Adder-rounder circuitry for specialized processing block in programmable logic device

Information

  • Patent Grant
  • 7822799
  • Patent Number
    7,822,799
  • Date Filed
    Monday, June 26, 2006
    18 years ago
  • Date Issued
    Tuesday, October 26, 2010
    14 years ago
Abstract
Adder/rounder circuitry for use in a programmable logic device computes a rounded sum quickly, and ideally within one clock cycle. The rounding position is selectable within a range of bit positions. In an input stage, for each bit position in that range, bits from both addends and a rounding bit are processed, while for each bit position outside that range only bits from both addends are processed. The input stage processing aligns its output in a common format for bits within and outside the range. The input processing may include 3:2 compression for bit positions within the range and 2:2 compression for bit positions outside the range, so that further processing is performed for all bit positions on a sum vector and a carry vector. Computation of the sum proceeds substantially simultaneously with and without the rounding input, and rounding logic makes a selection later in the computation.
Description
BACKGROUND OF THE INVENTION

This invention relates to programmable logic devices (PLDs), and, more particularly, to specialized processing blocks which may be included in such devices.


As applications for which PLDs are used increase in complexity, it has become more common to design PLDs to include specialized processing blocks in addition to blocks of generic programmable logic resources. Such specialized processing blocks may include a concentration of circuitry on a PLD that has been partly or fully hardwired to perform one or more specific tasks, such as a logical or a mathematical operation. A specialized processing block may also contain one or more specialized structures, such as an array of configurable memory elements. Examples of structures that are commonly implemented in such specialized processing blocks include: multipliers, arithmetic logic units (ALUs), barrel-shifters, various memory elements (such as FIFO/LIFO/SIPO/RAM/ROM/CAM blocks and register files), AND/NAND/OR/NOR arrays, etc., or combinations thereof.


One particularly useful type of specialized processing block that has been provided on PLDs is a digital signal processing (DSP) block, which may be used to process, e.g., audio signals. Such blocks are frequently also referred to as multiply-accumulate (“MAC”) blocks, because they include structures to perform multiplication operations, and sums and/or accumulations of multiplication operations.


For example, a PLD sold by Altera Corporation, of San Jose, Calif., under the name STRATIX® II includes DSP blocks, each of which includes four 18-by-18 multipliers. Each of those DSP blocks also includes adders and registers, as well as programmable connectors (e.g., multiplexers) that allow the various components to be configured in different ways. In each such block, the multipliers can be configured not only as four individual 18-by-18 multipliers, but also as four smaller multipliers, or as one larger (36-by-36) multiplier. In addition, one 18-by-18 complex multiplication (which decomposes into two 18-by-18 multiplication operations for each of the real and imaginary parts) can be performed. In order to support four 18-by-18 multiplication operations, the block has 4×(18+18)=144 inputs. Similarly, the output of an 18-by-18 multiplication is 36 bits wide, so to support the output of four such multiplication operations, the block also has 36×4=144 outputs.


The operations performed by such DSP blocks frequently require rounding. However, known DSP blocks, including that provided in the aforementioned STRATIX® II PLD, have limited rounding capabilities.


It would be desirable to be able to provide improved rounding capabilities of the DSP block of a PLD.


SUMMARY OF THE INVENTION

The present invention relates to improved rounding circuitry for specialized processing blocks for PLDs.


As one example only, one type of specialized processing block with which the invention may be used is described in copending, commonly-assigned U.S. patent application Ser. No. 11/447,329, filed Jun. 5, 2006, which is hereby incorporated by reference herein in its entirety. Such a specialized processing block preferably includes a plurality of fundamental processing units instead of discrete multipliers. Each fundamental processing unit preferably includes the equivalent of at least two multipliers and logic to sum the partial products of all of the at least two multipliers. As a result, the sums of the all of the multiplications are computed in a single step, rather than summing the partial products of each multiplier to form individual products and then summing those products. Such a fundamental processing unit can be constructed with an area smaller than that of the individual multipliers and adders. If a single multiplication is required to be performed, one of the multipliers in the fundamental processing unit is used, while the inputs to the other(s) are zeroed out. Nevertheless, because the provision of the fundamental processing unit reduces the area of the specialized processing block, efficiency is improved.


In a preferred embodiment, the fundamental processing unit includes the equivalent of two 18-by-18 multipliers and one adder so that it can output the sum of the two multiplication operations. While each of the 18-by-18 multipliers can be configured for a smaller multiplication operation (e.g., 9-by-9 or 12-by-12), the integrated nature of the fundamental processing unit means that the individual multiplier outputs are not accessible. Only the sum is available for use by the remainder of the specialized processing block. Therefore, to obtain the result of a single non-complex multiplication that is 18 bits-by-18 bits or smaller, an entire fundamental processing unit must be used. The second multiplier, which cannot be disengaged, simply has its inputs zeroed.


The specialized processing block with which the invention may be used preferably also has one or more additional adders for additional processing of the output of the fundamental processing unit, as well as optional pipeline registers and a flexible output stage. Therefore the specialized processing block preferably can be configured for various forms of filtering and other digital signal processing operations. In addition, the specialized processing block preferably also has the capability to feed back at least one of its outputs as an input, which is useful in adaptive filtering operations, and to chain both inputs and outputs to additional specialized processing blocks.


The specialized processing block with which the invention may be used, as described in the above-incorporated patent application, preferably includes flexible rounding circuitry, which preferably allows the user to select between rounding to the nearest integer and rounding to the nearest even. As is known, rounding to the nearest even operates identically to rounding to the nearest integer, except when the remainder is exactly equal to one-half. In rounding to the nearest integer, when the remainder is exactly equal to one-half, the result always is rounded up to the next integer. In rounding to the nearest even, when the remainder is exactly equal to one-half, the result is rounded up if the next integer is even, but rounded down if the next integer is odd. The flexible rounding circuitry preferably also allows the user to select the bit position of the result at which rounding takes place. The location of the flexible rounding circuitry within the specialized processing block preferably also is selectable so that critical timing paths are not affected unnecessarily by rounding operations.


The present invention provides circuitry that preferably performs adding and rounding substantially simultaneously, and in any event preferably within a single clock cycle, to minimize delays in the critical timing paths. It should be noted, however, that such circuitry can be used in any application in which adding and rounding are performed within a critical timing path, and not only in the specialized processing block that is described above and in the above-incorporated patent application.


The present invention implements addition with a form of look-ahead rounding, adding two numbers together both with and without an input rounding bit, and then selecting the correct result at the end of the calculation.


The addition in question is an addition of two multi-bit numbers. In a preferred embodiment, for example, the adder inputs may be two 44-bit numbers. As stated above, the user can select the rounding position. Accordingly, there must be a range of bits encompassing the allowable rounding positions, where two or three numbers may be input, while in other positions only two numbers may be input.


According to one aspect of the present invention, the outputs of the all of the individual bit positions, regardless of whether there are two or three inputs at any particular bit position, are converted to sum and carry vectors for input to a two-input adder. In a preferred embodiment, this is accomplished by using, on each of the positions that may have two or three inputs, a 3:2 compressor to produce a sum vector and a carry vector, and using on each of the positions that may have only two inputs, a 2:2 compressor to produce a sum vector and a carry vector. Although a 2:2 compressor does not perform any actual compression (the number of outputs remains the same as the number of inputs), it converts the inputs to sum and carry vectors that are aligned with the sum and carry vectors from the three-input bit positions.


According to another aspect of the present invention, the compression is formed by a prefix network, such as a Kogge-Stone prefix network, in which each node may be a compressor. In a particularly preferred embodiment of this aspect of the invention, the nodes that perform 2:2 compression are ordinary 2:2 compressors. However, the nodes that may have either two or three inputs, and therefore may perform either 2:2 compression or 3:2 compression, preferably are specialized 3:2 compressors that may simultaneously perform both the 2:2 compression and the 3:2 compression.


Therefore, in accordance with the present invention, there is provided combined adding and rounding circuitry for a programmable logic device, for adding two multi-bit input numbers and rounding a resulting sum to a user-programmable bit position selectable from among a subset of available bit positions. The combined rounding and adding circuitry includes multi-bit addition circuitry, and input circuitry for (a) accepting, in each bit position, bits of the two multi-bit input numbers and (b) accepting, in each bit position in the subset, an additional input of a rounding bit. The input circuitry outputs data to the multi-bit addition circuitry in a format common to each bit position regardless of the number of inputs to the input circuitry at that bit position.


In a method according to the invention, for each bit position outside the subset, a bit from each of the multi-bit numbers is processed to produce a first output having a first number of output bits. For each bit position in the subset, a bit from each of the multi-bit numbers is processed with a rounding input to produce a second output having that first number of output bits. The first and second outputs are combined to produce a rounded sum.





BRIEF DESCRIPTION OF THE DRAWINGS

The above and other objects and advantages of the invention will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference characters refer to like parts throughout, and in which:



FIG. 1 is a high-level diagram of one preferred embodiment of a specialized processing block with which the present invention may be used;



FIG. 2 is a functional diagram of the specialized processing block of FIG. 1;



FIG. 3 is a block diagram of a preferred embodiment of a fundamental processing unit for a specialized processing block with which the present invention may be used;



FIG. 4 is a preferred embodiment of an output stage of a specialized processing block with which the present invention may be used;



FIG. 5 is a functional diagram of a specialized processing block with which the present invention may be used, configured as part of a finite impulse response filter;



FIG. 6 is a schematic diagram of a portion of a specialized processing block with which the present invention may be used showing a location of rounding logic in accordance with one embodiment of the present invention;



FIG. 7 is schematic diagram showing detail of the rounding adder in the rounding logic of FIG. 6;



FIG. 8 is a diagram of a Kogge-Stone prefix network that may be used to implement the present invention;



FIG. 9 is a schematic diagram of a conventional 2:2 compressor;



FIG. 10 is a schematic diagram of a conventional 3:2 compressor;



FIG. 11 is a schematic diagram of a compressor that simultaneously performs 2:2 compression and 3:2 compression;



FIG. 12 is a diagram of a sparse Kogge-Stone prefix network according to an alternate embodiment of the invention; and



FIG. 13 is a simplified block diagram of an illustrative system employing a programmable logic device incorporating the present invention.





DETAILED DESCRIPTION OF THE INVENTION

Rounding is a technique for reducing the precision of a number by removing a lower-order range of bits from that number's representation and possibly modifying the remaining portion of the number to more accurately represent its former value. For example, if the original number has N bits of precision, the rounded number may have only M bits of precision (where N>M), meaning that N−M bits of precision are removed from the number in the process of rounding.


The round-to-nearest method returns the closest number to the original. This is commonly referred to as “round-to-nearest-integer” (RNI), but as it works for numbers less than one as well, “round-to-nearest” is more appropriate. By convention, according to this method an original number lying exactly halfway between two numbers (and therefore having two numbers that are “nearest”) always rounds up to the larger of the two. For example, when rounding the 3-bit, two's complement fraction 0.25 (binary 0.01) to the nearest 2-bit two's complement fraction, this method returns 0.5 (binary 0.1). The original fraction lies exactly midway between 0.5 and 0.0 (binary 0.0), so this method rounds up. Because it always rounds up, this method is also called “biased rounding.”


The “convergent rounding,” or “round-to-nearest-even” (RNE), method also returns the closest number to the original. However, in cases where the original number lies exactly halfway between two numbers, this method returns the nearest even number, which in a binary representation is the one containing a least significant bit of 0. So for the example above, the result would be 0.0, since that is the even-numbered choice as between 0.5 and 0.0. Because it rounds either up or down based on the surrounding values rather than always rounding in the same direction, this method is also called “unbiased rounding.”


Some examples are shown in the following table, in which 6-bit numbers are rounded to 4-bits of precision:

















Original







number

First 4
Last two
RNI Result
RNE Result


(decimal

bits odd
bits </>
(decimal
(decimal


equivalent)
Sign
or even?
one-half?
equivalent)
equivalent)







010111
+
Odd
Greater
011000 (24)
011000 (24)


(23)

(LSB = 1)
(.11B = .75)




001001
+
Even
Less
001000 (8)
001000 (8)


(9)

(LSB = 0)
(.01B = .25)




001010
+
Even
Equal
001100 (12)
001000 (8)


(10)

(LSB = 0)
(.10B = .50)




001110
+
Odd
Equal
010000 (16)
010000 (16)


(14)

(LSB = 1)
(.10B = .50)




110111

Odd
Greater
111000 (−8)
111000 (−8)


(−9)

(LSB = 1)
(.11B = .75)




101001

Even
Less
101000 (−24)
101000 (−24)


(−23)

(LSB = 0)
(.01B = .25)




110110

Odd
Equal
111000 (−8)
111000 (−8)


(−10)

(LSB = 1)
(.10B = .50)




110010

Even
Equal
110100 (−12)
110000 (−16)


(−14)

(LSB = 0)
(.10B = .50)











In any event, either of these forms of rounding involves, for a particular bit position, adding 0.510—i.e., 1B in the next most significant place—to the result and then truncating, with the differences being (1) how to handle the situation where the remainder is exactly one-half, and (2) how to handle the fact that in any particular bit position, 1 may or may not be added, which is a user-selectable choice. Rounding circuitry must therefore be able to handle both the possibility that a 1 will be added, and the possibility that it will not. The present invention provides such circuitry.


The invention will now be described with reference to FIGS. 1-12, where FIGS. 1-5 show an example of a specialized processing block in which the invention may be used.



FIG. 1 shows a high-level diagram of one preferred embodiment 10 of a specialized processing block with which the invention, while FIG. 2 is a functional diagram of the same embodiment 10, it being recognized that rounding logic according to the invention also can be used with any other circuitry that needs to be able to handle the possibility of either two or three inputs at a user-programmable choice of positions.


As seen in FIG. 1, specialized processing block 10 includes optional input pre-MUX stage 11, optional input register stage 12, optional input multiplexing stage 13, multiplication stage 14, optional pipeline register stage 15 and adder/output stage 16.


The function of input pre-MUX stage 11, if provided, is to format the regular inputs, loopback inputs and cascade inputs (see below) into a form suitable for registering.


Regular inputs do not require any specific formatting. Cascade inputs may be a one-register delayed version of a previous input, and therefore may need formatting accordingly. However, such formatting also can be done in programmable logic of the programmable logic device of which specialized processing block 10 is a part, so if formatting of cascade inputs is the only pre-MUX function required, input pre-MUX stage 11 can be omitted or, if provided, bypassed. The loopback input 17 may be arranged so that it is always connected to a particular multiplier or group of multipliers. The formatting performed by input pre-MUX stage 11 may include the direction of particular inputs to particular bit locations depending on the function to be performed by specialized processing block 10. The formatting may be carried out in one embodiment according to a stored table identifying the various possible operations (e.g., simple or complex multiplications of various sizes, shifting operations, rotation operations, etc.) and specifying the corresponding formatting required.


The output of input pre-MUX stage 11, if provided, may be registered by optional input register stage 12. If there in no input pre-MUX stage 11, then the input register function, if needed, can be performed in the programmable logic portion of the programmable logic device of which block 10 is a part. Therefore, input register stage 12 is considered optional. Input register stage 12, even if provided, preferably can be optionally bypassed in cases where unregistered outputs are needed or desired.


Input multiplexing stage 13, if provided, takes registered or unregistered inputs from input pre-MUX stage 11 and inputs potentially from elsewhere in the programmable logic device and formats the data for the different operational modes. In that respect it is similar to input pre-MUX stage 11, and therefore frequently if one of input pre-MUX stage 11 and input multiplexing stage 13 is provided, the other will not be provided.


As one example of the type of formatting performed by input pre-MUX stage 11 or input multiplexing stage 13, consider an 18-by-18 complex multiplication in which:

Real Result=Re[(a+jb)×(c+jd)]=(ac−bd)
Imag Result=Im[(a+jb)×(c+jd)]=(ad+bc)

This complex operation requires four 18-by-18 multiplications and hence eight 18-bit inputs, but because there are only four unique 18-bit shared inputs, input multiplexing stage 13 will take the inputs a, b, c and d and perform the necessary duplication so those four inputs are properly routed to the correct multiplier inputs for each of the real and imaginary calculations. Similarly, for 9- and 12-bit mode operations, input pre-MUX stage 11 and/or input multiplexing stage 13 ensures correct alignments of the input bits in order to obtain correct results.


Multiplication stage 14 preferably includes a plurality of fundamental processing units as described above. In a preferred embodiment, each specialized processing block 10 (see FIG. 2) includes four fundamental processing units 30, meaning that it can perform up to eight multiplications in groups of two multiplications that are summed together. In that embodiment, the fundamental processing units in specialized processing block 10 preferably are grouped into identical half-blocks, so that each half-block in its own right can be considered a specialized processing block within the invention.


Each fundamental processing unit preferably includes the functionality for a sum of two 18-by-18 multiplications. The fundamental processing units preferably are all identical, but in some embodiments, it is possible to provide a negation function on only some inputs of some multipliers, as maybe required for, e.g., complex multiplication where, as is apparent above, subtraction may be required. Alternatively, the negation function may be provided in the adder portion of the fundamental processing unit, so that one or more adders can also perform subtraction.


The structure of a preferred embodiment of a fundamental processing unit is shown in FIG. 3. Each fundamental processing unit 30 preferably supports a sum of two 18-by-18 multiplications and preferably includes two partial product generators 31, two ten-vector-to-two-vector compressors 32, a 4-to-2 compressor 33, and two carry-propagate adders 34. Adders 34 preferably include one 30-bit adder 340 and one 24-bit adder 341, which are selectably connectable by a control signal 342. For smaller multiplications such as 9-by-9 or 12-by-12, only 24 bits are required, so the two adders can be disconnected to allow two independent multiplications. For larger multiplications such as 18-by-18, the two adders 34 should be linked as a single adder.


Each partial product generator 31 preferably creates nine 20-bit signed Booth-encoded vectors (Booth-encoding is a known technique that can reduce the number of partial products), as well as a 17-bit unsigned carry vector (negative partial products are in ones-complement format, with the associated carry-in bit in the carry vector). An additional 19-bit signed partial product may be generated in the case of unsigned multipliers (which preferably will always be zero for signed multipliers). Although preferably up to 11 vectors may be generated, the carry bits preferably can be combined with the partial product vectors, requiring only 10 vectors to be compressed.


The partial products preferably are compressed down to two 39-bit vectors (36 bits plus sign extension bits). Any sign extensions should be preserved properly past the 36-bit 18-by-18 multiplier boundary, so that any sign extensions can be valid up to the 72-bit 36-by-36 multiplier boundary (in a case where two fundamental processing units are combined to implement a 36-by-36 multiplication as described below). After compression, the results preferably are processed in mux-and-shift circuitry 35, which preferably include combinatorial logic where any sign-extension, zero-filling or shifting of the results before addition, as may be required depending on the operation being performed, can be accomplished prior to final combination of the results in 4-to-2 compressor 33 and carry-propagate adders 34. For each of circuits 350, 351, the inputs preferably are two 39-bit vectors for a total of 78 input bits, while the outputs preferably are two 54-bit vectors for a total of 108 bits. The extra thirty bits are the result of sign extension, zero-filling, and or shifting. Multiplexer 352 indicates a selection between sign extended or zero-filled results. The four 54-bit vectors are input to compressor 33 which outputs two 54-bit vectors, which are added in adders 34 to produce a 54-bit output.


As discussed above, because the partial products from both multipliers are added at once, the two multipliers of a fundamental processing unit cannot be used for two independent multiplications, but a single multiplication can be carried out by zeroing the inputs of the second multiplier.


For smaller multiplications, independent subset multipliers (9-by-9 and 12-by-12 cases) may be handled as follows:


For two 9-by-9 multiplications, the first 9-by-9 multiplication preferably is calculated using the most significant bits (MSBs) of the first multiplier (on the left in FIG. 3), and the second 9-by-9 multiplication preferably is calculated using the least significant bits (LSBs) of the second multiplier (on the right in FIG. 3). The MSBs of the right multiplier are filled with the sign extensions of the corresponding values, as appropriate. The outputs of the left multiplier (sum and carry vectors) are left-shifted by 18 bits. The two multiplier outputs preferably are then compressed together and the two resulting final vectors are then added with the two adders 34, which are not connected for this operation. The first 9-by-9 result preferably will be output on the MSBs of the left (30-bit) adder 340, while the second 9-by-9 result preferably will be output on the LSBs of the right (24-bit) adder 341.


Independent 12-by-12 multiplications can be calculated in a manner similar to a 9-by-9 multiplication, using the MSB/LSB method.


In both cases, preferably the right multiplier outputs are zeroed above 24 bits to prevent any interference with the independent left multiplier result.


In the case of summed multiplications, regardless of the precision, all inputs preferably are shifted to occupy the MSBs of the multipliers used, and the output vectors preferably are not shifted. The output vectors, however, preferably are fully sign-extended, so that sign-extension out of the adders 34 can be used for the full width of the accumulator (below).


Preferably, for complex multiplications and other operations that require subtraction of products, the adder inputs can be negated (effectively making the adder an adder/subtractor). Alternatively, however, one or more of the multipliers can be provided with the ability to selectively negate its output vectors, by inverting the input (ones' complement), and adding the multiplicand to the result. The multiplicand addition can be performed in the compression of the partial products, so that the negation can be implemented before adders 34.


Pipeline register stage 15, which preferably may be bypassed at the user's option, preferably allows outputs of multiplication stage 14 to be registered prior to further addition or accumulation or other processing.


Adder/output stage 16 preferably selectively shifts, adds, accumulates, or registers its inputs, or any combination of the above. Its inputs preferably are the outputs of the two fundamental processing units in specialized processing block 10. As seen in FIG. 4, those two inputs 40, 41 are input to respective register/shifter units 42, 43, which optionally may shift or sign extend inputs 40, 41. In a preferred embodiment, each of inputs 40, 41 is a 54-bit vector, which is shifted or sign-extended to create a respective 72-bit vector.


The outputs of units 42, 43 preferably are input to a 3:2 compressor 44, along, preferably, with the output 45 of stage 16 itself. This feedback provides an accumulation function to specialized processing block 10. Preferably, the fed-back output 45 passes through multiplexer 46, which can alternatively select a zero (e.g., ground) input when accumulation is not necessary or desired.


The outputs of compressor 44 are provided (through appropriate multiplexers as described below) to two adders 47, 48, which may be chained together under programmable control, depending on the use to which they are to be put, as described below. The outputs of adders 47, 48 preferably may be registered in registers 49, 400 or not, as determined by multiplexers 401, 402. Registered or not, outputs 47, 48 preferably make up the output vector of specialized processing block 10. As an alternative path, multiplexers 403, 404, 405 allow adders 47, 48 to be bypassed where the outputs of fundamental processing units 30 are to be output without further processing.


In the case, described above, where each fundamental processing unit 30 can perform a sum of two 18-by-18 multiplications, two fundamental processing units 30 can perform a 36-by-36 multiplication, which, as is well known, can be decomposed into four 18-by-18 multiplications. In such a case, two compressed 72-bit vectors preferably are output by compressor 44 and preferably are added together by the two 44-bit adders 47, 48, which are programmably connected together for this mode by AND gate 406. The upper 16 bits may be ignored in this mode.


In other modes with narrower outputs, where adders 47, 48 need not be connected together, adders 47, 48 optionally may be arranged to chain the output of specialized processing block 10 with the similar output of another specialized processing block 10. To facilitate such a mode, the output of register 400, for example, may be fed back to 4:2 multiplexer 407, which provides two inputs to adder 47. The other inputs to multiplexer 407 may be the two vectors output by compressor 44 and chain-in input 408 from another specialized processing block 10, which may be provided via chain-out output 409 from register 49 of that other specialized processing block 10.


Thus, in chaining mode, 44-bit adder 48 may be used to add together the results within one of specialized processing blocks 10—configured, e.g., as a single multiplier, a sum of multipliers, or an accumulator.—with the results of the previous block. By using multiplexer 407 to select as inputs to adder 47 the output of adder 48 and the output of another specialized processing block 10, the output of the current specialized processing block 10 can be the chained sum of the outputs of the current and previous specialized processing blocks 10. If the chaining mode is used, only a 44-bit accumulator is available, which will still give a 6-bit to 8-bit guard band, depending on the number of multipliers. However, as is apparent, the chaining mode is not available for the 36-bit mode, in which both adders 47, 48 are needed to obtain the result of a single specialized processing block 10.


The output paths may be slightly different depending on the mode of operation. Thus, multiplexers 401, 402 allow selection of registered or unregistered outputs of adders 47, 48. It will be appreciated, however, that, as shown, registered outputs preferably are used in cascade or chained mode.


In addition, at least one output may be looped back, as at 17, to an input of specialized processing block 10. Such a loopback feature may be used, for example, if specialized processing block 10 is programmably configured for adaptive filtering. Although multiple loopbacks may be provided, in a preferred embodiment, one loopback 17 to single multiplier or group of multipliers is provided.


The specialized processing block 10 of the present invention may be programmably configured as a long chain finite impulse response (FIR) filter. As shown in FIG. 5, four fundamental processing units 30 are configured as part of such a FIR filter 50. As discussed above, this may be considered to be either one or two specialized processing blocks 10. As shown, each of adders 48 is used to add the results of four multiplications, with adders 47 used in the chaining or cascade mode described above to add together the outputs of adders 48 (as well, possibly, as the outputs of adders 48 of other specialized processing blocks 10) to form a long FIR filter. The coefficients of the FIR filter are input at 51, while the data to be filtered are input via register chain 52, preferably formed in one of input pre-MUX stage 11, input register stage 12 or input multiplexing stage 13. To account for delay introduced by the output cascade chain, at least one extra delay 53 (e.g., in the form of an extra register) preferably is provided in input cascade chain 52. Preferably, the number of delays corresponds to the number of adders 47 or, more particularly, output registers 409 for which delays 53 compensate. Generally, this would amount to one delay 53 for each pair of fundamental processing units 30. As discussed above, although in a preferred embodiment two fundamental processing units 30 make up a half-block, they also could be considered a specialized processing block 10 in their own right.


As discussed above, the present invention provides rounding circuitry that may be used in an environment such as specialized processing block 10. As discussed, the rounding circuitry preferably allows the user to select between round-to-nearest mode and round-to-nearest-even mode. Truncation—i.e., always rounding down—also may be provided as an option. Similarly, always rounding up may be provided as an option. In addition, the rounding circuitry preferably allows the user to select the bit at which rounding will occur.


The calculation of round-to-nearest is trivial as it involves simply adding one-half (i.e., adding 1 in the next most significant position after the rounding position) and then truncating the result (i.e., replacing all values after the rounding position with zeroes). The calculation of round-to-nearest-even is more complicated, as it involves determining whether the value of the bits beyond the rounding position is exactly one-half or not. As discussed above, in either case the circuitry needs to be able to accept an additional input at any rounding position which the user is permitted to select.


Thus, in embodiment 60 of FIG. 6, which may be programmably implemented in specialized processing block 10, instead of waiting for rounding logic 600 before deciding between addition 61 and addition 62, addition 61 (without input of the rounding bit) and addition 62 (with input of the rounding bit) are carried out simultaneously and the result of rounding logic 600 is used to control multiplexer 63, which selects between adders 61, 62. This look-ahead rounding decreases the time needed to perform rounding operations between registers 64 and 65, and therefore increases the maximum permissible clock speed.



FIG. 7 shows how adder 62 may be implemented to accept handle the possibility of either two or three inputs in any of the permissible user-selected rounding positions. In the embodiment of FIG. 7, the addition to be performed is of two 44-bit numbers, with the user allowed to select any of 16 positions between the seventh and twenty-second positions to be the rounding position. Thus, the first (least significant) six positions and the last (most significant) 22 positions accept only two inputs, but any one of the seventh through twenty-second positions may accept either two or three inputs.


As seen in FIG. 7, the six least significant positions accept two 6-bit vectors into 6-bit 2:2 compressor 71, and the 22 most significant positions accept two 22-bit vectors into 22-bit 2:2 compressor 72. For the 16 positions where there may be three inputs, 16-bit 3:2 compressor 73 accepts three 16-bit vectors—two vectors represent those 16 bits in the numbers to be added, and one vector represents the rounding bit (only one of those 16 bits is a one while the others are 0). All three compressors output two vectors—sum and carry—which are input to a conventional 44-bit two-input adder 74. As discussed above, while the 2:2 compressors 71, 72 do not perform any actual compression, they convert the data at the 28 two-input positions to a sum-and-carry vector format that lines up with the output of 3:2 compressor 73.


In another aspect of the invention, instead of implementing the addition with two parallel conventional adders as in FIGS. 6 and 7, the addition may be implemented using a prefix network, such as the modified Kogge-Stone prefix network 80 shown in FIG. 8, followed by an adder 88. As is well known, a Kogge-Stone prefix network is one of many techniques for performing carry look-ahead operations. This allows calculation of carry values for all bit positions without having to use, for example, a time-consuming ripple-carry adder.


Using the modified prefix network in accordance with the present invention, the prefix network and one full adder can replace both adder 61 (including compressors 71-73) and adder 62. This is preferably accomplished by providing, in each of those positions of the prefix network that may accept three inputs, a modified three-input compressor that can simultaneously perform 2:2 compression and 3:2 compression.


In the representation of FIG. 8, each node in the first, or input, level 81 is a compressor. The nodes indicated by solid dots are 2:2 compressors. The nodes corresponding to positions that the user can designate as the rounding position are indicated by hashing and can simultaneously perform 2:2 compression and 3:2 compression. Level 81 corresponds to compressors 71-73.



FIG. 9 shows the structure of a known 2:2 compressor 90 including an XOR gate 91 and an AND gate 92, which takes two inputs 93, 94 and produces sum (S) and carry (C) vectors 95, 96. FIG. 10 shows the structure of a known 3:2 compressor 100 including two XOR gates 91, 101, and three AND gates 92, 102, 103 that are ORed together by OR gate 104. XOR gate 101 and OR gate 104 provide the sum (S) and carry (C) vector outputs 105, 106, respectively.



FIG. 11 shows a modified 3:2 compressor 110 according to the present invention in which XOR gate 101 and OR gate 104 provide the sum (S′) and carry (C′) vector outputs 105, 106 for 3:2 operation as in FIG. 10, while XOR gate 91 and AND gate 92 provide the sum (S) and carry (C) vector outputs 107, 108 for 2:2 operation as in FIG. 9. In accordance with the invention, each node of prefix network level 81 that may accept three inputs is implemented using compressor 110, allowing prefix network 80 to simultaneously calculate the two-input case as in adder 61 and the three-input case as in adder 62.


In subsequent levels 82-87 of prefix network 80, each node preferably includes Generate (G) and Propagate (P) circuitry. G and P circuitry can be described as follows: Two input bits are used—an “A” bit from a first vector, and a “B” bit from a second vector. A single-bit Generate circuit outputs 1 if a carry is generated—i.e., if A OR B=1. A single-bit Propagate circuit outputs 1 if a carry-in is propagated out—i.e., if A AND B=1. The function of prefix network 80 is to calculate a carry bit for each position along the two input vectors, and it does this by combining single-bit G and P circuitry into multi-bit G and P circuitry. Each node in levels 82-87 contains multi-bit G and P circuitry, which is constructed out of the single-bit G and P circuitry as follows: The output of a G node when it is being fed by G and P nodes is Gout=G2+G1P1, where G2 is from the node immediately above, and G1 is from the node above and to the right. The output of a P node when it is being fed by G and P nodes is Pout=P2P1, where P2 is from the node immediately above, and P1 is from the node above and to the right. On each successive level, the G and P nodes are combined with multi-bit G and P circuitry, until each position along the vector contains a G and P result that is a combination of all inputs at the top of the prefix network, for all bit positions to the right of it. At the bottom of the network, carry bits for each position can be calculated from the G and P results. Prefix network 80 of FIG. 8 (levels 82-87) is a Kogge-Stone network, but any other network topology can be adapted to this method.


In levels 82-87, each node that is hatched has two sets of multi-bit G and P circuits—one from the rounding=0 (i.e., from the 2:2 compressors in the rounding range) and one from the rounding=1 (i.e., from the 3:2 compressors in the rounding range). At the bottom of the prefix network two carry vectors are output—one for round=0 and one for round=1, although to the right of the rounding range there is only one carry vector. One of the two carry vectors is selected by round logic similar to round logic 60, e.g., using multiplexer 89 before adder 88. The selected carry vector is added with the A and B vectors. A single bit add is just A XOR B XOR CARRY, and therefore adder 88 may be a simple XOR. Levels 82-87 plus the adder 88 correspond to adder 74.


As seen in FIG. 12, a sparser prefix network 120 can be provided in place of prefix network 80. In prefix network 120, every bit position in the permissible round range is populated, because the user may select any of those positions as the round position and therefore prefix network 120 accommodates the possibility of the round bit being input to any of those positions. However, outside the round range, prefix network 120 is sparsely populated. Thus, in the 44-bit example shown of this embodiment, with a round range from bit 7 through bit 22, bits 23 through 44 preferably are populated only every fourth bit (except that from bit 42 to bit 44 is only a two-bit skip). Similarly, at the least significant bit end of the network, bits 1 and 5 are populated (with a four-bit skip from bit 1 to bit 5 and a two-bit skip from bit 5 to bit 7). Rather than three-input adder 88 as in the fully populated network 80, a 4-bit adder is required to add 4 bits of A, and 4 bits of B, with a carry-in provided by prefix network 120. A carry may be generated locally in the 4-input adder which may be a known adder such as a ripple-carry adder, carry look-ahead adder, etc.


While a 44-bit addition is used as an example in FIGS. 6-12, it is only an example, and the invention applies to addition operations of any size. Similarly, while a 16-bit round range is shown in the examples, the round range could encompass any subset of the total number of bit positions (including all of the bit positions). The number of bits encompassed by 3:2 compressor 73, or the number of positions in the first level 81, 121 of prefix network 80, 120 that include modified 3:2 compressor 110, would be adjusted accordingly.


Thus it is seen that improved rounding capabilities for a specialized processing block for a programmable logic device, where user programming requires rounding circuitry to be flexible and where timing constraints should be observed, have been provided.


A PLD 130 incorporating such circuitry according to the present invention may be used in many kinds of electronic devices. One possible use is in a data processing system 900 shown in FIG. 13. Data processing system 900 may include one or more of the following components: a processor 901; memory 902; I/O circuitry 903; and peripheral devices 904. These components are coupled together by a system bus 905 and are populated on a circuit board 906 which is contained in an end-user system 907.


System 900 can be used in a wide variety of applications, such as computer networking, data networking, instrumentation, video processing, digital signal processing, or any other application where the advantage of using programmable or reprogrammable logic is desirable. PLD 120 can be used to perform a variety of different logic functions. For example, PLD 120 can be configured as a processor or controller that works in cooperation with processor 901. PLD 120 may also be used as an arbiter for arbitrating access to a shared resources in system 900. In yet another example, PLD 120 can be configured as an interface between processor 901 and one of the other components in system 900. It should be noted that system 900 is only exemplary, and that the true scope and spirit of the invention should be indicated by the following claims.


Various technologies can be used to implement PLDs 130 as described above and incorporating this invention.


It will be understood that the foregoing is only illustrative of the principles of the invention, and that various modifications can be made by those skilled in the art without departing from the scope and spirit of the invention. For example, the various elements of this invention can be provided on a PLD in any desired number and/or arrangement. One skilled in the art will appreciate that the present invention can be practiced by other than the described embodiments, which are presented for purposes of illustration and not of limitation, and the present invention is limited only by the claims that follow.

Claims
  • 1. Combined adding and rounding circuitry for a programmable logic device, for adding two multi-bit input numbers and rounding a resulting sum to a user-programmable bit position selectable from among a subset of available bit positions, said combined rounding and adding circuitry comprising: multi-bit addition circuitry; andinput circuitry for (a) accepting, in each bit position, bits of said two multi-bit input numbers and (b) accepting, for each respective bit position in said subset, an additional input of a rounding bit indicative of whether said respective bit position is said user-programmable bit position, said input circuitry outputting data to said multi-bit addition circuitry in a format common to each bit position regardless of the number of inputs to said input circuitry at said bit position.
  • 2. The combined adding and rounding circuitry of claim 1 wherein said input circuitry comprises: a 2:2 compressor for each bit position outside said subset; anda 3:2 compressor for each bit position in said subset.
  • 3. The combined adding and rounding circuitry of claim 2 wherein said multi-bit addition circuitry comprises: a first multi-bit adder for accepting at each bit position only one bit from each of said multi-bit numbers; anda second multi-bit adder for accepting data from said compressors.
  • 4. The combined adding and rounding circuitry of claim 3 further comprising rounding logic for selecting between said first and second multi-bit adders.
  • 5. The combined adding and rounding circuitry of claim 2 wherein: said bit positions in said subset are in a consecutive range of bit positions;said 3:2 compressor for each bit position in said subset comprises one 3:2 compressor corresponding to all bit positions in said subset; andsaid 2:2 compressor for each bit position outside said subset comprises one 2:2 compressor corresponding to all bit positions below said range, and one 2:2 compressor corresponding to all bit positions above said range.
  • 6. The combined adding and rounding circuitry of claim 2 further comprising a prefix network; wherein: said input circuitry is a first part of said prefix network; anda second part of said prefix network is part of said multi-bit addition circuitry.
  • 7. The combined adding and rounding circuitry of claim 6 wherein said prefix network is a Kogge-Stone prefix network.
  • 8. The combined adding and rounding circuitry of claim 6 wherein: said second part of said prefix network outputs a first set of outputs representing a first rounding condition and a second set of outputs representing a second rounding condition;said multi-bit addition circuitry further comprises:a full multi-bit adder, anda multiplexer for selecting between said first and second sets of outputs and inputting said selected set of outputs to said full multi-bit adder; andsaid combined adding and rounding circuitry further comprises rounding logic for controlling said multiplexer.
  • 9. The combined adding and rounding circuitry of claim 8 wherein: said second part of said prefix network comprises a plurality of nodes; andeach one of said nodes comprises multi-bit generate and propagate circuitry fed by at least two nodes above said one of said nodes.
  • 10. The combined adding and rounding circuitry of claim 9 wherein each one of said nodes is fed by a node immediately above said one of said nodes, and by a node above and to the right of said one of said nodes.
  • 11. The combined adding and rounding circuitry of claim 9 wherein each one of said nodes that is fed at least in part by one of said 3:2 compressors in said subset comprises two sets of said multi-bit generate and propagate circuitry for providing said first set of outputs representing said first rounding condition and said second set of outputs representing said second rounding condition.
  • 12. The combined adding and rounding circuitry of claim 6 wherein said prefix network is populated in every bit position.
  • 13. The combined adding and rounding circuitry of claim 6 wherein said prefix network is populated in every bit position in said subset, and in less than every bit position outside said subset.
  • 14. The combined adding and rounding circuitry of claim 6 wherein said input circuitry comprises: a 2:2 compressor for each bit position outside said range; andfor each bit position in said range, a compressor that simultaneously performs 2:2 compression to provide a 2:2 compressed output and 3:2 compression to provide a 3:2 compressed output.
  • 15. The combined adding and rounding circuitry of claim 14 further comprising rounding logic for selecting, for each bit position in said range, between said 2:2 compressed output and said 3:2 compressed output.
  • 16. The combined adding and rounding circuitry of claim 15 further comprising circuitry for combining said selected compressed outputs.
  • 17. A programmable logic device comprising a specialized processing block including the combined adding and rounding circuitry of claim 1.
  • 18. A digital processing system comprising: processing circuitry;a memory coupled to said processing circuitry; anda programmable logic device as defined in claim 17 coupled to the processing circuitry and the memory.
  • 19. A printed circuit board on which is mounted a programmable logic device as defined in claim 18.
  • 20. The printed circuit board defined in claim 19 further comprising: memory circuitry mounted on the printed circuit board and coupled to the programmable logic device.
  • 21. The printed circuit board defined in claim 20 further comprising: processing circuitry mounted on the printed circuit board and coupled to the memory circuitry.
  • 22. An integrated circuit device comprising a specialized processing block including the combined adding and rounding circuitry of claim 1.
  • 23. A digital processing system comprising: processing circuitry;a memory coupled to said processing circuitry; andan integrated circuit device as defined in claim 22 coupled to the processing circuitry and the memory.
  • 24. A printed circuit board on which is mounted an integrated circuit device as defined in claim 23.
  • 25. The printed circuit board defined in claim 24 further comprising: memory circuitry mounted on the printed circuit board and coupled to the programmable logic device.
  • 26. The printed circuit board defined in claim 25 further comprising: processing circuitry mounted on the printed circuit board and coupled to the memory circuitry.
  • 27. A method of rounding a sum, computed by circuitry for adding two multi-bit input numbers in a programmable logic device, to a user-programmable bit position selectable from among a subset of available bit positions, said method comprising: for each bit position outside said subset, processing a bit from each of said multi-bit numbers using a first circuit that inputs two bits and produces a first output having a first number of output bits;for each respective bit position in said subset, processing a bit from each of said multi-bit numbers with a rounding input indicative of whether said respective bit position is said user-programmable bit position, using a second circuit that inputs three bits and produces a second output having said first number of output bits; andcombining said first and second outputs to produce a rounded sum.
  • 28. The method of claim 27 wherein said processing comprises compressing, each of said first and second circuits comprising a compressor.
  • 29. The method of claim 28 wherein: said processing of each bit position outside said subset comprises 2:2 compression, said first circuit comprising a 2:2 compressor; andsaid processing of each bit position in said subset comprises 3:2 compression, said second circuit comprising a 3:2 compressor.
US Referenced Citations (283)
Number Name Date Kind
3473160 Wahlstrom Oct 1969 A
4156927 McElroy et al. May 1979 A
4179746 Tubbs Dec 1979 A
4212076 Conners Jul 1980 A
4215406 Gomola et al. Jul 1980 A
4215407 Gomola et al. Jul 1980 A
4422155 Amir et al. Dec 1983 A
4484259 Palmer et al. Nov 1984 A
4521907 Amir et al. Jun 1985 A
4597053 Chamberlin Jun 1986 A
4623961 Mackiewicz Nov 1986 A
4682302 Williams Jul 1987 A
4718057 Venkitakrishnan et al. Jan 1988 A
4727508 Williams Feb 1988 A
4791590 Ku et al. Dec 1988 A
4799004 Mori Jan 1989 A
4823295 Mader Apr 1989 A
4839847 Laprade Jun 1989 A
4871930 Wong et al. Oct 1989 A
4912345 Steele et al. Mar 1990 A
4918637 Morton Apr 1990 A
4967160 Quievy et al. Oct 1990 A
4982354 Takeuchi et al. Jan 1991 A
4991010 Hailey et al. Feb 1991 A
4994997 Martin et al. Feb 1991 A
5073863 Zhang Dec 1991 A
5122685 Chan et al. Jun 1992 A
5128559 Steele Jul 1992 A
5175702 Beraud et al. Dec 1992 A
5208491 Ebeling et al. May 1993 A
RE34363 Freeman Aug 1993 E
5267187 Hsieh et al. Nov 1993 A
5296759 Sutherland et al. Mar 1994 A
5338983 Agarwala Aug 1994 A
5339263 White Aug 1994 A
5349250 New Sep 1994 A
5357152 Jennings, III et al. Oct 1994 A
5371422 Patel et al. Dec 1994 A
5381357 Wedgwood et al. Jan 1995 A
5404324 Colon-Bonet Apr 1995 A
5424589 Dobbelaere et al. Jun 1995 A
5446651 Moyse et al. Aug 1995 A
5451948 Jekel Sep 1995 A
5452231 Butts et al. Sep 1995 A
5452375 Rousseau et al. Sep 1995 A
5457644 McCollum Oct 1995 A
5465226 Goto Nov 1995 A
5465375 Thepaut et al. Nov 1995 A
5483178 Costello et al. Jan 1996 A
5497498 Taylor Mar 1996 A
5500812 Saishi et al. Mar 1996 A
5500828 Doddington et al. Mar 1996 A
5523963 Hsieh et al. Jun 1996 A
5528550 Pawate et al. Jun 1996 A
5537601 Kimura et al. Jul 1996 A
5541864 Van Bavel et al. Jul 1996 A
5546018 New et al. Aug 1996 A
5550993 Ehlig et al. Aug 1996 A
5559450 Ngai et al. Sep 1996 A
5563526 Hastings et al. Oct 1996 A
5563819 Nelson Oct 1996 A
5570039 Oswald et al. Oct 1996 A
5570040 Lytle et al. Oct 1996 A
5572148 Lytle et al. Nov 1996 A
5581501 Sansbury et al. Dec 1996 A
5590350 Guttag et al. Dec 1996 A
5594366 Khong et al. Jan 1997 A
5594912 Brueckmann et al. Jan 1997 A
5596763 Guttag et al. Jan 1997 A
5606266 Pedersen Feb 1997 A
5617058 Adrian et al. Apr 1997 A
5633601 Nagaraj May 1997 A
5636150 Okamoto Jun 1997 A
5636368 Harrison et al. Jun 1997 A
5640578 Balmer et al. Jun 1997 A
5644522 Moyse et al. Jul 1997 A
5646545 Trimberger et al. Jul 1997 A
5646875 Taborn et al. Jul 1997 A
5648732 Duncan Jul 1997 A
5652903 Weng et al. Jul 1997 A
5655069 Ogawara et al. Aug 1997 A
5664192 Lloyd et al. Sep 1997 A
5689195 Cliff et al. Nov 1997 A
5696708 Leung Dec 1997 A
5729495 Madurawe Mar 1998 A
5740404 Baji Apr 1998 A
5744980 McGowan et al. Apr 1998 A
5744991 Jefferson et al. Apr 1998 A
5754459 Telikepalli May 1998 A
5761483 Trimberger Jun 1998 A
5764555 McPherson et al. Jun 1998 A
5768613 Asghar Jun 1998 A
5777912 Leung et al. Jul 1998 A
5784636 Rupp Jul 1998 A
5790446 Yu et al. Aug 1998 A
5794067 Kadowaki Aug 1998 A
5801546 Pierce et al. Sep 1998 A
5805477 Perner Sep 1998 A
5805913 Guttag et al. Sep 1998 A
5808926 Gorshtein et al. Sep 1998 A
5812479 Cliff et al. Sep 1998 A
5812562 Baeg Sep 1998 A
5815422 Dockser Sep 1998 A
5821776 McGowan Oct 1998 A
5825202 Tavana et al. Oct 1998 A
5838165 Chatter Nov 1998 A
5841684 Dockser Nov 1998 A
5847579 Trimberger Dec 1998 A
5847981 Kelley et al. Dec 1998 A
5859878 Phillips et al. Jan 1999 A
5869979 Bocchino Feb 1999 A
5872380 Rostoker et al. Feb 1999 A
5874834 New Feb 1999 A
5878250 LeBlanc Mar 1999 A
5880981 Kojima et al. Mar 1999 A
5892962 Cloutier Apr 1999 A
5894228 Reddy et al. Apr 1999 A
5898602 Rothman et al. Apr 1999 A
5931898 Khoury Aug 1999 A
5942914 Reddy et al. Aug 1999 A
5944774 Dent Aug 1999 A
5949710 Pass et al. Sep 1999 A
5951673 Miyata Sep 1999 A
5956265 Lewis Sep 1999 A
5959871 Pierzchala et al. Sep 1999 A
5960193 Guttag et al. Sep 1999 A
5961635 Guttag et al. Oct 1999 A
5963048 Harrison et al. Oct 1999 A
5963050 Young et al. Oct 1999 A
5968196 Ramamurthy et al. Oct 1999 A
5970254 Cooke et al. Oct 1999 A
5978260 Trimberger et al. Nov 1999 A
5982195 Cliff et al. Nov 1999 A
5986465 Mendel Nov 1999 A
5991788 Mintzer Nov 1999 A
5991898 Rajski et al. Nov 1999 A
5995748 Guttag et al. Nov 1999 A
5999015 Cliff et al. Dec 1999 A
5999990 Sharrit et al. Dec 1999 A
6005806 Madurawe et al. Dec 1999 A
6006321 Abbott Dec 1999 A
6009451 Burns Dec 1999 A
6018755 Gonikberg et al. Jan 2000 A
6020759 Heile Feb 2000 A
6021423 Nag et al. Feb 2000 A
6029187 Verbauwhede Feb 2000 A
6031763 Sansbury Feb 2000 A
6041340 Mintzer Mar 2000 A
6052327 Reddy et al. Apr 2000 A
6052755 Terrill et al. Apr 2000 A
6055555 Boswell et al. Apr 2000 A
6064614 Khoury May 2000 A
6065131 Andrews et al. May 2000 A
6066960 Pedersen May 2000 A
6069487 Lane et al. May 2000 A
6072994 Phillips et al. Jun 2000 A
6073154 Dick Jun 2000 A
6075381 LaBerge Jun 2000 A
6084429 Trimberger Jul 2000 A
6085317 Smith Jul 2000 A
6091261 DeLange Jul 2000 A
6091765 Pietzold, III et al. Jul 2000 A
6094726 Gonion et al. Jul 2000 A
6097988 Tobias Aug 2000 A
6098163 Guttag et al. Aug 2000 A
6107820 Jefferson et al. Aug 2000 A
6107821 Kelem et al. Aug 2000 A
6107824 Reddy et al. Aug 2000 A
6130554 Kolze et al. Oct 2000 A
6140839 Kaviani et al. Oct 2000 A
6154049 New Nov 2000 A
6157210 Zaveri et al. Dec 2000 A
6163788 Chen et al. Dec 2000 A
6167415 Fischer et al. Dec 2000 A
6175849 Smith Jan 2001 B1
6215326 Jefferson et al. Apr 2001 B1
6226735 Mirsky May 2001 B1
6242947 Trimberger Jun 2001 B1
6243729 Staszewski Jun 2001 B1
6246258 Lesea Jun 2001 B1
6279021 Takano et al. Aug 2001 B1
6286024 Yano et al. Sep 2001 B1
6314442 Suzuki Nov 2001 B1
6314551 Borland Nov 2001 B1
6321246 Page et al. Nov 2001 B1
6323680 Pedersen et al. Nov 2001 B1
6327605 Arakawa et al. Dec 2001 B2
6351142 Abbott Feb 2002 B1
6353843 Chehrazi et al. Mar 2002 B1
6359468 Park et al. Mar 2002 B1
6360240 Takano et al. Mar 2002 B1
6362650 New et al. Mar 2002 B1
6366944 Hossain et al. Apr 2002 B1
6367003 Davis Apr 2002 B1
6369610 Cheung et al. Apr 2002 B1
6377970 Abdallah et al. Apr 2002 B1
6407576 Ngai et al. Jun 2002 B1
6407694 Cox et al. Jun 2002 B1
6434587 Liao et al. Aug 2002 B1
6438569 Abbott Aug 2002 B1
6438570 Miller Aug 2002 B1
6446107 Knowles Sep 2002 B1
6453382 Heile Sep 2002 B1
6467017 Ngai et al. Oct 2002 B1
6480980 Koe Nov 2002 B2
6483343 Faith et al. Nov 2002 B1
6487575 Oberman Nov 2002 B1
6523055 Yu et al. Feb 2003 B1
6531888 Abbott Mar 2003 B2
6538470 Langhammer et al. Mar 2003 B1
6542000 Black et al. Apr 2003 B1
6556044 Langhammer et al. Apr 2003 B2
6557092 Callen Apr 2003 B1
6571268 Giacalone et al. May 2003 B1
6573749 New et al. Jun 2003 B2
6574762 Karimi et al. Jun 2003 B1
6591283 Conway et al. Jul 2003 B1
6591357 Mirsky Jul 2003 B2
6600495 Boland et al. Jul 2003 B1
6600788 Dick et al. Jul 2003 B1
6628140 Langhammer et al. Sep 2003 B2
6687722 Larsson et al. Feb 2004 B1
6692534 Wang et al. Feb 2004 B1
6700581 Baldwin et al. Mar 2004 B2
6725441 Keller et al. Apr 2004 B1
6728901 Rajski et al. Apr 2004 B1
6731133 Feng et al. May 2004 B1
6732134 Rosenberg et al. May 2004 B1
6744278 Liu et al. Jun 2004 B1
6745254 Boggs et al. Jun 2004 B2
6763367 Kwon et al. Jul 2004 B2
6771094 Langhammer et al. Aug 2004 B1
6774669 Liu et al. Aug 2004 B1
6781408 Langhammer Aug 2004 B1
6781410 Pani et al. Aug 2004 B2
6788104 Singh et al. Sep 2004 B2
6801924 Green et al. Oct 2004 B1
6836839 Master et al. Dec 2004 B2
6874079 Hogenauer Mar 2005 B2
6904471 Boggs et al. Jun 2005 B2
6924663 Masui et al. Aug 2005 B2
6963890 Dutta et al. Nov 2005 B2
6971083 Farrugia et al. Nov 2005 B1
6978287 Langhammer Dec 2005 B1
7020673 Ozawa Mar 2006 B2
7093204 Oktem et al. Aug 2006 B2
7107305 Deng et al. Sep 2006 B2
7113969 Green et al. Sep 2006 B1
7181484 Stribaek et al. Feb 2007 B2
7313585 Winterrowd Dec 2007 B2
7395298 Debes et al. Jul 2008 B2
7409417 Lou Aug 2008 B2
7415542 Hennedy et al. Aug 2008 B2
7421465 Rarick et al. Sep 2008 B1
7428566 Siu et al. Sep 2008 B2
7430578 Debes et al. Sep 2008 B2
7430656 Sperber et al. Sep 2008 B2
7472155 Simkins et al. Dec 2008 B2
7590676 Langhammer Sep 2009 B1
7646430 Brown Elliott et al. Jan 2010 B2
20010023425 Oberman et al. Sep 2001 A1
20010029515 Mirsky Oct 2001 A1
20020002573 Landers et al. Jan 2002 A1
20020089348 Langhammer Jul 2002 A1
20020116434 Nancekievill Aug 2002 A1
20030088757 Lindner et al. May 2003 A1
20040064770 Xin Apr 2004 A1
20040083412 Corbin et al. Apr 2004 A1
20040103133 Gurney May 2004 A1
20040148321 Guevorkian et al. Jul 2004 A1
20040178818 Crotty et al. Sep 2004 A1
20040193981 Clark et al. Sep 2004 A1
20040267863 Bhushan et al. Dec 2004 A1
20050038842 Stoye Feb 2005 A1
20050144212 Simkins et al. Jun 2005 A1
20050144215 Simkins et al. Jun 2005 A1
20050144216 Simkins et al. Jun 2005 A1
20050166038 Wang et al. Jul 2005 A1
20050187999 Zheng et al. Aug 2005 A1
20070185951 Lee et al. Aug 2007 A1
20070185952 Langhammer et al. Aug 2007 A1
20080133627 Langhammer et al. Jun 2008 A1
20090187615 Abe et al. Jul 2009 A1
Foreign Referenced Citations (35)
Number Date Country
0 158 430 Oct 1985 EP
0 380 456 Aug 1990 EP
0 411 491 Feb 1991 EP
0 461 798 Dec 1991 EP
0 498 066 Aug 1992 EP
0 555 092 Aug 1993 EP
0 606 653 Jul 1994 EP
0 657 803 Jun 1995 EP
0 660 227 Jun 1995 EP
0 668 659 Aug 1995 EP
0 905 906 Mar 1999 EP
0 909 028 Apr 1999 EP
0 927 393 Jul 1999 EP
0 992 885 Apr 2000 EP
1 031 934 Aug 2000 EP
1 058 185 Dec 2000 EP
1 220 108 Jul 2002 EP
2 283 602 May 1995 GB
2 286 737 Aug 1995 GB
2 318 198 Apr 1998 GB
61-237133 Oct 1986 JP
7-135447 May 1995 JP
WO9527243 Oct 1995 WO
WO9628774 Sep 1996 WO
WO9708606 Mar 1997 WO
WO9812629 Mar 1998 WO
WO9832071 Jul 1998 WO
WO9838741 Sep 1998 WO
WO9922292 May 1999 WO
WO9931574 Jun 1999 WO
WO9956394 Nov 1999 WO
WO0051239 Aug 2000 WO
WO0052824 Sep 2000 WO
WO0113562 Feb 2001 WO
WO-2005101190 Oct 2005 WO