The invention relates generally to additive manufacturing, and more particularly, to additive manufacturing anchors for joining different materials and for forming surface overlays.
Various manufactured products may incorporate components with different materials. As may be appreciated, the different materials of the manufactured products may be joined together by fasteners, mating geometries, welding, or other processes. Fasteners or complementary geometries may add components or weight to the joint. Heat input from welding components together may form a heat affected zone (HAZ) that affects properties of the joint, such as the strength or fatigue life. Undesirable phases or intermetallic structures may form from mixing incompatible base materials into a weld. Direct manufacturing (DM) processes may build up materials with an electron beam in a vacuum chamber. However, the vacuum chamber and electron beam may reduce the availability of DM processes for some products.
Certain aspects commensurate in scope with the originally claimed invention are set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of certain forms the invention might take and that these aspects are not intended to limit the scope of the invention. Indeed, the invention may encompass a variety of aspects that may not be set forth below.
In one embodiment, an additive manufacturing system includes an additive manufacturing tool configured to receive a plurality of metallic anchoring materials and to supply a plurality of droplets to a part, and a controller configured to independently control the composition, formation, and application of each droplet to the plurality of droplets to the part. The plurality of droplets is configured to build up the part. Each droplet of the plurality of droplets includes at least one metallic anchoring material of the plurality of metallic anchoring materials.
In another embodiment, a method of additively forming a part includes forming a plurality of droplets, wherein forming the plurality of droplets includes controlling a composition of each droplet of the plurality of droplets based at least in part on a desired composition for a respective desired deposition location of the part, and the composition of each droplet includes at least one of a plurality of metallic anchoring materials. The method also includes controlling heating of a first work piece, controlling heating of each droplet independent of heating of the first work piece, and forming the part on the first work piece. Forming the part includes applying each droplet at the respective desired deposition location on the first work piece based at least in part on the desired composition of the part. The heating of the first work piece, the heating of each droplet, and the respective desired deposition locations are based at least in part on a predetermined set of instructions.
In another embodiment, an additive manufacturing system includes one or more feeders, a welding torch, and a controller. The one or more feeders are configured to supply a plurality of metallic anchoring materials to a welding torch. The welding torch is configured build up a part with a plurality of micro-deposits, wherein the welding torch is configured to form each micro-deposit of the plurality of micro-deposits from a respective droplet, and the respective droplet includes one or more metallic anchoring materials of the plurality of metallic anchoring materials. The controller is configured to control the composition of the respective droplet of each micro-deposit of the plurality of micro-deposits.
These and other features, aspects, and advantages of the present invention will become better understood when the following detailed description is read with reference to the accompanying drawings in which like characters represent like parts throughout the drawings, wherein:
One or more specific embodiments of the present invention will be described below. In an effort to provide a concise description of these embodiments, all features of an actual implementation may not be described in the specification. It should be appreciated that in the development of any such actual implementation, as in any engineering or design project, numerous implementation-specific decisions must be made to achieve the developers' specific goals, such as compliance with system-related and business-related constraints, which may vary from one implementation to another. Moreover, it should be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking of design, fabrication, and manufacture for those of ordinary skill having the benefit of this disclosure.
Turning to
The additive manufacturing tool 18 heats the one or more anchor materials 22 from a feeder 24 to form the droplets 20 having a desired composition. In some embodiments, a mixer 31 of the additive manufacturing tool 18 is configured to receive and to combine the one or more anchor materials 22 from the feeder 24. For example, the mixer 31 may combine the multiple anchor materials 22 into an electrode 32 having a desired combination of the anchor materials 22. In some embodiments, the mixer 31 may form a powder mixture of the multiple anchor materials 22. The electrode 32 and/or the powder mixture may be formed into droplets 20. The one or more anchor materials 22 are metallic materials that include, but are not limited, to aluminum alloys, steel alloys, aluminum, iron, copper, manganese, silicon, magnesium, zinc, chromium, titanium, molybdenum, and nickel. As discussed herein, the droplets 20 are units of material transfer. Each droplet 20 may become a “micro-deposit” when solidified, and the part 12 is formed from multiple micro-deposits 21.
Returning to
A controller 30 of the additive manufacturing system 10 controls the application of the droplets 20 to form the part (e.g., anchor) 12 from the micro-deposits 21. In some embodiments with wired anchor materials 22, the controller 30 controls the composition of the droplets 20 applied to the part 12 by adjusting the relative quantities of the one or more anchor materials 22 supplied to the mixer 31 of the additive manufacturing tool 18, which thereby forms the electrode 32. For example, where the first anchor material 26 is substantially similar to or compatible with the material of the first work piece, the controller 30 may increase the relative ratio of the first anchor material 26 in the electrode 32 to form (e.g., print) portions of the part 12 near the first work piece 14. As discussed herein, the composition of each droplet 20 is based on the one or more anchor materials 22 that make up the respective droplet 20. The droplets 20 are liquid (e.g., molten) at least in part. In some embodiments, a droplet 20 may be a liquid anchor material 22 encapsulating a solid element of the same or a different anchor material 22. For example, the additive manufacturing tool 18 may at least partially melt only an outer layer of a droplet 20.
The additive manufacturing tool 18 may mix (e.g., melts, sinters, compresses) multiple anchor materials 22 with the mixer 31 into an electrode 32 with a mixed composition. The controller 30 may control the additive manufacturing tool 18 to form droplets 20 with the mixed composition from the mixed electrode 32. The controller 30 may adjust the composition of the part (e.g., anchor) 12 by varying ratios of the one or more anchor materials 22 in the mixed electrode 32. In some embodiments, the additive manufacturing tool 18 supplies each of the one or more anchor materials 22 as a separate electrode 32 that the additive manufacturing tool 18 respectively forms into droplets 20. For example, the controller 30 may control the additive manufacturing tool 18 to form separate droplets 20 with different respective compositions from each of the multiple electrodes 32. The controller 30 may adjust the composition of the part 12 by varying ratios of the one or more anchor materials 22 applied as droplets 20 to the part 12.
In some embodiments, the controller 30 is coupled to multiple additive manufacturing tools 18, each supplying a separate anchor material 22 via a respective electrode. The controller 30 may control each of the multiple additive manufacturing tools 18 to adjust the composition of the part 12 by varying ratios of the anchor materials 22 supplied as droplets 20 by each additive manufacturing tool 18. As illustrated in
Returning again to
As discussed above, the controller 30 may control power output for processes utilizing electrical arc and/or photonic energy to heat the electrode 32. The controller 30 may control the rate at which the droplets 20 are applied to the part 12 by controlling the power source 34. In some embodiments, the controller 30 controls a heating device 36 (e.g., inductor coil, resistive heater) to preheat the electrode 32. Accordingly, the controller 30 may control the heat applied to the electrode 32 to form the droplets 20. Additionally, or in the alternative, the heating devices 36, 42, 44 may enable pre-heating or post-heating of the electrode 32, the first work piece 14, and/or the second work piece 16 respectively. Preheating the electrode 32 may reduce the heat applied to the first and second work pieces 14, 16, thereby reducing the formation of a heat affected zone
The droplets 20 added to the part 12 as micro-deposits 21 affect the heat added to the first work piece 14 and the second work piece 16. As discussed herein, the formation of the micro-deposits 21 may include, but is not limited to, heating the anchor material 22 (e.g., electrode 32) to form the droplet 20, and cooling the micro-deposit 21 in the part 12. As may be appreciated, the heat of the droplet 20 and the cooling rate of the micro-deposit may affect the microstructure of the micro-deposit 21 formed by the respective droplet 20, thereby affecting the properties of the part 12. For example, the microstructure of the micro-deposits 21 of the part 12 at a first location 38 may be different than the microstructure of the micro-deposits 21 at a second location 40. Additionally, as discussed herein, the application of each droplet 20 to the part 12 may include, but is not limited to, the application rate of droplets 20 to the part 12 and the application location on the part 12 of each micro-deposit 21. The controller 30 may control the temperature of the droplets 20, the application (e.g., deposition) rate, and the application location of each droplet 20 to control the heat applied to the work pieces 14, 16. For example, the controller 30 may reduce the inducement of a heat affected zone (HAZ) that may affect the microstructure and properties (e.g., strength, fatigue life) of the work pieces 14, 16 proximate to the part 12. The temperature, deposition rate, and application location of the droplets 20 in the part 12 affects the heat added to the first work piece 14 and the second work piece 16. For example, an arc at 2000° C. adds more heat to the part 12 than an arc at 1200° C. As may be appreciated, high deposition rates (e.g., 60 Hz) of droplets 20 may add less heat to the part 12 than relatively lower deposition rates (e.g., 30 Hz) of droplets 20. Additionally, droplets 20 applied at the first location 38 on the first work piece 14 add more heat to the first work piece 14 than droplets 20 applied at the second location 40 on the first work piece 14. In some embodiments, the controller 30 controls the heating device 36 to affect the application temperature of the micro-deposits 21 in the part 12 to affect the heat added to the first work piece 14 and the second work piece 16. The controller 30 may control the feeder 24 and/or the mixer 31 to control the application rate, and the controller 30 may control the power source 34 to control the application rate and the application temperature of the droplets 20 as the micro-deposits in the part 12. In some embodiments, a robotic system 56 coupled to the additive manufacturing tool 18 may control the application location of the droplets 20 by moving the additive manufacturing tool 18 along coordinate axes 48 via one or more servomotors 57.
In a similar manner to controlling the heat applied to the work pieces 14, 16, the controller 30 may control the temperature of the droplets 20, the application rate, and the application location of each droplet 20 to control the heat applied to previously applied micro-deposits 21. For example, the application rate and the temperature of the droplets 20 may affect the cooling rate and microstructure of previously applied micro-deposits 21. The controller 30 may control the application rate and the temperature of the droplets 20 to achieve a desired microstructure for each of the micro-deposits 21 utilized to form the part 12. Accordingly, the controller may control the composition and/or the microstructure of the micro-deposits 21 of the part 12.
In some embodiments, a first heating device 42 may heat the first work piece 14 near the part 12, and/or a second heating device 44 may heat the second work piece 16 near the part 12 (e.g., joint). The first and second heating devices 42, 44 may include, but are not limited to, inductor coils, resistance heaters, flames, and so forth. The first and second heating devices 42, 44 may interface with one or more surfaces of the respective first and second work pieces 14, 16. For example, the first heating device 42 may extend around the first work piece 14. The controller 30 may control the first heating device 42 and/or the second heating device 44 to preheat the respective work pieces 14, 16 near the part 12. As may be appreciated, preheating a work piece 14, 16 may affect the adhesion to micro-deposits 21 from the additive manufacturing tool 18. For example, increasing the temperature of the first work piece 14 may increase the adhesion of the micro-deposits 21 at the first location 38. In some embodiments, the controller 30 independently controls the first and second heating devices 42, 44, thereby enabling the first work piece 14 to be preheated to a different temperature than the second work piece 16.
As discussed previously, the first work piece 14 may be different from the second work piece 16. For example, the first work piece 14 may be aluminum and the second work piece 16 may be steel. In some embodiments, the first and second work pieces 14, 16 may be the same or different compositions with the same base metal (e.g., aluminum, titanium, iron, galvanized-coated material, high strength steel). For example, the first work piece 14 may be a nickel coated steel, and the second work piece 16 may be a relatively high-carbon steel. The first work piece 14 may have different properties and/or structure than the second work piece 16. For example, the melting temperature, thermal conductivity, and strength, among other properties, may differ between the first work piece 14 and the second work piece 16. Additionally, or in the alternative, the first work piece 14 and the second work piece 16 may have different sensitivities to heat. For example, the first work piece 14 may be annealed at a melting temperature of the second work piece 16. Accordingly, annealing the first work piece 16 (e.g., by heating it to the melting temperature of the second work piece 16) may affect properties (e.g., strength, fatigue-life) of the first work piece 16.
As may be appreciated, the heat affected zone (HAZ) of a metal may be defined herein as the area of the metal in which the properties and/or microstructure of the metal has been affected by heat. In some embodiments, the controller 30 may independently control the heat applied to the electrode 32, the heat applied to the first work piece 14 (e.g., via the first heating device 42), and the heat applied to the second work piece 16 (e.g., via the second heating device 44). Through independent control of the heat applied to these components, the additive manufacturing system 10 may reduce the HAZ of the first work piece 14 and/or the second work piece 16. For example, if the first work piece 14 is aluminum and the second work piece 16 is a steel with a higher melting temperature than the first work piece 14, the controller 30 may control the additive manufacturing tool 18 to apply the droplets 20 near the second work piece 16 (e.g., steel) with more heat and/or at a higher rate than the droplets 20 near the first work piece 14 (e.g., aluminum).
The controller 30 may control the composition and the formation of each of the droplets 20 applied to build the part 12 with micro-deposits 21 as the additive manufacturing tool 18 moves between the first work piece 14 and the second work piece 16. In this way, the additive manufacturing system 10 may control the composition and structure (e.g., spatial distribution of the micro-deposits 21) of the part 12 to have a desired set of properties while controlling the HAZ of the first and/or second work pieces 14, 16. Sensors 46 may measure the temperature and cooling rate of the electrode 32, the first work piece 14, and/or the second work piece 16. Feedback from the sensors 46 may be stored as temperature history of the electrode 32, the first work piece 14, and/or the second work piece 16. The controller 30 may use this temperature history to control the composition and structure of the part 12. In some embodiments, the sensors 46 may measure the position of the additive manufacturing tool 18, first work piece 14, and second work piece 16 relative to the set of coordinate axes 48. The controller 30 may control the application of the droplets 20 to the part 12 based at least in part on the relative distance from the first work piece 14 and/or the second work piece 16. For example, in some applications the part 12 may be formed to have a gradient composition of the first and second anchor materials 26, 28, such that the composition of the part 12 adjacent to the first work piece 14 is compatible (e.g., forming a strong bond) with the first work piece 14, and the composition of the part 12 adjacent to the second work piece 16 is compatible (e.g., forming a strong bond) with the second work piece 16.
The controller 30 may independently control the thermal cycle, peak temperature, and cooling rates of each of the micro-deposits 21 based at least in part on the application location in the part 12. The controller 30 may independently control the composition and the formation of each of the droplets 20 for the application location according to a set of instructions (e.g., code) executed by a processor 49. The processor 49 may load the set of instructions from a memory 50 based at least in part on the work pieces 14, 16 and the anchor materials 22. In some embodiments, an operator (e.g., host computer) may provide the set of instructions directly to the controller 30 via an operator interface 52. For example, the operator may load a set of instructions for forming the part 12 from a three-dimensional model (e.g., computer aided design (CAD) model) of the anchor produced by a three-dimensional 3D CAD tool. In some embodiments, the controller 30 may receive and/or produce a set of instructions to produce the part 12 with a desired composition of anchor materials 22. For example, the controller 30 may utilize a 3D CAD model of the part 12 to control the robotic system 56 to produce the part 12 from the anchor materials 22. Additionally, or in the alternative, an operator may input information about the work pieces 14, 16 and the anchor materials 22 into the operator interface 52, and the controller 30 may determine and/or modify the set of instructions to form the part 12 with desired characteristics. The set of instructions directs the controller 30 to control the composition, formation, and application of each droplet 20 as a micro-deposit 21 to form the part 12 with desired characteristics.
The controller 30 may use input from the sensors 46 to individually control each droplet 20 applied to the part 12 as a micro-deposit 21. In some embodiments, the controller 30 may adapt the set of instructions based at least in part on the input from the sensors 46 to compensate for changes to the first work piece 14, the second work piece 16, or the part 12. For example, the controller 30 may adapt the application location and/or the heating of the droplets 20 during the formation of the part 12 if the input from the sensors 46 indicates a change in the fit-up of a joint between the first work piece 14 and the second work piece 16. Additionally, or in the alternative, the controller 30 may adapt the application and/or the heating of the droplets if the input from the sensors 46 indicates a deflection or burn through of the first work piece 14 and/or the second work piece 16. The controller 30 may adapt the temperature of the first work piece 14 and/or the temperature of the second work piece 16 (e.g., via the heating devices 42, 44) during the formation of the part 12 if the input from the sensors 46 indicates a deflection or burn through of the first work piece 14 and/or the second work piece 16.
The additive manufacturing system 10 may build the part 12 between the first work piece 14 and the second work piece 16 by manual or automatic movement of the additive manufacturing tool 18. In some embodiments, the droplets 20 may be deposited via the arc (e.g. spray) as shown in
In some embodiments, the first and/or second work pieces 14, 16 may have a coating 68, such as a corrosion resistant coating (e.g., zinc), wear resistant coating, and so forth. The controller 30 may control the composition and application of the layers 62 so that the joint 60 does not remove or substantially affect the coating 68 of a work piece proximate to the joint 60. For example, if the second work piece 16 is galvanized steel with a zinc coating 68, the seventh layer 62g may have zinc or a “zinc-friendly” material (e.g., silicon bronze) as an anchoring material, and the droplets 20 for the seventh layer 62g may be applied without substantially removing, melting, or affecting the corrosion-resistance of the zinc coating 68.
During application of the layers 62, the additive manufacturing system 10 may independently control the application of heat to the work pieces and the joint 60 to reduce the melting and/or the HAZ from each layer 62, as discussed above. In some embodiments, the controller 30 may control the additive manufacturing system 10 so that the application of the interior layers (e.g., layers 62b, 62c, 62d, 62e, and 62f) does not substantially produce an HAZ in the first work piece 14 and/or the second work piece 16. That is, only the first layer 62a may heat and at least partially fuse or bond with the first work piece 14, and/or only the seventh layer 62g may heat and at least partially fuse or bond with the second work piece 16. Additionally, or in the alternative, the controller 30 may control the penetration of the droplets 20 into the work piece 14, 16.
In some embodiments, the additive manufacturing system 10 may adjust the geometry and composition of the layers 62 applied to build the joint 60. For example, a first end 70 of the first work piece 14 may have a first width 72, and a second end 74 of the second work piece 16 may have a second width 76 that is different from the first width 72. The controller 30 may apply the droplets 20 as micro-deposits 21 to form layers 62 that have widths between the first width 72 and the second width 76. As may be appreciated, the controller 30 may form the joint 60 with a geometry that provides a desired level of strength. For example, a curved geometry (e.g., fillet) or tapered geometry (as shown) of the joint 60 may reduce stresses in the joint 60 relative to a perpendicular joint geometry 60.
The controller 30 controls the composition and/or location of each of the droplets 20 applied to the joint 60 as micro-deposits 21. At the first end 70, the joint 60 is substantially compatible with the first work piece 14 (e.g., the first anchoring material 26). In some embodiments, the material of the joint 60 at the first end 70 is substantially the same as the material of the first work piece 14. As the distance 84 increases towards the second end 74 of the second work piece 16, the percentage of the first anchoring material 26 in the joint 60 decreases, and the percentage of the second anchoring material 28 (e.g., the second work piece 16) increases. In some embodiments, the percentage of the first anchoring material 26 in the joint 60 has an inverse relationship with the distance 84 from the first end 70, and the percentage of the second anchoring material 28 in the joint 60 has a direct relationship with the distance 84 from the first end 70. In some embodiments, the material of the joint 60 at the second end 74 is substantially the same as the material of the second work piece 16. The relationships of the anchoring materials 22 in the joint 60 with respect to the distance 84 from the first end 70 may include, but are not limited to, linear, exponential, logarithmic, or any combination thereof. In some embodiments, the percentage of the first anchoring material 26 in the joint 60 may be approximately equal to the percentage of the second anchoring material 28 at a middle portion 88 of the joint 60. However, other embodiments of the joint 60 may have different relative percentages of the first anchoring material 26 and the second anchoring material 28 throughout the joint 60. In some embodiments, the percentage of the third anchoring material 29 in the joint 60 may be greater proximate to the first work piece 14 than proximate to the second work piece 16. For example, the third anchor material 29 may affect the adhesion or other properties of the first and second anchor materials 26, 28 in layers 62 with a majority of the first anchor material 26. In some embodiments, the third anchor material 29 is more compatible with the first anchor material 26 than the second anchor material 28. As may be appreciated, the additive manufacturing system 10 may form each layer 62 of the joint 60 between the first and second work pieces 14, 16 with a variety of different compositions of anchoring materials 22.
While
In some embodiments, connecting the first work piece 14 to the second work piece 16 may increase the corrosion potential if the work pieces 14, 16 have different electric potentials. The additive manufacturing system 10 may deposit the anchoring materials 22 to provide galvanic protection, thereby reducing the corrosion of the first and/or second work pieces 14, 16. For example, the additive manufacturing system 10 may form a sacrificial anode 104 in the joint 100. In some embodiments, the sacrificial anode 104 may be the first anchoring material 26, the second anchoring material 28, or a third anchoring material 29. The anchoring material of the sacrificial anode 104 may be a different anchoring material than a remainder of the joint 100. As may be appreciated, the sacrificial anode 104 formed in the joint 100 may provide corrosion protection to the first and/or second work pieces 14, 16, and/or the structural load bearing portion of the joint 100.
In some embodiments, the additive manufacturing tool 18 may form (e.g., build up, print) parts to form joints between coated components. For example, a joint portion (e.g., end portion) of the second work piece 16 (e.g., steel) may be coated, brazed, and/or clad with the first work piece 14 (e.g., aluminum). In some embodiments, the additive manufacturing tool 18 may additively form the coating of the first work piece 14 on the second work piece 16. The additive manufacturing tool 18 may build up the part 12 by integrally forming (e.g., printing, welding, melting, fusing) the additive anchoring material 22 to the coating of the first work piece 14. In some embodiments, the additive manufacturing tool 18 integrally forms the part 12 with the coating of the first work piece 14 and with another component of the same material as the coating. For example, the additive manufacturing tool 18 may be used to form an aluminum anchor on an aluminum-coated steel work piece, where the aluminum anchor is fused with an aluminum component. In some embodiments, the additive manufacturing tool 18 integrally forms the part with the coating of a work piece (e.g., first work piece 14), where the printed part 12 interfaces (e.g., mates) with another work piece (e.g., the second work piece 16) of the material different from the coating, like the part 12 shown in
The controller 30 controls the formation and application of each droplet 20 to form the part (e.g., joint) between the work pieces 14, 16 with micro-deposits 21. Prior to deposition of each droplet 20, the controller 30 determines (block 118) the deposition location for the droplet 20 as the micro-deposits 21. The deposition location may be directly on one of the work pieces and/or on a previous micro-deposit 21. The controller 30 selects (block 120) the one or more anchor materials 22 used to form the droplet 20. As described above, one or more anchor materials 22 may be provided to the additive manufacturing tool 18 as a one or more electrodes 32 in wired or powdered forms based at least in part on the loaded instructions. In some embodiments the additive manufacturing tool 18 may mix (e.g., melt, sinter, compress) multiple anchor materials 22 into a mixed electrode 32 or a mixed powder, which is formed into droplets 20. In some embodiments, the additive manufacturing tool 18 may have multiple electrodes 32 of different anchoring materials 22. The controller 30 selects (block 120) which electrode 32 to form the droplet 20 based at least in part on the loaded instructions. The controller 30 may direct the additive manufacturing tool 18 to heat the electrode 32 to form a droplet 20 and controls (block 122) the heating of the droplet 20 to be applied to form the part 12. The controller 30 controls the heating of the droplet 20 via controlling the power output supplied to the electrode 32 for the arc. In some embodiments, the controller 30 controls preheating of the electrode 32, such as via an induction heater, resistance heater, and/or laser in or around the additive manufacturing tool 18.
The controller 30 may control (block 124) the heating of the work pieces independent from controlling (block 122) the heating of the anchoring materials 22. Heating devices 42, 44 on the first and/or the second work pieces 14, 16 may be controlled to preheat the respective material 14, 16 proximate to the part (e.g., joint). The controller 30 controls the additive manufacturing system 10 to apply (block 126) the droplet 20 with the desired composition at the determined deposition location when the work piece is at the desired temperature. After the droplet 20 is deposited as a micro-deposit 21, the controller 30 may receive and evaluate (block 128) sensor inputs regarding components of the additive manufacturing system 10. For example, the controller 30 may determine the respective temperature histories and/or relative locations of the work pieces and the part from the sensors 46. Based at least in part on the sensor inputs, the controller 30 may adapt (block 130) the set of instructions for position changes of the work pieces and/or of the part, such as due to thermal effects. In some embodiments, the controller 30 may increase the deposition rate of the droplets 20 utilized to form the part to reduce the heat input to the work pieces 14, 16. The controller 30 or operator may move (block 132) the additive manufacturing tool 18 and repeat blocks 118-128 until the part (e.g., joint) is complete.
While some of the embodiments described above utilize the additive manufacturing system 10 to form a joint between a first work piece 14 of a first material and a second work piece 16 of a second material with one or more anchoring materials 22, it will be appreciated that the additive manufacturing system 10 may build the first work piece from a first anchoring material and/or may build the second work piece from a second anchoring material. That is, the additive manufacturing system 10 may build up (e.g., print) a component, such as a work piece, with one or more anchoring materials 22 without forming the joint at the same time. For example, the additive manufacturing system 10 may build up the first work piece 14 in a first direct manufacturing (DM) process, build up the second work piece 16 in a second DM process, and build up a part (e.g., joint) between the first work piece 14 and the second work piece 16 in a third DM process. The first, second, and third DM processes may be formed at the same or different worksites. For example, the additive manufacturing system 10 may build up the first work piece 14 at a first worksite, the additive manufacturing system 10 may build up the second work piece 16 at a second worksite, and the additive manufacturing system 10 may form the part (e.g., joint) at yet a third worksite. In some embodiments, the additive manufacturing system 10 may produce via additive manufacturing one or more work pieces and the respective part 12 (e.g., anchor, joint) therebetween. In some embodiments, the additive manufacturing system 10 may produce the part 12 at the first end 70 of the first work piece 14 without connecting the open end of the part 12 to the second work piece 16. The additive manufacturing system 10 may form the part 12 with the open end of the part 12 configured to later be connected (e.g., via welding) to the second work piece 16. In this way, the additive manufacturing system 10 may facilitate connecting the first work piece 14 of a first material to the second work piece 16 of a different second material.
The additive manufacturing system may be utilized to form metallic layers for various purposes, including joining dissimilar materials. In some embodiments, the additive manufacturing system may form a corrosion-resistive and/or wear-resistive overlay on a fabricated component. The additive manufacturing system may have the flexibility to adapt metallic components with layers for various geometries and/or to provide metallurgical features for a desired performance. Moreover, the additive manufacturing system may be utilized to build up (e.g., print) components with one or more anchoring materials in a process similar to welding.
While only certain features of the invention have been illustrated and described herein, many modifications and changes will occur to those skilled in the art. It is, therefore, to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true spirit of the invention.
This application claims priority to, and is a continuation of, co-pending U.S. application Ser. No. 14/328,449, entitled “ADDITIVE MANUFACTURING SYSTEM FOR JOINING AND SURFACE OVERLAY,” having a filing date of Jul. 10, 2014, which claims priority from and the benefit of U.S. Provisional Application Ser. No. 61/846,935, entitled “ADDITIVE MANUFACTURING SYSTEM FOR JOINING AND SURFACE OVERLAY,” filed Jul. 16, 2013, both of which are hereby incorporated by reference in their entirety for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
2191471 | Hopkins | Feb 1940 | A |
3141085 | Manz | Jul 1964 | A |
3581053 | Manz | May 1971 | A |
3912980 | Crump et al. | Oct 1975 | A |
4595820 | Richardson | Jun 1986 | A |
4665299 | Iwata et al. | May 1987 | A |
4723060 | Arnoldy | Feb 1988 | A |
4758707 | Ogilvie et al. | Jul 1988 | A |
4889969 | Kawai et al. | Dec 1989 | A |
4897523 | Parks et al. | Jan 1990 | A |
5148001 | Stava | Sep 1992 | A |
5281789 | Merz et al. | Jan 1994 | A |
5398193 | deAngelis | Mar 1995 | A |
6023046 | Holverson et al. | Feb 2000 | A |
6051810 | Stava | Apr 2000 | A |
6143378 | Harwell | Nov 2000 | A |
6149072 | Tseng | Nov 2000 | A |
6248976 | Blankenship | Jun 2001 | B1 |
6265701 | Bickel et al. | Jul 2001 | B1 |
6326591 | Hutchinson et al. | Dec 2001 | B1 |
6329636 | Geissler | Dec 2001 | B1 |
6331694 | Blankenship | Dec 2001 | B1 |
6347259 | Goldenberg | Feb 2002 | B1 |
6405095 | Jang et al. | Jun 2002 | B1 |
6441342 | Hsu | Aug 2002 | B1 |
6515259 | Hsu et al. | Feb 2003 | B1 |
6534745 | Lowney | Mar 2003 | B1 |
6707001 | Ulrich et al. | Mar 2004 | B1 |
6800832 | Hutchison et al. | Oct 2004 | B2 |
6909067 | Davidson et al. | Jun 2005 | B2 |
6933466 | Hutchison | Aug 2005 | B2 |
6963048 | Huismann et al. | Nov 2005 | B2 |
6969823 | Huismann et al. | Nov 2005 | B2 |
6974931 | Holverson et al. | Dec 2005 | B2 |
6984806 | Huismann et al. | Jan 2006 | B2 |
7129443 | Davidson et al. | Oct 2006 | B2 |
7165707 | Huismann et al. | Jan 2007 | B2 |
7304269 | Fulmer et al. | Dec 2007 | B2 |
7335854 | Hutchison | Feb 2008 | B2 |
7572403 | Gu et al. | Aug 2009 | B2 |
8367962 | Zaffino | Feb 2013 | B2 |
8373094 | Wells et al. | Feb 2013 | B2 |
8522647 | Dixon | Sep 2013 | B1 |
8598492 | Davidson et al. | Dec 2013 | B2 |
8704131 | Davidson et al. | Apr 2014 | B2 |
8803034 | Peters et al. | Aug 2014 | B2 |
8901453 | Miyagi et al. | Dec 2014 | B2 |
9174294 | Hutchison et al. | Nov 2015 | B2 |
9314865 | Davidson et al. | Apr 2016 | B2 |
9902018 | Voice et al. | Feb 2018 | B2 |
10086467 | Burke | Oct 2018 | B2 |
20010040153 | Lanouette et al. | Nov 2001 | A1 |
20030021251 | Moshiri-Tafreshi et al. | Jan 2003 | A1 |
20030058149 | Jayadeva | Mar 2003 | A1 |
20030062355 | Ikegami et al. | Apr 2003 | A1 |
20030068518 | Ando et al. | Apr 2003 | A1 |
20030201251 | Barbezat et al. | Oct 2003 | A1 |
20040206747 | Ito | Oct 2004 | A1 |
20040234687 | Schmid et al. | Nov 2004 | A1 |
20050284599 | Grinberg et al. | Dec 2005 | A1 |
20060054079 | Withey et al. | Mar 2006 | A1 |
20060226137 | Huismann et al. | Oct 2006 | A1 |
20070000893 | Huismann et al. | Jan 2007 | A1 |
20070051711 | Kachline | Mar 2007 | A1 |
20070102407 | Uezono et al. | May 2007 | A1 |
20070181547 | Vogel et al. | Aug 2007 | A1 |
20080087359 | Zurecki et al. | Apr 2008 | A1 |
20080217314 | Wells et al. | Sep 2008 | A1 |
20080264917 | White | Oct 2008 | A1 |
20090078689 | Brass et al. | Mar 2009 | A1 |
20090173726 | Davidson et al. | Jul 2009 | A1 |
20090242533 | Yamazaki et al. | Oct 2009 | A1 |
20090304943 | Gollob et al. | Dec 2009 | A1 |
20100140852 | Kritchman et al. | Jun 2010 | A1 |
20100176104 | Peters et al. | Jul 2010 | A1 |
20110061591 | Stecker | Mar 2011 | A1 |
20110108527 | Peters et al. | May 2011 | A1 |
20110200802 | Li | Aug 2011 | A1 |
20110204034 | Schartner et al. | Aug 2011 | A1 |
20110288575 | Colton et al. | Nov 2011 | A1 |
20120067859 | Albrecht et al. | Mar 2012 | A1 |
20120097655 | Daniel et al. | Apr 2012 | A1 |
20120132627 | Wescott | May 2012 | A1 |
20120143491 | Cheng | Jun 2012 | A1 |
20120209307 | Snijders | Aug 2012 | A1 |
20120298642 | Lambert et al. | Nov 2012 | A1 |
20120325779 | Yelistratov | Dec 2012 | A1 |
20130105447 | Haake | May 2013 | A1 |
20130153557 | Pagano et al. | Jun 2013 | A1 |
20130186514 | Zhuang | Jul 2013 | A1 |
20130309420 | Flesch et al. | Nov 2013 | A1 |
20140021183 | Peters | Jan 2014 | A1 |
20140251971 | Hearn et al. | Sep 2014 | A1 |
20140263237 | Daniel et al. | Sep 2014 | A1 |
20140263241 | Henry et al. | Sep 2014 | A1 |
20150021379 | Albrecht et al. | Jan 2015 | A1 |
20150021815 | Albrecht et al. | Jan 2015 | A1 |
20150076119 | Hsu et al. | Mar 2015 | A1 |
20150105898 | Adams et al. | Apr 2015 | A1 |
20160016259 | Bruck | Jan 2016 | A1 |
20160067919 | Hoyt et al. | Mar 2016 | A1 |
20160267806 | Hsu et al. | Sep 2016 | A1 |
20160288235 | Davidson et al. | Oct 2016 | A1 |
20170050254 | Holverson et al. | Feb 2017 | A1 |
20170072499 | Schartner et al. | Mar 2017 | A1 |
Number | Date | Country |
---|---|---|
2560290 | Nov 2013 | CA |
1053760 | Aug 1991 | CN |
2125475 | Dec 1992 | CN |
1593829 | Mar 2005 | CN |
1597193 | Mar 2005 | CN |
1792513 | Jun 2006 | CN |
1944713 | Apr 2007 | CN |
101185986 | May 2008 | CN |
101392371 | Mar 2009 | CN |
101491856 | Jul 2009 | CN |
201644997 | Nov 2010 | CN |
103056367 | Apr 2013 | CN |
102013217317 | Mar 2015 | DE |
H04127970 | Apr 1992 | JP |
H07252630 | Oct 1995 | JP |
2001138059 | May 2001 | JP |
2003010970 | Jan 2003 | JP |
2012121086 | Sep 2012 | WO |
Entry |
---|
Canadian Office Action Appln No. 3,006,002 dated Jun. 22, 2020 (20 pgs.). |
“Tattoo Machine”, http://en.wikipedia.org/w/index.php?title=Tattoo_machine&oldid=762762193, last modified Jan. 30, 2017, retrieved on Apr. 7, 2017, 3 pages. |
International Search Report and Written Opinion from PCT application No. PCT/US2014/046568, dated Dec. 5, 2014, 12 pages. |
International Search Report and Written Opinion from PCT application No. PCT/US2014/046769, dated Dec. 5, 2014, 11 pages. |
International Search Report and Written Opinion from PCT application No. PCT/US2016/061381, dated Jan. 24, 2017, 13 pages. |
Kapustka, Nick, “Achieving Higher Productivity Rates Using Reciprocating Wire Feed Gas Metal Arc Welding,” Welding Journal, Apr. 2015, pages 70-74. |
Laura on Information Center, Tatoo Information, “Coil vs. Rotary Tattoo Machines”, Oct. 6, 2014, retreived from http://info.painfulpleasures.com/help-center/information-center/coil-vs-rotary-tattoo-machines, retrieved on Apr. 7, 2017 23 pages. |
Wang Xuerang, et. al, “Rapid Formation and Rapid Die-Manufacturing Technology”, Tsinghua University Press, Jan. 31, 2006, p. 159. |
Bin Hongzan, “Advanced Manufacturing Technology”, Huazhong University of Science and Technology Press, Oct. 31, 2010, pp. 163-164. |
“Welding Handbook, Book One,”(the Welding Handbook is an A type reference which discloses welding sensors that are configured to measure the position of the workpiece, groove or weld centre line during welding process) by the Welding Society of China Mechanical Engineering Society, China Machine Press, Jan. 31, 2008, pp. 974-981. |
Number | Date | Country | |
---|---|---|---|
20200139468 A1 | May 2020 | US |
Number | Date | Country | |
---|---|---|---|
61846935 | Jul 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14328449 | Jul 2014 | US |
Child | 16720420 | US |