According to reports by the Center for Disease Control in 1990 no state had obesity prevalence equal to or greater than 15% (BMI) level. By 2009, only one State in the US remained below the 20% obesity level. In contrast, during that same year Americans spent an estimated $46 billion on diet products and self-help books. As the extent and severity of obesity grows in the United States, clearly another approach seems to be warranted. The current paradigm of weight loss thinking is focused on nutrition-exercise balance while thermodynamic factors, although critically important, are not even contemplated by current medical and diet industry.
It is well known that in homeotherms,1 such as mammals and birds, a lifetime average temperature of 36-40° C. is maintained, but they live in an environment with average temperatures much lower. Most metabolic processes produce excess waste heat and this is used to maintain a core body temperature within +/−2° C. of individual set points. The described technology herein is directed toward a system for thermodynamically extracting heat from a person, which induces a corresponding increase in metabolism to maintain homeostasis.2 The technology is able to extract heat energy from a user without discomfort, disruption of sleep or otherwise 1 An organism that maintains its body temperature at a constant level, usually above that of the environment, by its metabolic activity.2 The property of a system to regulate itself so that internal conditions remain generally constant. interfering with quality of life. In so doing, excess body mass can be reduced.
Similar efforts in the prior art include thermal blankets, liquid filled thermal vests, exercising in cool pools of water, space suit thermal control systems and other technology solutions. However, none have the ability to measure and adapt to a subject's comfort level or metabolic response while actively maximizing the calories consumed. Indeed, most cooling system devices fail because the subject's body adapts to the new environment and negates the desired benefits. For example, U.S. Pat. No. 4,718,429, to Smidt, have proposed cooling garments for fat loss, but no specificity is given on how to prevent the body's evolutionary survival instincts from reducing core temperatures to save energy on repeated cold or chilled exposure.
While there have been other attempts to cool the body in response to hyperthermia, in the treatment of central nervous system emergencies, surgical assistance, and even weight loss including Smidt, few have satisfactorily addressed the issues relating to responsive issues of hormesis3 and the complex non-linear response in the evolutionary drive to overall energy homeostasis. As such, prior devices designed towards weight loss through vest undergarments, cooling pads, hand mittens, etc. lack a core technology presented here. It is well known that the human body is extremely adaptive in nature and this evolutionary survival mechanism accounts for our ability to live in a wide range of thermal environments. Some of these adaptations are the ability to adjust our layers with clothing when appropriate. Still others involve building structures that can control the environment around us. These are obvious and easily recognizable adaptations to various external thermal conditions.
What is not as visible, or well understood, is the human body's ability to adapt at the metabolic level. Through a strong adaptive response 3 A generally favorable biological response to stressors, such as toxins, physical exertion, or thermal loads. to various external stimuli, the body can choose to habituate through regionally shunting blood flow and other mechanisms, essentially ignoring the external stimulus, or it can adapt by changing the resting metabolic rate. The latter adaptation can come in the form of an elevated heat production through central nervous system stimulation or through an equal suppression of average core body temperature. The body has the ability through regular exposure to respond in either one of these manners. Reducing the core temperature by a degree or two has been demonstrated in several different cultures of deep-sea free divers and natives that sleep uncovered at low temperature. Unfortunately, this type of adaptive response leads to lower resting metabolic rate requirements that limit long-term weight loss.
It is known that sirtuins function to maintain homeostasis and secure an organism's survival when exposed to internal and/or external perturbations. SIRT1, in particular, is a key regulator of energy homeostasis and energy metabolism via the deacetylation of PGC-1α, a transcriptional co-activator. SIRT1 and PGC-1α are critical mediators of mitochondrial biogenesis and may be responsible for many of the health benefits of exercise. Interestingly, the other main function of PGC-1α is another survival trait, non-shivering thermogenesis, during which individual mitochondrion are able to bypass ATP production and instead create heat through the activation of uncoupling protein, UCP-1. This is a very efficient mechanism to replace the immediate response to cold, shivering, which leads to exhaustion and potential muscle damage, with a mechanism that produces heat directly through the recruitment of mitochondria.
Consequently, when the body is exposed to lower temperatures, it also has the ability to maintain core temperature and thereby increase metabolic output to match increased losses to the exposed external temperature. This desired increase in metabolic output can lead to increased daily caloric requirement. When combined with a fixed caloric intake, this leads to caloric deficit and subsequent weight loss.
In order to overcome the body's natural adaptive mechanisms to a cold challenge, a novel approach involving a dynamic, closed-feedback system is required to maximize thermogenic caloric expenditure while at the same time no becoming physically uncomfortable, impacting the quality of one's sleep or being nullified by physiologic habituation.
At the same time, our current society is also one that is chronically sleep deprived. Links between sleep and metabolic dysfunction can be found in early Roman medicine, and too little sleep has more recently been associated with obesity and type 2 diabetes, as well as stroke, coronary heart disease, hypertension, respiratory disorders, and poor self-rated health. Early observations ranging from Australian aborigines to the cold climate of the Scandinavian Nomadic Lapps demonstrate how adaptable humans are to mild cold stress during sleep. Adaptation also occurs for non-native inhabitants after repeated cold stress exposure. Furthermore, until the 20th century, winter was characterized by long nights without artificial light and generally cooler sleeping conditions.
Much of the same biology that allows winter adaptation for cooler environments, including sleep, overlap the underlying metabolic mechanisms involved in adaptations to caloric scarcity. Increased sleep in cool environments and long nights of winter in the absence of excess artificial light and warmth may also work synergistically on our metabolism, promoting the conservation of valuable calories in a time of year when they are naturally scarce. Furthermore, melatonin, a hormone associated with sleep synthesized by the pineal gland from serotonin, induces the body to sleep by lowering core body temperature. In fact, a steep rate of decline in core body temperature is associated with both the onset and quality of sleep.
In contrast, reduced sleep appears to lead to impaired glucose tolerance and increased insulin resistance, increased appetite through changes in leptin and ghrelin levels, and reduced energy expenditure. One might conceptually associate winter's cold, dark, and still environment as a natural balance to summer's warm, bright and active environment. Moreover, the social norms of heavy blanketing began in times when bedrooms were rarely heated. Very few of us now sleep in the cold, and studies have even shown an association between weight gain and average room temperature.
These ritual habits in sleeping condition aren't changed easily. For example, many people have the desire to enter a warm bed, even though a slight drop in body temperature is required for sleep. However, people generally rest and sleep more soundly in a cooler environment. The system described below may be configured to create both a warm environment for going to sleep or waking, but rapidly change to a cooler state once the onset of sleep is detected.
Accordingly, the system set forth below provides a therapeutic application of a thermal load to increase metabolism, but solves the problem of the body's natural adaptation responses to such thermal load. In addition, the system may be adapted to improve sleep quality.
The present invention is described with reference to the accompanying drawings. In the drawings, like reference numbers indicate identical or functionally similar elements. Additionally, the left-most digit(s) of a reference number identifies the drawing in which the reference number first appears.
The various embodiments of the present invention and their advantages are best understood by referring to
Furthermore, reference in the specification to “an embodiment,” “one embodiment,” “various embodiments,” or any variant thereof means that a particular feature or aspect of the invention described in conjunction with the particular embodiment is included in at least one embodiment of the present invention. Thus, the appearance of the phrases “in one embodiment,” “in another embodiment,” or variations thereof in various places throughout the specification are not necessarily all referring to its respective embodiment.
It is proposed in the present disclosure that the randomization of warm and cool exposure during various sleep states, or while seated at one's desk at work, can effectively mitigate lower body temperature adaptation and advantageously place the body in a state of increased resting metabolic rate. Additionally, and of equal importance, modification of the user's thermal environment can be applied in a manner to encourage sound sleep, improve sleep quality, and maximize comfort. Due to the rapid, automated adaptability of the proposed technology additional benefits are achieved such as the ability to actively mitigate hot flashes brought on during menopause or induced by medications, provide comfort during febrile illness, aid in the ability to increase effectiveness of metabolic drug therapies, and the ability to stimulate human sirtuin levels to increase life span.
Additionally, the device can be used while awake to enhance alertness and increase caloric consumption leading to better weight loss gains while exercising, sitting at your desk, or performing other tasks. In sum, our Adaptive Thermodynamic Therapy System is a closed-loop cooling system that monitors and adapts to one's unique physiology, accelerating metabolism and thus adipose weight reduction. This is accomplished by means of a uniquely adaptive control system with integrated hardware and software as described in this disclosure.
Each person will have a unique signature of sleeping patterns, REM and NREM4, along with a similar unique lower temperature level comfort of sleeping. By employing adaptive systems, an individual plan can be learned from the user's sleeping habits and the maximum amount of caloric energy can be withdrawn during each sleep session. This approach is completely unique as no other system can adaptively learn or is aimed at overcoming the evolutionary limits of habituation and adaptation.
Similar arguments can be made for exercise systems in an aqueous environment. Water has over a twenty-fold increase of thermal conductivity than air. As such, a person submerged in a water bath that is thermally controlled using the same adaptive system approach can be fine-tuned to minimize adaptation and maximize participant comfort and thermal loading. This system, combined with physical exertion, can lead to an increased caloric deficit of the body relative to the exercise alone.
With these concepts in mind and with reference now to
In addition, the controller 101 preferably receives data 108 from a sleep monitoring system 109 that monitors quality and sleep state of the user. Sleep state monitoring systems are available commercially as smartphone applications, for example, the Zeo™ Sleep Manager, offered by Zeo, Inc., and Up, offered by Jawbone®. Another source of input is user data 117, which may comprise body composition data 123 (e.g., weight, height, body mass index (BMI), body fat percentage, among other data), body vital measurements 125 e.g., pulse, respiratory rate, VO2, temperature, thermal transfer rates, motion monitoring accelerometers and other biometric information. In addition, exhaled ppO2 and ppCO2 nasal sensors could also be employed as an input to this closed-feedback loop system. The system may also obtain manually entered subjective assessment data 127 (e.g., quality of sleep, physical sensation, etc.), input by the user through any suitably configured computer-based device, including a desktop or laptop personal computer, or a smartphone or worn computer.
Control functions performed by the processor 101 may include adjustment of light, sound and atmospheric temperature within the user's environment by coupling command signals to light and sound controls 105, and temperature controls 107. A white noise generator might also be employed to blunt environmental noise if detected above a predetermined threshold.
The illustrated embodiment 100 also includes a thermal load device 111 that is essentially a heat exchange apparatus in thermally conductive contact with a user body. As illustrated in
Optionally, control processor 101 may be in communication with a distributed data network 121 (e.g., LAN, WAN, Internet, or the like) via a network server 119. In this way, user data may be transmitted to a network informational site for system performance tracking, data mining, and control optimization across multiple users. Moreover, the information site may comprise a user forum for obtaining user feedback, sleep analysis, and exchanging user information. In addition, control processor 101 may be configured to retrieve data from an identified user, or multiple users to define or adjust temperature profiles to meet user's unique goals, desires, and comfort. Anonymized data can also be collected and archived from a large number of users for later analysis and improvement of the control algorithm. Additionally, multiple users can also share their results in an online community, sharing experiences, competing for best results and providing mutual encouragement. (“gamification” and social media integration)
Another exemplary embodiment is illustrated in
The chamber 201 is configured with temperature adjustment control 205 with a temperature sensor 207 that measures the temperature within the chamber 201. A temperature data signal 208 is provided to the control processor 101 which is configured with control logic to compare the temperature data 208 to a pre-defined threshold, which may be defined as part of a timed profile or in response to changes in the user's body temperature, and determines whether to issue a control signal 210 to adjust the temperature to maintain profile temperature.
Similarly,
The control processor 101, as will be appreciated by those skilled in the arts, may be one or more computer-based processors 101. Such a processor may be implemented by a field programmable gated array (FPGA), application specific integrated chip (ASIC), programmable circuit board (PCB), other suitable integrated chip (IC) device or other suitable electronic monitoring and control circuits.
With reference to
Control logic 422 (also called control logic 422 or software) is stored in the main memory 405 and/or secondary memory 407. Control logic 422 can also be received via the communications bus 403 from an input device 407. The control logic 422 allows for adaptive learning relative to a given user; the cool exposure planning algorithm is iterative, based on REM sleep duration, overall sleep quality metrics, fatigue assessments and trends in weight loss. Such control logic 422, when executed, enable the processor to perform certain features as discussed herein.
A processor 101 may advantageously contain control logic 422 or other substrate configuration representing data and instructions, which cause the processor 101 to operate in a specific and predefined manner as, described hereinabove. The control logic 422 may advantageously be implemented as one or more modules. The modules may advantageously be configured to reside on the processor memory and execute on the one or more processors. The modules include, but are not limited to, software or hardware components that perform certain tasks. Thus, a module may include, by way of example, components, such as, software components, processes, functions, subroutines, procedures, attributes, class components, task components, object-oriented software components, segments of program code, drivers, firmware, micro-code, circuitry, data, and the like. In programmable logic circuits, such as FPGAs, ASICs, Neural Net chips, etc., control logic can be partially or fully hardwired into functional circuits. Control logic 422 may be installed on the memory using a computer interface 411 couple to the communication bus 403 which may be any suitable input/output device. The computer interface 411 may also be configured to allow a user to vary the control logic 422, either according to pre-configured variations or customizably.
In addition, the processor 101 may include a network interface 409. Thus, control logic 422 may further be transmitted or received over a network 520 via the network interface device 508.
It should also be understood that the programs, modules, processes, methods, and the like, described herein are but an exemplary implementation and are not related, or limited, to any particular processor, apparatus, or processor language. Rather, various types of general purpose computing machines or devices may be used with programs constructed in accordance with the teachings described herein. Similarly, it may prove advantageous to construct a specialized apparatus to perform the method steps described herein by way of dedicated processor systems with hardwired logic or programs stored in nonvolatile memory, such as, by way of example, read-only memory (ROM), for example, components such as ASICs, FPGAs, PCBs, microcontrollers, or multi-chip modules (MCMs). Implementation of the hardware state machine so as to perform the functions described herein will be apparent to persons skilled in the relevant art(s).
Exemplary user environment data 515 includes room temperature, outside weather data and user activity such as exercise or housework. Temperature and weather data may be obtained from environmental sensors having connections to a network, including a local network, or the Internet. Activity data may be manually entered or may be obtained from a wearable device that records the user's movements, e.g., an activity bracelet or other worn accelerometers. Non-limiting examples of suitable activity-recording bracelets may be found in products such as Jawbone® UP™, Nike+Fuelband®, Fitbit®, and Amiigo™. Activity may also be monitored via video monitoring. In addition, a smart phone may be configured with an application for recording the data, either manually entered by the user or through networked connection with appropriate sensors, and transmitting the data 520 to the adaptive controller 501.
Similarly, data representing the user's food intake 513 may be manually entered via any computer with an appropriate user interface, e.g., a smart phone configured with a suitable application, and may record such data as macro- and micro-nutrient information and calories, including any dietary supplements. Such data may be provided by integrating data from meal plans that list the nutritional information of food consumed according to such a plan.
Manually entered medical therapy data 511 may include, prescription and non-prescription drugs, hormone therapy, brown adipose tissue manipulation, and any other stimulants, depressants or sedatives. Other variables such as weight, resting heart rate, blood pressure, physical exercise performed, etc. may also be manually entered.
Sleep quality data 509 measures the duration of a user's sleep period, whether the user's sleep is light or deep, the number of times a user may wake during sleep periods, the degree of user bodily activity during sleep as well as the user's basal metabolic rate. Additionally, these data could include the degree of body temperature change during sleep. These data would necessarily need to be obtained through a variety of sensors with which a bed is equipped. Such sensors include, for example, temperature sensors, accelerometers, ambient light, ambient sound, and O2 and CO2 sensors. The latter sensors may also be used to provide direct metabolic measurement data 507, which includes, for example, CO2 produced, O2 consumed, and from which a respiratory quotient may be derived along with the user's resting metabolic rate and resting energy expended. In addition, an embodiment of the system could be configured to measure the user's rapid-eye-movement (REM) sleep. Methods for measuring REM sleep include, in addition to measuring body movement via the afore-mentioned accelerometers, electroencephalography, polysomnography, and eye movement monitors. Smart phone applications listed above may also be employed to help register REM sleep periods. Post-sleep alertness testing on smart phone applications could also be used as an independent assessment of overall sleep quality and wakefulness. Such applications are now commercially available, but their output would be fed back into the system's control algorithm.
The last data category, physiological biomarker data 505, comprises blood pressure data, blood glucose data, cholesterol levels, hemoglobin A1C data, user body fat, body and skin temperature, perspiration, heart rate, respiratory rate, skin conductance and oxygen saturation. Such data may be manually entered or obtained automatically through appropriate sensors. Other transcutaneous, blood and saliva-based biomarkers of sleep, wakefulness and hormonal control might eventually be measured and fed into the control system.
With reference now to
In essence, the system is configured to manipulate the user's physiological response to a cold load in order to affect one or more of the user's dimensions, i.e., improve sleep quality, stimulate weight loss/increase metabolism, mitigate menopausal hot flashes, treat or palliate febrile illness, improve health, increase life span, increase alertness, and/or increase the amount of user brown adipose tissue. The true advantage of this system and technique relates to the human body's tendency to adapt to its environment. For example, the user's body may come to tolerate the temperature and timing the cold stress application reducing the effectiveness of the therapy. However, since the system constantly measures the user's multi-dimensional state versus the user's physiological ideal state, if the current state is still outside the ideal state, the system will change the timing and/or the temperature rate of the cold stress application, tricking the body's response system.
Further, the system may be configured to energize the cold stress application device randomly, thereby reducing the likelihood that a user's body will adapt to timing of cold stress application. The adaptive controller 501 is preferably configured to be responsive to the various sensors listed above, and monitor the user's body temperature responses to cold stress for subtle changes in fractions of degrees. When the body core temperature starts adjusting, i.e., decreasing in cold response, the control system warms the body. Any time the body starts such adaptation, the control system modifies conditions to counter the body response. Once somewhat steady state results are reached, the adaptive controller 501 may be configured to randomly and temporarily alter different parameters such as cool down rate, final cold temp, time at given temperature, warm-up rate, light, sound, etc., and to monitor for additional benefits. If the body responds in a desired way to a given stimuli, this stimuli will be added into the control algorithm as long as it provides beneficial responses.
In a variant embodiment, regional variation in cold and warm thermal application might be used to maximize thermogenic caloric expenditure while minimizing blood shunting, sleep disruption and whole body thermal discomfort. This could be accomplished by use of multiple, independently controlled thermal application pads, e.g., pads in thermal contact with the scalp, torso, abdomen, and extremities.
In yet another embodiment, adaptive controllers 501 for a plurality of users may be configured to share data collected from respective users through access to the data network 121. As such, data findings may be shared with other user adaptive controllers 501 to monitor, test, and induce the desired beneficial body responses of other users. In this way, a given individual or common cluster group can be continually probed for additional stimuli that may help them move to a more desirable state. The methods employed to create the random stimulus are statistically based and applied to groups via genetic algorithm manipulation. The individual and group responses are evaluated by artificial intelligence (neural nets, fuzzy logic, etc.) and statistical methods to determine stimulus modification reactions and to strengthen desired stimulus while eliminating or weakening stimulus that doesn't help a given user reach their desired goal. Each user will have a customized, unique control algorithm at any given time as created by artificial intelligence algorithms.
With reference again to
Further, a bed 901, pillow 921 and/or blanket 907 as the thermal load in this system may provide additional therapeutic benefits toward a user's sleep quality. It is well-known that there is a relationship between body temperature and sleep state. Body temperature decreases during synchronized, slow wave sleep (SSWS), or non-rapid eye movement (NREM) sleep, and increases during periods of desynchronized, paradoxical sleep, or rapid eye movement (REM) sleep. Moreover, sleep studies indicate that optimal environmental temperature for sleep is around 60 to 68° F. Most users, however, would prefer to enter a warm bed prior to sleep.
Therefore, according to an embodiment of the present system, the control processor 101 may regulate a cooling bed 901 or blanket 907 such that the user gets into bed when the bed/blankets are at a user-preferred temperature that may be pre-set by the user. During REM sleep, as indicated by sleep quality data, bed temperature will be held at the pre-set value or at some average temperature. Then, when the control processor detects user sleep quality data 509 indicating the user is entering NREM sleep, the control processor 101 may initiate a decrease in the bed temperature. Bed/blanket temperature may be modulated throughout the sleep period based upon data indicating the user's entry into different sleep phases. When the sleep quality data 509 indicates the user is about to awaken, the control processor 101 may be configured to initiate an increase in bed temperature to assist in the waking process. Alternatively, the control processor may be configured to modulate the bed/blanket temperature based simply on time, for example, cooling the user after some period of time and then warming some period of time prior to waking. Thus, the system may help a user fall asleep, improve quality of his or her sleep, and help the user wake by monitoring sleep stages and adjusting thermal environment to optimal levels during each sleep stage.
In accordance with another exemplary embodiment of the system,
As described above and shown in the associated drawings, the present invention comprises an adaptive thermodynamic therapy system and method. While particular embodiments have been described, it will be understood, however, that any embodied invention is not limited thereto, since modifications may be made by those skilled in the art, particularly in light of the foregoing teachings. It is, therefore, contemplated by the appended claims to cover any such modifications that incorporate those features or those improvements that embody the spirit and scope of the system.
This application claims priority to U.S. Provisional Application Ser. No. 61/802,992, entitled “Adaptive Thermodynamic Therapy System,” filed Mar. 18, 2013, and which is incorporated by reference as if fully set forth herein.
Number | Date | Country | |
---|---|---|---|
61802992 | Mar 2013 | US |