grid. Data is recorded to a pre-existing parameter grid if the uncertainty between the current robot pose estimate and the pose estimate associated with the pre-existing grid is below a predetermined threshold. By using pre-existing grids, the robot can limit the memory requirements necessary to map the environment without the memory requirements growing linearly in time.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example and not limitation in the figures of the accompanying drawings, and in which:



FIG. 1 is a functional block diagram of a robotic system, in accordance with the preferred embodiment of the present invention;



FIG. 2A is a diagrammatic illustration of the of a mobile robotic system in a global reference frame, in accordance with the preferred embodiment of the present invention;



FIG. 2B is a diagrammatic illustration of a local grid at a location coinciding with an anchor node in the global reference frame, in accordance with the preferred embodiment of the present invention;



FIG. 3A is a robot trajectory showing nodes and corresponding sensor data, in accordance with the preferred embodiment of the present invention;



FIG. 3B is a robot trajectory showing an anchor node and summary of sensor data, in accordance with the preferred embodiment of the present invention;



FIG. 3C is a robot trajectory showing an anchor node and summary of sensor data, in accordance with the preferred embodiment of the present invention;



FIG. 4 is a flowchart showing process of summarizing sensor data, in accordance with the preferred embodiment of the present invention;



FIG. 5A is a robot trajectory showing nodes, in accordance with the preferred embodiment of the present invention;



FIG. 5B shows a plurality of local parameter grids, in accordance with the preferred embodiment of the present invention;



FIG. 6A is a robot trajectory showing nodes, in accordance with the preferred embodiment of the present invention;



FIG. 6B shows a plurality of local parameter grids, in accordance with the preferred embodiment of the present invention;



FIG. 7A is an occupancy map depicting clear spaces in the environment explored by the robotic system, in accordance with the preferred embodiment of the present invention;



FIG. 7B is an occupancy map depicting obstacles in the environment explored by the robotic system, in accordance with the preferred embodiment of the present invention; and



FIG. 8 is a flowchart of the process of concurrent localization and parameter mapping, in accordance with the preferred embodiment of the present invention.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Illustrated in FIG. 1 is a functional block diagram of a mobile robotic system configured to generate spatial summaries as described in more detail below. The robotic system 100 includes one or more sensors 110, a central processing unit 130, one or more databases for storing relevant data, and a drive mechanism 150 including drive wheels 152, for example. The one or more sensors 110 include one or more visual sensors 112, i.e., cameras, video cameras, imagers including CCD imagers, CMOS imagers, and infrared imagers, for example, for acquiring images of the environment in which the robot is roving. The set of sensors in the preferred embodiment also includes one or more wheel odometers 158 for measuring the rotation of the wheels of the drive system. The set of sensors may further include one or more bump sensors 118 for generating a signal indicating the presence of an obstacle in the path of the mobile robot.


Data from the sensors 112, 114 may undergo preprocessing at processing unit 116. For example, the processing unit 116 may extract visual features from the image data for purposes of recognizing known landmarks, and process odometry data to convert wheel encoder signals or other odometry data to distance and rotation estimates. In some embodiments, odometry data may be used to detect and compensate for situations in which the drive wheels slip due to wet, slick, or carpeted surfaces. Data from the bump sensor 118 may undergo preprocessing at the processing unit 120 to determine when the robot encounters and obstacle as well as the position of the obstacle with respect to the robot path.


In other embodiments, the set of sensors 110 includes range finders, including laser, infrared (IR), and acoustic range finders; proximity sensors including lateral proximity sensors for determining lateral distance to objects in the environment; drop sensors for detecting staircases and other locations that are unsuitable for travel by the robot; and floor surface sensors, including sensors for measuring dirt concentration, slippage, and soil characteristics.


The mobile robot system 100 further includes at least one processor 130 configured to perform localization, generate maps of properties characterizing the environment in which the robot is operating, and navigate through the environment. In the preferred embodiment, the localization module 132 determines the location of landmarks as well as the mobile robot with visual and odometry data using a technique called Simultaneous Localization and Mapping (SLAM) 134 taught in U.S. Pat. No. 7,135,992 hereby incorporated by reference herein. Using this technique, the robotic system explores its environment, takes numerous images of its environment, makes a map depicting landmarks in the environment, and estimates the location of the robot relative to those landmarks. In the preferred embodiment, landmarks are visually identified using visual features from the image data are extracted and matched using a Scale Invariant Feature Transform (SIFT), Speeded Up Robust Features (SURF), Gradient Location and Orientation Histogram (GLOH), Binary Robust Independent Elementary Features (BRIEF), or other type of visual feature known to those skilled in the art. The visual landmarks—along with estimates of the robot position and orientation (pose) of the robot when the image was taken—are stored in the landmark database 142.


The parameter mapping module 136 is configured to generate a plurality of sub-maps or grids comprising local parameters and build global parameter maps based on those grids. In particular, the module 136 builds grids that depict the properties of the environment in proximity to associated anchor nodes, i.e., reference points fixed in their respective local reference frames. Estimates of the locations of the anchor nodes within the global reference frame are continually updated as the SLAM module 134 refines the localization map characterizing the environment. In the preferred embodiment, the parameters being mapped by the mapping module 136 include obstacles and clear spaces through which the robot system is free to navigate, as is explained in more detail below. Each of the anchor nodes is stored in node database 144 and the associated grid stored in the grid database 146. In the preferred embodiment, the mapping module includes an uncertainty tracking module 138 for measuring the uncertainty associated with the anchor nodes' localization estimate which is stored together with the anchor nodes' coordinates and heading in the global reference frame.


The processor 130 in the preferred embodiment further includes a navigation module 140 configured to generate signals that control the movement of the robot. For example, the navigation module can provide control signals to instruct the robot to move forward, to stop, to move backward, to turn, to rotate about a vertical axis. If the mobile robot system is an autonomous or semi-autonomous robot, the navigation module 140 can also perform path planning to efficiently guide the robot system to a desired destination and/or to achieve a desired goal. In accordance with the preferred embodiment, path planning is based on a parameter map that is generated from a plurality of parameter grids using current estimates of the poses of the anchors nodes corresponding to those grids.


The robot system 100 further includes a drive mechanism 150 for moving the robot around its environment, which may be indoors, outdoors, or a combination thereof. In the preferred embodiment, the drive mechanism includes two or more wheels drive wheels 152 powers by a motor 154 and battery pack 156, for example. In addition to, or instead of, the robot system may also incorporate other forms of locomotion including tracks, rollers, propellers, legs, and the like, to move around. The drive system may further include one or more optical wheel encoders 158, for example, for measuring the wheel rotation and estimating the distance traveled by the robot system. In addition, the difference in the rotation of opposing wheels can indicate changes in heading.


With wheel encoders 158 or other type of dead reckoning, the robot system can compute course and distance traveled from a previous position and orientation (pose) and use this information to estimate a current (pose). While relatively accurate over relatively short distances, dead reckoning sensing is prone to drift over time. Other forms of dead reckoning can include a pedometer (for walking robots), measurements from an inertial measurement unit, optical sensors such as those used in optical mouse devices, and the like.


In the preferred embodiment, the robot system 210 tracks its current location, path, or combination thereof with respect to a global reference frame represented by Cartesian (x-y) coordinates 250, as shown in FIG. 2. It will be understood that other coordinate systems, such as polar coordinates, can also be used. With respect to FIG. 2, a horizontal axis 252 corresponds to the x-axis and a vertical axis 254 corresponds to the y-axis. The origin 256 of the coordinate system may coincide with the robot's starting position, position or a prior anchor node, or other arbitrary location. The pose, including position and orientation, of the robotic system may be recorded in terms of the Cartesian coordinates and angle theta, θ.


By contrast, a grid in the preferred embodiment includes a map of local parameter data located relative to an anchor node in a local reference frame. As shown in FIG. 2B, properties of the environment in proximity to the anchor node are mapped to the grid 260 relative to the position of the anchor node A1. The grid 260 is therefore a local map describing the environment in the region around the anchor node. In the preferred embodiment, each grid includes a two dimensional Cartesian representation depicting the locations of obstacles (black cells) detect by the bump sensor 118 and open spaces (white cells) traversed by the robot (not to scale). In the preferred embodiment, an axis of the grid's Cartesian coordinate system coincides with robot's orientation anchor node, θ, which is generally different than the orientation of the x-axis 252 and y-axis 254 in the global reference frame. With respect to the global reference frame, an anchor node is typically a point along the path of the robot while navigating through the environment.


Although the grids in the preferred embodiment are shown as two dimensional (2D) Cartesian sub-maps, the grids may effectively record local parameter data using other reference systems including spherical and cylindrical coordinates systems for example. The parameter data is represented with pixels in a Cartesian coordinate system in the preferred embodiment. In alternative embodiments, grids may represent local parameter data as (1) pixels in a cylindrical coordinate system, (2) polygons with an arbitrary number of sides, or (3) other arbitrary shape, for example.


Referring to FIG. 3A, the robotic system 100 in the exemplary embodiment is configured to traverses a path through an environment. The path may be predetermined by the navigation module, determined ad hoc, or manually determined by a human driver or navigator, for example. While traversing the path, the localization module acquires image data with which it generates new landmarks and recognizes known landmarks for purposes of mapping the environment and locating the robotic system within the environment. The landmark information, in combination with the odometry information, enables the robotic system to make accurate estimates of the robot's location in the environment.


The robotic system generates a map of one or more parameters of interest in parallel with the location determination. In particular, the parameter mapping module senses properties of the environment and generates a parameter map depicting those properties. Referring to FIG. 3A, the mapping process begins by taking measurements of these properties and various locations or poses in the environment. The robot poses are represented as circles N1-N8 and the parameters observed at each of the respective poses is poses are represented as squares A-H. As one skilled in the art will appreciate, the parameter data would generally grow linearly in time as the robot continues to collect measurements. To limit the parameter to a manageable level, the robotic system in the present invention generates spatial summaries that effectively summarize parameter data is specific geographic locations. Referring to FIG. 3B, the robot system is configured to combine parameter readings for different poses if the relative uncertainty between those poses is small. For example, if Pose 1 and Pose 2 in FIG. 3A have a relative pose transformation with low uncertainty, Sensor Data B and C can be combined into one summary corresponding to Pose A1 shown in FIG. 3B. The pose associated with the summary of Sensor Data Band C is tied to one root poses referred to herein as an anchor node. The pose selected to be the anchor node may be the pose associated with Pose 2, Pose 3, or a new pose created from the combination of the Pose 2 and 3.


Successive poses, like Pose 2 and Pose 3, generally have a relatively low relative uncertainty (due to the accuracy of the dead reckoning sensors) and may, therefore be combined into a single summary in many cases. As the localization information generated by the location module improves over time, the uncertainty of the relative pose between anchor nodes of two summaries will decrease. When the relative pose between two anchor nodes becomes sufficiently certain—the relative uncertainty drops below a threshold—the summaries associated with multiple nodes may be combined into a single summary that is then associated with a single anchor node. As shown in FIG. 3C, the summary of Sensor Data B and C is combined with the summary of Sensor Data H and G to create a single new summary associated with the anchor node A1. Since the new summary effectively summarizes the sensor data in the region of Anchor A1, the summary including Sensor Data B, C, G, and H is referred to herein as a spatial summary. As illustrated in FIG. 4, multiple pairs of anchor node poses are compared. In the extreme, the pose for each anchor is compared to the pose for every other anchor node. If the uncertainty associated with the relative pose between the anchor nodes is below a threshold, the decision block is answered in the affirmative and the summaries (comprised of sensor data) for the anchor nodes are combined into a single summary associated with a single anchor node. If, however, the uncertainty exceeds the threshold, the pair of anchor nodes is not combined and new sensor data added to the grid associated with the current node. The “uncertainty” of relative poses between anchor nodes is, in the preferred embodiment, the sum of the diagonal elements of the covariance matrix of the relative pose estimate. In other embodiments, the method of measuring relative uncertainty includes generating a Mahalanobis distance, or like uncertainty estimating metric.


As described above, the parameter data from a plurality of grids may be merged in a single summary associated with a single anchor nodes based on the relative pose uncertainty. Other criteria may also be used when determining whether to combine grids. These criteria may include, but are not limited to: (a) whether the summary reduces the memory requirements, i.e., whether the number of anchor nodes and grids data is reduced; (b) whether the summary improves performance, i.e., whether the summary reduces the time needed to compute a complete parameter map; (c) whether the map quality improves, i.e., whether merging or eliminating relatively “old” and outdated maps while retaining relatively “newer” maps improves the accuracy of the parameter map; or (d) any combination thereof.


Illustrated in FIG. 5A is a robot path 500 and a plurality of corresponding nodes 510, and illustrated in FIG. 5B are the anchor nodes and associated grids that summarize the sensor data for the nodes 510 shown in FIG. 5A. Referring to FIG. 5A, the robot system collects sensor data while traverse a trajectory 500 through the environment. The sensor data, including obstacles, for example are associated with the pose of the robot at the time the sensor data was taken. Due to the volume of this data, however, the robotic system summarizes this data in the manner illustrated in FIG. 5B. Anchor nodes A1-A4 are shown in FIG. 5B as circles and the grids 520-523 shown as rectangles. In the preferred embodiment, the sensor data includes bump sensor data that indicates the presence of obstacles. Each grid, thus, depicts the locations of areas that are clear to traverse (shown as white cells) as well as obstacles or occupied areas (shown as black cells) in proximity to their respective anchor node.


In accordance with the preferred embodiment, the parameter mapping module 136 identifies nodes having a relative pose uncertainty below a threshold, combines the sensor data for these poses into a single grid, and associates the grid with a single anchor node. The parameter data from grids 520-523, for example, can be combined by overlaying the respective grids 520-523 as shown by the superposition 530 of grids. As one skilled in the art will appreciate, the plurality of grids may overlap in physical extent, possess different orientations in their respective local reference frames, and be of different sizes. Thereafter, data from the superposition 530 of grids may be combined into a single spatial summary associated with a new anchor node, for example. In the alternative, the superposition of spatial summaries may be used to build a global parameter map used to, for example, plan a new path for the robot through the environment. Exemplary parameter maps are shown and discussed in reference to FIGS. 7A and 7B.


Like FIG. 5A-5B, FIG. 6A-6B illustrates a robot path with corresponding nodes and anchor nodes with associated grids. As shown in FIG. 6A, the trajectory of the mobile robot has circled back on itself. In doing so, the robot traverses an area that it previously traversed earlier in its trajectory. As illustrated in FIG. 6B, by looping back, the robot is able to collect additional sensor data that can be used to update one or more previous grids and even modify sensor data used to populate the old version of the same grid. If the current pose of the robotic system is known with sufficient certainty relative to a prior pose, the anchor node associated with the prior pose is retrieved and the new sensor mapped to the grid associated with the prior anchor node.


For example, cells 520, 521 in the grid associated with anchor node Al and A2 show occupied areas (or unsearched areas) in FIG. 5B. In FIG. 6B, the same cells 650, 652 in corresponding grids 620, 621 for anchor A1 and A2 were updated to show those cells as “clear areas” after the robot traverses the same area a second time. Similarly, new parameter data from sensors 110 is used to introduce new cells 654 to grid 523 in FIG. 5B to create the updated and expanded grid 623 in FIG. 6B. In both examples above, new sensor data collected while looping back is added to a prior grid because the uncertainty associated with the initial pose and later pose was below the acceptable threshold. In doing so, the mapping module 136 effectively updates existing grids with new information without creating new anchor nodes or grids. The present invention, therefore, effectively enables the parameter map to be continually updated with new sensor data without the storage requirements for the sensor data growing linearly with time.


At any point in time, the grids may be combined to generate a complete parameter map of the entire environment or a portion of the environment for purposes of path planning, for example. A representative parameter map is shown in FIGS. 7A and 7B. In the preferred embodiment, the plurality of grids depicting the presences of obstacles are combined to form an occupancy map of “clear” areas (i.e., open areas free of obstacles) in FIG. 7A and an occupancy map of “obstacles” (e.g., walls that bound the open areas) in FIG. 7B. Grids—also known as summaries when merged—may be combined by overlaying the grids at their respective locations in the global reference frame. The location of each individual grid is defined by the most current estimate of the position and orientation of the respective anchor point. The position and pose of each anchor node, in turn, is regularly updated within the global reference frame as new SLAM data is received and the uncertainties associated with the pose estimates is reduced. The occupancy map shown in FIGS. 7A and 7B are rendered in two dimensions (2D). In other embodiments, the occupancy map or other parameter map may be rendered in three dimensions (3D) if the sensor data and corresponding grids include elevational information, for example.


Illustrated in FIG. 8 is a flow chart showing the method of localization and parameter mapping, in accordance with the preferred embodiment of the present invention. In the preferred embodiment, the location and parameter mapping occur concurrently or substantially concurrently while the robotic system navigates 802 through the environment. With respect to localization, the robotic system repeatedly acquires images of the environment with which it identifies 804 landmarks. As the robot traverses the environment, it generally acquires multiple images or other measurements of each landmark which enables it to determine 806 the locations of the landmarks in two dimension (2D) or three dimensional (3D) space. As the map of landmarks is constructed and refined, the robot is able to make increasingly accurate estimates of its current pose 808 as well as the pose associated with each of the anchor nodes 810. The localization system may update the estimated locations of the anchor nodes to generate an occupancy map, for example, in the global reference frame. If an occupancy map is required for path planning for example, the decision block 812 is answered in the affirmative and the updated estimates of the locations of the anchor nodes used to superimpose the associated grids and render 814 the grids into a cohesive map as shown in FIGS. 7A and 7B.


While the robotic system navigates 802 through the environment, it measures 816 local parameters using on-board sensors including the bump sensor. Using the estimate of the current pose, the parameter mapping module searches for and identifies 818 an existing anchor node having the lowest relative pose uncertainty with respect to the current node. The identified node may be the preceding node in the robot path, or a prior node that is closest in distance to the current node. If the relative pose uncertainty between the current node and a prior node is below a predetermined threshold, the decision block 820 is answered in the affirmative. In this case, the grid associated with the prior anchor node is selected 822 to be the current grid and incoming sensor data mapped 826 to this current grid. The uncertainty is determined from the covariance matrix describing the positional uncertainties associated with the localization using the visual SLAM module and odometry sensors, for example. If, however, the uncertainty exceeds the predetermined threshold, the decision block 820 is answered in the negative. In this case, a new anchor node is generated 824 and the incoming sensor data mapped 826 to a new grid associated with the new anchor node. The process of mapping 826 incoming parameter data continues while the uncertainty remains sufficiently low. Over relatively short distances, dead reckoning measurements, such as those obtained from odometry readings, can be quite accurate. As such, the uncertainty remains low and incoming sensor data generally used to populate the current parameter. New nodes tend to be generated after the robot has traveled some distance in a previously unexplored area. New anchor nodes 830 are recorded in the node database 144 and new and updated grids 828 recorded in the grid database 146.


On occasion, the parameter data from a plurality of local grids is merged 832 into one or more spatial summaries. As discussed in detail in FIG. 4, grids may be combined into spatial summaries if the uncertainty associated with the relative pose between the respective anchor nodes is below a threshold. The mapping module 136 periodically attempts to generate spatial summaries in response to any of a number of events or conditions including: (1) elapse time; (2) space covered by the mobile robot or area mapped by the mobile robot; (3) grid memory limitation; (4) total number of grids or anchor nodes; or combination thereof. Moreover, the process of rending a plurality of grids into a global parameter map may be repeated as necessary based on the conditions stated above.


The robotic system of the present invention can be implemented in systems include hardware, software, firmware, or a combination thereof. Hardware can include one or more general purpose computers, microprocessors, application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), and the like, as well as combinations thereof linked by networking systems, for example. Software may include computer-readable instructions for execution on various processors, computers, servers, or like circuit board or chips. The computer-readable instructions may be affixed in volatile or non-volatile memory including memory chips, hard drives, on compact discs, for example.


The present invention may also be implement in a plurality of platforms including a distributed platform including two or more network-enabled robots that cooperate with a remote central processing unit (CPU), for example, to collect landmark information from a relatively large environment. The CPU may include a personal computer, mobile phone, tablet computer, server, or like device that perform the computation of the processor 130. In some embodiments, the present invention is implemented with a fleet of robots that periodically exchange positioning information and parameter maps (either rendered a single map or as a collection of individual sub-maps) while traversing the environment so that each robot has information on all the parameters explored by other robots.


Although the description above contains many specifications, these should not be construed as limiting the scope of the invention but as merely providing illustrations of some of the presently preferred embodiments of this invention.


Therefore, the invention has been disclosed by way of example and not limitation, and reference should be made to the following claims to determine the scope of the present invention.

Claims
  • 1. A method of mapping an environment, the method comprising: receiving landmark information corresponding to an environment from at least one first robot;generating a first map of parameters that include the landmark information, wherein the first map of parameters are measured by the at least one first robot and are mapped to the first map relative to a first estimated pose of the at least one first robot;receiving a second map of parameters measured by at least one second robot different from the at least one first robot and mapped to the second map relative to a second estimated pose of the at least one second robot;determining an uncertainty value between the first estimated pose and the second estimated pose; andoperating the at least one first robot to traverse the environment based on a combination of the first map of parameters measured by the at least one first robot and the second map of parameters measured by the at least one second robot in response to the uncertainty value satisfying a condition.
  • 2. The method according to claim 1, wherein the first map of parameters is generated based on the at least one first robot performing operations comprising: estimating a first current pose of the at least one first robot in the environment based on the parameters measured by the at least one first robot, wherein the parameters measured by the at least one first robot include obstacles and clear spaces;defining a first local origin that represents an estimate of the first current pose; andgenerating the first map of the parameters measured by the at least one first robot, wherein the parameters measured by the at least one first robot are mapped relative to the first local origin.
  • 3. The method according to claim 2, wherein receiving the second map comprises receiving updated map information that is generated based on the parameters measured by the at least one second robot.
  • 4. The method according to claim 1, wherein receiving the second map comprises receiving a plurality of sub-maps from respective two or more robots, and further comprising generating a single map from the plurality of sub-maps.
  • 5. The method according to claim 1, further comprising: receiving positioning information corresponding to the at least one second robot.
  • 6. The method according to claim 1, further comprising: transmitting the landmark information or the first map to two or more robots other than the at least one first robot.
  • 7. The method according to claim 1, wherein receiving the second map comprises receiving respective landmark information or respective maps of parameters from two or more robots different from the at least one first robot.
  • 8. The method according to claim 1, wherein the landmark information comprises first landmark information corresponding to a portion of the environment traversed by the at least one first robot, and wherein the second map comprises second landmark information corresponding to a portion of the environment traversed by the at least one second robot.
  • 9. The method according to claim 8, wherein the first map comprises a first sub-map and the second map comprises a second sub-map, and further comprising: generating a global parameter map that includes data corresponding to the first sub-map and data corresponding to the second sub-map.
  • 10. The method according to claim 1, wherein the first map comprises a spatial summary including a combination of at least some of the parameters measured by the at least one first robot at different poses in the environment.
  • 11. The method according to claim 10, wherein the combination of the at least some of the parameters measured at the different poses is associated with a same anchor node, and wherein the same anchor node comprises one of the different poses or a new pose created by combining the different poses.
  • 12. The method according to claim 10, wherein the spatial summary is based on an uncertainty value between estimates of respective poses of the at least one first robot being below a threshold value.
  • 13. The method according to claim 1, wherein at least one of the first map or the second map comprises two-dimensional coordinates.
  • 14. The method according to claim 1, wherein at least one of the first map or the second map includes three-dimensional map data.
  • 15. The method according to claim 2, wherein estimating the first current pose of the at least one first robot based on the parameters measured by the at least one first robot is performed using sensor data corresponding to the obstacles and the clear spaces within the environment.
  • 16. The method according to claim 15, wherein data corresponding to the obstacles within the environment are detected by a bump sensor or a visual sensor.
  • 17. The method according to claim 2, further comprising: generating a spatial summary that is based on the first map and the second map, wherein the spatial summary is associated with a local origin that is different from the first local origin.
  • 18. A method of mapping an environment, the method comprising: receiving landmark information corresponding to an environment from a plurality of robots comprising first and second robots, wherein the landmark information comprises first landmark information for a first portion of the environment traversed by the first robot, and second landmark information for a second portion of the environment traversed by the second robot;transmitting a first map of parameters that include the first landmark information and that are measured by the first robot to the second robot, wherein the first map of parameters are mapped to the first map relative to a first estimated pose of the first robot;transmitting a second map of parameters that include the second landmark information and that are measured by the second robot to the first robot, wherein the second map of parameters are mapped to the second map relative to a second estimated pose of the second robot;determining an uncertainty value between the first estimated pose and the second estimated pose; andin response to the uncertainty value satisfying a condition, operating the first robot to traverse the environment based at least on the second map of parameters, or operating the second robot to traverse the environment based at least on the first map of parameters.
  • 19. The method according to claim 18, further comprising: transmitting, to the second robot, first positioning information corresponding to navigation of the first robot in the environment; andtransmitting, to the first robot, second positioning information corresponding to navigation of the second robot in the environment.
  • 20. The method according to claim 18, wherein the first map comprises a first sub-map and the second map comprises a second sub-map, and further comprising: generating a global parameter map that includes data corresponding to the first sub-map and data corresponding to the second sub-map,wherein transmitting the first map and transmitting the second map comprises transmitting the global parameter map to the first and second robots.
  • 21. The method of claim 1, wherein operating the at least one first robot to traverse the environment is based at least on the second map of parameters in response to the uncertainty value between the first and second estimated poses exceeding a threshold.
RELATED APPLICATIONS

This application is a divisional of U.S. patent application Ser. No. 15/225,158, filed Aug. 1, 2016, which is a continuation of U.S. patent application Ser. No. 14/944,152, filed Nov. 17, 2015, now U.S. Pat. No. 9,404,756, which is a continuation of U.S. patent application Ser. No. 14/307,402, filed on Jun. 17, 2014, now U.S. Pat. No. 9,218,003, which is a continuation of U.S. patent application Ser. No. 13/632,997, filed on Oct. 1, 2012, now U.S. Pat. No. 8,798,840, which claims the benefit of U.S. Provisional Application No. 61/541,749, filed on Sep. 30, 2011, the contents of which are hereby incorporated by reference in their entirety.

US Referenced Citations (199)
Number Name Date Kind
4628453 Kamejima et al. Dec 1986 A
4815840 Benayad-Cherif et al. Mar 1989 A
4846297 Field et al. Jul 1989 A
4942539 McGee et al. Jul 1990 A
4954962 Evans, Jr. et al. Sep 1990 A
5040116 Evans, Jr. et al. Aug 1991 A
5083257 Kennedy Jan 1992 A
5109425 Lawton Apr 1992 A
5111401 Everett, Jr. et al. May 1992 A
5144685 Nasar et al. Sep 1992 A
5155775 Brown Oct 1992 A
5170352 McTamaney et al. Dec 1992 A
5321614 Ashworth Jun 1994 A
5517419 Lanckton et al. May 1996 A
5525882 Asaka et al. Jun 1996 A
5525883 Avitzour Jun 1996 A
5581629 Hanna et al. Dec 1996 A
5677836 Bauer Oct 1997 A
5793934 Bauer Aug 1998 A
5911767 Garibotto et al. Jun 1999 A
5957984 Rencken Sep 1999 A
5961571 Gorr et al. Oct 1999 A
6005610 Pingali Dec 1999 A
6009359 El-Hakim et al. Dec 1999 A
6108597 Kirchner et al. Aug 2000 A
6243657 Tuck et al. Jun 2001 B1
6256581 Fujii et al. Jul 2001 B1
6266068 Kang et al. Jul 2001 B1
6269763 Woodland Aug 2001 B1
6285393 Shimoura et al. Sep 2001 B1
6288704 Flack et al. Sep 2001 B1
6299699 Porat et al. Oct 2001 B1
6301370 Steffens et al. Oct 2001 B1
6330858 McDonough et al. Dec 2001 B1
6427118 Suzuki Jul 2002 B1
6453223 Kelly et al. Sep 2002 B1
6459955 Bartsch et al. Oct 2002 B1
6463368 Feiten et al. Oct 2002 B1
6496754 Song et al. Dec 2002 B2
6516267 Cherveny et al. Feb 2003 B1
6552729 Di Bernardo et al. Apr 2003 B1
6711293 Lowe Mar 2004 B1
6728635 Hamada et al. Apr 2004 B2
6742613 Erlich et al. Jun 2004 B2
6766245 Padmanabhan Jul 2004 B2
6771932 Caminiti et al. Aug 2004 B2
6836701 McKee Dec 2004 B2
6856901 Han Feb 2005 B2
6898518 Padmanabhan May 2005 B2
6904360 Pechatnikov et al. Jun 2005 B2
6915008 Barman et al. Jul 2005 B2
6917855 Gonzalez-Banos Jul 2005 B2
6922632 Foxlin Jul 2005 B2
7015831 Karlsson et al. Mar 2006 B2
7031496 Shimano et al. Apr 2006 B2
7082350 Skoog Jul 2006 B2
7135992 Karlsson et al. Nov 2006 B2
7145478 Goncalves et al. Dec 2006 B2
7162056 Burl et al. Jan 2007 B2
7162338 Goncalves et al. Jan 2007 B2
7177737 Karlsson et al. Feb 2007 B2
7211980 Bruemmer et al. May 2007 B1
7225552 Kwon et al. Jun 2007 B2
7272467 Goncalves et al. Sep 2007 B2
7573403 Goncalves et al. Aug 2009 B2
7679532 Karlsson et al. Mar 2010 B2
7689321 Karlsson Mar 2010 B2
7720554 Dibernardo et al. May 2010 B2
7774158 Domingues Goncalves et al. Aug 2010 B2
7827643 Erlich et al. Nov 2010 B2
7912633 Dietsch et al. Mar 2011 B1
7996097 Dibernardo et al. Aug 2011 B2
8086419 Goncalves et al. Dec 2011 B2
8095336 Goncalves et al. Jan 2012 B2
8150650 Goncalves et al. Apr 2012 B2
8271132 Nielsen Sep 2012 B2
8274406 Karlsson et al. Sep 2012 B2
8295955 Dibernardo et al. Oct 2012 B2
8380350 Ozick et al. Feb 2013 B2
8396592 Jones et al. Mar 2013 B2
8412377 Casey et al. Apr 2013 B2
8428778 Landry et al. Apr 2013 B2
8452450 Dooley et al. May 2013 B2
8705893 Zhang Apr 2014 B1
8798840 Fong et al. Aug 2014 B2
8965578 Versteeg Feb 2015 B2
9080874 Haverinen Jul 2015 B2
9218003 Fong et al. Dec 2015 B2
9395190 Young Jul 2016 B1
9404756 Fong et al. Aug 2016 B2
9952053 Fong et al. Apr 2018 B2
10037028 Loianno Jul 2018 B2
10203209 Roumeliotis Feb 2019 B2
10203210 Tagawa Feb 2019 B1
10222211 Chen Mar 2019 B2
10584971 Askeland Mar 2020 B1
20020072848 Hamada et al. Jun 2002 A1
20020095239 Wallach et al. Jul 2002 A1
20030007682 Koshizen et al. Jan 2003 A1
20030025472 Jones et al. Feb 2003 A1
20030030398 Jacobs et al. Feb 2003 A1
20030044048 Zhang et al. Mar 2003 A1
20030204382 Julier Oct 2003 A1
20040073360 Foxlin Apr 2004 A1
20040122587 Kanemitsu Jun 2004 A1
20040167667 Goncalves et al. Aug 2004 A1
20040167669 Karlsson et al. Aug 2004 A1
20040167670 Goncalves et al. Aug 2004 A1
20040167688 Karlsson et al. Aug 2004 A1
20040167716 Goncalves et al. Aug 2004 A1
20040168148 Goncalves et al. Aug 2004 A1
20040249504 Gutmann et al. Dec 2004 A1
20050007057 Peless et al. Jan 2005 A1
20050010330 Abramson et al. Jan 2005 A1
20050182518 Karlsson Aug 2005 A1
20050213082 Dibernardo et al. Sep 2005 A1
20050234679 Karlsson Oct 2005 A1
20050238200 Gupta et al. Oct 2005 A1
20060012493 Karlsson et al. Jan 2006 A1
20060027404 Foxlin Feb 2006 A1
20060293809 Harwig et al. Dec 2006 A1
20070045018 Carter et al. Mar 2007 A1
20070090973 Karlsson et al. Apr 2007 A1
20070156286 Yamauchi Jul 2007 A1
20070179670 Chiappetta et al. Aug 2007 A1
20070244610 Ozick et al. Oct 2007 A1
20070262884 Goncalves et al. Nov 2007 A1
20070271011 Lee et al. Nov 2007 A1
20070293985 Myeong et al. Dec 2007 A1
20080009964 Bruemmer Jan 2008 A1
20080009970 Bruemmer Jan 2008 A1
20080012518 Yamamoto Jan 2008 A1
20080155768 Ziegler et al. Jul 2008 A1
20080273791 Lee et al. Nov 2008 A1
20080294338 Doh et al. Nov 2008 A1
20090024251 Myeong et al. Jan 2009 A1
20090055020 Jeong et al. Feb 2009 A1
20090081923 Dooley et al. Mar 2009 A1
20090093907 Masaki et al. Apr 2009 A1
20090234499 Nielsen Sep 2009 A1
20090281661 Dooley et al. Nov 2009 A1
20100020093 Stroila et al. Jan 2010 A1
20100040279 Yoon et al. Feb 2010 A1
20100049391 Nakano Feb 2010 A1
20100070078 Kong et al. Mar 2010 A1
20100198443 Yabushita et al. Aug 2010 A1
20100235033 Yamamoto et al. Sep 2010 A1
20100241289 Sandberg Sep 2010 A1
20100274387 Pitzer Oct 2010 A1
20100280754 Goncalves et al. Nov 2010 A1
20100284621 Goncalves et al. Nov 2010 A1
20100286905 Goncalves et al. Nov 2010 A1
20110010033 Asahara et al. Jan 2011 A1
20110082585 Sofman et al. Apr 2011 A1
20110125323 Gutmann et al. May 2011 A1
20110167574 Stout et al. Jul 2011 A1
20110178668 Tanaka et al. Jul 2011 A1
20110208745 Dietsch et al. Aug 2011 A1
20120022785 Dibernardo et al. Jan 2012 A1
20120029698 Myeong et al. Feb 2012 A1
20120089295 Ahn et al. Apr 2012 A1
20120106828 Yoon et al. May 2012 A1
20120121161 Eade et al. May 2012 A1
20120155775 Ahn Jun 2012 A1
20120213443 Shin et al. Aug 2012 A1
20120219207 Shin et al. Aug 2012 A1
20120230550 Kraut Sep 2012 A1
20120232795 Robertson et al. Sep 2012 A1
20120239191 Versteeg Sep 2012 A1
20130060382 Pitzer Mar 2013 A1
20130096885 Gupta Apr 2013 A1
20130216098 Hasegawa et al. Aug 2013 A1
20130245937 Dibernardo et al. Sep 2013 A1
20130332064 Funk Dec 2013 A1
20140005933 Fong et al. Jan 2014 A1
20140195148 Erignac Jul 2014 A1
20150163993 Pettersson Jun 2015 A1
20150261223 Fong et al. Sep 2015 A1
20150304634 Karvounis Oct 2015 A1
20150350378 Hertel et al. Dec 2015 A1
20160005229 Lee et al. Jan 2016 A1
20160025502 Lacaze Jan 2016 A1
20160069691 Fong et al. Mar 2016 A1
20160179830 Schmalstieg Jun 2016 A1
20170021497 Tseng Jan 2017 A1
20170023937 Loianno Jan 2017 A1
20170046868 Chernov Feb 2017 A1
20170052033 Fong et al. Feb 2017 A1
20180149753 Shin May 2018 A1
20180189565 Lukierski Jul 2018 A1
20180216942 Wang Aug 2018 A1
20190080463 Davison Mar 2019 A1
20190220011 Della Penna Jul 2019 A1
20190355173 Gao Nov 2019 A1
20200003901 Shroff Jan 2020 A1
20200069134 Ebrahimi Afrouzi Mar 2020 A1
20200109954 Li Apr 2020 A1
20200135014 De La Guardia Gonzalez Apr 2020 A1
20200142410 Liu May 2020 A1
Foreign Referenced Citations (31)
Number Date Country
2013327774 Oct 2014 AU
2013327774 May 2016 AU
2016202515 May 2016 AU
2016213835 Sep 2016 AU
2016202515 Nov 2017 AU
2016213835 Nov 2017 AU
2834932 Dec 2012 CA
2870381 Apr 2014 CA
2935223 Apr 2014 CA
2952355 Apr 2014 CA
2968561 Apr 2014 CA
2870381 Feb 2017 CA
2935223 Nov 2017 CA
2952355 Nov 2017 CA
2968561 Jul 2018 CA
0390052 Oct 1990 EP
2450762 May 2012 EP
2839399 Feb 2015 EP
3018603 May 2016 EP
3018603 Aug 2017 EP
H07271434 Oct 1995 JP
2003-166824 Jun 2003 JP
2004-199389 Jul 2004 JP
2007-525765 Sep 2007 JP
2008-032478 Feb 2008 JP
2010-108483 May 2010 JP
2011-039969 Feb 2011 JP
2011-108084 Jun 2011 JP
2011138502 Jul 2011 JP
2011052827 May 2011 WO
2014055278 Apr 2014 WO
Non-Patent Literature Citations (103)
Entry
“Australian Application Serial No. 2013327774, First Examination Report dated Feb. 3, 2016”, 2 pgs.
“Australian Application Serial No. 2013327774, Response filed Apr. 19, 2016 to First Examination Report dated Apr. 19, 2016”, 46 pgs.
“Australian Application Serial No. 2016202515, First Examination Report dated Mar. 10, 2017”, 2 pgs.
“Australian Application Serial No. 2016202515, Response filed Sep. 28, 2017 to First Examination Report dated Mar. 10, 2017”, 48 pgs.
“Australian Application Serial No. 2016213835, First Examination Report dated Dec. 9, 2016”, 4 pgs.
“Australian Application Serial No. 2016213835, Response filed Sep. 27, 2017 to First Examination Report dated Dec. 9, 2016”, 48 pgs.
“Canadian Application Serial No. 2,870,381, Response filed Jun. 4, 2016 to Office Action dated Jan. 11, 2016”, 12 pgs.
“Canadian Application Serial No. 2,935,223, Response filed Apr. 3, 2017 to Office Action dated Jan. 11, 2017”, 57 pgs.
“Canadian Application Serial No. 2,935,223, Response filed Dec. 19, 2016 to Office Action dated Oct. 12, 2016”, 57 pgs.
“Canadian Application Serial No. 2,952,355, Office Action dated Jan. 23, 2017”, 4 pgs.
“Canadian Application Serial No. 2,952,355, Response filed Apr. 3, 2017 to Office Action dated Jan. 23, 2017”, 54 pgs.
“Canadian Application Serial No. 2,968,561, Office Action dated Jun. 28, 2017”, 4 pgs.
“Canadian Application Serial No. 2,968,561, Office Action dated Sep. 29, 2017”, 3 pgs.
“Canadian Application Serial No. 2,968,561, Response filed Sep. 18, 2017 to Office Action dated Jun. 28, 2017”, 57 pgs.
“Canadian Application Serial No. 2,968,561, Response filed Dec. 4, 2017 to Office Action dated Sep. 29, 2017”, 37 pgs.
“Japanese Application Serial No. 2018-224469, Notification of Reasons for Refusal dated Nov. 5, 2019”, w/ English translation, 11 pgs.
Agrawal et al. “CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching” Lecture Notes in Computer Science, Computer Vision—ECCV 5305:102-115 (2008).
Bay et al. “Speeded-up Robust Features (SURF)” Computer Vision and Image Understanding 110(3):346-359 (2008).
Castellanos et al. “Multisensor Fusion for Simultaneous Localization and Map Building” IEEE Transactions on Robotics and Automation 17(6):908-914 (Dec. 2001).
Castle et al. “Video-rate localization in multiple maps for wearable augmented reality” 2008 12th IEEE International Symposium on Wearable Computers (pp. 15-22) (2008).
Circirelli et al. “Position Estimation for a Mobile Robot using Data Fusion” Proceedings of Tenth International Symposium on Intelligent Control (pp. 565-570)(May 1995).
Davison et al. “Monoslam: Real-time single camera slam” IEEE Transactions on Pattern Analysis and Machine Intelligence 29(6):1052-1067 (2007).
Davison, A. J. “Real-time simultaneous localisation and mapping with a single camera” Proc. 9th IEEE International Conference on Computer Vision (ICCV'03) 2:1403-1410 (Oct. 2003).
“Digiclops versatile digital camera” Point Grey Research, Retrieved from the Internet at URL: http://www.ptgrey.com/products/digiclops/digiclops.pdf (2 pages) (Retrieved on Sep. 23, 2003).
Dissanayake et al. “A Computationally Efficient Solution to the Simultaneous Localisation and Map Building (SLAM) Problem” Proceedings of the 2000 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1009-1014) (Apr. 2000).
Eade et al. “Monocular SLAM as a graph of coalesced observations” 2007 IEEE 11th International Conference on Computer Vision (pp. 1-8) (Oct. 2007).
Eade et al. “Unified Loop Closing and Recovery for Real Time Monocular Slam” Proc. British Machine Vision Conference (BM VC '08) (pp. 53-62) (Sep. 2008).
Faugeras et al. “Three Views: The trifocal geometry” Chapter 8 in the Geometry of Multiple Images (pp. 409-500) (2001).
Fischler et al. “Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography” Communications of the ACM 24(6):381-395 (Jun. 1981).
Fox et al. “Particle Filters for Mobile Robot Localization” Sequential Monte Carlo Methods in Practice (pp. 401-428) (2001).
Fox et al. “Markov Localization for mobile robots in dynamic environments” Journal of Artificial Intelligence Research 11:391-427 (1999).
Gaspar et al. “Vision-Based Navigation and Environmental Representation with an Omnidirectional Camera” IEEE Transactions on Robotics and Automation 16(6):890-898 (2000).
Goncalves et al. “A Visual Front-End for Simultaneous Localization and Mapping” Proceedings of the 2005 IEEE International Conference on Robotics and Automation pp. 44-49 (Apr. 2005).
Grisetti et al. “Online Constraint Network Optimization for Efficient Maximum Likelihood Map Learning” 2008 IEEE International Conference on Robotics and Automation (pp. 1880-1885) (May 2008).
Ila et al. “Vision-based Loop Closing for Delayed State Robot Mapping” Proceedings of the 2007 IEEE/RSJ International (pp. 3892-3897) (Oct. 2007).
International Search Report and Written Opinion for PCT Application No. PCT/US2011/053122 (dated Jan. 19, 2012).
International Search Report for PCT Application No. PCT/US03/39996 (dated Jun. 30, 2004).
International Search Report and Written Opinion for PCT Application No. PCT/US2013/061208 (dated Jan. 27, 2014).
Strom et al. “Occupancy Grid Rasterization in Large Environments for Teams of Robots” 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 4271-4276) (Sep. 2011).
Kalman, R.E. “A New Approach to Linear Filtering and Prediction Problems” Journal of Basic Engineering 82 (1):35-45 (Mar. 1960).
Karlsson et al. “The vSLAM Algorithm for Robust Localization and Mapping” Proceedings of the 2005 IEEE International Conference on Robotics and Automation (pp. 24-29) (Apr. 2005).
Klein et al. “Parallel tracking and mapping for small AR workspaces” 2007 6th IEEE and ACM International Symposium on Mixed and Augmented Reality (pp. 225-234) (2007).
Konolige et al. “Frame-frame matching for realtime consistent visual mapping” Proceedings 2007 IEEE International Conference on Robotics and Automation (pp. 2803-2810)(Apr. 2007).
Konolige, K. “SLAM via Variable Reduction from Constraint Maps” Proceedings of the 2005 IEEE International Conference on Robotics and Automation (pp. 667-672)(Apr. 2005).
Konolige et al. “View-Based Maps” Robotics: Science and Systems (pp. 1-14) (Jun. 2009).
Kretzschmar et al. “Lifelong Map Learning for Graph-based SLAM in Static Environments” Künstl Intell (3):199-206 (May 2010).
Lowe, D. G. “Distinctive image features from scale-invariant keypoints” International Journal of Computer Vision 60 (2):91-100 (2004).
Lowe, D. “Local Feature View Clustering for 3D Object Recognition” Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 682-688) (Dec. 2001).
Lowe, D. “Object Recognition from Local Scale-Invariant Features” Proceedings of the International Conference on Computer Vision (pp. 1150-1157) (Sep. 1999).
Matas et al. “Robust wide baseline stereo from maximally stable extremal regions” Proc. British Machine Vision Conference (BMVC '02) (pp. 384-393) (Sep. 2002).
Mikolajczyk et al. “A performance evaluation of local descriptors” IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10):1615-1630 (2005).
Montemerlo et al. “FastSLAM 2.0: an Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges” Proc. 18th International Joint Conference on Artificial Intelligence (IJCAI'03) (pp. 1-6) (Aug. 2003).
Montemerlo et al. “FastSLAM: A Factored Solution to the Simultaneous Localization and Mapping Problem” Proceedings of the American Association for Artificial Intelligence (AAAI) National conference on Artificial Intelligence (pp. 1-6) (2002).
Nister et al. “Scalable recognition with a vocabulary tree” P2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06) 2:2161-2168 (Jun. 2006).
Nister, D. “An Efficient Solution to the Five-Point Relative Pose Problem” IEEE Transactions on Pattern Analysis and Machine Intelligence 26(6):756-770 (Jun. 2004).
Roumeliotis et al. “Bayesian estimation and Kalman filtering: A unified framework for mobile robot localization” Proceedings of the IEEE International Conference on Robotics and Automation (ICRA) (pp. 2985-2992) (2000).
Se et al. “Local and Global Localization for Mobile Robots using Visual Landmarks” Proceedings of the 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 414-420) (2001).
Se et al. “Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks” The International Journal of Robotics Research 21(8):735-758 (Aug. 2002).
Se et al. “Vision-based Mobile Robot Localization and Mapping using Scale-Invariant Features” Proceedings of IEEE International Conference on Robotics and Automation (ICRA 2001) (pp. 2051-2058) (May 2001).
Shewchuk, J. R. “An Introduction to the Conjugate Gradient Method without the agonizing pain” Technical report (pp. 1-64) (1994).
Sivic et al. “Video Google: A text retrieval approach to object matching in videos” In Proc. 9th IEEE International Conference on Computer Vision (ICCV'03) (pp. 1470-1477) (Oct. 2003).
Stella et al. “Position Estimation for a Mobile Robot using Data Fusion” Proceedings of Tenth International Symposium on Intelligent Control (pp. 565-570) (May 1995).
Thrun et al. “Multi-Robot SLAM With Sparce Extended Information Filers” Robotics Research, Springer Tracts in Advanced Robotics 15: 1-12 (2005).
Thrun et al. “The GraphSLAM Algorithm with Applications to Large-scale Mapping of Urban Structures” International Journal on Robotics Research 25(5/6):403-430 (2005).
Thrun et al. “A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots” Machine Learning 31(1-3):29-53 (1998).
Thrun, S. “Probabilistic Algorithms in Robotics” Technical Report, CMU-CS-00-126, Carnegie Mellon University (pp. 1-18) (Apr. 2000).
“International Application Serial No. PCT US2013 061208, International Preliminary Report on Patentability dated Apr. 16, 2015”, 8 pgs.
“U.S. Appl. No. 13/632,997, Notice of Allowance dated Mar. 20, 2014”, 7 pgs.
“U.S. Appl. No. 13/632,997, 312 Amendment filed Apr. 17, 2014”, 5 pgs.
“U.S. Appl. No. 13/632,997, PTO Response to Rule 312 Communication dated Jun. 24, 2014”, 2 pgs.
“European Application Serial No. 13843954.2, Partial Supplementary European Search Report dated Oct. 29, 2015”, 6 pgs.
“European Application Serial No. 13843954.2, Extended European Search Report dated May 19, 2016”, 11 pgs.
“European Application Serial No. 13843954.2, Response filed Dec. 5, 2016 to Extended European Search Report dated May 19, 2016”, 10 pgs.
“European Application Serial No. 13843954.2, Response filed Oct. 19, 2018 to Communication Pursuant to Article 94(3) EPC dated Jun. 20, 2018”, 49 pgs.
“European Application Serial No. 15200594.8, Response filed Apr. 22, 2016 to Extended European Search Report dated Apr. 12, 2016”, 17 pgs.
“U.S. Appl. No. 14/307,402, Non Final Office Action dated Apr. 10, 2015”, 9 pgs.
“U.S. Appl. No. 14/307,402, Response filed Jun. 30, 2015 to Non Final Office Action dated Apr. 10, 2015”, 3 pgs.
“U.S. Appl. No. 14/307,402, Notice of Allowance dated Aug. 18, 2015”, 5 pgs.
“U.S. Appl. No. 14/944,152, Notice of Allowance dated Apr. 6, 2016”, 12 pgs.
“U.S. Appl. No. 14/944,152, Notice of Allowance dated Jun. 6, 2016”, 2 pgs.
“U.S. Appl. No. 15/225,158, Preliminary Amendment filed Dec. 6, 2016”, 6 pgs.
“U.S. Appl. No. 15/225,158, Non Final Office Action dated Jun. 27, 2017”, 16 pgs.
“U.S. Appl. No. 15/225,158, Response filed Sep. 26, 2017 to Non Final Office Action dated Jun. 27, 2017”, 7 pgs.
“U.S. Appl. No. 15/225,158, Notice of Allowance dated Dec. 15, 2017”, 6 pgs.
“Canadian Application Serial No. 2,870,381, Office Action dated Jan. 11, 2016”, 5 pgs.
Lowe, D.G, “Distinctive Image Features from Scale-Invariant Keypoints”, International Journal of Computer Vision, 60(2), (2004), 91-110.
Thrun, S. “Robotic Mapping: A Survey” Technical Report, CMU-CS-02-111, Carnegie Mellon University (pp. 1-29) (Feb. 2000).
Triggs et al. “Bundle adjustment—A Modern Synthesis” International Workshop on Vision Algorithms 1883:298-372 (Sep. 2000).
Williams et al. “An image-to-map loop closing method for monocular slam” 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 2053-2059) (Sep. 2008).
Wolf et al. “Robust Vision-based Localization for Mobile Robots Using an Image Retrieval System Based on Invariant Features” Proceedings of the 2002 IEEE International Conference on Robotics and Automation (pp. 359-363) (May 2002).
Adam et al. “Fusion of Fixation and Odemetry for Vehicle Navigation” IEEE 29(6):593-603 (1999).
European Office Action Corresponding to European Patent Application No. 13843954.2 (8 Pages) (dated Jun. 20, 2018).
Examiner's Report Corresponding to Canadian Patent Application No. 2,935,223 (4 pages) (dated Oct. 12, 2016).
Australian Office Action Corresponding to Patent Application No. 2016213835 (4 Pages) (dated Dec. 9, 2016).
Canadian Office Action Corresponding to Canadian Patent Application No. 2,935,223 (5 Pages) (dated Jan. 11, 2017).
Milford et al. “Hybrid robot control and SLAM for persistent navigation and mapping” Robotics and Autonomous Systems 58(9):1096-1104 (Sep. 30, 2010).
Urdiales et al. “Hierarchical planning in a mobile robot for map learning and navigation” Autonomous robotic systems, Retrieved from the Internet at URL http://webpersonal.uma.es/˜EPEREZ/files/ARS03.pdf (Jan. 2003).
Yamauchi B. “Frontier-Based Exploration Using Multiple Robots” Proceedings of the Second International Conference on Autonomous Agents, Retrieved from the internet at URL https://pdfs.semanticscholar.org/ace4/428762424373c0986c80c92be6321ff523e4.pdf (May 2008).
Youngblood et al. “A Framework for Autonomous Mobile Robot Exploration and Map Learning through the use of Place-Centric Occupancy Grids” ICML Workshop on Machine Learning of Spatial Knowledge Retrieved from the internet at URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.27.2188&rep=rep1&type=pdf (2000).
Canadian Office Action corresponding to Canadian Patent Application No. 2,935,223 (4 pages) (dated Jun. 28, 2017).
European Search Report corresponding to European Application No. 15200594.8 (6 pages) (dated Mar. 23, 2016).
Japanese Office Action corresponding to Japanese Patent Application No. 2015-517500 (Foreign text 3 pages; English translation thereof 3 pages) (dated Oct. 27, 2015).
Nagao et al. “Social Annotation to Indoor 30 Maps Generated Automatically” 2012 Information Processing Society of Japan 2012-DCC-1(12):1-8 (2012).
Related Publications (1)
Number Date Country
20180299275 A1 Oct 2018 US
Provisional Applications (1)
Number Date Country
61541749 Sep 2011 US
Divisions (1)
Number Date Country
Parent 15225158 Aug 2016 US
Child 15921085 US
Continuations (3)
Number Date Country
Parent 14944152 Nov 2015 US
Child 15225158 US
Parent 14307402 Jun 2014 US
Child 14944152 US
Parent 13632997 Oct 2012 US
Child 14307402 US