Adenosine nucleobase editors and uses thereof

Information

  • Patent Grant
  • 11702651
  • Patent Number
    11,702,651
  • Date Filed
    Wednesday, January 13, 2021
    3 years ago
  • Date Issued
    Tuesday, July 18, 2023
    10 months ago
Abstract
The disclosure provides adenosine deaminases that are capable of deaminating adenosine in DNA. The disclosure also provides fusion proteins comprising a Cas9 (e.g., a Cas9 nickase) domain and adenosine deaminases that deaminate adenosine in DNA. In some embodiments, the fusion proteins further comprise a nuclear localization sequence (NLS), and/or an inhibitor of base repair, such as, a nuclease dead inosine specific nuclease (dISN).
Description
BACKGROUND OF THE INVENTION

Targeted editing of nucleic acid sequences, for example, the targeted cleavage or the targeted introduction of a specific modification into genomic DNA, is a highly promising approach for the study of gene function and also has the potential to provide new therapies for human genetic diseases. Since many genetic diseases in principle can be treated by effecting a specific nucleotide change at a specific location in the genome (for example, an A to G or a T to C change in a specific codon of a gene associated with a disease), the development of a programmable way to achieve such precise gene editing represents both a powerful new research tool, as well as a potential new approach to gene editing-based therapeutics.


SUMMARY OF THE INVENTION

Provided herein are compositions, kits, and methods of modifying a polynucleotide (e.g., DNA) using an adenosine deaminase and a nucleic acid programmable DNA binding protein (e.g., Cas9) Some aspects of the disclosure provide nucleobase editing proteins which catalyze hydrolytic deamination of adenosine (forming inosine, which base pairs like guanine (G)) in the context of DNA. There are no known naturally occurring adenosine deaminases that act on DNA. Instead, known adenosine deaminases act on RNA (e.g., tRNA or mRNA). To overcome this drawback, the first deoxyadenosine deaminases were evolved to accept DNA substrates and deaminate deoxyadenosine (dA) to deoxyinosine. The adenosine deaminase acting on tRNA (ADAT) from Escherichia coli (TadA, for tRNA adenosine deaminase A), was covalently fused to a dCas9 domain, and libraries of this fusion were assembled containing mutations in the deaminase portion of the construct. It should be appreciated that E. coli TadA (ecTadA) deaminases also include truncations of ecTadA. For example, truncations (e.g., N-terminal truncations) of a full length ecTadA (SEQ ID NO: 84), such as the N-terminally truncated ecTadA set forth in SEQ ID NO: 1 are provided herein for use in the present invention. Further, it was found that other adenosine deaminase mutants, such as S. aureus TadA mutants, were capable of deaminating adenosine. Without wishing to be bound by any particular theory, truncations of adenosine deaminases (e.g., ecTadA) may have desired solubility and/or expression properties as compared to their full-length counterparts.


Mutations in the deaminase domain of nucleobase editing proteins were made by evolving adenosine deaminases. Productive variants were identified via selection for A to G reversion at the codon of an active-site His in the acetyl-transferase gene of chloramphenicol (encoded on a co-transformed selection plasmid). A first round of evolution yielded an ecTadA variant, ecTadA D108X (X=G, V, or N), capable of converting A to G in DNA. In some embodiments, the ecTadA variant comprises a D108A mutation in SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase. The first round of evolution also yielded an ecTadA variant, ecTadA A106V. A subsequent round of evolution resulted in another variant, ecTadA D108N_E155X (X=G, V, or D), which E. coli survive in the presence of high concentrations of chloramphenicol. Additional variants were identified by evolving ecTadA. For example, ecTadA variants that are capable of deaminating adenosine in DNA include one or more of the following mutations D108N, A106V, D147, E155V, L84F, H123Y, and I157F of SEQ ID NO: 1. It should be appreciated however, that homologous mutations may be made in other adenosine deaminases to generate variants that are capable of deaminating adenosine in DNA. Additional rounds of evolution provided further ecTadA variants. For example, additional ecTadA variants are shown in FIGS. 11, 16, 97, 104-106, 125-128, 115 and Table 4.


In the examples provided herein, exemplary nucleobase editors having the general structure evolved ecTadA(D108X; X=G, V, or N)-XTEN-nCas9, catalyzed A to G transition mutations in cells such as eukaryotic cells (e.g., Hek293T mammalian cells). In other examples exemplary nucleobase editors contain two ecTadA domains and a nucleic acid programmable DNA binding protein (napDNAbp). For example, nucleobase editors may have the general structure ecTadA(D108N)-ecTadA(D108N)-nCas9. Additional examples of nucleobase editors containing ecTadA variants provided herein demonstrate an improvement in performance of the nucleobase editors in mammalian cells. For example, certain adenosine base editors include ecTadA having D108X, where X=G, V, or N, and/or E155X, where X=B, V, or D mutations in ecTadA as set forth in SEQ ID NO: 1 or another adenine deaminase. In certain embodiments mutants, nucleobase editors are covalently fused to catalytically dead alkyl adenosine gylcosylase (AAG), which may protect the edited inosine from base excision repair (or other DNA repair systems) until the T on the opposite strand is changed to a C, for example, through mismatch repair (or other DNA repair systems). Once the base opposite the inosine is changed to a C, then the inosine may be changed to a G irreversibly and permanently through cellular DNA repair processes, resulting in a permanent change from an A:T base pair to a G:C base pair.


Without wishing to be bound by any particular theory, the adenosine nucleobase editors described herein work by using ecTadA variants to deaminate A bases in DNA, causing A to G mutations via inosine formation. Inosine preferentially hydrogen bonds with C, resulting in A to G mutation during DNA replication. When covalently tethered to Cas9 (or another nucleic acid programmable DNA binding protein), the adenosine deaminase (e.g., ecTadA) is localized to a gene of interest and catalyzes A to G mutations in the ssDNA substrate. This editor can be used to target and revert single nucleotide polymorphisms (SNPs) in disease-relevant genes, which require A to G reversion. This editor can also be used to target and revert single nucleotide polymorphisms (SNPs) in disease-relevant genes, which require T to C reversion by mutating the A, opposite of the T, to a G. The T may then be replaced with a C, for example by base excision repair mechanisms, or may be changed in subsequent rounds of DNA replication.


Some aspects of the disclosure relate to the discovery that engineered (e.g., evolved) adenosine deaminases are capable of deaminating adenosine in a deoxyribonucleic acid (DNA) substrate. In some embodiments, the disclosure provides such adenosine deaminases. In some embodiments, the adenosine deaminases provided herein are capable of deaminating an adenosine in a DNA molecule. Other aspects of the disclosure provide fusion proteins comprising a Cas9 domain and an adenosine deaminase domain, for example, an engineered deaminase domain capable of deaminating an adenosine in DNA. In some embodiments, the fusion protein comprises one or more of a nuclear localization sequence (NLS), an inhibitor of inosine base excision repair (e.g., dISN), and/or a linker.


In some aspects, the disclosure provides an adenosine deaminase capable of deaminating an adenosine in a deoxyribonucleic acid (DNA) substrate. In some embodiments, the adenosine deaminase is from a bacterium, for example, E. coli or S. aureus. In some embodiments, the adenosine deaminase is a TadA deaminase. In some embodiments, the TadA deaminase is an E. coli TadA deaminase (ecTadA). In some embodiments, the adenosine deaminase comprises a D108X mutation in SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase, wherein X is any amino acid other than the amino acid found in the wild-type protein. In some embodiments, X is G, N, V, A, or Y.


In some embodiments, the adenosine deaminase comprises a E155X mutation in SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase, wherein X is any amino acid other than the amino acid found in the wild-type protein. In some embodiments, X is D, G, or V. It should be appreciated that the adenosine deaminases provided herein may contain one or more of the mutations provided herein in any combination.


Some aspects of the disclosure provide a fusion protein comprising: (i) a Cas9 domain, and (ii) an adenosine deaminase, such as any of the adenosine deaminases provided herein. In some embodiments, the Cas9 domain of the fusion protein is a nuclease dead Cas9 (dCas9), a Cas9 nickase (nCas9), or a nuclease active Cas9. In some embodiments, the fusion protein further comprises an inhibitor of inosine base excision repair, for example a dISN or a single stranded DNA binding protein. In some embodiments, the fusion protein comprises one or more linkers used to attach an adenine deaminase (e.g., ecTadA) to a nucleic acid programmable DNA binding protein (e.g., Cas9). In some embodiments, the fusion protein comprises one or more nuclear localization sequences (NLS).


The summary above is meant to illustrate, in a non-limiting manner, some of the embodiments, advantages, features, and uses of the technology disclosed herein. Other embodiments, advantages, features, and uses of the technology disclosed herein will be apparent from the Detailed Description, the Drawings, the Examples, and the Claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows high throughput screen results with various deaminases. APOBEC (BE3) is the positive control; ADAR acts on mRNA, ADA acts on deoxyadenosine, and ADAT acts on tRNA. The untreated group is the negative control. The sequence corresponds to SEQ ID: 45.



FIG. 2 is a schematic of a deamination selection plasmid.



FIG. 3 shows a serial dilution of the selection plasmid in S1030 cells plated on increasing concentrations of chloramphenicol.



FIG. 4 shows the validation of chloramphenicol selection with a rAPOBEC1-XTEN-dCas9 construct as a positive control. The sequences from top to bottom correspond to SEQ ID NOs: 95 (the nucleotide sequence), 96 (the amino acid sequence), 97 (the nucleotide sequence), 98 (the amino acid sequence), 95 (the nucleotide sequence) and 99 (the truncated nucleotide sequence).



FIG. 5 is a schematic of a deaminase-XTEN-dCas9 construct.



FIG. 6 shows the sequencing results from the first round of the TadA-XTEN-dCas9 library.



FIG. 7 shows the sequence of a selection plasmid; an A to G reversion was observed. The sequences from top to bottom correspond to SEQ ID NOs: 100 (the nucleotide sequence), 101 (the amino acid sequence), 102 (the nucleotide sequence), 103 (the amino acid sequence), 104 (the nucleotide sequence), and 100 (the nucleotide sequence).



FIG. 8 shows the results of deaminase sequencing, illustrating the convergence at residue D108. The sequences correspond to SEQ ID NOs: 589-607 from top to bottom.



FIG. 9 shows the E. coli TadA crystal structure. Note that D119 in the figure corresponds to D108, as the residue numbering is offset in the figure.



FIG. 10 shows the crystal structure of TadA (in S. aureus) tRNA and an alignment of with TadA from E. coli. The sequences from top to bottom correspond to SEQ ID NOs: 105-107.



FIG. 11 shows results from the isolation and challenge of individual constructs from ecTadA evolution.



FIG. 12 shows the colony forming units (C.F.U.) of various constructs challenged on increasing concentrations of chloramphenicol. The construct numbers correspond to those listed in FIG. 11.



FIG. 13 shows data from the second round of evolution from the constructs containing the D108N mutation. The sequences from top to bottom correspond to SEQ ID NOs: 608-623.



FIG. 14 shows A to G editing in mammalian cells. The sequence corresponds to SEQ ID NO: 41.



FIG. 15 is a schematic showing the development of ABE.



FIG. 16 is a table showing the results of clones assayed after second round evolution. Columns 1, 8, and 10 represent mutations from the first round evolution. Columns 11 and 14 represent the consensus mutations from second round evolution.



FIG. 17 shows the results of individual clone antibiotic challenge assays. The identity of the construct numbers correspond to the pNMG clone numbers from FIG. 16.



FIG. 18 show schematic representations of new constructs that were developed. New constructs include UGI, AAG*E125Q, and EndoV*D35A domains.



FIG. 19 shows the transfection of constructs into mammalian cells containing single or double mutations in ecTadA. The sequence corresponds to SEQ ID NO: 41.



FIG. 20 shows the transfection of constructs with the addition of UGI to adenosine nucleobase editor (ABE) (D108N). The sequence corresponds to SEQ ID NO: 41.



FIG. 21 shows that ABE operates best on 1 of 6 genomic sites tested. The sequence corresponds to SEQ ID NO: 46.



FIG. 22 shows that the Hek-3 site also has lower editing relative to the Hek-2 site editing at position 8 of the protospacer. The sequence corresponds to SEQ ID NO: 42.



FIG. 23 shows inactive C-terminal Cas9 fusions of ecTadA for constructs pNMG-164 through pNMG-173. The sequence corresponds to SEQ ID NO: 41.



FIG. 24 shows inactive C-terminal Cas9 fusions of ecTadA for pNMG-174 through pNMG-177. The sequence corresponds to SEQ ID NO: 41.



FIG. 25 shows the editing results from ecTadA nucleobase editors (pNMG-143, pNMG-144, pNMG-164, and pNMG-177). The sequence corresponds to SEQ ID NO: 41.



FIG. 26 shows the editing results from ecTadA nucleobase editors (pNMG-164, pNMG-177, pNMG-178, pNMG-179, and pNMG-180). The sequence corresponds to SEQ ID NO: 41.



FIG. 27 shows the results of editing at the Hek-3 site. The sequence corresponds to SEQ ID NO: 42.



FIG. 28 shows the results of editing at the Hek-2 site. The sequence corresponds to SEQ ID NO: 41.



FIG. 29 shows the results of editing at the Hek-3 site. The sequence corresponds to SEQ ID NO: 42.



FIG. 30 shows the results of editing at the Hek-4 site. The sequence corresponds to SEQ ID NO: 43.



FIG. 31 shows the results of editing at the RNF-2 site. The sequence corresponds to SEQ ID NO: 44.



FIG. 32 shows the results of editing at the FANCF site. The sequence corresponds to SEQ ID NO: 45.



FIG. 33 shows the results of editing at the EMX-1 site. The sequence corresponds to SEQ ID NO: 46.



FIG. 34 shows the results of C-terminal fusion at the Hek-2 site. The sequence corresponds to SEQ ID NO: 41.



FIG. 35 shows the results of C-terminal fusion at the Hek-3 site. The sequence corresponds to SEQ ID NO: 42.



FIG. 36 shows the results of C-terminal fusion at the Hek-4 site. The sequence corresponds to SEQ ID NO: 43.



FIG. 37 shows the results of C-terminal fusion at the EMX-1 site. The sequence corresponds to SEQ ID NO: 46.



FIG. 38 shows the results of C-terminal fusion at the RNF-2 site. The sequence corresponds to SEQ ID NO: 44.



FIG. 39 shows the results of C-terminal fusion at the FANCF site. The sequence corresponds to SEQ ID NO: 45.



FIG. 40 shows the results of transfection at the Hek-2 site. The sequence corresponds to SEQ ID NO: 41.



FIG. 41 shows the results of transfection at the Hek-3 site. The sequence corresponds to SEQ ID NO: 42.



FIG. 42 shows the results of transfection at the RNF-2 site. The sequence corresponds to SEQ ID NO: 44.



FIG. 43 shows the results of transfection at the Hek-4 site. The sequence corresponds to SEQ ID NO: 43.



FIG. 44 shows the results of transfection at the EMX-1 site. The sequence corresponds to SEQ ID NO: 46.



FIG. 45 shows the results of transfection at the FANCF site. The sequence corresponds to SEQ ID NO: 45.



FIG. 46 shows deaminase editing of sgRNA.



FIG. 47 shows constructs developed for fusions at various sites.



FIG. 48 shows indel rates for different fusions at various sites.



FIG. 49 shows the protospacer and PAM sequences of base editing sites set forth in SEQ ID NOs: 46, 45, 6, 42, 43, and 468 from top to bottom, respectively.



FIG. 50 shows constructs developed for fusions at various sites using further mutated D108 residue.



FIG. 51 shows the protospacer and PAM sequences of base editing sites set forth in SEQ ID NOs: 6, 46, and 42 from top to bottom, respectively.



FIG. 52 shows the results of using mutated D108 residues to cause deaminase to reject RNA as a substrate and change the editing outcome.



FIG. 53 shows the results of using mutated D108 residues to cause deaminase to reject RNA as a substrate and change the editing outcome.



FIG. 54 shows constructs developed for fusions at various sites.



FIG. 55 shows the protospacer and PAM sequences of base editing sites set forth in SEQ ID NOs: 6, 358, 359 from top to bottom, respectively.



FIG. 56 shows the results of ABE on HEK site 2.



FIG. 57 shows the results of ABE on HEK site 2.



FIG. 58 shows constructs developed for fusions at various sites using various linker lengths.



FIG. 59 shows the importance of linker length on base editing function.



FIG. 60 shows the importance of linker length on base editing function.



FIG. 61 is a schematic showing the dimerization of deaminase.



FIG. 62 shows constructs developed for fusions at various sites using various linker lengths.



FIG. 63 shows the current editor architecture (top panel), the in trans dimerization (bottom panel, left), and the in cis dimerization (bottom panel, right).



FIG. 64 shows dimerization results from base editing.



FIG. 65 shows dimerization results from base editing.



FIG. 66 shows dimerization results from base editing.



FIG. 67 shows constructs developed for fusions at various sgRNA sites.



FIG. 68 shows the evolution of ABE editor against new selection sequences. The sequences from top to bottom and left to right correspond to SEQ ID NOs: 707-719, respectively.



FIG. 69 shows the current editor targeting Q4 stop site. The sequences from top to bottom and left to right correspond to SEQ ID NOs: 624-627, 5527, and 628.



FIG. 70 shows the current editor targeting W15 stop site. The sequences correspond to SEQ ID NOs: 629-632, 5528, and 633 from top to bottom and left to right, respectively.



FIG. 71 shows a HEK293 site 2 sequence. The sequence corresponds to SEQ ID NO: 360.



FIG. 72 shows the results of the first run with various edTadA mutations using the sequence of FIG. 71.



FIG. 73 shows the results of the second run with various edTadA mutations using the sequence of FIG. 71.



FIG. 74 shows a FANCF sequence. The sequence corresponds to SEQ ID NO: 45.



FIG. 75 shows the results of the second run using various edTadA mutations and the sequence of FIG. 74.



FIG. 76 shows the results of mutated D108 on all sites.



FIG. 77 shows in trans data from previous run (left panel) and the mut-mut fusions hindered by super long linkers.



FIG. 78 shows the results of tethering mutTadA to ABE.



FIG. 79 shows the constructs of all inhibitors tested.



FIG. 80 shows the constructs used when tethering AAG to ABE.



FIG. 81 is a schematic showing the tethering of AAG to ABE.



FIG. 82 shows the results of tethering AAG to ABE.



FIG. 83 shows the constructs used when tethering AAG to ABE with an N-terminus of TadA.



FIG. 84 is a schematic showing the tethering of AAG to ABE with an N-terminus of TadA.



FIG. 85 shows the results of tethering AAG to ABE.



FIG. 86 shows the constructs used when tethering EndoV to ABE.



FIG. 87 is a schematic showing the tethering EndoV to ABE.



FIG. 88 shows the results of tethering EndoV to ABE.



FIG. 89 shows the constructs used when tethering UGI to ABE.



FIG. 90 shows the results of tethering UGI to the end of ABE.



FIG. 91 shows the results of various inhibitors increasing A to G editing.



FIG. 92 shows a sequence alignment of prokaryotic TadA amino acid sequences. The sequences correspond to SEQ ID NOs: 634-657 from top to bottom respectively.



FIG. 93 shows a schematic of the relative sequence identity analysis of TadA amino acid sequences.



FIG. 94 shows a schematic representation of an exemplary adenosine base editing process.



FIG. 95 shows a schematic representation of an exemplary adenosine base editor, which deaminates adenosine to inosine.



FIG. 96 shows a schematic of an exemplary base-editing selection plasmid.



FIG. 97 shows a list of clones including identified mutations in ecTadA.



FIG. 98 shows an exemplary sequencing analysis of a selection plasmid from surviving colonies. The sequences correspond to SEQ ID NOs: 658-661, 5529-5530, and 662 from top to bottom and left to right, respectively.



FIG. 99 shows a schematic of exemplary adenosine base editors from a third round of evolution.



FIG. 100 shows the percentage of A to G conversions in Hek293T cells.



FIG. 101 shows a schematic of an exemplary base-editing selection plasmid.



FIG. 102 shows a schematic representation of the verdine crystal structure of S. aureus TadA. The S. aureus TadA, a homolog of ecTadA, is shown with its tRNA substrate co-crystalized. Red arrows are the H-bond contacts with the various nucleic acids in the tRNA substrate. SeeLosey, H. C., et al., “Crystal structure of Staphylococcus sureus tRNA adenosine deaminase tadA in complex with RNA”, Nature Struct. Mol. Biol. 2, 153-159 (2006).



FIG. 103 shows a schematic of a construct containing ecTadA_2.2 and dCas9, identifying mutated ecTadA residues.



FIG. 104 shows results of ecTadA evolution (evolution #4) at sites E25 and R26.



FIG. 105 shows results of ecTadA evolution (evolution #4) at site R107.



FIG. 106 shows results of ecTadA evolution (evolution #4) at sites A142 and A143.



FIG. 107 shows an exemplary sequencing analysis of a selection plasmid from surviving colonies. The sequences correspond to SEQ ID NO: 662-671 from top to bottom respectively.



FIG. 108 shows a summary of results of editing at the Hek-2 site. The Hek-2 sequence provided in the figure represents the reverse complement of SEQ ID NO: 41, which is the DNA strand where A to G editing takes place. The sequence corresponds to SEQ ID ID: 6.



FIG. 109 shows a summary of results of editing at the Hek2-3 site. The sequence corresponds to SEQ ID NO: 363.



FIG. 110 shows a summary of results of editing at the Hek2-6 site. The sequence corresponds to SEQ ID NO: 364.



FIG. 111 shows a summary of results of editing at the Hek2-7 site. The Hek2-7 sequence provided in the figure represents the reverse complement of the DNA strand where A to G editing takes place. The sequence corresponds to SEQ ID NO: 365.



FIG. 112 shows a summary of results of editing at the Hek2-10 site. The sequence corresponds to SEQ ID NO: 366.



FIG. 113 shows a summary of results of editing at the Hek-3 site. The sequence corresponds to SEQ ID NO: 42.



FIG. 114 shows a summary of results of editing at the FANCF site. The sequence corresponds to SEQ ID NO: 45.



FIG. 115 shows a summary of results of editing at the Hek-2 site. The sequence corresponds to SEQ ID NO: 367.



FIG. 116 shows a summary of results of editing at the Hek2-2 site. The sequence corresponds to SEQ ID NO: 368.



FIG. 117 shows a summary of results of editing at the Hek2-3 site. The sequence corresponds to SEQ ID NO: 363.



FIG. 118 shows a summary of results of editing at the Hek2-6 site. The sequence corresponds to SEQ ID NO: 364.



FIG. 119 shows a summary of results of editing at the Hek2-7 site. The sequence corresponds to SEQ ID NO: 365.



FIG. 120 shows a summary of results of editing at the Hek2-10 site. The sequence corresponds to SEQ ID NO: 366.



FIG. 121 shows a summary of results of editing at the Hek-3 site. The sequence corresponds to SEQ ID NO: 42.



FIG. 122 shows a summary of results of editing at the FANCF site. The sequence corresponds to SEQ ID NO: 45.



FIG. 123 shows the results of ecTadA evolution (evolution #4) at HEK2, HEK2-2, HEK2-3, HEK2-6, HEK2-7, and HEK2-10 sites. The constructs used were pNMG-370 (evolution #2), pNMG-371 (evolution #3), and pNMG 382-389 (evolution #4). The sequences correspond to SEQ ID NOs: 7, 368, 363, 364, 369, and 370 from top to bottom, respectively.



FIG. 124 shows a schematic of a construct containing ecTadA and dCas9 used for ecTadA evolution (evolution #5).



FIG. 125 is a table showing the results of clones assayed after fifth round evolution (128 ug/mL chlor, 7 h).



FIGS. 126A to 126E are tables showing the results of sub-cloned and re-transformed clones assayed after fifth round under varying conditions.



FIG. 127 is a table showing the results of amplicons from spectinomycin selection clones assayed after fifth round evolution.



FIG. 128 is a table showing the results of clones assayed after fifth round evolution.



FIG. 129 shows a summary of results of editing at the Hek-2 site using base editors that contain an engineered S. aureus TadA (saTadA), which include pNMG-346-349. As a comparison, results of editors that contain an engineered E. coli TadA (ecTadA), which include pNMG-339-341, are shown. The sequence corresponds to SEQ ID NO: 6.



FIG. 130 shows a summary of results of editing at the Hek2-1 site using base editors that contain an engineered S. aureus TadA (saTadA), which include pNMG-346-349. As a comparison, results of editors that contain an engineered E. coli TadA (ecTadA), which include pNMG-339-341, are shown. The Hek2-1 sequence provided in the figure represents the DNA strand where A to G editing takes place. The sequence corresponds to SEQ ID NO: 465.



FIG. 131 shows a summary of results of editing at the Hek2-2 site using base editors that contain an engineered S. aureus TadA (saTadA), which include pNMG-346-349. As a comparison, results of editors that contain an engineered E. coli TadA (ecTadA), which include pNMG-339-341, are shown. The sequence corresponds to SEQ ID NO: 368.



FIG. 132 shows a summary of results of editing at the Hek2-3 site using base editors that contain an engineered S. aureus TadA (saTadA), which include pNMG-346-349. As a comparison, results of editors that contain an engineered E. coli TadA (ecTadA), which include pNMG-339-341, are shown. The sequence corresponds to SEQ ID NO: 363.



FIG. 133 shows a summary of results of editing at the Hek2-4 site using base editors that contain an engineered S. aureus TadA (saTadA), which include pNMG-346-349. As a comparison, results of editors that contain an engineered E. coli TadA (ecTadA), which include pNMG-339-341, are shown. The Hek2-4 sequence provided in the figure represents the DNA strand where A to G editing takes place. The sequence corresponds to SEQ ID NO: 466.



FIG. 134 shows a summary of results of editing at the Hek2-6 site using base editors that contain an engineered S. aureus TadA (saTadA), which include pNMG-346-349. As a comparison, results of editors that contain an engineered E. coli TadA (ecTadA), which include pNMG-339-341, are shown. The sequence corresponds to SEQ ID NO: 364.



FIG. 135 shows a summary of results of editing at the Hek2-9 site using base editors that contain an engineered S. aureus TadA (saTadA), which include pNMG-346-349. As a comparison, results of editors that contain an engineered E. coli TadA (ecTadA), which include pNMG-339-341, are shown. The Hek2-9 sequence provided in the figure represents the DNA strand where A to G editing takes place. The sequence corresponds to SEQ ID NO: 467.



FIG. 136 shows a summary of results of editing at the Hek2-10 site using base editors that contain an engineered S. aureus TadA (saTadA), which include pNMG-346-349. As a comparison, results of editors that contain an engineered E. coli TadA (ecTadA), which include pNMG-339-341, are shown. The Hek2-10 sequence provided in the figure represents the DNA strand where A to G editing takes place. The sequence corresponds to SEQ ID NO: 370.



FIG. 137 shows a summary of results of editing at the Hek3 site using base editors that contain an engineered S. aureus TadA (saTadA), which include pNMG-346-349. As a comparison, results of editors that contain an engineered E. coli TadA (ecTadA), which include pNMG-339-341, are shown. The sequence corresponds to SEQ ID NO: 42.



FIG. 138 shows a summary of results of editing at the RNF2 site using base editors that contain an engineered S. aureus TadA (saTadA), which include pNMG-346-349. As a comparison, results of editors that contain an engineered E. coli TadA (ecTadA), which include pNMG-339-341, are shown. The sequence corresponds to SEQ ID NO: 468.



FIG. 139 shows a summary of results of editing at the FANCF site using base editors that contain an engineered S. aureus TadA (saTadA), which include pNMG-346-349. As a comparison, results of editors that contain an engineered E. coli TadA (ecTadA), which include pNMG-339-341, are shown. The sequence corresponds to SEQ ID NO: 45.



FIG. 140 shows various schematic representations of adenosine base editor (ABE) constructs. The identity of the editors e.g., “pNMG-367” is indicated in Table 4. The following mutations are abbreviated as follows: ecTadA1 (A106V D108N), ecTadA2 (A106V D108N D147Y E155V), ecTadA3 (ecTadA2+L84F H123Y I156F), ecTadA3+(ecTadA3+A142N), ecTadA5a1 (ecTadA3+H36L R51L S146C K157N), ecTadA5a3 (ecTadA3+N37S K161T), ecTadA5a11 (ecTadA3+R51L S146C K157N K161T), ecTadA5a12 (ecTadA3+S146C K161T), ecTadA5a14 (ecTadA3+RS146C K157N K160E), and ecTadA5a1+(ecTadA5a1+A142N), ecTadA5a9 (ecTadA3+S146R K161T). Heterodimers of the top three ABE 5a constructs were made and then tested relative to homodimers. The heterodimer version of the ABE editor typically performs better than the corresponding homodimeric construct. Both homodimeric and heterodimeric constructs are shown in FIG. 140.



FIG. 141 shows editing results for various ABE constructs. The ABE plasmid #refers to pNMG number as indicated in Table 4. For example, 367 refers to construct pNMG-367 in Table 4. The sequences correspond to SEQ ID NOs: 469 (pNMG-466), 470 (pNMG-467), 471 (pNMG-469), 472 (pNMG-470), 473 (pNMG-501), 474 (pNMG-509), and 475 (pNMG-502) from top to bottom, respectively.



FIG. 142 shows editing results for various ABE constructs at specific sites. The numbers on the top row indicate the pNMG number as indicated in Table 4. For example, 107 refers to construct pNMG-107 in Table 4. In certain contexts, homodimer constructs have been shown to work better than a hetero dimer construct and vice versa (see for example construct 371 which is a homodimer versus construct 476 which is a heterodimer). Schematics for these ABE constructs are shown in FIG. 140, and the construct architecture is shown in Table 4. The sequences correspond to SEQ ID NOs: 478, 478, 514, 516, 516, 520, 520, 521, 521, and 509 from top to bottom, respectively.



FIG. 143 shows the percentage of indels formed for ABE constructs from FIG. 142.



FIG. 144 shows editing results for various ABE constructs at specific sites. The identity of the constructs are shown in the top row and refer to the pNMG reference number of Table 4. The results in FIG. 144 indicate that adding ecTadA monomer to ABE construct may not improve editing. However, adding a long linker between monomers may help editing at some sites (see, for example, the editing results for sgRNA constructs 285b versus 277 at sites 502, 505, 507). The identity of the sgRNA constructs is shown in Table 8 Schematics for these ABE constructs are shown in FIG. 140. The sequences correspond to SEQ ID NOs: 478, 480, 480, 514, 517, 517, 517, 517, 519, and 521 from top to bottom, respectively.



FIG. 145 shows results for ABE constructs at all NAN sites, where the target A is at position 5 of the Protospacer and PAM sequences. The identity of the ABE constructs, shown in the top row refers to the pNMG reference number in Table 4. The number values represent the % of target A residues that were edited (e.g., % editing efficiency). The sequences correspond to SEQ ID NOs: 537-552 from top to bottom, respectively.



FIG. 146 shows A to G editing percent at the Hek2 site for various ABE constructs as referenced by their reference pNMG number in Table 4.



FIG. 147 shows evolution round #5b evolution results. The number values represent the % of A to G editing for the indicated sites. The sequences from top to bottom correspond to SEQ ID NOs: 7, 465, 368, 363, 364, and 370 from top to bottom, respectively.



FIG. 148 shows editing results for various ABE constructs which were obtained from different rounds of evolution (e.g., evo3). The generic schematic for the ABE constructs is also shown. The identity of the sgRNA, as indicated in Table 8, and the identity of the base editors (pNMG reference), as indicated in Table 4, are shown. The number values represent the % of A to G editing for the indicated sites. The sequences correspond to SEQ ID NOs: 478, 503, 506, 521, 513, 505, 507, and 509 from top to bottom, respectively.



FIG. 149 shows examination of the ABE constructs at genomic sites other than the Hek-2 sequence. The Hek-2 site (sgRNA 299) is represented by the asterisk. The identity of the sgRNA is indicated in Table 8. The sequences correspond to SEQ ID NOs: 478, 514, 516, 517, 517, 517, 517, 519, 520, 529, 521 from top to bottom, respectively.



FIG. 150 shows a schematic of the DNA shuffling experiment using nucleotide exchange and excision technology (NExT), which is referred to as ABE evolution #6. The goal of this approach was to assemble a more efficient editor and remove potential epistatic mutations. DNA shuffling of constructs from various evolutions were used to optimize for desired mutations and eliminate mutations that negatively affect editing efficiencies and/or protein stability.



FIG. 151 shows a schematic for DNA Shuffle (NeXT). The spect target sequence is 5′-CAATGATGACTTCTACAGCG-3′ (SEQ ID NO: 444) and the chlor target sequence is 5′-TACGGCGTAGTGCACCTGGA-3′ (SEQ ID NO: 441).



FIG. 152 shows the sequence identity of clones from evolution #6 surviving on spect only (non-YAC target). The mutations indicated are relative to ecTadA (SEQ ID NO: 1).



FIG. 153 shows evolution #6.2 which refers to the enrichment of clones from evolution #6. The mutations indicated are relative to ecTadA (SEQ ID NO: 1). A142N is present in almost all clones sequenced and the Pro48 mutation is also abundant. The clones were selected against “GAT” in the spectinomycin site. The selection target sequence was 5′-CAATGATGACTTCTACAGCG-3′ (SEQ ID NO: 444).



FIG. 154 shows schematic representations of ABE 6 constructs. 8 new constructs in total were developed. Mutations from the top 2 highest frequency amplicons in Evo #6 were used in each of the four architectures.



FIG. 155 shows data harvesting for ABE: step 1—transfection+HTS of key intermediates at 6 genomic sites, n=3. The transfection was performed with 750 ng ABE+250 ng gRNA and incubated for 5 days before the genomic DNA was extracted to perform HTS. The identity of each of the ABE constructs is indicated by the pNMG reference number as shown in Table 4. The sequences correspond to SEQ ID NOs: 509, 510, 512, 520, 530, 478 from top to bottom, respectively.



FIG. 156 shows that ABE editing efficiencies improve with iterative rounds of evolution. The top panel shows representative A to G % editing at targeted genetic locus in Hek293T cells using evolved/engineered ABE construct. The sequence corresponds to SEQ ID NO: 561. The bottom panel shows that iterative rounds of evolution and engineering improve ABE. ABE constructs are indicated by their pNMG reference numbers as shown in Table 4. The ‘508’ target sequence corresponds to SEQ ID NO: 520.



FIG. 157 shows HTS results of core 6 genomic sites from the 10 “Best” ABE. The results indicate that different editors have different local sequence preference (bottom panel). The graph shows the A to G percent editing at 6 different genetic loci. ABE constructs are indicated by their pNMG reference numbers as shown in Table 4. The sequences correspond to SEQ ID NOs: 509, 510, 512, 520, 530, 478 from top to bottom, respectively.



FIG. 158 shows transfection of functioning “top 10” ABEs at all genomic sites covering every combination of NAN sequence. The data represents n=1. The sequences correspond to SEQ ID NOs: 489, 490, 493, 497, 503, 504, 507, 508, 511, and 513 from top to bottom, respectively.



FIG. 159 shows ABE window experiments (A's at odd positions) for identifying which A's are edited. ABEs pNMG-477, pNMG-586, pNMG-588, BE3 and untreated control are shown. The sequence for editing is shown at the top. The sequence corresponds to SEQ ID NO: 562.



FIG. 160 shows ABE window experiment (A's at even positions) for identifying which A's are edited. ABEs pNMG-477, pNMG-586, pNMG-588, BE3 and untreated control are shown. The sequence for editing is shown at the top. The sequence corresponds to SEQ ID NO: 563.



FIG. 161 shows additional ABE window experiments for identifying which A's are edited. ABEs pNMG-586, pNMG-560, and untreated control are shown. The sequence for editing is shown at the top. The sequences correspond to SEQ ID NOs: 544 and 541 from top to bottom, respectively.



FIG. 162 shows additional ABE window experiments for identifying which A's are edited. ABEs pNMG-576, pNMG-586, and untreated control are shown. The sequence for editing is shown at the top. The sequence corresponds to SEQ ID NO: 564.



FIG. 163 shows evolution #7 an attempt to edit a multi-A site. The evolution selection design was to target 2 point mutations in the same gene using two separate gRNAs: 5′-TTCATTA(7)ACTGTGGCCGGCT-3′(SEQ ID NO: 565) and 5′-ATCTTA(6)TTCGATCATGCGAA-3′ (SEQ ID NO: 566) in order to make a D208N reversion mutation in Kan and to revert a stop codon to a Q.



FIG. 164 shows evolution #7 mutations which were evolved to target As within a multi A site, meaning that they are flanked on one or both sides by an A. The identity of mutations, relative to SEQ ID NO: 1 are shown.



FIG. 165 shows schematics of ecTadA identifying residues R152 and P48.



FIG. 166 shows MiSeq results of ABE editing on disease relevant mutations in alternative cell lines. Nucleofection with Lonza kit was used with 3 different nucleofection solutions×16 different electroporation conditions (48 total conditions/cell line). The sequences correspond to SEQ ID NOs: 522-524 from top to bottom, respectively.



FIG. 167 shows results for A to G editing at multiple positions for various constructs. ABE constructs are indicated by their pNMG reference numbers as shown in Table 4. In the top panel the sequences correspond to SEQ ID NOs: 469-471, 567, 475, and 474 from top to bottom, respectively. In the bottom panel the sequences correspond to SEQ ID NOs: 469 (pNMG-466), 470 (pNMG-467), 471 (pNMG-469), 567 (pNMG-472), and 474 (pNMG-509) from top to bottom, respectively.



FIG. 168 shows editing results for various constructs using ABEs with different linkers. ABE constructs are indicated by their pNMG reference numbers as shown in Table 4. A schematic of the new linker ABE is also shown. The sequences correspond to SEQ ID NOs: 469 (pNMG-466), 568 (pNMG-468), 471 (pNMG-469), 567 (pNMG-472), 574 (pNGM-509), and 569) (pNMG-539) from top to bottom, respectively.



FIG. 169 shows the 4′ round evolution. Evolution was done with a monomer construct and endogenous TadA complements TadA-dCas9 fusion.



FIG. 170 shows 4th round evolution results. The sequences correspond to SEQ ID NOs: 7, 368, 363, 364, 369, and 370 from top to bottom, respectively.



FIG. 171 shows evolution round #5. The plasmid and experimental outline are shown (top panel). The graph illustrates survival on chlor vs. spectinomycin “TAG” vs. “GAT.” The chlor target sequence is 5′-TACGGCGTAGTGCACCTGGA-3′ (SEQ ID NO: 441) and the spect target sequence is 5′-CAATGATGACTTCTACAGCG-3′(SEQ ID NO: 444).



FIG. 172 shows editing results at the chlor and spect sites. Constructs identified from evolution #4 (site saturated/NNK library) appear edit more efficiently on the spect site rather than on the chor site. ABE constructs are indicated by their pNMG reference numbers as shown in Table 4.



FIG. 173 shows 5th round evolution (part a). The sequence corresponds to SEQ ID NO: 570.



FIG. 174 shows 5th round heterodimer (in trans) results. Round #5a identified mutations improved both editing efficiencies and broadened substrate specificity. The sequences correspond to SEQ ID NOs: 7, 368, and 363, 364, 369, and 370 from top to bottom, respectively.



FIG. 175 shows 5th round heterodimer (in cis) results. Round #5a identified mutations improved both editing efficiencies and broadened substrate specificity, but the cis results gave higher editing efficiencies. ABE constructs are indicated by their pNMG reference numbers as shown in Table 4. The sequences correspond to SEQ ID NOs: 7, 571, 465, 368, 363, 466, 364, 369, 572, and 370 from top to bottom, respectively.



FIG. 176 shows editing results of various constructs for evolution 5.



FIG. 177 shows editing results of various constructs for evolution 5.



FIG. 178 shows gRNAs for ABE. 5a constructs are characterized on all 16 NAN sequences A at position 5 in protospacer (left panel). The sequences correspond to SEQ ID NOs: 573-578 from top to bottom, respectively. Additional sequences starting with a “G” in order to minimize variations in yield gRNA synthesis are proposed (right panel). The sequences correspond to SEQ ID NOs: 579-588 from top to bottom, respectively.



FIG. 179 shows % A to G editing of A5 using sgRNA 299 as indicated in Table 8 and the ABE constructs, which are indicated by their pNMG reference numbers as shown in Table 4. The sequence corresponds to SEQ ID NO: 478.



FIG. 180 shows % A to G editing of A5 using sgRNA 469 as indicated in Table 8 and the ABE constructs, which are indicated by their pNMG reference numbers as shown in Table 4. The sequence corresponds to SEQ ID NO: 509.



FIG. 181 shows % A to G editing of A5 using sgRNA 470 as indicated in Table 8 and the ABE constructs, which are indicated by their pNMG reference numbers as shown in Table 4. The sequence corresponds to SEQ ID NO: 510.



FIG. 182 shows % A to G editing of A5 using sgRNA 472 as indicated in Table 8 and the ABE constructs, which are indicated by their pNMG reference numbers as shown in Table 4. The sequence corresponds to SEQ ID NO: 512.



FIG. 183 shows % A to G editing of As using sgRNA 508 as indicated in Table 8 and the ABE constructs, which are indicated by their pNMG reference numbers as shown in Table 4. The sequence corresponds to SEQ ID NO: 520.



FIG. 184 shows % A to G editing of A7 using sgRNA 536 as indicated in Table 8 and the ABE constructs, which are indicated by their pNMG reference numbers as shown in Table 4. The sequence corresponds to SEQ ID NO: 530.



FIG. 185 shows the % of A to G editing of the highlighted A (As) using sgRNA: 310, sgRNA: 311, sgRNA: 314, sgRNA: 318, sgRNA: 463, and sgRNA: 464 for each of the indicated base editors, which are indicated by their pNMG reference numbers as shown in Table 4. The sequences correspond to SEQ ID NOs: 489, 490, 493, 497, 503 and 504 from left to right and top to bottom, respectively.



FIG. 186 shows the % of A to G editing of the highlighted A (As) using sgRNA: 466, sgRNA: 467, sgRNA: 468, sgRNA: 471, sgRNA: 501, and sgRNA: 601 for each of the indicated base editors, which are indicated by their pNMG reference numbers as shown in Table 4. The sequences correspond to SEQ ID NOs: 506, 507, 508, 511, 513, and 535 from left to right and top to bottom, respectively.





DEFINITIONS

As used herein and in the claims, the singular forms “a,” “an,” and “the” include the singular and the plural unless the context clearly indicates otherwise. Thus, for example, a reference to “an agent” includes a single agent and a plurality of such agents.


The term “deaminase” or “deaminase domain” refers to a protein or enzyme that catalyzes a deamination reaction. In some embodiments, the deaminase is an adenosine deaminase, which catalyzes the hydrolytic deamination of adenine or adenosine. In some embodiments, the deaminase or deaminase domain is an adenosine deaminase, catalyzing the hydrolytic deamination of adenosine or deoxyadenosine to inosine or deoxyinosine, respectively. In some embodiments, the adenosine deaminase catalyzes the hydrolytic deamination of adenine or adenosine in deoxyribonucleic acid (DNA). The adenosine deaminases (e.g. engineered adenosine deaminases, evolved adenosine deaminases) provided herein may be from any organism, such as a bacterium. In some embodiments, the deaminase or deaminase domain is a variant of a naturally-occurring deaminase from an organism. In some embodiments, the deaminase or deaminase domain does not occur in nature. For example, in some embodiments, the deaminase or deaminase domain is at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75% at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to a naturally-occurring deaminase. In some embodiments, the adenosine deaminase is from a bacterium, such as, E. coli, S. aureus, S. typhi, S. putrefaciens, H. influenzae, or C. crescentus. In some embodiments, the adenosine deaminase is a TadA deaminase. In some embodiments, the TadA deaminase is an E. coli TadA deaminase (ecTadA). In some embodiments, the TadA deaminase is a truncated E. coli TadA deaminase. For example, the truncated ecTadA may be missing one or more N-terminal amino acids relative to a full-length ecTadA. In some embodiments, the truncated ecTadA may be missing 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 6, 17, 18, 19, or 20 N-terminal amino acid residues relative to the full length ecTadA. In some embodiments, the truncated ecTadA may be missing 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 6, 17, 18, 19, or 20 C-terminal amino acid residues relative to the full length ecTadA. In some embodiments, the ecTadA deaminase does not comprise an N-terminal methionine


In some embodiments, the TadA deaminase is an N-terminal truncated TadA. In certain embodiments, the adenosine deaminase comprises the amino acid sequence:









(SEQ ID NO: 1)


MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNR





PIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAM





IHSRIGRVVFGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILADEC





AALLSDFFRMRRQEIKAQKKAQSSTD.






In some embodiments the TadA deaminase is a full-length E. coli TadA deaminase. For example, in certain embodiments, the adenosine deaminase comprises the amino acid sequence:









(SEQ ID NO: 84)


MRRAFITGVFFLSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVH





NNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVT





LEPCVMCAGAMIHSRIGRVVFGARDAKTGAAGSLMDVLHHPGMNHRV





EITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTD






It should be appreciated, however, that additional adenosine deaminases useful in the present application would be apparent to the skilled artisan and are within the scope of this disclosure. For example, the adenosine deaminase may be a homolog of an ADAT. Exemplary ADAT homologs include, without limitation:










Staphylococcus aureus TadA:



(SEQ ID NO: 8)


MGSHMTNDIYFMTLAIEEAKKAAQLGEVPIGAIITKDDEVIARAHNL





RETLQQPTAHAEHIAIERAAKVLGSWRLEGCTLYVTLEPCVMCAGTI





VMSRIPRVVYGADDPKGGCSGSLMNLLQQSNFNHRAIVDKGVLKEAC





STLLTTFFKNLRANKKSTN






Bacillus subtilis TadA:



(SEQ ID NO: 9)


MTQDELYMKEAIKEAKKAEEKGEVPIGAVLVINGEIIARAHNLRETE





QRSIAHAEMLVIDEACKALGTWRLEGATLYVTLEPCPMCAGAVVLSR





VEKVVFGAFDPKGGCSGTLMNLLQEERFNHQAEVVSGVLEEECGGML





SAFFRELRKKKKAARKNLSE






Salmonella typhimurium (S. typhimurium) TadA:



(SEQ ID NO: 371)


MPPAFITGVTSLSDVELDHEYWMRHALTLAKRAWDEREVPVGAVLVH





NHRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVLQNYRLLDTTLYVT





LEPCVMCAGAMVHSRIGRVVFGARDAKTGAAGSLIDVLHHPGMNHRV





EIIEGVLRDECATLLSDFFRMRRQEIKALKKADRAEGAGPAV






Shewanella putrefaciens (S. putrefaciens) TadA:



(SEQ ID NO: 372)


MDEYWMQVAMQMAEKAEAAGEVPVGAVLVKDGQQIATGYNLSISQHD





PTAHAEILCLRSAGKKLENYRLLDATLYITLEPCAMCAGAMVHSRIA





RVVYGARDEKTGAAGTVVNLLQHPAFNHQVEVTSGVLAEACSAQLSR





FFKRRRDEKKALKLAQRAQQGIE






Haemophilus influenzae F3031 (H. influenzae)



TadA:


(SEQ ID NO: 373)


MDAAKVRSEFDEKMMRYALELADKAEALGEIPVGAVLVDDARNIIGE





GWNLSIVQSDPTAHAEIIALRNGAKNIQNYRLLNSTLYVTLEPCTMC





AGAILHSRIKRLVFGASDYKTGAIGSRFHFFDDYKMNHTLEITSGVL





AEECSQKLSTFFQKRREEKKIEKALLKSLSDK






Caulobacter crescentus (C. crescentus) TadA:



(SEQ ID NO: 374)


MRTDESEDQDHRMMRLALDAARAAAEAGETPVGAVILDPSTGEVIAT





AGNGPIAAHDPTAHAEIAAMRAAAAKLGNYRLTDLTLVVTLEPCAMC





AGAISHARIGRVVFGADDPKGGAVVHGPKFFAQPTCHWRPEVTGGVL





ADESADLLRGFFRARRKAKI






Geobacter sulfurreducens (G. sulfurreducens)



TadA:


(SEQ ID NO: 375)


MSSLKKTPIRDDAYWMGKAIREAAKAAARDEVPIGAVIVRDGAVIGR





GHNLREGSNDPSAHAEMIAIRQAARRSANWRLTGATLYVTLEPCLMC





MGAIILARLERVVFGCYDPKGGAAGSLYDLSADPRLNHQVRLSPGVC





QEECGTMLSDFFRDLRRRKKAKATPALFIDERKVPPEP






The term “base editor (BE),” or “nucleobase editor (NBE)” refers to an agent comprising a polypeptide that is capable of making a modification to a base (e.g., A, T, C, G, or U) within a nucleic acid sequence (e.g., DNA or RNA). In some embodiments, the base editor is capable of deaminating a base within a nucleic acid. In some embodiments, the base editor is capable of deaminating a base within a DNA molecule. In some embodiments, the base editor is capable of deaminating an adenine (A) in DNA. In some embodiments, the base editor is a fusion protein comprising a nucleic acid programmable DNA binding protein (napDNAbp) fused to an adenosine deaminase. In some embodiments, the base editor is a Cas9 protein fused to an adenosine deaminase. In some embodiments, the base editor is a Cas9 nickase (nCas9) fused to an adenosine deaminase. In some embodiments, the base editor is a nuclease-inactive Cas9 (dCas9) fused to an adenosine deaminase. In some embodiments, the base editor is fused to an inhibitor of base excision repair, for example, a UGI domain, or a dISN domain. In some embodiments, the fusion protein comprises a Cas9 nickase fused to a deaminase and an inhibitor of base excision repair, such as a UGI or dISN domain. In some embodiments, the dCas9 domain of the fusion protein comprises a D10A and a H840A mutation of SEQ ID NO: 52, or a corresponding mutation in any of SEQ ID NOs: 108-357, which inactivates the nuclease activity of the Cas9 protein. In some embodiments, the fusion protein comprises a D10A mutation and comprises a histidine at residue 840 of SEQ ID NO: 52, or a corresponding mutation in any of SEQ ID NOs: 108-357, which renders Cas9 capable of cleaving only one strand of a nucleic acid duplex. An example of a Cas9 nickase is shown in SEQ ID NO: 35.


The term “linker,” as used herein, refers to a bond (e.g., covalent bond), chemical group, or a molecule linking two molecules or moieties, e.g., two domains of a fusion protein, such as, for example, a nuclease-inactive Cas9 domain and a nucleic acid-editing domain (e.g., an adenosine deaminase). In some embodiments, a linker joins a gRNA binding domain of an RNA-programmable nuclease, including a Cas9 nuclease domain, and the catalytic domain of a nucleic-acid editing protein. In some embodiments, a linker joins a dCas9 and a nucleic-acid editing protein. Typically, the linker is positioned between, or flanked by, two groups, molecules, or other moieties and connected to each one via a covalent bond, thus connecting the two. In some embodiments, the linker is an amino acid or a plurality of amino acids (e.g., a peptide or protein). In some embodiments, the linker is an organic molecule, group, polymer, or chemical moiety. In some embodiments, the linker is 5-100 amino acids in length, for example, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 30-35, 35-40, 40-45, 45-50, 50-60, 60-70, 70-80, 80-90, 90-100, 100-150, or 150-200 amino acids in length. Longer or shorter linkers are also contemplated. In some embodiments, a linker comprises the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 10), which may also be referred to as the XTEN linker. In some embodiments, a linker comprises the amino acid sequence SGGS (SEQ ID NO: 37). In some embodiments, a linker comprises (SGGS)n (SEQ ID NO: 37), (GGGS)n (SEQ ID NO: 38), (GGGGS)n (SEQ ID NO: 39), (G)n, (EAAAK)n (SEQ ID NO: 40), (GGS)n, SGSETPGTSESATPES (SEQ ID NO: 10), or (XP)n motif, or a combination of any of these, wherein n is independently an integer between 1 and 30, and wherein X is any amino acid. In some embodiments, n is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15.


The term “mutation,” as used herein, refers to a substitution of a residue within a sequence, e.g., a nucleic acid or amino acid sequence, with another residue, or a deletion or insertion of one or more residues within a sequence. Mutations are typically described herein by identifying the original residue followed by the position of the residue within the sequence and by the identity of the newly substituted residue. Various methods for making the amino acid substitutions (mutations) provided herein are well known in the art, and are provided by, for example, Green and Sambrook, Molecular Cloning: A Laboratory Manual (4th ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2012)).


The term “inhibitor of base repair” or “IBR” refers to a protein that is capable in inhibiting the activity of a nucleic acid repair enzyme, for example a base excision repair enzyme. In some embodiments, the IBR is an inhibitor of inosine base excision repair. Exemplary inhibitors of base repair include inhibitors of APE 1, Endo III, Endo IV, Endo V, Endo VIII, Fpg, hOGG1, hNEIL1, T7 EndoI, T4PDG, UDG, hSMUG1, and hAAG. In some embodiments, the IBR is an inhibitor of Endo V or hAAG. In some embodiments, the IBR is a catalytically inactive EndoV or a catalytically inactive hAAG.


The term “uracil glycosylase inhibitor” or “UGI,” as used herein, refers to a protein that is capable of inhibiting a uracil-DNA glycosylase base-excision repair enzyme. In some embodiments, a UGI domain comprises a wild-type UGI or a UGI as set forth in SEQ ID NO: 3. In some embodiments, the UGI proteins provided herein include fragments of UGI and proteins homologous to a UGI or a UGI fragment. For example, in some embodiments, a UGI domain comprises a fragment of the amino acid sequence set forth in SEQ ID NO: 3. In some embodiments, a UGI fragment comprises an amino acid sequence that comprises at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% of the amino acid sequence as set forth in SEQ ID NO: 3. In some embodiments, a UGI comprises an amino acid sequence homologous to the amino acid sequence set forth in SEQ ID NO: 3, or an amino acid sequence homologous to a fragment of the amino acid sequence set forth in SEQ ID NO: 3. In some embodiments, proteins comprising UGI or fragments of UGI or homologs of UGI or UGI fragments are referred to as “UGI variants.” A UGI variant shares homology to UGI, or a fragment thereof. For example a UGI variant is at least 70% identical, at least 75% identical, at least 80% identical, at least 85% identical, at least 90% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, at least 99.5% identical, or at least 99.9% identical to a wild type UGI or a UGI as set forth in SEQ ID NO: 3. In some embodiments, the UGI variant comprises a fragment of UGI, such that the fragment is at least 70% identical, at least 80% identical, at least 90% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, at least 99.5% identical, or at least 99.9% to the corresponding fragment of wild-type UGI or a UGI as set forth in SEQ ID NO: 3. In some embodiments, the UGI comprises the following amino acid sequence:









>sp|P14739|UNGI_BPPB2 Uracil-DNA


glycosylase inhibitor


(SEQ ID NO: 3)


MTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAY





DESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKML.






The term “catalytically inactive inosine-specific nuclease,” or “dead inosine-specific nuclease (dISN),” as used herein, refers to a protein that is capable of inhibiting an inosine-specific nuclease. Without wishing to be bound by any particular theory, catalytically inactive inosine glycosylases (e.g., alkyl adenine glycosylase [AAG]) will bind inosine, but will not create an abasic site or remove the inosine, thereby sterically blocking the newly-formed inosine moiety from DNA damage/repair mechanisms. In some embodiments, the catalytically inactive inosine-specific nuclease may be capable of binding an inosine in a nucleic acid but does not cleave the nucleic acid. Exemplary catalytically inactive inosine-specific nucleases include, without limitation, catalytically inactive alkyl adenosine glycosylase (AAG nuclease), for example, from a human, and catalytically inactive endonuclease V (EndoV nuclease), for example, from E. coli. In some embodiments, the catalytically inactive AAG nuclease comprises an E125Q mutation as shown in SEQ ID NO: 32, or a corresponding mutation in another AAG nuclease. In some embodiments, the catalytically inactive AAG nuclease comprises the amino acid sequence set forth in SEQ ID NO: 32. In some embodiments, the catalytically inactive EndoV nuclease comprises an D35A mutation as shown in SEQ ID NO 32, or a corresponding mutation in another EndoV nuclease. In some embodiments, the catalytically inactive EndoV nuclease comprises the amino acid sequence set forth in SEQ ID NO: 33. It should be appreciated that other catalytically inactive inosine-specific nucleases (dISNs) would be apparent to the skilled artisan and are within the scope of this disclosure.









Truncated AAG (H. sapiens) nuclease (E125Q);


mutated residue underlined in bold.


(SEQ ID NO: 32)


KGHLTRLGLEFFDQPAVPLARAFLGQVLVRRLPNGTELRGRIVETQAY





LGPEDEAAHSRGGRQTPRNRGMFMKPGTLYVYIIYGMYFCMNISSQGD





GACVLLRALEPLEGLETMRQLRSTLRKGTASRVLKDRELCSGPSKLCQ





ALAINKSFDQRDLAQDEAVWLERGPLEPSEPAVVAAARVGVGHAGEWA





RKPLRFYVRGSPWVSVVDRVAEQDTQA





EndoV nuclease (D35A); mutated residue


underlined in bold.


(SEQ ID NO: 33)


DLASLRAQQIELASSVIREDRLDKDPPDLIAGAAVGFEQGGEVTRAAM





VLLKYPSLELVEYKVARIATTMPYIPGFLSFREYPALLAAWEMLSQKP





DLVFVDGHGISHPRRLGVASHFGLLVDVPTIGVAKKRLCGKFEPLSSE





PGALAPLMDKGEQLAWVWRSKARCNPLFIATGHRVSVDSALAWVQRCM





KGYRLPEPTRWADAVASERPAFVRYTANQP






The term “nuclear localization sequence” or “NLS” refers to an amino acid sequence that promotes import of a protein into the cell nucleus, for example, by nuclear transport. Nuclear localization sequences are known in the art and would be apparent to the skilled artisan. For example, NLS sequences are described in Plank et al., international PCT application, PCT/EP2000/011690, filed Nov. 23, 2000, published as WO/2001/038547 on May 31, 2001, the contents of which are incorporated herein by reference for their disclosure of exemplary nuclear localization sequences. In some embodiments, a NLS comprises the amino acid sequence PKKKRKV (SEQ ID NO: 4) or MDSLLMNRRKFLYQFKNVRWAKGRRETYLC (SEQ ID NO: 5).


The term “nucleic acid programmable DNA binding protein” or “napDNAbp” refers to a protein that associates with a nucleic acid (e.g., DNA or RNA), such as a guide nucleic acid, that guides the napDNAbp to a specific nucleic acid sequence. For example, a Cas9 protein can associate with a guide RNA that guides the Cas9 protein to a specific DNA sequence that has complementary to the guide RNA. In some embodiments, the napDNAbp is a class 2 microbial CRISPR-Cas effector. In some embodiments, the napDNAbp is a Cas9 domain, for example a nuclease active Cas9, a Cas9 nickase (nCas9), or a nuclease inactive Cas9 (dCas9). Examples of nucleic acid programmable DNA binding proteins include, without limitation, Cas9 (e.g., dCas9 and nCas9), CasX, CasY, Cpf1, C2c1, C2c2, C2C3, and Argonaute. It should be appreciated, however, that nucleic acid programmable DNAbinding proteins also include nucleic acid programmable proteins that bind RNA. For example, the napDNAbp may be associated with a nucleic acid that guides the napDNAbp to an RNA. Other nucleic acid programmable DNA binding proteins are also within the scope of this disclosure, though they may not be specifically listed in this disclosure.


The term “Cas9” or “Cas9 domain” refers to an RNA-guided nuclease comprising a Cas9 protein, or a fragment thereof (e.g., a protein comprising an active, inactive, or partially active DNA cleavage domain of Cas9, and/or the gRNA binding domain of Cas9). A Cas9 nuclease is also referred to sometimes as a casn1 nuclease or a CRISPR (clustered regularly interspaced short palindromic repeat)-associated nuclease. CRISPR is an adaptive immune system that provides protection against mobile genetic elements (viruses, transposable elements and conjugative plasmids). CRISPR clusters contain spacers, sequences complementary to antecedent mobile elements, and target invading nucleic acids. CRISPR clusters are transcribed and processed into CRISPR RNA (crRNA). In type II CRISPR systems correct processing of pre-crRNA requires a trans-encoded small RNA (tracrRNA), endogenous ribonuclease 3 (mc) and a Cas9 protein. The tracrRNA serves as a guide for ribonuclease 3-aided processing of pre-crRNA. Subsequently, Cas9/crRNA/tracrRNA endonucleolytically cleaves linear or circular dsDNA target complementary to the spacer. The target strand not complementary to crRNA is first cut endonucleolytically, then trimmed 3′-5′ exonucleolytically. In nature, DNA-binding and cleavage typically requires protein and both RNAs. However, single guide RNAs (“sgRNA”, or simply “gNRA”) can be engineered so as to incorporate aspects of both the crRNA and tracrRNA into a single RNA species. See, e.g., Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E. Science 337:816-821(2012), the entire contents of which is hereby incorporated by reference. Cas9 recognizes a short motif in the CRISPR repeat sequences (the PAM or protospacer adjacent motif) to help distinguish self versus non-self. Cas9 nuclease sequences and structures are well known to those of skill in the art (see, e.g., “Complete genome sequence of an M1 strain of Streptococcus pyogenes.” Ferretti et al., J. J., McShan W. M., Ajdic D. J., Savic D. J., Savic G., Lyon K., Primeaux C., Sezate S., Suvorov A. N., Kenton S., Lai H. S., Lin S. P., Qian Y., Jia H. G., Najar F. Z., Ren Q., Zhu H., Song L., White J., Yuan X., Clifton S. W., Roe B. A., McLaughlin R. E., Proc. Natl. Acad. Sci. U.S.A. 98:4658-4663(2001); “CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III.” Deltcheva E., Chylinski K., Sharma C. M., Gonzales K., Chao Y., Pirzada Z. A., Eckert M. R., Vogel J., Charpentier E., Nature 471:602-607(2011); and “A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.” Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E. Science 337:816-821(2012), the entire contents of each of which are incorporated herein by reference). Cas9 orthologs have been described in various species, including, but not limited to, S. pyogenes and S. thermophilus. Additional suitable Cas9 nucleases and sequences will be apparent to those of skill in the art based on this disclosure, and such Cas9 nucleases and sequences include Cas9 sequences from the organisms and loci disclosed in Chylinski, Rhun, and Charpentier, “The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems” (2013) RNA Biology 10:5, 726-737; the entire contents of which are incorporated herein by reference. In some embodiments, a Cas9 nuclease has an inactive (e.g., an inactivated) DNA cleavage domain, that is, the Cas9 is a nickase.


A nuclease-inactivated Cas9 protein may interchangeably be referred to as a “dCas9” protein (for nuclease-“dead” Cas9). Methods for generating a Cas9 protein (or a fragment thereof) having an inactive DNA cleavage domain are known (See, e.g., Jinek et al., Science. 337:816-821(2012); Qi et al., “Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression” (2013) Cell. 28; 152(5):1173-83, the entire contents of each of which are incorporated herein by reference). For example, the DNA cleavage domain of Cas9 is known to include two subdomains, the HNH nuclease subdomain and the RuvC1 subdomain. The HNH subdomain cleaves the strand complementary to the gRNA, whereas the RuvC1 subdomain cleaves the non-complementary strand. Mutations within these subdomains can silence the nuclease activity of Cas9. For example, the mutations D10A and H840A completely inactivate the nuclease activity of S. pyogenes Cas9 (Jinek et al., Science. 337:816-821(2012); Qi et al., Cell. 28; 152(5):1173-83 (2013)). In some embodiments, proteins comprising fragments of Cas9 are provided. For example, in some embodiments, a protein comprises one of two Cas9 domains: (1) the gRNA binding domain of Cas9; or (2) the DNA cleavage domain of Cas9. In some embodiments, proteins comprising Cas9 or fragments thereof are referred to as “Cas9 variants.” A Cas9 variant shares homology to Cas9, or a fragment thereof. For example a Cas9 variant is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to wild type Cas9. In some embodiments, the Cas9 variant may have 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or more amino acid changes compared to wild type Cas9. In some embodiments, the Cas9 variant comprises a fragment of Cas9 (e.g., a gRNA binding domain or a DNA-cleavage domain), such that the fragment is at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 96% identical, at least about 97% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to the corresponding fragment of wild type Cas9. In some embodiments, the fragment is at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95% identical, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% of the amino acid length of a corresponding wild type Cas9.


In some embodiments, the fragment is at least 100 amino acids in length. In some embodiments, the fragment is at least 100, 150, 200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1200, 1250, or 1300 amino acids in length. In some embodiments, wild type Cas9 corresponds to Cas9 from Streptococcus pyogenes (NCBI Reference Sequence: NC_017053.1, SEQ ID NO: 47 (nucleotide); SEQ ID NO: 48 (amino acid)).










(SEQ ID NO: 47)



ATGGATAAGAAATACTCAATAGGCTTAGATATCGGCACAAATAGCGTCGGATGG






GCGGTGATCACTGATGATTATAAGGTTCCGTCTAAAAAGTTCAAGGTTCTGGGAA





ATACAGACCGCCACAGTATCAAAAAAAATCTTATAGGGGCTCTTTTATTTGGCAG





TGGAGAGACAGCGGAAGCGACTCGTCTCAAACGGACAGCTCGTAGAAGGTATAC





ACGTCGGAAGAATCGTATTTGTTATCTACAGGAGATTTTTTCAAATGAGATGGCG





AAAGTAGATGATAGTTTCTTTCATCGACTTGAAGAGTCTTTTTTGGTGGAAGAAG





ACAAGAAGCATGAACGTCATCCTATTTTTGGAAATATAGTAGATGAAGTTGCTTA





TCATGAGAAATATCCAACTATCTATCATCTGCGAAAAAAATTGGCAGATTCTACT





GATAAAGCGGATTTGCGCTTAATCTATTTGGCCTTAGCGCATATGATTAAGTTTC





GTGGTCATTTTTTGATTGAGGGAGATTTAAATCCTGATAATAGTGATGTGGACAA





ACTATTTATCCAGTTGGTACAAATCTACAATCAATTATTTGAAGAAAACCCTATT





AACGCAAGTAGAGTAGATGCTAAAGCGATTCTTTCTGCACGATTGAGTAAATCA





AGACGATTAGAAAATCTCATTGCTCAGCTCCCCGGTGAGAAGAGAAATGGCTTG





TTTGGGAATCTCATTGCTTTGTCATTGGGATTGACCCCTAATTTTAAATCAAATTT





TGATTTGGCAGAAGATGCTAAATTACAGCTTTCAAAAGATACTTACGATGATGAT





TTAGATAATTTATTGGCGCAAATTGGAGATCAATATGCTGATTTGTTTTTGGCAG





CTAAGAATTTATCAGATGCTATTTTACTTTCAGATATCCTAAGAGTAAATAGTGA





AATAACTAAGGCTCCCCTATCAGCTTCAATGATTAAGCGCTACGATGAACATCAT





CAAGACTTGACTCTTTTAAAAGCTTTAGTTCGACAACAACTTCCAGAAAAGTATA





AAGAAATCTTTTTTGATCAATCAAAAAACGGATATGCAGGTTATATTGATGGGGG





AGCTAGCCAAGAAGAATTTTATAAATTTATCAAACCAATTTTAGAAAAAATGGAT





GGTACTGAGGAATTATTGGTGAAACTAAATCGTGAAGATTTGCTGCGCAAGCAA





CGGACCTTTGACAACGGCTCTATTCCCCATCAAATTCACTTGGGTGAGCTGCATG





CTATTTTGAGAAGACAAGAAGACTTTTATCCATTTTTAAAAGACAATCGTGAGAA





GATTGAAAAAATCTTGACTTTTCGAATTCCTTATTATGTTGGTCCATTGGCGCGTG





GCAATAGTCGTTTTGCATGGATGACTCGGAAGTCTGAAGAAACAATTACCCCATG





GAATTTTGAAGAAGTTGTCGATAAAGGTGCTTCAGCTCAATCATTTATTGAACGC





ATGACAAACTTTGATAAAAATCTTCCAAATGAAAAAGTACTACCAAAACATAGT





TTGCTTTATGAGTATTTTACGGTTTATAACGAATTGACAAAGGTCAAATATGTTA





CTGAGGGAATGCGAAAACCAGCATTTCTTTCAGGTGAACAGAAGAAAGCCATTG





TTGATTTACTCTTCAAAACAAATCGAAAAGTAACCGTTAAGCAATTAAAAGAAG





ATTATTTCAAAAAAATAGAATGTTTTGATAGTGTTGAAATTTCAGGAGTTGAAGA





TAGATTTAATGCTTCATTAGGCGCCTACCATGATTTGCTAAAAATTATTAAAGAT





AAAGATTTTTTGGATAATGAAGAAAATGAAGATATCTTAGAGGATATTGTTTTAA





CATTGACCTTATTTGAAGATAGGGGGATGATTGAGGAAAGACTTAAAACATATG





CTCACCTCTTTGATGATAAGGTGATGAAACAGCTTAAACGTCGCCGTTATACTGG





TTGGGGACGTTTGTCTCGAAAATTGATTAATGGTATTAGGGATAAGCAATCTGGC





AAAACAATATTAGATTTTTTGAAATCAGATGGTTTTGCCAATCGCAATTTTATGC





AGCTGATCCATGATGATAGTTTGACATTTAAAGAAGATATTCAAAAAGCACAGG





TGTCTGGACAAGGCCATAGTTTACATGAACAGATTGCTAACTTAGCTGGCAGTCC





TGCTATTAAAAAAGGTATTTTACAGACTGTAAAAATTGTTGATGAACTGGTCAAA





GTAATGGGGCATAAGCCAGAAAATATCGTTATTGAAATGGCACGTGAAAATCAG





ACAACTCAAAAGGGCCAGAAAAATTCGCGAGAGCGTATGAAACGAATCGAAGA





AGGTATCAAAGAATTAGGAAGTCAGATTCTTAAAGAGCATCCTGTTGAAAATAC





TCAATTGCAAAATGAAAAGCTCTATCTCTATTATCTACAAAATGGAAGAGACATG





TATGTGGACCAAGAATTAGATATTAATCGTTTAAGTGATTATGATGTCGATCACA





TTGTTCCACAAAGTTTCATTAAAGACGATTCAATAGACAATAAGGTACTAACGCG





TTCTGATAAAAATCGTGGTAAATCGGATAACGTTCCAAGTGAAGAAGTAGTCAA





AAAGATGAAAAACTATTGGAGACAACTTCTAAACGCCAAGTTAATCACTCAACG





TAAGTTTGATAATTTAACGAAAGCTGAACGTGGAGGTTTGAGTGAACTTGATAAA





GCTGGTTTTATCAAACGCCAATTGGTTGAAACTCGCCAAATCACTAAGCATGTGG





CACAAATTTTGGATAGTCGCATGAATACTAAATACGATGAAAATGATAAACTTAT





TCGAGAGGTTAAAGTGATTACCTTAAAATCTAAATTAGTTTCTGACTTCCGAAAA





GATTTCCAATTCTATAAAGTACGTGAGATTAACAATTACCATCATGCCCATGATG





CGTATCTAAATGCCGTCGTTGGAACTGCTTTGATTAAGAAATATCCAAAACTTGA





ATCGGAGTTTGTCTATGGTGATTATAAAGTTTATGATGTTCGTAAAATGATTGCT





AAGTCTGAGCAAGAAATAGGCAAAGCAACCGCAAAATATTTCTTTTACTCTAATA





TCATGAACTTCTTCAAAACAGAAATTACACTTGCAAATGGAGAGATTCGCAAAC





GCCCTCTAATCGAAACTAATGGGGAAACTGGAGAAATTGTCTGGGATAAAGGGC





GAGATTTTGCCACAGTGCGCAAAGTATTGTCCATGCCCCAAGTCAATATTGTCAA





GAAAACAGAAGTACAGACAGGCGGATTCTCCAAGGAGTCAATTTTACCAAAAAG





AAATTCGGACAAGCTTATTGCTCGTAAAAAAGACTGGGATCCAAAAAAATATGG





TGGTTTTGATAGTCCAACGGTAGCTTATTCAGTCCTAGTGGTTGCTAAGGTGGAA





AAAGGGAAATCGAAGAAGTTAAAATCCGTTAAAGAGTTACTAGGGATCACAATT





ATGGAAAGAAGTTCCTTTGAAAAAAATCCGATTGACTTTTTAGAAGCTAAAGGAT





ATAAGGAAGTTAAAAAAGACTTAATCATTAAACTACCTAAATATAGTCTTTTTGA





GTTAGAAAACGGTCGTAAACGGATGCTGGCTAGTGCCGGAGAATTACAAAAAGG





AAATGAGCTGGCTCTGCCAAGCAAATATGTGAATTTTTTATATTTAGCTAGTCAT





TATGAAAAGTTGAAGGGTAGTCCAGAAGATAACGAACAAAAACAATTGTTTGTG





GAGCAGCATAAGCATTATTTAGATGAGATTATTGAGCAAATCAGTGAATTTTCTA





AGCGTGTTATTTTAGCAGATGCCAATTTAGATAAAGTTCTTAGTGCATATAACAA





ACATAGAGACAAACCAATACGTGAACAAGCAGAAAATATTATTCATTTATTTAC





GTTGACGAATCTTGGAGCTCCCGCTGCTTTTAAATATTTTGATACAACAATTGATC





GTAAACGATATACGTCTACAAAAGAAGTTTTAGATGCCACTCTTATCCATCAATC





CATCACTGGTCTTTATGAAACACGCATTGATTTGAGTCAGCTAGGAGGTGACTGA





(SEQ ID NO: 48)



MDKKYSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFGSGE







TAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHE






RHPIFGNIVDEVAYHEKYPTIYHLRKKLADSTDKADLRLIYLALAHMIKFRGHFLIEG





DLNPDNSDVDKLFIQLVQIYNQLFEENPINASRVDAKAILSARLSKSRRLENLIAQLPG





EKRNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYAD





LFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEK





YKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRT





FDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFA





WMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTV





YNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFD





SVEISGVEDRFNASLGAYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDRGMIEER





LKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANR





NFMQLIHDDSLTFKEDIQKAQVSGQGHSLHEQIANLAGSPAIKKGILQTVKIVDELVK






VMGHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQ







NEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFIKDDSIDNKVLTRSDKNR







GKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQ







LVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREI







NNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKAT







AKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQ







VNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAK






VEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELE





NGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHK





HYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPA





AFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD





(single underline: HNH domain; double underline: RuvC domain)






In some embodiments, wild type Cas9 corresponds to, or comprises SEQ ID NO:49 (nucleotide) and/or SEQ ID NO: 50 (amino acid):










(SEQ ID NO: 49)



ATGGATAAAAAGTATTCTATTGGTTTAGACATCGGCACTAATTCCGTTGGATGGG






CTGTCATAACCGATGAATACAAAGTACCTTCAAAGAAATTTAAGGTGTTGGGGA





ACACAGACCGTCATTCGATTAAAAAGAATCTTATCGGTGCCCTCCTATTCGATAG





TGGCGAAACGGCAGAGGCGACTCGCCTGAAACGAACCGCTCGGAGAAGGTATAC





ACGTCGCAAGAACCGAATATGTTACTTACAAGAAATTTTTAGCAATGAGATGGCC





AAAGTTGACGATTCTTTCTTTCACCGTTTGGAAGAGTCCTTCCTTGTCGAAGAGG





ACAAGAAACATGAACGGCACCCCATCTTTGGAAACATAGTAGATGAGGTGGCAT





ATCATGAAAAGTACCCAACGATTTATCACCTCAGAAAAAAGCTAGTTGACTCAA





CTGATAAAGCGGACCTGAGGTTAATCTACTTGGCTCTTGCCCATATGATAAAGTT





CCGTGGGCACTTTCTCATTGAGGGTGATCTAAATCCGGACAACTCGGATGTCGAC





AAACTGTTCATCCAGTTAGTACAAACCTATAATCAGTTGTTTGAAGAGAACCCTA





TAAATGCAAGTGGCGTGGATGCGAAGGCTATTCTTAGCGCCCGCCTCTCTAAATC





CCGACGGCTAGAAAACCTGATCGCACAATTACCCGGAGAGAAGAAAAATGGGTT





GTTCGGTAACCTTATAGCGCTCTCACTAGGCCTGACACCAAATTTTAAGTCGAAC





TTCGACTTAGCTGAAGATGCCAAATTGCAGCTTAGTAAGGACACGTACGATGAC





GATCTCGACAATCTACTGGCACAAATTGGAGATCAGTATGCGGACTTATTTTTGG





CTGCCAAAAACCTTAGCGATGCAATCCTCCTATCTGACATACTGAGAGTTAATAC





TGAGATTACCAAGGCGCCGTTATCCGCTTCAATGATCAAAAGGTACGATGAACAT





CACCAAGACTTGACACTTCTCAAGGCCCTAGTCCGTCAGCAACTGCCTGAGAAAT





ATAAGGAAATATTCTTTGATCAGTCGAAAAACGGGTACGCAGGTTATATTGACG





GCGGAGCGAGTCAAGAGGAATTCTACAAGTTTATCAAACCCATATTAGAGAAGA





TGGATGGGACGGAAGAGTTGCTTGTAAAACTCAATCGCGAAGATCTACTGCGAA





AGCAGCGGACTTTCGACAACGGTAGCATTCCACATCAAATCCACTTAGGCGAATT





GCATGCTATACTTAGAAGGCAGGAGGATTTTTATCCGTTCCTCAAAGACAATCGT





GAAAAGATTGAGAAAATCCTAACCTTTCGCATACCTTACTATGTGGGACCCCTGG





CCCGAGGGAACTCTCGGTTCGCATGGATGACAAGAAAGTCCGAAGAAACGATTA





CTCCATGGAATTTTGAGGAAGTTGTCGATAAAGGTGCGTCAGCTCAATCGTTCAT





CGAGAGGATGACCAACTTTGACAAGAATTTACCGAACGAAAAAGTATTGCCTAA





GCACAGTTTACTTTACGAGTATTTCACAGTGTACAATGAACTCACGAAAGTTAAG





TATGTCACTGAGGGCATGCGTAAACCCGCCTTTCTAAGCGGAGAACAGAAGAAA





GCAATAGTAGATCTGTTATTCAAGACCAACCGCAAAGTGACAGTTAAGCAATTG





AAAGAGGACTACTTTAAGAAAATTGAATGCTTCGATTCTGTCGAGATCTCCGGGG





TAGAAGATCGATTTAATGCGTCACTTGGTACGTATCATGACCTCCTAAAGATAAT





TAAAGATAAGGACTTCCTGGATAACGAAGAGAATGAAGATATCTTAGAAGATAT





AGTGTTGACTCTTACCCTCTTTGAAGATCGGGAAATGATTGAGGAAAGACTAAAA





ACATACGCTCACCTGTTCGACGATAAGGTTATGAAACAGTTAAAGAGGCGTCGCT





ATACGGGCTGGGGACGATTGTCGCGGAAACTTATCAACGGGATAAGAGACAAGC





AAAGTGGTAAAACTATTCTCGATTTTCTAAAGAGCGACGGCTTCGCCAATAGGAA





CTTTATGCAGCTGATCCATGATGACTCTTTAACCTTCAAAGAGGATATACAAAAG





GCACAGGTTTCCGGACAAGGGGACTCATTGCACGAACATATTGCGAATCTTGCTG





GTTCGCCAGCCATCAAAAAGGGCATACTCCAGACAGTCAAAGTAGTGGATGAGC





TAGTTAAGGTCATGGGACGTCACAAACCGGAAAACATTGTAATCGAGATGGCAC





GCGAAAATCAAACGACTCAGAAGGGGCAAAAAAACAGTCGAGAGCGGATGAAG





AGAATAGAAGAGGGTATTAAAGAACTGGGCAGCCAGATCTTAAAGGAGCATCCT





GTGGAAAATACCCAATTGCAGAACGAGAAACTTTACCTCTATTACCTACAAAATG





GAAGGGACATGTATGTTGATCAGGAACTGGACATAAACCGTTTATCTGATTACGA





CGTCGATCACATTGTACCCCAATCCTTTTTGAAGGACGATTCAATCGACAATAAA





GTGCTTACACGCTCGGATAAGAACCGAGGGAAAAGTGACAATGTTCCAAGCGAG





GAAGTCGTAAAGAAAATGAAGAACTATTGGCGGCAGCTCCTAAATGCGAAACTG





ATAACGCAAAGAAAGTTCGATAACTTAACTAAAGCTGAGAGGGGTGGCTTGTCT





GAACTTGACAAGGCCGGATTTATTAAACGTCAGCTCGTGGAAACCCGCCAAATC





ACAAAGCATGTTGCACAGATACTAGATTCCCGAATGAATACGAAATACGACGAG





AACGATAAGCTGATTCGGGAAGTCAAAGTAATCACTTTAAAGTCAAAATTGGTG





TCGGACTTCAGAAAGGATTTTCAATTCTATAAAGTTAGGGAGATAAATAACTACC





ACCATGCGCACGACGCTTATCTTAATGCCGTCGTAGGGACCGCACTCATTAAGAA





ATACCCGAAGCTAGAAAGTGAGTTTGTGTATGGTGATTACAAAGTTTATGACGTC





CGTAAGATGATCGCGAAAAGCGAACAGGAGATAGGCAAGGCTACAGCCAAATA





CTTCTTTTATTCTAACATTATGAATTTCTTTAAGACGGAAATCACTCTGGCAAACG





GAGAGATACGCAAACGACCTTTAATTGAAACCAATGGGGAGACAGGTGAAATCG





TATGGGATAAGGGCCGGGACTTCGCGACGGTGAGAAAAGTTTTGTCCATGCCCC





AAGTCAACATAGTAAAGAAAACTGAGGTGCAGACCGGAGGGTTTTCAAAGGAAT





CGATTCTTCCAAAAAGGAATAGTGATAAGCTCATCGCTCGTAAAAAGGACTGGG





ACCCGAAAAAGTACGGTGGCTTCGATAGCCCTACAGTTGCCTATTCTGTCCTAGT





AGTGGCAAAAGTTGAGAAGGGAAAATCCAAGAAACTGAAGTCAGTCAAAGAAT





TATTGGGGATAACGATTATGGAGCGCTCGTCTTTTGAAAAGAACCCCATCGACTT





CCTTGAGGCGAAAGGTTACAAGGAAGTAAAAAAGGATCTCATAATTAAACTACC





AAAGTATAGTCTGTTTGAGTTAGAAAATGGCCGAAAACGGATGTTGGCTAGCGC





CGGAGAGCTTCAAAAGGGGAACGAACTCGCACTACCGTCTAAATACGTGAATTT





CCTGTATTTAGCGTCCCATTACGAGAAGTTGAAAGGTTCACCTGAAGATAACGAA





CAGAAGCAACTTTTTGTTGAGCAGCACAAACATTATCTCGACGAAATCATAGAGC





AAATTTCGGAATTCAGTAAGAGAGTCATCCTAGCTGATGCCAATCTGGACAAAGT





ATTAAGCGCATACAACAAGCACAGGGATAAACCCATACGTGAGCAGGCGGAAA





ATATTATCCATTTGTTTACTCTTACCAACCTCGGCGCTCCAGCCGCATTCAAGTAT





TTTGACACAACGATAGATCGCAAACGATACACTTCTACCAAGGAGGTGCTAGAC





GCGACACTGATTCACCAATCCATCACGGGATTATATGAAACTCGGATAGATTTGT





CACAGCTTGGGGGTGACGGATCCCCCAAGAAGAAGAGGAAAGTCTCGAGCGACT





ACAAAGACCATGACGGTGATTATAAAGATCATGACATCGATTACAAGGATGACG





ATGACAAGGCTGCAGGA





(SEQ ID NO: 50)



MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGE







TAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHE






RHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG





DLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLP





GEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYA





DLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPE





KYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQR





TFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFA





WMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTV





YNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFD





SVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERL





KTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRN





FMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVK






VMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQL







QNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDK







NRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIK







RQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKV







REINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGK







ATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSM







PQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVV






AKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFE





LENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQ





HKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGA





PAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD





(single underline: HNH domain; double underline: RuvC domain)






In some embodiments, wild type Cas9 corresponds to Cas9 from Streptococcus pyogenes (NCBI Reference Sequence: NC_002737.2, SEQ ID NO: 51 (nucleotide); and Uniport Reference Sequence: Q99ZW2, SEQ ID NO: 52 (amino acid).










(SEQ ID NO: 51)



ATGGATAAGAAATACTCAATAGGCTTAGATATCGGCACAAATAGCGTCGGATGG






GCGGTGATCACTGATGAATATAAGGTTCCGTCTAAAAAGTTCAAGGTTCTGGGAA





ATACAGACCGCCACAGTATCAAAAAAAATCTTATAGGGGCTCTTTTATTTGACAG





TGGAGAGACAGCGGAAGCGACTCGTCTCAAACGGACAGCTCGTAGAAGGTATAC





ACGTCGGAAGAATCGTATTTGTTATCTACAGGAGATTTTTTCAAATGAGATGGCG





AAAGTAGATGATAGTTTCTTTCATCGACTTGAAGAGTCTTTTTTGGTGGAAGAAG





ACAAGAAGCATGAACGTCATCCTATTTTTGGAAATATAGTAGATGAAGTTGCTTA





TCATGAGAAATATCCAACTATCTATCATCTGCGAAAAAAATTGGTAGATTCTACT





GATAAAGCGGATTTGCGCTTAATCTATTTGGCCTTAGCGCATATGATTAAGTTTC





GTGGTCATTTTTTGATTGAGGGAGATTTAAATCCTGATAATAGTGATGTGGACAA





ACTATTTATCCAGTTGGTACAAACCTACAATCAATTATTTGAAGAAAACCCTATT





AACGCAAGTGGAGTAGATGCTAAAGCGATTCTTTCTGCACGATTGAGTAAATCA





AGACGATTAGAAAATCTCATTGCTCAGCTCCCCGGTGAGAAGAAAAATGGCTTA





TTTGGGAATCTCATTGCTTTGTCATTGGGTTTGACCCCTAATTTTAAATCAAATTT





TGATTTGGCAGAAGATGCTAAATTACAGCTTTCAAAAGATACTTACGATGATGAT





TTAGATAATTTATTGGCGCAAATTGGAGATCAATATGCTGATTTGTTTTTGGCAG





CTAAGAATTTATCAGATGCTATTTTACTTTCAGATATCCTAAGAGTAAATACTGA





AATAACTAAGGCTCCCCTATCAGCTTCAATGATTAAACGCTACGATGAACATCAT





CAAGACTTGACTCTTTTAAAAGCTTTAGTTCGACAACAACTTCCAGAAAAGTATA





AAGAAATCTTTTTTGATCAATCAAAAAACGGATATGCAGGTTATATTGATGGGGG





AGCTAGCCAAGAAGAATTTTATAAATTTATCAAACCAATTTTAGAAAAAATGGAT





GGTACTGAGGAATTATTGGTGAAACTAAATCGTGAAGATTTGCTGCGCAAGCAA





CGGACCTTTGACAACGGCTCTATTCCCCATCAAATTCACTTGGGTGAGCTGCATG





CTATTTTGAGAAGACAAGAAGACTTTTATCCATTTTTAAAAGACAATCGTGAGAA





GATTGAAAAAATCTTGACTTTTCGAATTCCTTATTATGTTGGTCCATTGGCGCGTG





GCAATAGTCGTTTTGCATGGATGACTCGGAAGTCTGAAGAAACAATTACCCCATG





GAATTTTGAAGAAGTTGTCGATAAAGGTGCTTCAGCTCAATCATTTATTGAACGC





ATGACAAACTTTGATAAAAATCTTCCAAATGAAAAAGTACTACCAAAACATAGT





TTGCTTTATGAGTATTTTACGGTTTATAACGAATTGACAAAGGTCAAATATGTTA





CTGAAGGAATGCGAAAACCAGCATTTCTTTCAGGTGAACAGAAGAAAGCCATTG





TTGATTTACTCTTCAAAACAAATCGAAAAGTAACCGTTAAGCAATTAAAAGAAG





ATTATTTCAAAAAAATAGAATGTTTTGATAGTGTTGAAATTTCAGGAGTTGAAGA





TAGATTTAATGCTTCATTAGGTACCTACCATGATTTGCTAAAAATTATTAAAGAT





AAAGATTTTTTGGATAATGAAGAAAATGAAGATATCTTAGAGGATATTGTTTTAA





CATTGACCTTATTTGAAGATAGGGAGATGATTGAGGAAAGACTTAAAACATATG





CTCACCTCTTTGATGATAAGGTGATGAAACAGCTTAAACGTCGCCGTTATACTGG





TTGGGGACGTTTGTCTCGAAAATTGATTAATGGTATTAGGGATAAGCAATCTGGC





AAAACAATATTAGATTTTTTGAAATCAGATGGTTTTGCCAATCGCAATTTTATGC





AGCTGATCCATGATGATAGTTTGACATTTAAAGAAGACATTCAAAAAGCACAAG





TGTCTGGACAAGGCGATAGTTTACATGAACATATTGCAAATTTAGCTGGTAGCCC





TGCTATTAAAAAAGGTATTTTACAGACTGTAAAAGTTGTTGATGAATTGGTCAAA





GTAATGGGGCGGCATAAGCCAGAAAATATCGTTATTGAAATGGCACGTGAAAAT





CAGACAACTCAAAAGGGCCAGAAAAATTCGCGAGAGCGTATGAAACGAATCGA





AGAAGGTATCAAAGAATTAGGAAGTCAGATTCTTAAAGAGCATCCTGTTGAAAA





TACTCAATTGCAAAATGAAAAGCTCTATCTCTATTATCTCCAAAATGGAAGAGAC





ATGTATGTGGACCAAGAATTAGATATTAATCGTTTAAGTGATTATGATGTCGATC





ACATTGTTCCACAAAGTTTCCTTAAAGACGATTCAATAGACAATAAGGTCTTAAC





GCGTTCTGATAAAAATCGTGGTAAATCGGATAACGTTCCAAGTGAAGAAGTAGT





CAAAAAGATGAAAAACTATTGGAGACAACTTCTAAACGCCAAGTTAATCACTCA





ACGTAAGTTTGATAATTTAACGAAAGCTGAACGTGGAGGTTTGAGTGAACTTGAT





AAAGCTGGTTTTATCAAACGCCAATTGGTTGAAACTCGCCAAATCACTAAGCATG





TGGCACAAATTTTGGATAGTCGCATGAATACTAAATACGATGAAAATGATAAAC





TTATTCGAGAGGTTAAAGTGATTACCTTAAAATCTAAATTAGTTTCTGACTTCCG





AAAAGATTTCCAATTCTATAAAGTACGTGAGATTAACAATTACCATCATGCCCAT





GATGCGTATCTAAATGCCGTCGTTGGAACTGCTTTGATTAAGAAATATCCAAAAC





TTGAATCGGAGTTTGTCTATGGTGATTATAAAGTTTATGATGTTCGTAAAATGATT





GCTAAGTCTGAGCAAGAAATAGGCAAAGCAACCGCAAAATATTTCTTTTACTCTA





ATATCATGAACTTCTTCAAAACAGAAATTACACTTGCAAATGGAGAGATTCGCAA





ACGCCCTCTAATCGAAACTAATGGGGAAACTGGAGAAATTGTCTGGGATAAAGG





GCGAGATTTTGCCACAGTGCGCAAAGTATTGTCCATGCCCCAAGTCAATATTGTC





AAGAAAACAGAAGTACAGACAGGCGGATTCTCCAAGGAGTCAATTTTACCAAAA





AGAAATTCGGACAAGCTTATTGCTCGTAAAAAAGACTGGGATCCAAAAAAATAT





GGTGGTTTTGATAGTCCAACGGTAGCTTATTCAGTCCTAGTGGTTGCTAAGGTGG





AAAAAGGGAAATCGAAGAAGTTAAAATCCGTTAAAGAGTTACTAGGGATCACAA





TTATGGAAAGAAGTTCCTTTGAAAAAAATCCGATTGACTTTTTAGAAGCTAAAGG





ATATAAGGAAGTTAAAAAAGACTTAATCATTAAACTACCTAAATATAGTCTTTTT





GAGTTAGAAAACGGTCGTAAACGGATGCTGGCTAGTGCCGGAGAATTACAAAAA





GGAAATGAGCTGGCTCTGCCAAGCAAATATGTGAATTTTTTATATTTAGCTAGTC





ATTATGAAAAGTTGAAGGGTAGTCCAGAAGATAACGAACAAAAACAATTGTTTG





TGGAGCAGCATAAGCATTATTTAGATGAGATTATTGAGCAAATCAGTGAATTTTC





TAAGCGTGTTATTTTAGCAGATGCCAATTTAGATAAAGTTCTTAGTGCATATAAC





AAACATAGAGACAAACCAATACGTGAACAAGCAGAAAATATTATTCATTTATTT





ACGTTGACGAATCTTGGAGCTCCCGCTGCTTTTAAATATTTTGATACAACAATTG





ATCGTAAACGATATACGTCTACAAAAGAAGTTTTAGATGCCACTCTTATCCATCA





ATCCATCACTGGTCTTTATGAAACACGCATTGATTTGAGTCAGCTAGGAGGTGAC





TGA





(SEQ ID NO: 52)



MDKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGE







TAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHE






RHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEG





DLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLP





GEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYA





DLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPE





KYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQR





TFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFA





WMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTV





YNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFD





SVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERL





KTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRN





FMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVK






VMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQL







QNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDK







NRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIK







RQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKV







REINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGK







ATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSM







PQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVV






AKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFE





LENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQ





HKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGA





PAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD





(single underline: HNH domain; double underline: RuvC domain)






In some embodiments, Cas9 refers to Cas9 from: Corynebacterium ulcerans (NCBI Refs: NC_015683.1, NC_017317.1); Corynebacterium diphtheria (NCBI Refs: NC_016782.1, NC_016786.1); Spiroplasma syrphidicola (NCBI Ref: NC_021284.1); Prevotella intermedia (NCBI Ref: NC_017861.1); Spiroplasma taiwanense (NCBI Ref: NC_021846.1); Streptococcus iniae (NCBI Ref: NC_021314.1); Belliella baltica (NCBI Ref: NC_018010.1); Psychroflexus torquisl (NCBI Ref: NC_018721.1); Streptococcus thermophilus (NCBI Ref: YP_820832.1), Listeria innocua (NCBI Ref: NP_472073.1), Campylobacter jejuni (NCBI Ref: YP_002344900.1) or Neisseria. meningitidis (NCBI Ref: YP_002342100.1) or to a Cas9 from any other organism.


In some embodiments, dCas9 corresponds to, or comprises in part or in whole, a Cas9 amino acid sequence having one or more mutations that inactivate the Cas9 nuclease activity. For example, in some embodiments, a dCas9 domain comprises D10A and an H840A mutation of SEQ ID NO: 52 or corresponding mutations in another Cas9. In some embodiments, the dCas9 comprises the amino acid sequence of SEQ ID NO: 53 dCas9 (D10A and H840A):









(SEQ ID NO: 53)



MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGAL







LFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLE






ESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRL





IYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINAS





GVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSN





FDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDIL





RVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKN





GYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNG





SIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGN





SRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPK





HSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTV





KQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEEN





EDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLS





RKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVS





GQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMAR






ENQTTQKGQK
NSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYL







QNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKS







DNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLS
ELDKAGFIK







RQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKD







FQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRK







MIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGE







IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIAR






KKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSS





FEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGN





ELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISE





FSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKY





FDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD 


(single underline: HNH domain; double underline:


RuvC domain).






In some embodiments, the Cas9 domain comprises a D10A mutation, while the residue at position 840 remains a histidine in the amino acid sequence provided in SEQ ID NO: 52, or at corresponding positions in any of the amino acid sequences provided in SEQ ID NOs: 108-357. Without wishing to be bound by any particular theory, the presence of the catalytic residue H840 maintains the activity of the Cas9 to cleave the non-edited (e.g., non-deaminated) strand containing a T opposite the targeted A. Restoration of H840 (e.g., from A840 of a dCas9) does not result in the cleavage of the target strand containing the A. Such Cas9 variants are able to generate a single-strand DNA break (nick) at a specific location based on the gRNA-defined target sequence, leading to repair of the non-edited strand, ultimately resulting in a T to C change on the non-edited strand. A schematic representation of this process is shown in FIG. 94. Briefly, and without wishing to be bound by any particular theory, the A of a A-T base pair can be deaminated to a inosine (I) by an adenosine deaminase, e.g., an engineered adenosine deaminase that deaminates an adenosine in DNA. Nicking the non-edited strand, having the T, facilitates removal of the T via mismatch repair mechanisms. A UGI domain or a catalytically inactive inosine-specific nuclease (dISN) may inhibit inosine-specific nucleases (e.g., sterically) thereby preventing removal of the inosine (I).


In other embodiments, dCas9 variants having mutations other than D10A and H840A are provided, which, e.g., result in nuclease inactivated Cas9 (dCas9). Such mutations, by way of example, include other amino acid substitutions at D10 and H840, or other substitutions within the nuclease domains of Cas9 (e.g., substitutions in the HNH nuclease subdomain and/or the RuvC1 subdomain). In some embodiments, variants or homologues of dCas9 (e.g., variants of SEQ ID NO: 53) are provided which are at least about 70% identical, at least about 80% identical, at least about 90% identical, at least about 95% identical, at least about 98% identical, at least about 99% identical, at least about 99.5% identical, or at least about 99.9% identical to SEQ ID NO: 10. In some embodiments, variants of dCas9 (e.g., variants of SEQ ID NO: 53) are provided having amino acid sequences which are shorter, or longer than SEQ ID NO: 53, by about 5 amino acids, by about 10 amino acids, by about 15 amino acids, by about 20 amino acids, by about 25 amino acids, by about 30 amino acids, by about 40 amino acids, by about 50 amino acids, by about 75 amino acids, by about 100 amino acids or more.


In some embodiments, Cas9 fusion proteins as provided herein comprise the full-length amino acid sequence of a Cas9 protein, e.g., one of the Cas9 sequences provided herein. In other embodiments, however, fusion proteins as provided herein do not comprise a full-length Cas9 sequence, but only a fragment thereof. For example, in some embodiments, a Cas9 fusion protein provided herein comprises a Cas9 fragment, wherein the fragment binds crRNA and tracrRNA or sgRNA, but does not comprise a functional nuclease domain, e.g., in that it comprises only a truncated version of a nuclease domain or no nuclease domain at all.


Exemplary amino acid sequences of suitable Cas9 domains and Cas9 fragments are provided herein, and additional suitable sequences of Cas9 domains and fragments will be apparent to those of skill in the art.


In some embodiments, Cas9 refers to Cas9 from: Corynebacterium ulcerans (NCBI Refs: NC_015683.1, NC_017317.1); Corynebacterium diphtheria (NCBI Refs: NC_016782.1, NC_016786.1); Spiroplasma syrphidicola (NCBI Ref: NC_021284.1); Prevotella intermedia (NCBI Ref: NC_017861.1); Spiroplasma taiwanense (NCBI Ref: NC_021846.1); Streptococcus iniae (NCBI Ref: NC_021314.1); Belliella baltica (NCBI Ref: NC_018010.1); Psychroflexus torquisl (NCBI Ref: NC_018721.1); Streptococcus thermophilus (NCBI Ref: YP_820832.1); Listeria innocua (NCBI Ref: NP_472073.1); Campylobacter jejuni (NCBI Ref: YP_002344900.1); or Neisseria. meningitidis (NCBI Ref: YP_002342100.1).


It should be appreciated that additional Cas9 proteins (e.g., a nuclease dead Cas9 (dCas9), a Cas9 nickase (nCas9), or a nuclease active Cas9), including variants and homologs thereof, are within the scope of this disclosure. Exemplary Cas9 proteins include, without limitation, those provided below. In some embodiments, the Cas9 protein is a nuclease dead Cas9 (dCas9). In some embodiments, the dCas9 comprises the amino acid sequence (SEQ ID NO: 34). In some embodiments, the Cas9 protein is a Cas9 nickase (nCas9). In some embodiments, the nCas9 comprises the amino acid sequence (SEQ ID NO: 35). In some embodiments, the Cas9 protein is a nuclease active Cas9. In some embodiments, the nuclease active Cas9 comprises the amino acid sequence (SEQ ID NO: 36).









Exemplary catalytically inactive Cas9 (dCas9):


(SEQ ID NO: 34)


DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALL





FDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEE





SFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLI





YLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASG





VDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNF





DLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILR





VNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNG





YAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGS





IPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNS





RFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKH





SLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVK





QLKEDYFKKIECFDSVETSGVEDRFNASLGTYHDLLKIIKDKDFLDNEENE





DILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSR





KLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSG





QGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARE





NQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQ





NGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSD





NVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKR





QLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDF





QFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKM





IAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEI





VWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARK





KDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSF





EKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNE





LALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEF





SKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYF





DTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD





Exemplary Cas9 nickase (nCas9):


(SEQ ID NO: 35)


DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALL





FDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEE





SFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLI





YLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASG





VDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNF





DLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILR





VNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNG





YAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGS





IPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNS





RFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKH





SLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVK





QLKEDYFKKIECFDSVETSGVEDRFNASLGTYHDLLKIIKDKDFLDNEENE





DILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSR





KLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSG





QGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARE





NQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQ





NGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSD





NVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKR





QLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDF





QFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKM





IAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEI





VWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARK





KDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSF





EKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNE





LALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEF





SKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYF





DTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD 





Exemplary catalytically active Cas9:


(SEQ ID NO: 36)


DKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALL





FDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEE





SFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLI





YLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASG





VDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNF





DLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILR





VNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNG





YAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGS





IPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNS





RFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKH





SLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVK





QLKEDYFKKIECFDSVETSGVEDRFNASLGTYHDLLKIIKDKDFLDNEENE





DILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSR





KLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSG





QGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARE





NQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQ





NGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSD





NVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKR





QLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDF





QFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKM





IAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEI





VWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARK





KDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSF





EKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNE





LALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEF





SKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYF





DTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD.






In some embodiments, Cas9 refers to a Cas9 from arehaea (e.g. nanoarchaea), which constitute a domain and kingdom of single-celled prokaryotic microbes. In some embodiments, Cas9 refers to CasX or CasY, which have been described in, for example, Burstein et al., “New CRISPR-Cas systems from uncultivated microbes.” Cell Res. 2017 Feb. 21. doi: 10.1038/cr.2017.21, the entire contents of which is hereby incorporated by reference. Using genome-resolved metagenomics, a number of CRISPR-Cas systems were identified, including the first reported Cas9 in the archaeal domain of life. This divergent Cas9 protein was found in little-studied nanoarchaea as part of an active CRISPR-Cas system. In bacteria, two previously unknown systems were discovered, CRISPR-CasX and CRISPR-CasY, which are among the most compact systems yet discovered. In some embodiments, Cas9 refers to CasX, or a variant of CasX. In some embodiments, Cas9 refers to a CasY, or a variant of CasY. It should be appreciated that other RNA-guided DNA binding proteins may be used as a nucleic acid programmable DNA binding protein (napDNAbp) and are within the scope of this disclosure.


In some embodiments, the nucleic acid programmable DNA binding protein (napDNAbp) of any of the fusion proteins provided herein may be a CasX or CasY protein. In some embodiments, the napDNAbp is a CasX protein. In some embodiments, the napDNAbp is a CasY protein. In some embodiments, the napDNAbp comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at ease 99.5% identical to a naturally-occurring CasX or CasY protein. In some embodiments, the napDNAbp is a naturally-occurring CasX or CasY protein. In some embodiments, the napDNAbp comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at ease 99.5% identical to any one of SEQ ID NOs: 417-419. In some embodiments, the napDNAbp comprises an amino acid sequence of any one SEQ ID NOs: 417-419. It should be appreciated that CasX and CasY from other bacterial species may also be used in accordance with the present disclosure.









CasX (uniprot.org/uniprot/F0NN87; uniprot.org/


uniprot/F0NH53)


>tr|F0NN87|F0NN87_SULIH CRISPR-associated Casx


protein OS = Sulfolobus islandicus (strain HVE10/4)


GN = SiH_0402 PE = 4 SV = 1


(SEQ ID NO: 417)


MEVPLYNIFGDNYIIQVATEAENSTIYNNKVEIDDEELRNVLNLAYKIAKN





NEDAAAERRGKAKKKKGEEGETTTSNIILPLSGNDKNPWTETLKCYNFPTT





VALSEVFKNFSQVKECEEVSAPSFVKPEFYEFGRSPGMVERTRRVKLEVEP





HYLIIAAAGWVLTRLGKAKVSEGDYVGVNVFTPTRGILYSLIQNVNGIVPG





IKPETAFGLWIARKVVSSVTNPNVSVVRIYTISDAVGQNPTTINGGFSIDL





TKLLEKRYLLSERLEAIARNALSISSNMRERYIVLANYIYEYLTGSKRLED





LLYFANRDLIMNLNSDDGKVRDLKLISAYVNGELIRGEG





>tr|F0NH53|F0NH53_SULIR CRISPR associated protein,


Casx OS = Sulfolobus islandicus (strain REY15A)


GN = SiRe_0771 PE = 4 SV = 1


(SEQ ID NO: 418)


MEVPLYNIFGDNYIIQVATEAENSTIYNNKVEIDDEELRNVLNLAYKIAKN





NEDAAAERRGKAKKKKGEEGETTTSNIILPLSGNDKNPWTETLKCYNFPTT





VALSEVFKNFSQVKECEEVSAPSFVKPEFYKFGRSPGMVERTRRVKLEVEP





HYLIMAAAGWVLTRLGKAKVSEGDYVGVNVFTPTRGILYSLIQNVNGIVPG





IKPETAFGLWIARKVVSSVTNPNVSVVSIYTISDAVGQNPTTINGGFSIDL





TKLLEKRDLLSERLEAIARNALSISSNMRERYIVLANYIYEYLTGSKRLED





LLYFANRDLIMNLNSDDGKVRDLKLISAYVNGELIRGEG





CasY (ncbi.nlm.nih.gov/protein/APG80656.1)


>APG80656.1 CRISPR-associated protein CasY


[uncultured Parcubacteria group bacterium]


(SEQ ID NO: 419)


MSKRHPRISGVKGYRLHAQRLEYTGKSGAMRTIKYPLYSSPSGGRTVPREI





VSAINDDYVGLYGLSNFDDLYNAEKRNEEKVYSVLDFWYDCVQYGAVFSYT





APGLLKNVAEVRGGSYELTKTLKGSHLYDELQIDKVIKFLNKKEISRANGS





LDKLKKDIIDCFKAEYRERHKDQCNKLADDIKNAKKDAGASLGERQKKLFR





DFFGISEQSENDKPSFTNPLNLTCCLLPFDTVNNNRNRGEVLFNKLKEYAQ





KLDKNEGSLEMWEYIGIGNSGTAFSNFLGEGFLGRLRENKITELKKAMMDI





TDAWRGQEQEEELEKRLRILAALTIKLREPKFDNHWGGYRSDINGKLSSWL





QNYINQTVKIKEDLKGHKKDLKKAKEMINRFGESDTKEEAVVSSLLESIEK





IVPDDSADDEKPDIPAIAIYRRFLSDGRLTLNRFVQREDVQEALIKERLEA





EKKKKPKKRKKKSDAEDEKETIDFKELFPHLAKPLKLVPNFYGDSKRELYK





KYKNAAIYTDALWKAVEKIYKSAFSSSLKNSFFDTDFDKDFFIKRLQKIFS





VYRRFNTDKWKPIVKNSFAPYCDIVSLAENEVLYKPKQSRSRKSAAIDKNR





VRLPSTENIAKAGIALARELSVAGFDWKDLLKKEEHEEYIDLIELHKTALA





LLLAVTETQLDISALDFVENGTVKDFMKTRDGNLVLEGRFLEMFSQSIVFS





ELRGLAGLMSRKEFITRSAIQTMNGKQAELLYIPHEFQSAKITTPKEMSRA





FLDLAPAEFATSLEPESLSEKSLLKLKQMRYYPHYFGYELTRTGQGIDGGV





AENALRLEKSPVKKREIKCKQYKTLGRGQNKIVLYVRSSYYQTQFLEWFLH





RPKNVQTDVAVSGSFLIDEKKVKTRWNYDALTVALEPVSGSERVFVSQPFT





IFPEKSAEEEGQRYLGIDIGEYGIAYTALEITGDSAKILDQNFISDPQLKT





LREEVKGLKLDQRRGTFAMPSTKIARIRESLVHSLRNRIHHLALKHKAKIV





YELEVSRFEEGKQKIKKVYATLKKADVYSEIDADKNLQTTVWGKLAVASEI





SASYTSQFCGACKKLWRAEMQVDETITTQELIGTVRVIKGGTLIDAIKDFM





RPPIFDENDTPFPKYRDFCDKHHISKKMRGNSCLFICPFCRANADADIQAS





QTIALLRYVKEEKKVEDYFERFRKLKNIKVLGQMKKI






The term “effective amount,” as used herein, refers to an amount of a biologically active agent that is sufficient to elicit a desired biological response. For example, in some embodiments, an effective amount of a nucleobase editor may refer to the amount of the nucleobase editor that is sufficient to induce mutation of a target site specifically bound mutated by the nucleobase editor. In some embodiments, an effective amount of a fusion protein provided herein, e.g., of a fusion protein comprising a nucleic acid programmable DNA binding protein and a deaminase domain (e.g., an adenosine deaminase domain) may refer to the amount of the fusion protein that is sufficient to induce editing of a target site specifically bound and edited by the fusion protein. As will be appreciated by the skilled artisan, the effective amount of an agent, e.g., a fusion protein, a nucleobase editor, a deaminase, a hybrid protein, a protein dimer, a complex of a protein (or protein dimer) and a polynucleotide, or a polynucleotide, may vary depending on various factors as, for example, on the desired biological response, e.g., on the specific allele, genome, or target site to be edited, on the cell or tissue being targeted, and on the agent being used.


The terms “nucleic acid” and “nucleic acid molecule,” as used herein, refer to a compound comprising a nucleobase and an acidic moiety, e.g., a nucleoside, a nucleotide, or a polymer of nucleotides. Typically, polymeric nucleic acids, e.g., nucleic acid molecules comprising three or more nucleotides are linear molecules, in which adjacent nucleotides are linked to each other via a phosphodiester linkage. In some embodiments, “nucleic acid” refers to individual nucleic acid residues (e.g. nucleotides and/or nucleosides). In some embodiments, “nucleic acid” refers to an oligonucleotide chain comprising three or more individual nucleotide residues. As used herein, the terms “oligonucleotide” and “polynucleotide” can be used interchangeably to refer to a polymer of nucleotides (e.g., a string of at least three nucleotides). In some embodiments, “nucleic acid” encompasses RNA as well as single and/or double-stranded DNA. Nucleic acids may be naturally occurring, for example, in the context of a genome, a transcript, an mRNA, tRNA, rRNA, siRNA, snRNA, a plasmid, cosmid, chromosome, chromatid, or other naturally occurring nucleic acid molecule. On the other hand, a nucleic acid molecule may be a non-naturally occurring molecule, e.g., a recombinant DNA or RNA, an artificial chromosome, an engineered genome, or fragment thereof, or a synthetic DNA, RNA, DNA/RNA hybrid, or including non-naturally occurring nucleotides or nucleosides. Furthermore, the terms “nucleic acid,” “DNA,” “RNA,” and/or similar terms include nucleic acid analogs, e.g., analogs having other than a phosphodiester backbone. Nucleic acids can be purified from natural sources, produced using recombinant expression systems and optionally purified, chemically synthesized, etc. Where appropriate, e.g., in the case of chemically synthesized molecules, nucleic acids can comprise nucleoside analogs such as analogs having chemically modified bases or sugars, and backbone modifications. A nucleic acid sequence is presented in the 5′ to 3′ direction unless otherwise indicated. In some embodiments, a nucleic acid is or comprises natural nucleosides (e.g. adenosine, thymidine, guanosine, cytidine, uridine, deoxyadenosine, deoxythymidine, deoxyguanosine, and deoxycytidine); nucleoside analogs (e.g., 2-aminoadenosine, 2-thiothymidine, inosine, pyrrolo-pyrimidine, 3-methyl adenosine, 5-methylcytidine, 2-aminoadenosine, C5-bromouridine, C5-fluorouridine, C5-iodouridine, C5-propynyl-uridine, C5-propynyl-cytidine, C5-methylcytidine, 2-aminoadenosine, 7-deazaadenosine, 7-deazaguanosine, 8-oxoadenosine, 8-oxoguanosine, 0(6)-methylguanine, and 2-thiocytidine); chemically modified bases; biologically modified bases (e.g., methylated bases); intercalated bases; modified sugars (e.g., 2′-fluororibose, ribose, 2′-deoxyribose, arabinose, and hexose); and/or modified phosphate groups (e.g., phosphorothioates and 5′-N-phosphoramidite linkages).


The term “proliferative disease,” as used herein, refers to any disease in which cell or tissue homeostasis is disturbed in that a cell or cell population exhibits an abnormally elevated proliferation rate. Proliferative diseases include hyperproliferative diseases, such as pre-neoplastic hyperplastic conditions and neoplastic diseases. Neoplastic diseases are characterized by an abnormal proliferation of cells and include both benign and malignant neoplasias. Malignant neoplasia is also referred to as cancer.


The terms “protein,” “peptide,” and “polypeptide” are used interchangeably herein, and refer to a polymer of amino acid residues linked together by peptide (amide) bonds. The terms refer to a protein, peptide, or polypeptide of any size, structure, or function. Typically, a protein, peptide, or polypeptide will be at least three amino acids long. A protein, peptide, or polypeptide may refer to an individual protein or a collection of proteins. One or more of the amino acids in a protein, peptide, or polypeptide may be modified, for example, by the addition of a chemical entity such as a carbohydrate group, a hydroxyl group, a phosphate group, a farnesyl group, an isofarnesyl group, a fatty acid group, a linker for conjugation, functionalization, or other modification, etc. A protein, peptide, or polypeptide may also be a single molecule or may be a multi-molecular complex. A protein, peptide, or polypeptide may be just a fragment of a naturally occurring protein or peptide. A protein, peptide, or polypeptide may be naturally occurring, recombinant, or synthetic, or any combination thereof. The term “fusion protein” as used herein refers to a hybrid polypeptide which comprises protein domains from at least two different proteins. One protein may be located at the amino-terminal (N-terminal) portion of the fusion protein or at the carboxy-terminal (C-terminal) protein thus forming an “amino-terminal fusion protein” or a “carboxy-terminal fusion protein,” respectively. A protein may comprise different domains, for example, a nucleic acid binding domain (e.g., the gRNA binding domain of Cas9 that directs the binding of the protein to a target site) and a nucleic acid cleavage domain or a catalytic domain of a nucleic-acid editing protein. In some embodiments, a protein comprises a proteinaceous part, e.g., an amino acid sequence constituting a nucleic acid binding domain, and an organic compound, e.g., a compound that can act as a nucleic acid cleavage agent. In some embodiments, a protein is in a complex with, or is in association with, a nucleic acid, e.g., RNA. Any of the proteins provided herein may be produced by any method known in the art. For example, the proteins provided herein may be produced via recombinant protein expression and purification, which is especially suited for fusion proteins comprising a peptide linker. Methods for recombinant protein expression and purification are well known, and include those described by Green and Sambrook, Molecular Cloning: A Laboratory Manual (4th ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (2012)), the entire contents of which are incorporated herein by reference.


The term “RNA-programmable nuclease,” and “RNA-guided nuclease” are used interchangeably herein and refer to a nuclease that forms a complex with (e.g., binds or associates with) one or more RNA(s) that is not a target for cleavage. In some embodiments, an RNA-programmable nuclease, when in a complex with an RNA, may be referred to as a nuclease: RNA complex. Typically, the bound RNA(s) is referred to as a guide RNA (gRNA). gRNAs can exist as a complex of two or more RNAs, or as a single RNA molecule. gRNAs that exist as a single RNA molecule may be referred to as single-guide RNAs (sgRNAs), though “gRNA” is used interchangeably to refer to guide RNAs that exist as either single molecules or as a complex of two or more molecules. Typically, gRNAs that exist as single RNA species comprise two domains: (1) a domain that shares homology to a target nucleic acid (e.g., and directs binding of a Cas9 complex to the target); and (2) a domain that binds a Cas9 protein. In some embodiments, domain (2) corresponds to a sequence known as a tracrRNA and comprises a stem-loop structure. For example, in some embodiments, domain (2) is identical or homologous to a tracrRNA as provided in Jinek et al., Science 337:816-821(2012), the entire contents of which is incorporated herein by reference. Other examples of gRNAs (e.g., those including domain 2) can be found in U.S. Provisional Patent Application, U.S. Ser. No. 61/874,682, filed Sep. 6, 2013, entitled “Switchable Cas9 Nucleases And Uses Thereof,” and U.S. Provisional Patent Application, U.S. Ser. No. 61/874,746, filed Sep. 6, 2013, entitled “Delivery System For Functional Nucleases,” the entire contents of each are hereby incorporated by reference in their entirety. In some embodiments, a gRNA comprises two or more of domains (1) and (2) and may be referred to as an “extended gRNA.” For example, an extended gRNA will, e.g., bind two or more Cas9 proteins and bind a target nucleic acid at two or more distinct regions, as described herein. The gRNA comprises a nucleotide sequence that complements a target site, which mediates binding of the nuclease/RNA complex to said target site, providing the sequence specificity of the nuclease:RNA complex. In some embodiments, the RNA-programmable nuclease is the (CRISPR-associated system) Cas9 endonuclease, for example, Cas9 (Csn1) from Streptococcus pyogenes (see, e.g., “Complete genome sequence of an M1 strain of Streptococcus pyogenes.” Ferretti J. J., McShan W. M., Ajdic D. J., Savic D. J., Savic G., Lyon K., Primeaux C., Sezate S., Suvorov A. N., Kenton S., Lai H. S., Lin S. P., Qian Y., Jia H. G., Najar F. Z., Ren Q., Zhu H., Song L., White J., Yuan X., Clifton S. W., Roe B. A., McLaughlin R. E., Proc. Natl. Acad. Sci. U.S.A. 98:4658-4663(2001); “CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III.” Deltcheva E., Chylinski K., Sharma C. M., Gonzales K., Chao Y., Pirzada Z. A., Eckert M. R., Vogel J., Charpentier E., Nature 471:602-607(2011); and “A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity.” Jinek M., Chylinski K., Fonfara I., Hauer M., Doudna J. A., Charpentier E. Science 337:816-821(2012), the entire contents of each of which are incorporated herein by reference.


Because RNA-programmable nucleases (e.g., Cas9) use RNA:DNA hybridization to target DNA cleavage sites, these proteins are able to be targeted, in principle, to any sequence specified by the guide RNA. Methods of using RNA-programmable nucleases, such as Cas9, for site-specific cleavage (e.g., to modify a genome) are known in the art (see e.g., Cong, L. et al., Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819-823 (2013); Mali, P. et al., RNA-guided human genome engineering via Cas9. Science 339, 823-826 (2013); Hwang, W. Y. et al., Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature biotechnology 31, 227-229 (2013); Jinek, M. et al., RNA-programmed genome editing in human cells. eLife 2, e00471 (2013); Dicarlo, J. E. et al., Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic acids research (2013); Jiang, W. et al. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature biotechnology 31, 233-239 (2013); the entire contents of each of which are incorporated herein by reference).


The term “subject,” as used herein, refers to an individual organism, for example, an individual mammal. In some embodiments, the subject is a human. In some embodiments, the subject is a non-human mammal. In some embodiments, the subject is a non-human primate. In some embodiments, the subject is a rodent. In some embodiments, the subject is a sheep, a goat, cattle, a cat, or a dog. In some embodiments, the subject is a vertebrate, an amphibian, a reptile, a fish, an insect, a fly, or a nematode. In some embodiments, the subject is a research animal. In some embodiments, the subject is genetically engineered, e.g., a genetically engineered non-human subject. The subject may be of either sex and at any stage of development.


The term “target site” refers to a sequence within a nucleic acid molecule that is deaminated by a deaminase or a fusion protein comprising a deaminase, (e.g., a dCas9-adenosine deaminase fusion protein provided herein).


The terms “treatment,” “treat,” and “treating,” refer to a clinical intervention aimed to reverse, alleviate, delay the onset of, or inhibit the progress of a disease or disorder, or one or more symptoms thereof, as described herein. As used herein, the terms “treatment,” “treat,” and “treating” refer to a clinical intervention aimed to reverse, alleviate, delay the onset of, or inhibit the progress of a disease or disorder, or one or more symptoms thereof, as described herein. In some embodiments, treatment may be administered after one or more symptoms have developed and/or after a disease has been diagnosed. In other embodiments, treatment may be administered in the absence of symptoms, e.g., to prevent or delay onset of a symptom or inhibit onset or progression of a disease. For example, treatment may be administered to a susceptible individual prior to the onset of symptoms (e.g., in light of a history of symptoms and/or in light of genetic or other susceptibility factors). Treatment may also be continued after symptoms have resolved, for example, to prevent or delay their recurrence.


The term “recombinant” as used herein in the context of proteins or nucleic acids refers to proteins or nucleic acids that do not occur in nature, but are the product of human engineering. For example, in some embodiments, a recombinant protein or nucleic acid molecule comprises an amino acid or nucleotide sequence that comprises at least one, at least two, at least three, at least four, at least five, at least six, or at least seven mutations as compared to any naturally occurring sequence.


DETAILED DESCRIPTION OF THE INVENTION

Some aspects of this disclosure relate to proteins that deaminate the nucleobase adenine. This disclosure provides adenosine deaminase proteins that are capable of deaminating (i.e., removing an amine group) adenine of a deoxyadenosine residue in deoxyribonucleic acid (DNA). For example, the adenosine deaminases provided herein are capable of deaminating adenine of a deoxyadenosine residue of DNA. It should be appreciated that there were no known adenosine deaminases capable of deaminating deoxyadenosine in DNA before the present invention. Other aspects of the disclosure provide fusion proteins that comprise an adenosine deaminase (e.g., an adenosine deaminase that deaminates deoxyadenosine in DNA as described herein) and a domain (e.g., a Cas9 or a Cpf1 protein) capable of binding to a specific nucleotide sequence. The deamination of an adenosine by an adenosine deaminase can lead to a point mutation, this process is referred to herein as nucleic acid editing. For example, the adenosine may be converted to an inosine residue, which typically base pairs with a cytosine residue. Such fusion proteins are useful inter alia for targeted editing of nucleic acid sequences. Such fusion proteins may be used for targeted editing of DNA in vitro, e.g., for the generation of mutant cells or animals; for the introduction of targeted mutations, e.g., for the correction of genetic defects in cells ex vivo, e.g., in cells obtained from a subject that are subsequently re-introduced into the same or another subject; and for the introduction of targeted mutations in vivo, e.g., the correction of genetic defects or the introduction of deactivating mutations in disease-associated genes in a subject. As an example, diseases that can be treated by making an A to G, or a T to C mutation may be treated using the nucleobase editors provided herein. The invention provides deaminases, fusion proteins, nucleic acids, vectors, cells, compositions, methods, kits, systems, etc. that utilize the deaminases and nucleobase editors.


In some embodiments, the nucleobase editors provided herein can be made by fusing together one or more protein domains, thereby generating a fusion protein. In certain embodiments, the fusion proteins provided herein comprise one or more features that improve the base editing activity (e.g., efficiency, selectivity, and specificity) of the fusion proteins. For example, the fusion proteins provided herein may comprise a Cas9 domain that has reduced nuclease activity. In some embodiments, the fusion proteins provided herein may have a Cas9 domain that does not have nuclease activity (dCas9), or a Cas9 domain that cuts one strand of a duplexed DNA molecule, referred to as a Cas9 nickase (nCas9). Without wishing to be bound by any particular theory, the presence of the catalytic residue (e.g., H840) maintains the activity of the Cas9 to cleave the non-edited (e.g., non-deaminated) strand containing a T opposite the targeted A. Mutation of the catalytic residue (e.g., D10 to A10) of Cas9 prevents cleavage of the edited strand containing the targeted A residue. Such Cas9 variants are able to generate a single-strand DNA break (nick) at a specific location based on the gRNA-defined target sequence, leading to repair of the non-edited strand, ultimately resulting in a T to C change on the non-edited strand. In some embodiments, any of the fusion proteins provided herein further comprise an inhibitor of inosine base excision repair, for example, a uracil glycosylase inhibitor (UGI) domain or a catalytically inactive inosine-specific nuclease (dISN). Without wishing to be bound by any particular theory, the UGI domain or dISN may inhibit or prevent base excision repair of a deaminated adenosine residue (e.g., inosine), which may improve the activity or efficiency of the base editor.


Adenosine Deaminases


Some aspects of the disclosure provide adenosine deaminases. In some embodiments, the adenosine deaminases provided herein are capable of deaminating adenine. In some embodiments, the adenosine deaminases provided herein are capable of deaminating adenine in a deoxyadenosine residue of DNA. The adenosine deaminase may be derived from any suitable organism (e.g., E. coli). In some embodiments, the adenine deaminase is a naturally-occurring adenosine deaminase that includes one or more mutations corresponding to any of the mutations provided herein (e.g., mutations in ecTadA). One of skill in the art will be able to identify the corresponding residue in any homologous protein and in the respective encoding nucleic acid by methods well known in the art, e.g., by sequence alignment and determination of homologous residues. Accordingly, one of skill in the art would be able to generate mutations in any naturally-occurring adenosine deaminase (e.g., having homology to ecTadA) that corresponds to any of the mutations described herein, e.g., any of the mutations identified in ecTadA. In some embodiments, the adenosine deaminase is from a prokaryote. In some embodiments, the adenosine deaminase is from a bacterium. In some embodiments, the adenosine deaminase is from Escherichia coli, Staphylococcus aureus, Salmonella typhi, Shewanella putrefaciens, Haemophilus influenzae, Caulobacter crescentus, or Bacillus subtilis. In some embodiments, the adenosine deaminase is from E. coli.


Exemplary alignment of prokaryotic TadA proteins is shown in FIG. 92. The residues highlighted in blue are the residues which may be important for catalyzing A to I deamination on ssDNA. Accordingly, it should be appreciated that any of the mutations identified in ecTadA provided herein may be made in any homologous residue in another adenine deaminase, for example, a TadA deaminase from another bacterium. FIG. 93 shows the relative sequence identity analysis (heatmap of sequence identity):


In some embodiments, the adenosine deaminase comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the amino acid sequences set forth in any one of SEQ ID NOs: 1, 64-84, 420-437, 672-684, or to any of the adenosine deaminases provided herein. It should be appreciated that adenosine deaminases provided herein may include one or more mutations (e.g., any of the mutations provided herein). The disclosure provides any deaminase domains with a certain percent identity plus any of the mutations or combinations thereof described herein. In some embodiments, the adenosine deaminase comprises an amino acid sequence that has 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or more mutations compared to any one of the amino acid sequences set forth in SEQ ID NOs: 1, 64-84, 420-437, 672-684, or any of the adenosine deaminases provided herein. In some embodiments, the adenosine deaminase comprises an amino acid sequence that has at least 5, at least 10, at least 15, at least 20, at least 25, at least 30, at least 35, at least 40, at least 45, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 110, at least 120, at least 130, at least 140, at least 150, at least 160, or at least 170 identical contiguous amino acid residues as compared to any one of the amino acid sequences set forth in SEQ ID NOs: 1, 64-84, 420-437, 672-684, or any of the adenosine deaminases provided herein.


Evolution #1 and #2 Mutations


In some embodiments, the adenosine deaminase comprises a D108X mutation in ecTadA SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises a D108G, D108N, D108V, D108A, or D108Y mutation in SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase. An exemplary alignment of deaminases is shown in FIG. 92. It should be appreciated, however, that additional deaminases may similarly be aligned to identify homologous amino acid residues that can be mutated as provided herein.


In some embodiments, the adenosine deaminase comprises an A106X mutation in ecTadA SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises an A106V mutation in SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase.


In some embodiments, the adenosine deaminase comprises a E155X mutation in SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase, where the presence of X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises a E155D, E155G, or E155V mutation in SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase.


In some embodiments, the adenosine deaminase comprises a D147X mutation in SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase, where the presence of X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises a D147Y, mutation in SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase.


It should be appreciated that any of the mutations provided herein (e.g., based on the ecTadA amino acid sequence of SEQ ID NO: 1) may be introduced into other adenosine deaminases, such as S. aureus TadA (saTadA), or other adenosine deaminases (e.g., bacterial adenosine deaminases). It would be apparent to the skilled artisan how to identify amino acid residues from other adenosine deaminases that are homologous to the mutated residues in ecTadA. Thus, any of the mutations identified in ecTadA may be made in other adenosine deaminases that have homologous amino acid residues. It should also be appreciated that any of the mutations provided herein may be made individually or in any combination in ecTadA or another adenosine deaminase. For example, an adenosine deaminase may contain a D108N, a A106V, a E155V, and/or a D147Y mutation in ecTadA SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase. In some embodiments, an adenosine deaminase comprises the following group of mutations (groups of mutations are separated by a “;”) in ecTadA SEQ ID NO: 1, or corresponding mutations in another adenosine deaminase:


D108N and A106V; D108N and E155V; D108N and D147Y; A106V and E155V; A106V and D147Y; E155V and D147Y; D108N, A106V, and E55V; D108N, A106V, and D147Y; D108N, E55V, and D147Y; A106V, E55V, and D147Y; and D108N, A106V, E55V, and D147Y. It should be appreciated, however, that any combination of corresponding mutations provided herein may be made in an adenosine deaminase (e.g., ecTadA). In some embodiments, an adenosine deaminase comprises one or more of the mutations shown in Table 4, which identifies individual mutations and combinations of mutations made in ecTadA and saTadA. In some embodiments, an adenosine deaminase comprises a mutation or combination of mutations shown in Table 4.


In some embodiments, the adenosine deaminase comprises one or more of a H8X, T17X, L18X, W23X, L34X, W45X, R51X, A56X, E59X, E85X, M94X, I95X, V102X, F104X, A106X, R107X, D108X, K110X, M118X, N127X, A138X, F149X, M151X, R153X, Q154X, I156X, and/or K157X mutation in SEQ ID NO: 1, or one or more corresponding mutations in another adenosine deaminase, where the presence of X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises one or more of H8Y, T17S, L18E, W23L, L34S, W45L, R51H, A56E, or A56S, E59G, E85K, or E85G, M94L, I951I, V102A, F104L, A106V, R107C, or R107H, or R107P, D108G, or D108N, or D108V, or D108A, or D108Y, K110I, M118K, N127S, A138V, F149Y, M151V, R153C, Q154L, I156D, and/or K157R mutation in SEQ ID NO: 1, or one or more corresponding mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises one or more of the mutations provided in FIG. 11 corresponding to SEQ ID NO: 1, or one or more corresponding mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises the mutation or mutations of any one of constructs 1-16 shown in FIG. 11 or in any one of the constructs shown in Table 4 corresponding to SEQ ID NO: 1, or a corresponding mutation or mutations in another adenosine deaminase.


In some embodiments, the adenosine deaminase comprises one or more of a H8X, D108X, and/or N127X mutation in SEQ ID NO: 1, or one or more corresponding mutations in another adenosine deaminase, where X indicates the presence of any amino acid. In some embodiments, the adenosine deaminase comprises one or more of a H8Y, D108N, and/or N127S mutation in SEQ ID NO: 1, or one or more corresponding mutations in another adenosine deaminase.


In some embodiments, the adenosine deaminase comprises one or more of H8X, R26X, M61X, L68X, M70X, A106X, D108X, A109X, N127X, D147X, R152X, Q154X, E155X, K161X, Q163X, and/or T166X mutation in SEQ ID NO: 1, or one or more corresponding mutations in another adenosine deaminase, where X indicates the presence of any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises one or more of H8Y, R26W, M61I, L68Q, M70V, A106T, D108N, A109T, N127S, D147Y, R152C, Q154H or Q154R, E155G or E155V or E155D, K161Q, Q163H, and/or T166P mutation in SEQ ID NO: 1, or one or more corresponding mutations in another adenosine deaminase.


In some embodiments, the adenosine deaminase comprises one, two, three, four, five, or six mutations selected from the group consisting of H8X, D108X, N127X, D147X, R152X, and Q154X in SEQ ID NO: 1, or a corresponding mutation or mutations in another adenosine deaminase, where X indicates the presence of any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises one, two, three, four, five, six, seven, or eight mutations selected from the group consisting of H8X, M61X, M70X, D108X, N127X, Q154X, E155X, and Q163X in SEQ ID NO: 1, or a corresponding mutation or mutations in another adenosine deaminase, where X indicates the presence of any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises one, two, three, four, or five, mutations selected from the group consisting of H8X, D108X, N127X, E155X, and T166X in SEQ ID NO: 1, or a corresponding mutation or mutations in another adenosine deaminase, where X indicates the presence of any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises one, two, three, four, five, or six mutations selected from the group consisting of H8X, A106X, D108X, N127X, E155X, and K161X in SEQ ID NO: 1, or a corresponding mutation or mutations in another adenosine deaminase, where X indicates the presence of any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises one, two, three, four, five, six, seven, or eight mutations selected from the group consisting of H8X, R126X, L68X, D108X, N127X, D147X, and E155X in SEQ ID NO: 1, or a corresponding mutation or mutations in another adenosine deaminase, where X indicates the presence of any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises one, two, three, four, or five, mutations selected from the group consisting of H8X, D108X, A109X, N127X, and E155X in SEQ ID NO: 1, or a corresponding mutation or mutations in another adenosine deaminase, where X indicates the presence of any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase.


In some embodiments, the adenosine deaminase comprises one, two, three, four, five, or six mutations selected from the group consisting of H8Y, D108N, N127S, D147Y, R152C, and Q154H in SEQ ID NO: 1, or a corresponding mutation or mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises one, two, three, four, five, six, seven, or eight mutations selected from the group consisting of H8Y, M61I, M70V, D108N, N127S, Q154R, E155G and Q163H in SEQ ID NO: 1, or a corresponding mutation or mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises one, two, three, four, or five, mutations selected from the group consisting of H8Y, D108N, N127S, E155V, and T166P in SEQ ID NO: 1, or a corresponding mutation or mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises one, two, three, four, five, or six mutations selected from the group consisting of H8Y, A106T, D108N, N127S, E155D, and K161Q in SEQ ID NO: 1, or a corresponding mutation or mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises one, two, three, four, five, six, seven, or eight mutations selected from the group consisting of H8Y, R126W, L68Q, D108N, N127S, D147Y, and E155V in SEQ ID NO: 1, or a corresponding mutation or mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises one, two, three, four, or five, mutations selected from the group consisting of H8Y, D108N, A109T, N127S, and E155G in SEQ ID NO: 1, or a corresponding mutation or mutations in another adenosine deaminase.


In some embodiments, the adenosine deaminase comprises one or more of the mutations provided in FIG. 16 corresponding to SEQ ID NO: 1, or one or more corresponding mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises the mutations of any one of constructs pNMG-149 to pNMG-154 of FIG. 16, corresponding to SEQ ID NO: 1, or corresponding mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises a D108N, D108G, or D108V mutation in SEQ ID NO: 1, or corresponding mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises a A106V and D108N mutation in SEQ ID NO: 1, or corresponding mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises R107C and D108N mutations in SEQ ID NO: 1, or corresponding mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises a H8Y, D108N, N127S, D147Y, and Q154H mutation in SEQ ID NO: 1, or corresponding mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises a H8Y, R24W, D108N, N127S, D147Y, and E155V mutation in SEQ ID NO: 1, or corresponding mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises a D108N, D147Y, and E155V mutation in SEQ ID NO: 1, or corresponding mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises a H8Y, D108N, and S127S mutation in SEQ ID NO: 1, or corresponding mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises a A106V, D108N, D147Y and E155V mutation in SEQ ID NO: 1, or corresponding mutations in another adenosine deaminase.


In some embodiments, the adenosine deaminase comprises one or more of a, S2X, H8X, I49X, L84X, H123X, N127X, I156X and/or K160X mutation in SEQ ID NO: 1, or one or more corresponding mutations in another adenosine deaminase, where the presence of X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises one or more of S2A, H8Y, I49F, L84F, H123Y, N127S, I156F and/or K160S mutation in SEQ ID NO: 1, or one or more corresponding mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises one or more of the mutations provided in FIG. 97 corresponding to SEQ ID NO: 1, or one or more corresponding mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises the mutation or mutations of any one of clones 1-3 shown in FIG. 97 corresponding to SEQ ID NO: 1, or a corresponding mutation or mutations in another adenosine deaminase.


In some embodiments, the adenosine deaminase comprises an L84X mutation in ecTadA SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises an L84F mutation in SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase.


In some embodiments, the adenosine deaminase comprises an H123X mutation in ecTadA SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises an H123Y mutation in SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase.


In some embodiments, the adenosine deaminase comprises an I157X mutation in ecTadA SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises an I157F mutation in SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase.


In some embodiments, the adenosine deaminase comprises one, two, three, four, five, six, or seven mutations selected from the group consisting of L84X, A106X, D108X, H123X, D147X, E155X, and I156X in SEQ ID NO: 1, or a corresponding mutation or mutations in another adenosine deaminase, where X indicates the presence of any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises one, two, three, four, five, or six mutations selected from the group consisting of S2X, I49X, A106X, D108X, D147X, and E155X in SEQ ID NO: 1, or a corresponding mutation or mutations in another adenosine deaminase, where X indicates the presence of any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises one, two, three, four, or five, mutations selected from the group consisting of H8X, A106X, D108X, N127X, and K160X in SEQ ID NO: 1, or a corresponding mutation or mutations in another adenosine deaminase, where X indicates the presence of any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase.


In some embodiments, the adenosine deaminase comprises one, two, three, four, five, six, or seven mutations selected from the group consisting of L84F, A106V, D108N, H123Y, D147Y, E155V, and I156F in SEQ ID NO: 1, or a corresponding mutation or mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises one, two, three, four, five, or six mutations selected from the group consisting of S2A, I49F, A106V, D108N, D147Y, and E155V in SEQ ID NO: 1, or a corresponding mutation or mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises one, two, three, four, or five, mutations selected from the group consisting of H8Y, A106T, D108N, N127S, and K160S in SEQ ID NO: 1, or a corresponding mutation or mutations in another adenosine deaminase.


In some embodiments, the adenosine deaminase comprises one or more of a, E25X, R26X, R107X, A142X, and/or A143X mutation in SEQ ID NO: 1, or one or more corresponding mutations in another adenosine deaminase, where the presence of X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises one or more of E25M, E25D, E25A, E25R, E25V, E25S, E25Y, R26G, R26N, R26Q, R26C, R26L, R26K, R107P, R07K, R107A, R107N, R107W, R107H, R107S, A142N, A142D, A142G, A143D, A143G, A143E, A143L, A143W, A143M, A143S, A143Q and/or A143R mutation in SEQ ID NO: 1, or one or more corresponding mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises one or more of the mutations provided in Table 7 corresponding to SEQ ID NO: 1, or one or more corresponding mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises the mutation or mutations of any one of clones 1-22 shown in Table 7 corresponding to SEQ ID NO: 1, or a corresponding mutation or mutations in another adenosine deaminase.


In some embodiments, the adenosine deaminase comprises an E25X mutation in ecTadA SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises an E25M, E25D, E25A, E25R, E25V, E25S, or E25Y mutation in SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase.


In some embodiments, the adenosine deaminase comprises an R26X mutation in ecTadA SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises an, R26G, R26N, R26Q, R26C, R26L, or R26K mutation in SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase.


In some embodiments, the adenosine deaminase comprises an R107X mutation in ecTadA SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises an R107P, R07K, R107A, R107N, R107W, R107H, or R107S mutation in SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase.


In some embodiments, the adenosine deaminase comprises an A142X mutation in ecTadA SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises an A142N, A142D, A142G, mutation in SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase.


In some embodiments, the adenosine deaminase comprises an A143X mutation in ecTadA SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises an A143D, A143G, A143E, A143L, A143W, A143M, A143S, A143Q and/or A143R mutation in SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase.


In some embodiments, the adenosine deaminase comprises one or more of a, H36X, N37X, P48X, I49X, R51X, M70X, N72X, D77X, E134X, S146X, Q154X, K157X, and/or K161X mutation in SEQ ID NO: 1, or one or more corresponding mutations in another adenosine deaminase, where the presence of X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises one or more of H36L, N37T, N37S, P48T, P48L, I49V, R51H, R51L, M70L, N72S, D77G, E134G, S146R, S146C, Q154H, K157N, and/or K161T mutation in SEQ ID NO: 1, or one or more corresponding mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises one or more of the mutations provided in any one of FIGS. 125-128 corresponding to SEQ ID NO: 1, or one or more corresponding mutations in another adenosine deaminase. In some embodiments, the adenosine deaminase comprises the mutation or mutations of any one of clones 1-11 shown in any one of FIGS. 125-128 corresponding to SEQ ID NO: 1, or a corresponding mutation or mutations in another adenosine deaminase.


In some embodiments, the adenosine deaminase comprises an H36X mutation in ecTadA SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises an H36L mutation in SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase.


In some embodiments, the adenosine deaminase comprises an N37X mutation in ecTadA SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises an N37T, or N37S mutation in SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase.


In some embodiments, the adenosine deaminase comprises an P48X mutation in ecTadA SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises an P48T, or P48L mutation in SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase.


In some embodiments, the adenosine deaminase comprises an R51X mutation in ecTadA SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises an R51H, or R51L mutation in SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase.


In some embodiments, the adenosine deaminase comprises an S146X mutation in ecTadA SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises an S146R, or S146C mutation in SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase.


In some embodiments, the adenosine deaminase comprises an K157X mutation in ecTadA SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises a K157N mutation in SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase.


In some embodiments, the adenosine deaminase comprises an P48X mutation in ecTadA SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises a P48S, P48T, or P48A mutation in SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase.


In some embodiments, the adenosine deaminase comprises an A142X mutation in ecTadA SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises a A142N mutation in SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase.


In some embodiments, the adenosine deaminase comprises an W23X mutation in ecTadA SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises a W23R, or W23L mutation in SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase.


In some embodiments, the adenosine deaminase comprises an R152X mutation in ecTadA SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase, where X indicates any amino acid other than the corresponding amino acid in the wild-type adenosine deaminase. In some embodiments, the adenosine deaminase comprises a R152P, or R52H mutation in SEQ ID NO: 1, or a corresponding mutation in another adenosine deaminase.


It should be appreciated that the adenosine deaminase (e.g., a first or second adenosine deaminase) may comprise one or more of the mutations provided in any of the adenosine deaminases (e.g., ecTadA adenosine deaminases) shown in Table 4. In some embodiments, the adenosine deaminase comprises the combination of mutations of any of the adenosine deaminases (e.g., ecTadA adenosine deaminases) shown in Table 4. For example, the adenosine deaminase may comprise the mutations H36L, R51L, L84F, A106V, D108N, H123Y, S146C, D147Y, E155V, I156F, and K157N, which are shown in the second ecTadA (relative to SEQ ID NO: 1) of clone pNMG-477. In some embodiments, the adenosine deaminase comprises the following combination of mutations relative to SEQ ID NO:1, where each mutation of a combination is separated by a “_” and each combination of mutations is between parentheses: (A106V_D108N), (R107C_D108N), (H8Y_D108N_S127S_D147Y_Q154H), (H8Y_R24W_D108N_N127S_D147Y_E155V), (D108N_D147Y_E155V), (H8Y_D108N_S127S), (H8Y_D108N_N127S_D147Y_Q154H), (A106V_D108N_D147Y_E155V), (D108Q_D147Y_E155V), (D108M_D147Y_E155V), (D108L_D147Y_E155V), (D108K_D147Y_E155V), (D108I_D147Y_E155V), (D108F_D147Y_E155V), (A106V_D108N_D147Y), (A106V_D108M_D147Y_E155V), (E59A_A106V_D108N_D147Y_E155V), (E59A cat dead_A106V_D108N_D147Y_E155V), (L84F_A106V_D108N_H123Y_D147Y_E155V_I156Y), (L84F_A106V_D108N_H123Y_D147Y_E155V_I156F), (D103A_D014N), (G22P_D103A_D104N), (G22P_D103A_D104N_S138A), (D103A_D104N_S138A), (R26G_L84F_A106V_R107H_D108N_H123Y_A142N_A143D_D147Y_E155V_I156F), (E25G_R26G_L84F_A106V_R107H_D108N_H123Y_A142N_A143D_D147Y_E155V_I156F), (E25D_R26G_L84F_A106V_R107K_D108N_H123Y_A142N_A143G_D147Y_E155V_I156F), (R26Q_L84F_A106V_D108N_H123Y_A142N_D147Y_E155V_I156F), (E25M_R26G_L84F_A106V_R107P_D108N_H123Y_A142N_A143D_D147Y_E155V_I156F), (R26C_L84F_A106V_R107H_D108N_H123Y_A142N_D147Y_E155V_I156F), (L84F_A106V_D108N_H123Y_A142N_A143L_D147Y_E155V_I156F), (R26G_L84F_A106V_D108N_H123Y_A142N_D147Y_E155V_I156F), (E25A_R26G_L84F_A106V_R107N_D108N_H123Y_A142N_A143E_D147Y_E155V_I156F), (R26G_L84F_A106V_R107H_D108N_H123Y_A142N_A143D_D147Y_E155V_I156F), (A106V_D108N_A142N_D147Y_E155V), (R26G_A106V_D108N_A142N_D147Y_E155V), (E25D_R26G_A106V_R107K_D108N_A142N_A143G_D147Y_E155V), (R26G_A106V_D108N_R107H_A142N_A143D_D147Y_E155V), (E25D_R26G_A106V_D108N_A142N_D147Y_E155V), (A106V_R107K_D108N_A142N_D147Y_E155V), (A106V_D108N_A142N_A143G_D147Y_E155V), (A106V_D108N_A142N_A143L_D147Y_E155V), (H36L_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N), (N37T_P48T_M70L_L84F_A106V_D108N_H123Y_D147Y_I49V_E155V_I156F), (N37S_L84F_A106V_D108N_H123Y_D147Y_E155V_I156F_K161T), (H36L_L84F_A106V_D108N_H123Y_D147Y_Q154H_E155V_I156F), (N72S_L84F_A106V_D108N_H123Y_S146R_D147Y_E155V_I156F), (H36L_P48L_L84F_A106V_D108N_H123Y_E134G_D147Y_E155V_I156F), (H36L_L84F_A106V_D108N_H123Y_D147Y_E155V_I156F_K157N), (H36L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F), (L84F_A106V_D108N_H123Y_S146R_D147Y_E155V_I156F_K161T), (N37S_R51H_D77G_L84F_A106V_D108N_H123Y_D147Y_E155V_I156F), (R51L_L84F_A106V_D108N_H123Y_D147Y_E155V_I156F_K157N), (D24G_Q71R_L84F_H96L_A106V_D108N_H123Y_D147Y_E155V_I156F_K160E), (H36L_G67V_L84F_A106V_D108N_H123Y_S146T_D147Y_E155V_I156F), (Q71L_L84F_A106V_D108N_H123Y_L137M_A143E_D147Y_E155V_I156F), (E25G_L84F_A106V_D108N_H123Y_D147Y_E155V_I156F_Q159L), (L84F_A91T_F104I_A106V_D108N_H123Y_D147Y_E155V_I156F), (N72D_L84F_A106V_D108N_H123Y_G125A_D147Y_E155V_I156F), (P48S_L84F_S97C_A106V_D108N_H123Y_D147Y_E155V_I156F), (W23G_L84F_A106V_D108N_H123Y_D147Y_E155V_I156F), (D24G_P48L_Q71R_L84F_A106V_D108N_H123Y_D147Y_E155V_I156F_Q159L), (L84F_A106V_D108N_H123Y_A142N_D147Y_E155V_I156F), (H36L_R51L_L84F_A106V_D108N_H123Y_A142N_S146C_D147Y_E155V_I156F_K157N), (N37S_L84F_A106V_D108N_H123Y_A142N_D147Y_E155V_I156F_K161T), (L84F_A106V_D108N_D147Y_E155V_I156F), (R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N_K161T), (L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K161T), (L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N_K160E_K161T), (L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N_K160E), (R74Q L84F_A106V_D108N_H123Y_D147Y_E155V_I156F), (R74A_L84F_A106V_D108N_H123Y_D147Y_E155V_I156F), (L84F_A106V_D108N_H123Y_D147Y_E155V_I156F), (R74Q_L84F_A106V_D108N_H123Y_D147Y_E155V1156F), (L84F_R98Q_A106V_D108N_H123Y_D147Y_E155V_I156F), (L84F_A106V_D108N_H123Y_R129Q_D147Y_E155V_I156F), (P48S_L84F_A106V_D108N_H123Y_A142N_D147Y_E155V_I156F), (P48S_A142N), (P48T_I49V_L84F_A106V_D108N_H123Y_A142N_D147Y_E155V_I156F_L157N), (P48T_I49V_A142N), (H36L_P48S_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N), (H36L_P48S_R51L_L84F_A106V_D108N_H123Y_S146C_A142N_D147Y_E155V_I156F_K157N), (H36L_P48T_I49V_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N), (H36L_P48T_I49V_R51L_L84F_A106V_D108N_H123Y_A142N_S146C_D147Y_E155V_I156F_K157N), (H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N), (H36L_P48A_R51L_L84F_A106V_D108N_H123Y_A142N_S146C_D147Y_E155V_I156F_K157N), (H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_A142N_D147Y_E155V_I156F_K157N), (W23L_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N), (W23R_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N), (W23L_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146R_D147Y_E155V_I156F_K161T), (H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_R152H_E155V_I156F_K157N), (H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_R152P_E155V_I156F_K157N), (W23L_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_R152P_E155V_I156F_K157N), (W23L_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_A142A_S146C_D147Y_E155 V_I156F_K157N), (W23L_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_A142A_S146C_D147Y_R152P_E155V_I156F_K157N), (W23L_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146R_D147Y_E155V_I156F_K161T), (W23R_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_R152P_E155V_I156F_K157N), (H36L_P48A_R51L_L84F_A106V_D108N_H123Y_A142N_S146C_D147Y_R152P_E155V_I156F_K157N).


In some embodiments, the adenosine deaminase comprises an amino acid sequence that is at least 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95, 98%, 99%, or 99.5% identical to any one of SEQ ID NOs: 1, 64-84, 420-437, 672-684, or any of the adenosine deaminases provided herein. In some embodiments, the adenosine deaminase comprises an amino acid sequence that has 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 or more mutations compared to any one of the amino acid sequences set forth in SEQ ID NOs: 1, 64-84, 420-437, 672-684, or any of the adenosine deaminases provided herein. In some embodiments, the adenosine deaminase comprises an amino acid sequence that has at least 5, at least 10, at least 15, at least 20, at least 25, at least 30, at least 35, at least 40, at least 45, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 110, at least 120, at least 130, at least 140, at least 150, at least 160, or at least 166, identical contiguous amino acid residues as compared to any one of the amino acid sequences set forth in SEQ ID NOs: 1, 64-84, 420-437, 672-684, or any of the adenosine deaminases provided herein. In some embodiments, the adenosine deaminase comprises the amino acid sequence of any one of SEQ ID NOs: 1, 64-84, 420-437, 672-684, or any of the adenosine deaminases provided herein. In some embodiments, the adenosine deaminase consists of the amino acid sequence of any one of SEQ ID NOs: 1, 64-84, 420-437, 672-684, or any of the adenosine deaminases provided herein. The ecTadA sequences provided below are from ecTadA (SEQ ID NO: 1), absent the N-terminal methionine (M). The saTadA sequences provided below are from saTadA (SEQ DI NO: 8), absent the N-terminal methionine (M). For clarity, the amino acid numbering scheme used to identify the various amino acid mutations is derived from ecTadA (SEQ ID NO: 1) for E. coli TadA and saTadA (SEQ ID NO: 8) for S. aureus TadA. Amino acid mutations, relative to SEQ ID NO: 1 (ecTadA) or SEQ DI NO: 8 (saTadA), are indicated by underlining.









ecTadA


(SEQ ID NO: 64)


SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVV





FGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQ





EIKAQKKAQSSTD





ecTadA (D108N)


(SEQ ID NO: 65)


SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVV





FGARNAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQ





EIKAQKKAQSSTD





ecTadA (D108G)


(SEQ ID NO: 66)


SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVV





FGARGAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQ





EIKAQKKAQSSTD





ecTadA (D108V)


(SEQ ID NO: 67)


SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVV





FGARVAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQ





EIKAQKKAQSSTD





ecTadA (H8Y, D108N, and N127S)


(SEQ ID NO: 68)


SEVEFSYEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVV





FGARNAKTGAAGSLMDVLHHPGMSHRVEITEGILADECAALLSDFFRMRRQ





EIKAQKKAQSSTD





ecTadA (H8Y, D108N, N127S, and E155D)


(SEQ ID NO: 69)


SEVEFSYEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVV





FGARNAKTGAAGSLMDVLHHPGMSHRVEITEGILADECAALLSDFFRMRRQ






DIKAQKKAQSSTD






ecTadA (H8Y, D108N, N127S, and E155G)


(SEQ ID NO: 70)


SEVEFSYEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVV





FGARNAKTGAAGSLMDVLHHPGMSHRVEITEGILADECAALLSDFFRMRRQ






GIKAQKKAQSSTD






ecTadA (H8Y, D108N, N127S, and E155V)


(SEQ ID NO: 71)


SEVEFSYEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVV





FGARNAKTGAAGSLMDVLHHPGMSHRVEITEGILADECAALLSDFFRMRRQ






VIKAQKKAQSSTD






ecTadA (A106V, D108N, D147Y, and E155V)


(SEQ ID NO: 72)


SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVV





FGVRNAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSYFFRMRRQ






VIKAQKKAQSSTD






ecTadA (L84F, A106V, D108N, H123Y, D147Y, E155V,


I156F) - result of evolution #3


(SEQ ID NO: 73)


SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVV





FGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLSYFFRMRRQ






VFKAQKKAQSSTD






ecTadA (S2A, I49F, A106V, D108N, D147Y, E155V) -


result of evolution #3


(SEQ ID NO: 74)



AEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPFGRH






DPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVV





FGVRNAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSYFFRMRRQ






VIKAQKKAQSSTD






ecTadA (H8Y, A106T, D108N, N127S, K160S) -


result of evolution #3


(SEQ ID NO: 75)


SEVEFSYEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVV





FGTRNAKTGAAGSLMDVLHHPGMSHRVEITEGILADECAALLSDFFRMRRQ





EIKAQSKAQSSTD





ecTadA (R26G, L84F, A106V, R107H, D108N, H123Y,


A142N, A143D, D147Y, E155V, I156F) - result of


evolution #4


(SEQ ID NO: 76)


SEVEFSHEYWMRHALTLAKRAWDEGEVPVGAVLVHNNRVIGEGWNRPIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVV





FGVHNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECNDLLSYFFRMRRQ






VFKAQKKAQSSTD






ecTadA (E25G, R26G, L84F, A106V, R107H, D108N,


H123Y, A142N, A143D, D147Y, E155V, I156F) -


result of evolution #4


(SEQ ID NO: 77)


SEVEFSHEYWMRHALTLAKRAWDGGEVPVGAVLVHNNRVIGEGWNRPIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVV





FGVHNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECNDLLSYFFRMRRQ






VFKAQKKAQSSTD






ecTadA (E25D, R26G, L84F, A106V, R107K, D108N,


H123Y, A142N, A143G, D147Y, E155V, I156F) -


result of evolution #4


(SEQ ID NO: 78)


SEVEFSHEYWMRHALTLAKRAWDDGEVPVGAVLVHNNRVIGEGWNRPIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVV





FGVKNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECNGLLSYFFRMRRQ






VFKAQKKAQSSTD






ecTadA (R26Q, L84F, A106V, D108N, H123Y, A142N,


D147Y, E155V, I156F) - result of evolution #9


(SEQ ID NO: 79)


SEVEFSHEYWMRHALTLAKRAWDEQEVPVGAVLVHNNRVIGEGWNRPIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVV





FGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECNALLSYFFRMRRQ






VFKAQKKAQSSTD






ecTadA (E25M, R26G, L84F, A106V, R107P, D108N,


H123Y, A142N, A143D, D147Y, E155V, I156F) -


result of evolution #4


(SEQ ID NO: 80)


SEVEFSHEYWMRHALTLAKRAWDMGEVPVGAVLVHNNRVIGEGWNRPIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVV





FGVPNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECNDLLSYFFRMRRQ






VFKAQKKAQSSTD






ecTadA (R26C, L84F, A106V, R107H, D108N, H123Y,


A142N, D147Y, E155V, I156F) - result of evolution


#4


(SEQ ID NO: 81)


SEVEFSHEYWMRHALTLAKRAWDECEVPVGAVLVHNNRVIGEGWNRPIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVV





FGVHNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECNALLSYFFRMRRQ






VFKAQKKAQSSTD






ecTadA (L84F, A106V, D108N, H123Y, A142N, A143L,


D147Y, E155V, I156F) - result of evolution #4


(SEQ ID NO: 82)


SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVV





FGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECNLLLSYFFRMRRQ






VFKAQKKAQSSTD






ecTadA (R26G, L84F, A106V, D108N, H123Y, A142N,


D147Y, E155V, I156F) - result of evolution #4


(SEQ ID NO: 83)


SEVEFSHEYWMRHALTLAKRAWDEGEVPVGAVLVHNNRVIGEGWNRPIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVV





FGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECNALLSYFFRMRRQ






VFKAQKKAQSSTD






ecTadA (E25A, R26G, L84F, A106V, R107N, D108N,


H123Y, A142N, A143E, D147Y, E155V, I156F) -


result of evolution #4


(SEQ ID NO: 420)


SEVEFSHEYWMRHALTLAKRAWDAGEVPVGAVLVHNNRVIGEGWNRPIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVV





FGVNNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECNELLSYFFRMRRQ






VFKAQKKAQSSTD






ecTadA (L84F, A106V, D108N, H123Y, D147Y, E155V,


I156F) - mutations from evolution #'s 1-3


(SEQ ID NO: 421)


SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVV





FGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLSYFFRMRRQ






VFKAQKKAQSSTD






ecTadA (N37T, P48T, L84F, A106V, D108N, H123Y,


D147Y, E155V, I156F) - mutations from evolution


#5-1


(SEQ ID NO: 422)


SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHTNRVIGEGWNRTIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVV





FGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLSYFFRMRRQ






VFKAQKKAQSSTD






ecTadA (N37S, L84F, A106V, D108N, H123Y, D147Y,


E155V, I156F) - mutations from evolution #5-2


(SEQ ID NO: 423)


SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHSNRVIGEGWNRPIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVV





FGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLSYFFRMRRQ






VFKAQKKAQSSTD






ecTadA (H36L, L84F, A106V, D108N, H123Y, D147Y,


E155V, I156F) - mutations from evolution #5-3


(SEQ ID NO: 424)


SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVLNNRVIGEGWNRPIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVV





FGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLSYFFRMRRQ






VFKAQKKAQSSTD






ecTadA (L84F, A106V, D108N, H123Y, S146R, D147Y,


E155V, I156F) - mutations from evolution # 5-4


(SEQ ID NO: 425)


SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVV





FGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLRYFFRMRRQ






VFKAQKKAQSSTD






ecTadA (H36L, P48L, L84F, A106V, D108N, H123Y,


D147Y, E155V, I156F) - mutations from evolution 


# 5-5


(SEQ ID NO: 426)


SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVLNNRVIGEGWNRLIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVV





FGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLSYFFRMRRQ






VFKAQKKAQSSTD






ecTadA (H36L, L84F, A106V, D108N, H123Y, D147Y,


E155V, K57N, I156F) - mutations from evolution


#5-6





(SEQ ID NO: 427)


SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVLNNRVIGEGWNRPIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVV





FGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLSYFFRMRRQ






VFNAQKKAQSSTD






ecTadA (H36L, L84F, A106V, D108N, H123Y, S146C,


D147Y, E155V, I156F) - mutations from evolution


# 5-7


(SEQ ID NO: 428)


SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVLNNRVIGEGWNRPIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVV





FGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLCYFFRMRRQ






VFKAQKKAQSSTD






ecTadA (L84F, A106V, D108N, H123Y, S146R, D147Y,


E155V, I156F) - mutations from evolution # 5-8


(SEQ ID NO: 429)


SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVV





FGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLRYFFRMRRQ






VFKAQKKAQSSTD






ecTadA (N37S, R51H, L84F, A106V, D108N, H123Y,


D147Y, E155V, I156F) - mutations from evolution


# 5-9


(SEQ ID NO: 430)


SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHSNRVIGEGWNRPIGHH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVV





FGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLSYFFRMRRQ






VFKAQKKAQSSTD






ecTadA (R51L, L84F, A106V, D108N, H123Y, D147Y,


E155V, I156F, K157N) - mutations from evolution


# 5-10


(SEQ ID NO: 431)


SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGLH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVV





FGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLSYFFRMRRQ






VFNAQKKAQSSTD






ecTadA (R51H, L84F, A106V, D108N, H123Y, D147Y,


E155V, I156F, K157N) - mutations from evolution


# 5-11


(SEQ ID NO: 432)


SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGHH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVV





FGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLSYFFRMRRQ






VFNAQKKAQSSTD






saTadA (wt) - as used in pNMG-345:


(SEQ ID NO: 8)


MGSHMTNDIYFMTLAIEEAKKAAQLGEVPIGAIITKDDEVIARAHNLRETL





QQPTAHAEHIAIERAAKVLGSWRLEGCTLYVTLEPCVMCAGTIVMSRIPRV





VYGADDPKGGCSGSLMNLLQQSNFNHRAIVDKGVLKEACSTLLTTFFKNLR





ANKKSTN





saTadA (D108N) - as used in pNMG-346:


(SEQ ID NO: 433)


GSHMTNDIYFMTLAIEEAKKAAQLGEVPIGAIITKDDEVIARAHNLRETLQ





QPTAHAEHIAIERAAKVLGSWRLEGCTLYVTLEPCVMCAGTIVMSRIPRVV





YGADNPKGGCSGSLMNLLQQSNFNHRAIVDKGVLKEACSTLLTTFFKNLRA





NKKSTN





saTadA (D107A_D108N) - as used in pNMG-347:


(SEQ ID NO: 434)


GSHMTNDIYFMTLAIEEAKKAAQLGEVPIGAIITKDDEVIARAHNLRETLQ





QPTAHAEHIAIERAAKVLGSWRLEGCTLYVTLEPCVMCAGTIVMSRIPRVV





YGAANPKGGCSGSLMNLLQQSNFNHRAIVDKGVLKEACSTLLTTFFKNLRA





NKKSTN





saTadA (G26P_D107A_D108N) - as used in pNMG-348:


(SEQ ID NO: 435)


GSHMTNDIYFMTLAIEEAKKAAQLPEVPIGAIITKDDEVIARAHNLRETLQ





QPTAHAEHIAIERAAKVLGSWRLEGCTLYVTLEPCVMCAGTIVMSRIPRVV





YGAANPKGGCSGSLMNLLQQSNFNHRAIVDKGVLKEACSTLLTTFFKNLRA





NKKSTN





saTadA (G26P_D107A_D108N_S142A) - as used in


pNMG-349:


(SEQ ID NO: 436)


GSHMTNDIYFMTLAIEEAKKAAQLPEVPIGAIITKDDEVIARAHNLRETLQ





QPTAHAEHIAIERAAKVLGSWRLEGCTLYVTLEPCVMCAGTIVMSRIPRVV





YGAANPKGGCSGSLMNLLQQSNFNHRAIVDKGVLKEACATLLTTFFKNLRA





NKKSTN





saTadA (D107A_D108N_S142A) - as used in pNMG-350:


(SEQ ID NO: 437)


GSHMTNDIYFMTLAIEEAKKAAQLGEVPIGAIITKDDEVIARAHNLRETLQ





QPTAHAEHIAIERAAKVLGSWRLEGCTLYVTLEPCVMCAGTIVMSRIPRVV





YGAANPKGGCSGSLMNLLQQSNFNHRAIVDKGVLKEACATLLTTFFKNLRA





NKKSTN





ecTadA (P48S) - mutation from evolution #6


(SEQ ID NO: 672)


SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRSIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVV





FGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQ





EIKAQKKAQSSTD





ecTadA (P48T) - mutation from evolution #6


(SEQ ID NO: 673)


SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRTIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVV





FGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQ





EIKAQKKAQSSTD





ecTadA (P48A) - mutation from evolution #6


(SEQ ID NO: 674)


SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRAIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVV





FGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQ





EIKAQKKAQSSTD





ecTadA (A142N) - mutation from evolution #6


(SEQ ID NO: 675)


SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVV





FGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILADECNALLSDFFRMRRQ





EIKAQKKAQSSTD





ecTadA (W23R) - mutation from evolution #7


(SEQ ID NO: 676)


SEVEFSHEYWMRHALTLAKRARDEREVPVGAVLVHNNRVIGEGWNRPIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVV





FGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQ





EIKAQKKAQSSTD





ecTadA (W23L) - mutation from evolution #7


(SEQ ID NO: 677)


SEVEFSHEYWMRHALTLAKRALDEREVPVGAVLVHNNRVIGEGWNRPIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVV





FGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQ





EIKAQKKAQSSTD





ecTadA (R152P) - mutation from evolution #7


(SEQ ID NO: 678)


SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVV





FGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMPRQ





EIKAQKKAQSSTD





ecTadA (R152H) - mutation from evolution #7


(SEQ ID NO: 679)


SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCVMCAGAMIHSRIGRVV





FGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMHRQ





EIKAQKKAQSSTD





ecTadA (L84F, A106V, D108N, H123Y, D147Y, E155V,


I156F) - mutations from pNMG 371


(SEQ ID NO: 680)


SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVV





FGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLSYFFRMRRQ






VFKAQKKAQSSTD






ecTadA (H36L, R51L, L84F, A106V, D108N, H123Y,


S146C, D147Y, E155V, I156F, K157N) - mutations


from pNMG 477


(SEQ ID NO: 681)


SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVLNNRVIGEGWNRPIGLH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVV





FGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLCYFFRMRRQ






VFNAQKKAQSSTD






ecTadA (H36L, P48S, R51L, L84F, A106V, D108N,


H123Y, S146C, D147Y, E155V, I156F, K157N) -


mutations from pNMG 576


(SEQ ID NO: 682)


SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVLNNRVIGEGWNRSIGLH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVV





FGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLCYFFRMRRQ






VFNAQKKAQSSTD






ecTadA (H36L, P48A, R51L, L84F, A106V, D108N,


H123Y, S146C, D147Y, E155V, I156F, K157N) -


mutations from pNMG 586


(SEQ ID NO: 683)


SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVLNNRVIGEGWNRAIGLH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVV





FGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLCYFFRMRRQ






VFNAQKKAQSSTD






ecTadA (W23L, H36L, P48A, R51L, L84F, A106V, D108N,


H123Y, S146C, D147Y, R152P, E155V, I156F, K157N) -


mutations from pNMG 616


(SEQ ID NO: 684)


SEVEFSHEYWMRHALTLAKRALDEREVPVGAVLVLNNRVIGEGWNRAIGLH





DPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVV





FGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLCYFFRMPRQ






VFNAQKKAQSSTD








Cas9 Domains of Nucleobase Editors


In some aspects, a nucleic acid programmable DNA binding protein (napDNAbp) is a Cas9 domain. Non-limiting, exemplary Cas9 domains are provided herein. The Cas9 domain may be a nuclease active Cas9 domain, a nuclease inactive Cas9 domain, or a Cas9 nickase. In some embodiments, the Cas9 domain is a nuclease active domain. For example, the Cas9 domain may be a Cas9 domain that cuts both strands of a duplexed nucleic acid (e.g., both strands of a duplexed DNA molecule). In some embodiments, the Cas9 domain comprises any one of the amino acid sequences as set forth in SEQ ID NOs: 108-357. In some embodiments the Cas9 domain comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the amino acid sequences set forth in SEQ ID NOs: 108-357. In some embodiments, the Cas9 domain comprises an amino acid sequence that has 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50 or more or more mutations compared to any one of the amino acid sequences set forth in SEQ ID NOs: 108-357. In some embodiments, the Cas9 domain comprises an amino acid sequence that has at least 10, at least 15, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 150, at least 200, at least 250, at least 300, at least 350, at least 400, at least 500, at least 600, at least 700, at least 800, at least 900, at least 1000, at least 1100, or at least 1200 identical contiguous amino acid residues as compared to any one of the amino acid sequences set forth in SEQ ID NOs: 108-357.


In some embodiments, the Cas9 domain is a nuclease-inactive Cas9 domain (dCas9). For example, the dCas9 domain may bind to a duplexed nucleic acid molecule (e.g., via a gRNA molecule) without cleaving either strand of the duplexed nucleic acid molecule. In some embodiments, the nuclease-inactive dCas9 domain comprises a D10X mutation and a H840X mutation of the amino acid sequence set forth in SEQ ID NO: 52, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 108-357, wherein X is any amino acid change. In some embodiments, the nuclease-inactive dCas9 domain comprises a D10A mutation and a H840A mutation of the amino acid sequence set forth in SEQ ID NO: 52, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 108-357. As one example, a nuclease-inactive Cas9 domain comprises the amino acid sequence set forth in SEQ ID NO: 54 (Cloning vector pPlatTET-gRNA2, Accession No. BAV54124).









MDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGAL





LFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLE





ESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRL





IYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINAS





GVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSN





FDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDIL





RVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKN





GYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNG





SIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGN





SRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPK





HSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTV





KQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEEN





EDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLS





RKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVS





GQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMAR





ENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYL





QNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKS





DNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIK





RQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKD





FQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRK





MIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGE





IVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIAR





KKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSS





FEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGN





ELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISE





FSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKY





FDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD


(SEQ ID NO: 54; see, e.g., Qi et al., “Repurposing


CRISPR as an RNA-guided platform for sequence-


specific control of gene expression.” Cell.


2013; 152(5):1173-83, the entire contents of which


are incorporated herein by reference).






Additional suitable nuclease-inactive dCas9 domains will be apparent to those of skill in the art based on this disclosure and knowledge in the field, and are within the scope of this disclosure. Such additional exemplary suitable nuclease-inactive Cas9 domains include, but are not limited to, D10A/H840A, D10A/D839A/H840A, and D10A/D839A/H840A/N863A mutant domains (See, e.g., Prashant et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology. 2013; 31(9): 833-838, the entire contents of which are incorporated herein by reference). In some embodiments the dCas9 domain comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the dCas9 domains provided herein. In some embodiments, the Cas9 domain comprises an amino acid sequences that has 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or more mutations compared to any one of the amino acid sequences set forth in SEQ ID NOs: 108-357. In some embodiments, the Cas9 domain comprises an amino acid sequence that has at least 10, at least 15, at least 20, at least 30, at least 40, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 150, at least 200, at least 250, at least 300, at least 350, at least 400, at least 500, at least 600, at least 700, at least 800, at least 900, at least 1000, at least 1100, or at least 1200 identical contiguous amino acid residues as compared to any one of the amino acid sequences set forth in SEQ ID NOs: 108-357.


In some embodiments, the Cas9 domain is a Cas9 nickase. The Cas9 nickase may be a Cas9 protein that is capable of cleaving only one strand of a duplexed nucleic acid molecule (e.g., a duplexed DNA molecule). In some embodiments the Cas9 nickase cleaves the target strand of a duplexed nucleic acid molecule, meaning that the Cas9 nickase cleaves the strand that is base paired to (complementary to) a gRNA (e.g., an sgRNA) that is bound to the Cas9. In some embodiments, a Cas9 nickase comprises a D10A mutation and has a histidine at position 840 of SEQ ID NO: 52, or a mutation in any of SEQ ID NOs: 108-357. As one example, a Cas9 nickase may comprise the amino acid sequence as set forth in SEQ ID NO: 35. In some embodiments, the Cas9 nickase cleaves the non-target, non-base-edited strand of a duplexed nucleic acid molecule, meaning that the Cas9 nickase cleaves the strand that is not base paired to a gRNA (e.g., an sgRNA) that is bound to the Cas9. In some embodiments, a Cas9 nickase comprises an H840A mutation and has an aspartic acid residue at position 10 of SEQ ID NO: 52, or a corresponding mutation in any of SEQ ID NOs: 108-357. In some embodiments the Cas9 nickase comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the Cas9 nickases provided herein. Additional suitable Cas9 nickases will be apparent to those of skill in the art based on this disclosure and knowledge in the field, and are within the scope of this disclosure.


Cas9 Domains with Reduced PAM Exclusivity


Some aspects of the disclosure provide Cas9 domains that have different PAM specificities. Typically, Cas9 proteins, such as Cas9 from S. pyogenes (spCas9), require a canonical NGG PAM sequence to bind a particular nucleic acid region, where the “N” in “NGG” is adenine (A), thymine (T), guanine (G), or cytosine (C), and the G is guanine. This may limit the ability to edit desired bases within a genome. In some embodiments, the base editing fusion proteins provided herein need to be positioned at a precise location, for example, where a target base is within a 4 base region (e.g., a “deamination window”), which is approximately 15 bases upstream of the PAM. See Komor, A. C., et al., “Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage” Nature 533, 420-424 (2016), the entire contents of which are hereby incorporated by reference. In some embodiments, the deamination window is within a 2, 3, 4, 5, 6, 7, 8, 9, or 10 base region. In some embodiments, the deamination window is 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 bases upstream of the PAM. Accordingly, in some embodiments, any of the fusion proteins provided herein may contain a Cas9 domain that is capable of binding a nucleotide sequence that does not contain a canonical (e.g., NGG) PAM sequence. Cas9 domains that bind to non-canonical PAM sequences have been described in the art and would be apparent to the skilled artisan. For example, Cas9 domains that bind non-canonical PAM sequences have been described in Kleinstiver, B. P., et al., “Engineered CRISPR-Cas9 nucleases with altered PAM specificities” Nature 523, 481-485 (2015); and Kleinstiver, B. P., et al., “Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition” Nature Biotechnology 33, 1293-1298 (2015); the entire contents of each are hereby incorporated by reference.


In some embodiments, the Cas9 domain is a Cas9 domain from Staphylococcus aureus (SaCas9). In some embodiments, the SaCas9 domain is a nuclease active SaCas9, a nuclease inactive SaCas9 (SaCas9d), or a SaCas9 nickase (SaCas9n). In some embodiments, the SaCas9 comprises the amino acid sequence SEQ ID NO: 55. In some embodiments, the SaCas9 comprises a N579X mutation of SEQ ID NO: 55, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 108-357, wherein X is any amino acid except for N. In some embodiments, the SaCas9 comprises a N579A mutation of SEQ ID NO: 55, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 108-357.


In some embodiments, the SaCas9 domain, the SaCas9d domain, or the SaCas9n domain can bind to a nucleic acid sequence having a non-canonical PAM. In some embodiments, the SaCas9 domain, the SaCas9d domain, or the SaCas9n domain can bind to a nucleic acid sequence having a NNGRRT PAM sequence, where N=A, T, C, or G, and R=A or G. In some embodiments, the SaCas9 domain comprises one or more of E781X, N967X, and R1014X mutation of SEQ ID NO: 55, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 108-357, wherein X is any amino acid. In some embodiments, the SaCas9 domain comprises one or more of a E781K, a N967K, and a R1014H mutation of SEQ ID NO: 55, or one or more corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 108-357. In some embodiments, the SaCas9 domain comprises a E781K, a N967K, or a R1014H mutation of SEQ ID NO: 55, or corresponding mutations in any of the amino acid sequences provided in SEQ ID NOs: 108-357.


In some embodiments, the Cas9 domain of any of the fusion proteins provided herein comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of SEQ ID NOs: 55-57. In some embodiments, the Cas9 domain of any of the fusion proteins provided herein comprises the amino acid sequence of any one of SEQ ID NOs: 55-57. In some embodiments, the Cas9 domain of any of the fusion proteins provided herein consists of the amino acid sequence of any one of SEQ ID NOs: 55-57.









Exemplary SaCas9 sequence


(SEQ ID NO: 55)


KRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRG





ARRLKRRRRHRIQRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKLSEE





EFSAALLHLAKRRGVHNVNEVEEDTGNELSTKEQISRNSKALEEKYVAELQ





LERLKKDGEVRGSINRFKTSDYVKEAKQLLKVQKAYHQLDQSFIDTYIDLL





ETRRTYYEGPGEGSPFGWKDIKEWYEMLMGHCTYFPEELRSVKYAYNADLY





NALNDLNNLVITRDENEKLEYYEKFQIIENVFKQKKKPTLKQIAKEILVNE





EDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENAELLDQIAKILTIY





QSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAINLILDELWH





TNDNQIAIFNRLKLVPKKVDLSQQKEIPTTLVDDFILSPVVKRSFIQSIKV





INAIIKKYGLPNDIIIELAREKNSKDAQKMINEMQKRNRQTNERIEEIIRT





TGKENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNPFNYEVDHIIPRS





VSFDNSFNNKVLVKQEENSKKGNRTPFQYLSSSDSKISYETFKKHILNLAK





GKGRISKTKKEYLLEERDINRFSVQKDFINRNLVDTRYATRGLMNLLRSYF





RVNNLDVKVKSINGGFTSFLRRKWKFKKERNKGYKHHAEDALIIANADFIF





KEWKKLDKAKKVMENQMFEEKQAESMPEIETEQEYKEIFITPHQIKHIKDF





KDYKYSHRVDKKPNRELINDTLYSTRKDDKGNTLIVNNLNGLYDKDNDKLK





KLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDEKNPLYKYYEETGNYLTKY





SKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSRNKVVKLSLKPYRFDVYLD





NGVYKFVTVKNLDVIKKENYYEVNSKCYEEAKKLKKISNQAEFIASFYNND





LIKINGELYRVIGVNNDLLNRIEVNMIDITYREYLENMNDKRPPRIIKTIA





SKTQSIKKYSTDILGNLYEVKSKKHPQIIKKG 






Residue N579 of SEQ ID NO: 55, which is underlined and in bold, may be mutated (e.g., to a A579) to yield a SaCas9 nickase.









Exemplary SaCas9n sequence


(SEQ ID NO: 56)


KRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRG





ARRLKRRRRHRIQRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKLSEE





EFSAALLHLAKRRGVHNVNEVEEDTGNELSTKEQISRNSKALEEKYVAELQ





LERLKKDGEVRGSINRFKTSDYVKEAKQLLKVQKAYHQLDQSFIDTYIDLL





ETRRTYYEGPGEGSPFGWKDIKEWYEMLMGHCTYFPEELRSVKYAYNADLY





NALNDLNNLVITRDENEKLEYYEKFQIIENVFKQKKKPTLKQIAKEILVNE





EDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENAELLDQIAKILTIY





QSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAINLILDELWH





TNDNQIAIFNRLKLVPKKVDLSQQKEIPTTLVDDFILSPVVKRSFIQSIKV





INAIIKKYGLPNDIIIELAREKNSKDAQKMINEMQKRNRQTNERIEEIIRT





TGKENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNPFNYEVDHIIPRS





VSFDNSFNNKVLVKQEEASKKGNRTPFQYLSSSDSKISYETFKKHILNLAK





GKGRISKTKKEYLLEERDINRFSVQKDFINRNLVDTRYATRGLMNLLRSYF





RVNNLDVKVKSINGGFTSFLRRKWKFKKERNKGYKHHAEDALIIANADFIF





KEWKKLDKAKKVMENQMFEEKQAESMPEIETEQEYKEIFITPHQIKHIKDF





KDYKYSHRVDKKPNRELINDTLYSTRKDDKGNTLIVNNLNGLYDKDNDKLK





KLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDEKNPLYKYYEETGNYLTKY





SKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSRNKVVKLSLKPYRFDVYLD





NGVYKFVTVKNLDVIKKENYYEVNSKCYEEAKKLKKISNQAEFIASFYNND





LIKINGELYRVIGVNNDLLNRIEVNMIDITYREYLENMNDKRPPRIIKTIA





SKTQSIKKYSTDILGNLYEVKSKKHPQIIKKG.






Residue A579 of SEQ ID NO: 56, which can be mutated from N579 of SEQ ID NO: 55 to yield a SaCas9 nickase, is underlined and in bold.









Exemplary SaKKH Cas9


(SEQ ID NO: 57)


KRNYILGLDIGITSVGYGIIDYETRDVIDAGVRLFKEANVENNEGRRSKRG





ARRLKRRRRHRIQRVKKLLFDYNLLTDHSELSGINPYEARVKGLSQKLSEE





EFSAALLHLAKRRGVHNVNEVEEDTGNELSTKEQISRNSKALEEKYVAELQ





LERLKKDGEVRGSINTRFKTSDYVKEAKQLLKVQKAYHQLDQSFIDTYIDL





LETRRTYYEGPGEGSPFGWKDIKEWYEMLMGHCTYFPEELRSVKYAYNADL





YNALNDLNNLVITRDENEKLEYYEKFQIIENVFKQKKKPTLKQIAKEILVN





EEDIKGYRVTSTGKPEFTNLKVYHDIKDITARKEIIENAELLDQIAKILTI





YQSSEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAINLILDELW





HTNDNQIAIFNRLKLVPKKVDLSQQKEIPTTLVDDFILSPVVKRSFIQSIK





VINAIIKKYGLPNDIIIELAREKNSKDAQKMINEMQKRNRQTNERIEEIIR





TTGKENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNPFNYEVDHIIPR





SVSFDNSFNNKVLVKQEEASKKGNRTPFQYLSSSDSKISYETFKKHILNLA





KGKGRISKTKKEYLLEERDINRFSVQKDFINRNLVDTRYATRGLMNLLRSY





FRVNNLDVKVKSINGGFTSFLRRKWKFKKERNKGYKHHAEDALIIANADFI





FKEWKKLDKAKKVMENQMFEEKQAESMPEIETEQEYKEIFITPHQIKHIKD





FKDYKYSHRVDKKPNRKLINDTLYSTRKDDKGNTLIVNNLNGLYDKDNDKL





KKLINKSPEKLLMYHHDPQTYQKLKLIMEQYGDEKNPLYKYYEETGNYLTK





YSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSRNKVVKLSLKPYRFDVYL





DNGVYKFVTVKNLDVIKKENYYEVNSKCYEEAKKLKKISNQAEFIASFYKN





DLIKINGELYRVIGVNNDLLNRIEVNMIDITYREYLENMNDKRPPHIIKTI





ASKTQSIKKYSTDILGNLYEVKSKKHPQIIKKG.






Residue A579 of SEQ ID NO: 57, which can be mutated from N579 of SEQ ID NO: 55 to yield a SaCas9 nickase, is underlined and in bold. Residues K781, K967, and H1014 of SEQ ID NO: 57, which can be mutated from E781, N967, and R1014 of SEQ ID NO: 55 to yield a SaKKH Cas9 are underlined and in italics.


In some embodiments, the Cas9 domain is a Cas9 domain from Streptococcus pyogenes (SpCas9). In some embodiments, the SpCas9 domain is a nuclease active SpCas9, a nuclease inactive SpCas9 (SpCas9d), or a SpCas9 nickase (SpCas9n). In some embodiments, the SpCas9 comprises the amino acid sequence SEQ ID NO: 58. In some embodiments, the SpCas9 comprises a D9X mutation of SEQ ID NO: 58, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 108-357, wherein X is any amino acid except for D. In some embodiments, the SpCas9 comprises a D9A mutation of SEQ ID NO: 58, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 108-357. In some embodiments, the SpCas9 domain, the SpCas9d domain, or the SpCas9n domain can bind to a nucleic acid sequence having a non-canonical PAM. In some embodiments, the SpCas9 domain, the SpCas9d domain, or the SpCas9n domain can bind to a nucleic acid sequence having a NGG, a NGA, or a NGCG PAM sequence. In some embodiments, the SpCas9 domain comprises one or more of a D1134X, a R1334X, and a T1336X mutation of SEQ ID NO: 58, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 108-35, wherein X is any amino acid. In some embodiments, the SpCas9 domain comprises one or more of a D1134E, R1334Q, and T1336R mutation of SEQ ID NO: 58, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 108-35. In some embodiments, the SpCas9 domain comprises a D1134E, a R1334Q, and a T1336R mutation of SEQ ID NO: 58, or corresponding mutations in any of the amino acid sequences provided in SEQ ID NOs: 108-35. In some embodiments, the SpCas9 domain comprises one or more of a D1134X, a R1334X, and a T1336X mutation of SEQ ID NO: 58, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 108-35, wherein X is any amino acid. In some embodiments, the SpCas9 domain comprises one or more of a D1134V, a R1334Q, and a T1336R mutation of SEQ ID NO: 58, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 108-35. In some embodiments, the SpCas9 domain comprises a D1134V, a R1334Q, and a T1336R mutation of SEQ ID NO: 58, or corresponding mutations in any of the amino acid sequences provided in SEQ ID NOs: 108-35. In some embodiments, the SpCas9 domain comprises one or more of a D1134X, a G1217X, a R1334X, and a T1336X mutation of SEQ ID NO: 58, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 108-35, wherein X is any amino acid. In some embodiments, the SpCas9 domain comprises one or more of a D1134V, a G1217R, a R1334Q, and a T1336R mutation of SEQ ID NO: 58, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 108-35. In some embodiments, the SpCas9 domain comprises a D1134V, a G1217R, a R1334Q, and a T1336R mutation of SEQ ID NO: 58, or corresponding mutations in any of the amino acid sequences provided in SEQ ID NOs: 108-35.


In some embodiments, the Cas9 domain of any of the fusion proteins provided herein comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of SEQ ID NOs: 58-62. In some embodiments, the Cas9 domain of any of the fusion proteins provided herein comprises the amino acid sequence of any one of SEQ ID NOs: 58-62. In some embodiments, the Cas9 domain of any of the fusion proteins provided herein consists of the amino acid sequence of any one of SEQ ID NOs: 58-62.









Exemplary SpCas9


(SEQ ID NO: 58)


DKKYSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALL





FDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEE





SFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLI





YLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASG





VDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNF





DLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILR





VNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNG





YAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGS





IPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNS





RFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKH





SLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVK





QLKEDYFKKIECFDSVETSGVEDRFNASLGTYHDLLKIIKDKDFLDNEENE





DILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSR





KLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSG





QGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARE





NQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQ





NGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSD





NVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKR





QLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDF





QFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKM





IAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEI





VWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARK





KDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSF





EKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNE





LALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEF





SKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYF





DTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD 





Exemplary SpCas9n


(SEQ ID NO: 59)


DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALL





FDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEE





SFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLI





YLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASG





VDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNF





DLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILR





VNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNG





YAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGS





IPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNS





RFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKH





SLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVK





QLKEDYFKKIECFDSVETSGVEDRFNASLGTYHDLLKIIKDKDFLDNEENE





DILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSR





KLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSG





QGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARE





NQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQ





NGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSD





NVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKR





QLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDF





QFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKM





IAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEI





VWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARK





KDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSF





EKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNE





LALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEF





SKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYF





DTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD





Exemplary SpEQR Cas9


(SEQ ID NO: 60)


DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALL





FDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEE





SFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLI





YLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASG





VDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNF





DLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILR





VNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNG





YAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGS





IPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNS





RFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKH





SLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVK





QLKEDYFKKIECFDSVETSGVEDRFNASLGTYHDLLKIIKDKDFLDNEENE





DILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSR





KLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSG





QGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARE





NQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQ





NGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSD





NVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKR





QLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDF





QFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKM





IAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEI





VWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARK





KDWDPKKYGGFESPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSF





EKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNE





LALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEF





SKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYF





DTTIDRKQYRSTKEVLDATLIHQSITGLYETRIDLSQLGGD






Residues E1134, Q1334, and R1336 of SEQ ID NO: 60, which can be mutated from D1134, R1334, and T1336 of SEQ ID NO: 58 to yield a SpEQR Cas9, are underlined and in bold.









Exemplary SpVQR Cas9


(SEQ ID NO: 61)


DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGA





LLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFH





RLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDK





ADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFE





ENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSL





GLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKN





LSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLP





EKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKL





NREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEK





ILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSF





IERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL





SGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVETSGVEDRFNA





SLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKT





YAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDG





FANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKG





ILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIE





EGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLS





DYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYW





RQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVA





QILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNY





HHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIG





KATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRD





FATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDP





KKYGGFVSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKN





PIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNEL





ALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISE





FSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAF





KYFDTTIDRKQYRSTKEVLDATLIHQSITGLYETRIDLSQLGGD






Residues V1134, Q1334, and R1336 of SEQ ID NO: 61, which can be mutated from D1134, R1334, and T1336 of SEQ ID NO: 58 to yield a SpVQR Cas9, are underlined and in bold.









Exemplary SpVRER Cas9


(SEQ ID NO: 62)


DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGA





LLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFH





RLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDK





ADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFE





ENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSL





GLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKN





LSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLP





EKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKL





NREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEK





ILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSF





IERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL





SGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVETSGVEDRFNA





SLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKT





YAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDG





FANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKG





ILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIE





EGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLS





DYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYW





RQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVA





QILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNY





HHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIG





KATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRD





FATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDP





KKYGGFVSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKN





PIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASARELQKGNEL





ALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISE





FSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAF





KYFDTTIDRKEYRSTKEVLDATLIHQSITGLYETRIDLSQLGGD






Residues V1134, R1217, Q1334, and R1336 of SEQ ID NO: 62, which can be mutated from D1134, G1217, R1334, and T1336 of SEQ ID NO: 58 to yield a SpVRER Cas9, are underlined and in bold.


High Fidelity Cas9 Domains


Some aspects of the disclosure provide high fidelity Cas9 domains of the nucleobase editors provided herein. In some embodiments, high fidelity Cas9 domains are engineered Cas9 domains comprising one or more mutations that decrease electrostatic interactions between the Cas9 domain and the sugar-phosphate backbone of DNA, as compared to a corresponding wild-type Cas9 domain. Without wishing to be bound by any particular theory, high fidelity Cas9 domains that have decreased electrostatic interactions with the sugar-phosphate backbone of DNA may have less off-target effects. In some embodiments, the Cas9 domain (e.g., a wild type Cas9 domain) comprises one or more mutations that decreases the association between the Cas9 domain and the sugar-phosphate backbone of DNA. In some embodiments, a Cas9 domain comprises one or more mutations that decreases the association between the Cas9 domain and the sugar-phosphate backbone of DNA by at least 1%, at least 2%, at least 3%, at least 4%, at least 5%, at least 10%, at least 15%, at least 20%, at least 25%, at least 30%, at least 35%, at least 40%, at least 45%, at least 50%, at least 55%, at least 60%, at least 65%, at least 70%, or more.


In some embodiments, any of the Cas9 fusion proteins provided herein comprise one or more of N497X, R661X, Q695X, and/or Q926X mutation of the amino acid sequence provided in SEQ ID NO: 52, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 108-357, wherein X is any amino acid. In some embodiments, any of the Cas9 fusion proteins provided herein comprise one or more of N497A, R661A, Q695A, and/or Q926A mutation of the amino acid sequence provided in SEQ ID NO: 52, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 108-357. In some embodiments, the Cas9 domain comprises a D10A mutation of the amino acid sequence provided in SEQ ID NO: 52, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 108-357. In some embodiments, the Cas9 domain (e.g., of any of the fusion proteins provided herein) comprises the amino acid sequence as set forth in SEQ ID NO: 62. Cas9 domains with high fidelity are known in the art and would be apparent to the skilled artisan. For example, Cas9 domains with high fidelity have been described in Kleinstiver, B. P., et al. “High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects.” Nature 529, 490-495 (2016); and Slaymaker, I. M., et al. “Rationally engineered Cas9 nucleases with improved specificity.” Science 351, 84-88 (2015); the entire contents of each are incorporated herein by reference.


It should be appreciated that any of the base editors provided herein, for example, any of the adenosine deaminase base editors provided herein, may be converted into high fidelity base editors by modifying the Cas9 domain as described herein to generate high fidelity base editors, for example, a high fidelity adenosine base editor. In some embodiments, the high fidelity Cas9 domain is a dCas9 domain. In some embodiments, the high fidelity Cas9 domain is a nCas9 domain.









High Fidelity Cas9 domain where mutations relative


to Cas9 of SEQ ID NO: 10 are shown in bold and


underlines


(SEQ ID NO: 63)


DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGA





LLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFH





RLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDK





ADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFE





ENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSL





GLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKN





LSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLP





EKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKL





NREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEK





ILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSF





IERMTAFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFL





SGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNA





SLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKT





YAHLFDDKVMKQLKRRRYTGWGALSRKLINGIRDKQSGKTILDFLKSDG





FANRNFMALIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKG





ILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIE





EGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLS





DYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYW





RQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRAITKHVA





QILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNY





HHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIG





KATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRD





FATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDP





KKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKN





PIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNEL





ALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISE





FSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAF





KYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD







Nucleic Acid Programmable DNA Binding Proteins


Some aspects of the disclosure provide nucleic acid programmable DNA binding proteins, which may be used to guide a protein, such as a base editor, to a specific nucleic acid (e.g., DNA or RNA) sequence. Nucleic acid programmable DNA binding proteins include, without limitation, Cas9 (e.g., dCas9 and nCas9), CasX, CasY, Cpf1, C2c1, C2c2, C2C3, and Argonaute. One example of an nucleic acid programmable DNA-binding protein that has different PAM specificity than Cas9 is Clustered Regularly Interspaced Short Palindromic Repeats from Prevotella and Francisella 1 (Cpf1). Similar to Cas9, Cpf1 is also a class 2 CRISPR effector. It has been shown that Cpf1 mediates robust DNA interference with features distinct from Cas9. Cpf1 is a single RNA-guided endonuclease lacking tracrRNA, and it utilizes a T-rich protospacer-adjacent motif (TTN, TTTN, or YTN). Moreover, Cpf1 cleaves DNA via a staggered DNA double-stranded break. Out of 16 Cpf1-family proteins, two enzymes from Acidaminococcus and Lachnospiraceae are shown to have efficient genome-editing activity in human cells. Cpf1 proteins are known in the art and have been described previously, for example Yamano et al., “Crystal structure of Cpf1 in complex with guide RNA and target DNA.” Cell (165) 2016, p. 949-962; the entire contents of which is hereby incorporated by reference.


Also useful in the present compositions and methods are nuclease-inactive Cpf1 (dCpf1) variants that may be used as a guide nucleotide sequence-programmable DNA-binding protein domain. The Cpf1 protein has a RuvC-like endonuclease domain that is similar to the RuvC domain of Cas9 but does not have a HNH endonuclease domain, and the N-terminal of Cpf1 does not have the alfa-helical recognition lobe of Cas9. It was shown in Zetsche et al., Cell, 163, 759-771, 2015 (which is incorporated herein by reference) that, the RuvC-like domain of Cpf1 is responsible for cleaving both DNA strands and inactivation of the RuvC-like domain inactivates Cpf1 nuclease activity. For example, mutations corresponding to D917A, E1006A, or D1255A in Francisella novicida Cpf1 (SEQ ID NO: 382) inactivates Cpf1 nuclease activity. In some embodiments, the dCpf1 of the present disclosure comprises mutations corresponding to D917A, E1006A, D1255A, D917A/E1006A, D917A/D1255A, E1006A/D1255A, or D917A/E1006A/D1255A in SEQ ID NO: 376. It is to be understood that any mutations, e.g., substitution mutations, deletions, or insertions that inactivate the RuvC domain of Cpf1, may be used in accordance with the present disclosure.


In some embodiments, the nucleic acid programmable DNA binding protein (napDNAbp) of any of the fusion proteins provided herein may be a Cpf1 protein. In some embodiments, the Cpf1 protein is a Cpf1 nickase (nCpf1). In some embodiments, the Cpf1 protein is a nuclease inactive Cpf1 (dCpf1). In some embodiments, the Cpf1, the nCpf1, or the dCpf1 comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at ease 99.5% identical to any one of SEQ ID NOs: 376-382. In some embodiments, the dCpf1 comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at ease 99.5% identical to any one of SEQ ID NOs: 376-382, and comprises mutations corresponding to D917A, E1006A, D1255A, D917A/E1006A, D917A/D1255A, E1006A/D1255A, or D917A/E1006A/D1255A in SEQ ID NO: 376. In some embodiments, the dCpf1 comprises an amino acid sequence of any one SEQ ID NOs: 376-382. It should be appreciated that Cpf1 from other bacterial species may also be used in accordance with the present disclosure.










Wild type Francisella novicida Cpf1 (SEQ ID NO: 376) (D917, E1006, and



D1255 are bolded and underlined)


(SEQ ID NO: 376)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYH






QFFIEEILSSVCISEDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSE





KFKNLFNQNLIDAKKGQESDLILWLKQSKDNGIELFKANSDITDIDEALEIIKSFKGWT





TYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYESLKDKAPEAINYEQIK





KDLAEELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNGEN





TKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTM





QSFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDY





SVIGTAVLEYITQQIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDI





DKQCRFEEILANFAAIPMlFDEIAQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIK





DLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYLVFEECYFELANIVPLYNKIRNYI





TQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFD





DKAIKENKGEGYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKN





GSPQKGYEKFEFNIEDCRKFIDFYKQSISKHPEWKDFGFRFSDTQRYNSIDEFYREVE





NQGYKLTFENISESYIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDER





NLQDVVYKLNGEAELFYRKQSIPKKITHPAKEAIANKNKDNPKKESVFEYDLIKDKR





FTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKANDVHILSIDRGERHLAYYTLVDG





KGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKEMKEGYLSQV





VHEIAKLVIEYNAIVVFEDLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEF





DKTGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESV





SKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKN





HNWDTREVYPTKELEKLLKDYSIEYGHGECIKAAICGESDKKFFAKLTSVLNTILQM





RNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDADANGAYHIGLKGLMLLGRI





KNNQEGKKLNLVIKNEEYFEFVQNRNN






Francisella novicida Cpf1 D917A (SEQ ID NO: 377) (A917, E1006, and D1255



are bolded and underlined)


(SEQ ID NO: 377)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYH






QFFIEEILSSVCISEDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSE





KFKNLFNQNLIDAKKGQESDLILWLKQSKDNGIELFKANSDITDIDEALEIIKSFKGWT





TYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYESLKDKAPEAINYEQIK





KDLAEELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNGEN





TKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTM





QSFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDY





SVIGTAVLEYITQQIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDI





DKQCRFEEILANFAAIPMEDEIAQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIK





DLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYLVFEECYFELANIVPLYNKIRNYI





TQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFD





DKAIKENKGEGYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKN





GSPQKGYEKFEFNIEDCRKFIDFYKQSISKHPEWKDFGFRFSDTQRYNSIDEFYREVE





NQGYKLTFENISESYIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDER





NLQDVVYKLNGEAELFYRKQSIPKKITHPAKEAIANKNKDNPKKESVFEYDLIKDKR





FTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKANDVHILSIARGERHLAYYTLVDG





KGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKEMKEGYLSQV





VHEIAKLVIEYNAIVVFEDLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEF





DKTGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESV





SKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKN





HNWDTREVYPTKELEKLLKDYSIEYGHGECIKAAICGESDKKFFAKLTSVLNTILQM





RNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDADANGAYHIGLKGLMLLGRI





KNNQEGKKLNLVIKNEEYFEFVQNRNN






Francisella novicida Cpf1 E1006A (SEQ ID NO: 378) (D917, A1006, and D1255



are bolded and underlined)


(SEQ ID NO: 378)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYH






QFFIEEILSSVCISEDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSE





KFKNLFNQNLIDAKKGQESDLILWLKQSKDNGIELFKANSDITDIDEALEIIKSFKGWT





TYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYESLKDKAPEAINYEQIK





KDLAEELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNGEN





TKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTM





QSFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDY





SVIGTAVLEYITQQIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDI





DKQCRFEEILANFAAIPMlFDEIAQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIK





DLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYLVFEECYFELANIVPLYNKIRNYI





TQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFD





DKAIKENKGEGYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKN





GSPQKGYEKFEFNIEDCRKFIDFYKQSISKHPEWKDFGFRFSDTQRYNSIDEFYREVE





NQGYKLTFENISESYIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDER





NLQDVVYKLNGEAELFYRKQSIPKKITHPAKEAIANKNKDNPKKESVFEYDLIKDKR





FTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKANDVHILSIDRGERHLAYYTLVDG





KGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKEMKEGYLSQV





VHEIAKLVIEYNAIVVFADLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEF





DKTGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESV





SKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKN





HNWDTREVYPTKELEKLLKDYSIEYGHGECIKAAICGESDKKFFAKLTSVLNTILQM





RNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDADANGAYHIGLKGLMLLGRI





KNNQEGKKLNLVIKNEEYFEFVQNRNN






Francisella novicida Cpf1 D1255A (SEQ ID NO: 379) (D917, E1006, and A1255



are bolded and underlined)


(SEQ ID NO: 379)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYH






QFFIEEILSSVCISEDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSE





KFKNLFNQNLIDAKKGQESDLILWLKQSKDNGIELFKANSDITDIDEALEIIKSFKGWT





TYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYESLKDKAPEAINYEQIK





KDLAEELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNGEN





TKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTM





QSFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDY





SVIGTAVLEYITQQIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDI





DKQCRFEEILANFAAIPMEDEIAQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIK





DLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYLVFEECYFELANIVPLYNKIRNYI





TQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFD





DKAIKENKGEGYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKN





GSPQKGYEKFEFNIEDCRKFIDFYKQSISKHPEWKDFGFRFSDTQRYNSIDEFYREVE





NQGYKLTFENISESYIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDER





NLQDVVYKLNGEAELFYRKQSIPKKITHPAKEAIANKNKDNPKKESVFEYDLIKDKR





FTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKANDVHILSIDRGERHLAYYTLVDG





KGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKEMKEGYLSQV





VHEIAKLVIEYNAIVVFEDLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEF





DKTGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESV





SKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKN





HNWDTREVYPTKELEKLLKDYSIEYGHGECIKAAICGESDKKFFAKLTSVLNTILQM





RNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDAAANGAYHIGLKGLMLLGRI





KNNQEGKKLNLVIKNEEYFEFVQNRNN






Francisella novicida Cpf1 D917A/E1006A (SEQ ID NO: 380) (A917, A1006,



and D1255 are bolded and underlined)


(SEQ ID NO: 380)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYH






QFFIEEILSSVCISEDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSE





KFKNLFNQNLIDAKKGQESDLILWLKQSKDNGIELFKANSDITDIDEALEIIKSFKGWT





TYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYESLKDKAPEAINYEQIK





KDLAEELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNGEN





TKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTM





QSFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDY





SVIGTAVLEYITQQIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDI





DKQCRFEEILANFAAIPMEDEIAQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIK





DLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYLVFEECYFELANIVPLYNKIRNYI





TQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFD





DKAIKENKGEGYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKN





GSPQKGYEKFEFNIEDCRKFIDFYKQSISKHPEWKDFGFRFSDTQRYNSIDEFYREVE





NQGYKLTFENISESYIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDER





NLQDVVYKLNGEAELFYRKQSIPKKITHPAKEAIANKNKDNPKKESVFEYDLIKDKR





FTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKANDVHILSIARGERHLAYYTLVDG





KGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKEMKEGYLSQV





VHEIAKLVIEYNAIVVFADLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEF





DKTGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESV





SKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKN





HNWDTREVYPTKELEKLLKDYSIEYGHGECIKAAICGESDKKFFAKLTSVLNTILQM





RNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDADANGAYHIGLKGLMLLGRI





KNNQEGKKLNLVIKNEEYFEFVQNRNN






Francisella novicida Cpf1 D917A/D1255A (SEQ ID NO: 381) (A917, E1006,



and A1255 are bolded and underlined)


(SEQ ID NO: 381)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYH






QFFIEEILSSVCISEDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSE





KFKNLFNQNLIDAKKGQESDLILWLKQSKDNGIELFKANSDITDIDEALEIIKSFKGWT





TYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYESLKDKAPEAINYEQIK





KDLAEELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNGEN





TKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTM





QSFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDY





SVIGTAVLEYITQQIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDI





DKQCRFEEILANFAAIPMEDEIAQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIK





DLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYLVFEECYFELANIVPLYNKIRNYI





TQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFD





DKAIKENKGEGYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKN





GSPQKGYEKFEFNIEDCRKFIDFYKQSISKHPEWKDFGFRFSDTQRYNSIDEFYREVE





NQGYKLTFENISESYIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDER





NLQDVVYKLNGEAELFYRKQSIPKKITHPAKEAIANKNKDNPKKESVFEYDLIKDKR





FTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKANDVHILSIARGERHLAYYTLVDG





KGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKEMKEGYLSQV





VHEIAKLVIEYNAIVVFEDLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEF





DKTGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESV





SKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKN





HNWDTREVYPTKELEKLLKDYSIEYGHGECIKAAICGESDKKFFAKLTSVLNTILQM





RNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDAAANGAYHIGLKGLMLLGRI





KNNQEGKKLNLVIKNEEYFEFVQNRNN






Francisella novicida Cpf1 E1006A/D1255A (SEQ ID NO: 382) (D917, A1006,



and A1255 are bolded and underlined)


(SEQ ID NO: 382)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYH






QFFIEEILSSVCISEDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSE





KFKNLFNQNLIDAKKGQESDLILWLKQSKDNGIELFKANSDITDIDEALEIIKSFKGWT





TYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYESLKDKAPEAINYEQIK





KDLAEELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNGEN





TKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTM





QSFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDY





SVIGTAVLEYITQQIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDI





DKQCRFEEILANFAAIPMEDEIAQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIK





DLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYLVFEECYFELANIVPLYNKIRNYI





TQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFD





DKAIKENKGEGYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKN





GSPQKGYEKFEFNIEDCRKFIDFYKQSISKHPEWKDFGFRFSDTQRYNSIDEFYREVE





NQGYKLTFENISESYIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDER





NLQDVVYKLNGEAELFYRKQSIPKKITHPAKEAIANKNKDNPKKESVFEYDLIKDKR





FTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKANDVHILSIDRGERHLAYYTLVDG





KGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKEMKEGYLSQV





VHEIAKLVIEYNAIVVFADLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEF





DKTGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESV





SKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKN





HNWDTREVYPTKELEKLLKDYSIEYGHGECIKAAICGESDKKFFAKLTSVLNTILQM





RNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDAAANGAYHIGLKGLMLLGRI





KNNQEGKKLNLVIKNEEYFEFVQNRNN






Francisella novicida Cpf1 D917A/E1006A/D1255A (SEQ ID NO: 383) (A917,



A1006, and A1255 are bolded and underlined)


(SEQ ID NO: 383)



MSIYQEFVNKYSLSKTLRFELIPQGKTLENIKARGLILDDEKRAKDYKKAKQIIDKYH






QFFIEEILSSVCISEDLLQNYSDVYFKLKKSDDDNLQKDFKSAKDTIKKQISEYIKDSE





KFKNLFNQNLIDAKKGQESDLILWLKQSKDNGIELFKANSDITDIDEALEIIKSFKGWT





TYFKGFHENRKNVYSSNDIPTSIIYRIVDDNLPKFLENKAKYESLKDKAPEAINYEQIK





KDLAEELTFDIDYKTSEVNQRVFSLDEVFEIANFNNYLNQSGITKFNTIIGGKFVNGEN





TKRKGINEYINLYSQQINDKTLKKYKMSVLFKQILSDTESKSFVIDKLEDDSDVVTTM





QSFYEQIAAFKTVEEKSIKETLSLLFDDLKAQKLDLSKIYFKNDKSLTDLSQQVFDDY





SVIGTAVLEYITQQIAPKNLDNPSKKEQELIAKKTEKAKYLSLETIKLALEEFNKHRDI





DKQCRFEEILANFAAIPMEDEIAQNKDNLAQISIKYQNQGKKDLLQASAEDDVKAIK





DLLDQTNNLLHKLKIFHISQSEDKANILDKDEHFYLVFEECYFELANIVPLYNKIRNYI





TQKPYSDEKFKLNFENSTLANGWDKNKEPDNTAILFIKDDKYYLGVMNKKNNKIFD





DKAIKENKGEGYKKIVYKLLPGANKMLPKVFFSAKSIKFYNPSEDILRIRNHSTHTKN





GSPQKGYEKFEFNIEDCRKFIDFYKQSISKHPEWKDFGFRFSDTQRYNSIDEFYREVE





NQGYKLTFENISESYIDSVVNQGKLYLFQIYNKDFSAYSKGRPNLHTLYWKALFDER





NLQDVVYKLNGEAELFYRKQSIPKKITHPAKEAIANKNKDNPKKESVFEYDLIKDKR





FTEDKFFFHCPITINFKSSGANKFNDEINLLLKEKANDVHILSIARGERHLAYYTLVDG





KGNIIKQDTFNIIGNDRMKTNYHDKLAAIEKDRDSARKDWKKINNIKEMKEGYLSQV





VHEIAKLVIEYNAIVVFADLNFGFKRGRFKVEKQVYQKLEKMLIEKLNYLVFKDNEF





DKTGGVLRAYQLTAPFETFKKMGKQTGIIYYVPAGFTSKICPVTGFVNQLYPKYESV





SKSQEFFSKFDKICYNLDKGYFEFSFDYKNFGDKAAKGKWTIASFGSRLINFRNSDKN





HNWDTREVYPTKELEKLLKDYSIEYGHGECIKAAICGESDKKFFAKLTSVLNTILQM





RNSKTGTELDYLISPVADVNGNFFDSRQAPKNMPQDAAANGAYHIGLKGLMLLGRI





KNNQEGKKLNLVIKNEEYFEFVQNRNN






In some embodiments, the nucleic acid programmable DNA binding protein (napDNAbp) is a nucleic acid programmable DNA binding protein that does not require a canonical (NGG) PAM sequence. In some embodiments, the napDNAbp is an argonaute protein. One example of such a nucleic acid programmable DNA binding protein is an Argonaute protein from Natronobacterium gregoryi (NgAgo). NgAgo is a ssDNA-guided endonuclease. NgAgo binds 5′ phosphorylated ssDNA of ˜24 nucleotides (gDNA) to guide it to its target site and will make DNA double-strand breaks at the gDNA site. In contrast to Cas9, the NgAgo-gDNA system does not require a protospacer-adjacent motif (PAM). Using a nuclease inactive NgAgo (dNgAgo) can greatly expand the bases that may be targeted. The characterization and use of NgAgo have been described in Gao et al., Nat Biotechnol., 2016 July; 34(7):768-73. PubMed PMID: 27136078; Swarts et al., Nature. 507(7491) (2014):258-61; and Swarts et al., Nucleic Acids Res. 43(10) (2015):5120-9, each of which is incorporated herein by reference. The sequence of Natronobacterium gregoryi Argonaute is provided in SEQ ID NO: 416.









Wild type Natronobacterium gregoryi Argonaute


(SEQ ID NO: 416)


(SEQ ID NO: 416)


MTVIDLDSTTTADELTSGHTYDISVTLTGVYDNTDEQHPRMSLAFEQD





NGERRYITLWKNTTPKDVFTYDYATGSTYIFTNIDYEVKDGYENLTAT





YQTTVENATAQEVGTTDEDETFAGGEPLDHHLDDALNETPDDAETESD





SGHVMTSFASRDQLPEWTLHTYTLTATDGAKTDTEYARRTLAYTVRQE





LYTDHDAAPVATDGLMLLTPEPLGETPLDLDCGVRVEADETRTLDYTT





AKDRLLARELVEEGLKRSLWDDYLVRGIDEVLSKEPVLTCDEFDLHER





YDLSVEVGHSGRAYLHINFRHRFVPKLTLADIDDDNIYPGLRVKTTYR





PRRGHIVWGLRDECATDSLNTLGNQSVVAYHRNNQTPINTDLLDAIEA





ADRRVVETRRQGHGDDAVSFPQELLAVEPNTHQIKQFASDGFHQQARS





KTRLSASRCSEKAQAFAERLDPVRLNGSTVEFSSEFFTGNNEQQLRLL





YENGESVLTFRDGARGAHPDETFSKGIVNPPESFEVAVVLPEQQADTC





KAQWDTMADLLNQAGAPPTRSETVQYDAFSSPESISLNVAGAIDPSEV





DAAFVVLPPDQEGFADLASPTETYDELKKALANMGIYSQMAYFDRFRD





AKIFYTRNVALGLLAAAGGVAFTTEHAMPGDADMFIGIDVSRSYPEDG





ASGQINIAATATAVYKDGTILGHSSTRPQLGEKLQSTDVRDIMKNAIL





GYQQVTGESPTHIVIHRDGFMNEDLDPATEFLNEQGVEYDIVEIRKQP





QTRLLAVSDVQYDTPVKSIAAINQNEPRATVATFGAPEYLATRDGGGL





PRPIQIERVAGETDIETLTRQVYLLSQSHIQVHNSTARLPITTAYADQ





ASTHATKGYLVQTGAFESNVGFL






In some embodiments, the napDNAbp is a prokaryotic homolog of an Argonaute protein. Prokaryotic homologs of Argonaute proteins are known and have been described, for example, in Makarova K., et al., “Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements”, Biol Direct. 2009 Aug. 25; 4:29. doi: 10.1186/1745-6150-4-29, the entire contents of which is hereby incorporated by reference. In some embodiments, the napDNAbp is a Marinitoga piezophila Argunaute (MpAgo) protein. The CRISPR-associated Marinitoga piezophila Argunaute (MpAgo) protein cleaves single-stranded target sequences using 5′-phosphorylated guides. The 5′ guides are used by all known Argonautes. The crystal structure of an MpAgo-RNA complex shows a guide strand binding site comprising residues that block 5′ phosphate interactions. This data suggests the evolution of an Argonaute subclass with noncanonical specificity for a 5′-hydroxylated guide. See, e.g., Kaya et al., “A bacterial Argonaute with noncanonical guide RNA specificity”, Proc Natl Acad Sci USA. 2016 Apr. 12; 113(15):4057-62, the entire contents of which are hereby incorporated by reference). It should be appreciated that other argonaute proteins may be used, and are within the scope of this disclosure.


In some embodiments, the nucleic acid programmable DNA binding protein (napDNAbp) is a single effector of a microbial CRISPR-Cas system. Single effectors of microbial CRISPR-Cas systems include, without limitation, Cas9, Cpf1, C2c1, C2c2, and C2c3. Typically, microbial CRISPR-Cas systems are divided into Class 1 and Class 2 systems. Class 1 systems have multisubunit effector complexes, while Class 2 systems have a single protein effector. For example, Cas9 and Cpf1 are Class 2 effectors. In addition to Cas9 and Cpf1, three distinct Class 2 CRISPR-Cas systems (C2c1, C2c2, and C2c3) have been described by Shmakov et al., “Discovery and Functional Characterization of Diverse Class 2 CRISPR Cas Systems”, Mol. Cell, 2015 Nov. 5; 60(3): 385-397, the entire contents of which is hereby incorporated by reference. Effectors of two of the systems, C2c1 and C2c3, contain RuvC-like endonuclease domains related to Cpf1. A third system, C2c2 contains an effector with two predicated HEPN RNase domains. Production of mature CRISPR RNA is tracrRNA-independent, unlike production of CRISPR RNA by C2c1. C2c1 depends on both CRISPR RNA and tracrRNA for DNA cleavage. Bacterial C2c2 has been shown to possess a unique RNase activity for CRISPR RNA maturation distinct from its RNA-activated single-stranded RNA degradation activity. These RNase functions are different from each other and from the CRISPR RNA-processing behavior of Cpf1. See, e.g., East-Seletsky, et al., “Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection”, Nature, 2016 Oct. 13; 538(7624):270-273, the entire contents of which are hereby incorporated by reference. In vitro biochemical analysis of C2c2 in Leptotrichia shahii has shown that C2c2 is guided by a single CRISPR RNA and can be programed to cleave ssRNA targets carrying complementary protospacers. Catalytic residues in the two conserved HEPN domains mediate cleavage. Mutations in the catalytic residues generate catalytically inactive RNA-binding proteins. See e.g., Abudayyeh et al., “C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector”, Science, 2016 Aug. 5; 353(6299), the entire contents of which are hereby incorporated by reference.


The crystal structure of Alicyclobaccillus acidoterrastris C2c1 (AacC2c1) has been reported in complex with a chimeric single-molecule guide RNA (sgRNA). See e.g., Liu et al., “C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism”, Mol. Cell, 2017 Jan. 19; 65(2):310-322, the entire contents of which are hereby incorporated by reference. The crystal structure has also been reported in Alicyclobacillus acidoterrestris C2c1 bound to target DNAs as ternary complexes. See e.g., Yang et al., “PAM-dependent Target DNA Recognition and Cleavage by C2C1 CRISPR-Cas endonuclease”, Cell, 2016 Dec. 15; 167(7):1814-1828, the entire contents of which are hereby incorporated by reference. Catalytically competent conformations of AacC2c1, both with target and non-target DNA strands, have been captured independently positioned within a single RuvC catalytic pocket, with C2c1-mediated cleavage resulting in a staggered seven-nucleotide break of target DNA. Structural comparisons between C2c1 ternary complexes and previously identified Cas9 and Cpf1 counterparts demonstrate the diversity of mechanisms used by CRISPR-Cas9 systems.


In some embodiments, the nucleic acid programmable DNA binding protein (napDNAbp) of any of the fusion proteins provided herein may be a C2c1, a C2c2, or a C2c3 protein. In some embodiments, the napDNAbp is a C2c1 protein. In some embodiments, the napDNAbp is a C2c2 protein. In some embodiments, the napDNAbp is a C2c3 protein. In some embodiments, the napDNAbp comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at ease 99.5% identical to a naturally-occurring C2c1, C2c2, or C2c3 protein. In some embodiments, the napDNAbp is a naturally-occurring C2c1, C2c2, or C2c3 protein. In some embodiments, the napDNAbp comprises an amino acid sequence that is at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at ease 99.5% identical to any one of SEQ ID NOs: 438 or 439. In some embodiments, the napDNAbp comprises an amino acid sequence of any one SEQ ID NOs: 438 or 439. It should be appreciated that C2c1, C2c2, or C2c3 from other bacterial species may also be used in accordance with the present disclosure.










C2c1 (uniprot.org/uniprot/T0D7A2#)



sp|T0D7A2|C2C1_ALIAG CRISPR-associated endonuclease C2c1 OS = Alicyclobacillus



acidoterrestris (strain ATCC 49025/DSM 3922/CIP 106132/NCIMB 13137/GD3B)



GN = c2c1 PE = 1 SV = 1


(SEQ ID NO: 438)



MAVKSIKVKLRLDDMPEIRAGLWKLHKEVNAGVRYYTEWLSLLRQENLYRRSPNG






DGEQECDKTAEECKAELLERLRARQVENGHRGPAGSDDELLQLARQLYELLVPQAI





GAKGDAQQIARKFLSPLADKDAVGGLGIAKAGNKPRWVRMREAGEPGWEEEKEKA





ETRKSADRTADVLRALADFGLKPLMRVYTDSEMSSVEWKPLRKGQAVRTWDRDM





FQQAIERMMSWESWNQRVGQEYAKLVEQKNRFEQKNFVGQEHLVHLVNQLQQDM





KEASPGLESKEQTAHYVTGRALRGSDKVFEKWGKLAPDAPFDLYDAEIKNVQRRNT





RRFGSHDLFAKLAEPEYQALWREDASFLTRYAVYNSILRKLNHAKMFATFTLPDAT





AHPIWTRFDKLGGNLHQYTFLFNEFGERRHAIRFHKLLKVENGVAREVDDVTVPISM





SEQLDNLLPRDPNEPIALYFRDYGAEQHFTGEFGGAKIQCRRDQLAHMHRRRGARD





VYLNVSVRVQSQSEARGERRPPYAAVFRLVGDNHRAFVHFDKLSDYLAEHPDDGKL





GSEGLLSGLRVMSVDLGLRTSASISVFRVARKDELKPNSKGRVPFFFPIKGNDNLVAV





HERSQLLKLPGETESKDLRAIREERQRTLRQLRTQLAYLRLLVRCGSEDVGRRERSW





AKLIEQPVDAANHMTPDWREAFENELQKLKSLHGICSDKEWMDAVYESVRRVWRH





MGKQVRDWRKDVRSGERPKIRGYAKDVVGGNSIEQIEYLERQYKFLKSWSFFGKVS





GQVIRAEKGSRFAITLREHIDHAKEDRLKKLADRIIMEALGYVYALDERGKGKWVA





KYPPCQLILLEELSEYQFNNDRPPSENNQLMQWSHRGVFQELINQAQVHDLLVGTM





YAAFSSRFDARTGAPGIRCRRVPARCTQEHNPEPFPWWLNKFVVEHTLDACPLRAD





DLIPTGEGEIFVSPFSAEEGDFHQIHADLNAAQNLQQRLWSDFDISQIRLRCDWGEVD





GELVLIPRLTGKRTADSYSNKVFYTNTGVTYYERERGKKRRKVFAQEKLSEEEAELL





VEADEAREKSVVLMRDPSGIINRGNWTRQKEFWSMVNQRIEGYLVKQIRSRVPLQD





SACENTGDI





C2c2 (uniprot.org/uniprot/P0DOC6)


>sp|P0DOC6|C2C2_LEPSD CRISPR-associated endoribonuclease C2c2 OS = Leptotrichia



shahii (strain DSM 19757/CCUG 47503/CIP 107916/JCM 16776/LB37) GN = c2c2



PE = 1 SV = 1


(SEQ ID NO: 439)



MGNLFGHKRWYEVRDKKDFKIKRKVKVKRNYDGNKYILNINENNNKEKIDNNKFIR






KYINYKKNDNILKEFTRKFHAGNILFKLKGKEGIIRIENNDDFLETEEVVLYIEAYGKS





EKLKALGITKKKIIDEAIRQGITKDDKKIEIKRQENEEEIEIDIRDEYTNKTLNDCSIILRI





IENDELETKKSIYEIFKNINMSLYKIIEKIIENETEKVFENRYYEEHLREKLLKDDKIDVI





LTNFMEIREKIKSNLEILGFVKFYLNVGGDKKKSKNKKMLVEKILNINVDLTVEDIAD





FVIKELEFWNITKRIEKVKKVNNEFLEKRRNRTYIKSYVLLDKHEKFKIERENKKDKI





VKFFVENIKNNSIKEKIEKILAEFKIDELIKKLEKELKKGNCDTEIFGIFKKHYKVNFDS





KKFSKKSDEEKELYKIIYRYLKGRIEKILVNEQKVRLKKMEKIEIEKILNESILSEKILK





RVKQYTLEHIMYLGKLRHNDIDMTTVNTDDFSRLHAKEELDLELITFFASTNMELNK





IFSRENINNDENIDFFGGDREKNYVLDKKILNSKIKIIRDLDFIDNKNNITNNFIRKFTKI





GTNERNRILHAISKERDLQGTQDDYNKVINIIQNLKISDEEVSKALNLDVVFKDKKNII





TKINDIKISEENNNDIKYLPSFSKVLPEILNLYRNNPKNEPFDTIETEKIVLNALIYVNKE





LYKKLILEDDLEENESKNIFLQELKKTLGNIDEIDENIIENYYKNAQISASKGNNKAIK





KYQKKVIECYIGYLRKNYEELFDFSDFKMNIQEIKKQIKDINDNKTYERITVKTSDKTI





VINDDFEYIISIFALLNSNAVINKIRNRFFATSVWLNTSEYQNIIDILDEIMQLNTLRNEC





ITENWNLNLEEFIQKMKEIEKDFDDFKIQTKKEIFNNYYEDIKNNILTEFKDDINGCDV





LEKKLEKIVIFDDETKFEIDKKSNILQDEQRKLSNINKKDLKKKVDQYIKDKDQEIKS





KILCRIIFNSDFLKKYKKEIDNLIEDMESENENKFQEIYYPKERKNELYIYKKNLFLNIG





NPNFDKIYGLISNDIKMADAKFLFNIDGKNIRKNKISEIDAILKNLNDKLNGYSKEYKE





KYIKKLKENDDFFAKNIQNKNYKSFEKDYNRVSEYKKIRDLVEFNYLNKIESYLIDIN





WKLAIQMARFERDMHYIVNGLRELGIIKLSGYNTGISRAYPKRNGSDGFYTTTAYYK





FFDEESYKKFEKICYGFGIDLSENSEINKPENESIRNYISHFYIVRNPFADYSIAEQIDRV





SNLLSYSTRYNNSTYASVFEVFKKDVNLDYDELKKKFKLIGNNDILERLMKPKKVSV





LELESYNSDYIKNLIIELLTKIENTNDTL







Fusion Proteins Comprising a Nuclease Programmable DNA Binding Protein and an Adenosine Deaminase


Some aspects of the disclosure provide fusion proteins comprising a nucleic acid programmable DNA binding protein (napDNAbp) and an adenosine deaminase. In some embodiments, any of the fusion proteins provided herein are base editors. In some embodiments, the napDNAbp is a Cas9 domain, a Cpf1 domain, a CasX domain, a CasY domain, a C2c1 domain, a C2c2 domain, aC2c3 domain, or an Argonaute domain. In some embodiments, the napDNAbp is any napDNAbp provided herein. Some aspects of the disclosure provide fusion proteins comprising a Cas9 domain and an adenosine deaminase. The Cas9 domain may be any of the Cas9 domains or Cas9 proteins (e.g., dCas9 or nCas9) provided herein. In some embodiments, any of the Cas9 domains or Cas9 proteins (e.g., dCas9 or nCas9) provided herein may be fused with any of the adenosine deaminases provided herein. In some embodiments, the fusion protein comprises the structure:


NH2-[adenosine deaminase]-[napDNAbp]-COOH; or


NH2-[napDNAbp]-[adenosine deaminase]-COOH


In some embodiments, the fusion proteins comprising an adenosine deaminase and a napDNAbp (e.g., Cas9 domain) do not include a linker sequence. In some embodiments, a linker is present between the adenosine deaminase domain and the napDNAbp. In some embodiments, the “-” used in the general architecture above indicates the presence of an optional linker. In some embodiments, the adenosine deaminase and the napDNAbp are fused via any of the linkers provided herein. For example, in some embodiments the adenosine deaminase and the napDNAbp are fused via any of the linkers provided below in the section entitled “Linkers”. In some embodiments, the adenosine deaminase and the napDNAbp are fused via a linker that comprises between 1 and and 200 amino acids. In some embodiments, the adenosine deaminase and the napDNAbp are fused via a linker that comprises from 1 to 5, 1 to 10, 1 to 20, 1 to 30, 1 to 40, 1 to 50, 1 to 60, 1 to 80, 1 to 100, 1 to 150, 1 to 200, 5 to 10, 5 to 20, 5 to 30, 5 to 40, 5 to 60, 5 to 80, 5 to 100, 5 to 150, 5 to 200, 10 to 20, 10 to 30, 10 to 40, 10 to 50, 10 to 60, 10 to 80, 10 to 100, 10 to 150, 10 to 200, 20 to 30, 20 to 40, 20 to 50, 20 to 60, 20 to 80, 20 to 100, 20 to 150, 20 to 200, 30 to 40, 30 to 50, 30 to 60, 30 to 80, 30 to 100, 30 to 150, 30 to 200, 40 to 50, 40 to 60, 40 to 80, 40 to 100, 40 to 150, 40 to 200, 50 to 60 50 to 80, 50 to 100, 50 to 150, 50 to 200, 60 to 80, 60 to 100, 60 to 150, 60 to 200, 80 to 100, 80 to 150, 80 to 200, 100 to 150, 100 to 200, or 150 to 200 amino acids in length. In some embodiments, the adenosine deaminase and the napDNAbp are fused via a linker that comprises 4, 16, 32, or 104 amino acids in length. In some embodiments, the adenosine deaminase and the napDNAbp are fused via a linker that comprises the amino acid sequence of SGSETPGTSESATPES (SEQ ID NO: 10), SGGS (SEQ ID NO: 37), SGGSSGSETPGTSESATPESSGGS (SEQ ID NO: 384), SGGSSGGSSGSETPGTSESATPESSGGSSGGS (SEQ ID NO: 385), or GGSGGSPGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTE PSEGSAPGTSTEPSEGSAPGTSESATPESGPGSEPATSGGSGGS (SEQ ID NO: 386). In some embodiments, the adenosine deaminase and the napDNAbp are fused via a linker comprising the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 10), which may also be referred to as the XTEN linker. In some embodiments, the linker is 24 amino acids in length. In some embodiments, the linker comprises the amino acid sequence SGGSSGGSSGSETPGTSESATPES (SEQ ID NO: 685). In some embodiments, the linker is 40 amino acids in length. In some embodiments, the linker comprises the amino acid sequence SGGSSGGSSGSETPGTSESATPESSGGSSGGSSGGSSGGS (SEQ ID NO: 686).


In some embodiments, the linker is 64 amino acids in length. In some embodiments, the linker comprises the amino acid sequence SGGSSGGSSGSETPGTSESATPESSGGSSGGSSGGSSGGSSGSETPGTSESATPESSGGS SGGS (SEQ ID NO: 687). In some embodiments, the linker is 92 amino acids in length. In some embodiments, the linker comprises the amino acid sequence PGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAP GTSTEPSEGSAPGTSESATPESGPGSEPATS (SEQ ID NO: 688).


Fusion Proteins Comprising an Inhibitor of Base Repair


Some aspects of the disclosure provide fusion proteins that comprise an inhibitor of base repair (IBR). For example a fusion protein comprising an adenosine deaminase and a nucleic acid programmable DNA binding protein may further comprise an inhibitor of base repair. In some embodiments, the IBR comprises an inhibitor of inosine base repair. In some embodiments, the IBR is an inhibitor of inosine base excision repair. In some embodiments, the inhibitor of inosine base excision repair is a catalytically inactive inosine specific nuclease (dISN).


In some embodiments, the fusion proteins provided herein further comprise a catalytically inactive inosine-specific nuclease (dISN). In some embodiments, any of the fusion proteins provided herein that comprise a napDNAbp (e.g., a nuclease active Cas9 domain, a nuclease inactive dCas9 domain, or a Cas9 nickase) and an adenosine deaminase may be further fused to a catalytically inactive inosine-specific nuclease (dISN) either directly or via a linker. Some aspects of this disclosure provide fusion proteins that comprise an adenosine deaminase (e.g., an engineered adenosine deaminase that deaminates adenosine in a DNA) a napDNAbp (e.g., a dCas9 or nCas9), and a dISN. Without wishing to be bound by any particular theory, cellular DNA-repair response to the presence of I:T heteroduplex DNA may be responsible for the decrease in nucleobase editing efficiency in cells. For example, AAG catalyzes removal of inosine (I) from DNA in cells, which may initiate base excision repair, with reversion of the I:T pair to a A:T pair as the most common outcome. In some embodiments, a catalytically inactive inosine-specific nuclease may be capable of binding an inosine in a nucleic acid, without cleaving the nucleic acid, to prevent removal (e.g., by cellular DNA repair mechanisms) of the inosine residue in the DNA.


In some embodiments, a dISN may inhibit (e.g., by steric hindrance) inosine removing enzymes from excising the inosine residue from DNA. For example, catalytically dead inosine glycosylases (e.g., alkyl adenine glycosylase [AAG]) will bind inosine but will not create an abasic site or remove the inosine, thereby sterically blocking the newly-formed inosine moiety from potential DNA damage/repair mechanisms. Thus, this disclosure contemplates a fusion protein comprising a napDNAbp and an adenosine deaminase further fused to a dISN. This disclosure contemplates a fusion protein comprising any Cas9 domain, for example, a Cas9 nickase (nCas9) domain, a catalytically inactive Cas9 (dCas9) domain, a high fidelity Cas9 domain, or a Cas9 domain with reduced PAM exclusivity. It should be understood that the use of a dISN may increase the editing efficiency of a adenosine deaminase that is capable of catalyzing a A to I change. For example, fusion proteins comprising a dISN domain may be more efficient in deaminating A residues. In some embodiments, the fusion protein comprises the structure:


NH2-[adenosine deaminase]-[napDNAbp]-[dISN]—COOH;


NH2-[adenosine deaminase]-[dISN]-[napDNAbp]-COOH;


NH2-[dISN]-[adenosine deaminase]-[napDNAbp]-COOH;


NH2-[napDNAbp]-[adenosine deaminase]-[dISN]-COOH;


NH2-[napDNAbp]-[dISN]-[adenosine deaminase]-COOH; or


NH2-[dISN]-[napDNAbp]-[adenosine deaminase]-COOH


In some embodiments, the fusion proteins provided herein do not comprise a linker. In some embodiments, a linker is present between two domains or proteins (e.g., adenosine deaminase, napDNAbp, or dISN). In some embodiments, the “-” used in the general architecture above indicates the presence of an optional linker sequence. In some embodiments, a dISN comprises an inosine-specific nuclease that has reduced or nuclease activity, or does not have nuclease activity. In some embodiments, a dISN has up to 1%, up to 2%, up to 3%, up to 4%, up to 5%, up to 10%, up to 15%, up to 20%, up to 25%, up to 30%, up to 35%, up to 40%, up to 45%, or up to 50% of the nuclease activity of a corresponding (e.g., the wild-type) inosine-specific nuclease. In some embodiments, the dISN is a wild-type inosine-specific nuclease that comprises one or more mutations that reduces or eliminates the nuclease activity of the wild-type inosine-specific nuclease. Exemplary catalytically inactive inosine-specific nucleases include, without limitation, catalytically inactive AAG nuclease and catalytically inactive EndoV nuclease. In some embodiments, the catalytically inactive AAG nuclease comprises an E125Q mutation as compared to SEQ ID NO: 32, or a corresponding mutation in another AAG nuclease. In some embodiments, the catalytically inactive AAG nuclease comprises the amino acid sequence set forth in SEQ ID NO: 32. In some embodiments, the catalytically inactive EndoV nuclease comprises an D35A mutation as compared to SEQ ID NO 32, or a corresponding mutation in another EndoV nuclease. In some embodiments, the catalytically inactive EndoV nuclease comprises the amino acid sequence set forth in SEQ ID NO: 33. It should be appreciated that other catalytically inactive inosine-specific nucleases (dISNs) would be apparent to the skilled artisan and are within the scope of this disclosure.


In some embodiments, the dISN proteins provided herein include fragments of dISN proteins and proteins homologous to a dISN or a dISN fragment. For example, in some embodiments, a dISN comprises a fragment of the amino acid sequence set forth in SEQ ID NO: 32 or 33. In some embodiments, a dISN fragment comprises an amino acid sequence that comprises at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% of the amino acid sequence as set forth in SEQ ID NO: 32 or 33. In some embodiments, a dISN comprises an amino acid sequence homologous to the amino acid sequence set forth in SEQ ID NO: 32 or 33, or an amino acid sequence homologous to a fragment of the amino acid sequence set forth in SEQ ID NO: 32 or 33. In some embodiments, proteins comprising a dISN or fragments of a dISN or homologs of a dISN or a dISN fragment are referred to as “dISN variants.” A dISN variant shares homology to a dISN, or a fragment thereof. For example a dISN variant is at least 70% identical, at least 75% identical, at least 80% identical, at least 85% identical, at least 90% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, at least 99.5% identical, or at least 99.9% identical to a wild-type dISN or a dISN as set forth in SEQ ID NO: 32 or 33. In some embodiments, the dISN variant comprises a fragment of dISN, such that the fragment is at least 70% identical, at least 80% identical, at least 90% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, at least 99.5% identical, or at least 99.9% to the corresponding fragment of wild-type dISN or a dISN as set forth in SEQ ID NO: 32 or 33. In some embodiments, the dISN comprises the following amino acid sequence:









AAG nuclease (E125Q); mutated residue underlined


in bold.


(SEQ ID NO: 32)


KGHLTRLGLEFFDQPAVPLARAFLGQVLVRRLPNGTELRGRIVETQAYL





GPEDEAAHSRGGRQTPRNRGMFMKPGTLYVYIIYGMYFCMNISSQGDGA





CVLLRALEPLEGLETMRQLRSTLRKGTASRVLKDRELCSGPSKLCQALA





INKSFDQRDLAQDEAVWLERGPLEPSEPAVVAAARVGVGHAGEWARKPL





RFYVRGSPWVSVVDRVAEQDTQA





EndoV nuclease (D35A); mutated residue underlined


in bold.


(SEQ ID NO: 33)


DLASLRAQQIELASSVIREDRLDKDPPDLIAGAAVGFEQGGEVTRAAMV





LLKYPSLELVEYKVARIATTMPYIPGFLSFREYPALLAAWEMLSQKPDL





VFVDGHGISHPRRLGVASHFGLLVDVPTIGVAKKRLCGKFEPLSSEPGA





LAPLMDKGEQLAWVWRSKARCNPLFIATGHRVSVDSALAWVQRCMKGYR





LPEPTRWADAVASERPAFVRYTANQP






Suitable dISN proteins are provided herein and additional suitable dISN proteins are known to those in the art, and include, for example, AAG, EndoV, and variants thereof. It should be appreciated that additional proteins that block or inhibit base-excision repair, such as base excision of an inosine, are also within the scope of this disclosure. In some embodiments, a protein that binds inosine in DNA is used.


Some aspects of the disclosure relate to fusion proteins that comprise MBD4, or TDG, which may be used as inhibitors of base repair. Thus, this disclosure contemplates a fusion protein comprising a napDNAbp and an adenosine deaminase further fused to MBD4 or TDG. This disclosure contemplates a fusion protein comprising any Cas9 domain, for example, a Cas9 nickase (nCas9) domain, a catalytically inactive Cas9 (dCas9) domain, a high fidelity Cas9 domain, or a Cas9 domain with reduced PAM exclusivity. It should be understood that the use of MBD4 or TDG may increase the editing efficiency of a adenosine deaminase that is capable of catalyzing a A to I change. For example, fusion proteins comprising MBD4 or TDG may be more efficient in deaminating A residues. In some embodiments, the fusion protein comprises the structure:


NH2-[adenosine deaminase]-[napDNAbp]-[MBD4 or TDG]-COOH;


NH2-[adenosine deaminase]-[MBD4 or TDG]-[napDNAbp]-COOH;


NH2-[MBD4 or TDG]-[adenosine deaminase]-[napDNAbp]-COOH;


NH2-[napDNAbp]-[adenosine deaminase]-[MBD4 or TDG]-COOH;


NH2-[napDNAbp]-[MBD4 or TDG]-[adenosine deaminase]-COOH; or


NH2-[MBD4 or TDG]-[napDNAbp]-[adenosine deaminase]-COOH


In some embodiments, the fusion proteins provided herein do not comprise a linker. In some embodiments, a linker is present between two domains or proteins (e.g., adenosine deaminase, napDNAbp, MBD4 or TDG). In some embodiments, the “-” used in the general architecture above indicates the presence of an optional linker sequence. In some embodiments, the MBD4 or TDG is a wild-type MBD4 or TDG. Exemplary, MBD4 and TDG amino acid sequences would be apparent to the skilled artisan and include, without limitation, the MBD4 and TDG amino acid sequences provided below.









Sequence of MBD4:


(SEQ ID NO: 689)


GTTGLESLSLGDRGAAPTVTSSERLVPDPPNDLRKEDVAMELERVGED





EEQMMIKRSSECNPLLQEPIASAQFGATAGTECRKSVPCGWERVVKQR





LFGKTAGRFDVYFISPQGLKFRSKSSLANYLHKNGETSLKPEDFDFTV





LSKRGIKSRYKDCSMAALTSHLQNQSNNSNWNLRTRSKCKKDVFMPPS





SSSELQESRGLSNFTSTHLLLKEDEGVDDVNFRKVRKPKGKVTILKGI





PIKKTKKGCRKSCSGFVQSDSKRESVCNKADAESEPVAQKSQLDRTVC





ISDAGACGETLSVTSEENSLVKKKERSLSSGSNFCSEQKTSGIINKFC





SAKDSEHNEKYEDTFLESEEIGTKVEVVERKEHLHTDILKRGSEMDNN





CSPTRKDFTGEKIFQEDTIPRTQIERRKTSLYFSSKYNKEALSPPRRK





AFKKWTPPRSPFNLVQETLFHDPWKLLIATIFLNRTSGKMAIPVLWKF





LEKYPSAEVARTADWRDVSELLKPLGLYDLRAKTIVKFSDEYLTKQWK





YPIELHGIGKYGNDSYRIFCVNEWKQVHPEDHKLNKYHDWLWENHEKL





SLS





Sequence of TDG:


(SEQ ID NO: 690)


EAENAGSYSLQQAQAFYTFPFQQLMAEAPNMAVVNEQQMPEEVPAPAP





AQEPVQEAPKGRKRKPRTTEPKQPVEPKKPVESKKSGKSAKSKEKQEK





ITDTFKVKRKVDRFNGVSEAELLTKTLPDILTFNLDIVIIGINPGLMA





AYKGHHYPGPGNHFWKCLFMSGLSEVQLNHMDDHTLPGKYGIGFTNMV





ERTTPGSKDLSSKEFREGGRILVQKLQKYQPRIAVFNGKCIYEIFSKE





VFGVKVKNLEFGLQPHKIPDTETLCYVMPSSSARCAQFPRAQDKVHYY





IKLKDLRDQLKGIERNMDVQEVQYTFDLQLAQEDAKKMAVKEEKYDPG





YEAAYGGAYGENPCSSEPCGFSSNGLIESVELRGESAFSGIPNGQWMT





QSFTDQIPSFSNHCGTQEQEEESHA






In some embodiments, the MBD4 or TDG proteins provided herein include fragments of MBD4 or TDG proteins and proteins homologous to a MBD4 or a TDG fragment. For example, in some embodiments, a MBD4 or TDG protein comprises a fragment of the amino acid sequence set forth in SEQ ID NO: 689 or 690. In some embodiments, a MBD4 or TDG fragment comprises an amino acid sequence that comprises at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% of the amino acid sequence as set forth in SEQ ID NO: 689 or 690. In some embodiments, a MBD4 or TDG protein comprises an amino acid sequence homologous to the amino acid sequence set forth in SEQ ID NO: 689 or 690, or an amino acid sequence homologous to a fragment of the amino acid sequence set forth in SEQ ID NO: 689 or 690. In some embodiments, proteins comprising a MBD4 or TDG or fragments of a MBD4 or TDG or homologs of a MBD4 or TDG fragment are referred to as “MBD4 variants” or “TDG variants.” A MBD4 or TDG variant shares homology to a MBD4 or TDG, or a fragment thereof. For example a MBD4 or TDG variant is at least 70% identical, at least 75% identical, at least 80% identical, at least 85% identical, at least 90% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, at least 99.5% identical, or at least 99.9% identical to a wild-type MBD4 or TDG or a MBD4 or TDG as set forth in SEQ ID NO: 689 or 690. In some embodiments, the MBD4 or TDG variant comprises a fragment of MBD4 or TDG, such that the fragment is at least 70% identical, at least 80% identical, at least 90% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, at least 99.5% identical, or at least 99.9% to the corresponding fragment of wild-type MBD4 or TDG or a MBD4 or TDG as set forth in SEQ ID NO: 689 or 690. In some embodiments, the dISN comprises the following amino acid sequence:


Some aspects of the disclosure relate to fusion proteins that comprise a uracil glycosylase inhibitor (UGI) domain. In some embodiments, any of the fusion proteins provided herein that comprise a napDNAbp (e.g., a nuclease active Cas9 domain, a nuclease inactive dCas9 domain, or a Cas9 nickase), and an adenosine deaminase, may be further fused to a UGI domain either directly or via a linker. Some aspects of this disclosure provide fusion proteins that comprise an adenosine deaminase (e.g., an engineered adenosine deaminase that deaminates deoxyadenosine in a DNA) a napDNAbp (e.g., a dCas9 or nCas9), and a UGI domain. Without wishing to be bound by any particular theory, the cellular DNA-repair response to the presence of I:T heteroduplex DNA may be responsible for the decrease in nucleobase editing efficiency in cells. For example, alkyl adenosine glycosylase (AAG) is involved in inosine (I) associated DNA repair and catalyzes removal of I from DNA in cells. This may initiate base excision repair, with reversion of the I:T pair to a A:T pair as the most common outcome. A UGI domain, may inhibit (e.g., by steric hindrance) inosine removing enzymes from excising the inosine residue from DNA. Thus, this disclosure contemplates a fusion protein comprising a Cas9 domain and an adenosine deaminase domain further fused to a UGI domain. This disclosure contemplates a fusion protein comprising any nucleic acid programmable DNA binding protein, for example, a Cas9 nickase (nCas9) domain, a catalytically inactive Cas9 (dCas9) domain, a high fidelity Cas9 domain, or a Cas9 domain with reduced PAM exclusivity. It should be understood that the use of a UGI domain may increase the editing efficiency of a adenosine deaminase that is capable of catalyzing a A to I change. For example, fusion proteins comprising a UGI domain may be more efficient in deaminating adenosine residues. In some embodiments, the fusion protein comprises the structure:


NH2-[adenosine deaminase]-[napDNAbp]-[UGI]-COOH;


NH2-[adenosine deaminase]-[UGI]-[napDNAbp]-COOH;


NH2-[UGI]-[adenosine deaminase]-[napDNAbp]-COOH;


NH2-[napDNAbp]-[adenosine deaminase]-[UGI]-COOH;


NH2-[napDNAbp]-[UGI]-[adenosine deaminase]-COOH; or


NH2-[UGI]-[napDNAbp]-[adenosine deaminase]-COOH


In some embodiments, the fusion proteins provided herein do not comprise a linker. In some embodiments, a linker is present between any of the domains or proteins (e.g., adenosine deaminase, napDNAbp, and/or UGI domains). In some embodiments, the “-” used in the general architecture above indicates the presence of an optional linker.


In some embodiments, a UGI domain comprises a wild-type UGI or a UGI as set forth in SEQ ID NO: 3. In some embodiments, the UGI proteins provided herein include fragments of UGI and proteins homologous to a UGI or a UGI fragment. For example, in some embodiments, a UGI domain comprises a fragment of the amino acid sequence set forth in SEQ ID NO: 3. In some embodiments, a UGI fragment comprises an amino acid sequence that comprises at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% of the amino acid sequence as set forth in SEQ ID NO: 3. In some embodiments, a UGI comprises an amino acid sequence homologous to the amino acid sequence set forth in SEQ ID NO: 3 or an amino acid sequence homologous to a fragment of the amino acid sequence set forth in SEQ ID NO: 3. In some embodiments, proteins comprising UGI or fragments of UGI or homologs of UGI or UGI fragments are referred to as “UGI variants.” A UGI variant shares homology to UGI, or a fragment thereof. For example a UGI variant is at least 70% identical, at least 75% identical, at least 80% identical, at least 85% identical, at least 90% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, at least 99.5% identical, or at least 99.9% identical to a wild type UGI or a UGI as set forth in SEQ ID NO: 3. In some embodiments, the UGI variant comprises a fragment of UGI, such that the fragment is at least 70% identical, at least 80% identical, at least 90% identical, at least 95% identical, at least 96% identical, at least 97% identical, at least 98% identical, at least 99% identical, at least 99.5% identical, or at least 99.9% to the corresponding fragment of wild-type UGI or a UGI as set forth in SEQ ID NO: 3. In some embodiments, the UGI comprises the following amino acid sequence:









>sp|P14739|UNGI_BPPB2 Uracil-DNA glycosylase


inhibitor


(SEQ ID NO: 3)


MTNLSDIIEKETGKQLVIQESILMLPEEVEEVIGNKPESDILVHTAY





DESTDENVMLLTSDAPEYKPWALVIQDSNGENKIKML






Suitable UGI protein and nucleotide sequences are provided herein and additional suitable UGI sequences are known to those in the art, and include, for example, those published in Wang et al., Uracil-DNA glycosylase inhibitor gene of bacteriophage PBS2 encodes a binding protein specific for uracil-DNA glycosylase. J. Biol. Chem. 264:1163-1171(1989); Lundquist et al., Site-directed mutagenesis and characterization of uracil-DNA glycosylase inhibitor protein. Role of specific carboxylic amino acids in complex formation with Escherichia coli uracil-DNA glycosylase. J. Biol. Chem. 272:21408-21419(1997); Ravishankar et al., X-ray analysis of a complex of Escherichia coli uracil DNA glycosylase (EcUDG) with a proteinaceous inhibitor. The structure elucidation of a prokaryotic UDG. Nucleic Acids Res. 26:4880-4887(1998); and Putnam et al., Protein mimicry of DNA from crystal structures of the uracil-DNA glycosylase inhibitor protein and its complex with Escherichia coli uracil-DNA glycosylase. J. Mol. Biol. 287:331-346(1999), the entire contents of each are incorporated herein by reference.


It should be appreciated that additional proteins that block or inhibit base-excision repair, such as base excision of an inosine, are also within the scope of this disclosure. In some embodiments, a protein that binds DNA is used. In another embodiment, a substitute for UGI is used. In some embodiments, a uracil glycosylase inhibitor is a protein that binds single-stranded DNA. For example, a uracil glycosylase inhibitor may be a Erwinia tasmaniensis single-stranded binding protein. In some embodiments, the single-stranded binding protein comprises the amino acid sequence (SEQ ID NO: 29). In some embodiments, a uracil glycosylase inhibitor is a protein that binds uracil. In some embodiments, a uracil glycosylase inhibitor is a protein that binds uracil in DNA. In some embodiments, a uracil glycosylase inhibitor is a catalytically inactive uracil DNA-glycosylase protein. In some embodiments, a uracil glycosylase inhibitor is a catalytically inactive uracil DNA-glycosylase protein that does not excise uracil from the DNA. For example, a uracil glycosylase inhibitor is a UdgX. In some embodiments, the UdgX comprises the amino acid sequence (SEQ ID NO: 30). As another example, a uracil glycosylase inhibitor is a catalytically inactive UDG. In some embodiments, a catalytically inactive UDG comprises the amino acid sequence (SEQ ID NO: 31). It should be appreciated that other uracil glycosylase inhibitors would be apparent to the skilled artisan and are within the scope of this disclosure. In some embodiments, a uracil glycosylase inhibitor is a protein that is homologous to any one of SEQ ID NOs: 29-31. In some embodiments, a uracil glycosylase inhibitor is a protein that is at least 50% identical, at least 55% identical, at least 60% identical, at least 65% identical, at least 70% identical, at least 75% identical, at least 80% identical at least 85% identical, at least 90% identical, at least 95% identical, at least 96% identical, at least 98% identical, at least 99% identical, or at least 99.5% identical to any one of SEQ ID NOs: 29-31.










Erwinia tasmaniensis SSB (themostable single-



stranded DNA binding protein)


(SEQ ID NO: 29)


MASRGVNKVILVGNLGQDPEVRYMPNGGAVANITLATSESWRDKQTGE





TKEKTEWHRVVLFGKLAEVAGEYLRKGSQVYIEGALQTRKWTDQAGVE





KYTTEVVVNVGGTMQMLGGRSQGGGASAGGQNGGSNNGWGQPQQPQGG





NQFSGGAQQQARPQQQPQQNNAPANNEPPIDFDDDIP





UdgX (binds to Uracil in DNA but does not excise)


(SEQ ID NO: 30)


MAGAQDFVPHTADLAELAAAAGECRGCGLYRDATQAVFGAGGRSAREV





IMIGEQPGDKEDLAGLPFVGPAGRLLDRALEAADIDRDALYVTNAVKH





FKFTRAAGGKRRIHKTPSRTEVVACRPWLIAEMTSVEPDVVVLLGATA





AKALLGNDFRVTQHRGEVLHVDDVPGDPALVATVHPSSLLRGPKEERE





SAFAGLVDDLRVAADVRP





UDG (catalytically inactive human UDG, binds to


Uracil in DNA but does not excise)


(SEQ ID NO: 31)


MIGQKTLYSFFSPSPARKRHAPSPEPAVQGTGVAGVPEESGDAAAIPA





KKAPAGQEEPGTPPSSPLSAEQLDRIQRNKAAALLRLAARNVPVGFGE





SWKKHLSGEFGKPYFIKLMGFVAEERKHYTVYPPPHQVFTWTQMCDIK





DVKVVILGQEPYHGPNQAHGLCFSVQRPVPPPPSLENIYKELSTDIED





FVHPGHGDLSGWAKQGVLLLNAVLTVRAHQANSHKERGWEQFTDAVVS





WLNQNSNGLVFLLWGSYAQKKGSAIDRKRHHVLQTAHPSPLSVYRGFF





GCRHFSKTNELLQKSGKKPIDWKEL







Fusion Proteins Comprising a Nuclear Localization Sequence (NLS)


In some embodiments, the fusion proteins provided herein further comprise one or more nuclear targeting sequences, for example, a nuclear localization sequence (NLS). In some embodiments, a NLS comprises an amino acid sequence that facilitates the importation of a protein, that comprises an NLS, into the cell nucleus (e.g., by nuclear transport). In some embodiments, any of the fusion proteins provided herein further comprise a nuclear localization sequence (NLS). In some embodiments, the NLS is fused to the N-terminus of the fusion protein. In some embodiments, the NLS is fused to the C-terminus of the fusion protein. In some embodiments, the NLS is fused to the N-terminus of the IBR (e.g., dISN). In some embodiments, the NLS is fused to the C-terminus of the IBR (e.g., dISN). In some embodiments, the NLS is fused to the N-terminus of the napDNAbp. In some embodiments, the NLS is fused to the C-terminus of the napDNAbp. In some embodiments, the NLS is fused to the N-terminus of the adenosine deaminase. In some embodiments, the NLS is fused to the C-terminus of the adenosine deaminase. In some embodiments, the NLS is fused to the fusion protein via one or more linkers. In some embodiments, the NLS is fused to the fusion protein without a linker. In some embodiments, the NLS comprises an amino acid sequence of any one of the NLS sequences provided or referenced herein. In some embodiments, the NLS comprises an amino acid sequence as set forth in SEQ ID NO: 4 or SEQ ID NO: 5. Additional nuclear localization sequences are known in the art and would be apparent to the skilled artisan. For example, NLS sequences are described in Plank et al., PCT/EP2000/011690, the contents of which are incorporated herein by reference for their disclosure of exemplary nuclear localization sequences. In some embodiments, a NLS comprises the amino acid sequence PKKKRKV (SEQ ID NO: 4) or MDSLLMNRRKFLYQFKNVRWAKGRRETYLC (SEQ ID NO: 5).


In some embodiments, the general architecture of exemplary fusion proteins with an adenosine deaminase and a napDNAbp comprises any one of the following structures, where NLS is a nuclear localization sequence (e.g., any NLS provided herein), NH2 is the N-terminus of the fusion protein, and COOH is the C-terminus of the fusion protein.


Fusion proteins comprising an adenosine deaminase, a napDNAbp, and a NLS.


NH2-[NLS]-[adenosine deaminase]-[napDNAbp]-COOH;


NH2-[adenosine deaminase]-[NLS]-[napDNAbp]-COOH;


NH2-[adenosine deaminase]-[napDNAbp]-[NLS]-COOH;


NH2-[NLS]-[napDNAbp]-[adenosine deaminase]-COOH;


NH2-[napDNAbp]-[NLS]-[adenosine deaminase]-COOH;


NH2-[napDNAbp]-[adenosine deaminase]-[NLS]-COOH;


In some embodiments, the fusion proteins provided herein do not comprise a linker. In some embodiments, a linker is present between one or more of the domains or proteins (e.g., adenosine deaminase, napDNAbp, and/or NLS). In some embodiments, the “-” used in the general architecture above indicates the presence of an optional linker.


Fusion proteins comprising an adenosine deaminase, a napDNAbp, and an inhibitor of base repair (IBR).


NH2-[IBR]-[adenosine deaminase]-[napDNAbp]-COOH;


NH2-[adenosine deaminase]-[IBR]-[napDNAbp]-COOH;


NH2-[adenosine deaminase]-[napDNAbp]-[IBR]-COOH;


NH2-[IBR]-[napDNAbp]-[adenosine deaminase]-COOH;


NH2-[napDNAbp]-[IBR]-[adenosine deaminase]-COOH;


NH2-[napDNAbp]-[adenosine deaminase]-[IBR]-COOH;


In some embodiments, the fusion proteins provided herein do not comprise a linker. In some embodiments, a linker is present between one or more of the domains or proteins (e.g., adenosine deaminase, napDNAbp, and/or IBR). In some embodiments, the “-” used in the general architecture above indicates the presence of an optional linker.


Fusion proteins comprising an adenosine deaminase, a napDNAbp, an inhibitor of base repair (IBR) and a NLS.


NH2-[IBR]-[NLS]-[adenosine deaminase]-[napDNAbp]-COOH;


NH2-[NLS]-[IBR]-[adenosine deaminase]-[napDNAbp]-COOH;


NH2-[NLS]-[adenosine deaminase]-[IBR]-[napDNAbp]-COOH;


NH2-[NLS]-[adenosine deaminase]-[napDNAbp]-[IBR]-COOH;


NH2-[IBR]-[adenosine deaminase]-[NLS]-[napDNAbp]-COOH;


NH2-[adenosine deaminase]-[IBR]-[NLS]-[napDNAbp]-COOH;


NH2-[adenosine deaminase]-[NLS]-[IBR]-[napDNAbp]-COOH;


NH2-[adenosine deaminase]-[NLS]-[napDNAbp]-[IBR]-COOH;


NH2-[IBR]-[adenosine deaminase]-[napDNAbp]-[NLS]-COOH;


NH2-[adenosine deaminase]-[IBR]-[napDNAbp]-[NLS]-COOH;


NH2-[adenosine deaminase]-[napDNAbp]-[IBR]-[NLS]-COOH;


NH2-[adenosine deaminase]-[napDNAbp]-[NLS]-[IBR]-COOH;


NH2-[IBR]-[NLS]-[napDNAbp]-[adenosine deaminase]-COOH;


NH2-[NLS]-[IBR]-[napDNAbp]-[adenosine deaminase]-COOH;


NH2-[NLS]-[napDNAbp]-[IBR]-[adenosine deaminase]-COOH;


NH2-[NLS]-[napDNAbp]-[adenosine deaminase]-[IBR]-COOH;


NH2-[IBR]-[napDNAbp]-[NLS]-[adenosine deaminase]-COOH;


NH2-[napDNAbp]-[IBR]-[NLS]-[adenosine deaminase]-COOH;


NH2-[napDNAbp]-[NLS]-[IBR]-[adenosine deaminase]-COOH;


NH2-[napDNAbp]-[NLS]-[adenosine deaminase]-[IBR]-COOH;


NH2-[IBR]-[napDNAbp]-[adenosine deaminase]-[NLS]-COOH;


NH2-[napDNAbp]-[IBR]-[adenosine deaminase]-[NLS]-COOH;


NH2-[napDNAbp]-[adenosine deaminase]-[IBR]-[NLS]-COOH;


NH2-[napDNAbp]-[adenosine deaminase]-[NLS]-[IBR]-COOH;


In some embodiments, the fusion proteins provided herein do not comprise a linker. In some embodiments, a linker is present between one or more of the domains or proteins (e.g., adenosine deaminase, napDNAbp, NLS, and/or IBR). In some embodiments, the “-” used in the general architecture above indicates the presence of an optional linker.


Some aspects of the disclosure provide fusion proteins that comprise a nucleic acid programmable DNA binding protein (napDNAbp) and at least two adenosine deaminase domains. Without wishing to be bound by any particular theory, dimerization of adenosine deaminases (e.g., in cis or in trans) may improve the ability (e.g., efficiency) of the fusion protein to modify a nucleic acid base, for example to deaminate adenine. In some embodiments, any of the fusion proteins may comprise 2, 3, 4 or 5 adenosine deaminase domains. In some embodiments, any of the fusion proteins provided herein comprise two adenosine deaminases. In some embodiments, any of the fusion proteins provided herein contain only two adenosine deaminases. In some embodiments, the adenosine deaminases are the same. In some embodiments, the adenosine deaminases are any of the adenosine deaminases provided herein. In some embodiments, the adenosine deaminases are different. In some embodiments, the first adenosine deaminase is any of the adenosine deaminases provided herein, and the second adenosine is any of the adenosine deaminases provided herein, but is not identical to the first adenosine deaminase. As one example, the fusion protein may comprise a first adenosine deaminase and a second adenosine deaminase that both comprise the amino acid sequence of SEQ ID NO: 72, which contains a A106V, D108N, D147Y, and E155V mutation from ecTadA (SEQ ID NO: 1). As another example, the fusion protein may comprise a first adenosine deaminase domain that comprises the amino amino acid sequence of SEQ ID NO: 72, which contains a A106V, D108N, D147Y, and E155V mutation from ecTadA (SEQ ID NO: 1), and a second adenosine deaminase that comprises the amino acid sequence of SEQ ID NO: 421, which contains a L84F, A106V, D108N, H123Y, D147Y, E155V, and I156F mutation from ecTadA (SEQ ID NO: 1).


In some embodiments, the fusion protein comprises two adenosine deaminases (e.g., a first adenosine deaminase and a second adenosine deaminase). In some embodiments, the fusion protein comprises a first adenosine deaminase and a second adenosine deaminase. In some embodiments, the first adenosine deaminase is N-terminal to the second adenosine deaminase in the fusion protein. In some embodiments, the first adenosine deaminase is C-terminal to the second adenosine deaminase in the fusion protein. In some embodiments, the first adenosine deaminase and the second deaminase are fused directly or via a linker. In some embodiments, the linker is any of the linkers provided herein, for example, any of the linkers described in the “Linkers” section. In some embodiments, the linker comprises the amino acid sequence of any one of SEQ ID NOs: 10, 37-40, 384-386, or 685-688. In some embodiments, the first adenosine deaminase is the same as the second adenosine deaminase. In some embodiments, the first adenosine deaminase and the second adenosine deaminase are any of the adenosine deaminases described herein. In some embodiments, the first adenosine deaminase and the second adenosine deaminase are different. In some embodiments, the first adenosine deaminase is any of the adenosine deaminases provided herein. In some embodiments, the second adenosine deaminase is any of the adenosine deaminases provided herein but is not identical to the first adenosine deaminase. In some embodiments, the first adenosine deaminase is an ecTadA adenosine deaminase. In some embodiments, the first adenosine deaminase comprises an amino acid sequence that is at least least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the amino acid sequences set forth in any one of SEQ ID NOs: 1, 64-84, 420-437, 672-684, or to any of the adenosine deaminases provided herein. In some embodiments, the first adenosine deaminase comprises the amino acid sequence of SEQ ID NO: 1. In some embodiments, the second adenosine deaminase comprises an amino acid sequence that is at least least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the amino acid sequences set forth in any one of SEQ ID NOs: 1, 64-84, 420-437, 672-684, or to any of the adenosine deaminases provided herein. In some embodiments, the second adenosine deaminase comprises the amino acid sequence of SEQ ID NO: 1. In some embodiments, the first adenosine deaminase and the second adenosine deaminase of the fusion protein comprise the mutations in ecTadA (SEQ ID NO: 1), or corresponding mutations in another adenosine deaminase, as shown in any one of the constructs provided in Table 4 (e.g., pNMG-371, pNMG-477, pNMG-576, pNMG-586, and pNMG-616). In some embodiments, the fusion protein comprises the two adenosine deaminases (e.g., a first adenosine deaminase and a second adenosine deaminase) of any one of the constructs (e.g., pNMG-371, pNMG-477, pNMG-576, pNMG-586, and pNMG-616) in Table 4.


In some embodiments, the general architecture of exemplary fusion proteins with a first adenosine deaminase, a second adenosine deaminase, and a napDNAbp comprises any one of the following structures, where NLS is a nuclear localization sequence (e.g., any NLS provided herein), NH2 is the N-terminus of the fusion protein, and COOH is the C-terminus of the fusion protein.


Fusion proteins comprising a first adenosine deaminase, a second adenosine deaminase, and a napDNAbp.


NH2-[first adenosine deaminase]-[second adenosine deaminase]-[napDNAbp]-COOH;


NH2-[first adenosine deaminase]-[napDNAbp]-[second adenosine deaminase]-COOH;


NH2-[napDNAbp]-[first adenosine deaminase]-[second adenosine deaminase]-COOH;


NH2-[second adenosine deaminase]-[first adenosine deaminase]-[napDNAbp]-COOH;


NH2-[second adenosine deaminase]-[napDNAbp]-[first adenosine deaminase]-COOH;


NH2-[napDNAbp]-[second adenosine deaminase]-[first adenosine deaminase]-COOH;


In some embodiments, the fusion proteins provided herein do not comprise a linker. In some embodiments, a linker is present between one or more of the domains or proteins (e.g., first adenosine deaminase, second adenosine deaminase, and/or napDNAbp). In some embodiments, the “-” used in the general architecture above indicates the presence of an optional linker.


Fusion proteins comprising a first adenosine deaminase, a second adenosine deaminase, a napDNAbp, and an NLS.


NH2-[NLS]-[first adenosine deaminase]-[second adenosine deaminase]-[napDNAbp]-COOH;


NH2-[first adenosine deaminase]-[NLS]-[second adenosine deaminase]-[napDNAbp]-COOH;


NH2-[first adenosine deaminase]-[second adenosine deaminase]-[NLS]-[napDNAbp]-COOH;


NH2-[first adenosine deaminase]-[second adenosine deaminase]-[napDNAbp]-[NLS]-COOH;


NH2-[NLS]-[first adenosine deaminase]-[napDNAbp]-[second adenosine deaminase]-COOH;


NH2-[first adenosine deaminase]-[NLS]-[napDNAbp]-[second adenosine deaminase]-COOH;


NH2-[first adenosine deaminase]-[napDNAbp]-[NLS]-[second adenosine deaminase]-COOH;


NH2-[first adenosine deaminase]-[napDNAbp]-[second adenosine deaminase]-[NLS]-COOH;


NH2-[NLS]-[napDNAbp]-[first adenosine deaminase]-[second adenosine deaminase]-COOH;


NH2-[napDNAbp]-[NLS]-[first adenosine deaminase]-[second adenosine deaminase]-COOH;


NH2-[napDNAbp]-[first adenosine deaminase]-[NLS]-[second adenosine deaminase]-COOH;


NH2-[napDNAbp]-[first adenosine deaminase]-[second adenosine deaminase]-[NLS]-COOH;


NH2-[NLS]-[second adenosine deaminase]-[first adenosine deaminase]-[napDNAbp]-COOH;


NH2-[second adenosine deaminase]-[NLS]-[first adenosine deaminase]-[napDNAbp]-COOH;


NH2-[second adenosine deaminase]-[first adenosine deaminase]-[NLS]-[napDNAbp]-COOH;


NH2-[second adenosine deaminase]-[first adenosine deaminase]-[napDNAbp]-[NLS]-COOH;


NH2-[NLS]-[second adenosine deaminase]-[napDNAbp]-[first adenosine deaminase]-COOH;


NH2-[second adenosine deaminase]-[NLS]-[napDNAbp]-[first adenosine deaminase]-COOH;


NH2-[second adenosine deaminase]-[napDNAbp]-[NLS]-[first adenosine deaminase]-COOH;


NH2-[second adenosine deaminase]-[napDNAbp]-[first adenosine deaminase]-[NLS]-COOH;


NH2-[NLS]-[napDNAbp]-[second adenosine deaminase]-[first adenosine deaminase]-COOH;


NH2-[napDNAbp]-[NLS]-[second adenosine deaminase]-[first adenosine deaminase]-COOH;


NH2-[napDNAbp]-[second adenosine deaminase]-[NLS]-[first adenosine deaminase]-COOH;


NH2-[napDNAbp]-[second adenosine deaminase]-[first adenosine deaminase]-[NLS]-COOH;


In some embodiments, the fusion proteins provided herein do not comprise a linker. In some embodiments, a linker is present between one or more of the domains or proteins (e.g., first adenosine deaminase, second adenosine deaminase, napDNAbp, and/or NLS). In some embodiments, the “-” used in the general architecture above indicates the presence of an optional linker.


It should be appreciated that the fusion proteins of the present disclosure may comprise one or more additional features. For example, in some embodiments, the fusion protein may comprise cytoplasmic localization sequences, export sequences, such as nuclear export sequences, or other localization sequences, as well as sequence tags that are useful for solubilization, purification, or detection of the fusion proteins. Suitable protein tags provided herein include, but are not limited to, biotin carboxylase carrier protein (BCCP) tags, myc-tags, calmodulin-tags, FLAG-tags, hemagglutinin (HA)-tags, polyhistidine tags, also referred to as histidine tags or His-tags, maltose binding protein (MBP)-tags, nus-tags, glutathione-S-transferase (GST)-tags, green fluorescent protein (GFP)-tags, thioredoxin-tags, S-tags, Softags (e.g., Softag 1, Softag 3), strep-tags, biotin ligase tags, FlAsH tags, V5 tags, and SBP-tags. Additional suitable sequences will be apparent to those of skill in the art. In some embodiments, the fusion protein comprises one or more His tags.


Linkers


In certain embodiments, linkers may be used to link any of the protein or protein domains described herein. The linker may be as simple as a covalent bond, or it may be a polymeric linker many atoms in length. In certain embodiments, the linker is a polypeptide or based on amino acids. In other embodiments, the linker is not peptide-like. In certain embodiments, the linker is a covalent bond (e.g., a carbon-carbon bond, disulfide bond, carbon-heteroatom bond, etc.). In certain embodiments, the linker is a carbon-nitrogen bond of an amide linkage. In certain embodiments, the linker is a cyclic or acyclic, substituted or unsubstituted, branched or unbranched aliphatic or heteroaliphatic linker. In certain embodiments, the linker is polymeric (e.g., polyethylene, polyethylene glycol, polyamide, polyester, etc.). In certain embodiments, the linker comprises a monomer, dimer, or polymer of aminoalkanoic acid. In certain embodiments, the linker comprises an aminoalkanoic acid (e.g., glycine, ethanoic acid, alanine, beta-alanine, 3-aminopropanoic acid, 4-aminobutanoic acid, 5-pentanoic acid, etc.). In certain embodiments, the linker comprises a monomer, dimer, or polymer of aminohexanoic acid (Ahx). In certain embodiments, the linker is based on a carbocyclic moiety (e.g., cyclopentane, cyclohexane). In other embodiments, the linker comprises a polyethylene glycol moiety (PEG). In other embodiments, the linker comprises amino acids. In certain embodiments, the linker comprises a peptide. In certain embodiments, the linker comprises an aryl or heteroaryl moiety. In certain embodiments, the linker is based on a phenyl ring. The linker may include functionalized moieties to facilitate attachment of a nucleophile (e.g., thiol, amino) from the peptide to the linker. Any electrophile may be used as part of the linker. Exemplary electrophiles include, but are not limited to, activated esters, activated amides, Michael acceptors, alkyl halides, aryl halides, acyl halides, and isothiocyanates.


In some embodiments, the linker is an amino acid or a plurality of amino acids (e.g., a peptide or protein). In some embodiments, the linker is a bond (e.g., a covalent bond), an organic molecule, group, polymer, or chemical moiety. In some embodiments, the linker is 5-100 amino acids in length, for example, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 30-35, 35-40, 40-45, 45-50, 50-60, 60-70, 70-80, 80-90, 90-100, 100-110, 110-120, 120-130, 130-140, 140-150, or 150-200 amino acids in length. Longer or shorter linkers are also contemplated. In some embodiments, a linker comprises the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 10), which may also be referred to as the XTEN linker. In some embodiments, a linker comprises the amino acid sequence SGGS (SEQ ID NO: 37). In some embodiments, a linker comprises (SGGS)n(SEQ ID NO: 37), (GGGS)n (SEQ ID NO: 38), (GGGGS)n (SEQ ID NO: 39), (G)n, (EAAAK)n (SEQ ID NO: 40), (GGS)n, SGSETPGTSESATPES (SEQ ID NO: 10), or (XP)n motif, or a combination of any of these, wherein n is independently an integer between 1 and 30, and wherein X is any amino acid. In some embodiments, n is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15. In some embodiments, a linker comprises SGSETPGTSESATPES (SEQ ID NO: 10), and SGGS (SEQ ID NO: 37). In some embodiments, a linker comprises SGGSSGSETPGTSESATPESSGGS (SEQ ID NO: 384). In some embodiments, a linker comprises SGGSSGGSSGSETPGTSESATPESSGGSSGGS (SEQ ID NO: 385). In some embodiments, a linker comprises GGSGGSPGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTE PSEGSAPGTSTEPSEGSAPGTSESATPESGPGSEPATSGGSGGS (SEQ ID NO: 386). In some embodiments, the linker is 24 amino acids in length. In some embodiments, the linker comprises the amino acid sequence SGGSSGGSSGSETPGTSESATPES (SEQ ID NO: 685). In some embodiments, the linker is 40 amino acids in length. In some embodiments, the linker comprises the amino acid sequence SGGSSGGSSGSETPGTSESATPESSGGSSGGSSGGSSGGS (SEQ ID NO: 686). In some embodiments, the linker is 64 amino acids in length. In some embodiments, the linker comprises the amino acid sequence SGGSSGGSSGSETPGTSESATPESSGGSSGGSSGGSSGGSSGSETPGTSESATPESSGGS SGGS (SEQ ID NO: 687). In some embodiments, the linker is 92 amino acids in length. In some embodiments, the linker comprises the amino acid sequence PGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAP GTSTEPSEGSAPGTSESATPESGPGSEPATS (SEQ ID NO: 688). It should be appreciated that any of the linkers provided herein may be used to link a first adenosine deaminase and a second adenosine deaminase; an adenosine deaminase (e.g., a first or a second adenosine deaminase) and a napDNAbp; a napDNAbp and an NLS; or an adenosine deaminase (e.g., a first or a second adenosine deaminase) and an NLS.


In some embodiments, any of the fusion proteins provided herein, comprise an adenosine deaminase and a napDNAbp that are fused to each other via a linker. In some embodiments, any of the fusion proteins provided herein, comprise a first adenosine deaminase and a second adenosine deaminase that are fused to each other via a linker. In some embodiments, any of the fusion proteins provided herein, comprise an NLS, which may be fused to an adenosine deaminase (e.g., a first and/or a second adenosine deaminase), a nucleic acid programmable DNA binding protein (napDNAbp), and or an inhibitor of base repair (IBR). Various linker lengths and flexibilities between an adenosine deaminase (e.g., an engineered ecTadA) and a napDNAbp (e.g., a Cas9 domain), and/or between a first adenosine deaminase and a second adenosine deaminase can be employed (e.g., ranging from very flexible linkers of the form (GGGGS)n (SEQ ID NO: 38), (GGGGS)n (SEQ ID NO: 39), and (G)n to more rigid linkers of the form (EAAAK)n (SEQ ID NO: 40), (SGGS)n (SEQ ID NO: 37), SGSETPGTSESATPES (SEQ ID NO: 10) (see, e.g., Guilinger J P, Thompson D B, Liu D R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol. 2014; 32(6): 577-82; the entire contents are incorporated herein by reference) and (XP)n) in order to achieve the optimal length for deaminase activity for the specific application. In some embodiments, n is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15. In some embodiments, the linker comprises a (GGS)n motif, wherein n is 1, 3, or 7. In some embodiments, the adenosine deaminase and the napDNAbp, and/or the first adenosine deaminase and the second adenosine deaminase of any of the fusion proteins provided herein are fused via a linker comprising the amino acid sequence SGSETPGTSESATPES (SEQ ID NO: 10), SGGS (SEQ ID NO: 37), SGGSSGSETPGTSESATPESSGGS (SEQ ID NO: 384), SGGSSGGSSGSETPGTSESATPESSGGSSGGS (SEQ ID NO: 385), or GGSGGSPGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTE PSEGSAPGTSTEPSEGSAPGTSESATPESGPGSEPATSGGSGGS (SEQ ID NO: 386). In some embodiments, the linker is 24 amino acids in length. In some embodiments, the linker comprises the amino acid sequence SGGSSGGSSGSETPGTSESATPES (SEQ ID NO: 685). In some embodiments, the linker is 40 amino acids in length. In some embodiments, the linker comprises the amino acid sequence SGGSSGGSSGSETPGTSESATPESSGGSSGGSSGGSSGGS (SEQ ID NO: 686). In some embodiments, the linker is 64 amino acids in length. In some embodiments, the linker comprises the amino acid sequence SGGSSGGSSGSETPGTSESATPESSGGSSGGSSGGSSGGSSGSETPGTSESATPESSGGS SGGS (SEQ ID NO: 687). In some embodiments, the linker is 92 amino acids in length. In some embodiments, the linker comprises the amino acid sequence PGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAP GTSTEPSEGSAPGTSESATPESGPGSEPATS (SEQ ID NO: 688).


Some aspects of the disclosure provide fusion proteins comprising a Cas9 domain and an adenosine deaminase. Exemplary fusion proteins include, without limitation, the following fusion proteins (for the purposes of clarity, the adenosine deaminase domain is shown in Bold; mutations of the ecTadA deaminase domain are shown in Bold underlining; the XTEN linker is shown in italics; the UGI/AAG/EndoV domains are shown in Bold italics; and NLS is shown in underlined italics):










ecTadA(wt)-XTEN-nCas9-NLS:



(SEQ ID NO: 11)




MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV








MCAGAMIHSRIGRVVFGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTD
SGSETPGTS






ESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYL






QEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLI







EGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDL







AEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEK







YKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK







DNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYN







ELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNE







ENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIH







DDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEE







GIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEE







VVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKL







VSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI







TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPT







VAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNEL







ALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT







LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV






ecTadA(D108N)-XTEN-nCas9-NLS: (mammalian construct, active on DNA, A to G editing):


(SEQ ID NO: 12)




MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV








MCAGAMIHSRIGRVVFGAR

N

AKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTD

SGSETPGTS









ESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYL








QEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLI







EGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDL







AEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEK







YKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK







DNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYN







ELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNE







ENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIH







DDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEE







GIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEE







VVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKL







VSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI







TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPT







VAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNEL







ALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT







LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV






ecTadA(D108G)-XTEN-nCas9-NLS: (mammalian construct, active on DNA, A to G editing):


(SEQ ID NO: 13)




MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV








MCAGAMIHSRIGRVVFGAR

G

AKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTD
SGSETPGTS







ESATPES
DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYL







QEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADKAILSARLSKSRRLENLIAQ







LPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAP







LSASMIKRYMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSR







FAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIV







DLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLK






TYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIA









NLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYL







YYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLT







KAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYL







NAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKG







RDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLG







ITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNE







QKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKE







VLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV






ecTadA(D108V)-XTEN-nCas9-NLS: (mammalian construct, active on DNA, A to G editing):


(SEQ ID NO: 14)




MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV








MCAGAMIHSRIGRVVFGAR

V

AKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTD
SGSETPGTS







ESATPES
DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYL







QEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLI







EGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDL







AEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEK







YKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK







DNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYN







ELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNE







ENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIH







DDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEE







GIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEE







VVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKL







VSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI







TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPT







VAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNEL







ALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT







LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGSPKKKRKV






ecTadA(D108N)-XTEN-nCas9-UGI-NLS (BE3 analog of A to G editor):


(SEQ ID NO: 15)




MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV








MCAGAMIHSRIGRVVFGAR

N

AKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTD
SGSETPGTS







ESATPES
DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYL







QEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLI







EGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDL







AEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEK







YKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK







DNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYN







ELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNE







ENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIH







DDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEE







GIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEE







VVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKL







VSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI







TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPT






VAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNEL






ALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT







LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGScustom character







custom character
custom character
custom character SGGSPKKKRKV






ecTadA(D108G)-XTEN-nCas9-UGI-NLS (BE3 analog of A to G editor):


(SEQ ID NO: 16)




MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV








MCAGAMIHSRIGRVVFGAR

G

AKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTD
SGSETPGTS







ESATPES
DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYL







QEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLI







EGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDL







AEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEK







YKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK







DNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYN







ELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNE







ENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIH







DDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEE







GIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEE







VVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKL







VSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI







TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPT







VAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNEL







ALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT







LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGScustom character







custom character
custom character
custom character SGGSPKKKRKV






ecTadA(D108V)-XTEN-nCas9-UGI-NLS (BE3 analog of A to G editor):


(SEQ ID NO: 17)




MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV








MCAGAMIHSRIGRVVFGAR

V

AKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTD
SGSETPGTS







ESATPES
DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYL







QEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLI







EGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDL







AEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEK







YKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK







DNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYN







ELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNE







ENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIAGSPAIKKGILQTVKVVDELVKVMGRHK







PENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVP







QSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHV







AQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVR







KMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSK







ESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLI







IKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILA







DANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGG






Scustom charactercustom charactercustom charactercustom character





SGGSPKKKRKV





ecTadA(D108N)-XTEN-dCas9-UGI-NLS (mammalian cells, BE2 analog of A to G editor):


(SEQ ID NO: 18)




MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV








MCAGAMIHSRIGRVVFGAR

N

AKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTD
SGSETPGTS







ESATPES
DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYL







QEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLI







EGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDL







AEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEK







YKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK







DNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYN







ELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNE







ENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIH







DDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEE







GIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEE







VVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKL







VSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI







TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPT







VAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNEL







ALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT







LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGScustom character







custom character
custom character
custom character SGGSPKKKRKV






ecTadA(D108G)-XTEN-dCas9-UGI-NLS (mammalian cells, BE2 analog of A to G editor):


(SEQ ID NO: 19)




MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV








MCAGAMIHSRIGRVVFGARGAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTD
SGSETPGTS







ESATPES
DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYL







QEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLI







EGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDL







AEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEK







YKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK







DNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYN







ELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNE







ENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIH







DDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEE







GIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEE







VVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKL







VSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI







TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPT







VAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNEL







ALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT







LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGScustom character







custom character
custom character
custom character SGGSPKKKRKV






ecTadA(D108V)-XTEN-dCas9-UGI-NLS (mammalian cells, BE2 analog of A to G editor):


(SEQ ID NO: 20)




MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV








MCAGAMIHSRIGRVVFGAR

V

AKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTD
SGSETPGTS







ESATPES
DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYL







QEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLI







EGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDL







AEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEK







YKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK







DNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYN







ELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNE







ENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIH







DDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEE







GIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEE







VVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKL







VSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI







TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPT







VAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNEL







ALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT







LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGScustom character







custom character
custom character
custom character SGGSPKKKRKV






ecTadA(D108N)-XTEN-nCas9-AAG(E125Q)-NLS-cat. alkyladenosine glycosylase:


(SEQ ID NO: 21)




MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV








MCAGAMIHSRIGRVVFGAR

N

AKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGSETPGTS






ESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYL






QEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLI







EGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDL







AEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEK







YKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK







DNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYN







ELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNE







ENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIH







DDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEE







GIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEE







VVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKL







VSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI







TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPT







VAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNEL







ALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT







LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGScustom character







custom character
custom character
custom character
custom character
custom character







custom character
custom character
custom character
custom character
custom character







custom character SGGSPKKKRKV






ecTadA(D108G)-XTEN-nCas9-AAG(E125Q)-NLS-cat. alkyladenosine glycosylase:


(SEQ ID NO: 22)




MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV








MCAGAMIHSRIGRVVFGAR

G

AKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTD
SGSETPGTS







ESATPES
DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYL







QEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLI







EGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDL







AEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEK







YKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK







DNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYN







ELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNE







ENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIH







DDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEE







GIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEE







VVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKL







VSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI







TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPT







VAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNEL







ALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT







LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGScustom character







custom character
custom character
custom character
custom character







custom character
custom character
custom character
custom character







custom character
custom character
custom character SGGSPKKKRKV






ecTadA(D108V)-XTEN-nCas9-AAG(E125Q)-NLS-cat. alkyladenosine glycosylase:


(SEQ ID NO: 23)




MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV








MCAGAMIHSRIGRVVFGAR

V

AKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTD
SGSETPGTS







ESATPES
DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYL







QEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLI







EGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDL







AEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEK







YKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK







DNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYN







ELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNE







ENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIH







DDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEE







GIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEE







VVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKL







VSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI







TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPT







VAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNEL







ALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT







LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGScustom character







custom character
custom character
custom character
custom character
custom character







custom character
custom character
custom character
custom character
custom character







custom character SGGSPKKKRKV






ecTadA(D108N)-XTEN-nCas9-EndoV(D35A)-NLS: contains cat. endonuclease V:


(SEQ ID NO: 24)




MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV








MCAGAMIHSRIGRVVFGAR

N

AKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTD
SGSETPGTS







ESATPES
DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYL







QEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLI







EGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDL







AEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEK







YKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK







DNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYN







ELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNE







ENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIH







DDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEE







GIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEE







VVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKL







VSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI







TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPT







VAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNEL







ALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT







LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGScustom character







custom character
custom character
custom character
custom character
custom character







custom character
custom character
custom character
custom character
custom character







custom character SGGSPKKKRKV






ecTadA(D108G)-XTEN-nCas9-EndoV (D35A)-NLS: contains cat. endonuclease V:


(SEQ ID NO: 25)




MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV








MCAGAMIHSRIGRVVFGAR

G

AKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTD
SGSETPGTS







ESATPES
DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYL







QEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLI







EGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDL







AEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEK







YKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK







DNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYN







ELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNE







ENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIH







DDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEE







GIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEE







VVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKL







VSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI







TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPT







VAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNEL







ALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT







LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGScustom character







custom character
custom character
custom character
custom character
custom character










custom character
custom character
custom character
custom character







custom character
custom character SGGSPKKKRKV






ecTadA(D108V)-XTEN-nCas9-EndoV(D35A)-NLS: contains cat. endonuclease V:


(SEQ ID NO: 26)




MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV








MCAGAMIHSRIGRVVFGAR

V

AKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTD
SGSETPGTS







ESATPES
DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYL







QEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLI







EGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDL







AEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEK







YKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK







DNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYN







ELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNE







ENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIH







DDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEE







GIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEE







VVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKL







VSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI







TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPT







VAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNEL







ALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT







LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGGScustom character







custom character
custom character
custom character
custom character







custom character
custom character
custom character
custom character







custom character
custom character
custom character SGGSPKKKRKV






Variant resulting from first round of evolution (in bacteria) ecTadA(H8Y_D108N_N127S)-


XTEN-dCas9:


(SEQ ID NO: 27)




MSEVEFS

Y

EYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV








MCAGAMIHSRIGRVVFGAR

N

AKTGAAGSLMDVLHHPGM

S

HRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTD
SGSETPGTS







ESATPES
DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYL







QEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLI







EGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDL







AEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEK







YKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK







DNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYN







ELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNE







ENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIH







DDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEE







GIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEE







VVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKL







VSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI







TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPT







VAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNEL







ALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT







LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD






Enriched variants from second round of evolution (in bacteria) ecTadA


(H8Y_D108N_N127S_E155X)-XTEN-dCas9; X = D, G or V:


(SEQ ID NO: 28)



MSEVEFSYEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV






MCAGAMIHSRIGRVVFGARNAKTGAAGSLMDVLHHPGMSHRVEITEGILADECAALLSDFFRMRRQXIKAQKKAQSSTDSGSETPGTS





ESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYL






QEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLI







EGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDL







AEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEK







YKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK







DNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYN







ELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNE







ENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIH







DDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEE







GIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDAIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEE







VVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKL







VSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI







TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPT







VAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNEL







ALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT







LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGD






ecTadA*-XTEN-nCas9-GGS-DNA repair inhibitor-GGS-NLS (Inhibitor = UGI, AAG*E125Q or 


EndoV*D35A) pNMG-160: ecTadA(D108N)-XTEN-nCas9-GGS-custom character -GGS-NLS


(SEQ ID NO: 387)




MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV








MCAGAMIHSRIGRVVFGAR

N

AKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTD
SGSETPGTS







ESATPES
DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYL







QEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLI







EGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDL







AEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEK







YKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK







DNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYN







ELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNE







ENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIH







DDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEE







GIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEE







VVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKL







VSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI







TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPT







VAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNEL







ALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT







LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDGGScustom character







custom character
custom character
custom character
custom character







custom character
custom character
custom character
custom character







custom character
custom character
custom character GGSPKKKRKV






pNMG-161: ecTadA(D108N)-XTEN-nCas9-GGS-custom character *custom character -GGS-NLS


(SEQ ID NO: 388)




MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV








MCAGAMIHSRIGRVVFGAR

N

AKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTD
SGSETPGTS







ESATPES
DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYL







QEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLI







EGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDL







AEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEK







YKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLK







DNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYN







ELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNE







ENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIH







DDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEE







GIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEE







VVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKL







VSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEI







TLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPT







VAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNEL







ALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFT







LTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDGGScustom character







custom character
custom character
custom character
custom character
custom character







custom character
custom character
custom character
custom character







custom character
custom character
custom character GGSPKKKRKV






pNMG-371: ecTadA(L84F_A106V_D108N_H123Y_D147Y_E155V_I156F)-SGGS-SGGS-XTEN-SGGS-SGGS-


ecTadA(L84F_A106V_D108N_H123Y_D147Y_E155V_I156F)-SGGS-SGGS-XTEN-SGGS-SGGS-nCas9-SGGS-NLS


(SEQ ID NO: 440)




SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTFEPCVM








CAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLSYFFRMRRQVFKAQKKAQSSTDSGGSSGGSSG







SETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGG







LVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLSYFFRMRRQV







FKAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKK







NLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYP







TIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRR







LENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVN







TEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNRED







LLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKG







ASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIE







CFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGR







LSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVK







VMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYD







VDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETR







QITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDY







KVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQ







TGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYKE







VKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFS







KRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQL







GGDSGGSPKKKRKV






pNMG-616 amino acid sequence: ecTadA(wild type)-(SGGS)2-XTEN-(SGGS)2-ecTadA


(W23L_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_R152P_E155V_I156F_K157N)-


(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS


(SEQ ID NO: 691)




MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV








MCAGAMIHSRIGRVVFGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGGSS







GSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRALDEREVPVGAVLVLNNRVIGEGWNRAIGLHDPTAHAEIMALRQG







GLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLCYFFRMPRQ







VFNAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIK







KNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKY







PTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSR







RLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRV







NTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNRE







DLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDK







GASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKI







ECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG







RLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELV







KVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDY







DVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVET







RQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGD







YKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEV







QTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYK







EVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEF







SKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQ







LGGDSGGSPKKKRKV






pNMG-624 amino acid sequence: ecTadA(wild type)-32a.a. linker-ecTadA


(W23R_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_R152P_E155V_I156F_K157N)-



24a.a.linker_nCas9_SGGS_NLS



(SEQ ID NO: 692)




MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV








MCAGAMIHSRIGRVVFGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTD
SGGSSGGSS







GSETPGTSESATPESSGGSSGGS
SEVEFSHEYWMRHALTLAKRARDEREVPVGAVLVLNNRVIGEGWNRAIGLHDPTAHAEIMALRQG







GLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLCYFFRMPRQ







VFNAQKKAQSSTD
SGGSSGGSSGSETPGTSESATPES
DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALL







FDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRK







KLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQ







LPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAP







LSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRT







FDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFI







ERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVET







SGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLIN







GIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKP







ENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQ







SFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVA







QILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRK







MIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKE







SILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITHVIERSSFEKNPIDFLEAKGYKEVKKDLI







IKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILA







DANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGG






SPKKKRKV





pNMG-476 amino acid sequence (evolution #3 hetero dimer, wt TadA + TadA evo 


#3 mutations): ecTadA (wild-type)-(SGGS)2-XTEN-(SGGS)2-ecTadA


(L84F_A106V_D108N_H123Y_D147Y_E155V_I156F)-(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS


(SEQ ID NO: 693)




MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV








MCAGAMIHSRIGRVVFGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGGSS







GSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQG







GLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLSYFFRMRRQ







VFKAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIK







KNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKY







PTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSR







RLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRV







NTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNRE







DLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDK







GASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKI







ECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG







RLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELV







KVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDY







DVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVET







RQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGD







YKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEV







QTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYK







EVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEF







SKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQ







LGGDSGGSPKKKRKV






pNMG-477 amino acid sequence: ecTadA(wild-type)-(SGGS)2-XTEN-(SGGS)2-



ecTadA(H36L_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N)-



(SGGS)2-XTEN-(SGGS)2 nCas9 SGGSNLS


(SEQ ID NO: 694)




MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV








MCAGAMIHSRIGRVVFGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGGSS







GSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVLNNRVIGEGWNRPIGLHDPTAHAEIMALRQG







GLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLCYFFRMRRQ







VFNAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIK







KNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKY







PTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSR







RLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRV







NTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNRE







DLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDK







GASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKI







ECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG







RLSRKLINTGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDEL







VKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSD







YDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVE







TRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYG







DYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTE







VQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGY







KEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISE







FSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLS







QLGGDSGGSPKKKRKV






pNMG-558 amino acid sequence: ecTadA(wild-type)-32a.a. linker-



ecTadA(H36L_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N)-




24a.a. linker_nCas9_SGGS_NLS



(SEQ ID NO: 695)




MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV








MCAGAMIHSRIGRVVFGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTD
SGGSSGGSS







GSETPGTSESATPESSGGSSGGS
SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVLNNRVIGEGWNRPIGLHDPTAHAEIMALRQG







GLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLCYFFRMRRQ







VFNAQKKAQSSTD
SGGSSGGSSGSETPGTSESATPES
DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALL







FDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRK







KLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQ







LPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAP







LSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRT







FDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFI







ERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVET







SGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLIN







GIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKP







ENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQ







SFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQnKHVAQ







ILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKM







IAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES







ILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIIVIERSSFEKNPIDFLEAKGYKEVKKDLI







IKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILA







DANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGG






SPKKKRKV





pNMG-576 amino acid sequence: ecTadA(wild-type)-(SGGS)2-XTEN-(SGGS)2-



ecTadA(H36L_P48S_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N)-



(SGGS)2-XTEN-(SGGS)2_nCas9_GGS_NLS


(SEQ ID NO: 696)




MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV








MCAGAMIHSRIGRVVFGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGGSS







GSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVLNNRVIGEGWNRSIGLHDPTAHAEIMALRQG







GLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLCYFFRMRRQ







VFNAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIK







KNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKY







PTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSR







RLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRV







NTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNRE







DLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDK







GASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKI







ECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG







RLSRKLINTGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDEL







VKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSD







YDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVE







TRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYG







DYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTE







VQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGY







KEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISE







FSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLS







QLGGDSGGSPKKKRKV






pNMG-577 amino acid sequence: ecTadA(wild-type)-(SGGS)2-XTEN-(SGGS)2-ecTadA


(H36L_P48S_R51L_L84F_A106V_D108N_H123Y_S146C_A142N_D147Y_E155V_I156F_K157N)-


(SGGS)2-XTEN-(SGGS)2_nCas9_GGS_NLS


(SEQ ID NO: 697)




MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV








MCAGAMIHSRIGRVVFGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGGSS







GSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVLNNRVIGEGWNRSIGLHDPTAHAEIMALRQG







GLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECNALLCYFFRMRRQ







VFNAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIK







KNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKY







PTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSR







RLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRV







NTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNRE







DLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDK







GASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKI







ECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG







RLSRKLINTGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDEL







VKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSD







YDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVE







TRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYG







DYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTE







VQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGY







KEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISE







FSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLS







QLGGDSGGSPKKKRKV






pNMG-586 amino acid sequence: ecTadA(wild-type)-(SGGS)2-XTEN-(SGGS)2-



ecTadA(H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N)-



(SGGS)2-XTEN-(SGGS)2_nCas9_GGS_NLS


(SEQ ID NO: 698)




MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV








MCAGAMIHSRIGRVVFGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGGSS







GSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVLNNRVIGEGWNRAIGLHDPTAHAEIMALRQG







GLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLCYFFRMRRQ







VFNAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIK







KNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKY







PTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSR







RLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRV







NTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNRE







DLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDK







GASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKI







ECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG







RLSRKLINTGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDEL







VKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSD







YDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVE







TRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYG







DYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTE







VQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGY







KEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISE







FSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLS







QLGGDSGGSPKKKRKV






pNMG-5 88 amino acid sequence: ecTadA(wild-type)-(SGGS)2-XTEN-(SGGS)2-ecTadA


(H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_A142N_D147Y_E155V_I156F_K157N)-


(SGGS)2-XTEN-(SGGS)2_nCas9_GGS_NLS


(SEQ ID NO: 699)




MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV








MCAGAMIHSRIGRVVFGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGGSS







GSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVLNNRVIGEGWNRAIGLHDPTAHAEIMALRQG







GLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECNALLCYFFRMRRQ







VFNAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIK







KNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKY







PTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSR







RLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRV







NTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNRE







DLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDK







GASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKI







ECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG







RLSRKLINTGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDEL







VKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSD







YDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVE







TRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYG







DYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTE







VQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGY







KEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISE







FSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLS







QLGGDSGGSPKKKRKV






pNMG-620 amino acid sequence: ecTadA(wild-type)-(SGGS)2-XTEN-(SGGS)2-ecTadA


(W23R_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_R152P_E155V_I156F_K157N)-


(SGGS)2-XTEN-(SGGS)2_nCas9_GGS_NLS


(SEQ ID NO: 700)




MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV








MCAGAMIHSRIGRVVFGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGGSS







GSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRARDEREVPVGAVLVLNNRVIGEGWNRAIGLHDPTAHAEIMALRQG







GLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLCYFFRMPRQ







VFNAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIK







KNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKY







PTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSR







RLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRV







NTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNRE







DLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDK







GASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKI







ECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG







RLSRKLINIGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDEL







VKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSD







YDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVE







TRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYG







DYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTE







VQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGY







KEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISE







FSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLS







QLGGDSGGSPKKKRKV






pNMG-617 amino acid sequence: ecTadA(wild-type)-(SGGS)2-XTEN-(SGGS)2-ecTadA


(W23L_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_A142A_S146C_D147Y_E155V_I156F_K157N)-


(SGGS)2-XTEN-(SGGS)2_nCas9_GGS_NLS


(SEQ ID NO: 701)




MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV








MCAGAMIHSRIGRVVFGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGGSS







GSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRALDEREVPVGAVLVLNNRVIGEGWNRAIGLHDPTAHAEIMALRQG







GLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECNALLCYFFRMRRQ







VFNAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIK







KNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKY







PTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSR







RLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRV







NTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNRE







DLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDK







GASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKI







ECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG







RLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELV







KVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDY







DVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVET







RQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGD







YKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEV







QTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYK







EVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEF







SKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQ







LGGDSGGSPKKKRKV






pNMG-618 amino acid sequence: ecTadA(wild-type)-(SGGS)2-XTEN-(SGGS )2-ecTadA


(W23L_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_A142A_S146C_D147Y_R152P_E155V_I156F_K157N)-


(SGGS)2-XTEN-(SGGS)2_nCas9_GGS_NLS


(SEQ ID NO: 702)




MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV








MCAGAMIHSRIGRVVFGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGGSS







GSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRALDEREVPVGAVLVLNNRVIGEGWNRAIGLHDPTAHAEIMALRQG







GLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECNALLCYFFRMPRQ







VFNAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIK







KNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKY







PTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSR







RLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRV







NTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNRE







DLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDK







GASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKI







ECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG







RLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELV







KVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDY







DVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVET







RQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGD







YKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEV







QTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGYK







EVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEF







SKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQ







LGGDSGGSPKKKRKV






pNMG-620 amino acid sequence: ecTadA(wild-type)-(SGGS)2-XTEN-(SGGS)2-ecTadA


(W23R_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_R152P_E155V_I156F_K157N)-


(SGGS)2-XTEN-(SGGS)2_nCas9_GGS_NLS


(SEQ ID NO: 703)




MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV








MCAGAMIHSRIGRVVFGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGGSS







GSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRARDEREVPVGAVLVLNNRVIGEGWNRAIGLHDPTAHAEIMALRQG







GLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLCYFFRMPRQ







VFNAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESSGGSSGGSDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIK







KNLIGALLFDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKY







PTIYHLRKKLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSR







RLENLIAQLPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRV







NTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNRE







DLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDK







GASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKI







ECFDSVEISGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWG







RLSRKLINTGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDEL







VKVMGRHKPENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSD







YDVDHIVPQSFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVE







TRQITKHVAQILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYG







DYKVYDVRKMIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTE







VQTGGFSKESILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIMERSSFEKNPIDFLEAKGY







KEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISE







FSKRVILADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLS







QLGGDSGGSPKKKRKV






pNMG-621 amino acid sequence: ecTadA(wild-type)-32a.a. linker-ecTadA


(H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_R152P_E155V_I156F_K157N)-



24a.a. linker_nCas9_GGS_NLS



(SEQ ID NO: 704)



MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV






MCAGAMIHSRIGRVVFGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGGSS





GSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVLNNRVIGEGWNRAIGLHDPTAHAEIMALRQG





GLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLCYFFRMPRQ





VFNAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALL






FDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRK







KLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQ







LPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAP







LSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRT







FDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFI







ERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVET







SGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLIN







GIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKP







ENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQ







SFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVA







QILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRK







MIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKE







SILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIIVIERSSFEKNPIDFLEAKGYKEVKKDL







IIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVIL







ADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSG






GSPKKKRKV





pNMG-622 amino acid sequence: ecTadA(wild-type)-32a.a. linker-ecTadA


(H36L_P48A_R51L_L84F_A106V_D108N_H123Y_A142N_S146C_D147Y_R152P_E155V_I156F_K157N)-



24a.a. linker_nCas9_GGS_NLS



(SEQ ID NO: 705)




MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV








MCAGAMIHSRIGRVVFGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTD
SGGSSGGSS







GSETPGTSESATPESSGGSSGGS
SEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVLNNRVIGEGWNRAIGLHDPTAHAEIMALRQG







GLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECNALLCYFFRMPRQ







VFNAQKKAQSSTD
SGGSSGGSSGSETPGTSESATPES
DKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALL







FDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRK







KLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQ







LPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAP







LSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRT







FDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFI







ERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVET







SGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLIN







GIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKP







ENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQ







SFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQnKHVAQ







ILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRKM







IAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKES







ILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIIVIERSSFEKNPIDFLEAKGYKEVKKDLI







IKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILA







DANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSGG






SPKKKRKV





pNMG-623 amino acid sequence: ecTadA(wild-type)-32a.a. linker-ecTadA


(W23L_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_R152P_E155V_I156F_K157N)-



24a.a. linker_nCas9_GGS_NLS



(SEQ ID NO: 706)




MSEVEFSHEYWMRHALTLAKRAWDEREVPVGAVLVHNNRVIGEGWNRPIGRHDPTAHAEIMALRQGGLVMQNYRLIDATLYVTLEPCV








MCAGAMIHSRIGRVVFGARDAKTGAAGSLMDVLHHPGMNHRVEITEGILADECAALLSDFFRMRRQEIKAQKKAQSSTDSGGSSGGSS






GSETPGTSESATPESSGGSSGGSSEVEFSHEYWMRHALTLAKRALDEREVPVGAVLVLNNRVIGEGWNRAIGLHDPTAHAEIMALRQG






GLVMQNYRLIDATLYVTFEPCVMCAGAMIHSRIGRVVFGVRNAKTGAAGSLMDVLHYPGMNHRVEITEGILADECAALLCYFFRMPRQ







VFNAQKKAQSSTDSGGSSGGSSGSETPGTSESATPESDKKYSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALL







FDSGETAEATRLKRTARRRYTRRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRK







KLVDSTDKADLRLIYLALAHMIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQ







LPGEKKNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAP







LSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKMDGTEELLVKLNREDLLRKQRT







FDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEETITPWNFEEVVDKGASAQSFI







ERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDLLFKTNRKVTVKQLKEDYFKKIECFDSVET







SGVEDRFNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFEDREMIEERLKTYAHLFDDKVMKQLKRRRYTGWGRLSRKLIN







GIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKEDIQKAQVSGQGDSLHEHIANLAGSPAIKKGILQTVKVVDELVKVMGRHKP







ENIVIEMARENQTTQKGQKNSRERMKRIEEGIKELGSQILKEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSDYDVDHIVPQ







SFLKDDSIDNKVLTRSDKNRGKSDNVPSEEVVKKMKNYWRQLLNAKLITQRKFDNLTKAERGGLSELDKAGFIKRQLVETRQITKHVA







QILDSRMNTKYDENDKLIREVKVITLKSKLVSDFRKDFQFYKVREINNYHHAHDAYLNAVVGTALIKKYPKLESEFVYGDYKVYDVRK







MIAKSEQEIGKATAKYFFYSNIMNFFKTEITLANGEIRKRPLIETNGETGEIVWDKGRDFATVRKVLSMPQVNIVKKTEVQTGGFSKE







SILPKRNSDKLIARKKDWDPKKYGGFDSPTVAYSVLVVAKVEKGKSKKLKSVKELLGITIIVIERSSFEKNPIDFLEAKGYKEVKKDL







IIKLPKYSLFELENGRKRMLASAGELQKGNELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVIL







ADANLDKVLSAYNKHRDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSITGLYETRIDLSQLGGDSG






GSPKKKRKV






In some embodiments, the fusion protein comprises an amino acid sequence that is at least 60%, at least 65%, at least 70%, at least 75%, at least 80%, at least 85%, at least 90%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or at least 99.5% identical to any one of the amino acid sequences set forth in any one of SEQ ID NOs: 11-28, 387, 388, 440, 691-706, or to any of the fusion proteins provided herein. In some embodiments, the fusion protein comprises an amino acid sequence that has 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 21, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, or more mutations compared to any one of the amino acid sequences set forth in SEQ ID NOs: 11-28, 387, 388, 440, 691-706, or any of the fusion proteins provided herein. In some embodiments, the fusion protein comprises an amino acid sequence that has at least 5, at least 10, at least 15, at least 20, at least 25, at least 30, at least 35, at least 40, at least 45, at least 50, at least 60, at least 70, at least 80, at least 90, at least 100, at least 110, at least 120, at least 130, at least 140, at least 150, at least 160, at least 170, at least 200, at least 300, at least 400, at least 500, at least 600, at least 700, at least 800, at least 900, at least 1000, at least 1100, at least 1200, at least 1300, at least 1400, at least 1500, at least 1600, at least 1700, at least 1750, or at least 1800 identical contiguous amino acid residues as compared to any one of the amino acid sequences set forth in SEQ ID NOs: 11-28, 387, 388, 440, 691-706, or any of the fusion proteins provided herein.


Nucleic Acid Programmable DNA Binding Protein (napDNAbp) Complexes with Guide Nucleic Acids


Some aspects of this disclosure provide complexes comprising any of the fusion proteins provided herein, and a guide nucleic acid bound to napDNAbp of the fusion protein. Some aspects of this disclosure provide complexes comprising any of the fusion proteins provided herein, and a guide RNA bound to a Cas9 domain (e.g., a dCas9, a nuclease active Cas9, or a Cas9 nickase) of fusion protein.


In some embodiments, the guide nucleic acid (e.g., guide RNA) is from 15-100 nucleotides long and comprises a sequence of at least 10 contiguous nucleotides that is complementary to a target sequence. In some embodiments, the guide RNA is 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50 nucleotides long. In some embodiments, the guide RNA comprises a sequence of 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, or 40 contiguous nucleotides that is complementary to a target sequence. In some embodiments, the target sequence is a DNA sequence. In some embodiments, the target sequence is an RNA sequence. In some embodiments, the target sequence is a sequence in the genome of a mammal. In some embodiments, the target sequence is a sequence in the genome of a human. In some embodiments, the 3′ end of the target sequence is immediately adjacent to a canonical PAM sequence (NGG). In some embodiments, the guide nucleic acid (e.g., guide RNA) is complementary to a sequence associated with a disease or disorder. In some embodiments, the guide nucleic acid (e.g., guide RNA) is complementary to a sequence associated with a disease or disorder having a mutation in a gene selected from the genes disclosed in any one of Tables 1 and 2.


Methods of Using Fusion Proteins Comprising an Adenosine Deaminase and a Nucleic Acid Programmable DNA Binding Protein (napDNAbp) Domain


Some aspects of this disclosure provide methods of using the fusion proteins, or complexes comprising a guide nucleic acid (e.g., gRNA) and a nucleobase editor provided herein. For example, some aspects of this disclosure provide methods comprising contacting a DNA, or RNA molecule with any of the fusion proteins provided herein, and with at least one guide nucleic acid (e.g., guide RNA), wherein the guide nucleic acid, (e.g., guide RNA) is about 15-100 nucleotides long and comprises a sequence of at least 10 contiguous nucleotides that is complementary to a target sequence. In some embodiments, the 3′ end of the target sequence is immediately adjacent to a canonical PAM sequence (NGG). In some embodiments, the 3′ end of the target sequence is not immediately adjacent to a canonical PAM sequence (NGG). In some embodiments, the 3′ end of the target sequence is immediately adjacent to an AGC, GAG, TTT, GTG, or CAA sequence.


In some embodiments, the target DNA sequence comprises a sequence associated with a disease or disorder. In some embodiments, the target DNA sequence comprises a point mutation associated with a disease or disorder. In some embodiments, the activity of the fusion protein (e.g., comprising an adenosine deaminase and a Cas9 domain), or the complex, results in a correction of the point mutation. In some embodiments, the target DNA sequence comprises a G→A point mutation associated with a disease or disorder, and wherein the deamination of the mutant A base results in a sequence that is not associated with a disease or disorder. In some embodiments, the target DNA sequence encodes a protein, and the point mutation is in a codon and results in a change in the amino acid encoded by the mutant codon as compared to the wild-type codon. In some embodiments, the deamination of the mutant A results in a change of the amino acid encoded by the mutant codon. In some embodiments, the deamination of the mutant A results in the codon encoding the wild-type amino acid. In some embodiments, the contacting is in vivo in a subject. In some embodiments, the subject has or has been diagnosed with a disease or disorder. In some embodiments, the disease or disorder is phenylketonuria, von Willebrand disease (vWD), a neoplastic disease associated with a mutant PTEN or BRCA1, or Li-Fraumeni syndrome. A list of exemplary diseases and disorders that may be treated using the nucleobase editors provided herein is shown in Table 1. Table 1 includes the target gene, the mutation to be corrected, the related disease and the nucleotide sequence of the associated protospacer and PAM.









TABLE 1







List of exemplary diseases that may be treated using the nucleobase editors


provided herein. The A to be edited in the protospacer is indicated by underlining


and the PAM is indicated in bold.











Target

ATCC Cell




Gene
Mutation
Line
Disease
Protospacer and PAM





PTEN
Cy5136Tyr
HTB-12E
Cancer Predisposition
TATATGCATATTTATTACATCGG (SEQ ID NO: 85)





PTEN
Arg233Ter
HTB-13
Cancer Predisposition
CCGTCATGTGGGTCCTGAATTGG (SEQ ID NO: 86)





TP53
Glu258Lys
HTB-65
Cancer Predisposition
ACACTGAAAGACTCCAGGTCAGG (SEQ ID NO: 87)





BRCA1
Gly1738Arg
NA
Cancer Predisposition
GTCAGAAGAGATGTGGTCAATGG (SEQ ID NO: 88)





BRCA1
4097-1.G>A
NA
Cancer Predisposition 
TTTAAAGTGAAGCAGCATCTGGG (SEQ ID NO: 89);






ATTTAAAGTGAAGCAGCATCTGG (SEQ ID NO: 90)





PAH
Thr380Met
NA
Phenylketonuria
ACTCCATGACAGTGTAATTTTGG (SEQ ID NO. 91)





VWF
Ser1285Phe
NA
von Willebrand
GCCTGGAGAAGCCATCCAGCAGG (SEQ ID NO: 92)





(Hemophilia)






VWF
Arg2535Ter
NA
von Wiliebrand
CTCAGACACACTCATTGATGAGG (SEQ ID NO: 93)





(Hemophilia)






TP53
Arg175His
HCC1395
Li-Fraumenl syndrome
GAGGCACTGCCCCCACCATGAGCG (SEG ID NO: 94)









Some embodiments provide methods for using the DNA editing fusion proteins provided herein. In some embodiments, the fusion protein is used to introduce a point mutation into a nucleic acid by deaminating a target nucleobase, e.g., an A residue. In some embodiments, the deamination of the target nucleobase results in the correction of a genetic defect, e.g., in the correction of a point mutation that leads to a loss of function in a gene product. In some embodiments, the genetic defect is associated with a disease or disorder, e.g., a lysosomal storage disorder or a metabolic disease, such as, for example, type I diabetes. In some embodiments, the methods provided herein are used to introduce a deactivating point mutation into a gene or allele that encodes a gene product that is associated with a disease or disorder. For example, in some embodiments, methods are provided herein that employ a DNA editing fusion protein to introduce a deactivating point mutation into an oncogene (e.g., in the treatment of a proliferative disease). A deactivating mutation may, in some embodiments, generate a premature stop codon in a coding sequence, which results in the expression of a truncated gene product, e.g., a truncated protein lacking the function of the full-length protein.


In some embodiments, the purpose of the methods provided herein is to restore the function of a dysfunctional gene via genome editing. The nucleobase editing proteins provided herein can be validated for gene editing-based human therapeutics in vitro, e.g., by correcting a disease-associated mutation in human cell culture. It will be understood by the skilled artisan that the nucleobase editing proteins provided herein, e.g., the fusion proteins comprising a nucleic acid programmable DNA binding protein (e.g., Cas9) and an adenosine deaminase domain can be used to correct any single point G to A or C to T mutation. In the first case, deamination of the mutant A to I corrects the mutation, and in the latter case, deamination of the A that is base-paired with the mutant T, followed by a round of replication, corrects the mutation. Exemplary point mutations that can be corrected are listed in Tables 1 and 2.


The successful correction of point mutations in disease-associated genes and alleles opens up new strategies for gene correction with applications in therapeutics and basic research. Site-specific single-base modification systems like the disclosed fusions of a nucleic acid programmable DNA binding protein and an adenosine deaminase domain also have applications in “reverse” gene therapy, where certain gene functions are purposely suppressed or abolished. In these cases, site-specifically mutating residues that lead to inactivating mutations in a protein, or mutations that inhibit function of the protein can be used to abolish or inhibit protein function in vitro, ex vivo, or in vivo.


The instant disclosure provides methods for the treatment of a subject diagnosed with a disease associated with or caused by a point mutation that can be corrected by a DNA editing fusion protein provided herein. For example, in some embodiments, a method is provided that comprises administering to a subject having such a disease, e.g., a cancer associated with a point mutation as described above, an effective amount of an adenosine deaminase fusion protein that corrects the point mutation or introduces a deactivating mutation into a disease-associated gene. In some embodiments, the disease is a proliferative disease. In some embodiments, the disease is a genetic disease. In some embodiments, the disease is a neoplastic disease. In some embodiments, the disease is a metabolic disease. In some embodiments, the disease is a lysosomal storage disease. Other diseases that can be treated by correcting a point mutation or introducing a deactivating mutation into a disease-associated gene will be known to those of skill in the art, and the disclosure is not limited in this respect.


The instant disclosure provides methods for the treatment of additional diseases or disorders, e.g., diseases or disorders that are associated or caused by a point mutation that can be corrected by deaminase-mediated gene editing. Some such diseases are described herein, and additional suitable diseases that can be treated with the strategies and fusion proteins provided herein will be apparent to those of skill in the art based on the instant disclosure. Exemplary suitable diseases and disorders are listed below. It will be understood that the numbering of the specific positions or residues in the respective sequences depends on the particular protein and numbering scheme used. Numbering might be different, e.g., in precursors of a mature protein and the mature protein itself, and differences in sequences from species to species may affect numbering. One of skill in the art will be able to identify the respective residue in any homologous protein and in the respective encoding nucleic acid by methods well known in the art, e.g., by sequence alignment and determination of homologous residues. Exemplary suitable diseases and disorders include, without limitation: 2-methyl-3-hydroxybutyric aciduria; 3 beta-Hydroxysteroid dehydrogenase deficiency; 3-Methylglutaconic aciduria; 3-Oxo-5 alpha-steroid delta 4-dehydrogenase deficiency; 46, XY sex reversal, type 1, 3, and 5; 5-Oxoprolinase deficiency; 6-pyruvoyl-tetrahydropterin synthase deficiency; Aarskog syndrome; Aase syndrome; Achondrogenesis type 2; Achromatopsia 2 and 7; Acquired long QT syndrome; Acrocallosal syndrome, Schinzel type; Acrocapitofemoral dysplasia; Acrodysostosis 2, with or without hormone resistance; Acroerythrokeratoderma; Acromicric dysplasia; Acth-independent macronodular adrenal hyperplasia 2; Activated PI3K-delta syndrome; Acute intermittent porphyria; deficiency of Acyl-CoA dehydrogenase family, member 9; Adams-Oliver syndrome 5 and 6; Adenine phosphoribosyltransferase deficiency; Adenylate kinase deficiency; hemolytic anemia due to Adenylosuccinate lyase deficiency; Adolescent nephronophthisis; Renal-hepatic-pancreatic dysplasia; Meckel syndrome type 7; Adrenoleukodystrophy; Adult junctional epidermolysis bullosa; Epidermolysis bullosa, junctional, localisata variant; Adult neuronal ceroid lipofuscinosis; Adult neuronal ceroid lipofuscinosis; Adult onset ataxia with oculomotor apraxia; ADULT syndrome; Afibrinogenemia and congenital Afibrinogenemia; autosomal recessive Agammaglobulinemia 2; Age-related macular degeneration 3, 6, 11, and 12; Aicardi Goutieres syndromes 1, 4, and 5; Chilbain lupus 1; Alagille syndromes 1 and 2; Alexander disease; Alkaptonuria; Allan-Herndon-Dudley syndrome; Alopecia universalis congenital; Alpers encephalopathy; Alpha-1-antitrypsin deficiency; autosomal dominant, autosomal recessive, and X-linked recessive Alport syndromes; Alzheimer disease, familial, 3, with spastic paraparesis and apraxia; Alzheimer disease, types, 1, 3, and 4; hypocalcification type and hypomaturation type, IIA1 Amelogenesis imperfecta; Aminoacylase 1 deficiency; Amish infantile epilepsy syndrome; Amyloidogenic transthyretin amyloidosis; Amyloid Cardiomyopathy, Transthyretin-related; Cardiomyopathy; Amyotrophic lateral sclerosis types 1, 6, 15 (with or without frontotemporal dementia), 22 (with or without frontotemporal dementia), and 10; Frontotemporal dementia with TDP43 inclusions, TARDBP-related; Andermann syndrome; Andersen Tawil syndrome; Congenital long QT syndrome; Anemia, nonspherocytic hemolytic, due to G6PD deficiency; Angelman syndrome; Severe neonatal-onset encephalopathy with microcephaly; susceptibility to Autism, X-linked 3; Angiopathy, hereditary, with nephropathy, aneurysms, and muscle cramps; Angiotensin i-converting enzyme, benign serum increase; Aniridia, cerebellar ataxia, and mental retardation; Anonychia; Antithrombin III deficiency; Antley-Bixler syndrome with genital anomalies and disordered steroidogenesis; Aortic aneurysm, familial thoracic 4, 6, and 9; Thoracic aortic aneurysms and aortic dissections; Multisystemic smooth muscle dysfunction syndrome; Moyamoya disease 5; Aplastic anemia; Apparent mineralocorticoid excess; Arginase deficiency; Argininosuccinate lyase deficiency; Aromatase deficiency; Arrhythmogenic right ventricular cardiomyopathy types 5, 8, and 10; Primary familial hypertrophic cardiomyopathy; Arthrogryposis multiplex congenita, distal, X-linked; Arthrogryposis renal dysfunction cholestasis syndrome; Arthrogryposis, renal dysfunction, and cholestasis 2; Asparagine synthetase deficiency; Abnormality of neuronal migration; Ataxia with vitamin E deficiency; Ataxia, sensory, autosomal dominant; Ataxia-telangiectasia syndrome; Hereditary cancer-predisposing syndrome; Atransferrinemia; Atrial fibrillation, familial, 11, 12, 13, and 16; Atrial septal defects 2, 4, and 7 (with or without atrioventricular conduction defects); Atrial standstill 2; Atrioventricular septal defect 4; Atrophia bulborum hereditaria; ATR-X syndrome; Auriculocondylar syndrome 2; Autoimmune disease, multisystem, infantile-onset; Autoimmune lymphoproliferative syndrome, type 1a; Autosomal dominant hypohidrotic ectodermal dysplasia; Autosomal dominant progressive external ophthalmoplegia with mitochondrial DNA deletions 1 and 3; Autosomal dominant torsion dystonia 4; Autosomal recessive centronuclear myopathy; Autosomal recessive congenital ichthyosis 1, 2, 3, 4A, and 4B; Autosomal recessive cutis laxa type IA and 1B; Autosomal recessive hypohidrotic ectodermal dysplasia syndrome; Ectodermal dysplasia 11b; hypohidrotic/hair/tooth type, autosomal recessive; Autosomal recessive hypophosphatemic bone disease; Axenfeld-Rieger syndrome type 3; Bainbridge-Ropers syndrome; Bannayan-Riley-Ruvalcaba syndrome; PTEN hamartoma tumor syndrome; Baraitser-Winter syndromes 1 and 2; Barakat syndrome; Bardet-Biedl syndromes 1, 11, 16, and 19; Bare lymphocyte syndrome type 2, complementation group E; Bartter syndrome antenatal type 2; Bartter syndrome types 3, 3 with hypocalciuria, and 4; Basal ganglia calcification, idiopathic, 4; Beaded hair; Benign familial hematuria; Benign familial neonatal seizures 1 and 2; Seizures, benign familial neonatal, 1, and/or myokymia; Seizures, Early infantile epileptic encephalopathy 7; Benign familial neonatal-infantile seizures; Benign hereditary chorea; Benign scapuloperoneal muscular dystrophy with cardiomyopathy; Bernard-Soulier syndrome, types A1 and A2 (autosomal dominant); Bestrophinopathy, autosomal recessive; beta Thalassemia; Bethlem myopathy and Bethlem myopathy 2; Bietti crystalline corneoretinal dystrophy; Bile acid synthesis defect, congenital, 2; Biotinidase deficiency; Birk Barel mental retardation dysmorphism syndrome; Blepharophimosis, ptosis, and epicanthus inversus; Bloom syndrome; Borjeson-Forssman-Lehmann syndrome; Boucher Neuhauser syndrome; Brachydactyly types A1 and A2; Brachydactyly with hypertension; Brain small vessel disease with hemorrhage; Branched-chain ketoacid dehydrogenase kinase deficiency; Branchiootic syndromes 2 and 3; Breast cancer, early-onset; Breast-ovarian cancer, familial 1, 2, and 4; Brittle cornea syndrome 2; Brody myopathy; Bronchiectasis with or without elevated sweat chloride 3; Brown-Vialetto-Van laere syndrome and Brown-Vialetto-Van Laere syndrome 2; Brugada syndrome; Brugada syndrome 1; Ventricular fibrillation; Paroxysmal familial ventricular fibrillation; Brugada syndrome and Brugada syndrome 4; Long QT syndrome; Sudden cardiac death; Bull eye macular dystrophy; Stargardt disease 4; Cone-rod dystrophy 12; Bullous ichthyosiform erythroderma; Burn-Mckeown syndrome; Candidiasis, familial, 2, 5, 6, and 8; Carbohydrate-deficient glycoprotein syndrome type I and II; Carbonic anhydrase VA deficiency, hyperammonemia due to; Carcinoma of colon; Cardiac arrhythmia; Long QT syndrome, LQT1 subtype; Cardioencephalomyopathy, fatal infantile, due to cytochrome c oxidase deficiency; Cardiofaciocutaneous syndrome; Cardiomyopathy; Danon disease; Hypertrophic cardiomyopathy; Left ventricular noncompaction cardiomyopathy; Carnevale syndrome; Carney complex, type 1; Carnitine acylcarnitine translocase deficiency; Carnitine palmitoyltransferase I, II, II (late onset), and II (infantile) deficiency; Cataract 1, 4, autosomal dominant, autosomal dominant, multiple types, with microcornea, coppock-like, juvenile, with microcornea and glucosuria, and nuclear diffuse nonprogressive; Catecholaminergic polymorphic ventricular tachycardia; Caudal regression syndrome; Cd8 deficiency, familial; Central core disease; Centromeric instability of chromosomes 1,9 and 16 and immunodeficiency; Cerebellar ataxia infantile with progressive external ophthalmoplegi and Cerebellar ataxia, mental retardation, and dysequilibrium syndrome 2; Cerebral amyloid angiopathy, APP-related; Cerebral autosomal dominant and recessive arteriopathy with subcortical infarcts and leukoencephalopathy; Cerebral cavernous malformations 2; Cerebrooculofacioskeletal syndrome 2; Cerebro-oculo-facio-skeletal syndrome; Cerebroretinal microangiopathy with calcifications and cysts; Ceroid lipofuscinosis neuronal 2, 6, 7, and 10; Ch†xc3†xa9diak-Higashi syndrome, Chediak-Higashi syndrome, adult type; Charcot-Marie-Tooth disease types 1B, 2B2, 2C, 2F, 2I, 2U (axonal), 1C (demyelinating), dominant intermediate C, recessive intermediate A, 2A2, 4C, 4D, 4H, IF, IVF, and X; Scapuloperoneal spinal muscular atrophy; Distal spinal muscular atrophy, congenital nonprogressive; Spinal muscular atrophy, distal, autosomal recessive, 5; CHARGE association; Childhood hypophosphatasia; Adult hypophosphatasia; Cholecystitis; Progressive familial intrahepatic cholestasis 3; Cholestasis, intrahepatic, of pregnancy 3; Cholestanol storage disease; Cholesterol monooxygenase (side-chain cleaving) deficiency; Chondrodysplasia Blomstrand type; Chondrodysplasia punctata 1, X-linked recessive and 2 X-linked dominant; CHOPS syndrome; Chronic granulomatous disease, autosomal recessive cytochrome b-positive, types 1 and 2; Chudley-McCullough syndrome; Ciliary dyskinesia, primary, 7, 11, 15, 20 and 22; Citrullinemia type I; Citrullinemia type I and II; Cleidocranial dysostosis; C-like syndrome; Cockayne syndrome type A; Coenzyme Q10 deficiency, primary 1, 4, and 7; Coffin Siris/Intellectual Disability; Coffin-Lowry syndrome; Cohen syndrome; Cold-induced sweating syndrome 1; COLE-CARPENTER SYNDROME 2; Combined cellular and humoral immune defects with granulomas; Combined d-2- and 1-2-hydroxyglutaric aciduria; Combined malonic and methylmalonic aciduria; Combined oxidative phosphorylation deficiencies 1, 3, 4, 12, 15, and 25; Combined partial and complete 17-alpha-hydroxylase/17,20-lyase deficiency; Common variable immunodeficiency 9; Complement component 4, partial deficiency of, due to dysfunctional cl inhibitor; Complement factor B deficiency; Cone monochromatism; Cone-rod dystrophy 2 and 6; Cone-rod dystrophy amelogenesis imperfecta; Congenital adrenal hyperplasia and Congenital adrenal hypoplasia, X-linked; Congenital amegakaryocytic thrombocytopenia; Congenital aniridia; Congenital central hypoventilation; Hirschsprung disease 3; Congenital contractural arachnodactyly; Congenital contractures of the limbs and face, hypotonia, and developmental delay; Congenital disorder of glycosylation types 1B, 1D, 1G, 1H, 1J, 1K, 1N, 1P, 2C, 2J, 2K, IIm; Congenital dyserythropoietic anemia, type I and II; Congenital ectodermal dysplasia of face; Congenital erythropoietic porphyria; Congenital generalized lipodystrophy type 2; Congenital heart disease, multiple types, 2; Congenital heart disease; Interrupted aortic arch; Congenital lipomatous overgrowth, vascular malformations, and epidermal nevi; Non-small cell lung cancer; Neoplasm of ovary; Cardiac conduction defect, nonspecific; Congenital microvillous atrophy; Congenital muscular dystrophy; Congenital muscular dystrophy due to partial LAMA2 deficiency; Congenital muscular dystrophy-dystroglycanopathy with brain and eye anomalies, types A2, A7, A8, A11, and A14; Congenital muscular dystrophy-dystroglycanopathy with mental retardation, types B2, B3, B5, and B15; Congenital muscular dystrophy-dystroglycanopathy without mental retardation, type B5; Congenital muscular hypertrophy-cerebral syndrome; Congenital myasthenic syndrome, acetazolamide-responsive; Congenital myopathy with fiber type disproportion; Congenital ocular coloboma; Congenital stationary night blindness, type 1A, 1B, 1C, 1E, 1F, and 2A; Coproporphyria; Cornea plana 2; Corneal dystrophy, Fuchs endothelial, 4; Corneal endothelial dystrophy type 2; Corneal fragility keratoglobus, blue sclerae and joint hypermobility; Cornelia de Lange syndromes 1 and 5; Coronary artery disease, autosomal dominant 2; Coronary heart disease; Hyperalphalipoproteinemia 2; Cortical dysplasia, complex, with other brain malformations 5 and 6; Cortical malformations, occipital; Corticosteroid-binding globulin deficiency; Corticosterone methyloxidase type 2 deficiency; Costello syndrome; Cowden syndrome 1; Coxa plana; Craniodiaphyseal dysplasia, autosomal dominant; Craniosynostosis 1 and 4; Craniosynostosis and dental anomalies; Creatine deficiency, X-linked; Crouzon syndrome; Cryptophthalmos syndrome; Cryptorchidism, unilateral or bilateral; Cushing symphalangism; Cutaneous malignant melanoma 1; Cutis laxa with osteodystrophy and with severe pulmonary, gastrointestinal, and urinary abnormalities; Cyanosis, transient neonatal and atypical nephropathic; Cystic fibrosis; Cystinuria; Cytochrome c oxidase i deficiency; Cytochrome-c oxidase deficiency; D-2-hydroxyglutaric aciduria 2; Darier disease, segmental; Deafness with labyrinthine aplasia microtia and microdontia (LAMM); Deafness, autosomal dominant 3a, 4, 12, 13, 15, autosomal dominant nonsyndromic sensorineural 17, 20, and 65; Deafness, autosomal recessive 1A, 2, 3, 6, 8, 9, 12, 15, 16, 18b, 22, 28, 31, 44, 49, 63, 77, 86, and 89; Deafness, cochlear, with myopia and intellectual impairment, without vestibular involvement, autosomal dominant, X-linked 2; Deficiency of 2-methylbutyryl-CoA dehydrogenase; Deficiency of 3-hydroxyacyl-CoA dehydrogenase; Deficiency of alpha-mannosidase; Deficiency of aromatic-L-amino-acid decarboxylase; Deficiency of bisphosphoglycerate mutase; Deficiency of butyryl-CoA dehydrogenase; Deficiency of ferroxidase; Deficiency of galactokinase; Deficiency of guanidinoacetate methyltransferase; Deficiency of hyaluronoglucosaminidase; Deficiency of ribose-5-phosphate isomerase; Deficiency of steroid 11-beta-monooxygenase; Deficiency of UDPglucose-hexose-1-phosphate uridylyltransferase; Deficiency of xanthine oxidase; Dejerine-Sottas disease; Charcot-Marie-Tooth disease, types ID and IVF; Dejerine-Sottas syndrome, autosomal dominant; Dendritic cell, monocyte, B lymphocyte, and natural killer lymphocyte deficiency; Desbuquois dysplasia 2; Desbuquois syndrome; DFNA 2 Nonsyndromic Hearing Loss; Diabetes mellitus and insipidus with optic atrophy and deafness; Diabetes mellitus, type 2, and insulin-dependent, 20; Diamond-Blackfan anemia 1, 5, 8, and 10; Diarrhea 3 (secretory sodium, congenital, syndromic) and 5 (with tufting enteropathy, congenital); Dicarboxylic aminoaciduria; Diffuse palmoplantar keratoderma, Bothnian type; Digitorenocerebral syndrome; Dihydropteridine reductase deficiency; Dilated cardiomyopathy 1A, 1AA, 1C, 1G, 1BB, 1DD, 1FF, 1HH, 11, 1KK, 1N, 1S, 1Y, and 3B; Left ventricular noncompaction 3; Disordered steroidogenesis due to cytochrome p450 oxidoreductase deficiency; Distal arthrogryposis type 2B; Distal hereditary motor neuronopathy type 2B; Distal myopathy Markesbery-Griggs type; Distal spinal muscular atrophy, X-linked 3; Distichiasis-lymphedema syndrome; Dominant dystrophic epidermolysis bullosa with absence of skin; Dominant hereditary optic atrophy; Donnai Barrow syndrome; Dopamine beta hydroxylase deficiency; Dopamine receptor d2, reduced brain density of; Dowling-degos disease 4; Doyne honeycomb retinal dystrophy; Malattia leventinese; Duane syndrome type 2; Dubin-Johnson syndrome; Duchenne muscular dystrophy; Becker muscular dystrophy; Dysfibrinogenemia; Dyskeratosis congenita autosomal dominant and autosomal dominant, 3; Dyskeratosis congenita, autosomal recessive, 1, 3, 4, and 5; Dyskeratosis congenita X-linked; Dyskinesia, familial, with facial myokymia; Dysplasminogenemia; Dystonia 2 (torsion, autosomal recessive), 3 (torsion, X-linked), 5 (Dopa-responsive type), 10, 12, 16, 25, 26 (Myoclonic); Seizures, benign familial infantile, 2; Early infantile epileptic encephalopathy 2, 4, 7, 9, 10, 11, 13, and 14; Atypical Rett syndrome; Early T cell progenitor acute lymphoblastic leukemia; Ectodermal dysplasia skin fragility syndrome; Ectodermal dysplasia-syndactyly syndrome 1; Ectopia lentis, isolated autosomal recessive and dominant; Ectrodactyly, ectodermal dysplasia, and cleft lip/palate syndrome 3; Ehlers-Danlos syndrome type 7 (autosomal recessive), classic type, type 2 (progeroid), hydroxylysine-deficient, type 4, type 4 variant, and due to tenascin-X deficiency; Eichsfeld type congenital muscular dystrophy; Endocrine-cerebroosteodysplasia; Enhanced s-cone syndrome; Enlarged vestibular aqueduct syndrome; Enterokinase deficiency; Epidermodysplasia verruciformis; Epidermolysa bullosa simplex and limb girdle muscular dystrophy, simplex with mottled pigmentation, simplex with pyloric atresia, simplex, autosomal recessive, and with pyloric atresia; Epidermolytic palmoplantar keratoderma; Familial febrile seizures 8; Epilepsy, childhood absence 2, 12 (idiopathic generalized, susceptibility to) 5 (nocturnal frontal lobe), nocturnal frontal lobe type 1, partial, with variable foci, progressive myoclonic 3, and X-linked, with variable learning disabilities and behavior disorders; Epileptic encephalopathy, childhood-onset, early infantile, 1, 19, 23, 25, 30, and 32; Epiphyseal dysplasia, multiple, with myopia and conductive deafness; Episodic ataxia type 2; Episodic pain syndrome, familial, 3; Epstein syndrome; Fechtner syndrome; Erythropoietic protoporphyria; Estrogen resistance; Exudative vitreoretinopathy 6; Fabry disease and Fabry disease, cardiac variant; Factor H, VII, X, v and factor viii, combined deficiency of 2, xiii, a subunit, deficiency; Familial adenomatous polyposis 1 and 3; Familial amyloid nephropathy with urticaria and deafness; Familial cold urticarial; Familial aplasia of the vermis; Familial benign pemphigus; Familial cancer of breast; Breast cancer, susceptibility to; Osteosarcoma; Pancreatic cancer 3; Familial cardiomyopathy; Familial cold autoinflammatory syndrome 2; Familial colorectal cancer; Familial exudative vitreoretinopathy, X-linked; Familial hemiplegic migraine types 1 and 2; Familial hypercholesterolemia; Familial hypertrophic cardiomyopathy 1, 2, 3, 4, 7, 10, 23 and 24; Familial hypokalemia-hypomagnesemia; Familial hypoplastic, glomerulocystic kidney; Familial infantile myasthenia; Familial juvenile gout; Familial Mediterranean fever and Familial mediterranean fever, autosomal dominant; Familial porencephaly; Familial porphyria cutanea tarda; Familial pulmonary capillary hemangiomatosis; Familial renal glucosuria; Familial renal hypouricemia; Familial restrictive cardiomyopathy 1; Familial type 1 and 3 hyperlipoproteinemia; Fanconi anemia, complementation group E, I, N, and O; Fanconi-Bickel syndrome; Favism, susceptibility to; Febrile seizures, familial, 11; Feingold syndrome 1; Fetal hemoglobin quantitative trait locus 1; FG syndrome and FG syndrome 4; Fibrosis of extraocular muscles, congenital, 1, 2, 3a (with or without extraocular involvement), 3b; Fish-eye disease; Fleck corneal dystrophy; Floating-Harbor syndrome; Focal epilepsy with speech disorder with or without mental retardation; Focal segmental glomerulosclerosis 5; Forebrain defects; Frank Ter Haar syndrome; Borrone Di Rocco Crovato syndrome; Frasier syndrome; Wilms tumor 1; Freeman-Sheldon syndrome; Frontometaphyseal dysplasia land 3; Frontotemporal dementia; Frontotemporal dementia and/or amyotrophic lateral sclerosis 3 and 4; Frontotemporal Dementia Chromosome 3-Linked and Frontotemporal dementia ubiquitin-positive; Fructose-biphosphatase deficiency; Fuhrmann syndrome; Gamma-aminobutyric acid transaminase deficiency; Gamstorp-Wohlfart syndrome; Gaucher disease type 1 and Subacute neuronopathic; Gaze palsy, familial horizontal, with progressive scoliosis; Generalized dominant dystrophic epidermolysis bullosa; Generalized epilepsy with febrile seizures plus 3, type 1, type 2; Epileptic encephalopathy Lennox-Gastaut type; Giant axonal neuropathy; Glanzmann thrombasthenia; Glaucoma 1, open angle, e, F, and G; Glaucoma 3, primary congenital, d; Glaucoma, congenital and Glaucoma, congenital, Coloboma; Glaucoma, primary open angle, juvenile-onset; Glioma susceptibility 1; Glucose transporter type 1 deficiency syndrome; Glucose-6-phosphate transport defect; GLUT1 deficiency syndrome 2; Epilepsy, idiopathic generalized, susceptibility to, 12; Glutamate formiminotransferase deficiency; Glutaric acidemia IIA and IIB; Glutaric aciduria, type 1; Gluthathione synthetase deficiency; Glycogen storage disease 0 (muscle), II (adult form), IXa2, IXc, type 1A; type II, type IV, IV (combined hepatic and myopathic), type V, and type VI; Goldmann-Favre syndrome; Gordon syndrome; Gorlin syndrome; Holoprosencephaly sequence; Holoprosencephaly 7; Granulomatous disease, chronic, X-linked, variant; Granulosa cell tumor of the ovary; Gray platelet syndrome; Griscelli syndrome type 3; Groenouw corneal dystrophy type I; Growth and mental retardation, mandibulofacial dysostosis, microcephaly, and cleft palate; Growth hormone deficiency with pituitary anomalies; Growth hormone insensitivity with immunodeficiency; GTP cyclohydrolase I deficiency; Hajdu-Cheney syndrome; Hand foot uterus syndrome; Hearing impairment; Hemangioma, capillary infantile; Hematologic neoplasm; Hemochromatosis type 1, 2B, and 3; Microvascular complications of diabetes 7; Transferrin serum level quantitative trait locus 2; Hemoglobin H disease, nondeletional; Hemolytic anemia, nonspherocytic, due to glucose phosphate isomerase deficiency; Hemophagocytic lymphohistiocytosis, familial, 2; Hemophagocytic lymphohistiocytosis, familial, 3; Heparin cofactor II deficiency; Hereditary acrodermatitis enteropathica; Hereditary breast and ovarian cancer syndrome; Ataxia-telangiectasia-like disorder; Hereditary diffuse gastric cancer; Hereditary diffuse leukoencephalopathy with spheroids; Hereditary factors II, IX, VIII deficiency disease; Hereditary hemorrhagic telangiectasia type 2; Hereditary insensitivity to pain with anhidrosis; Hereditary lymphedema type I; Hereditary motor and sensory neuropathy with optic atrophy; Hereditary myopathy with early respiratory failure; Hereditary neuralgic amyotrophy; Hereditary Nonpolyposis Colorectal Neoplasms; Lynch syndrome I and II; Hereditary pancreatitis; Pancreatitis, chronic, susceptibility to; Hereditary sensory and autonomic neuropathy type IIB amd IIA; Hereditary sideroblastic anemia; Hermansky-Pudlak syndrome 1, 3, 4, and 6; Heterotaxy, visceral, 2, 4, and 6, autosomal; Heterotaxy, visceral, X-linked; Heterotopia; Histiocytic medullary reticulosis; Histiocytosis-lymphadenopathy plus syndrome; Holocarboxylase synthetase deficiency; Holoprosencephaly 2, 3, 7, and 9; Holt-Oram syndrome; Homocysteinemia due to MTHFR deficiency, CBS deficiency, and Homocystinuria, pyridoxine-responsive; Homocystinuria-Megaloblastic anemia due to defect in cobalamin metabolism, cblE complementation type; Howel-Evans syndrome; Hurler syndrome; Hutchinson-Gilford syndrome; Hydrocephalus; Hyperammonemia, type III; Hypercholesterolaemia and Hypercholesterolemia, autosomal recessive; Hyperekplexia 2 and Hyperekplexia hereditary; Hyperferritinemia cataract syndrome; Hyperglycinuria; Hyperimmunoglobulin D with periodic fever; Mevalonic aciduria; Hyperimmunoglobulin E syndrome; Hyperinsulinemic hypoglycemia familial 3, 4, and 5; Hyperinsulinism-hyperammonemia syndrome; Hyperlysinemia; Hypermanganesemia with dystonia, polycythemia and cirrhosis; Hyperornithinemia-hyperammonemia-homocitrullinuria syndrome; Hyperparathyroidism 1 and 2; Hyperparathyroidism, neonatal severe; Hyperphenylalaninemia, bh4-deficient, a, due to partial pts deficiency, BH4-deficient, D, and non-pku; Hyperphosphatasia with mental retardation syndrome 2, 3, and 4; Hypertrichotic osteochondrodysplasia; Hypobetalipoproteinemia, familial, associated with apob32; Hypocalcemia, autosomal dominant 1; Hypocalciuric hypercalcemia, familial, types 1 and 3; Hypochondrogenesis; Hypochromic microcytic anemia with iron overload; Hypoglycemia with deficiency of glycogen synthetase in the liver; Hypogonadotropic hypogonadism 11 with or without anosmia; Hypohidrotic ectodermal dysplasia with immune deficiency; Hypohidrotic X-linked ectodermal dysplasia; Hypokalemic periodic paralysis 1 and 2; Hypomagnesemia 1, intestinal; Hypomagnesemia, seizures, and mental retardation; Hypomyelinating leukodystrophy 7; Hypoplastic left heart syndrome; Atrioventricular septal defect and common atrioventricular junction; Hypospadias 1 and 2, X-linked; Hypothyroidism, congenital, nongoitrous, 1; Hypotrichosis 8 and 12; Hypotrichosis-lymphedema-telangiectasia syndrome; I blood group system; Ichthyosis bullosa of Siemens; Ichthyosis exfoliativa; Ichthyosis prematurity syndrome; Idiopathic basal ganglia calcification 5; Idiopathic fibrosing alveolitis, chronic form; Dyskeratosis congenita, autosomal dominant, 2 and 5; Idiopathic hypercalcemia of infancy; Immune dysfunction with T-cell inactivation due to calcium entry defect 2; Immunodeficiency 15, 16, 19, 30, 31C, 38, 40, 8, due to defect in cd3-zeta, with hyper IgM type 1 and 2, and X-Linked, with magnesium defect, Epstein-Barr virus infection, and neoplasia; Immunodeficiency-centromeric instability-facial anomalies syndrome 2; Inclusion body myopathy 2 and 3; Nonaka myopathy; Infantile convulsions and paroxysmal choreoathetosis, familial; Infantile cortical hyperostosis; Infantile GM1 gangliosidosis; Infantile hypophosphatasia; Infantile nephronophthisis; Infantile nystagmus, X-linked; Infantile Parkinsonism-dystonia; Infertility associated with multi-tailed spermatozoa and excessive DNA; Insulin resistance; Insulin-resistant diabetes mellitus and acanthosis nigricans; Insulin-dependent diabetes mellitus secretory diarrhea syndrome; Interstitial nephritis, karyomegalic; Intrauterine growth retardation, metaphyseal dysplasia, adrenal hypoplasia congenita, and genital anomalies; Iodotyrosyl coupling defect; IRAK4 deficiency; Iridogoniodysgenesis dominant type and type 1; Iron accumulation in brain; Ischiopatellar dysplasia; Islet cell hyperplasia; Isolated 17,20-lyase deficiency; Isolated lutropin deficiency; Isovaleryl-CoA dehydrogenase deficiency; Jankovic Rivera syndrome; Jervell and Lange-Nielsen syndrome 2; Joubert syndrome 1, 6, 7, 9/15 (digenic), 14, 16, and 17, and Orofaciodigital syndrome xiv; Junctional epidermolysis bullosa gravis of Herlitz; Juvenile GM>1<gangliosidosis; Juvenile polyposis syndrome; Juvenile polyposis/hereditary hemorrhagic telangiectasia syndrome; Juvenile retinoschisis; Kabuki make-up syndrome; Kallmann syndrome 1, 2, and 6; Delayed puberty; Kanzaki disease; Karak syndrome; Kartagener syndrome; Kenny-Caffey syndrome type 2; Keppen-Lubinsky syndrome; Keratoconus 1; Keratosis follicularis; Keratosis palmoplantaris striata 1; Kindler syndrome; L-2-hydroxyglutaric aciduria; Larsen syndrome, dominant type; Lattice corneal dystrophy Type III; Leber amaurosis; Zellweger syndrome; Peroxisome biogenesis disorders; Zellweger syndrome spectrum; Leber congenital amaurosis 11, 12, 13, 16, 4, 7, and 9; Leber optic atrophy; Aminoglycoside-induced deafness; Deafness, nonsyndromic sensorineural, mitochondrial; Left ventricular noncompaction 5; Left-right axis malformations; Leigh disease; Mitochondrial short-chain Enoyl-CoA Hydratase 1 deficiency; Leigh syndrome due to mitochondrial complex I deficiency; Leiner disease; Leri Weill dyschondrosteosis; Lethal congenital contracture syndrome 6; Leukocyte adhesion deficiency type I and III; Leukodystrophy, Hypomyelinating, 11 and 6; Leukoencephalopathy with ataxia, with Brainstem and Spinal Cord Involvement and Lactate Elevation, with vanishing white matter, and progressive, with ovarian failure; Leukonychia totalis; Lewy body dementia; Lichtenstein-Knorr Syndrome; Li-Fraumeni syndrome 1; Lig4 syndrome; Limb-girdle muscular dystrophy, type 1B, 2A, 2B, 2D, C1, C5, C9, C14; Congenital muscular dystrophy-dystroglycanopathy with brain and eye anomalies, type A14 and B14; Lipase deficiency combined; Lipid proteinosis; Lipodystrophy, familial partial, type 2 and 3; Lissencephaly 1, 2 (X-linked), 3, 6 (with microcephaly), X-linked; Subcortical laminar heterotopia, X-linked; Liver failure acute infantile; Loeys-Dietz syndrome 1, 2, 3; Long QT syndrome 1, 2, 2/9, 2/5, (digenic), 3, 5 and 5, acquired, susceptibility to; Lung cancer; Lymphedema, hereditary, id; Lymphedema, primary, with myelodysplasia; Lymphoproliferative syndrome 1, 1 (X-linked), and 2; Lysosomal acid lipase deficiency; Macrocephaly, macrosomia, facial dysmorphism syndrome; Macular dystrophy, vitelliform, adult-onset; Malignant hyperthermia susceptibility type 1; Malignant lymphoma, non-Hodgkin; Malignant melanoma; Malignant tumor of prostate; Mandibuloacral dysostosis; Mandibuloacral dysplasia with type A or B lipodystrophy, atypical; Mandibulofacial dysostosis, Treacher Collins type, autosomal recessive; Mannose-binding protein deficiency; Maple syrup urine disease type 1A and type 3; Marden Walker like syndrome; Marfan syndrome; Marinesco-Sj†xc3†xb6gren syndrome; Martsolf syndrome; Maturity-onset diabetes of the young, type 1, type 2, type 11, type 3, and type 9; May-Hegglin anomaly; MYH9 related disorders; Sebastian syndrome; McCune-Albright syndrome; Somatotroph adenoma; Sex cord-stromal tumor; Cushing syndrome; McKusick Kaufman syndrome; McLeod neuroacanthocytosis syndrome; Meckel-Gruber syndrome; Medium-chain acyl-coenzyme A dehydrogenase deficiency; Medulloblastoma; Megalencephalic leukoencephalopathy with subcortical cysts land 2a; Megalencephaly cutis marmorata telangiectatica congenital; PIK3CA Related Overgrowth Spectrum; Megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome 2; Megaloblastic anemia, thiamine-responsive, with diabetes mellitus and sensorineural deafness; Meier-Gorlin syndromes land 4; Melnick-Needles syndrome; Meningioma; Mental retardation, X-linked, 3, 21, 30, and 72; Mental retardation and microcephaly with pontine and cerebellar hypoplasia; Mental retardation X-linked syndromic 5; Mental retardation, anterior maxillary protrusion, and strabismus; Mental retardation, autosomal dominant 12, 13, 15, 24, 3, 30, 4, 5, 6, and 9; Mental retardation, autosomal recessive 15, 44, 46, and 5; Mental retardation, stereotypic movements, epilepsy, and/or cerebral malformations; Mental retardation, syndromic, Claes-Jensen type, X-linked; Mental retardation, X-linked, nonspecific, syndromic, Hedera type, and syndromic, wu type; Merosin deficient congenital muscular dystrophy; Metachromatic leukodystrophy juvenile, late infantile, and adult types; Metachromatic leukodystrophy; Metatrophic dysplasia; Methemoglobinemia types I and 2; Methionine adenosyltransferase deficiency, autosomal dominant; Methylmalonic acidemia with homocystinuria; Methylmalonic aciduria cblB type; Methylmalonic aciduria due to methylmalonyl-CoA mutase deficiency; METHYLMALONIC ACIDURIA, mut(0) TYPE; Microcephalic osteodysplastic primordial dwarfism type 2; Microcephaly with or without chorioretinopathy, lymphedema, or mental retardation; Microcephaly, hiatal hernia and nephrotic syndrome; Microcephaly; Hypoplasia of the corpus callosum; Spastic paraplegia 50, autosomal recessive; Global developmental delay; CNS hypomyelination; Brain atrophy; Microcephaly, normal intelligence and immunodeficiency; Microcephaly-capillary malformation syndrome; Microcytic anemia; Microphthalmia syndromic 5, 7, and 9; Microphthalmia, isolated 3, 5, 6, 8, and with coloboma 6; Microspherophakia; Migraine, familial basilar; Miller syndrome; Minicore myopathy with external ophthalmoplegia; Myopathy, congenital with cores; Mitchell-Riley syndrome; mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase deficiency; Mitochondrial complex I, II, III, III (nuclear type 2, 4, or 8) deficiency; Mitochondrial DNA depletion syndrome 11, 12 (cardiomyopathic type), 2, 4B (MNGIE type), 8B (MNGIE type); Mitochondrial DNA-depletion syndrome 3 and 7, hepatocerebral types, and 13 (encephalomyopathic type); Mitochondrial phosphate carrier and pyruvate carrier deficiency; Mitochondrial trifunctional protein deficiency; Long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency; Miyoshi muscular dystrophy 1; Myopathy, distal, with anterior tibial onset; Mohr-Tranebjaerg syndrome; Molybdenum cofactor deficiency, complementation group A; Mowat-Wilson syndrome; Mucolipidosis III Gamma; Mucopolysaccharidosis type VI, type VI (severe), and type VII; Mucopolysaccharidosis, MPS—I-H/S, MPS-II, MPS-III-A, MPS—III—B, MPS—III—C, MPS-IV-A, MPS—IV-B; Retinitis Pigmentosa 73; Gangliosidosis GM1 typel (with cardiac involvenment) 3; Multicentric osteolysis nephropathy; Multicentric osteolysis, nodulosis and arthropathy; Multiple congenital anomalies; Atrial septal defect 2; Multiple congenital anomalies-hypotonia-seizures syndrome 3; Multiple Cutaneous and Mucosal Venous Malformations; Multiple endocrine neoplasia, types land 4; Multiple epiphyseal dysplasia 5 or Dominant; Multiple gastrointestinal atresias; Multiple pterygium syndrome Escobar type; Multiple sulfatase deficiency; Multiple synostoses syndrome 3; Muscle AMP deaminase deficiency; Muscle eye brain disease; Muscular dystrophy, congenital, megaconial type; Myasthenia, familial infantile, 1; Myasthenic Syndrome, Congenital, 11, associated with acetylcholine receptor deficiency; Myasthenic Syndrome, Congenital, 17, 2A (slow-channel), 4B (fast-channel), and without tubular aggregates; Myeloperoxidase deficiency; MYH-associated polyposis; Endometrial carcinoma; Myocardial infarction 1; Myoclonic dystonia; Myoclonic-Atonic Epilepsy; Myoclonus with epilepsy with ragged red fibers; Myofibrillar myopathy 1 and ZASP-related; Myoglobinuria, acute recurrent, autosomal recessive; Myoneural gastrointestinal encephalopathy syndrome; Cerebellar ataxia infantile with progressive external ophthalmoplegia; Mitochondrial DNA depletion syndrome 4B, MNGIE type; Myopathy, centronuclear, 1, congenital, with excess of muscle spindles, distal, 1, lactic acidosis, and sideroblastic anemia 1, mitochondrial progressive with congenital cataract, hearing loss, and developmental delay, and tubular aggregate, 2; Myopia 6; Myosclerosis, autosomal recessive; Myotonia congenital; Congenital myotonia, autosomal dominant and recessive forms; Nail-patella syndrome; Nance-Horan syndrome; Nanophthalmos 2; Navajo neurohepatopathy; Nemaline myopathy 3 and 9; Neonatal hypotonia; Intellectual disability; Seizures; Delayed speech and language development; Mental retardation, autosomal dominant 31; Neonatal intrahepatic cholestasis caused by citrin deficiency; Nephrogenic diabetes insipidus, Nephrogenic diabetes insipidus, X-linked; Nephrolithiasis/osteoporosis, hypophosphatemic, 2; Nephronophthisis 13, 15 and 4; Infertility; Cerebello-oculo-renal syndrome (nephronophthisis, oculomotor apraxia and cerebellar abnormalities); Nephrotic syndrome, type 3, type 5, with or without ocular abnormalities, type 7, and type 9; Nestor-Guillermo progeria syndrome; Neu-Laxova syndrome 1; Neurodegeneration with brain iron accumulation 4 and 6; Neuroferritinopathy; Neurofibromatosis, type land type 2; Neurofibrosarcoma; Neurohypophyseal diabetes insipidus; Neuropathy, Hereditary Sensory, Type IC; Neutral 1 amino acid transport defect; Neutral lipid storage disease with myopathy; Neutrophil immunodeficiency syndrome; Nicolaides-Baraitser syndrome; Niemann-Pick disease type C1, C2, type A, and type C1, adult form; Non-ketotic hyperglycinemia; Noonan syndrome 1 and 4, LEOPARD syndrome 1; Noonan syndrome-like disorder with or without juvenile myelomonocytic leukemia; Normokalemic periodic paralysis, potassium-sensitive; Norum disease; Epilepsy, Hearing Loss, And Mental Retardation Syndrome; Mental Retardation, X-Linked 102 and syndromic 13; Obesity; Ocular albinism, type I; Oculocutaneous albinism type 1B, type 3, and type 4; Oculodentodigital dysplasia; Odontohypophosphatasia; Odontotrichomelic syndrome; Oguchi disease; Oligodontia-colorectal cancer syndrome; Opitz G/BBB syndrome; Optic atrophy 9; Oral-facial-digital syndrome; Ornithine aminotransferase deficiency; Orofacial cleft 11 and 7, Cleft lip/palate-ectodermal dysplasia syndrome; Orstavik Lindemann Solberg syndrome; Osteoarthritis with mild chondrodysplasia; Osteochondritis dissecans; Osteogenesis imperfecta type 12, type 5, type 7, type 8, type I, type III, with normal sclerae, dominant form, recessive perinatal lethal; Osteopathia striata with cranial sclerosis; Osteopetrosis autosomal dominant type 1 and 2, recessive 4, recessive 1, recessive 6; Osteoporosis with pseudoglioma; Oto-palato-digital syndrome, types I and II; Ovarian dysgenesis 1; Ovarioleukodystrophy; Pachyonychia congenita 4 and type 2; Paget disease of bone, familial; Pallister-Hall syndrome; Palmoplantar keratoderma, nonepidermolytic, focal or diffuse; Pancreatic agenesis and congenital heart disease; Papillon-LefAxc3xa8vre syndrome; Paragangliomas 3; Paramyotonia congenita of von Eulenburg; Parathyroid carcinoma; Parkinson disease 14, 15, 19 (juvenile-onset), 2, 20 (early-onset), 6, (autosomal recessive early-onset, and 9; Partial albinism; Partial hypoxanthine-guanine phosphoribosyltransferase deficiency; Patterned dystrophy of retinal pigment epithelium; PC-K6a; Pelizaeus-Merzbacher disease; Pendred syndrome; Peripheral demyelinating neuropathy, central dysmyelination; Hirschsprung disease; Permanent neonatal diabetes mellitus; Diabetes mellitus, permanent neonatal, with neurologic features; Neonatal insulin-dependent diabetes mellitus; Maturity-onset diabetes of the young, type 2; Peroxisome biogenesis disorder 14B, 2A, 4A, 5B, 6A, 7A, and 7B; Perrault syndrome 4; Perry syndrome; Persistent hyperinsulinemic hypoglycemia of infancy; familial hyperinsulinism; Phenotypes; Phenylketonuria; Pheochromocytoma; Hereditary Paraganglioma-Pheochromocytoma Syndromes; Paragangliomas 1; Carcinoid tumor of intestine; Cowden syndrome 3; Phosphoglycerate dehydrogenase deficiency; Phosphoglycerate kinase 1 deficiency; Photosensitive trichothiodystrophy; Phytanic acid storage disease; Pick disease; Pierson syndrome; Pigmentary retinal dystrophy; Pigmented nodular adrenocortical disease, primary, 1; Pilomatrixoma; Pitt-Hopkins syndrome; Pituitary dependent hypercortisolism; Pituitary hormone deficiency, combined 1, 2, 3, and 4; Plasminogen activator inhibitor type 1 deficiency; Plasminogen deficiency, type I; Platelet-type bleeding disorder 15 and 8; Poikiloderma, hereditary fibrosing, with tendon contractures, myopathy, and pulmonary fibrosis; Polycystic kidney disease 2, adult type, and infantile type; Polycystic lipomembranous osteodysplasia with sclerosing leukoencephalopathy; Polyglucosan body myopathy 1 with or without immunodeficiency; Polymicrogyria, asymmetric, bilateral frontoparietal; Polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and cataract; Pontocerebellar hypoplasia type 4; Popliteal pterygium syndrome; Porencephaly 2; Porokeratosis 8, disseminated superficial actinic type; Porphobilinogen synthase deficiency; Porphyria cutanea tarda; Posterior column ataxia with retinitis pigmentosa; Posterior polar cataract type 2; Prader-Willi-like syndrome; Premature ovarian failure 4, 5, 7, and 9; Primary autosomal recessive microcephaly 10, 2, 3, and 5; Primary ciliary dyskinesia 24; Primary dilated cardiomyopathy; Left ventricular noncompaction 6; 4, Left ventricular noncompaction 10; Paroxysmal atrial fibrillation; Primary hyperoxaluria, type I, type, and type III; Primary hypertrophic osteoarthropathy, autosomal recessive 2; Primary hypomagnesemia; Primary open angle glaucoma juvenile onset 1; Primary pulmonary hypertension; Primrose syndrome; Progressive familial heart block type 1B; Progressive familial intrahepatic cholestasis 2 and 3; Progressive intrahepatic cholestasis; Progressive myoclonus epilepsy with ataxia; Progressive pseudorheumatoid dysplasia; Progressive sclerosing poliodystrophy; Prolidase deficiency; Proline dehydrogenase deficiency; Schizophrenia 4; Properdin deficiency, X-linked; Propionic academia; Proprotein convertase ⅓ deficiency; Prostate cancer, hereditary, 2; Protan defect; Proteinuria; Finnish congenital nephrotic syndrome; Proteus syndrome; Breast adenocarcinoma; Pseudoachondroplastic spondyloepiphyseal dysplasia syndrome; Pseudohypoaldosteronism type 1 autosomal dominant and recessive and type 2; Pseudohypoparathyroidism type 1A, Pseudopseudohypoparathyroidism; Pseudoneonatal adrenoleukodystrophy; Pseudoprimary hyperaldosteronism; Pseudoxanthoma elasticum; Generalized arterial calcification of infancy 2; Pseudoxanthoma elasticum-like disorder with multiple coagulation factor deficiency; Psoriasis susceptibility 2; PTEN hamartoma tumor syndrome; Pulmonary arterial hypertension related to hereditary hemorrhagic telangiectasia; Pulmonary Fibrosis And/Or Bone Marrow Failure, Telomere-Related, 1 and 3; Pulmonary hypertension, primary, 1, with hereditary hemorrhagic telangiectasia; Purine-nucleoside phosphorylase deficiency; Pyruvate carboxylase deficiency; Pyruvate dehydrogenase E1-alpha deficiency; Pyruvate kinase deficiency of red cells; Raine syndrome; Rasopathy; Recessive dystrophic epidermolysis bullosa; Nail disorder, nonsyndromic congenital, 8; Reifenstein syndrome; Renal adysplasia; Renal carnitine transport defect; Renal coloboma syndrome; Renal dysplasia; Renal dysplasia, retinal pigmentary dystrophy, cerebellar ataxia and skeletal dysplasia; Renal tubular acidosis, distal, autosomal recessive, with late-onset sensorineural hearing loss, or with hemolytic anemia; Renal tubular acidosis, proximal, with ocular abnormalities and mental retardation; Retinal cone dystrophy 3B; Retinitis pigmentosa; Retinitis pigmentosa 10, 11, 12, 14, 15, 17, and 19; Retinitis pigmentosa 2, 20, 25, 35, 36, 38, 39, 4, 40, 43, 45, 48, 66, 7, 70, 72; Retinoblastoma; Rett disorder; Rhabdoid tumor predisposition syndrome 2; Rhegmatogenous retinal detachment, autosomal dominant; Rhizomelic chondrodysplasia punctata type 2 and type 3; Roberts-SC phocomelia syndrome; Robinow Sorauf syndrome; Robinow syndrome, autosomal recessive, autosomal recessive, with brachy-syn-polydactyly; Rothmund-Thomson syndrome; Rapadilino syndrome; RRM2B-related mitochondrial disease; Rubinstein-Taybi syndrome; Salla disease; Sandhoff disease, adult and infantil types; Sarcoidosis, early-onset; Blau syndrome; Schindler disease, type 1; Schizencephaly; Schizophrenia 15; Schneckenbecken dysplasia; Schwannomatosis 2; Schwartz Jampel syndrome type 1; Sclerocornea, autosomal recessive; Sclerosteosis; Secondary hypothyroidism; Segawa syndrome, autosomal recessive; Senior-Loken syndrome 4 and 5; Sensory ataxic neuropathy, dysarthria, and ophthalmoparesis; Sepiapterin reductase deficiency; SeSAME syndrome; Severe combined immunodeficiency due to ADA deficiency, with microcephaly, growth retardation, and sensitivity to ionizing radiation, atypical, autosomal recessive, T cell-negative, B cell-positive, NK cell-negative of NK-positive; Partial adenosine deaminase deficiency; Severe congenital neutropenia; Severe congenital neutropenia 3, autosomal recessive or dominant; Severe congenital neutropenia and 6, autosomal recessive; Severe myoclonic epilepsy in infancy; Generalized epilepsy with febrile seizures plus, types 1 and 2; Severe X-linked myotubular myopathy; Short QT syndrome 3; Short stature with nonspecific skeletal abnormalities; Short stature, auditory canal atresia, mandibular hypoplasia, skeletal abnormalities; Short stature, onychodysplasia, facial dysmorphism, and hypotrichosis; Primordial dwarfism; Short-rib thoracic dysplasia 11 or 3 with or without polydactyly; Sialidosis type I and II; Silver spastic paraplegia syndrome; Slowed nerve conduction velocity, autosomal dominant; Smith-Lemli-Opitz syndrome; Snyder Robinson syndrome; Somatotroph adenoma; Prolactinoma; familial, Pituitary adenoma predisposition; Sotos syndrome 1 or 2; Spastic ataxia 5, autosomal recessive, Charlevoix-Saguenay type, 1, 10, or 11, autosomal recessive; Amyotrophic lateral sclerosis type 5; Spastic paraplegia 15, 2, 3, 35, 39, 4, autosomal dominant, 55, autosomal recessive, and 5A; Bile acid synthesis defect, congenital, 3; Spermatogenic failure 11, 3, and 8; Spherocytosis types 4 and 5; Spheroid body myopathy; Spinal muscular atrophy, lower extremity predominant 2, autosomal dominant; Spinal muscular atrophy, type II; Spinocerebellar ataxia 14, 21, 35, 40, and 6; Spinocerebellar ataxia autosomal recessive 1 and 16; Splenic hypoplasia; Spondylocarpotarsal synostosis syndrome; Spondylocheirodysplasia, Ehlers-Danlos syndrome-like, with immune dysregulation, Aggrecan type, with congenital joint dislocations, short limb-hand type, Sedaghatian type, with cone-rod dystrophy, and Kozlowski type; Parastremmatic dwarfism; Stargardt disease 1; Cone-rod dystrophy 3; Stickler syndrome type 1; Kniest dysplasia; Stickler syndrome, types 1 (nonsyndromic ocular) and 4; Sting-associated vasculopathy, infantile-onset; Stormorken syndrome; Sturge-Weber syndrome, Capillary malformations, congenital, 1; Succinyl-CoA acetoacetate transferase deficiency; Sucrase-isomaltase deficiency; Sudden infant death syndrome; Sulfite oxidase deficiency, isolated; Supravalvar aortic stenosis; Surfactant metabolism dysfunction, pulmonary, 2 and 3; Symphalangism, proximal, 1b; Syndactyly Cenani Lenz type; Syndactyly type 3; Syndromic X-linked mental retardation 16; Talipes equinovarus; Tangier disease; TARP syndrome; Tay-Sachs disease, B1 variant, Gm2-gangliosidosis (adult), Gm2-gangliosidosis (adult-onset); Temtamy syndrome; Tenorio Syndrome; Terminal osseous dysplasia; Testosterone 17-beta-dehydrogenase deficiency; Tetraamelia, autosomal recessive; Tetralogy of Fallot; Hypoplastic left heart syndrome 2; Truncus arteriosus; Malformation of the heart and great vessels; Ventricular septal defect 1; Thiel-Behnke corneal dystrophy; Thoracic aortic aneurysms and aortic dissections; Marfanoid habitus; Three M syndrome 2; Thrombocytopenia, platelet dysfunction, hemolysis, and imbalanced globin synthesis; Thrombocytopenia, X-linked; Thrombophilia, hereditary, due to protein C deficiency, autosomal dominant and recessive; Thyroid agenesis; Thyroid cancer, follicular; Thyroid hormone metabolism, abnormal; Thyroid hormone resistance, generalized, autosomal dominant; Thyrotoxic periodic paralysis and Thyrotoxic periodic paralysis 2; Thyrotropin-releasing hormone resistance, generalized; Timothy syndrome; TNF receptor-associated periodic fever syndrome (TRAPS); Tooth agenesis, selective, 3 and 4; Torsades de pointes; Townes-Brocks-branchiootorenal-like syndrome; Transient bullous dermolysis of the newborn; Treacher collins syndrome 1; Trichomegaly with mental retardation, dwarfism and pigmentary degeneration of retina; Trichorhinophalangeal dysplasia type I; Trichorhinophalangeal syndrome type 3; Trimethylaminuria; Tuberous sclerosis syndrome; Lymphangiomyomatosis; Tuberous sclerosis 1 and 2; Tyrosinase-negative oculocutaneous albinism; Tyrosinase-positive oculocutaneous albinism; Tyrosinemia type I; UDPglucose-4-epimerase deficiency; Ullrich congenital muscular dystrophy; Ulna and fibula absence of with severe limb deficiency; Upshaw-Schulman syndrome; Urocanate hydratase deficiency; Usher syndrome, types 1, 1B, 1D, 1G, 2A, 2C, and 2D; Retinitis pigmentosa 39; UV-sensitive syndrome; Van der Woude syndrome; Van Maldergem syndrome 2; Hennekam lymphangiectasia-lymphedema syndrome 2; Variegate porphyria; Ventriculomegaly with cystic kidney disease; Verheij syndrome; Very long chain acyl-CoA dehydrogenase deficiency; Vesicoureteral reflux 8; Visceral heterotaxy 5, autosomal; Visceral myopathy; Vitamin D-dependent rickets, types land 2; Vitelliform dystrophy; von Willebrand disease type 2M and type 3; Waardenburg syndrome type 1, 4C, and 2E (with neurologic involvement); Klein-Waardenberg syndrome; Walker-Warburg congenital muscular dystrophy; Warburg micro syndrome 2 and 4; Warts, hypogammaglobulinemia, infections, and myelokathexis; Weaver syndrome; Weill-Marchesani syndrome 1 and 3; Weill-Marchesani-like syndrome; Weissenbacher-Zweymuller syndrome; Werdnig-Hoffmann disease; Charcot-Marie-Tooth disease; Werner syndrome; WFS1-Related Disorders; Wiedemann-Steiner syndrome; Wilson disease; Wolfram-like syndrome, autosomal dominant; Worth disease; Van Buchem disease type 2; Xeroderma pigmentosum, complementation group b, group D, group E, and group G; X-linked agammaglobulinemia; X-linked hereditary motor and sensory neuropathy; X-linked ichthyosis with steryl-sulfatase deficiency; X-linked periventricular heterotopia; Oto-palato-digital syndrome, type I; X-linked severe combined immunodeficiency; Zimmermann-Laband syndrome and Zimmermann-Laband syndrome 2; and Zonular pulverulent cataract 3.


The instant disclosure provides lists of genes comprising pathogenic G to A or C to T mutations. Such pathogenic G to A or C to T mutations may be corrected using the methods and compositions provided herein, for example by mutating the A to a G, and/or the T to a C, thereby restoring gene function. Table 2 includes exemplary mutations that can be corrected using nucleobase editors provided herein. Table 2 includes the gene symbol, the associated phenotype, the mutation to be corrected and exemplary gRNA sequences which may be used to correct the mutations. The gRNA sequences provided in Table 2 are sequences that encode RNA that can direct Cas9, or any of the base editors provided herin, to a target site. For example, the gRNA sequences provided in Table 2 may be cloned into a gRNA expression vector, such as pFYF to encode a gRNA that targets Cas9, or any of the base editors provided herein, to a target site in order to correct a disease-related mutation. It should be appreciated, however, that additional mutations may be corrected to treat additional diseases associated with a G to A or C to T mutation. Furthermore, additional gRNAs may be designed based on the disclosure and the knowledge in the art, which would be appreciated by the skilled artisan.










Lengthy table referenced here




US11702651-20230718-T00001


Please refer to the end of the specification for access instructions.






In some embodiments, a fusion protein recognizes canonical PAMs and therefore can correct the pathogenic G to A or C to T mutations with canonical PAMs, e.g., NGG, respectively, in the flanking sequences. For example, Cas9 proteins that recognize canonical PAMs comprise an amino acid sequence that is at least 80%, 85%, 90%, 95%, 97%, 98%, or 99% identical to the amino acid sequence of Streptococcus pyogenes Cas9 as provided by SEQ ID NO: 52, or to a fragment thereof comprising the RuvC and HNH domains of SEQ ID NO: 52.


It will be apparent to those of skill in the art that in order to target any of the fusion proteins comprising a Cas9 domain and an adenosine deaminase, as disclosed herein, to a target site, e.g., a site comprising a point mutation to be edited, it is typically necessary to co-express the fusion protein together with a guide RNA, e.g., an sgRNA. As explained in more detail elsewhere herein, a guide RNA typically comprises a tracrRNA framework allowing for Cas9 binding, and a guide sequence, which confers sequence specificity to the Cas9:nucleic acid editing enzyme/domain fusion protein. In some embodiments, the guide RNA comprises a structure 5′-[guide sequence]-guuuuagagcuagaaauagcaaguuaaaauaaaggcuaguccguuaucaacuugaaaaaguggcaccgagucggugcuu uuu-3′ (SEQ ID NO: 389), wherein the guide sequence comprises a sequence that is complementary to the target sequence. In some embodiments, the guide sequence comprises any of the nucleotide sequences provided in Table 2 The guide sequence is typically 20 nucleotides long. The sequences of suitable guide RNAs for targeting Cas9:nucleic acid editing enzyme/domain fusion proteins to specific genomic target sites will be apparent to those of skill in the art based on the instant disclosure. Such suitable guide RNA sequences typically comprise guide sequences that are complementary to a nucleic sequence within 50 nucleotides upstream or downstream of the target nucleotide to be edited. Some exemplary guide RNA sequences suitable for targeting any of the provided fusion proteins to specific target sequences are provided herein. Additional guide sequences are shown below in Table 3, including their locus.









TABLE 3







Additional target sites.








locus
5 to 3′





other sites within HEK2
GAACACAAAGCATAGACTGC


locus
(SEQ ID NO: 390)





other sites within HEK2
GGAACACAAAGCATAGACTG


locus
(SEQ ID NO: 391)





other sites within HEK2
AACACAAAGCATAGACTGCG


locus
(SEQ ID NO: 392)





other sites within HEK2
ACAAAGCATAGACTGCGGGG


locus
(SEQ ID NO: 393)





other sites within HEK2
CAAAGCATAGACTGCGGGGC


locus
(SEQ ID NO: 394)





other sites within HEK2
GTGGTAATTTTCCAGCCCGC


locus
(SEQ ID NO: 395)





other sites within HEK2
CCTTTACAGGGCCAGCGGGC


locus
(SEQ ID NO: 396)





other sites within HEK2
CTGTCACAGTTAGCTCAGCC


locus
(SEQ ID NO: 397)





other sites within HEK2
GTGTTCCAGTTTCCTTTACA


locus
(SEQ ID NO: 398)





Hek-2 guideSEQ off-target
GAACACAATGCATAGATTGC



(SEQ ID NO: 399)





Hek-2 similar site
GAAAAAAAAGCAGAGACTGC



(SEQ ID NO: 400)





Hek-2 similar site
GAATACTAAGCATAGACTCC



(SEQ ID NO: 401)





Hek-2 similar site
GTAAACAAAGCATAGACTGA



(SEQ ID NO: 402)





Hek-2 similar site
GGACACAAAGCTTAGACTCC



(SEQ ID NO: 403)





Hek-2 similar site
CAATACAAAGGATAGACTGC



(SEQ ID NO: 404)





Hek-2 similar site
GAAGACCAAGGATAGACTGC



(SEQ ID NO: 405)





Hek-2 similar site
GAAAACAAATCATTGACTGC



(SEQ ID NO: 406)





Hek-2 similar site
GATCACAAAGCATGGACTGA



(SEQ ID NO: 407)





Hek-2 similar site
GAAAACAAAACATAGAGTGC



(SEQ ID NO: 408)





Hek-2 similar site
GAACATAAAGAATAGAATGA



(SEQ ID NO: 409)





EMX1
GAGTCCGAGCAGAAGAAGAA



(SEQ ID NO: 410)





FANCF:
GGAATCCCTTCTGCAGCACC



(SEQ ID NO: 411)





HEK293 site 2:
GAACACAAAGCATAGACTGC



(SEQ ID NO: 412)





HEK293 site 3:
GGCCCAGACTGAGCACGTGA



(SEQ ID NO: 413)





HEK293 site 4:
GGCACTGCGGCTGGAGGTCC



(SEQ ID NO: 414)





RNF2:
GTCATCTTAGTCATTACCTG



(SEQ ID NO: 415)










Base Editor Efficiency


Some aspects of the disclosure are based on the recognition that any of the base editors provided herein are capable of modifying a specific nucleotide base without generating a significant proportion of indels. An “indel”, as used herein, refers to the insertion or deletion of a nucleotide base within a nucleic acid. Such insertions or deletions can lead to frame shift mutations within a coding region of a gene. In some embodiments, it is desirable to generate base editors that efficiently modify (e.g. mutate or deaminate) a specific nucleotide within a nucleic acid, without generating a large number of insertions or deletions (i.e., indels) in the nucleic acid. In certain embodiments, any of the base editors provided herein are capable of generating a greater proportion of intended modifications (e.g., point mutations or deaminations) versus indels. In some embodiments, the base editors provided herein are capable of generating a ratio of intended point mutations to indels that is greater than 1:1. In some embodiments, the base editors provided herein are capable of generating a ratio of intended point mutations to indels that is at least 1.5:1, at least 2:1, at least 2.5:1, at least 3:1, at least 3.5:1, at least 4:1, at least 4.5:1, at least 5:1, at least 5.5:1, at least 6:1, at least 6.5:1, at least 7:1, at least 7.5:1, at least 8:1, at least 10:1, at least 12:1, at least 15:1, at least 20:1, at least 25:1, at least 30:1, at least 40:1, at least 50:1, at least 100:1, at least 200:1, at least 300:1, at least 400:1, at least 500:1, at least 600:1, at least 700:1, at least 800:1, at least 900:1, or at least 1000:1, or more. The number of intended mutations and indels may be determined using any suitable method, for example the methods used in the below Examples. in some embodiments, to calculate indel frequencies, sequencing reads are scanned for exact matches to two 10-bp sequences that flank both sides of a window in which indels might occur. If no exact matches are located, the read is excluded from analysis. If the length of this indel window exactly matches the reference sequence the read is classified as not containing an indel. If the indel window is two or more bases longer or shorter than the reference sequence, then the sequencing read is classified as an insertion or deletion, respectively.


In some embodiments, the base editors provided herein are capable of limiting formation of indels in a region of a nucleic acid. In some embodiments, the region is at a nucleotide targeted by a base editor or a region within 2, 3, 4, 5, 6, 7, 8, 9, or 10 nucleotides of a nucleotide targeted by a base editor. In some embodiments, any of the base editors provided herein are capable of limiting the formation of indels at a region of a nucleic acid to less than 1%, less than 1.5%, less than 2%, less than 2.5%, less than 3%, less than 3.5%, less than 4%, less than 4.5%, less than 5%, less than 6%, less than 7%, less than 8%, less than 9%, less than 10%, less than 12%, less than 15%, or less than 20%. The number of indels formed at a nucleic acid region may depend on the amount of time a nucleic acid (e.g., a nucleic acid within the genome of a cell) is exposed to a base editor. In some embodiments, an number or proportion of indels is determined after at least 1 hour, at least 2 hours, at least 6 hours, at least 12 hours, at least 24 hours, at least 36 hours, at least 48 hours, at least 3 days, at least 4 days, at least 5 days, at least 7 days, at least 10 days, or at least 14 days of exposing a nucleic acid (e.g., a nucleic acid within the genome of a cell) to a base editor.


Some aspects of the disclosure are based on the recognition that any of the base editors provided herein are capable of efficiently generating an intended mutation, such as a point mutation, in a nucleic acid (e.g. a nucleic acid within a genome of a subject) without generating a significant number of unintended mutations, such as unintended point mutations. In some embodiments, a intended mutation is a mutation that is generated by a specific base editor bound to a gRNA, specifically designed to generate the intended mutation. In some embodiments, the intended mutation is a mutation associated with a disease or disorder. In some embodiments, the intended mutation is a adenine (A) to guanine (G) point mutation associated with a disease or disorder. In some embodiments, the intended mutation is a thymine (T) to cytosine (C) point mutation associated with a disease or disorder. In some embodiments, the intended mutation is a adenine (A) to guanine (G) point mutation within the coding region of a gene. In some embodiments, the intended mutation is a thymine (T) to cytosine (C) point mutation within the coding region of a gene. In some embodiments, the intended mutation is a point mutation that generates a stop codon, for example, a premature stop codon within the coding region of a gene. In some embodiments, the intended mutation is a mutation that eliminates a stop codon. In some embodiments, the intended mutation is a mutation that alters the splicing of a gene. In some embodiments, the intended mutation is a mutation that alters the regulatory sequence of a gene (e.g., a gene promotor or gene repressor). In some embodiments, any of the base editors provided herein are capable of generating a ratio of intended mutations to unintended mutations (e.g., intended point mutations:unintended point mutations) that is greater than 1:1. In some embodiments, any of the base editors provided herein are capable of generating a ratio of intended mutations to unintended mutations (e.g., intended point mutations:unintended point mutations) that is at least 1.5:1, at least 2:1, at least 2.5:1, at least 3:1, at least 3.5:1, at least 4:1, at least 4.5:1, at least 5:1, at least 5.5:1, at least 6:1, at least 6.5:1, at least 7:1, at least 7.5:1, at least 8:1, at least 10:1, at least 12:1, at least 15:1, at least 20:1, at least 25:1, at least 30:1, at least 40:1, at least 50:1, at least 100:1, at least 150:1, at least 200:1, at least 250:1, at least 500:1, or at least 1000:1, or more. It should be appreciated that the characteristics of the base editors described in the “Base Editor Efficiency” section, herein, may be applied to any of the fusion proteins, or methods of using the fusion proteins provided herein.


Methods for Editing Nucleic Acids


Some aspects of the disclosure provide methods for editing a nucleic acid. In some embodiments, the method is a method for editing a nucleobase of a nucleic acid (e.g., a base pair of a double-stranded DNA sequence). In some embodiments, the method comprises the steps of: a) contacting a target region of a nucleic acid (e.g., a double-stranded DNA sequence) with a complex comprising a base editor (e.g., a Cas9 domain fused to an adenosine deaminase) and a guide nucleic acid (e.g., gRNA), wherein the target region comprises a targeted nucleobase pair, b) inducing strand separation of said target region, c) converting a first nucleobase of said target nucleobase pair in a single strand of the target region to a second nucleobase, and d) cutting no more than one strand of said target region, where a third nucleobase complementary to the first nucleobase base is replaced by a fourth nucleobase complementary to the second nucleobase. In some embodiments, the method results in less than 20% indel formation in the nucleic acid. It should be appreciated that in some embodiments, step b is omitted. In some embodiments, the first nucleobase is an adenine. In some embodiments, the second nucleobase is a deaminated adenine, or inosine. In some embodiments, the third nucleobase is a thymine. In some embodiments, the fourth nucleobase is a cytosine. In some embodiments, the method results in less than 19%, 18%, 16%, 14%, 12%, 10%, 8%, 6%, 4%, 2%, 1%, 0.5%, 0.2%, or less than 0.1% indel formation. In some embodiments, the method further comprises replacing the second nucleobase with a fifth nucleobase that is complementary to the fourth nucleobase, thereby generating an intended edited base pair (e.g., A:T to G:C). In some embodiments, the fifth nucleobase is a guanine. In some embodiments, at least 5% of the intended base pairs are edited. In some embodiments, at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% of the intended base pairs are edited.


In some embodiments, the ratio of intended products to unintended products in the target nucleotide is at least 2:1, 5:1, 10:1, 20:1, 30:1, 40:1, 50:1, 60:1, 70:1, 80:1, 90:1, 100:1, or 200:1, or more. In some embodiments, the ratio of intended point mutation to indel formation is greater than 1:1, 10:1, 50:1, 100:1, 500:1, or 1000:1, or more. In some embodiments, the cut single strand (nicked strand) is hybridized to the guide nucleic acid. In some embodiments, the cut single strand is opposite to the strand comprising the first nucleobase. In some embodiments, the base editor comprises a Cas9 domain. In some embodiments, the first base is adenine, and the second base is not a G, C, A, or T. In some embodiments, the second base is inosine. In some embodiments, the first base is adenine. In some embodiments, the second base is not a G, C, A, or T. In some embodiments, the second base is inosine. In some embodiments, the base editor inhibits base excision repair of the edited strand. In some embodiments, the base editor protects or binds the non-edited strand. In some embodiments, the base editor comprises UGI activity. In some embodiments, the base editor comprises a catalytically inactive inosine-specific nuclease. In some embodiments, the base editor comprises nickase activity. In some embodiments, the intended edited base pair is upstream of a PAM site. In some embodiments, the intended edited base pair is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides upstream of the PAM site. In some embodiments, the intended edited basepairs is downstream of a PAM site. In some embodiments, the intended edited base pair is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides downstream stream of the PAM site. In some embodiments, the method does not require a canonical (e.g., NGG) PAM site. In some embodiments, the nucleobase editor comprises a linker. In some embodiments, the linker is 1-25 amino acids in length. In some embodiments, the linker is 5-20 amino acids in length. In some embodiments, linker is 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acids in length. In some embodiments, the target region comprises a target window, wherein the target window comprises the target nucleobase pair. In some embodiments, the target window comprises 1-10 nucleotides. In some embodiments, the target window is 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, or 1 nucleotides in length. In some embodiments, the target window is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides in length. In some embodiments, the intended edited base pair is within the target window. In some embodiments, the target window comprises the intended edited base pair. In some embodiments, the method is performed using any of the base editors provided herein. In some embodiments, a target window is a deamination window.


In some embodiments, the disclosure provides methods for editing a nucleotide. In some embodiments, the disclosure provides a method for editing a nucleobase pair of a double-stranded DNA sequence. In some embodiments, the method comprises a) contacting a target region of the double-stranded DNA sequence with a complex comprising a base editor and a guide nucleic acid (e.g., gRNA), where the target region comprises a target nucleobase pair, b) inducing strand separation of said target region, c) converting a first nucleobase of said target nucleobase pair in a single strand of the target region to a second nucleobase, d) cutting no more than one strand of said target region, wherein a third nucleobase complementary to the first nucleobase base is replaced by a fourth nucleobase complementary to the second nucleobase, and the second nucleobase is replaced with a fifth nucleobase that is complementary to the fourth nucleobase, thereby generating an intended edited base pair, wherein the efficiency of generating the intended edited base pair is at least 5%. It should be appreciated that in some embodiments, step b is omitted. In some embodiments, at least 5% of the intended base pairs are edited. In some embodiments, at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, or 50% of the intended base pairs are edited. In some embodiments, the method causes less than 19%, 18%, 16%, 14%, 12%, 10%, 8%, 6%, 4%, 2%, 1%, 0.5%, 0.2%, or less than 0.1% indel formation. In some embodiments, the ratio of intended product to unintended products at the target nucleotide is at least 2:1, 5:1, 10:1, 20:1, 30:1, 40:1, 50:1, 60:1, 70:1, 80:1, 90:1, 100:1, or 200:1, or more. In some embodiments, the ratio of intended point mutation to indel formation is greater than 1:1, 10:1, 50:1, 100:1, 500:1, or 1000:1, or more. In some embodiments, the cut single strand is hybridized to the guide nucleic acid. In some embodiments, the cut single strand is opposite to the strand comprising the first nucleobase. In some embodiments, the first base is adenine. In some embodiments, the second nucleobase is not G, C, A, or T. In some embodiments, the second base is inosine. In some embodiments, the base editor inhibits base excision repair of the edited strand. In some embodiments, the base editor protects (e.g., form base excision repair) or binds the non-edited strand. In some embodiments, the nucleobase editor comprises UGI activity. In some embodiments, the base editor comprises a catalytically inactive inosine-specific nuclease. In some embodiments, the nucleobase editor comprises nickase activity. In some embodiments, the intended edited base pair is upstream of a PAM site. In some embodiments, the intended edited base pair is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides upstream of the PAM site. In some embodiments, the intended edited basepairs is downstream of a PAM site. In some embodiments, the intended edited base pair is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides downstream stream of the PAM site. In some embodiments, the method does not require a canonical (e.g., NGG) PAM site. In some embodiments, the nucleobase editor comprises a linker. In some embodiments, the linker is 1-25 amino acids in length. In some embodiments, the linker is 5-20 amino acids in length. In some embodiments, the linker is 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acids in length. In some embodiments, the target region comprises a target window, wherein the target window comprises the target nucleobase pair. In some embodiments, the target window comprises 1-10 nucleotides. In some embodiments, the target window is 1-9, 1-8, 1-7, 1-6, 1-5, 1-4, 1-3, 1-2, or 1 nucleotides in length. In some embodiments, the target window is 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleotides in length. In some embodiments, the intended edited base pair occurs within the target window. In some embodiments, the target window comprises the intended edited base pair. In some embodiments, the nucleobase editor is any one of the base editors provided herein.


Pharmaceutical Compositions


Other aspects of the present disclosure relate to pharmaceutical compositions comprising any of the adenosine deaminases, fusion proteins, or the fusion protein-gRNA complexes described herein. The term “pharmaceutical composition”, as used herein, refers to a composition formulated for pharmaceutical use. In some embodiments, the pharmaceutical composition further comprises a pharmaceutically acceptable carrier. In some embodiments, the pharmaceutical composition comprises additional agents (e.g. for specific delivery, increasing half-life, or other therapeutic compounds).


As used here, the term “pharmaceutically-acceptable carrier” means a pharmaceutically-acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, manufacturing aid (e.g., lubricant, talc magnesium, calcium or zinc stearate, or steric acid), or solvent encapsulating material, involved in carrying or transporting the compound from one site (e.g., the delivery site) of the body, to another site (e.g., organ, tissue or portion of the body). A pharmaceutically acceptable carrier is “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the tissue of the subject (e.g., physiologically compatible, sterile, physiologic pH, etc.). Some examples of materials which can serve as pharmaceutically-acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, methylcellulose, ethyl cellulose, microcrystalline cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) lubricating agents, such as magnesium stearate, sodium lauryl sulfate and talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol (PEG); (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; (15) alginic acid; (16) pyrogen-free water; (17) isotonic saline; (18) Ringer's solution; (19) ethyl alcohol; (20) pH buffered solutions; (21) polyesters, polycarbonates and/or polyanhydrides; (22) bulking agents, such as polypeptides and amino acids (23) serum component, such as serum albumin, HDL and LDL; (22) C2-C12 alcohols, such as ethanol; and (23) other non-toxic compatible substances employed in pharmaceutical formulations. Wetting agents, coloring agents, release agents, coating agents, sweetening agents, flavoring agents, perfuming agents, preservative and antioxidants can also be present in the formulation. The terms such as “excipient”, “carrier”, “pharmaceutically acceptable carrier” or the like are used interchangeably herein.


In some embodiments, the pharmaceutical composition is formulated for delivery to a subject, e.g., for gene editing. Suitable routes of administrating the pharmaceutical composition described herein include, without limitation: topical, subcutaneous, transdermal, intradermal, intralesional, intraarticular, intraperitoneal, intravesical, transmucosal, gingival, intradental, intracochlear, transtympanic, intraorgan, epidural, intrathecal, intramuscular, intravenous, intravascular, intraosseus, periocular, intratumoral, intracerebral, and intracerebroventricular administration.


In some embodiments, the pharmaceutical composition described herein is administered locally to a diseased site (e.g., tumor site). In some embodiments, the pharmaceutical composition described herein is administered to a subject by injection, by means of a catheter, by means of a suppository, or by means of an implant, the implant being of a porous, non-porous, or gelatinous material, including a membrane, such as a sialastic membrane, or a fiber.


In other embodiments, the pharmaceutical composition described herein is delivered in a controlled release system. In one embodiment, a pump may be used (see, e.g., Langer, 1990, Science 249:1527-1533; Sefton, 1989, CRC Crit. Ref. Biomed. Eng. 14:201; Buchwald et al., 1980, Surgery 88:507; Saudek et al., 1989, N. Engl. J. Med. 321:574). In another embodiment, polymeric materials can be used. (See, e.g., Medical Applications of Controlled Release (Langer and Wise eds., CRC Press, Boca Raton, Fla., 1974); Controlled Drug Bioavailability, Drug Product Design and Performance (Smolen and Ball eds., Wiley, New York, 1984); Ranger and Peppas, 1983, Macromol. Sci. Rev. Macromol. Chem. 23:61. See also Levy et al., 1985, Science 228:190; During et al., 1989, Ann. Neurol. 25:351; Howard et al., 1989, J. Neurosurg. 71:105.) Other controlled release systems are discussed, for example, in Langer, supra.


In some embodiments, the pharmaceutical composition is formulated in accordance with routine procedures as a composition adapted for intravenous or subcutaneous administration to a subject, e.g., a human. In some embodiments, pharmaceutical composition for administration by injection are solutions in sterile isotonic aqueous buffer. Where necessary, the pharmaceutical can also include a solubilizing agent and a local anesthetic such as lignocaine to ease pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the pharmaceutical is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the pharmaceutical composition is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients can be mixed prior to administration.


A pharmaceutical composition for systemic administration may be a liquid, e.g., sterile saline, lactated Ringer's or Hank's solution. In addition, the pharmaceutical composition can be in solid forms and re-dissolved or suspended immediately prior to use. Lyophilized forms are also contemplated.


The pharmaceutical composition can be contained within a lipid particle or vesicle, such as a liposome or microcrystal, which is also suitable for parenteral administration. The particles can be of any suitable structure, such as unilamellar or plurilamellar, so long as compositions are contained therein. Compounds can be entrapped in “stabilized plasmid-lipid particles” (SPLP) containing the fusogenic lipid dioleoylphosphatidylethanolamine (DOPE), low levels (5-10 mol %) of cationic lipid, and stabilized by a polyethyleneglycol (PEG) coating (Zhang Y. P. et al., Gene Ther. 1999, 6:1438-47). Positively charged lipids such as N-[1-(2,3-dioleoyloxi)propyl]-N,N,N-trimethyl-amoniummethylsulfate, or “DOTAP,” are particularly preferred for such particles and vesicles. The preparation of such lipid particles is well known. See, e.g., U.S. Pat. Nos. 4,880,635; 4,906,477; 4,911,928; 4,917,951; 4,920,016; and 4,921,757; each of which is incorporated herein by reference.


The pharmaceutical composition described herein may be administered or packaged as a unit dose, for example. The term “unit dose” when used in reference to a pharmaceutical composition of the present disclosure refers to physically discrete units suitable as unitary dosage for the subject, each unit containing a predetermined quantity of active material calculated to produce the desired therapeutic effect in association with the required diluent; i.e., carrier, or vehicle.


Further, the pharmaceutical composition can be provided as a pharmaceutical kit comprising (a) a container containing a compound of the invention in lyophilized form and (b) a second container containing a pharmaceutically acceptable diluent (e.g., sterile water) for injection. The pharmaceutically acceptable diluent can be used for reconstitution or dilution of the lyophilized compound of the invention. Optionally associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.


In another aspect, an article of manufacture containing materials useful for the treatment of the diseases described above is included. In some embodiments, the article of manufacture comprises a container and a label. Suitable containers include, for example, bottles, vials, syringes, and test tubes. The containers may be formed from a variety of materials such as glass or plastic. In some embodiments, the container holds a composition that is effective for treating a disease described herein and may have a sterile access port. For example, the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle. The active agent in the composition is a compound of the invention. In some embodiments, the label on or associated with the container indicates that the composition is used for treating the disease of choice. The article of manufacture may further comprise a second container comprising a pharmaceutically-acceptable buffer, such as phosphate-buffered saline, Ringer's solution, or dextrose solution. It may further include other materials desirable from a commercial and user standpoint, including other buffers, diluents, filters, needles, syringes, and package inserts with instructions for use.


Kits, Vectors, Cells


Some aspects of this disclosure provide kits comprising a nucleic acid construct comprising a nucleotide sequence encoding an adenosine deaminase capable of deaminating an adenosine in a deoxyribonucleic acid (DNA) molecule. In some embodiments, the nucleotide sequence encodes any of the adenosine deaminases provided herein. In some embodiments, the nucleotide sequence comprises a heterologous promoter that drives expression of the adenosine deaminase.


Some aspects of this disclosure provide kits comprising a nucleic acid construct, comprising (a) a nucleotide sequence encoding a napDNAbp (e.g., a Cas9 domain) fused to an adenosine deaminase, or a fusion protein comprising a napDNAbp (e.g., Cas9 domain) and an adenosine deaminase as provided herein; and (b) a heterologous promoter that drives expression of the sequence of (a). In some embodiments, the kit further comprises an expression construct encoding a guide nucleic acid backbone, (e.g., a guide RNA backbone), wherein the construct comprises a cloning site positioned to allow the cloning of a nucleic acid sequence identical or complementary to a target sequence into the guide nucleic acid (e.g., guide RNA backbone).


Some aspects of this disclosure provide cells comprising any of the adenosine deaminases, fusion proteins, or complexes provided herein. In some embodiments, the cells comprise a nucleotide that encodes any of the adenosine deaminases or fusion proteins provided herein. In some embodiments, the cells comprise any of the nucleotides or vectors provided herein.


The description of exemplary embodiments of the reporter systems above is provided for illustration purposes only and not meant to be limiting. Additional reporter systems, e.g., variations of the exemplary systems described in detail above, are also embraced by this disclosure.


It should be appreciated however, that additional fusion proteins would be apparent to the skilled artisan based on the present disclosure and knowledge in the art.


The function and advantage of these and other embodiments of the present invention will be more fully understood from the Examples below. The following Examples are intended to illustrate the benefits of the present invention and to describe particular embodiments, but are not intended to exemplify the full scope of the invention. Accordingly, it will be understood that the Examples are not meant to limit the scope of the invention.


EXAMPLES

Data provided in the below examples describe engineering of base editors that are capable of catalyzing hydrolytic deamination of adenosine (forming inosine, which base pairs like guanine (G)) in the context of DNA. There are no known naturally occurring adenosine deaminases that act on DNA. Instead, known adenosine deaminases act on RNA (e.g., tRNA or mRNA). The first deoxyadenosine deaminases were evolved to accept DNA substrates and deaminate deoxyadenosine (dA) to deoxyinosine. As one example, evolution experiments were performed using the adenosine deaminase acting on tRNA (ADAT) from Escherichia coli (TadA, for tRNA adenosine deaminase A), to engineer adenosine deaminases that act on DNA. Briefly, ecTadA was covalently fused to a dCas9 domain, and libraries of this fusion were assembled containing mutations in the deaminase portion of the construct. In the evolution experiments described below, several mutations in ecTadA were found to improve the ability of ecTadA to deaminate adenosine in DNA.


Example 1—Evolution of Adenosine Base Editors (Evolution #1)

Evolution of adenosine base editors (ABEs) was achieved by creating librars of an ecTadA-XTEN-dead Cas9 construct (pNMG-104) via error-prone PCR, which was mutagenized in the ecTadA portion of the editor only. Selection of editors capable of catalyzing A to I deamination on DNA (A to G reversion) was selected for using an antibiotic selection platform. For the first round of evolution (Evolution #1), an adenosine base editor (ABE) library was co-expressed with a gRNA that targeted an active site mutation in a chloramphenicol acetyl-transferase gene, which requires an A to G reversion to restore acetyl-transferase activity and subsequent survival on chloramphenicol selection media. The selection plasmid is co-transformed into the S1030 host strain along with the ABE library. Evolution #1 was conducted and mutations D108N and A106V were identified as two mutations which enable A to G reversions on DNA. The D108N mutation more efficiently induced A to G reversions in DNA than A106V. Sequence alignment studies with S. aureus TadA revealed that residue D108 participates in H-bond contacts with the 2′ OH of the ribose sugar in the wild-type, tRNA substrate. In DNA, this 3′ OH is replaced with a 3′ H.


Wild-Type Adenosine Deaminases and a to G Deaminases


Transfection of various A to G deaminase fusions (+XTEN-nCas9) into Hek293T cells did not cause A to G SNP at the targeted sites. Six different sites were targeted, but none of the wild-type adenosine deaminase Cas9 fusions produced observable A to G modifications in DNA. BE3 (rAPOBEC1-XTEN-nCas9-UGI-NLS) was used as positive control. The following wild-type deaminase-nCas9 fusions were tested: ADAR (acts on mRNA), ADA (acts on deoxyadenosine), and ADAT (acts on tRNA) (FIG. 1).


A to G deaminases which act on DNA were developed. First, an antibiotic selection plasmid was developed, in which restoration of the active site residue in the antibiotic-resistant gene (A to G reversion) resulted in the host's resistance to antibiotic challenges. A high copy plasmid (RSF1030), was constructed. It required either a STOP reversion to a wild-type amino acid (Kan) or an active site residue restoration (Chlor). Specifically, on the template strand, the STOP needed to revert to glutamic acid (Kan) or tyrosine needed to revert to histidine (a cationic residue) (Chlor) (FIG. 2).


The minimum inhibitory concentration (MIC) was determined by the selection plasmid. The A to I selection plasmid was grown in S1030, and plated on varying concentrations of chloramphenicol. The MIC was found to be approximately 1 μg/mL. A serial dilution of the selection plasmid in S1030 cells (the host strain) plated on increasing concentrations of chlor (FIG. 3). Cells harboring library members which survive on concentrations of chlor above 1 μg/mL were considered to be possible hits.


The chloramphenicol (Chlor) selection was further validated using rAPOBEC1-XTEN-dCas9 construct as a positive control. Colonies that survived at 8 μg/mL chlor were then sequenced, and the C to T reversion was observed in DNA (FIG. 4). The assay was performed by growing cells with the selection plasmid and deaminase fusion to OD600nm ˜0.3 and then inducing fusion expression overnight. The resulting culture was then plated on increasing concentrations of chloramphenicol and the desired DNA reversion was screened.


An A to I deaminase library was then generated. Optimized assembly/library generation conditions, including PreCR vs. USER, electroporation vs. chemical composition, nucleofection vs. electroporation, outgrowth time, SOC vx. DRM, and sub-cloning vs. direct transformation, were examined. After the library assembly/electroporation conditions were optimized the following two libraries were made: APOBEC-XTEN-dCas9 and ADAT-XTEN-dCas9. The average library size was 2-4×106 based on the calculated colony-forming unit (CFU). The APOBEC-XTEN-dCas9 library produced no useful hits. The ADAT-XTEN-dCas9 library produced successful. The ADAT used was TadA (truncated) in E. coli.


Architecture of the Deaminase Library


The deaminase-XTEN-dCas9 fusion includes a SC101 backbone and a gRNA (lac promoter) to target the chloroamphernicol site (FIG. 5). Only deaminase is subjected to error-prone PCR, and the assembly is two-piece PreCR (a modified USER protocol). The gRNA is driven by the lac promoter; it targets the Chlor active site. A to G reversion is needed at position 9 of the protospacer to restore the His active site (a tyrosine to histidine reversion). Repair is needed and targeted on the template strand. APOBEC/CDA was used as a positive control. A to I constructs included the following: mADA, ADAR1, and ADAT2.


A TadA-XTEN-dCas9 library was also constructed. Error Prone PCR on TadA enzyme only was used. The optimized protocol was used and resulting constructs were subcloned. S1030 cells (with the selection plasmid) were transformed with a TadA*-XTEN-dCas9 randomized library. Protein expression was induced after a recovery phase. The library was then plated the next day on increasing concentrations of chloramphenicol (0.5, 1, 2, and 4 μg/mL) onto separate 24×24 cm plates and incubated overnight. TadA(wt)-XTEN-dCas9 was used as a negative control. Colonies grew on all four places, and as concentrations increased, fewer colonies were observed. The negative control had far fewer colonies than the plates with library members. Eight selection plasmids were sequenced and all plasmids contained the A to G reversion at the targeted site. In all, 120 colonies were PCR-amplified and then sequenced. The results of the first round of sequencing are shown in FIG. 6. An exemplary sequence of a selection plasmid with the A to G reversion is given in FIG. 7. The target is the template strand's A to G (observed as T to C in coding). The example shows about 50% reversion in the Sanger trace (Y to H).


A convergence at residue D108 was observed (FIG. 8). The crystal show of E. coli TadA is shown in FIG. 9. D119 in the figure is D108, as the residue numbers are offset. Many mutations were found to occur in that residue. FIG. 10 shows the crystal structure of Tad A (S. aureus) and aligns the sequences with that of E. coli. ecTadA residue 108 is equivalent to S. aureus TadA residue 104, which is part of a critical asparagine hydrogen bond with 2′OH of a ribose sugar.


Selection plasmids used in the evolution experiments contain mutations in various antibiotic resistance genes, which are targeted by adenosine base editors. Below are target sequences of the various antibiotic resistance genes (SEQ ID NOs: 441-444), where the targeted adenine required to restore resistance to its respective antibiotic is shown in bold and underlined. The plasmids used were high-copy plasmids with a RSF1030 origin.











Chloramphenicol target (H193Y):



(SEQ ID NO: 441)



5′-TACGGCGTAGTGCACCTGGA-3′







Kanamycin target 1 (Q4Term):



(SEQ ID NO: 442)



5′-ATCTTATTCGATCATGCGAA-3′







Kanamycing target 2 (W15Term):



(SEQ ID NO: 443)



5′-GCTTAGGTGGAGCGCCTATT-3′







Spectinomycin target (T89I):



(SEQ ID NO: 444)



5′-CAATGATGACTTCTACAGCG-3′






Mammalian codon optimized constructs were made by ordering a mammalian codon optimized version of ecTadA from Integrated Dna Technologies (IDT) as a gene block. This gene block was used to make pNMG-142, which served as a template for all subsequent mammalian codon-optimized constructs. See Table 4. After mutations were identified from the various rounds of evolution, primers were designed and ordered to introduce desired mutation(s) into the mammalian construct.


ecTadA Evolution and Challenge


Individual constructs from the ecTadA evolution were isolated and challenged. Sixteen clones were sub-cloned, resulting in the first round of evolution. Each of the 16 clones were transformed in S1030 cells with selection plasmid and challenged with increasing doses of chloramphenicol. rAPOBEC1-XTEN-dCas9, which has a C to T reversion at the same site, was used as a control. The results are shown in FIGS. 11 and 12. FIG. 12 shows the C.F.U. of various constructs challenged on increasing concentrations of chloramphenicol. Constructs 3 and 4 performed the best under the assay's conditions. D108N is a key mutation.


Base editors, having mutations at residue D108 of ecTadA are capable of generating an adenine to guanine mutation in DNA via hydrolytic deamination of adenine, which results in inosine formation at the adenine site. Inosine is the read as guanine by DNA polymerase. See FIGS. 18-22, and 129-139, which show the ability of various base editors to generate an adenine to guanine mutation in DNA in various target DNA sequences, such as Hek2 (FIGS. 19, 20, and 129), Hek 2-1 (FIG. 130), Hek 2-2 (FIG. 131), Hek 2-3 (FIG. 132), Hek 2-4 (FIG. 133), Hek 2-6 (FIG. 134), Hek 2-9 (FIG. 135), Hek 2-10 (FIG. 136), RNF2 (FIG. 138), FANCF (FIG. 139), EMX1 (FIG. 21), and Hek3 (FIGS. 22 and 137). In these experiments the D108N mutation as most efficient for generating an A to G mutation, with the addition of an A106V mutation improving efficiency further. Additionally, base editors more efficiently generated A to G mutations at the Hek2 site than any other site tested. In the figures, BE3 and BE2 refer to base editors that induce C to G mutations and act as a positive control for C to G base editing.


A second round of evolution, described in greater detail below, was performed. Constructs containing the D108N mutation were randomized (plasmid NMG-128). The selection assay was repeated, and the clones were challenged with high concentrations of chloramphenicol. The resulting material was sub-cloned, and the selection assay was repeated. The resulting colonies that survived on high concentrations of chloramphenicol were then sequenced. An enrichment of mutations at position E155 was observed (FIG. 13).


A to G Editing in Mammalian Cells


A to G editing in was examined in mammalian (Hek293T) cells. As shown in FIG. 14, the editing (from A to G) occurred in the various evolved ecTadA constructs, while it did not occur in the negative controls. The constructs used in the experiments described herein (e.g., Evolution #1-#7) are shown in Table 4. Table 4 includes the construct name, the construct architecture, and the ecTadA mutations. In table 4, pCMV refers to the expression vector comprising the construct. ecTadA refers to the ecTadA of SEQ ID NO: 1, however, for constructs comprising two ecTadA sequences, the second (C-terminal to the first ecTadA) ecTadA sequence does not comprise an N-terminal methionine. Table 4 also lists the mutations in ecTadA relative to SEQ ID NO: 1. Wild-type ecTadA refers to SEQ ID NO: 1. When two ecTadA domains are present the mutations in both ecTadA domains are indicated with the N-terminal ecTadA being indicated first. The 24 a.a linker refers to the amino acid sequence SGGSSGGSSGSETPGTSESATPES (SEQ ID NO: 685), the 32 a.a linker refers to the amino acid sequence SGGSSGGSSGSETPGTSESATPESSGGSSGGS (SEQ ID NO: 385), the 40 a.a linker refers to the amino acid sequence SGGSSGGSSGSETPGTSESATPESSGGSSGGSSGGSSGGS (SEQ ID NO: 686), the 64 a.a linker refers to the amino acid sequence SGGSSGGSSGSETPGTSESATPESSGGSSGGSSGGSSGGSSGSETPGTSESATPESSGGS SGGS (SEQ ID NO: 687), and the 92 a.a. linker refers to the amino acid sequence PGSPAGSPTSTEEGTSESATPESGPGTSTEPSEGSAPGSPAGSPTSTEEGTSTEPSEGSAP GTSTEPSEGSAPGTSESATPESGPGSEPATS (SEQ ID NO: 688).









TABLE 4







Plasmid Identity Key









Name
Construct Architecture
Mutations in TadA





pNMG-142
pCMV_ecTadA_XTEN_Cas9n_SGGS_NLS
wild-type


pNMG-143
pCMV_ecTadA_XTEN_Cas9n_SGGS_NLS
D108N


pNMG-144
pCMV_ecTadA_XTEN_Cas9n_SGGS_NLS
A106V_D108N


pNMG-145
pCMV_ecTadA_XTEN_Cas9n_SGGS_NLS
D108G


pNMG-146
pCMV_ecTadA_XTEN_Cas9n_SGGS_NLS
R107C_D108N


pNMG-147
pCMV_ecTadA_XTEN_Cas9n_SGGS_NLS
D108V


pNMG-155
pCMV_ecTadA_XTEN_dead Cas9_SGGS_UGI_NLS
D108N


pNMG-156
pCMV_ecTadA_XTEN_nCas9_SGGS_UGI_SGGS_NLS
D108N


pNMG-157
pCMV_ecTadA_XTEN_dead
D108G



Cas9_SGGS_UGI_SGGS_NLS



pNMG-158
pCMV_ecTadA_XTEN_nCas9_SGGS_UGI_SGGS_NLS
D108G


pNMG-160
pCMV_ecTadA_XTEN_nCas9_SGGS_AAG*(E125Q)_SGGS_NLS
D108N


pNMG-161
pCMV_ecTadA_XTEN_Cas9n_SGGS_EndoV*(D35A)_NLS
D108N


pNMG-162
pCMV_ecTadA_XTEN_Cas9n_SGGS_NLS
H8Y_D108N_S127S_D147Y_Q154H


pNMG-163
pCMV_ecTadA_XTEN_Cas9n_SGGS_NLS
H8Y_R24W_D108N_N127S_D147Y_E155V


pNMG-164
pCMV_ecTadA_XTEN_Cas9n_SGGS_NLS
D108N_D147Y_E155V


pNMG-165
pCMV_ecTadA_XTEN_Cas9n_SGGS_NLS
H8Y_D108N_S127S


pNMG-171
pCMV_Cas9n_XTEN_ecTadA_SGGS_NLS
wild-type


pNMG-172
pCMV_Cas9n_XTEN_ecTadA_SGGS_NLS
D108N


pNMG-173
pCMV_Cas9n_XTEN_ecTadA_SGGS_NLS
H8Y_D108N_N127S_D147Y_Q154H


pNMG-174
pCMV_Cas9n_XTEN_ecTadA_SGGS_NLS
H8Y_R24W_D108N_N127S_D147Y_E155V


pNMG-175
pCMV_Cas9n_XTEN_ecTadA_SGGS_NLS
D108N_D147Y_E155V


pNMG-176
pCMV_Cas9n_XTEN_ecTadA_SGGS_NLS
H8Y_D108N_S127S


pNMG-177
pCMV_ecTadA_XTEN_Cas9n_SGGS_NLS
A106V_D108N_D147Y_E155V


pNMG-178
pCMV_ecTadA_XTEN_Cas9n_SGGS_UGI_SGGS_NLS
D108N_D147Y_E155V


pNMG-179
pCMV_ecTadA_XTEN_Cas9n_SGGS_AAG*(E125Q)_SGGS_NLS
A106V_D108N_D147Y_E155V


pNMG-180
pCMV_ecTadA_XTEN_Cas9n_SGGS_UGI_SGGS_NLS
A106V_D108N_D147Y_E155V


pNMG-181
pCMV_ecTadA_XTEN_Cas9n_SGGS_AAG*(E125Q)_SGGS_NLS
D108N_D147Y_E155V


pNMG-182
pCMV_ecTadA_SGGS_nCas9_SGGS_NLS
D108N_D147Y_E155V


pNMG-183
pCMV_ecTadA_(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
D108N_D147Y_E155V


pNMG-235
pCMV_ecTadA_XTEN_Cas9n_XTEN_AAG*(E125A)_SGGS_NLS
A106V_D108N_D147Y_E155V


pNMG-236
pCMV_ecTadA_XTEN_Cas9n_XTEN_AAG*(E125Q)_SGGS_NLS
A106V_D108N_D147Y_E155V


pNMG-237
pCMV_ecTadA_XTEN_Cas9n_XTEN_AAG*(wt)_SGGS_NLS
A106V_D108N_D147Y_E155V


pNMG-238
pCMV_AAG*(E125A)_XTEN_ecTadA_XTEN_Cas9n_SGGS_NLS
A106V_D108N_D147Y_E155V


pNMG-239
pCMV_AAG*(wt)_XTEN_ecTadA_XTEN_Cas9n_SGGS_NLS
A106V_D108N_D147Y_E155V


pNMG-240
pCMV_ecTadA_XTEN_Cas9n_XTEN_EndoV*(D35A)_SGGS_NLS
A106V_D108N_D147Y_E155V


pNMG-241
pCMV_ecTadA_XTEN_Cas9n_XTEN_EndoV*(wt)_SGGS_NLS
A106V_D108N_D147Y_E155V


pNMG-242
pCMV_EndoV*(D35A)_XTEN_ecTadA_XTEN_Cas9n_SGGS_NLS
A106V_D108N_D147Y_E155V


pNMG-243
pCMV_EndoV*(wt)_XTEN_ecTadA_XTEN_Cas9n_SGGS_NLS
A106V_D108N_D147Y_E155V


pNMG-247
pCMV_ecTadA_XTEN_Cas9 (wild-type)_SGGS_NLS
wild-type


pNMG-248
pCMV_ecTadA_XTEN_Cas9 (wild-type)_SGGS_NLS
D108N_D147Y_E155V


pNMG-249
pCMV_ecTadA_XTEN_Cas9 (wild-type)_SGGS_NLS
A106V_D108N_D147Y_E155V


pNMG-250
pCMV_ecTadA_XTEN_Cas9 (wild-type)_SGGS_UGI_SGGS_NLS
D108N_D147Y_E155V


pNMG-251
pCMV_ecTadA_XTEN_Cas9 (wild-
A106V_D108N_D147Y_E155V



type)_SGGS_AAG*(E125Q)_SGGS_NLS



pNMG-274
pCMV_ecTadA_SGGS_NLS (no Cas9 fusion)
wild-type


pNMG-275
pCMV_ecTadA_SGGS_NLS (no Cas9 fusion)
A106V_D108N_D147Y_E155V


pNMG-276
pCMV_ecTadA-(SGGS)2-XTEN-
(wild-type) + (wild-type)



(SGGS)2_ecTadA_XTEN_nCas9_SGGS_NLS



pNMG-277
pCMV_ecTadA-(SGGS)2-XTEN-
(A106V_D108N_D147Y_E155V) +



(SGGS)2_ecTadA_XTEN_nCas9_SGGS_NLS
(A106V_D108N_D147Y_E155V)


pNMG-278
pCMV_ecTadA_XTEN_nCas9_SGGS_NLS
D108Q_D147Y_E155V


pNMG-279
pCMV_ecTadA_XTEN_nCas9_SGGS_NLS
D108M_D147Y_E155V


pNMG-280
pCMV_ecTadA_XTEN_nCas9_SGGS_NLS
D108L_D147Y_E155V


pNMG-281
pCMV_ecTadA_XTEN_nCas9_SGGS_NLS
D108K_D147Y_E155V


pNMG-282
pCMV_ecTadA_XTEN_nCas9_SGGS_NLS
D108I_D147Y_E155V


pNMG-283
pCMV_ecTadA_XTEN_nCas9_SGGS_NLS
D108F_D147Y_E155V


pNMG-284
pCMV_ecTadA_LONGER LINKER (92
(wild-type) + (A106V_D108N_D147Y_E155V)



a.a.)_ecTadA_XTEN_nCas9_SGGS_NLS



pNMG-285
pCMV_ecTadA_LONGER LINKER (92
(A106V_D108N_D147Y_E155V) +



a.a.)_ecTadA_XTEN_nCas9_SGGS_NLS
(A106V_D108N_D147Y)


pNMG-285b
pCMV_ecTadA_LONGER LINKER (92
(A106V_D108N_D147Y_E155V) +



a.a.)_ecTadA_XTEN_nCas9_SGGS_NLS
(A106V_D108N_D147Y_E155V)


pNMG-286
pCMV_ecTadA_XTEN_nCas9_SGGS_NLS
A106V_D108M_D147Y_E155V


pNMG-287
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2_ecTadA_XTEN-
(A106V_D108N_D147Y_E155V) +



nCas9 (S.aureus)_SGGS_NLS
(A106V_D108N_D147Y_E155V)


pNMG-289
pCMV_ecTadA-(SGGS)2-XTEN-
(A106V_D108N_D147Y_E155V) +



(SGGS)2_ecTadA_XTEN_nCas9_SGGS_UGI_NLS
(A106V_D108N_D147Y_E155V)


pNMG-290
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2_ecTadA_(SGGS)2-
(A106V_D108N_D147Y_E155V) +



XTEN-(SGGS)2_nCas9_SGGS_UGI_NLS
(A106V_D108N_D147Y_E155V)


pNMG-293
pCMV_ecTadA_XTEN_Cas9n_SGGS_NLS
E59A_A106V_D108N_D147Y_E155V


pNMG-294
pCMV_ecTadA_XTEN_Cas9n_SGGS_NLS
E59A


pNMG-295
pCMV_ecTadA_SGGS_NLS (no Cas9 fusion)
E59A


pNMG-296
pCMV_ecTadA_SGGS_NLS (no Cas9 fusion)
E59A cat dead_A106V_D108N_D147Y_E155V


pNMG-297
pCMV_ecTadA-(SGGS)2-XTEN-
(A106V_D108N_D147Y_E155V) + (wild-type)



(SGGS)2_ecTadA_XTEN_nCas9_SGGS_NLS



pNMG-298
pCMV_ecTadA-(SGGS)2-XTEN-
(D108M_D147Y_E155V) +



(SGGS)2_ecTadA_XTEN_nCas9_SGGS_NLS
(D108M_D147Y_E155V)


pNMG-320
pCMV_ecTadA-(SGGS)2-XTEN-
(wild-type) + (A106V_D108N_D147Y_E155V)



(SGGS)2_ecTadA_XTEN_nCas9_SGGS_NLS



pNMG-321
pCMV_ecTadA-(SGGS)2-XTEN-
(E59A_A106V_D108N_D147Y_E155V) +



(SGGS)2_ecTadA_XTEN_nCas9_SGGS_NLS
(A106V_D108N_D147Y_E155V)


pNMG-322
pCMV_ecTadA-(SGGS)2-XTEN-
(A106V_D108N_D147Y_E155V) +



(SGGS)2_ecTadA_XTEN_nCas9_SGGS_NLS
(E59A_A106V_D108N_D147Y_E155V)


pNMG-335
pCMV_TadA3p-XTEN-TadA2p-XTEN-nCas9-NLS
wild-type


pNMG-336
pCMV_ecTadA_(SGGS)2-XTEN-
L84F_A106V_D108N_H123Y_D147Y_E155V_I156Y



(SGGS)2_nCas9_SGGS_UGI_SGGS_NLS



pNMG-337
pCMV_ecTadA_(SGGS)2-XTEN-
A106V_D108N_D147Y_E155V



(SGGS)2_nCas9_SGGS_UGI_SGGS_NLS



pNMG-338
pCMV_ecTadA_(SGGS)2-XTEN-
L84F_A106V_D108N_H123Y_D147Y_E155V_I156F



(SGGS)2_nCas9_SGGS_UGI_SGGS_NLS



pNMG-339
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2_ecTadA_(SGGS)2-
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156Y +



XTEN-(SGGS)2_nCas9_SGGS_UGI_SGGS_NLS
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156Y


pNMG-340
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2_ecTadA_(SGGS)2-
(A106V_D108N_D147Y_E155V) +



XTEN-(SGGS)2_nCas9_SGGS_UGI_SGGS_NLS
(A106V_D108N_D147Y_E155V)


pNMG-341
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2_ecTadA_(SGGS)2-
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156F) +



XTEN-(SGGS)2_nCas9_SGGS_UGI_SGGS_NLS
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156F)


pNMG-345
pCMV_S.aureusTadA-(SGGS)2-XTEN-(SGGS)2-S.aureusTadA-
wild-type



(SGGS)2-XTEN-(SGGS)2-nCas9_SGGS_NLS



pNMG-346
pCMV_S.aureusTadA-(SGGS)2-XTEN-(SGGS)2-S.aureusTadA-
(D108N) + (D108N)



(SGGS)2-XTEN-(SGGS)2-nCas9_SGGS_NLS



pNMG-347
pCMV_S.aureusTadA-(SGGS)2-XTEN-(SGGS)2-S.aureusTadA-
(D107A_D018N) + (D107A_D108N)



(SGGS)2-XTEN-(SGGS)2-nCas9_SGGS_NLS



pNMG-348
pCMV_S.aureusTadA-(SGGS)2-XTEN-(SGGS)2-S.aureusTadA-
(G26P_D107A_D108N) +



(SGGS)2-XTEN-(SGGS)2-nCas9_SGGS_NLS
(G26P_D107A_D108N)


pNMG-349
pCMV_S.aureusTadA-(SGGS)2-XTEN-(SGGS)2-S.aureusTadA-
(G26P_D107A_D108N_S142A) +



(SGGS)2-XTEN-(SGGS)2-nCas9_sGGS_NLS
(G26P_D107A_D108N_S142A)


pNMG-350
pCMV_S.aureusTadA-(SGGS)2-XTEN-(SGGS)2-S.aureusTadA-
(D104A_D108N_S142A) +



(SGGS)2-XTEN-(SGGS)2-nCas9_SGGS_NLS
(D107A_D108N_S142A)


pNMG-351
pCMV_ecTadA_(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(R26G_L84F_A106V_R107H_D108N_H123Y_A142N_A143D_D147Y_E155V_I156F)


pNMG-352
pCMV_ecTadA_(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(E25G_R26G_L84F_A106V_R107H_D108N_H123Y_A142N_A143D_D147Y_E155V_I156F)


pNMG-353
pCMV_ecTadA_(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(E25D_R26G_L84F_A106V_R107K_D108N_H123Y_A142N_A143G_D147Y_E155V_I156F)


pNMG-354
pCMV_ecTadA_(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(R26Q_L84F_A106V_D108N_H123Y_A142N_D147Y_E155V_I156F)


pNMG-355
pCMV_ecTadA_(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(E25M_R26G_L84F_A106V_R107P_D108N_H123Y_A142N_A143D_D147Y_E155V_I156F)


pNMG-356
pCMV_ecTadA_(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(R26C_L84F_A106V_R107H_D108N_H123Y_A142N_D147Y_E155V_I156F)


pNMG-357
pCMV_ecTadA_(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(L84F_A106V_D108N_H123Y_A142N_A143L_D147Y_E155V_I156F)


pNMG-358
pCMV_ecTadA_(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(R26G_L84F_A106V_D108N_H123Y_A142N_D147Y_E155V_I156F)


pNMG-359
pCMV_ecTadA_(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(E25A_R26G_L84F_A106V_R107N_D108N_H123Y_A142N_A143E_D147Y_E155V_1156F)


pNMG-360
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(R26G_L84F_A106V_R107H_D108N_H123Y_A142N_A143D_D147Y_E155V_I156F) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(R26G_L84F_A106V_R107H_D108N_H123Y_A142N_A143D_D147Y_E155V_I156F)


pNMG-361
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(E25G_R26G_L84F_A106V_R107H_D108N_H123Y_A142N_A143D_D147Y_E155V_I156F) × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-362
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(E25D_R26G_L84F_A106V_R107K_D108N_H123Y_A142N_A143G_D147Y_E155V_I156F) × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-363
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(R26Q_L84F_A106V_D108N_H123Y_A142N_D147Y_E155V_I156F) × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-364
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(E25M_R26G_L84F_A106V_R107P_D108N_H123Y_A142N_A143D_D147Y_E155V_I156F) × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-365
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(R26C_L84F_A106V_R107H_D108N_H123Y_A142N_D147Y_E155V_I156F) × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-366
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(L84F_A106V_D108N_H123Y_A142N_A143L_D147Y_E155V_I156F) × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-367
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(R26G_L84F_A106V_D108N_H123Y_A142N_D147Y_E155V_I156F) × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-368
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(E25A_R26G_L84F_A106V_R107N_D108N_H123Y_A142N_A143E_D147Y_E155V_I156F) × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-369
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156Y) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156Y)


pNMG-370
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(A106V_D108N_D147Y_E155V) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(A106V_D108N_D147Y_E155V)


pNMG-371
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(L84F_A106_D108N_H123Y_D147Y_E155V_I156F) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156F)


pNMG-372
pCMV_ecTadA_(SGGS)2-XTEN-(SGGS)2_Cas9n_SGGS_NLS
A106V_D108N_A142N_D147Y_E155V


pNMG-373
pCMV_ecTadA_(SGGS)2-XTEN-(SGGS)2_Cas9n_SGGS_NLS
R26G_A106V_D108N_A142N_D147Y_E155V


pNMG-374
pCMV_ecTadA_(SGGS)2-XTEN-(SGGS)2_Cas9n_SGGS_NLS
E25D_R26G_A106V_R107K_D108N_A142N_A143G_D147Y_E155V


pNMG-375
pCMV_ecTadA_(SGGS)2-XTEN-(SGGS)2_Cas9n_SGGS_NLS
R26G_A106V_D108N_R107H_A142N_A143D_D147Y_E155V


pNMG-376
pCMV_ecTadA_(SGGS)2-XTEN-(SGGS)2_Cas9n_SGGS_NLS
E25D_R26G_A106V_D108N_A142N_D147Y_E155V


pNMG-377
pCMV_ecTadA_(SGGS)2-XTEN-(SGGS)2_Cas9n_SGGS_NLS
A106V_R107K_D108N_A142 N_D147Y_E155V


pNMG-378
pCMV_ecTadA_(SGGS)2-XTEN-(SGGS)2_Cas9n_SGGS_NLS
A106V_D108N_A142N_A143G_D147Y_E155V


pNMG-379
pCMV_ecTadA_(SGGS)2-XTEN-(SGGS)2_Cas9n_SGGS_NLS
A106V_D108N_A142N_A143L_D147Y_E155V


pNMG-382
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
A106V_D108N_A142N_D147Y_E155V × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-383
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
R26G_A106V_D108N_A142N_D147Y_E155V × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-384
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
E25D_R26G_A106V_R107K_D108N_A142N_A143G_D147Y_E155V × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-385
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
R26G_A106V_D108N_R107H_A142N_A143D_D147Y_E155V × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-386
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
E25D_R26G_A106V_D108N_A142N_D147Y_E155V × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-387
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
A106V_R107K_D108N_A142N_D147Y_E155V × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-388
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
A106V_D108N_A142N_A143G_D147Y_E155V × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-389
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
A106V_D108N_A142N_A143L_D147Y_E155V × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-391
pCMV_ecTadA_(SGGS)2-XTEN-
H36L_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS



pNMG-392
pCMV_ecTadA_(SGGS)2-XTEN-
N37T_P48T_M70L_L84F_A106V_D108N_H123Y_D147Y_I49V_E155V_1156F



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS



pNMG-393
pCMV_ecTadA_(SGGS)2-XTEN-
N37S_L84F_A106V_D108N_H123Y_D147Y_E155V_I156F_K161T



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS



pNMG-394
pCMV_ecTadA_(SGGS)2-XTEN-
H36L_L84F_A106V_D108N_H123Y_D147Y_Q154H_E155V_I156F



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS



pNMG-395
pCMV_ecTadA_(SGGS)2-XTEN-
N72S_L84F_A106V_D108N_H123Y_S146R_D147Y_E155V_I156F



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS



pNMG-396
pCMV_ecTadA_(SGGS)2-XTEN-
H36L_P48L_L84F_A106V_D108N_H123Y_E134G_D147Y_E155V_I156F



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS



pNMG-397
pCMV_ecTadA_(SGGS)2-XTEN-
H36L_L84F_A106V_D108N_H123Y_D147Y_E155V_I156F_K157N



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS



pNMG-398
pCMV_ecTadA_(SGGS)2-XTEN-
H36L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS



pNMG-399
pCMV_ecTadA_(SGGS)2-XTEN-
L84F_A106V_D108N_H123Y_S146R_D147Y_E155V_I156F_K161T



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS



pNMG-400
pCMV_ecTadA_(SGGS)2-XTEN-
N37S_R51H_D77G_L84F_A106V_D108N_H123Y_D147Y_E155V_I156F



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS



pNMG-401
pCMV_ecTadA_(SGGS)2-XTEN-
R51L_L84F_A106V_D108N_H123Y_D147Y_E155V_I156F_K157N



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS



pNMG-402
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(H36L_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N) × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-403
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(N37T_P48T_M70L_L84F_A106V_D108N_H123Y_D147Y_I49V_E155V_1156F) × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-404
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(N37S_L84F_A106V_D108N_H123Y_D147Y_E155V_I156F_K161T) × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-405
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(H36L_L84F_A106V_D108N_H123Y_D147Y_Q154H_E155V_I156F) × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-406
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(N72S_L84F_A106V_D108N_H123Y_S146R_D147Y_E155V_I156F) × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-407
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(H36L_P48L_L84F_A106V_D108N_H123Y_E134G_D147Y_E155V_I156F) × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-408
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(H36L_L84F_A106V_D108N_H123Y_D147Y_E155V_I156F_K157N) × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-409
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(H36L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F) × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-410
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(L84F_A106V_D108N_H123Y_S146R_D147Y_E155V_I156F_K161T) × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-411
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(N37S_R51H_D77G_L84F_A106V_D108N_H123Y_D147Y_E155V_I156F) × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-412
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(R51L_L84F_A106V_D108N_H123Y_D147Y_E155V_I156F_K157N) × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-440
pCMV_ecTadA_(SGGS)2-XTEN-
D24G_Q71R_L84F_H96L_A106V_D108N_H123Y_D147Y_E155V_1156F_K160E



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS



pNMG-441
pCMV_ecTadA_(SGGS)2-XTEN-
H36L_G67V_L84F_A106V_D108N_H123Y_S146T_D147Y_E155V_I156F



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS



pNMG-442
pCMV_ecTadA_(SGGS)2-XTEN-
Q71L_L84F_A106V_D108N_H123Y_L137M_A143E_D147Y_E155V_I156F



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS



pNMG-443
pCMV_ecTadA_(SGGS)2-XTEN-
E25G_L84F_A106V_D108N_H123Y_D147_E155V_I156F_Q159L



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS



pNMG-444
pCMV_ecTadA_(SGGS)2-XTEN-
L84F_A91T_F104I_A106V_D108N_H123Y_D147Y_E155V_I156F



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS



pNMG-445
pCMV_ecTadA_(SGGS)2-XTEN-
N72D_L84F_A106V_D108N_H123Y_G125A_D147Y_E155V_I156F



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS



pNMG-446
pCMV_ecTadA_(SGGS)2-XTEN-
P48S_L84F_S97C_A106V_D108N_H123Y_D147Y_E155V_I156F



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS



pNMG-447
pCMV_ecTadA_(SGGS)2-XTEN-
W23G_L84F_A106V_D108N_H123Y_D147Y_E155V_I156F



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS



pNMG-448
pCMV_ecTadA_(SGGS)2-XTEN-
D24G_P48L_Q71R_L84F_A106V_D108N_H123Y_D147Y_E155V_I156F_Q159L



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS



pNMG-449
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(D24G_Q71R_L84F_H96L_A106V_D108N_H123Y_D147Y_E155V_I156F_K16OE) × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-450
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(H36L_G67V_L84F_A106V_D108N_H123Y_S146T_D147Y_E155V_I156F) × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-451
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(Q71L_L84F_A106V_D108N_H123Y_L137M_A143E_D147Y_E155V_I156F) × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-452
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(E25G_L84F_A106V_D108N_H123Y_D147Y_E155V_I156F_Q159L) × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-453
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(L84F_A91T_F104I_A106V_D108N_H123Y_D147Y_E155V_I156F) × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-454
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(N72D_L84F_A106V_D108N_H123Y_G125A_D147Y_E155V_I156F) × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-455
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(P48S_L84F_S97C_A106V_D108N_H123Y_D147Y_E155V_I156F) × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-456
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(W23G_L84F_A106V_D108N_H123Y_D147Y_E155V_I156F) × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-457
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(D24G_P48L_Q71R_L84F_A106V_D108N_H123Y_D147Y_E155V_I156F_Q159L) × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-473
pCMV_ecTadA_(SGGS)2-XTEN-
L84F_A106V_D108N_H123Y_A142N_D147Y_E155V_I156F



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS



pNMG-474
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(L84F_A106V_D108N_H123Y_A142N_D147Y_E155V_I156F) × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-475
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wild-typet) + (A106V_D108N_D147Y_E155V)



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-476
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wild-type) + (L84F_A106V_D108N_H123Y_D147Y_E155V_I156F)



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-477
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wild-type) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(H36L_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N)


pNMG-478
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wild-type) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(N37S_L84F_A106V_D108N_H123Y_D147Y_E155V_I156F_K161T)


pNMG-479
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wild-type) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(L84F_A106V_D108N_H123Y_S146R_D147Y_E155V_I156F_K161T)


pNMG-480
pCMV_ecTadA_(SGGS)2-XTEN-(SGGS)2_Cas9n_SGGS_NLS
wild-type


pNMG-481
pCMV_ecTadA_(SGGS)2-XTEN-(SGGS)2_Cas9n_SGGS_NLS
A106V_D108N


pNMG-482
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
wild-type + wild-type



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-483
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(A106V_D108N) × 2



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-484
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wild-type) + (A106V_D108N)



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS



pNMG-485
pCMV_ecTadA_(SGGS)2-XTEN-
H36L_R51L_L84F_A106V_D108N_H123Y_A142N_S146C_D147Y_E155V_I156F_K157N



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS



pNMG-486
pCMV_ecTadA_(SGGS)2-XTEN-
N37S_L84F_A106V_D108N_H123Y_A142N_D147Y_E155V_I156F_K161T



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS



pNMG-487
pCMV_ecTadA_(SGGS)2-XTEN-
L84F_A106V_D108N_D147Y_E155V_I156F



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS



pNMG-488
pCMV_ecTadA_(SGGS)2-XTEN-
R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N_K161T



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS



pNMG-489
pCMV_ecTadA_(SGGS)2-XTEN-
L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K161T



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS



pNMG-490
pCMV_ecTadA_(SGGS)2-XTEN-
L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N_K160E_K161T



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS



pNMG-491
pCMV_ecTadA_(SGGS)2-XTEN-
L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N_K160E



(SGGS)2_Cas9n_SGGS_UGI_SGGS_NLS



pNMG-492
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(L84F_A106V_D108N_H123Y_A142N_D147Y_E155V_I156F)


pNMG-493
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(D24G_Q71R_L84F_H96L_A106V_D108N_H123Y_D147Y_E155V_I156F_K160E)


pNMG-494
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(H36L_R51L_L84F_A106V_D108N_H123Y_A142N_S146C_D147Y_E155V_I156F_K157N)


pNMG-495
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(N37S_L84F_A106V_D108N_H123Y_A142N_D147Y_E155V_I156F_K161T)


pNMG-496
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(L84F_A106V_D108N_D147Y_E155V_I156F)


pNMG-497
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N_K161T)


pNMG-498
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K161T)


pNMG-499
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N_K160E_K161T)


pNMG-500
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N_K160E)


pNMG-513
pCMV_ecTadA-92 a.a.-ecTadA-32 a.a._nCas9_SGGS_NLS
(wt) + (L84F_A106V_D108N_H123Y_D147Y_E155V_I156F)


pNMG-514
pCMV_ecTadA-92 a.a.-ecTadA-32 a.a._nCas9_SGGS_NLS
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156F) + (L84F_A106V_D108N_H123Y_D147Y_E155V_I156F)


pNMG-515
pCMV_ecTadA-92 a.a.-ecTadA-64 a.a._nCas9_SGGS_NLS
(wt) + (L84F_A106V_D108N_H123Y_D147Y_E155V_I156F)


pNMG-516
pCMV_ecTadA-92 a.a.-ecTadA-64 a.a._nCas9_SGGS_NLS
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156F) + (L84F_A106V_D108N_H123Y_D147Y_E155V_I156F)


pNMG-517
pCMV_ecTadA-32 a.a.-ecTadA-64 a.a._nCas9_SGGS_NLS
(wt) + (L84F_A106V_D108N_H123Y_D147Y_E155V_I156F)


pNMG-518
pCMV_ecTadA-32 a.a.-ecTadA-64 a.a._nCas9_SGGS_NLS
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156F) + (L84F_A106V_D108N_H123Y_D147Y_E155V_I156F)


pNMG-519
pCMV_ecTadA-32 a.a.-_nCas9_SGGS_NLS
R74Q


pNMG-520
pCMV_ecTadA-32 a.a.-_nCas9_SGGS_NLS
R74Q




L84F_A106V_D108N_H123Y_D147Y_E155V_I156F


pNMG-521
pCMV_ecTadA-32 a.a.-_nCas9_SGGS_NLS
R74A_L84F_A106V_D108N_H123Y_D147Y_E155V_I156F


pNMG-522
pCMV_ecTadA-32 a.a.-_nCas9_SGGS_NLS
R98Q


pNMG-523
pCMV_ecTadA-32 a.a.-_nCas9_SGGS_NLS
R129Q


pNMG-524
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt + R74Q) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156F)


pNMG-525
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt + R74Q) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(R74Q_L84F_A106V_D108N_H123Y_D147Y_E155V_I156F)


pNMG-526
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(R74A_L84F_A106V_D108N_H123Y_D147Y_E155V_I156F) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(R74A_L84F_A106V_D108N_H123Y_D147Y_E155V_I156F)


pNMG-527
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt + R98Q) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(L84F_R98Q_A106V_D108N_H123Y_D147Y_E155V_I156F)


pNMG-528
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt + R129Q) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(L84F_A106V_D108N_H123Y_R129Q_D147Y_E155V_I156F)


pNMG-529
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156F) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(H36L_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N)


pNMG-530
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(H36L_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156F)


pNMG-543
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(P48S_L84F_A106V_D108N_H123Y_A142N_D147Y_E155V_I156F)


pNMG-544
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(P48T_I49V_L84F_A106V_D108N_H123Y_A142N_D147Y_E155V_I156F_L157N)


pNMG-545
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
P48S_A142N


pNMG-546
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
P48T_I49V_A142N


pNMG-547
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(P48S_L84F_A106V_D108N_H123Y_A142N_D147Y_E155V_I156F)


pNMG-548
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(P48S_L84F_A106V_D108N_H123Y_A142N_D147Y_E155V_I156F) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(P48S_L84F_A106V_D108N_H123Y_A142N_D147Y_E155V_I156F))


pNMG-549
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(P48S_A142N) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(P48S_L84F_A106V_D108N_H123Y_A142N_D147Y_E155V_I156F))


pNMG-550
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(P48S_A142N) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156F)


pNMG-551
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(P48T_I49V_L84F_A106V_D108N_H123Y_A142N_D147Y_E155V_I156F_L157N)


pNMG-552
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(P48T_I49V_L84F_A106V_D108N_H123Y_A142N_D147Y_E155V_I156F_L157N) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(P48T_I49V_L84F_A106V_D108N_H123Y_A142N_D147Y_E155V_I156F_L157N)


pNMG-553
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(P48T_I49V_A142N) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(P48T_I49V_L84F_A106V_D108N_H123Y_A142N_D147Y_E155V_I156F_L157N)


pNMG-554
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(P48T_I49V_A142N) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(L84F_A106V_D108N_H123Y_D147Y_E155V_I156F)


pNMG-555
pCMV_ecTadA-24 a.a. linker-ecTadA-24 a.a.
(wt) +



linker_nCas9_SGGS_NLS
(H36L_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N)


pNMG-556
pCMV_ecTadA-24 a.a. linker-ecTadA-32 a.a.
(wt) +



linker_nCas9_SGGS_NLS
(H36L_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N)


pNMG-557
pCMV_ecTadA-24 a.a. linker-ecTadA-40 a.a.
(wt) +



linker_nCas9_SGGS_NLS
(H36L_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N)


pNMG-558
pCMV_ecTadA-32 a.a. linker-ecTadA-24 a.a.
(wt) +



linker_nCas9_SGGS_NLS
(H36L_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N)


pNMG-559
pCMV_ecTadA-32 a.a. linker-ecTadA-40 a.a.
(wt) +



linker_nCas9_SGGS_NLS
(H36L_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N)


pNMG-560
pCMV_ecTadA-40 a.a. linker-ecTadA-24 a.a.
(wt) +



linker_nCas9_SGGS_NLS
(H36L_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N)


pNMG-561
pCMV_ecTadA-40 a.a. linker-ecTadA-32 a.a.
(wt) +



linker_nCas9_SGGS_NLS
(H36L_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N)


pNMG-562
pCMV_ecTadA-40 a.a. linker-ecTadA-40 a.a.
(wt) +



linker_nCas9_SGGS_NLS
(H36L_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N)


pNMG-563
pCMV_ecTadA-24 a.a. linker_nCas9_SGGS_NLS
wild-type


pNMG-564
pCMV_ecTadA-24 a.a. linker_nCas9_SGGS_NLS
(H36L_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N)


pNMG-565
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-(SGGS)2-
(wt) +



XTEN-(SGGS)2_nCas9_XTEN_MBD4_SGGS_NLS
(H36L_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N)


pNMG-566
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-(SGGS)2-
(wt) +



XTEN-(SGGS)2_nCas9_XTEN_TDG_SGGS_NLS
(H36L_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N)


pNMG-572
pCMV_ecTadA-32 a.a.-_nCas9_SGGS_NLS
(H36L_P48S_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F _K157N)


pNMG-573
pCMV_ecTadA-32 a.a.-_nCas9_SGGS_NLS
(H36L_P48S_R51L_L84F_A106V_D108N_H123Y_S146C_A142N_D147Y_E155V_I156F_K157N)


pNMG-574
pCMV_ecTadA-32 a.a.-_nCas9_SGGS_NLS
(H36L_P48T_I49V_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N)


pNMG-575
pCMV_ecTadA-32 a.a.-_nCas9_SGGS_NLS
(H36L_P48T_I49V_R51L_L84F_A106V_D108N_H123Y_A142N_S146C_D147Y_E155V_I156F_K157N)


pNMG-576
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(H36L_P48S_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N)


pNMG-577
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(H36L_P48S_R51L_L84F_A106V_D108N_H123Y_S146C_A142N_D147Y_E155V_I156F_K157N)


pNMG-578
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(H36L_P48T_I49V_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N)


pNMG-579
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(H36L_P48T_I49V_R51L_L84F_A106V_D108N_H123Y_A142N_S146C_D147Y_E155V_I156F_K157N)


pNMG-580
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(H36L_P48S_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(H36L_P48S_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N)


pNMG-581
pCMV_ecTadA-32 a.a.-_nCas9_SGGS_NLS
(H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F _K157N)


pNMG-583
pCMV_ecTadA-32 a.a.-_nCas9_SGGS_NLS
(H36L_P48A_R51L_L84F_A106V_D108N_H123Y_A142N_S146C_D147Y_E155V_I156F_K157N)


pNMG-586
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N)


pNMG-588
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_A142N_D147Y_E155V_I156F_K157N)


pNMG-603
pCMV_ecTadA-32 a.a.-_nCas9_SGGS_NLS
(W23L_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N)


pNMG-604
pCMV_ecTadA-32 a.a.-_nCas9_SGGS_NLS
(W23R_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N)


pNMG-605
pCMV_ecTadA-32 a.a.-_nCas9_SGGS_NLS
(W23L_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146R_D147Y_E155V_I156F_K161T)


pNMG-606
pCMV_ecTadA-32 a.a.-_nCas9_SGGS_NLS
(H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_R152H_E155V_I156F_K157N)


pNMG-607
pCMV_ecTadA-32 a.a.-_nCas9_SGGS_NLS
(H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_R152P_E155V_I156F_K157N)


pNMG-608
pCMV_ecTadA-32 a.a.-_nCas9_SGGS_NLS
(W23L_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_R152P_E155V_1156F_K157N)


pNMG-609
pCMV_ecTadA-32 a.a.-_nCas9_SGGS_NLS
(W23L_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_A142A_S146C_D147Y_E155V_1156F_K157N)


pNMG-610
pCMV_ecTadA-32 a.a.-_nCas9_SGGS_NLS
(W23L_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_A142A_S146C_D147Y_R152P_E155V_I156F_K157N)


pNMG-611
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(W23L_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N)


pNMG-612
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(W23R_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_E155V_I156F_K157N)


pNMG-613
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(W23L_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146R_D147Y_E155V_I156F_K161T)


pNMG-614
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_R152H_E155V_I156F_K157N)


pNMG-615
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_R152P_E155V_I156F_K157N)


pNMG-616
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(W23L_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_R152P_E155V_1156F_K157N)


pNMG-617
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(W23L_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_A142A_S146C_D147Y_E155V_1156F_K157N)


pNMG-618
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(W23L_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_A142A_S146C_D147Y_R152P_E155V_I156F_K157N)


pNMG-619
pCMV_ecTadA-32 a.a.-_nCas9_SGGS_NLS
(W23R_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_R152P_E155V_1156F_K157N)


pNMG-620
pCMV_ecTadA-(SGGS)2-XTEN-(SGGS)2-ecTadA-
(wt) +



(SGGS)2-XTEN-(SGGS)2_nCas9_SGGS_NLS
(W23R_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_R152P_E155V_1156F_K157N)


pNMG-621
pCMV_ecTadA-32 a.a. linker-ecTadA-24 a.a.
(wt) +



linker_nCas9_SGGS_NLS
(H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_R152P_E155V_I156F_K157N)


pNMG-622
pCMV_ecTadA-32 a.a. linker-ecTadA-24 a.a.
(wt) +



linker_nCas9_SGGS_NLS
(H36L_P48A_R51L_L84F_A106V_D108N_H123Y_A142N_S146C_D147Y_R152P_E155V_1156F_K157N)


pNMG-623
pCMV_ecTadA-32 a.a. linker-ecTadA-24 a.a.
(wt) +



linker_nCas9_SGGS_NLS
(W23L_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_R152P_E155V_1156F_K157N)


pNMG-624
pCMV_ecTadA-32 a.a. linker-ecTadA-24 a.a.
(wt) +



linker_nCas9_SGGS_NLS
(W23R_H36L_P48A_R51L_L84F_A106V_D108N_H123Y_S146C_D147Y_R152P_E155V_1156F_K157N)









Example 2—Evolution of Adenosine Base Editor Containing the D108N Mutation of ecTadA (Evolution #2)

An ecTadA construct with a D108N (pNMG-128) mutation was mutagenized via error-prone PCR, as in Evolution #1, and this library was selected against the same chloramphenicol site, except higher concentrations of chloramphenicol was used in the selection media to increase the stringency of the selection. This round of selection produced two new mutations which improved the editing efficiencies of ABE: D147Y and E155V.


In the first round of evolution, error-prone PCR was conducted on the ecTadA deaminase portion of a ecTadA-XTEN-dCas9 fusion construct followed by USER assembly to create a library of ecTadA-XTEN-dCas9 variants (varied only in the deaminase portion). These library members were transformed into S1030 cells containing a selection plasmid, which contained a single G to A point mutation in the active site portion of the chloramphenicol resistance gene. Cells were cultured overnight and plated on concentrations of chloramphenicol which were higher than the MIC of the S1030 cells with the selection plasmid. Surviving colonies were sub-cloned and re-challenged under the selection conditions and then sequenced to identify the genotype of the productive variants. Sanger sequencing analysis revealed that a D108N, a D108V, and a D108G mutation conferred the desired phenotype (A to G transition mutation in DNA). Subsequent studies involving individual clones isolated from this first round of evolution demonstrated that the D108N mutation was the optimal substitution at this site.


A second round of evolution was performed by evolving ecTadA containing a D108N mutation (see construct 3, clone 5, as listed in FIG. 11 (pNMG-128), which was identified from first round of evolution. pNMG-128 also contains mutations H8Y and N127S, which are “hitch-hiker” mutations. The evolved clones of the resulting library were challenged with 32, 64 and 128 ug/mL chloramphenicol (higher stringency than 1st round evolution of 1, 2 and 4 ug/mL). Clones which survived on 32, 64 and 128 ug/mL chloramphenicol were subcloned and re-plated, individual clones from this enrichment were isolated and assayed. The number of colony forming units (C.F.U) for each construct, pNMG-128 and pNMG 149-154, are shown in FIG. 17 under varying concentrations of chloramphenicol. A second round of evolution with high stringency conditions resulted in a high frequency of mutations at D147 and E155 of ecTadA, which are highlighted in FIG. 16.



FIGS. 23-27 show the results of transfections of various ABE constructs into Hek293T cells, using a gRNA to direct the editor to the various genetic loci. FIG. 23 shows pNMG-164, 171, 172, and 173 editing on Hek-2. FIG. 24p shows NMG-174-177 editing on Hek-2. FIG. 25 shows pNMG 143, 144, 164, 177 editing on Hek-2. FIG. 26 shows pNMG-164, pNMG-177, pNMG-178, pNMG-179, and pNMG-180 editing on Hek-2. FIG. 27 shows pNMG-164, 177-180 editing on Hek-2.


Regarding FIGS. 28-45, mammalian codon optimized constructs of ecTadA containing mutations at D108, (in some cases the mutations included the following: D108N, D108G, D108V) were used to probe whether D108 mutations identified in the first round of evolution also catalyzed A to G reversion in mammalian cells. Constructs pNMG-142-147 were transfected into Hek293T cells, and showed the greatest amount of A to G editing efficiencies at position #5 of the Hek-2 site, with low to no editing of adenines at any other sites. Exemplary DNA sequences that were targeted are described below as HEk2 (SEQ ID NO: 41), Hek3 (SEQ ID NO: 42), Hek4 (SEQ ID NO: 43), RNF2 (SEQ ID NO: 44), FANCF (SEQ ID NO: 45), and EMX1 (SEQ ID NO: 46). Subsequent experiments and evolutions have increased the editing efficiencies and identified that the editing window generally occurs at positions 4-6 in the protospacer and with a surrounding sequence of “YAC”; where “Y” is a pyrimidine (T or C) base and the underlined nucleotides, in the sequences below, is the PAM sequence. For the Hek2 sequence (SEQ ID NO: 41), shown below, the protospacer positions are indicated as 1-20 going from right to left. Position 5 of the protospacer at the Hek2 site is a T, which is opposite the A that may be edited by any of the adenosine deaminases described herein. For the Hek3, Hek4 RNF2, FANCF and EMX1 sequences (SEQ ID NOs: 42-46), shown below, the protospacer positions are indicated as 1-20 going from left to right. For these sequences one or more of the adenines (As), such as the A at position 6 of the Hek3 site (SEQ ID NO: 41), may be edited by any of the adenosine deaminases described herein. It should be noted that transfection of pNMG-142 (wild-type ecTadA fused to nCas9) produced no observable amounts of editing, underscoring the importance and necessity of implementation of the mutations arising from the directed evolution experiments.


Target sequences used in the Examples are provided below (PAM sequences are underlined in bold):











Hek2:



(SEQ ID NO: 41)





CCC
GCAGTCTATGCTTTGTGTTC








Hek3:



(SEQ ID NO: 42)



GGCCCAGACTGAGCACGTGATGG







Hek4:



(SEQ ID NO: 43)



GGCACTGCGGCTGGAGGTGGGGG







RNF2:



(SEQ ID NO: 44)



GTCATCTTAGTCAGGACCTGAGG







FANCF:



(SEQ ID NO: 45)



GGAATCCCTTCTGCAGCACCTGG







EMX1:



(SEQ ID NO: 46)



GAGTCCGAGCAGAAGAAGAAGGG







Engineering Adenosine Base Editors with Domains that Inhibit Reversion of Inosine to Adenine


It was hypothesized that blocking inosine reversion to adenine, for example as a result of endogenous hAAG activity, could improve base editing efficiency. Accordingly, experiments were performed to examine the effect of adding a catalytically inactive alkyl adenosine glycosylase to the C-terminal end of ABE editors. Base editor 3 (BE3) in these transfections served as the positive control for C to G base editing, pNMG-142 is the negative control, pNMG-143 is an evolution round #1 construct, pNMG-144 (D108N) is another evolution round #1 construct (A106V_D108N). The mutations in the pNMG-156 construct are all mutations identified from the highest frequency amplicons resulting from the first round of ecTadA bacterial evolution (including “hitch-hicker” mutations). Hitch-hiker mutations refer to mutations that were identified in evolution experiments, but may not have a significant effect on adenosine base editing. A method for identifying hitch-hiker mutations is to do reversion analysis and then re-assay the construct to determine whether the mutation has an effect on base editing. pNMG-156 is the mammalian codon-optimized version of pNMG-128 (the bacterial vector I isolated in the selection) with contains a C-terminal UGI. pNMG-160 is the equivalent of pNMG-143 having a catalytically inactive AAG (E125Q), pNMG-161 is pNMG-143 having a catalytically inactive Endo V (D35A). Mutations E125Q and D35A correspond to the mutations in the catalytically dead AAG and EndoV open reading frame (ORF), respectively. pNMG-162 thas the same construct architecture as pNMG-156, except it does not contain UGI. The ability of these constructs to deaminate adenosine in the target sequences, HEk2 (SEQ ID NO: 41), Hek3 (SEQ ID NO: 42), Hek4 (SEQ ID NO: 43), RNF2 (SEQ ID NO: 44), FANCF (SEQ ID NO: 45), and EMX1 (SEQ ID NO: 46) is shown in FIGS. 28-33, respectively. In general, it was found that, for the constructs tested, incorporation of UGI, AAG(E125Q), or EndoV (D35A)C-terminal to the ecTadA and the Cas9 domain did not provide a significant increase in the efficiency of the base editors to generate an adenosine to guanine mutation.


Arranging the Adenosine Deaminase Domain Relative to the Cas9 Domain


Arrangement of the adenosine deaminase domain (e.g., ecTadA) relative to the Cas9 domain in adenosine base editors was tested. For example, it was tested whether placement of the adenosine deaminase N-terminal or C-terminal relative to a Cas9 domain affected base editing efficiency. Further, experiments including mutations from evolution #1 of ecTadA and evolution #2 of ecTadA were compared. See FIGS. 34-39. In general, the mutations identified in evolution #2 improved the editing efficiencies of the ABE editors identified in evolution #1. Additionally, it was found that adenosine base editors were active (mutated adenine to guanine) when the adenosine deaminase was arranged N-terminal to Cas9. Adenosine base editor constructs where the adenosine deaminase was arranged C-terminal to Cas9 showed little to no observable editing of adenine to guanine.


The following ABE constructs were transfected into Hek293T cells; pNMG-142, which served as a negative control (no mutations in ecTadA); pNMG-143 (where ecTadA has a D108N mutation), pNMG-144 (where ecTadA has a A106V, and a D108N mutation) and pNMG-164 (where ecTadA has a D108N, a D147Y, and a E155V mutation). These constructs were mammalian codon optimized constructs with mutations from evolution #1. Construct pNMG-171 served as a control for the C-terminal TadA fusion constructs of pNMG-172 to pNMG-176, which contain various ecTadA mutations. pNMG-171 contains a C-terminal wild-type ecTadA fusion to nCas9, whereas pNMG-172-176 contain mutations in TadA identified from evolution #1. pNMG-177 and pNMG-178 represent two mammalian codon optimized plasmids with mutations identified from evolution #2, where pNMG-178 contains a UGI domain. pNMG-179 and pNMG-180 are the same as pNMG-177 but with an added C-terminal catalytically inactive AAG (E125Q), and a UGI domain, respectively. The ability of these constructs to deaminate adenosine in the target sequences, HEk2 (SEQ ID NO: 41), Hek3 (SEQ ID NO: 42), Hek4 (SEQ ID NO: 43), RNF2 (SEQ ID NO: 44), FANCF (SEQ ID NO: 45), and EMX1 (SEQ ID NO: 46) is shown in FIGS. 34-39, respectively.


In general, it was found that fusing the adenosine deaminase (ecTadA) N-terminal to the Cas9, as opposed to C-terminal, yielded more efficient base editing of adenine. It was also found that ecTadA containing the mutations A106V, D108N, D147Y, and E155V performed better (e.g., edited adenine more efficiently) than the other ecTadA mutations tested in evolution #1 and evolution #2. Further, it was found that for the constructs tested, incorporation of UGI, or AAG(E125Q), in these constructs did not provide a significant increase in the efficiency of the base editors to generate an adenosine to guanine mutation.


The transfection experiments shown in FIG. 40 were performed to determine four key points: One, whether ecTadA interferes with gRNA/Cas9 binding by deaminating As in the RNA of the guide. Two, whether a short linker (GGS only) or a long linker ((SGGS)2—XTEN-(SGGS)2) ((SGGS)2) corresponds to SEQ ID NO: 2) between the evolved deaminase and Cas9 affects window size and/or overall editing efficiencies of ABE. Three, whether or not dimerization of evolved ecTadA improves ABE editing efficiencies. Four, if other substitutions at the position D108 in TadA could further enhance editing efficiencies. It was found that the ABE editors do not interfere with gRNA/Cas9 binding and that dimerization of ecTadA does improve editing efficiencies. To test whether ABE interferes with gRNA/Cas9 binding nCas9 was replaced with wild-type Cas9 in various evolved ABE constructs (pNMG-247-251) and compared INDEL rates to Cas9 (wt) only INDEL rates (see FIG. 48). A to G editing efficiencies are undetectable in FIG. 40 for pNMG-247-251, likely due to wild-type Cas9 nuclease activity. It was also determined that the long linker between the evolved ecTadA and nCas9 (pNMG-183) yielded higher editing efficiencies relative to XTEN only and GGS only linkers. Most strikingly, dimerization of the ecTadA unit of ABE was tested both in trans by co-transfecting equimolar amounts of ecTadA (with and without mutations from evolution) with ABE editors pNMG-142 (neg control), pNMG-177 (A106V_D108N_D147Y_E155V) and in cis by making editors in which two untis of ecTadA were covalently tethered (with a (SGGS)2—XTEN-(SGGS)2 linker). Monomeric units used for in trans dimerization experiments are pNMG-274 and pNMG-275. Covalent fusions of two untis of ecTadA in the ABE editor are represented in pNMG-276 (negative control, two units of wild-type TadA in the ABE editor) and pNMG-277. Lastly, transfections with plasmids pNMG-278-283, which represent ABE editors that have varying mutations at D108 position in ecTadA (e.g. D108M, D108Q, D108K, etc), showed that the D108N substitution originally identified in round #1 evolution is the best performing mutation at this position.


Example 3—Development of Adenosine Base Editors (Evolution #3)

An ecTadA construct with the consensus mutations A106V, D108N, D147Y (pNMG-184) and E155V was mutagenized with error-pone PCR and the resulting ABE library was targeted with 2 separate gRNAs to two different sites in a kanamycin resistance gene which require two A to G reversions (both in premature stop codons) to conder kanamycin resistance. The 2 gRNA/2 target approach was used to increase the stringency of the selection. This evolution resulted in the identification of the following new mutations: L84F, H123Y and I157F.


Deaminase Editing sgRNA


During the development of ABE, it was questioned whether or not the deaminase was editing the sgRNA and did TadA still have RNA activity. Based on the results shown in FIG. 48, fusions appeared to bind well, but there was no significant difference between ABE and Cas9 indel percentage. This demonstrates that ABE is not interfering or modifying the gRNA strand. Differences between wt Cas9 only and ABE fused to wild-type Cas9 would suggest deaminase interference with the gRNA. This was not the case.


It was also questioned whether or not D108 residue could be further mutated to cause deaminase to reject RNA as a substrate. The sgRNAs encoding sites can be found in FIG. 51. Results have shown that a D108M mutation in ecTadA does not significantly improve editing efficiency of the adenosine base editors.


It was found that tethering an additional unit of the mutant TadA to the ABE results in higher editing efficiencies for deamination of the DNA. Tethering an AAG, a base excision repair enzyme, to ABE did not significantly enhance base editing. Tethering catalytically inactivated EndoV, the E. Coli DNA repair enzyme, to ABE also did not significantly enhance base editing. Furthermore, knock-out cell lines of AAG (which revert inosine back to A) had no better editing efficiencies than the parent strain.


A next goal was to determine why ABE edit more efficiently on the HEK site 2 than on other sites tested. While adenosine base editors worked well at all sites, they worked optimally at the Hek-2 site. It was theorized that ABE worked best on HEK site 2 due to an abundance of adenine residues. Results shown in FIG. 57 show that this is not the case. Another theory was that linker length could be why ABE only worked on the HEK site 2. Results shown in FIG. 59 and FIG. 60 proved inconclusive. The longest linker to Cas9 between ecTadA and Cas9 enhanced editing efficiencies but did not seem to expand the base editing window. It was also tested whether an ABE efficiently edited Hek-2 similar sites and it was found that there was very efficient editing at Hek-2 similar sites. From this data it was found that the ABEs edited adenines more efficiently when they were part of a “YAC” consensus sequence, where Y is C or T. Also, the tRNA substrate of ecTadA is in the context of “U-A-C” which is YAC.


It has been suggested that dimerization of the deaminase may improve base editing. The current editor architecture, in trans dimerization, and in cis dimerization are shown in FIG. 63 (top structure, bottom left structure, and bottom right structure). Results shown in FIG. 64 through FIG. 66 show that dimerization of the deaminase improved base editing. With respect to the “YAC” sequence specificity, one hypothesis, supported by the data, is that ABE operates best on As in positions 4-6 of the protospacer and with a surrounding sequence of “YAC”; target A underlined, where Y is C or T.


Evolving ABE Editor Against New Selection Sequences


A next goal was to modify the ABE editor sequence preferences. One ABE targeted the Q4 stop site only and A to G reversion was observed, as shown in FIG. 69. Results also showed that the editor targeted the W15 stop site only and A to G reversion was observed, as shown in FIG. 70. Sequences were different than original evolution target, which was the chloramphenicol active site. New mutations could result in a kinetically faster enzyme. The third round of evolution targeted both Q4 and W15 sites simultaneously in the kanamycin gene. Correction of two sites in the same gene, in addition to targeting sites of with sequence identity dissimilar from the original chloramphenicol gene creates greater selection stringency. The template used for evolution #3 was bacterial plasmid pNMG-288 which contained 2gRNA (targeting Q4 stop and W15 stop in kanamycin). Error-pone PCR was performed on the deaminase portion of pNMG-288 which already contained the following mutations: A106V, D108N, D147Y, E155V.


Upon creating mammalian constructs of the corresponding variants resulting from evolution round #3, it was found that pNMG-341 and pNMG-340 generally out-performed pNMG-290, which was the most highly optimized construct from evolution #2.









TABLE 5







Includes exemplary protospacer and PAM sequences.


An RNA sequence complementary to the protospacer


sequence in the table would be used in a gRNA to


target an ABE to the sequence. The target A with


respect to the original Hek-2 site (originally at


position 5) is shown in bold, and nucleotides that


 differ from the original Hek-2 sequence are


underlined. The sequences correspond to SEQ ID


NOs: 445-464 from top to bottom.










plasmid





name
comment
protospacer sequence
PAM





pNMG-299
other sites within HEK2
GAACACAAAGCATAGACTGC
GGG



locus







pNMG-301
other sites within HEK2
GGAACACAAAGCATAGACTG
CGG



locus







pNMG-302
other sites within HEK2
AACACAAAGCATAGACTGCG
GGG



locus







pNMG-303
other sites within HEK2

ACAAAGCATAGACTGCGGGG

CGG



locus







pNMG-304
other sites within HEK2
CAAAGCATAGACTGCGGGGC
GGG



locus







pNMG-305
other sites within HEK2
GTGGTAATTTTCCAGCCCGC
TGG



locus







pNMG-306
other sites within HEK2
CCTTTACAGGGCCAGCGGGC
TGG



locus







pNMG-307
other sites within HEK2
CTGTCACAGTTAGCTCAGCC
AGG



locus







pNMG-308
other sites within HEK2
GTGTTCCAGTTTCCTTTACA
GGG



locus







pNMG-300
Hek-2 guideSEQ off-target
GAACACAATGCATAGATTGC
CGG





pNMG-309
Hek-2 similar site
GAAAAAAAAGCAGAGACTGC
TGG





pNMG-310
Hek-2 similar site
GAATACTAAGCATAGACTCC
AGG





pNMG-311
Hek-2 similar site
GTAAACAAAGCATAGACTGA
GGG





pNMG-312
Hek-2 similar site
GGACACAAAGCTTAGACTCC
AGG





pNMG-313
Hek-2 similar site

CAATACAAAGGATAGACTGC

AGG





pNMG-314
Hek-2 similar site
GAAGACCAAGGATAGACTGC
TGG





pNMG-315
Hek-2 similar site
GAAAACAAATCATTGACTGC
AGG





pNMG-316
Hek-2 similar site
GATCACAAAGCATGGACTGA
AGG





pNMG-317
Hek-2 similar site
GAAAACAAAACATAGAGTGC
TGG





pNMG-318
Hek-2 similar site
GAACATAAAGAATAGAATGA
TGG









Example 3—Evolution of Adenosine Base Editor Containing the A106V, D108N, D147Y, and E155V Mutations of ecTadA (Evolution #3)

An ecTadA construct with the consensus mutations A106V, D108N, D147Y (pNMG-184) and E155V was mutagenized with error-pone PCR and the resulting ABE library was targeted with 2 separate gRNAs to two different sites in a kanamycin resistance gene which require two A to G reversions (both in premature stop codons) to confer kanamycin resistance. The 2 gRNA/2 target approach was used to increase the stringency of the selection. See FIGS. 96-99. This evolution resulted in the identification of the following new mutations: L84F, H123Y and I157F.


Evolution #3 was performed analogously as evolution number 1 and 2, except bacterial plasmid pNMG-288 was used as a template, mutations in ecTadA (A106V_D108N_D147Y_E155V) and 2 gRNA expressed to target stop codons in selection plasmid pNMG-27-(Q4term+W15term). Libraries were plated on concentrations of kanamycin above the MIC. The most efficient base editor from evolution #3 was pNMG-371, which contains two ecTadA domains comprising the mutations L84F, A106V, D108N, H123Y, D147Y, E155V, and I156F.


Example 4—Evolution of Adenosine Base Editor ecTadA Residues E25, R26, R107, A142, and A143 to Increase Editing Efficiency of Adenine in Non-YAC Sequences (Evolution #4)

An ecTadA bacterial codon-optimized construct with the consensus mutations from evolution #2, A106V, D108N, D147Y and E155V, which is composed of one unit of ecTadA, an XTEN linker, and catalytically inactive Cas9 (dCas9), was mutagenized using NNK primers that target sites in ecTadA (e.g., E25, R26, R107, A142 and A143) to generate a site-saturated ABE library. Residues E25, R26, R107, A142 and A143 of ecTadA are hypothesized to make contact with the tRNA substrate with the wt ecTadA homodimer. For the NNK primers, N is A, T, C, or G, and K is G or T. The primers contain the mutations and are designed to bind at the 5 regions of interest, and a full-length product is obtained using PCR overlap extension protocol and assembled using USER junctions as used previously in the error-prone library assemblies. The 5 residues of ecTadA that were targeted included E25, R26, R107, A142 and A143. A goal of this evolution was to modify the “YAC” sequence preference of the adenosine base editor. In this round of evolution, the library of ABEs was selected against a spectinomycin resistance gene whose target A was presented in a non-YAC context. See FIGS. 101-123. The results from this round of evolution yielded mutations: R26G and A142N.


The ecTadA_2.2 deaminase construct was mutagenized to target active site residue in spectinomycin (T89). The gRNA targeted region: 5′-CAATGATGACTTCTACAGCG-3′ (SEQ ID NO: 444) corresponds to a non “YAC” sequence. The targeted residues and their respective interactions are shown in Table 6.


Table 6—Shows the amino acid residues in saTadA and ecTadA responsible for the specifically listed interactions. The size of the library used in evolution #4 is 325, which is the size of the library based on codon frequency.

















S.
aureus


E.
coli





TadA
TadA
interaction








G22
E25/H26
carbonyl H-bond to 3′ C





tRNA substrate



D103
R107
carbonyl H-bond with 5′ U





in tRNA substrate



S13B
A142/A143
carbonyl H-bond with 5′ U





in tRNA substrate









The NNK library with ecTadA_2.2 deaminase template was generated from approximately 500 colonies total from plates containing 128, 256, 384 and 512 of ug/mL spectinomycin. The editor constructs were sub-cloned, re-transformed into S1030 with uncorrected spectinomycin T89I selection plasmid and re-challenged with increasing concentrations of spectinomycin to clarify the true positive phenotypes from random reversions. The editing results of the evolution #4 variants (NNK library) at sites HEK-2, HEK2-3, HEK2-6, HEK2-7, HEK2-10, HEK3, and FANCF sites are shown in FIGS. 108 through 122. The evolution #4 variants do not perform better than the evolution #3 variants and do not demonstrate a relaxed substrate specificity with respect to the “YAC” sequence.


The results of the evolution #4 mammalian transfection for sites HEK-2, HEK2-2, HEK2-3, HEK2-6, HEK2-7, and HEK2-10 sites are shown in FIG. 123. The ecTadA evolution round #4 mutations neither improve editing efficiencies nor broadened substrate tolerance.


The evolution #4 template for evolution for the target sites in ecTadA (A106V, D108N, D147Y, E155V) is given in Table 7, which identifies individual clones that were identified.









TABLE 7







Mutations identified in Evolution #4. The template


for evolution: ecTadA (A106V, D108N, D147Y, and E155V).















25
26
107
142
143



clone:
E
R
R
A
A










PLATE 1














1
M
G
P
N
D



2
D
G
K
N
G



3

N
A
N




4

Q

N




5
A
G
N
N
E



6

G
W
N




7



N
L



8
A
C

N
W







PLATE 2














9
D
G
K
N
G



10
R


N
L



11


H
N
M



12
M
G
P
N
D



13

Q

N




14
M
G

N
D



15

L

N
L



16
R


N
L







PLATE 3














17

C
H
N




18

G
H
N
G



19
V
G
S
D
S



20

Q

N




21
S
C

N
Q



22
Y
K

G
R









Example 5—Evolution of Adenosine Base Editor Containing the L84F, A106V, D108N, H123Y, D147Y, E155V, and I157F Mutations of ecTadA (Evolution #5)

An ecTadA construct containing mutations from evolution #3, L84F, A106V, D108N, H123Y, D147Y, E155V, I157F (pNMG-325) was mutagenized with error-prone PCR and the resulting ABE library was targeted with 2 separate gRNAs to two different loci in two different antibiotic resistant genes: chloramphenicol and spectinomycin. Both target sequences contained a target A in a non-YAC context.


The editor plasmid encodes two different gRNA: chlor and spect, both of which are “non-YAC” targets. The chlor target sequence is 5′-TACGGCGTAGTGCACCTGGA-3′ (SEQ ID NO: 441) and has a target “A” at position “9.” The spect target sequence is 5′-CAATGATGACTTCTACAGCG-3 (SEQ ID NO: 444) and has a target “A” at position “6.” A schematic of the construct containing ecTadA and dCas9 used for ecTadA evolution (evolution #5) is shown in FIG. 124.


The library was transformed into S1030+selection plasmid, ABE expressed for 7 hours before plating on selection media: 128 ug/mL chloramphenicol (+kan/carb), 128 ug/mL chloramphenicol, 128 ug/mL spectinomycin (+kan/carb), 128 ug/mL chloramphenicol, 256 ug/mL spectinomycin (+kan/carb), 128 ug/mL chloramphenicol, 384 ug/mL spectinomycin (+kan/carb). The results of the clones assayed after fifth evolution #5 are shown in FIGS. 125 through 128. Surviving colonies are shown. The amplicons from spect selection clones assayed after evolution #5 are shown in FIG. 127. All colonies sequenced from double selection plates did not have any new mutations relative to the starting material.


Example 6—Examination of Mutations Introduced into the S. aureus TadA

Mutations were introduced into the S. aureus TadA (saTadA) based on the published crystal structure in Losey H. C., et al., “Crystal structure of Staphylococcus aureus tRNA adenosine deaminase TadA in complex with RNA,” Nature Structural and Molecular Biology, 13, p. 153-159 (2006); the entire contents of which are hereby incorporated by reference. Based on tbe crystal structure of S. aureus TadA bound to its native tRNA substrate, 4 residues were selected for mutagenesis which made H-bond contact with the anticodon loop of the substrate. A first goal was to determine whether or not another version of an ABE editor could be made that could induce A to G mutations in DNA. For example, by using a TadA from another bacterial species (e.g., S. aureus). A second goal was to determine if the sequence specificity of a S. aureus editor was similar or different than the an ecTadA editor. A third goal was to test whether the editing efficiencies of an S. aureus ABE editor are improved as compared to an E. coli ABE editor. Briefly, mutations D104N, D103A, G22P, and S138A were made in saTadA. See constructs pNMG-345-350 in Table 4. The editing results of base editing at sites HEK-2, HEK2-1, HEK2-2, HEK2-3, HEK2-4, HEK2-6, HEK2-9, HEK2-10, HEK3, RNF2, and FANCF sites are shown in FIGS. 129 through 139. These figures show that mutations identified in ecTadA can be made in S. Aureus TadA (saTadA) to confer the ability of saTadA to deaminate adenine in DNA. The figures also show that the YAC sequence preference is similar for saTadA as it is for ecTadA.


Example 7—Testing ecTadA Homodimers vs Heterodimers and Linker Lengths of Adenosine Base Editors

Adenosine base editor constructs were generated to test various linker lengths and various combinations of adenosine deaminase (e.g., wild-type ecTadA and/or mutant ecTadA domains) domains. For each construct the efficiency of mutating a target A to a G was tested. For example, constructs pNMG 492-500 and pNMG-513-518 were tested for their ability to generate A to G mutations in the DNA of cells. The identities of constructs pNMG 492-500 and pNMG-513-551 are shown in Table 4. Results of these tests are shown, for example, in FIGS. 141-149. Further, arginine residues within the adenosine deaminase of base editors were mutated to determine whether they had an effect on target sequence specificity, for example, their ability to mutate an A that is not part of a 5′-YAC-3′ sequence, where Y is C or T, was tested. Results of these tests are shown, for example, in FIG. 141.









TABLE 8







sgRNA Plasmid key. The plasmid key below contains


the protospacer sequence of the sgRNA sequence and


identifies the reference plasmid number and site.


For the protospacer sequence, the T is a U in the


gRNA. In some embodiments, any of the gRNAs provided


herein comprise any of the protospacer sequences


in Table 8, where T is U.










plasmid


SEQ ID


number
site
protospacer
NO:





pNMG-260
RNF-multiA
AGAAAAACAATTTTAGTATT
476





pNMG-261
HEK3-multiA
GCAGAAATAGACTAATTGCA
477





pNMG-299
HEK2
GAACACAAAGCATAGACTGC
478





pNMG-300
HEK2 guideseq
GAACACAATGCATAGATTGC
479





pNMG-301
HEK2-2
GGAACACAAAGCATAGACTG
480





pNMG-302
HEK2-3
AACACAAAGCATAGACTGCG
481





pNMG-303
HEK2-4
ACAAAGCATAGACTGCGGGG
482





pNMG-304
HEK2-5
CAAAGCATAGACTGCGGGGC
483





pNMG-305
HEK2-6
GTGGTAATTTTCCAGCCCGC
484





pNMG-306
HEK2-7
CCTTTACAGGGCCAGCGGGC
485





pNMG-307
HEK2-8
CTGTCACAGTTAGCTCAGCC
486





pNMG-308
HEK2-9
GTGTTCCAGTTTCCTTTACA
487





pNMG-309
HEK2 similar 1
GAAAAAAAAGCAGAGACTGC
488





pNMG-310
TAC (HEK2 similar 2)
GAATACTAAGCATAGACTCC
489





pNMG-311
AAC (HEK2 similar 3)
GTAAACAAAGCATAGACTGA
490





pNMG-312
HEK2 similar 4
GGACACAAAGCTTAGACTCC
491





pNMG-313
HEK2 similar 5
CAATACAAAGGATAGACTGC
492





pNMG-314
GAC (HEK2 similar 6)
GAAGACCAAGGATAGACTGC
493





pNMG-315
HEK2 similar 7
GAAAACAAATCATTGACTGC
494





pNMG-316
HEK2 similar 8
GATCACAAAGCATGGACTGA
495





pNMG-317
HEK2 similar 9
GAAAACAAAACATAGAGTGC
496





pNMG-318
CAT (HEK2 similar 10)
GAACATAAAGAATAGAATGA
497





pNMG-380
R1329* SCN1A
AATCAAGATAAGGCTCTTAG
498





pNMG-423
R580* SCN1A
GCTCACCCTCTAAAGCTGAAA
499





pNMG-424
C136Y PTEN (MDA-MB-
GTATATGCATATTTATTACAT
500



415)







pNMG-425
Q144* TP53 (NCI-H2171)
GCAGCTACACAGGGCAGGTCT
501





pNMG-426
R306* TP53 (HCC1937)
GACCTCACTTAGTGCTCCCTG
502





pNMG-463
CAG
GGACAGGCAGCATAGACTGT
503





pNMG-464
GAA
GTAGAAAAAGTATAGACTGC
504





pNMG-465
GAG
GGAGAGAGAGCATAGACTGC
505





pNMG-466
GAT
GAAGATAGAGAATAGACTGC
506





pNMG-467
TAA
GGCTAAAGACCATAGACTGT
507





pNMG-468
TAG
GTCTAGAAAGCTTAGACTGC
508





pNMG-469
TAT
GAGTATGAGGCATAGACTGC
509





pNMG-470
AAG
GTCAAGAAAGCAGAGACTGC
510





pNMG-471
AAT
GGGAATAAATCATAGAATCC
511





pNMG-472
CAA
GAGCAAAGACAATACACTGT
512





pNMG-501
AAA
GACAAAGAGGAAGAGAGACG
513





pNMG-502
SITE 2
GGGGACGCGCTGGCTTCCCG
514





pNMG-503
SITE 3
GGACCGGCTCCCTGGCGGTC
515





pNMG-504
SITE 4
GCCACTTCTAAGCCCTTGAT
516





pNMG-505
SITES
GGGAAAGACCCAGCATCCGT
517





pNMG-506
SITE 6
GCGGTACGCCGCTTCAGTGA
518





pNMG-507
SITE 7
GAAACTGGTCCCGTTTACAG
519





pNMG-508
SITE 8
GATGAGATAATGATGAGTCA
520





pNMG-509
SITE 9
GCCTAGGCAGTGGGGGTGCA
521





pNMG-510
R196* TP53 (Calu-6)
GACTCAGATAAGATGCTGAGG
522





pNMG-511
M237I TP53 (T98G)
GCATATGTAACAGTTCCTGCA
523





pNMG-512
R273H TP53 (NCI-H1975)
GTGCATGTTTGTGCCTGTCC
524





pNMG-531
EMX1-5
GGGGATGGCAGGGCAGGAAG
525





pNMG-532
EMX1-6
GGGTTAGGGGCCCCAGGCCG
526





pNMG-533
FANCF-7
GGATGCAGCTCGTTACCACC
527





pNMG-534
FANCF-5
GCGCACGGTGGCGGGGTCCC
528





pNMG-535
HEK3-6
GGGCCAGGTCCCTCCTCTCC
529





pNMG-536
HEK3-7
GGATTGACCCAGGCCAGGGC
530





pNMG-537
HEK4-5
GATGACAGGCAGGGGCACCG
531





pNMG-538
HEK4-6
GGGCCAGTGAAATCACCCTG
532





pNMG-539
RNF2-5
GGGGACTTTGGGAGGTGATC
533





pNMG-540
RNF2-6
GCACCAGCAGATGCAGTGTC
534





pNMG-601
RNF2-6
GACACACACACTTAGAATCTG
535





pNMG-602
RNF2-6
GCACACACACTTAGAATCTGT
536









Example 8—DNA Shuffling Using Nucleotide Exchange and Excision Technology (NExT) to Remove Epistatic Mutations, Evolution #6

To generate more efficient adenosine base editors and remove potential epistatic mutations constructs from evolutions 4, 5a, 5b and 2 were subjected to DNA shuffle experiments using Nucleotide Exchange and Excision Technology (NExT). A schematic representation of DNA shuffling is shown in FIGS. 150 and 151. Briefly, a DNA shuffle library was created. NExT shuffle and USER assembly, were transformed into 10B cells. The isolated DNA shuffle library was transformed into S1030 with selection plasmid. Plating was performed using 4 different selection conditions, including, low chlor, high chlor, high spect, and chlor plus spect after 7 hours of adenosine base editor induction. Incubation was performed at 37 C for 48 hours then colony PCR was performed on survivors. See FIGS. 150 and 151.


The sequence identity of the clones obtained from evolution #6 is shown in FIGS. 152 and 153. The mutations are given relative to SEQ ID NO: 1. FIG. 154 contains schematic representations of base editors derived from evolution #6. Evolution #6 identified mutations in P48 (e.g., P48T, P48S and P48A) and A142 (e.g., A142N), relative to SEQ ID NO: 1. These mutations improved the efficiency of base editors to mutate an A residue to a G in DNA. See, for example, the experimental results in FIGS. 155-158.


Example 9—Evolving Adenosine Base Editors to Efficiently Edit Multi a Sites, Evolution #7

To generate base editors that are more efficient at editing an A within a site containing multiple A residues (e.g., a 5′-AAA-3′ sequence), base editors capable of editing a multi-A site were evolved. Evolution was performed by identifying evolved base editors that could correct two point mutations that conferred the ability of cells to be antibiotic (kan) resistant. See, for example, FIGS. 163-165. Mutations that improve base editing efficiency and/or the ability to edit an A at a multi-A site are shown in FIG. 164, where mutations are identified relative to SEQ ID NO: 1. Evolution #7 identified mutations in W23 (e.g., W23R, and W23L) and R152 (e.g., R152P, and R152H), relative to SEQ ID NO: 1. A summary of base editing efficiency for selected adenosine base editor constructs on various target sequences is shown in FIGS. 179-186. Tables 9 and 10 contain bacterial selection plasmid data.









TABLE 9







Bacterial selection plasmid data.















corresponding


position


MIC


selection
editor +

protospacer
of
strand

(S1030)


plasmid
gRNA
modification
(targeted selection)
target A
modification
origin
Kan





pNMG-208
pNMG-255
stop in Kan
5′-GCTTAGGTGGAGCGCCTA
5
coding
RSF10
   32 ug/mL




gene, W15
TT-3′ (SEQ ID NO: 707)


30






pNMG-209
pNMG-257
stop in Kan
5′-AGTCACTCCACCCAAGCG
5
template
RSF10
  256 ug/mL




gene, R18
GC-3′ (SEQ ID NO: 708)


30






pNMG-210
pNMG-259
stop in Kan
5′-GTCACCCCTGCGCTGAC
4
template
RSF10
  128 ug/mL




gene, R44
AGC-3′ (SEQ ID NO: 709)


30






pNMG-211
pNMG-253
stop in Kan
5′-ATCTTATTCGATCATGCG
6
template
RSF10
   16 ug/mL




gene, Q4
AA-3′ (SEQ ID NO: 710)


30






pNMG-212
n/a
wt Kan gene
control plasmid
n/a
n/a
RSF10
>1056 ug/mL








30






pNMG-213
pNMG-255
pNMG-208 w/
5′-GCTTAGGTGGAGCGCCTA
5
template
RSF10
  528 ug/mL




SD8 RBS
TT-3′ (SEQ ID NO: 711)


30






pNMG-214
pNMG-255
pNMG-208 w/
5'-GCTTAGGTGGAGCGCCTA
5
template
RSF10
  128 ug/mL




SD3 RBS
TT-3' (SEQ ID NO: 712)


30






pNMG-215
pNMG-255
pNMG-208 w/
5'-GCTTAGGTGGAGCGCCTA
5
template
RSF10
unknonwn




SD2 RBS
TT-3' (SEQ ID NO: 713)


30






pNMG-216
n/a
2 stop,
5′-ATCTTATTCGATCATGCG
6 + 5
template
RSF10
    8 ug/mL




Q4 + R18
AA-3′(SEQ ID NO: 714),


30






5′-AGTCACTCCACCCAAGCG









GC-3′ (SEQ ID NO: 715)









pNMG-217
n/a
2 stop,
5′-GCTTAGGTGGAGCGCCTA
5 + 4
both
RSF10
    8 ug/mL




W15 + R44
TT-3′ (SEQ ID NO: 716),


30






5′-GTCACCCCTGCGCTGACA









GC-3′ (SEQ ID NO: 717)









pNMG-221
n/a
2 stop,
5′-GCTTAGGTGGAGCGCCTA
5 + 4
both
CloDF
    4 ug/mL




W15 + R44
TT-3′ (SEQ ID NO: 718),


3






5′-GTCACCCCTGCGCTGACA









GC-3′ (SEQ ID NO: 719)
















TABLE 10







Bacterial selection plasmid data


















5′-TACGGCGTAGTGCACCTGGA-3′










(SEQ ID NO: 441)



MIC






silent mutations



(S1030)
SEQ


selection

original
in chlor site in italics,


RSF
Chlor
ID


plasmid

Chlor selection
bold is target A:
9
template
1030
1 ug/mL
NO:



















corresponding










editor + gRNA









pNMG-186
pNMG-197
original chlor
5′-TACTGTGTAATGTATCTGGA-3′
9
template
RSF
1 ug/mL
720




site (H193Y)



1030







pNMG-187
pNMG-198
original chlor
5′-TACTGCGTAGTGCACCTGGA-3′
9
template
RSF
1 ug/mL
721




site (H193Y)



1030







pNMG-188
pNMG-199
original chlor
5′-TACCGCGTAGTGCACCTGGA-3′
9
template
RSF
1 ug/mL
722




site (H193Y)



1030







pNMG-189
pNMG-200
original chlor
5′-TACAGCGTAGTGCACCTGGA-3′
9
template
RSF
1 ug/mL
723




site (H193Y)



1030







pNMG-190
pNMG-200
original chlor
5′-TACGGCGTAATGCACCTGGA-3′
9
template
RSF
1 ug/mL
724




site (H193Y)



1030







pNMG-191
pNMG-201
original chlor
5′-TACGGCATAGTGCACCTGGA-3′
9
template
RSF
1 ug/mL
725




site (H193Y)



1030







pNMG-192
pNMG-202
original chlor
5′-TACGGCGTAGTGTACCTGGA-3′
9
template
RSF
1 ug/mL
726




site (H193Y)



1030







pNMG-193
pNMG-203
original chlor
5′-TACGGCGTAGTGGACCTGGA-3′
9
template
RSF
1 ug/mL
727




site (H193Y)



1030







pNMG-194
pNMG-204
original chlor
5′-TACGGCGTAGTGAACCTGGA-3′
9
template
RSF
1 ug/mL
728




site (H193Y)



1030







pNMG-195
pNMG-205
original chlor
5′-TACGGCGTAGTGCACTTGGA-3′
9
template
RSF
1 ug/mL
729




site (H193Y)



1030







pNMG-196
pNMG-206
original chlor
5′-CGTAGTGCACCTGGATGGCC-3′
4
template
RSF
1 ug/mL
730




site (H193Y)



1030








pNMG-227
chlor (1)_H193Y
5'-TACCGCGTAGTGAACTTGGA-3′
9


1 ug/mL
731






pNMG-228
chlor (2)_H193Y
5'-TACCGCATAGTGAACTTGGA-3′
7 + 9


1 ug/mL
732



corresponding










editor + 2










gRNA target










Kan only









pNMG-270
pNMG-288
stop in Kan
5′-GCTTAGGTGGAGCGCCTATT-3′
5
coding
RSF

733




gene, W15STOP



1030






stop in Kan
5′-ATCTTATTCGATCATGCGAA-3′
6
template


734




gene, Q4STOP










original Chlor
5′-TACGGCGTAGTGCACCTGGA-3′
9
template


735




selection










His193Y











pNMG-319

stop in Kan
5′-GCTTAGGTGGAGCGCCTATT-3′
5
coding
RSF

733




gene, W15STOP



1030






stop in Kan
5′-ATCTTATTCGATCATGCGAA-3′
6
template


734




gene, Q4STOP










chlor (2)
5′-TACCGCATAGTGAACTTGGA-3′
7 + 9
template


732





pNMG-333
round 4, evolve
spect gene:
5′-CAATGATGACTTCTACAGCG-3′
6
template
RSF

736



against spect
T89I mutation



1030





only










round 5: chlor +
chlor gene:
5′-TACGGCGTAGTGCACCTGGA-3′
9
template


737



spect
H193Y mutation









round 6: spect +










chlor












pNMG-570
round 7, evolve
kan gene D208N
5′-TTCATTAACTGTGGCCGGCT-3′
7
coding
RSF

738



against two
mutation



1030





mutations, same










gene










kanamycin

5′-ATCTTATTCGATCATGCGAA-3′
6
template


739



(Q4sop and










D208N










reversion










needed)









Example 10—Cas9 Variant Sequences

The disclosure provides Cas9 variants, for example Cas9 proteins from one or more organisms, which may comprise one or more mutations (e.g., to generate dCas9 or Cas9 nickase). In some embodiments, one or more of the amino acid residues, identified below by an asterisk, of a Cas9 protein may be mutated. In some embodiments, the D10 and/or H840 residues of the amino acid sequence provided in SEQ ID NO: 52, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 108-357, are mutated. In some embodiments, the D10 residue of the amino acid sequence provided in SEQ ID NO: 52, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 108-357, is mutated to any amino acid residue, except for D. In some embodiments, the D10 residue of the amino acid sequence provided in SEQ ID NO: 52, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 108-357, is mutated to an A. In some embodiments, the H840 residue of the amino acid sequence provided in SEQ ID NO: 52, or a corresponding residue in any of the amino acid sequences provided in SEQ ID NOs: 108-357, is an H. In some embodiments, the H840 residue of the amino acid sequence provided in SEQ ID NO: 52, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 108-357, is mutated to any amino acid residue, except for H. In some embodiments, the H840 residue of the amino acid sequence provided in SEQ ID NO: 52, or a corresponding mutation in any of the amino acid sequences provided in SEQ ID NOs: 108-357, is mutated to an A. In some embodiments, the D10 residue of the amino acid sequence provided in SEQ ID NO: 52, or a corresponding residue in any of the amino acid sequences provided in SEQ ID NOs: 108-357, is a D.


A number of Cas9 sequences from various species were aligned to determine whether corresponding homologous amino acid residues of D10 and H840 of SEQ ID NO: 52 or SEQ ID NO: 108 can be identified in other Cas9 proteins, allowing the generation of Cas9 variants with corresponding mutations of the homologous amino acid residues. The alignment was carried out using the NCBI Constraint-based Multiple Alignment Tool (COBALT(accessible at st-va.ncbi.nlm.nih.gov/tools/cobalt), with the following parameters. Alignment parameters: Gap penalties −11, −1; End-Gap penalties −5, −1. CDD Parameters: Use RPS BLAST on; Blast E-value 0.003; Find Conserved columns and Recompute on. Query Clustering Parameters: Use query clusters on; Word Size 4; Max cluster distance 0.8; Alphabet Regular.


An exemplary alignment of four Cas9 sequences is provided below. The Cas9 sequences in the alignment are: Sequence 1 (S1): SEQ ID NO: 108|WP_0109222511 gi 499224711|type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes]; Sequence 2 (S2): SEQ ID NO: 109|WP_039695303|gi 746743737|type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus gallolyticus]; Sequence 3 (S3): SEQ ID NO: 110|WP_045635197|gi 782887988|type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mitis]; Sequence 4 (S4): SEQ ID NO: 111|5AXW_A|gi 924443546|Staphylococcus Aureus Cas9. The HNH domain (bold and underlined) and the RuvC domain (boxed) are identified for each of the four sequences. Amino acid residues 10 and 840 in S1 and the homologous amino acids in the aligned sequences are identified with an asterisk following the respective amino acid residue.













S1
1
--MDKK-YSIGLD*IGTNSVGWAVITDEYKVESKKEKVLGNTDRESIKENLI--GALLEDSG--ETAKATRLKRTARRRYT
73






S2
1
--MTKKNYSIGLD*IGTNSVGWAVITDDYKVPAKKMKVIGNTDKEYIKENLL--GALLEDSG--ETAKATRLKRTARRRYT
74





S3
1
--M-KKGYSIGLD*IGTNSVGFAVITDDYKVESKEMEVLGNTDERFIKENLI--GALLFDEG--TTAKARRLKRTARRRYT
73





S4
1
GSHMKRNYILGLD*IGITSVGYGII--DYET-----------------RDVIDAGVRIFKEANVENNEGRRSKRGARRLKR
61





S1
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEESFLVEEDKKHERHPIFGNIVDEVAYHEKYPTIYHLRKKLVDSTDKADLRL
153





S2
75
RRKNRLRYLQEIFANEIAKVDESFFQRLDESFLTDDDKTEDSHPIFGNKAEEDAYHQKFPTIYHLRKHLADSSEKADLRL
154





S3
74
RRKNRLRYLQEIFSEEMSKVDSSFFHRLDDSFLIPEDKRESKYPIFATLTEEKEYHKQFPTIYHLRKQLADSKEKTDLRL
153





S4
62
RRRHRIQRVKKLL--------------FDYNLLTD--------------------HSELSGINPYEARVKGLSQKLSEEE
107





S1
154
IYLALAHNIKFRGHFLIEGDLNPDNSDVDKLFIQLVQTYNQLFEENPINASGVDAKAILSARLSKSRRLENLIAQLPGEK
233





S2
155
VYLALAHMIKFRGHFLIEGELNAENTDVQKIFADFVGVYNRTFDDSHLSEITVDVASILTEKISKSRRLENLIKYYPTEK
234





S3
154
IYLALAHNIKYRGHFLYEEAFDIKNNDIQKIFNEFISIYDNTFEGSSLSGQNAQVEAIFTDKISKSAKRERVLKLEPDEK
233





S4
108
FSAALLHLAKRRG----------------------VHNVNEVEEDT----------------------------------
131





S1
234
KNGLFGNLIALSLGLTPNFKSNFDLAEDAKLQLSKDTYDDDLDNLLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEIT
313





S2
235
KNTLFGNLIALALGLQPNFKTNFKLSEDAKLQFSKDTYEEDLEELLGKIGDDYADLFTSAKNLYDAILLSGILTVDDNST
314





S3
234
STGLFSEFLKLIVGNQADFKKHFDLEDKAPLQFSKDTYDEDLENLLGQIGDDFTDLFVSAKKLYDAILLSGILTVTDPST
313





S4
132
-----GNELS------------------TKEQISRN--------------------------------------------
144





S1
314
KAPLSASMIKRYDEHHQDLTLLKALVRQQLPEKYKEIFFDQSKNGYAGYIDGGASQEEFYKFIKPILEKM--DGTEELLV
391





S2
315
KAPLSASMIKRYVEHHEDLEKLKEFIKANKSELYHDIFKDKNKNGYAGYIENGVKQDEFYKYLKNILSKIKIDGSDYFLD
394





S3
314
KAPLSASMIERYENHQNDLAALKQFIKNNLPEKYDEVFSDQSKDGYAGYIDGKTTQETFYKYIKNLLSKF--EGTDYFLD
391





S4
145
----SKALEEKYVAELQ-------------------------------------------------LERLKKDG------
165





S1
392
KLNREDLLRKQRTFDNGSIPHQIHLGELHAILRRQEDFYPFLKDNREKIEKILTFRIPYYVGPLARGNSRFAWMTRKSEE
471





S2
395
KIEREDFLRKQRTFDNGSIPHQIHLQEMHAILRRQGDYYPFLKEKQDRIEKILTFRIPYYVGPLVRKDSRFAWAEYRSDE
474





S3
392
KIEREDFLRKQRTFDNGSIPHQIHLQEMNAILRRQGEYYPFLKDNKEKIEKILTFRIPYYVGPLARGNRDFAWLTRNSDE
471





S4
166
--EVRGSINRFKTSD--------YVKEAKQLLKVQKAYHQLDQSFIDTYIDLLETRRTYYEGP--GEGSPFGW------K
227





S1
472
TITPWNFEEVVDKGASAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVTEGMRKPAFLSGEQKKAIVDL
551





S2
475
KITPWNFDKVIDKEKSAEKFITRMTLNDLYLPEEKVLPKHSHVYETYAVYNELTKIKYVNEQGKE-SFFDSNMKQEIFDH
553





S3
472
AIRPWNFEEIVDKASSAEDFINKMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIAEGLRDYQFLDSGQKKQIVNQ
551





S4
228
DIKEW---------------YEMLMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITRDENEK---LEYYEKFQIIEN
289





S1
552
LEKTNRKVTVKQLKEDYFKKIECFDSVEISGVEDR---FNASLGTYHDLLKIIKDKDFLDNEENEDILEDIVLTLTLFED
628





S2
554
VFKENRKVTKEKLLNYLNKEFPEYRIKDLIGLDKENKSFNASLGTYHDLKKIL-DKAFLDDKVNEEVIEDIIKTLTLFED
632





S3
552
LFKENRKVTEKDIIHYLHN-VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDKEFNDDAKNEAILENIVHTLTIFED
627





S4
290
VFKQKKKPTLKQIAKEILVNEEDIKGYRVTSTGKPEF---TNLKVYHDIKDITARKEII---ENAELLDQIAKILTIYQS
363





S1
629
REMIEERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDKQSGKTILDFLKSDGFANRNFMQLIHDDSLTFKED
707





S2
633
KDMIHERLQKYSDIFTANQLKKLER-RHYTGWGRLSYKLINGIRNKENNKTILDYLIDDGSANRNFMQLINDDTLPFKQI
711





S3
628
REMIKQRLAQYDSLFDEKVIKALTR-RHYTGWGKLSAKLINGICDKQTGNTILDYLIDDGKINRNFMQLINDDGLSFKEI
706





S4
364
SEDIQEELTNLNSELTQEEIEQISNLKGYTGTHNLSLKAINLILDE------LWHTNDNQIAIFNRLKLVP---------
428





S1
708


embedded image


781


S2
712


embedded image


784


S3
707


embedded image


779


S4
429


embedded image


505


S1
782


KRIEEGIKELGSQIL-------KEHPVENTQLQNEKLYLYYLQNGRDMYVDQELDINRLSD----YDVDH*IVPQSFLKDD


850





S2
785


KKLQNSLKELGSNILNEEKPSYIEDKVENSHLQNDQLFLYYIQNGKDMYTGDELDIDHLSD----YDIDH*IIPQAFIKDD


860





S3
780


KRIEDSLKILASGL---DSNILKENPTDNNQLQNDRLFLYYLQNGKDMYTGEALDINQLSS----YDIDH*IIPQAFIKDD


852





S4
506


ERIEEIIRTTGK---------------ENAKYLIEKIKLHDMQEGKCLYSLEAIPLEDLLNNPFNYEVDH*IIPRSVSFDN


570





S1
851


embedded image


922


S2
861


embedded image


932


S3
853


embedded image


924


S4
571


embedded image


650


S1
923


embedded image


1002


S2
933


embedded image


1012


S3
925


embedded image


1004


S4
651


embedded image


712


S1
1003


embedded image


1077


S2
1013


embedded image


1083


S3
1005


embedded image


1081


S4
713


embedded image


764


S1
1078


embedded image


1149


S2
1084


embedded image


1158


S3
1082


embedded image


1156


S4
765


embedded image


835


S1
1150
EKGKSKKLKSVKELLGITIMERSSFEKNPI-DFLEAKG-----YKEVKKDLIIKLPKYSLFELENGRKRMLASAGELQKG
1223





S2
1159
EKGKAKKLKTVKELVGISIMERSFFEENPV-EFLENKG-----YHNIREDKLIKLPKYSLFEFEGGRRRLLASASELQKG
1232





S3
1157
EKGKAKKLKTVKTLVGITIMEKAAFEENPI-TFLENKG-----YHNVRKENILCLPKYSLFELENGRRRLLASAKELQKG
1230





S4
836
DPQTYQKLK--------LIMEQYGDEKNPLYKYYEETGNYLTKYSKKDNGPVIKKIKYYGNKLNAHLDITDDYPNSRNKV
907





S1
1224
NELALPSKYVNFLYLASHYEKLKGSPEDNEQKQLFVEQHKHYLDEIIEQISEFSKRVILADANLDKVLSAYNKH------
1297





S2
1233
NEMVLPGYLVELLYHAHRADNF-----NSTEYLNYVSEHKKEFEKVLSCVEDFANLYVDVEKNLSKIRAVADSM------
1301





S3
1231
NEIVLPVYLTTLLYHSKNVHKL-----DEPGHLEYIQKHRNEFKDLLNLVSEFSQKYVLADANLEKIKSLYADN------
1299





S4
908
VKLSLKPYRFD-VYLDNGVYKFV-----TVKNLDVIK--KENYYEVNSKAYEEAKKLKKISNQAEFIASFYNNDLIKING
979





S1
1298
RDKPIREQAENIIHLFTLTNLGAPAAFKYFDTTIDRKRYTSTKEVLDATLIHQSIT--------GLYETRI----DLSQL
1365





S2
1302
DNFSIEEISNSFINLLTLTALGAPADFNFLGEKIPRKRYTSTKECLNATLIHQSIT--------GLYETRI----DLSKL
1369





S3
1300
EQADIEILANSFINLLTFTALGAPAAFKFFGKDIDRKRYTTVSEILNATLIHQSIT--------GLYETWI----DLSKL
1367





S4
980
ELYRVIGVNNDLLNRIEVNMIDITYR-EYLENMNDKRPPRIIKTIASKT---QSIKKYSTDILGNLYEVKSKKHPQIIKK
1055





S1
1366
GGD
1368





S2
1370
GEE
1372





S3
1368
GED
1370





S4
1056
G--
1056






The alignment demonstrates that amino acid sequences and amino acid residues that are homologous to a reference Cas9 amino acid sequence or amino acid residue can be identified across Cas9 sequence variants, including, but not limited to Cas9 sequences from different species, by identifying the amino acid sequence or residue that aligns with the reference sequence or the reference residue using alignment programs and algorithms known in the art. This disclosure provides Cas9 variants in which one or more of the amino acid residues identified by an asterisk in SEQ ID NOs: 108-111 (e.g., S1, S2, S3, and S4, respectively) are mutated as described herein. The residues D10 and H840 in Cas9 of SEQ ID NO: 52 that correspond to the residues identified in SEQ ID NOs: 108-111 by an asterisk are referred to herein as “homologous” or “corresponding” residues. Such homologous residues can be identified by sequence alignment, e.g., as described above, and by identifying the sequence or residue that aligns with the reference sequence or residue. Similarly, mutations in Cas9 sequences that correspond to mutations identified in SEQ ID NO: 52 herein, e.g., mutations of residues 10, and 840 in SEQ ID NO: 52, are referred to herein as “homologous” or “corresponding” mutations. For example, the mutations corresponding to the D10A mutation in SEQ ID NO: 52 or S1 (SEQ ID NO: 108) for the four aligned sequences above are D11A for S2, D10A for S3, and D13A for S4; the corresponding mutations for H840A in SEQ ID NO: 52 or S1 (SEQ ID NO: 108) are H850A for S2, H842A for S3, and H560A for S4.


A total of 250 Cas9 sequences (SEQ ID NOs: 108-357) from different species were aligned using the same algorithm and alignment parameters outlined above. Amino acid residues homologous to residues 10, and 840 of SEQ ID NO: 52 were identified in the same manner as outlined above. The alignments are provided below. The HNH domain (bold and underlined) and the RuvC domain (boxed) are identified for each of the four sequences. Single residues corresponding to amino acid residues 10, and 840 in SEQ ID NO: 52 are boxed in SEQ ID NO: 108 in the alignments, allowing for the identification of the corresponding amino acid residues in the aligned sequences.











WP_010922251.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 108






WP_039695303.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus gallolyticus] SEQ ID NO: 109





WP_045635197.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mitis] SEQ ID NO: 110





5AXW_A
Cas9, Chain A, Crystal Structure [Staphylococcus Aureus] SEQ ID NO: 111





WP_009880683.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 112





WP_010922251.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 113





WP_011054416.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 114





WP_011284745.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 115





WP_011285506.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 116





WP_011527619.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 117





WP_012560673.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 118





WP_014407541.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 119





WP_020905136.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 120





WP_023080005.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 121





WP_023610282.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 122





WP_030125963.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 123





WP_030126706.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 124





WP_031488318.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 125





WP_032460140.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 126





WP_032461047.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 127





WP_032462016.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 128





WP_032462936.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 129





WP_032464890.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 130





WP_033888930.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 131





WP_038431314.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 132





WP_038432938.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 133





WP_038434062.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pyogenes] SEQ ID NO: 134





BAQ51233.1
CRISPR-associated protein, Csn1 family [Streptococcus pyogenes] SEQ ID NO: 135





KGE60162.1
hypothetical protein MGAS2111_0903 [Streptococcus pyogenes MGAS2111] SEQ ID NO: 136





KGE60856.1
CRISPR-associated endonuclease protein [Streptococcus pyogenes SS1447] SEQ ID NO: 137





WP_002989955.1
MULTISPECIES: type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus] SEQ ID NO: 138





WP_003030002.1
MULTISPECIES: type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus] SEQ ID NO: 139





WP_003065552.1
MULTISPECIES: type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus] SEQ ID NO: 140





WP_001040076.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 141





WP_001040078.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 142





WP_001040080.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 143





WP_001040081.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 144





WP_001040083.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 145





WP_001040085.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 146





WP_001040087.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 147





WP_001040088.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 148





WP_001040089.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 149





WP_001040090.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 150





WP_001040091.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 151





WP_001040092.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 152





WP_001040094.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 153





WP_001040095.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 154





WP_001040096.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 155





WP_001040097.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 156





WP_001040098.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 157





WP_001040099.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 158





WP_001040100.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 159





WP_001040104.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 160





WP_001040105.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 161





WP_001040106.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 162





WP_001040107.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 163





WP_001040108.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 164





WP_001040109.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 165





WP_001040110.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 166





WP_015058523.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 167





WP_017643650.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 168





WP_017647151.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 169





WP_017648376.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 170





WP_017649527.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 171





WP_017771611.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 172





WP_017771984.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 173





CFQ25032.1
CRISPR-associated protein [Streptococcus agalactiae] SEQ ID NO: 174





CFV16040.1
CRISPR-associated protein [Streptococcus agalactiae] SEQ ID NO: 175





KLJ37842.1
CRISPR-associated protein Csn1 [Streptococcus agalactiae] SEQ ID NO: 176





KLJ72361.1
CRISPR-associated protein Csn1 [Streptococcus agalactiae] SEQ ID NO: 177





KLL20707.1
CRISPR-associated protein Csn1 [Streptococcus agalactiae] SEQ ID NO: 178





KLL42645.1
CRISPR-associated protein Csn1 [Streptococcus agalactiae] SEQ ID NO: 179





WP_047207273.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 180





WP_047209694.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 181





WP_050198062.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 182





WP_050201642.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 183





WP_050204027.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 184





WP_050881965.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 185





WP_050886065.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus agalactiae] SEQ ID NO: 186





AHN30376.1
CRISPR-associated protein Csn1 [Streptococcus agalactiae 138P] SEQ ID NO: 187





EAO78426.1
reticulocyte binding protein [Streptococcus agalactiae H36B] SEQ ID NO: 188





CCW42055.1
CRISPR-associated protein, SAG0894 family [Streptococcus agalactiae ILRI112] SEQ ID NO: 189





WP_003041502.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus anginosus] SEQ ID NO: 190





WP_037593752.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus anginosus] SEQ ID NO: 191





WP_049516684.1
CRISPR-associated protein Csn1 [Streptococcus anginosus] SEQ ID NO: 192





GAD46167.1
hypothetical protein ANG6_0662 [Streptococcus anginosus T5] SEQ ID NO: 193





WP_018363470.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus caballi] SEQ ID NO: 194





WP_003043819.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus canis] SEQ ID NO: 195





WP_006269658.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus constellatus] SEQ ID NO: 196





WP_048800889.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus constellatus] SEQ ID NO: 197





WP_012767106.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus dysgalactiae] SEQ ID NO: 198





WP_014612333.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus dysgalactiae] SEQ ID NO: 199





WP_015017095.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus dysgalactiae] SEQ ID NO: 200





WP_015057649.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus dysgalactiae] SEQ ID NO: 201





WP_048327215.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus dysgalactiae] SEQ ID NO: 202





WP_049519324.1
CRISPR-associated protein Csn1 [Streptococcus dysgalactiae] SEQ ID NO: 203





WP_012515931.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus equi] SEQ ID NO: 204





WP_021320964.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus equi] SEQ ID NO: 205





WP_037581760.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus equi] SEQ ID NO: 206





WP_004232481.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus equinus] SEQ ID NO: 207





WP_009854540.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus gallolyticus] SEQ ID NO: 208





WP_012962174.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus gallolyticus] SEQ ID NO: 209





WP_039695303.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus gallolyticus] SEQ ID NO: 210





WP_014334983.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus infantarius] SEQ ID NO: 211





WP_003099269.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus iniae] SEQ ID NO: 212





AHY15608.1
CRISPR-associated protein Csn1 [Streptococcus iniae] SEQ ID NO: 213





AHY17476.1
CRISPR-associated protein Csn1 [Streptococcus iniae] SEQ ID NO: 214





ESR09100.1
hypothetical protein IUSA1_08595 [Streptococcus iniae IUSA1] SEQ ID NO: 215





AGM98575.1
CRISPR-associated protein Cas9/Csn1, subtype II/NMEMI [Streptococcus iniae SF1] SEQ ID NO: 216





ALF27331.1
CRISPR-associated protein Csn1 [Streptococcus intermedius] SEQ ID NO: 217





WP_018372492.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus massiliensis] SEQ ID NO: 218





WP_045618028.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mitis] SEQ ID NO: 219





WP_045635197.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mitis] SEQ ID NO: 220





WP_002263549.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 221





WP_002263887.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 222





WP_002264920.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 223





WP_002269043.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 224





WP_002269448.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 225





WP_002271977.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 226





WP_002272766.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 227





WP_002273241.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 228





WP_002275430.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 229





WP_002276448.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 230





WP_002277050.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 231





WP_002277364.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 232





WP_002279025.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 233





WP_002279859.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 234





WP_002280230.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 235





WP_002281696.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 236





WP_002282247.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 237





WP_002282906.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 238





WP_002283846.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 239





WP_002287255.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 240





WP_002288990.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 241





WP_002289641.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 242





WP_002290427.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 243





WP_002295753.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 244





WP_002296423.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 245





WP_002304487.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 246





WP_002305844.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 247





WP_002307203.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 248





WP_002310390.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 249





WP_002352408.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 250





WP_012997688.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 251





WP_014677909.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 252





WP_019312892.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 253





WP_019313659.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 254





WP_019314093.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 255





WP_019315370.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 256





WP_019803776.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 257





WP_019805234.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 258





WP_024783594.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 259





WP_024784288.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 260





WP_024784666.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 261





WP_024784894.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 262





WP_024786433.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus mutans] SEQ ID NO: 263





WP_049473442.1
CRISPR-associated protein Csn1 [Streptococcus mutans] SEQ ID NO: 264





WP_049474547.1
CRISPR-associated protein Csn1 [Streptococcus mutans] SEQ ID NO: 265





EMC03581.1
hypothetical protein SMU69_09359 [Streptococcus mutans NLML4] SEQ ID NO: 266





WP_000428612.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus oralis] SEQ ID NO: 267





WP_000428613.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus oralis] SEQ ID NO: 268





WP_049523028.1
CRISPR-associated protein Csn1 [Streptococcus parasanguinis] SEQ ID NO: 269





WP_003107102.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus parauberis] SEQ ID NO: 270





WP_054279288.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus phocae] SEQ ID NO: 271





WP_049531101.1
CRISPR-associated protein Csn1 [Streptococcus pseudopneumoniae] SEQ ID NO: 272





WP_049538452.1
CRISPR-associated protein Csn1 [Streptococcus pseudopneumoniae] SEQ ID NO: 273





WP_049549711.1
CRISPR-associated protein Csn1 [Streptococcus pseudopneumoniae] SEQ ID NO: 274





WP_007896501.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus pseudoporcinus] SEQ ID NO: 275





EFR44625.1
CRISPR-associated protein, Csn1 family [Streptococcus pseudoporcinus SPIN 20026] SEQ ID NO: 276





WP_002897477.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus sanguinis] SEQ ID NO: 277





WP_002906454.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus sanguinis] SEQ ID NO: 278





WP_009729476.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus sp. F0441] SEQ ID NO: 279





CQR24647.1
CRISPR-associated protein [Streptococcus sp. FF10] SEQ ID NO: 280





WP_000066813.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus sp. M334] SEQ ID NO: 281





WP_009754323.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus sp. taxon 056] SEQ ID NO: 282





WP_044674937.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus suis] SEQ ID NO: 283





WP_044676715.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus suis] SEQ ID NO: 284





WP_044680361.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus suis] SEQ ID NO: 285





WP_044681799.1
type II CRISPR RNA-guided endonuclease Cas9 [Streptococcus suis] SEQ ID NO: 286





WP_049533112.1
CRISPR-associated protein Csn1 [Streptococcus suis] SEQ ID NO: 287





WP_029090905.1
type II CRISPR RNA-guided endonuclease Cas9 [Brochothrix thermosphacta] SEQ ID NO: 288





WP_006506696.1
type II CRISPR RNA-guided endonuclease Cas9 [Catenibacterium mitsuokai] SEQ ID NO: 289





AIT42264.1
Cas9hc:NLS:HA [Cloning vector pYB196] SEQ ID NO: 290





WP_034440723.1
type II CRISPR endonuclease Cas9 [Clostridiales bacterium S5-A11] SEQ ID NO: 291





AKQ21048.1
Cas9 [CRISPR-mediated gene targeting vector p(bh5p68-Cas9)] SEQ ID NO: 292





WP_004636532.1
type II CRISPR RNA-guided endonuclease Cas9 [Dolosigranulum pigrum] SEQ ID NO: 293





WP_002364836.1
MULTISPECIES: type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus] SEQ ID NO: 294





WP_016631044.1
MULTISPECIES: type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus] SEQ ID NO: 295





EMS75795.1
hypothetical protein H318_06676 [Enterococcus durans IPLA 655] SEQ ID NO: 296





WP_002373311.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 297





WP_002378009.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 298





WP_002407324.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 299





WP_002413717.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 300





WP_010775580.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 301





WP_010818269.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 302





WP_010824395.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 303





WP_016622645.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 304





WP_033624816.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 305





WP_033625576.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 306





WP_033789179.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecalis] SEQ ID NO: 307





WP_002310644.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 308





WP_002312694.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 309





WP_002314015.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 310





WP_002320716.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 311





WP_002330729.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 312





WP_002335161.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 313





WP_002345439.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 314





WP_034867970.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 315





WP_047937432.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus faecium] SEQ ID NO: 316





WP_010720994.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus hirae] SEQ ID NO: 317





WP_010737004.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus hirae] SEQ ID NO: 318





WP_034700478.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus hirae] SEQ ID NO: 319





WP_007209003.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus italicus] SEQ ID NO: 320





WP_023519017.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus mundtii] SEQ ID NO: 321





WP_010770040.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus phoeniculicola] SEQ ID NO: 322





WP_048604708.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus sp. AM1] SEQ ID NO: 323





WP_010750235.1
type II CRISPR RNA-guided endonuclease Cas9 [Enterococcus villorum] SEQ ID NO: 324





AII16583.1
Cas9 endonuclease [Expression vector pCas9] SEQ ID NO: 325





WP_029073316.1
type II CRISPR RNA-guided endonuclease Cas9 [Kandleria vitulina] SEQ ID NO: 326





WP_031589969.1
type II CRISPR RNA-guided endonuclease Cas9 [Kandleria vitulina] SEQ ID NO: 327





KDA45870.1
CRISPR-associated protein Cas9/Csn1, subtype II/NMEMI [Lactobacillus animalis] SEQ ID NO: 328





WP_039099354.1
type II CRISPR RNA-guided endonuclease Cas9 [Lactobacillus curvatus] SEQ ID NO: 329





AKP02966.1
hypothetical protein ABB45_04605 [Lactobacillus farciminis] SEQ ID NO: 330





WP_010991369.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria innocua] SEQ ID NO: 331





WP_033838504.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria innocua] SEQ ID NO: 332





EHN60060.1
CRISPR-associated protein, Csn1 family [Listeria innocua ATCC 33091] SEQ ID NO: 333





EFR89594.1
crispr-associated protein, Csn1 family [Listeria innocua FSL 54-378] SEQ ID NO: 334





WP_038409211.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria ivanovii] SEQ ID NO: 335





EFR95520.1
crispr-associated protein Csn1 [Listeria ivanovii FSL F6-596] SEQ ID NO: 336





WP_003723650.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 337





WP_003727705.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 338





WP_003730785.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 339





WP_003733029.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 340





WP_003739838.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 341





WP_014601172.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 342





WP_023548323.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 343





WP_031665337.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 344





WP_031669209.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 345





WP_033920898.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria monocytogenes] SEQ ID NO: 346





AKI42028.1
CRISPR-associated protein [Listeria monocytogenes] SEQ ID NO: 347





AKI50529.1
CRISPR-associated protein [Listeria monocytogenes] SEQ ID NO: 348





EFR83390.1
crispr-associated protein Csn1 [Listeria monocytogenes FSL F2-208] SEQ ID NO: 349





WP_046323366.1
type II CRISPR RNA-guided endonuclease Cas9 [Listeria seeligeri] SEQ ID NO: 350





AKE81011.1
Cas9 [Plant multiplex genome editing vector pYLCRISPR/Cas9Pubi-H] SEQ ID NO: 351





CUO82355.1
Uncharacterized protein conserved in bacteria [Roseburia hominis] SEQ ID NO: 352





WP_033162887.1
type II CRISPR RNA-guided endonuclease Cas9 [Sharpea azabuensis] SEQ ID NO: 353





AGZ01981.1
Cas9 endonuclease [synthetic construct] SEQ ID NO: 354





AKA60242.1
nuclease deficient Cas9 [synthetic construct] SEQ ID NO: 355





AKS40380.1
Cas9 [Synthetic plasmid pFC330] SEQ ID NO: 356





4UN5_B
Cas9, Chain B, Crystal Structure SEQ ID NO: 357














WP_010922251
1


embedded image


73



WP_039695303
1
MTKKnYSIGLDIGTNSVGWAVITDDYKVPAKKMKVLGNTDKKYIKKNLLGALLFDSGETA--EATRLKRTARRRYT
74





WP_045635197
1
K-KG-YSIGLDIGTNSVGFAVITDDYKVPSKKMKVLGNTDKRFIKKNLIGALLFDEGTTA--EARRLKRTARRRYT
73





5AXW_A
1
MKRN-YILGLDIGITSVGYGII--DYET------------RDVIDA---GVRLFKEANVEnnEGRRSKRGARRLKR
61





WP_009880683

----------------------------------------------------------------------------






WP_010922251
1
MDKK-YSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73





WP_011054416
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKLKGLGNTDRHGIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73





WP_011284745
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73





WP_011285506
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73





WP_011527619
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGEIA--EATRLKRTARRRYT
73





WP_012560673
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73





WP_014407541
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFGSGETA--EATRLKRTARRRYT
73





WP_020905136
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73





WP_023080005
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKLKVLGNTDRHGIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73





WP_023610282
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKLKVLGNTDRHGIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73





WP_030125963
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73





WP_030126706
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHGIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73





WP_031488318
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73





WP_032460140
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73





WP_032461047
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73





WP_032462016
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73





WP_032462936
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73





WP_032464890
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGEIA--EATRLKRTARRRYT
73





WP_033888930

----------------------------------------------------------------------------






WP_038431314
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73





WP_038432938
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73





WP_038434062
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73





BAQ51233

----------------------------------------------------------------------------






KGE60162

----------------------------------------------------------------------------






KGE60856

----------------------------------------------------------------------------






WP_002989955
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGEIA--EATRLKRTARRRYT
73





WP_003030002
1
MDQK-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKQSIKKNLLGALLFDSGETA--EATRLKRTARRRYT
73





WP_003065552
1
MTKKnYSIGLDIGTNSVGWAVITDDYKVPAKKMKVLGNTDKKYIKKNLLGALLFDSGETA--EATRLKRTARRRYT
74





WP_001040076
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKIRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





WP_001040078
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





WP_001040080
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





WP_001040081
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





WP_001040083
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





WP_001040085
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





WP_001040087
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





WP_001040088
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





WP_001040089
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





WP_001040090
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





WP_001040091
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





WP_001040092
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





WP_001040094
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





WP_001040095
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





WP_001040096
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





WP_001040097
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





WP_001040098
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





WP_001040099
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





WP_001040100
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





WP_001040104
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





WP_001040105
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTSRRRYT
73





WP_001040106
1
MNKP-YSIGLDIGTNSVGYSVVTDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--SDRRLKRTARRRYT
73





WP_001040107
1
MNKP-YSIGLDIGTNSVGYSVVTDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--SDRRLKRTARRRYT
73





WP_001040108
1
MNKP-YSIGLDIGTNSVGYSVVTDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--SDRRLKRTARRRYT
73





WP_001040109
1
MNKP-YSIGLDIGTNSVGYSVVTDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--SDRRLKRTARRRYT
73





WP_001040110
1
MNKP-YSIGLDIGTNSVGYSVVTDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--SDRRLKRTARRRYT
73





WP_015058523
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





WP_017643650
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





WP_017647151
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--SDRRLKRTARRRYT
73





WP_017648376
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--SDRRLKRTARRRYT
73





WP_017649527
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





WP_017771611
1
MNKP-YSIGLDIGTNSVGYSVVTDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--SDRRLKRTARRRYT
73





WP_017771984
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





CFQ25032
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





CFV16040
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





KLJ37842
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





KLJ72361
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





KLL20707
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





KLL42645
1
MNKP-YSIGLDIGTNSVGYSVVTDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--SDRRLKRTARRRYT
73





WP_047207273
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGRNTA--ADRRLKRTARRRYT
73





WP_047209694
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





WP_050198062
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





WP_050201642
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





WP_050204027
1
MNKP-YSIGLDIGTNSVGYSVVTDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--SDRRLKRTARRRYT
73





WP_050881965
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





WP_050886065
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





AHN30376
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





EAO78426
1
MNKP-YSIGXDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRTARRRYT
73





CCW42055
1
MNKP-YSIGLDIGTNSVGWSIITDDYKVPAKKMRVLGNTDKEYIKKNLIGALLFDGGNTA--ADRRLKRIARRRYT
73





WP_003041502
1
MNQK-YSIGLDIGTNSVGWAVITDDYKVPAKKMKVLGNTDKQSIKKNLLGALLFDSGETA--EATRLKRTARRRYT
73





WP_037593752
1
MKKE-YSIGLDIGTNSVGWAVITDDYKVPAKKMKVLGNTDKQSIKKNLLGALLFDSGETA--EATRLKRTARRRYT
74





WP_049516684
1
MKKE-YSIGLDIGTNSVGWAVITDDYKVPAKKMKVLGNTDKQSIKKNLLGALLFDSGETA--EATRLKRTARRRYT
74





GAD46167
1
MKKE-YSIGLDIGTNSVGWAVITDDYKVPAKKMKVLGNTDKQSIKKNLLGALLFDSGETA--EATRLKRTARRRYT
73





WP_018363470
1
MTKKnYSIGLDIGTNSVGWAVITDDYKVPAKKMKVLGNTDKKYIKKNLLGALLFDSGETA--EATRLKRTARRRYT
74





WP_003043819
1
MEKK-YSIGLDIGTNSVGWAVITDDYKVPSKKEKVLGNTNRKSIKKNLMGALLFDSGETA--EATRLKRTARRRYT
73





WP_006269658
1
MGKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKQSIKKNLLGALLFDSGETA--EATRLKRTARRRYT
73





WP_048800889
1
MTQK-YSIGLDIGTNSVGWAIVTDDYKVPAKKMKILGNTNKQYIKKNLLGALLFDSGETA--KATRLKRTARRRYT
73





WP_012767106
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKEKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73





WP_014612333
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKEKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73





WP_015017095
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKEKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73





WP_015057649
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKEKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73





WP_048327215
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKEKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73





WP_049519324
1
MDKK-YSIGLDIGTNSVGWAVITDDYKVPSKKEKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73





WP_012515931
1
MKKP-YTIALDIGTNSVGWVVVTDDYRVPTKKMKVLGNTERKTIKKNLIGALLFDSGDTA--EGTRLKRTARRRYT
73





WP_021320964
1
MKKP-YTIALDIGTNSVGWVVVTDDYRVPTKKMKVLGNTERKTIKKNLIGALLFDSGDTA--EGTRLKRTARRRYT
73





WP_037581760
1
MKKP-YTIALDIGTNSVGWVVVTDDYRVPTKKMKVLGNTERKTIKKNLIGALLFDSGDTA--EGTRLKRTARPRYT
73





WP_004232481
1
M-EKtYSIGLDIGTNSVGWAVITDDYKVPAKKMKVLGNTDKKYIKKNLLGALLFDSGETA--EATRLKRAARRRYT
73





WP_009854540
1
MTKKnYSIGLDIGTNSVGWAVITDDYKVPAKKMKVLGNTDKKYIKKNLLGALLFDSGETA--EATRLKRTARRRYT
74





WP_012962174
1
MTEKnYSIGLDIGTNSVGWAVITDDYKVPAKKMKVLGNTDKKYIKKNLLGALLFDNGETA--EATRLKRTARRRYT
74





WP_039695303
1
MTKKnYSIGLDIGTNSVGWAVITDDYKVPAKKMKVLGNTDKKYIKKNLLGALLFDSGETA--EATRLKRTARRRYT
74





WP_014334983
1
M-EKsYSIGLDIGTNSVGWAVITDDYKVPAKKMKVLGNTDKKYIKKNLLGALLFDSGETA--EVTRLKRTARRRYT
73





WP_003099269
1
MRKP-YSIGLDIGTNSVGWAVITDDYKVPSKKMRIQGTTDRTSIKKNLIGALLFDNGETA--EATRLKRTTRRRYT
73





AHY15608
1
MRKP-YSIGLDIGTNSVGWAVITDDYKVPSKKMRIQGTTDRTSIKKNLIGALLFDNGETA--EATRLKRTTRRRYT
73





AHY17476
1
MRKP-YSIGLDIGTNSVGWAVITDDYKVPSKKMRIQGTTDRTSIKKNLIGALLFDNGETA--EATRLKRTTRRRYT
73





ESR09100

----------------------------------------------------------------------------






AGM98575
1
MRKP-YSIGLDIGTNSVGWAVITDDYKVPSKKMRIQGTTDRTSIKKNLIGALLFDNGETA--EATRLKRTTRRRYT
73





ALF27331
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73





WP_018372492
1
MKKP-YSIGLDIGTNSVGWAVVMEDYKVPSKKMKVLGNTDKQSIKKNLIGALLFDSGETAv--ERRLNRTTSRRYD
73





WP_045618028
1
NNKP-YSIGLDIGTNSVGWAVITDDYKVPSKKMKVLGNTDKHFIKKNLLGALLFDEGTTA--EDRRLKRTARRRYT
74





WP_045635197
1
K-KG-YSIGLDIGTNSVGFAVITDDYKVPSKKMKVLGNTDKRFIKKNLIGALLFDEGTTA--EARRLKRTARRRYT
73





WP_002263549
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIEKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73





WP_002263887
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIEKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73





WP_002264920
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73





WP_002269043
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73





WP_002269448
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73





WP_002271977
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73





WP_002272766
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73





WP_002273241
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73





WP_002275430
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--ADRRLKRTARRRYT
73





WP_002276448
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73





WP_002277050
1
MKKS-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73





WP_002277364
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--ADRRLKRTARRRYT
73





WP_002279025
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIEKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73





WP_002279859
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73





WP_002280230
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--ADRRLKRTARRRYT
73





WP_002281696
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--ADRRLKRTARRRYT
73





WP_002282247
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73





WP_002282906
1
MKKP-YSIGLDIGTNSVGWSVVTDDYKVPAKKMKVLGNTDKSHIEKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73





WP_002283846
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73





WP_002287255
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVSAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73





WP_002288990
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73





WP_002289641
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTTRRRYT
73





WP_002290427
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73





WP_002295753
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73





WP_002296423
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73





WP_002304487
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73





WP_002305844
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73





WP_002307203
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73





WP_002310390
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73





WP_002352408
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73





WP_012997688
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--ADRRLKRTARRRYT
73





WP_014677909
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPDKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73





WP_019312892
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--ADRRLKRTARRRYT
73





WP_019313659
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIEKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73





WP_019314093
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73





WP_019315370
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73





WP_019803776
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIEKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73





WP_019805234
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73





WP_024783594
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIEKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73





WP_024784288
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTARRRYT
73





WP_024784666
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--ADRRLKRTARRRYT
73





WP_024784894
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTTRRRYT
73





WP_024786433
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--ADRRLKRTARRRYT
73





WP_049473442
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--ADRRLKRTARRRYT
73





WP_049474547
1
MKKP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--EDRRLKRTTRRRYT
73





EMC03581
1
MDL--------IGTNSVGWAVVTDDYKVPAKKMKVLGNTDKSHIKKNLLGALLFDSGNTA--ADRRLKRTARRRYT
66





WP_000428612
1
ENKN-YSIGLDIGTNSVGWAVITDDYKVPSKKMKVLGNTDKRFIKKNLIGALLFDEGTTA--EARRLKRTARRRYT
74





WP_000428613
1
ENKN-YSIGLDIGTNSVGWSVITDDYKVPSKKMKVLGNTDKRFIKKNLIGALLFDEGTTA--EARRLKRTARRRYT
74





WP_049523028
1
K-KP-YSIGLDIGTNSVGWAVITDDYKVPAKKMKVLGNTNKESIKKNLIGALLFDAGNTA--ADRRLKRTARRRYT
73





WP_003107102
1
--------------------------------MKVLGNTDRQTVKKNMIGTLLFDSGETA--EARRLKRTARRRYT
42





WP_054279288
1
-KKS-YSIGLDIGTNSVGWAVITDDYKVPAKKMKVLGNTSRQSIKKNMIGALLFDEGGPA--ASTRVKRTTRRRYT
75





WP_049531101
1
SNKP-YSIGLDIGTNSVGWAVITDDYKVPSKKMKVLGNTDKHFIKKNLIGALLFDEGTTA--EDRRLKRTARRRYT
74





WP_049538452
1
SNKP-YSIGLDIGTNSVGWVIITDDYKVPSKKMKVLGNTDKHFIKKNLIGALLFDEGTTA--EDRRLKRTARRRYT
74





WP_049549711
1
SNKP-YSIGLDIGTNSVGWAVITDDYKVPSKKMTVLGNTDKHFIKKNLIGALLFDEGTTA--EDRRLKRTARRRYT
74





WP_007896501
1
--YS-YSIGLDIGTNSVGWAVINEDYKVPAKKMTVFGNTDRKTIKKNLLGTVLFDSGETA--QARRLKRTNRRRYT
75





EFR44625
1
-----------------------------------------------MLGTVLFDSGETA--QARRLKRTNRRRYT
27





WP_002897477
1
K-KP-YSIGLDIGTNSVGWAVVTDDYKVPAKKMRVFGDTDRSHIKKNLLGTLLFDDGNTA--ESRRLKRTARRRYT
73





WP_002906454
1
K-KP-YSIGLDIGTNSVGWAVITDDYKVPSKKMKVLGNTDKHFIKKNLIGALLFDEGTTA--EDRRLKRTSRRRYT
73





WP_009729476
1
ENKN-YSIGLDIGTNSVGWSVITDDYKVPSKKMKVLGNTDKHFIKKNLIGALLFDEGTTA--EARRLKRTARRRYT
74





CQR24647
1
MKKP-YSIGLDIGTNSVGWSVVTDDYKVPAKKMKVLGNTDKEYIKKNLIGALLFDSGETA--EATRMKRTARRRYT
73





WP_000066813
1
SNKS-YSIGLDIGTNSVGWAVITDDYKVPSKKMKVLGNTDKHFIKKNLIGALLFDEGTTA--EDRRLKRTARRRYT
74





WP_009754323
1
NNNN-YSIGLDIGTNSVGWAVITDDYKVPSKKMRVLGNTDKRFIKKNLIGALLFDEGTTA--EDRRLKRTARRRYT
74





WP_044674937
1
MKKK-YAIGIDIGTNSVGWSVVTDDYKVPSKKMKVFGNTEKRYIKKNLLGTLLFDEGNTA--ENRRLKRTARRRYT
73





WP_044676715
1
MKKK-YAIGIDIGTNSVGWSVVTDDYKVPSKKMKVFGNTEKRYIKKNLLGTLLFDEGNTA--ENRRLKRTARRRYT
73





WP_044680361
1
MKKK-YAIGIDIGTNSVGWSVVTDDYKVPSKKMKVFGNTEKRYIKKNLLGTLLFDEGNTA--ENRRLKRTARRRYT
73





WP_044681799
1
MKKK-YAIGIDIGTNSVGWSVVTDDYKVPSKKMKVFGNTEKRYIKKNLLGTLLFDEGNTA--ENRRLKRTARRRYT
73





WP_049533112
1
MDQK-YSIGLDIGTNSVGWAVVTDDYKVPAKKMKVLGNTDKQSIKKNLLGALLFDSGETA--EATRLKRTARRRYT
73





WP_029090905
1
-----------------------------------------------MWGVSLFEAGKTA--AERRGYRSTRRRLN
27





WP_006506696
1
I-VD-YCIGLDLGTGSVGWAVVDMNHRLMKRN------------GKHLWGSRLFSNAETA--ANRRASRSIRRRYN
60





AIT42264
1
MDKK-YSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73





WP_034440723
1
-MKN-YTIGLDIGTNSVGWAVIKDDLTLVRKKIKISGNTDKKEVKKNLWGSFLFEQGDTA--QDTRVKRIARRRYE
72





AKQ21048
1
MDKK-YSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73





WP_004636532
1
MQKN-YTIGLDIGTNSVGWAVMKDDYTLIRKRMKVLGNTDIKKIKKNFWGVRLFDEGETA--KETRLKRGTRRRYQ
73





WP_002364836
1
MKKD-YVIGLDIGTNSVGWAVMTEDYQLVKKKMPIYGNTEKKKIKKNFWGVRLFEEGHTA--EDRRLKRTARRRIS
73





WP_016631044
1
--------------------------------------------------MRLFEEGHTA--EDRRLKRTARRRIS
24





EMS75795

----------------------------------------------------------------------------






WP_002373311
1
MKKD-YVIGLDIGTNSVGWAVMTEDYQLVKKKMPIYGNTEKKKIKKNFWGVRLFEEGHTA--EDRRLKRTARRRIS
73





WP_002378009
1
MKKD-YVIGLDIGTNSVGWAVMTEDYQLVKKKMPIYGNTEKKKIKKNFWGVRLFEEGHTA--EDRRLKRTARRRIS
73





WP_002407324
1
MKKD-YVIGLDIGTNSVGWAVMTEDYQLVKKKMPIYGNTEKKKIKKNFWGVRLFEEGHTA--EDRRLKRTARRRIS
73





WP_002413717
1
MKKD-YVIGLDIGTNSVGWAVMTEDYQLVKKKMPIYGNTEKKKIKKNFWGVRLFEEGHTA--EDRRLKRTARRRIS
73





WP_010775580
1
MKKD-YVIGLDIGTNSVGWAVMTEDYQLVKKKMPIYGNTEKKKIKKNFWGVRLFEEGHTA--EDRRLKRTARRRIS
73





WP_010818269
1
MKKD-YVIGLDIGTNSVGWAVMTEDYQLVKKKMPIYGNTEKKKIKKNFWGVRLFEEGHTA--EDRRLKRTARRRIS
73





WP_010824395
1
MKKD-YVIGLDIGSNSVGWAVMTEDYQLVKKKMPIYGNTEKKKIKKNFWGVRLFEEGHTA--EDRRLKRTARRRIS
73





WP_016622645
1
MKKD-YVIGLDIGTNSVGWAVMTEDYQLVKKKMPIYGNTEKKKIKKNFWGVRLFEEGHTA--EDRRLKRTARRRIS
73





WP_033624816
1
MKKD-YVIGLDIGTNSVGWAVMTEDYQLVKKKMPIYGNTEKKKIKKNFWGVRLFEEGHTA--EDRRLKRTARRRIS
73





WP_033625576
1
MKKD-YVIGLDIGTNSVGWAVMTEDYQLVKKKMPIYGNTEKKKIKKNFWGVRLFEEGHTA--EDRRLKRTARRRIS
73





WP_033789179
1
MKKD-YVIGLDIGTNSVGWAVMTEDYQLVKKKMPIYGNTEKKKIKKNFWGVRLFEEGHTA--EDRRLKRTARRRIS
73





WP_002310644
1
MKKE-YTIGLDIGTNSVGWSVLTDDYRLVSKKMKVAGNTEKSSTKKNFWGVRLFDEGQTA--EARRSKRTARRRLA
73





WP_002312694
1
MKKE-YTIGLDIGTNSVGWSVLTDDYRLVSKKMKVAGNTEKSSTKKNFWGVRLFDEGQTA--EARRSKRTARRRLA
73





WP_002314015
1
MKKE-YTIGLDIGTNSVGWSVLTDDYRLVSKKMKVAGNTEKSSTKKNFWGVRLFDEGQTA--EARRSKRTARRRLA
73





WP_002320716
1
MKKE-YTIGLDIGTNSVGWSVLTDDYRLVSKKMKVAGNTEKSSTKKNFWGVRLFDEGQTA--EARRSKRTARRRLA
73





WP_002330729
1
MKKE-YTIGLDIGTNSVGWSVLTDDYRLVSKKMKVAGNTEKSSTKKNFWGVRLFDEGQTA--EARRSKRTARRRLA
73





WP_002335161
1
MKKE-YTIGLDIGTNSVGWSVLTDDYRLVSKKMKVAGNTEKSSTKKNFWGVRLFDEGQTA--EARRSKRTARRRLA
73





WP_002345439
1
MKKE-YTIGLDIGTNSVGWSVLTDDYRLVSKKMKVAGNTEKSSTKKNFWGVRLFDEGQTA--EARRSKRTARRRLA
73





WP_034867970
1
MTKD-YTIGLDIGTNSVGWAVLTDDYQLMKRKMSVHGNTEKKKIKKNFWGARLFDEGQTA--EFRRTKRTNRRRLA
73





WP_047937432
1
MKKE-YTIGLDIGTNSVGWSVLTDDYRLVSKKMKVAGNTEKSSTKKNFWGVRLFDEGQTA--EARRSKRTARRRLA
73





WP_010720994
1
MTKD-YTIGLDIGTNSVGWAVLTDDYQLMKRKMSVHGNTEKKKIKKNFWGARLFDEGQTA--EFRRTKRTNRRRLA
73





WP_010737004
1
MTKD-YTIGLDIGTNSVGWAVLTDDYQLMKRKMSVHGNTEKKKIKKNFWGARLFDEGQTA--EFRRTKRTNRRRLA
73





WP_034700478
1
MTKD-YTIGLDIGTNSVGWAVLTDDYQLMKRKMSVHGNTEKKKIKKNFWGARLFDEGQTA--EFRRTKRTNRRRLA
73





WP_007209003
1
MKND-YTIGLDIGTNSVGYSVVTDDYKVISKKMNVFGNTEKKSIKKNFWGVRLFESGQTA--QEARMKRTSRRRIA
73





WP_023519017
1
MEKE-YTIGLDIGTNSVGWAVLTDDYRLVARKMSIQGDSNRKKIKKNFWGARLFEEGKTA--QFRRIKRTNRRRIA
73





WP_010770040
1
MKKE-YTIGLDIGTNSVGWAVLTENYDLVKKKMKVYGNTETKYLKKNLWGVRLFDEGETA--ADRRLKRTTRRRYS
73





WP_048604708
1
MGKE-YTIGLDIGTNSVGWAVLQEDLDLVRRKMKVYGNTEKNYLKKNFWGVDLFDEGMTA--KDTRLKRTTRRRYF
73





WP_010750235
1
MNKA-YTLGLDIGTNSVGWAVVTDDYRLMAKKMPVHSKMEKKKIKKNFWGARLFDEGQTA--EERRNKRATRRRLR
73





AII16583
1
ADKK-YSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
112





WP_029073316
1
NNKI-YNIGLDIGDASVGWAVVDEHYNLLKRH------------GKHMWGSRLFTQANTA--VERRSSRSTRRRYN
65





WP_031589969
1
NNKI-YNIGLDIGDASVGWAVVDEHYNLLKRH------------GKHMWGSRLFTQANTA--VERRSSRSTRRRYN
65





KDA45870
1
LKKD-YSIGLDIGTNSVGHAVVTDDYKVPTKKMKVFGDTSKKTIKKNMLGVLLFNEGQTA--ADTRLKRGARRRYT
74





WP_039099354
1
MSRP-YNIGLDIGTSSIGWSVVDDQSKLVSVR------------GKYGYGVRLYDEGQTA--AERRSFRTTRRRLK
61





AKP02966
1
KEQP-YNIGLDIGTGSVGWAVTNDNYDLLNIK------------KKNLWGVRLFEGAQTA--KETRLNRSTRRRYR
64





WP_010991369
1
MKKP-YTIGLDIGTNSVGWAVLTDQYDLVKRKMKIAGDSEKKQIKKNFWGVRLFDEGQTA--ADRRMARTARRRIE
73





WP_033838504
1
MKKP-YTIGLDIGTNSVGWAVLTDQYDLVKRKMKIAGDSEKKQIKKNFWGVRLFDEGQTA--ADRRMARTARRRIE
73





EHN60060
1
MKKP-YTIGLDIGTNSVGWAVLTDQYDLVKRKMKIAGDSEKKQIKKNFWGVRLFDEGQTA--ADRRMARTARRRIE
76





EFR89594

----------------------------------------------------------------------------






WP_038409211
1
MRKP-YTIGLDIGTNSVGWAVLTDQYNLVKRKMKVAGSAEKKQIKKNFWGVRLFDEGEVA--AGRRMNRTTRRRIE
73





EFR95520

----------------------------------------------------------------------------






WP_003723650
1
MKNP-YTIGLDIGTNSVGWAVLTNQYDLVKRKMKVAGNSDKKQIKKNFWGVRLFDDGQTA--VDRRMNRTARRRIE
73





WP_003727705
1
MKNP-YTIGLDIGTNSVGWAVLTDQYDLVKRKMKVAGNSDKKQIKKNFWGVRLFDDGQTA--VDRRMNRTARRRIE
73





WP_003730785
1
MKNP-YTIGLDIGTNSVGWAVLTDQYDLVKRKMKVAGNSDKKQIKKNFWGVRLFDDGQTA--VDRRMNRTARRRIE
73





WP_003733029
1
MKKP-YTIGLDIGTNSVGWAVLTDQYDLVKRKMKISGDSEKKQIKKNFWGVRLFEKGETA--AKRRMSRTARRRIE
73





WP_003739838
1
MKNP-YTIGLDIGTNSVGWAVLTDQYDLVKRKMKVAGNSDKKQIKKNFWGVRLFDEGETA--ADRRMNRTARRRIE
73





WP_014601172
1
MKNP-YTIGLDIGTNSVGWAVLTNQYDLVKRKMKVAGNSDKKQIKKNFWGVRLFDDGQTA--VDRRMNRTARRRIE
73





WP_023548323
1
MKNP-YTIGLDIGTNSVGWAVLTNQYDLVKRKMKVAGNSDKKQIKKNFWGVRLFDDGQTA--VDRRMNRTARRRIE
73





WP_031665337
1
MKNP-YTIGLDIGTNSVGWAVLTDQYDLVKRKMKVAGNSDKKQIKKNFWGVRLFDDGQTA--VDRRMNRTARRRIE
73





WP_031669209
1
MKKP-YTIGLDIGTNSVGWAVLTDQYDLVKRKMKISGDSEKKQIKKNFWGVRLFEKGETA--AKRRMSRTARRRIE
73





WP_033920898
1
MKNP-YTIGLDIGTNSVGWAVLTNQYDLVKRKMKVAGNSDKKQIKKNFWGVRLFDDGQTA--VDRRMNRTARRRIE
73





AKI42028
1
MKNP-YTIGLDIGTNSVGWAVLTNQYDLVKRKMKVAGNSDKKQIKKNFWGVRLFDDGQTA--VDRRMNRTARRRIE
76





AKI50529
1
MKNP-YTIGLDIGTNSVGWAVLTNQYDLVKRKMKVAGNSDKKQIKKNFWGVRLFDDGQTA--VDRRMNRTARRRIE
76





EFR83390

----------------------------------------------------------------------------






WP_046323366
1
MKKP-YTIGLDIGTNSVGWAALTDQYDLVKRKMKVAGNSEKKQIKKNLWGVRLVDEGKTA--AHRRVNRTTRRRIE
73





AKE81011
1
ADKK-YSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
89





CUO82355
1
I-VD-YCIGLDLGTGSVGWAVVDMNHRLMKRN------------GKHLWGSRLFSNAETA--ATRRSSRSIRRRYN
64





WP_033162887
1
KDIR-YSIGLDIGTNSVGWAVMDEHYELLKKG------------NHHMWGSRLFDAAEPA--ATRRASRSIRRRYN
65





AGZ01981
1
ADKK-YSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
106





AKA60242
1
MDKK-YSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73





AKS40380
1
MDKK-YSIGLDIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
73





4UN5_B
1
MDKK-YSIGLAIGTNSVGWAVITDEYKVPSKKFKVLGNTDRHSIKKNLIGALLFDSGETA--EATRLKRTARRRYT
77





WP_010922251
74


embedded image


143


WP_039695303
75
RRKNRLRYLQEIFANEIAKVDESFFQRLDE-SFLT--DDDKT---F   DSHPIFGNKA-EEDAYHQKFPTIYHLRKHLA
144





WP_045635197
74
RRKNRLRYLQEIFSEEMSKVDSSFFHRLDD-SFLI--PEDKR---E   SKYPIFATLT-EEKEYHKQFPTIYHLRKQLA
143





5AXW_A
62
RRRHRIQRVKKLLFD---------YNLLTDhSELS----------G   --NPYEARVK--------------GLSQKLS
104





WP_009880683

----------------------------------------------   -------------------------------






WP_010922251
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
143





WP_011054416
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143





WP_011284745
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
143





WP_011285506
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
143





WP_011527619
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
143





WP_012560673
74
RRKNRICYLQEIFSNEIAKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143





WP_014407541
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143





WP_020905136
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
143





WP_023080005
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143





WP_023610282
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143





WP_030125963
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
143





WP_030126706
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143





WP_031488318
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143





WP_032460140
74
RRKNRICYLQEIFSNEIAKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143





WP_032461047
74
RRKNRICYLQEIFSNEIAKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143





WP_032462016
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
143





WP_032462936
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143





WP_032464890
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
143





WP_033888930

----------------------------------------------   -------------------------------






WP_038431314
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143





WP_038432938
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143





WP_038434062
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143





BAQ51233
1
----------------MAKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
54





KGE60162

----------------------------------------------   -------------------------------






KGE60856

----------------------------------------------   -------------------------------






WP_002989955
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
143





WP_003030002
74
RRRNRLRYLQEIFAEEMNKVDENFFQRLDD-SFLV--DEDKR---G   ERHPIFGNIA-AEVKYHDDFPTIYHLRKHLA
143





WP_003065552
75
RRKNRLRYLQEIFAEEMTKVDESFFQRLDE-SFLRwdDDNKK---L   GRYPIFGNKA-DVVKYHQEFPTIYHLRKHLA
146





WP_001040076
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATLQ-EEKYYHEKFPTIYHLRKELA
143





WP_001040078
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATLQ-EEKDYHEKFPTIYHLRKELA
143





WP_001040080
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143





WP_001040081
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143





WP_001040083
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143





WP_001040085
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143





WP_001040087
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143





WP_001040088
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143





WP_001040089
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143





WP_001040090
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143





WP_001040091
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143





WP_001040092
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA
143





WP_001040094
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATMQ-EEKYYHEKFPTIYHLRKELA
143





WP_001040095
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATMQ-EEKYYHEKFPTIYHLRKELA
143





WP_001040096
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATMQ-EEKYYHEKFPTIYHLRKELA
143





WP_001040097
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATMQ-EEKYYHEKFPTIYHLRKELA
143





WP_001040098
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATMQ-EEKYYHEKFPTIYHLRKELA
143





WP_001040099
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATMQ-EEKYYHEKFPTIYHLRKELA
143





WP_001040100
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATMQ-EEKYYHEKFPTIYHLRKELA
143





WP_001040104
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYXIFATLQ-EEKDYHEKFSTIYHLRKELA
143





WP_001040105
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143





WP_001040106
74
CRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EDDKR---G   SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA
143





WP_001040107
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EDDKR---G   SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA
143





WP_001040108
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EDDKR---G   SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA
143





WP_001040109
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EDDKR---G   SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA
143





WP_001040110
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EDDKR---G   SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA
143





WP_015058523
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA
143





WP_017643650
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATMQ-EEKYYHEKFPTIYHLRKELA
143





WP_017647151
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EDDKR---G   SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA
143





WP_017648376
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EDDKR---G   SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA
143





WP_017649527
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATLQ-EEKDYHEKFPTIYHLRKELA
143





WP_017771611
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EDDKR---G   SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA
143





WP_017771984
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143





CFQ25032
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143





CFV16040
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143





KLJ37842
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143





KLJ72361
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143





KLL20707
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143





KLL42645
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EDDKR---G   SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA
143





WP_047207273
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143





WP_047209694
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATMQ-EEKYYHEKFPTIYHLRKELA
143





WP_050198062
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143





WP_050201642
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143





WP_050204027
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EDDKR---G   SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA
143





WP_050881965
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143





WP_050886065
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143





AHN30376
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATMQ-EEKDYHEKFPTIYHLRKELA
143





EAO78426
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATLQ-EEKDYHEKFSTIYHLRKELA
143





CCW42055
74
RRRNRILYLQEIFAEKMSKVDDSFFHRLED-SFLV--EEDKR---G   SKYPIFATLQ-EEKDYHEKFPTIYHLRKELA
143





WP_003041502
74
RRRNRLRYLQEIFAEEMMQVDESFFQRLDD-SFLV--DEDKR---G   ERHPIFGNIA-AEVKYHDEFPTIYHLRKHLA
143





WP_037593752
75
RRKNRLRYLQEIFTEEMNKVDENFFQRLDD-SFLV--EEDKQ---G   SKYPIFGTLK-EEKEYHKKFKTIYHLREELA
144





WP_049516684
75
RRRNRLRYLQEIFAEEMMQVDESFFQRLDD-SFLV--EEDKR---G   SRYPIFGNIA-AEVKYHDDFPTIYHLRKHLV
144





GAD46167
74
RRKNRLRYLQEIFTEEMNKVDENFFQRLDD-SFLV--EEDKQ---G   SKYPIFGTLK-EEKEYHKKFKTIYHLREELA
143





WP_018363470
75
RRKNRLRYLQDIFTEEMAKVDDSFFQRLDE-SFLT--DNDKN---F   DSHPIFGNKA-EEDAYHQKFPTIYHLRKHLA
144





WP_003043819
74
RRKNRIRYLQEIFANEMAKLDDSFFQRLEE-SFLV--EEDKK---N   ERHPIFGNLA-DEVAYHRNYPTIYHLRKKLA
143





WP_006269658
74
RRKNRLRYLQEIFTGEMNKVDENFFQRLDD-SFLV--DEDKR---G   EHHPIFGNIA-AEVKYHDDFPTIYHLRRHLA
143





WP_048800889
74
RRKNRLRYLQEIFIEEMNKVDENFFQRLDD-SFLV--TEDKR---G   SKYPIFGTLK-EEKEYYKEFETIYHLRKRLA
143





WP_012767106
74
RRKNRIRYLQEIFSSEMSKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143





WP_014612333
74
RRKNRIRYLQEIFSSEMSKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143





WP_015017095
74
RRKNRIRYLQEIFSSEMSKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143





WP_015057649
74
RRKNRIRYLQEIFSSEMSKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143





WP_048327215
74
RRKNRIRYLQEIFSSEMSKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143





WP_049519324
74
RRKNRIRYLQEIFSSEMSKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLA
143





WP_012515931
74
RRKNRLRYLKEIFTEEMAKVDDGFFQRLED-SFYV--LEDKE---G   NKHPIFANLA-DEVAYHKKYPTIYHLRKELV
143





WP_021320964
74
RRKNRLRYLKEIFTEEMAKVDDGFFQRLED-SFYV--LEDKE---G   NKHPIFANLA-DEVAYHKKYPTIYHLRKELV
143





WP_037581760
74
RRKNRLRFLKEIFTEEMAKVDDGFFQRLED-SFYV--LEDKE---G   NKHPIFANLA-DEVAYHKKYPTIYHLRKELV
143





WP_004232481
74
RRKNRLRYLQEIFAKEMAKVDESFFQRLEE-SFLT--DDDKT---F   DSHPIFGNKA-EEDTYHQEFPTIYHLRKHLA
143





WP_009854540
75
RRKNRLRYLQEIFAEEMTKVDESFFYRLDE-SFLT--TDEKD---F   ERHPIFGNKA-EEDAYHQKFPTIYHLRNYLA
144





WP_012962174
75
RRKNRLRYLQEIFAEEMAKVDESFFYRLDE-SFLT--TDDKD---F   ERHPIFGNKA-DEIKYHQEFPTIYHLRKHLA
144





WP_039695303
75
RRKNRLRYLQEIFANEIAKVDESFFQRLDE-SFLT--DDDKT---F   DSHPIFGNKA-EEDAYHQKFPTIYHLRKHLA
144





WP_014334983
74
RRKNRLRYLQEIFAKEMTKVDESFFQRLEE-SFLT--DDDKT---F   DSHPIFGNKA-EEDAYHQKFPTIYHLRKYLA
143





WP_003099269
74
RRKYRIKELQKIFSSEMNELDIAFFPRLSE-SFLV--SDDKE---F   ENHPIFGNLK-DEITYHNDYPTIYHLRQTLA
143





AHY15608
74
RRKYRIKELQKIFSSEMNELDIAFFPRLSE-SFLV--SDDKE---F   ENHPIFGNLK-DEITYHNDYPTIYHLRQTLA
143





AHY17476
74
RRKYRIKELQKIFSSEMNELDIAFFPRLSE-SFLV--SDDKE---F   ENHPIFGNLK-DEITYHNDYPTIYHLRQTLA
143





ESR09100

----------------------------------------------   -------------------------------






AGM98575
74
RRKYRIKELQKIFSSEMNELDIAFFPRLSE-SFLV--SDDKE---F   ENHPIFGNLK-DEITYHNDYPTIYHLRQTLA
143





ALF27331
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_018372492
74
RRRNRIRYLQHIFAEEMNRADENFFHRLKE-SFFV--EEDKT---Y   SKYPIFGTLE-EEKNYHKNYPTIYHLRKTLA
143





WP_045618028
75
RRKNRLRYLQEIFTEEMSKVDISFFHRLDD-SFLV--PEDKR---G   SKYPIFATLE-EEKEYHKNFPTIYHLRKHLA
144





WP_045635197
74
RRKNRLRYLQEIFSEEMSKVDSSFFHRLDD-SFLI--PEDKR---E   SKYPIFATLT-EEKEYHKQFPTIYHLRKQLA
143





WP_002263549
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_002263887
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_002264920
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLDE-SFLT--DDDKN---F   DSYPIFGNKA-EEDAYHQKFPTIYHLRKHLA
143





WP_002269043
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_002269448
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_002271977
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_002272766
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_002273241
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_002275430
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_002276448
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_002277050
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLDE-SFLT--DDDKN---F   DSHPIFGNKA-EEDAYHQKFPTIYHLRKHLA
143





WP_002277364
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_002279025
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLED-FFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_002279859
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLDE-SFLT--DDDKN---F   DSHPIFGNKA-EEDAYHQKFPTIYHLRKHLA
143





WP_002280230
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_002281696
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_002282247
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLDE-SFLT--DDDKN---F   DSHPIFGNKA-EEDAYHQKFPTIYHLRKHLA
143





WP_002282906
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_002283846
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_002287255
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_002288990
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_002289641
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_002290427
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_002295753
74
RRRNRILYLQEIFSEEMGKVNDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_002296423
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_002304487
74
RRRNRILYLQEIFAEEMMQVDESFFQRLDD-SFLV--EEDKR---G   SRYPIFGTLK-EEKKYHKEFKTIYHLREKLA
143





WP_002305844
74
RRRNRILYLQEIFSEEMDKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_002307203
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_002310390
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_002352408
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_012997688
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_014677909
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_019312892
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_019313659
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_019314093
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_019315370
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G   ECHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_019803776
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_019805234
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_024783594
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_024784288
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLDE-SFLT--DDDKN---F   DSHPIFGNKA-EEDAYHQKFPTIYHLRKHLA
143





WP_024784666
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_024784894
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





WP_024786433
74
RRRNRILYLQEIFAEEMNKVDDSFFHRLDE-SFLT--DDDKN---F   DSHPIFGNKA-EEDAYHQKFPTIYHLRKHLA
143





WP_049473442
74
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYYENFPTIYHLRQYLA
143





WP_049474547
74
RRRNRILYLQEIFSEEMGKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
143





EMC03581
67
RRRNRILYLQEIFAEEMSKVDDSFFHRLED-SFLV--TEDKR---G   ERHPIFGNLE-EEVKYHENFPTIYHLRQYLA
136





WP_000428612
75
RRKNRLRYLQEIFAEEMSKVDSSFFHRLDD-SFLI--PEDKK---G   SKYPIFATLI-EEKEYHKQFPTIYHLRKQLA
144





WP_000428613
75
RRKNRLRYLQEIFAEEMSKVDSSFFHRLDD-SFLI--PEDKR---G   SKYPIFATLA-EEKEYHKQFPTIYHLRKQLA
144





WP_049523028
74
RRRNRILYLQEIFAAEMNKVDESFFHRLDD-SFLV--PEDKR---G   SKYPIFGTLE-EEKEYHKQFPTIYYLRKILA
143





WP_003107102
43
RRINRIKYLQSIFDDEMSKIDSAFFQRIKD-SFLV--PDDKN---D   DRHPIFGNIK-DEVDYHKNYPTIYHLRKKLA
112





WP_054279288
76
RRKNRLCYLRDIFESEMHTIDKHFFLRLED-SFLH--KSDKR---Y   EAHPIFGTLQ-EEKAYHDNYPTIYHLRKALA
145





WP_049531101
75
RRKNRLRYLQEIFSEEISKVDNSFFHRLDD-SFLV--PEDKR---G   SKYPIFATLT-EEKEYYKQFPTIYHLRKQLA
144





WP_049538452
75
RRKNRLRYLQEIFAEEMNKVDSSFFHRLDD-SFLV--PEDKR---G   SKYPIFATLA-EEKEYHKNFPTIYHLRKQLA
144





WP_049549711
75
RRKNRLRYLQEIFSGEMSKVDSSFFHRLDD-SFLV--PEDKR---G   SKYPIFATLV-EEKEYHKQFPTIYHLRKQLA
144





WP_007896501
76
RRRYRLCQLQNIFATEMVKVDDTFFQRLSE-SFFY--YQDKA---F   DKHPIFGNSK-EERAYHKTYPTIYHLRKDLA
145





EFR44625
28
RRRYRLCQLQNIFATEMVKVDDTFFQRLSE-SFFY--YQDKA---F   DKHPIFGNSK-EERAYHKTYPTIYHLRKDLA
97





WP_002897477
74
RRRNRILYLQEIFTESMNEIDESFFHRLDD-SFLV--PEDKR---G   SKYPIFATLQ-EEKEYHKQFPTIYHLRKQLA
143





WP_002906454
74
RRKNRLRYLQEIFSEEISKLDSSFFHRLDD-SFLV--PEDKR---G   SKYPIFATLE-EEKEYHKKFPTIYHLRKHLA
143





WP_009729476
75
RRKNRLRYLQEIFSEEIGKVDSSFFHRLDD-SFLI--PEDKR---G   SKYPIFATLA-EEKKYHKQFPTIYHLRKQLA
144





CQR24647
74
RRRNRILYLQDIFSPELNQVDESFLHRLDD-SFLVa--EDKR---G   ERHVIFGNIA-DEVKYHKEFPTIYHLRKHLA
143





WP_000066813
75
RRKNRLRYLQEIFSQEISKVDSSFFHRLDD-FFLV--PEDKR---G   SKYPIFATLV-EEKEYHKKFPTIYHLRKHLA
144





WP_009754323
75
RRKNRLRYLQEIFAEEMSKVDSSFFHRLDD-SFLV--PEDKS---G   SKYPIFATLA-EEKEYHKKFPTIYHLRKHLA
144





WP_044674937
74
RRRNRILYLQEIFAEEINKIDDSFFQRLDD-SFLIv--EDKQ---G   SKHPIFGTLQ-EEKKYHKQFPTIYHLRKQLA
143





WP_044676715
74
RRRNRILYLQEIFAEEINKIDDSFFQRLDD-SFLIv--EDKQ---G   SKHPIFGTLQ-EEKEYHKQFPTIYHLRKQLA
143





WP_044680361
74
RRRNRILYLQEIFAEEINKIDDSFFQRLDD-SFLIv--EDKQ---G   SKHPIFGTLQ-EEKEYHKQFPTIYHLRKQLA
143





WP_044681799
74
RRRNRILYLQEIFAEEINKIDDSFFQRLDD-SFLIv--EDKQ---G   SKHPIFGTLQ-EEKKYHKQFPTIYHLRKQLA
143





WP_049533112
74
RRRNRLRYLQEIFAEEMNKVDENFFQRLDD-SFLV--DEDKR---G   ERHPIFGNIA-AEVKYHDDFPTIYHLRKHLA
143





WP_029090905
28
HRKFRLRLLEDMFEKEILSKDPSFFIRLKE-AFLSpkDEQKQ---F   ----LFNDKDyTDADYYEQYKTIYHLRYDLI
100





WP_006506696
61
KRRERIRLLRAILQDMVLEKDPTFFIRLEHtSFLD--EEDKAkylG   DNYNLFIDEDfNDYTYYHKYPTIYHLRKALC
139





AIT42264
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
143





WP_034440723
73
RRRFRIRELQKIFDKSMGEVDSNFFHRLDE-SFLV--EEDKE---Y   SKYPIFSNEK-EDKNYYDKYPTIYHLRKDLA
142





AKQ21048
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
143





WP_004636532
74
RRRNRLIYLQDIFQQPMLAIDENFFHRLDD-SFFV--PDDKS---Y   DRHPIFGSLE-EEVAYHNTYPTIYHLRKHLA
143





WP_002364836
74
RRRNRLRYLQAFFEEAMTDLDENFFARLQE-SFLV--PEDKK---W   HRHPIFAKLE-DEVAYHETYPTIYHLRKKLA
143





WP_016631044
25
RRRNRLRYLQAFFEEAMTDLDENFFARLQE-SFLV--PEDKK---W   HRHPIFAKLE-DEVAYHETYPTIYHLRKKLA
94





EMS75795

----------------------------------------------   -------------------------------






WP_002373311
74
RRRNRLRYLQAFFEEAMTDLDENFFARLQE-SFLV--PEDKK---W   HRHPIFAKLE-DEVAYHETYPTIYHLRKKLA
143





WP_002378009
74
RRRNRLRYLQAFFEEAMTALDENFFARLQE-SFLV--PEDKK---W   HRHPIFAKLE-DEVAYHETYPTIYHLRKKLA
143





WP_002407324
74
RRRNRLRYLQAFFEEAMTALDENFFARLQE-SFLV--PEDKK---W   HRHPIFAKLE-DEVAYHETYPTIYHLRKKLA
143





WP_002413717
74
RRRNRLRYLQAFFEEAMTDLDENFFARLQE-SFLV--PEDKK---W   HRHPIFAKLE-DEVAYHETYPTIYHLRKKLA
143





WP_010775580
74
RRRNRLRYLQAFFEEAMTALDENFFARLQE-SFLV--PEDKK---W   HRHPIFAKLE-DEVAYHETYPTIYHLRKKLA
143





WP_010818269
74
RRRNRLRYLQAFFEEAMTALDENFFARLQE-SFLV--PEDKK---W   HRHPIFAKLE-DEVAYHETYPTIYHLRKKLA
143





WP_010824395
74
RRRNRLRYLQAFFEEAMTDLDENFFARLQE-SFLV--PEDKK---W   HRHPIFAKLE-DEVAYHETYPTIYHLRKKLA
143





WP_016622645
74
RRRNRLRYLQAFFEEAMTALDENFFARLQE-SFLV--PEDKK---W   HRHPIFAKLE-DEVAYHETYPTIYHLRKKLA
143





WP_033624816
74
RRRNRLRYLQAFFEEAMTALDENFFARLQE-SFLV--PEDKK---W   HRHPIFAKLE-DEVAYHETYPTIYHLRKKLA
143





WP_033625576
74
RRRNRLRYLQAFFEEAMTALDENFFARLQE-SFLV--PEDKK---W   HRHPIFAKLE-DEVAYHETYPTIYHLRKKLA
143





WP_033789179
74
RRRNRLRYLQAFFEEAMTALDENFFARLQE-SFLV--PEDKK---W   HRHPIFAKLE-DEVAYHETYPTIYHLRKKLA
143





WP_002310644
74
RRRQRILELQKIFAPEILKIDEHFFARLNE-SFLV--LDEKK---Q   SRHPVFATIK-QEKSYHQTYPTIYHLRQALA
143





WP_002312694
74
RRRQRILELQKIFAPEILKIDEHFFARLNE-SFLV--PDEKK---Q   SRHPVFATIK-QEKSYHQTYPTIYHLRQALA
143





WP_002314015
74
RRRQRILELQKIFAPEILKIDEHFFARLNE-SFLV--LDEKK---Q   SRHPVFATIK-QEKSYHQTYPTIYHLRQALA
143





WP_002320716
74
RRRQRILELQKIFAPEILKIDEHFFARLNE-SFLV--LDEKK---Q   SRHPVFATIK-QEKSYHQTYPTIYHLRQALA
143





WP_002330729
74
RRRQRILELQKIFAPEILKIDEHFFARLNE-SFLV--LDEKK---Q   SRHPVFATIK-QEKSYHQTYPTIYHLRQALA
143





WP_002335161
74
RRRQRILELQKIFAPEILKIDEHFFARLNE-SFLV--LDEKK---Q   SRHPVFATIK-QEKSYHQTYPTIYHLRQALA
143





WP_002345439
74
RRRQRILELQKIFAPEILKIDEHFFARLNE-SFLV--LDEKK---Q   SRHPVFATIK-QEKSYHQTYPTIYHLRQALA
143





WP_034867970
74
RRKYRLSKLQDLFAEELCKQDDCFFVRLEE-SFLV--PEEKQ---Y   KPASIFPTLE-EEKEYYQKYPTIYHLRQKLV
143





WP_047937432
74
RRRQRILELQKIFAPEILKIDEHFFARLNE-SFLV--LDEKK---Q   SRHPVFATIK-QEKSYHQTYPTIYHLRQALA
143





WP_010720994
74
RRKYRLSKLQDLFAEELCKQDDCFFVRLEE-SFLV--PEEKQ---Y   KPASIFPTLE-EEKEYYQKYPTIYHLRQKLV
143





WP_010737004
74
RRKYRLSKLQDLFAEELCKQDDCFFVRLEE-SFLV--PEEKQ---Y   KPASIFPTLE-EEKEYYQKYPTIYHLRQKLV
143





WP_034700478
74
RRKYRLSKLQDLFAEELCKQDDCFFVRLEE-SFLV--PEEKQ---Y   KPASIFPTLE-EEKEYYQKYPTIYHLRQKLV
143





WP_007209003
74
RRKNRICYLQEIFQPEMNHLDNNFFYRLNE-SFLVa--DDAK---Y   DKHPIFGTLD-EEIHFHEQFPTIYHLRKYLA
143





WP_023519017
74
RRRQRVLALQDIFAEEIHKKDPNFFARLEE-GDRV--EADKR---F   AKFPVFATLS-EEKNYHRQYPTIYHLRHDLA
143





WP_010770040
74
RRRNRICRLQDLFTEEMNQVDANFFHRLQE-SFLV--PDEKE---F   ERHAIFGKME-EEVSYYREFPTIYHLRKHLA
143





WP_048604708
74
RRRQRISYLQTFFQEEMNRIDPNFFNRLDE-SFLI--EEDKL---S   ERHPIFGTIE-EEVAYHKNYATIYHLRKELA
143





WP_010750235
74
RRKYRILELQKIFSEEILKKDSHFFARLDE-SFLI--PEDKQ---Y   ARFPIFPTLL-EEKAYYQNYPTIYHLRQKLA
143





AII16583
113
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
182





WP_029073316
66
KRRERIRLLRGIMEDMVLDVDPTFFIRLANvSFLD--QEDKKdylK   SNYNLFIDKDfNDKTYYDKYPTIYHLRKHLC
144





WP_031589969
66
KRRERIRLLREIMEDMVLDVDPTFFIRLANvSFLD--QEDKKdylK   SNYNLFIDKDfNDKTYYDKYPTIYHLRKHLC
144





KDA45870
75
RRKNRLRYLQEIFAPALAKVDPNFFYRLEE-SSLVa--EDKK---Y   DVYPIFGKRE-EELLYHDTHKTIYHLRSELA
144





WP_039099354
62
RRKWRLGLLREIFEPYITPVDDTFFLRKKQ-SNLS--PKDQR---K   -QTSLFNDRT--DRAFYDDYPTIYHLRYKLM
132





AKP02966
65
RRKNRINWLNEIFSEELANTDPSFLIRLQN-SWVSkkDPDRK---R   DKYNLFIDNPyTDKEYYREFPTIFHLRKELI
137





WP_010991369
74
RRRNRISYLQGIFAEEMSKTDANFFCRLSD-SFYV--DNEKR---N   SRHPFFATIE-EEVEYHKNYPTIYHLREELV
143





WP_033838504
74
RRRNRISYLQGIFAEEMSKTDANFFCRLSD-SFYV--DNEKR---N   SRHPFFATIE-EEVEYHKNYPTIYHLREELV
143





EHN60060
77
RRRNRISYLQGIFAEEMSKTDANFFCRLSD-SFYV--DNEKR---N   SRHPFFATIE-EEVEYHKNYPTIYHLREELV
146





EFR89594

----------------------------------------------   -------------------------------






WP_038409211
74
RRRNRIAYLQEIFAAEMAEVDANFFYRLED-SFYI--ESEKR---H   SRHPFFATIE-EEVAYHEEYKTIYHLREKLV
143





EFR95520

----------------------------------------------   -------------------------------






WP_003723650
74
RRRNRISYLQEIFAVEMANIDANFFCRLND-SFYV--DSEKR---N   SRHPFFATIE-EEVAYHDNYRTIYHLREKLV
143





WP_003727705
74
RRRNRISYLQEIFAVEMANIDANFFCRLND-SFYV--DSEKR---N   SRHPFFATIE-EEVAYHKNYRTIYHLREELV
143





WP_003730785
74
RRRNRISYLQEIFAVEMANIDANFFCRLND-SFYV--DSEKR---N   SRHPFFATIE-EEVAYHKNYRTIYHLREELV
143





WP_003733029
74
RRRNRISYLQEIFAIQMNEVDDNFFNRLKE-SFYA--ESDKK---Y   NRHPFFGTVE-EEVAYYKDFPTIYHLRKELI
143





WP_003739838
74
RRRNRISYLQEIFALEMANIDANFFCRLND-SFYV--DSEKR---N   SRHPFFATIE-EEVAYHKNYRTIYHLREELV
143





WP_014601172
74
RRRNRISYLQEIFAVEMANIDANFFCRLND-SFYV--DSEKR---N   SRHPFFATIE-EEVAYHKNYRTIYHLREELV
143





WP_023548323
74
RRRNRISYLQEIFAVEMANIDANFFCRLND-SFYV--DSEKR---N   SRHPFFATIE-EEVAYHKNYRTIYHLREELV
143





WP_031665337
74
RRRNRISYLQEIFAVEMANIDANFFCRLND-SFYV--DSEKR---N   SRHPFFATIE-EEVAYHKNYRTIYHLREELV
143





WP_031669209
74
RRRNRISYLQEIFAIQMNEVDDNFFNRLKE-SFYA--ESDKK---Y   NRHPFFGTVE-EEVAYYKDFPTIYHLRKELI
143





WP_033920898
74
RRRNRISYLQEIFAVEMANIDANFFCRLND-SFYV--DSEKR---N   SRHPFFATIE-EEVAYHKNYRTIYHLREELV
143





AKI42028
77
RRRNRISYLQEIFAVEMANIDANFFCRLND-SFYV--DSEKR---N   SRHPFFATIE-EEVAYHKNYRTIYHLREELV
146





AKI50529
77
RRRNRISYLQEIFAVEMANIDANFFCRLND-SFYV--DSEKR---N   SRHPFFATIE-EEVAYHKNYRTIYHLREELV
146





EFR83390

----------------------------------------------   -------------------------------






WP_046323366
74
RRRNRISYLQEIFTAEMFEVDANFFYRLED-SFYI--ESEKR---Q   SRHPFFATIE-EEVAYHENYRTIYHLREKLV
143





AKE81011
90
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
159





CUO82355
65
KRRERIRLLRAILQDMVLEKDPTFFIRLEHtSFLD--EEDKAkylG   DNYNLFIDEDfNDYTYYHKYPTIYHLRKALC
143





WP_033162887
66
KRRERIRLLRDLLGDMVMEVDPTFFIRLLNvSFLD--EEDKQknlG   DNYNLFIEKDfNDKTYYDKYPTIYHLRKELC
144





AGZ01981
107
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
176





AKA60242
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
143





AKS40380
74
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
143





4UN5_B
78
RRKNRICYLQEIFSNEMAKVDDSFFHRLEE-SFLV--EEDKK---H   ERHPIFGNIV-DEVAYHEKYPTIYHLRKKLV
147





WP_010922251
144


embedded image


211


WP_039695303
145
DSSEKADLRLVYLALAHMIKFRGHFLIEGE-LNAENTDVQKI--FADFVGVYNRT--FDDS-H   LSEITVDVA---SI
212





WP_045635197
144
DSKEKTDLRLIYLALAHMIKYRGHFLYEEA-FDIKNNDIQKI--FNEFISIYDNT--FEGS-S   LSGQNAQVE---AI
211





5AXW_A
105
EEEFSA-------ALLHLAKRRG---VHNV------NEVE------------EDT----GN--   --------E-----
134





WP_009880683

---------------------------------------------------------------   --------------






WP_010922251
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN--   INASGVDAK---AI
211





WP_011054416
144
DSTDKVDLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN--   INASRVDAK---AI
211





WP_011284745
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN--   INASGVDAK---AI
211





WP_011285506
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN--   INASGVDAK---AI
211





WP_011527619
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN--   INASGVDAK---AI
211





WP_012560673
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN--   INASRVDAK---AI
211





WP_014407541
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQIYNQL--FEEN--   INASRVDAK---AI
211





WP_020905136
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN--   INASGVDAK---AI
211





WP_023080005
144
DSTDKVDLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN--   INASRVDAK---AI
211





WP_023610282
144
DSTDKVDLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN--   INASRVDAK---AI
211





WP_030125963
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN--   INASGVDAK---AI
211





WP_030126706
144
DSTDKVDLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN--   INASRVDAK---AI
211





WP_031488318
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN--   INASRVDAK---AI
211





WP_032460140
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN--   INASRVDAK---AI
211





WP_032461047
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGG-LNPDNSDVDKL--FIQLVQTYNQL--FEEN--   INASRVDAK---AI
211





WP_032462016
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN--   INANGVDAK---AI
211





WP_032462936
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN--   INASRVDAK---AI
211





WP_032464890
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN--   INASGVDAK---AI
211





WP_033888930
1
---------------------------------PDNSDVDKL--FIQLVQTYNQL--FEEN--   INASGVDAK---AI
36





WP_038431314
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN--   INASRVDAK---AI
211





WP_038432938
144
DSTDKVDLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN--   INASRVDAK---AI
211





WP_038434062
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN--   INASRVDAK---AI
211





BAQ51233
55
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN--   INASGVDAK---AI
122





KGE60162

---------------------------------------------------------------   --------------






KGE60856

---------------------------------------------------------------   --------------






WP_002989955
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN--   INASGVDAK---AI
211





WP_003030002
144
DISQKADLRLVYLALAHMIKFRGHFLIEGQ-LKAENTNVQAL--FKDFVEVYDKT--VEES-H   LSEMTVDAL---SI
211





WP_003065552
147
DSSEKADLRLVYLALAHMIKFRGHFLIEGE-LNAENTDVQKI--FADFVGVYDRT--FDDS-H   LSEITVDAA---SI
214





WP_001040076
144
DKKEKADLRLVYLALAHIIKFRGHFLIEDDrEDVRNTDIQKQ--YQAFLEIFDTT--FENN-D   LLSQDVDVE---AI
212





WP_001040078
144
DKQEKADLRLIYLALAHIIKFRGHFLIEDDrEDVRNTDIQKQ--YQAFLEIFDTT--FENN-H   LLSQNVDVE---AI
212





WP_001040080
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsEDVRNTDISKQ--YQDFLEIFNIT--FENN-D   LLSQNVDVE---AI
212





WP_001040081
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsEDVRNTDISKQ--YQDFLEIFNTI--FENN-D   LLSQNVDVE---AI
212





WP_001040083
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsEDVRNTDISKQ--YQDFLEIFNTT--FENN-D   LLSQNVDVE---AI
212





WP_001040085
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsEDVRNTDISKQ--YQDFLEIFNTT--FENN-D   LLSQNVDVE---AI
212





WP_001040087
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsEDVRNTDISKQ--YQDFLEIFNTT--FENN-D   LLSQNVDVE---AI
212





WP_001040088
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsEDVRNTDISKQ--YQDFLEIFNTT--FENN-D   LLSQNVDVE---AI
212





WP_001040089
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsEDVRNTDISKQ--YQDFLEIFNTT--FENN-D   LLSQNVDVE---AI
212





WP_001040090
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsEDVRNTDISKQ--YQDFLEIFNTT--FENN-D   LLSQNVDVE---AI
212





WP_001040091
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsEDVRNTDISKQ--YQDFLEIFNTT--FENN-D   LLSQNVDVE---AI
212





WP_001040092
144
DKKEKADLRLVYLALAHIIKFRGHFLIEDDrEDVRNTDIQKQ--YQAFLEIFDTS--FENN-H   LLSQNVDVE---AI
212





WP_001040094
144
DKKEKADLRLIYLALAHIIKFRGHFLIEDDrEDVRNTDIQKQ--YQAFLEIFDTT--FENN-D   LLSQNVDVE---AI
212





WP_001040095
144
DKKEKADLRLIYLALAHIIKFRGHFLIEDDrEDVRNTDIQKQ--YQAFLEIFDTT--FENN-D   LLSQNVDVE---AI
212





WP_001040096
144
DKKEKADLRLIYLALAHIIKFRGHFLIEDDrEDVRNTDIQKQ--YQAFLEIFDTT--FENN-D   LLSQNVDVE---AI
212





WP_001040097
144
DKKEKADLRLIYLALAHIIKFRGHFLIEDDrEDVRNTDIQKQ--YQAFLEIFDTT--FENN-D   LLSQNVDVE---AI
212





WP_001040098
144
DKKEKADLRLIYLALAHIIKFRGHFLIEDDrEDVRNTDIQKQ--YQAFLEIFDTT--FENN-D   LLSQNVDVE---AI
212





WP_001040099
144
DKKEKADLRLIYLALAHIIKFRGHFLIEDDrEDVRNTDIQKQ--YQAFLEIFDTT--FENN-D   LLSQNVDVE---AI
212





WP_001040100
144
DKKEKADLRLIYLALAHIIKFRGHFLIEDDrEDVRNTDIQKQ--YQAFLEIFDTT--FENN-D   LLSQNVDVE---AI
212





WP_001040104
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsEDVRNTDISKQ--YQDFLEIFNTT--FENN-D   LLSQNVDVE---AI
212





WP_001040105
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsEDVRNTDISKQ--YQDFLEIFNTT--FENN-D   LLSQNVDVE---AI
212





WP_001040106
144
DKKEKANLRLVYLALAHIIKFRGHFLIEDDsEDVRNTDIQRQ--YQAFLEIFDTT--FENN-H   LLSQNIDVE---GI
212





WP_001040107
144
DKKEKADLRLVYLALAHIIKFRGHFLIEDDsEDVRNTDIQRQ--YQAFLEIFDTT--FENN-H   LLSQNIDVE---GI
212





WP_001040108
144
DKKEKADLRLVYLALAHIIKFRGHFLIEDDsEDVRNTDIQRQ--YQAFLEIFDTT--FENN-H   LLSQNIDVE---GI
212





WP_001040109
144
DKKEKANLRLVYLALAHIIKFRGHFLIEDDsEDVRNTDIQRQ--YQAFLEIFDTT--FENN-H   LLSQNIDVE---GI
212





WP_001040110
144
DKKEKANLRLVYLALAHIIKFRGHFLIEDDsEDVRNTDIQRQ--YQAFLEIFDTT--FENN-H   LLSQNIDVE---GI
212





WP_015058523
144
DKKEKADLRLVYLALAHIIKFRGHFLIEDDrEDVRNTDIQKQ--YQAFLEIFDTS--FENN-H   LLSQNVDVE---AI
212





WP_017643650
144
DKKEKADLRLIYLALAHIIKFRGHFLIEDDrEDVRNTDIQKQ--YQAFLEIFDTT--FENN-D   LLSQNVDVE---AI
212





WP_017647151
144
DKKEKADLRLFYLALAHIIKFRGHFLIEDDsEDVRNTDIQRQ--YQAFLEIFDTT--FENN-H   LLSQNIDIE---GI
212





WP_017648376
144
DKKEKADLRLFYLALAHIIKFRGHFLIEDDsEDVRNTDIQRQ--YQAFLEIFDTT--FENN-H   LLSQNIDVE---GI
212





WP_017649527
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsEDVRNTDISKQ--YQDFLEIFNTT--FENN-D   LLSQNVDVE---AI
212





WP_017771611
144
DKKEKADLRLVYLALAHIIKFRGHFLIEDDsEDVRNTDIQRQ--YQAFLEIFDTT--FENN-H   LLSQNIDVE---GI
212





WP_017771984
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsEDVRNTDISKQ--YQDFLEIFNTT--FENN-D   LLSQNVDVE---AI
212





CFQ25032
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsEDVRNTDISKQ--YQDFLEIFNTT--FENN-D   LLSQNVDVE---AI
212





CFV16040
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsEDVRNTDISKQ--YQDFLEIFNTT--FENN-D   LLSQNVDVE---AI
212





KLJ37842
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsEDVRNTDISKQ--YQDFLEIFNTT--FENN-D   LLSQNVDVE---AI
212





KLJ72361
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsEDVRNTDISKQ--YQDFLEIFNTT--FENN-D   LLSQNVDVE---AI
212





KLL20707
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsEDVRNTDISKQ--YQDFLEIFNTT--FENN-D   LLSQNVDVE---AI
212





KLL42645
144
DKKEKANLRLVYLALAHIIKFRGHFLIEDDsEDVRNTDIQRQ--YQAFLEIFDTT--FENN-H   LLSQNIDVE---GI
212





WP_047207273
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsEDVRNTDISKQ--YQDFLEIFNTT--FENN-D   LLSQNVDVE---AI
212





WP_047209694
144
DKKEKADLRLIYLALAHIIKFRGHFLIEDDsEDVRNTDIQKQ--YQAFLEIFDTT--FENN-D   LLSQNVDVE---AI
212





WP_050198062
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsEDVRNTDISKQ--YQDFLEIFNTT--FENN-D   LLSQNVDVE---AI
212





WP_050201642
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsEDVRNTDISKQ--YQDFLEIFNTT--FENN-D   LLSQNVDVE---AI
212





WP_050204027
144
DKKEKANLRLVYLALAHIIKFRGHFLIEDDsEDVRNTDIQRQ--YQAFLEIFDTT--FENN-H   LLSQNIDVE---GI
212





WP_050881965
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsEDVRNTDISKQ--YQDFLEIFNTT--FENN-D   LLSQNVDVE---AI
212





WP_050886065
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsEDVRNTDISKQ--YQDFLEIFNTT--FENN-D   LLSQNVDVE---AI
212





AHN30376
144
DKKEKADLRLVYLALAHIIKFRGHFLIEDDrEDVRNTDIQKQ--YQAFLEIFDTS--FENN-H   LLSQNVDVE---AI
212





EAO78426
144
DKKEKADLRLIYIALAHIIKFRGHFLIEDDsEDVRNTDISKQ--YQDFLEIFNTT--FENN-D   LLSQNVDVE---AI
212





CCW42055
144
DKKEKADLRLVYLALAHIIKFRGHFLIEDDrEDVRNTDIQKQ--YQAFLEIFDTT--FENN-H   LLSQNVDVE---AI
212





WP_003041502
144
DISQKADLRLVYLALAHMIKFRGHFLIEGQ-LKAENTNVQAL--FKDFVEVYDKT--VEES-H   LSEITVDAL---SI
211





WP_037593752
145
NSKEKADLRLVYLALAHMIKFRGHFLYEGD-LKAENTDVQAL--FKDFVEEYDKT--IEES-H   LSEITVDAL---SI
212





WP_049516684
145
DISQKADLRLVYLALAHMIKFRGHFLIEGQ-LKAENTNVQAL--FKDFVEVYDKT--VEES-H   LSEMTVDAL---SI
212





GAD46167
144
NSKEKADLRLVYLALAHMIKFRGHFLYEGD-LKAENTDVQAL--FKDFVEEYDKT--IEES-H   LSEITVDAL---SI
211





WP_018363470
145
DSTEKADLRLVYLALAHMIKFRGHFLIEGE-LNAENTDVQKL--FTDFVGVYDRT--FDDS-H   LSEITVDAA---SI
212





WP_003043819
144
DSPEKADLRLIYLALAHIIKFRGHFLIEGK-LNAENSDVAKL--FYQLIQTYNQL--FEES--   LDEIEVDAK---GI
211





WP_006269658
144
DTSKKADLRLVYLALAHMIKFRGHFLYEGD-LKAENTDVQAL--FKDFVEEYDKT--IEES-H   LSEITVDAL---SI
211





WP_048800889
144
DSTGKVDLRLVYLALAHMIKFRGHFLIEGQ-LKAENTDVQTL--FNDFVEVYDKT--IEES-H   LAEITVDAL---SI
211





WP_012767106
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDMDKL--FIQLVQTYNQL--FEEN--   INASRVDAK---AI
211





WP_014612333
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEK--   INASGVDAK---AI
211





WP_015017095
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDMDKL--FIQLVQTYNQL--FEEN--   INASRVDAK---AI
211





WP_015057649
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDMDKL--FIQLVQTYNQL--FEEN--   INASRVDAK---AI
211





WP_048327215
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDMDKL--FIQLVQTYNQL--FEEN--   INASRVDAK---AI
211





WP_049519324
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN--   INASRVDAK---AI
211





WP_012515931
144
DNPQKADLRLIYLAVAHIIKFRGHFLIEGT-LSSKNNNLQKS--FDHLVDTYNLL--FEEQ--   LLTEGINAK---EL
211





WP_021320964
144
DNPQKADLRLIYLAVAHIIKFRGHFLIEGT-LSSKNNNLQKS--FDHLVDTYNLL--FEEQ--   LLTEGINAK---EL
211





WP_037581760
144
DNPQKADLRLIYLAVAHIIKFRGHFLIEGT-LSSKNNNLQKS--FDHLVDTYNLL--FEEQ--   LLTEGINAK---EL
211





WP_004232481
144
DSPEKVDLRLVYLALAHMIKFRGHFLIEGQ-LNAENTDVQKI--FADFVGVYDRT--FDDS-H   LSEITVDAA---SI
211





WP_009854540
145
DSSEKADLRLVYLALAHMIKYRGHFLIEGK-LNAENTDVQKL--FTDFVGVYDRT--FDDS-H   LSEITVDVA---ST
212





WP_012962174
145
DSHEKADLRLIYLALAHMIKFRGHFLIEGE-LNAENTDVQKL--FEAFVEVYDRT--FDDS-N   LSEITVDAS---SI
212





WP_039695303
145
DSSEKADLRLVYLALAHMIKFRGHFLIEGE-LNAENTDVQKI--FADFVGVYNRT--FDDS-H   LSEITVDVA---SI
212





WP_014334983
144
DSQEKADLRLVYLALAHMIKYRGHFLIEGE-LNAENTDVQKL--FNVFVETYDKI--VDES-H   LSEIEVDAS---SI
211





WP_003099269
144
DSDQKADLRLIYLALAHIIKFRGHFLIEGN-LDSENTDVHVL--FLNLVNIYNNL--FEED--   VETASIDAE---KI
211





AHY15608
144
DSDQKADLRLIYLALAHIIKFRGHFLIEGN-LDSENTDVHVL--FLNLVNIYNNL--FEED--   VETASIDAE---KI
211





AHY17476
144
DSDQKADLRLIYLALAHIIKFRGHFLIEGN-LDSENTDVHVL--FLNLVNIYNNL--FEED--   VETASIDAE---KI
211





ESR09100

---------------------------------------------------------------   --------------






AGM98575
144
DSDQKADLRLIYLALAHIIKFRGHFLIEGN-LDSENTDVHVL--FLNLVNIYNNL--FEED--   VETASIDAE---KI
211





ALF27331
144
DNPEKTDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_018372492
144
DTPDKMDIRLIYLALAHIIKYRGHFLIEGD-LDIENIGIQDS--FKSFIEEYNTQ--FGTK--   -LDSTTKVE---AI
209





WP_045618028
145
DSKEKADFRLIYLALAHIIKYRGHFLYEES-FDIKNNDIQKI--FNEFISIYDNT--FEGS-S   LNGQNAQVE---AI
212





WP_045635197
144
DSKEKTDLRLIYLALAHMIKYRGHFLYEEA-FDIKNNDIQKI--FNEFISIYDNT--FEGS-S   LSGQNAQVE---AI
211





WP_002263549
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_002263887
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_002264920
144
DSTEKADLRLVYLALAHMIKFRGHFLIEGE-LNAENTDVQKL--FADFVGVYDRT--FDDS-H   LSEITVDAS---SI
211





WP_002269043
144
DNPEKTDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_002269448
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_002271977
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_002272766
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_002273241
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_002275430
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_002276448
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_002277050
144
DSTEKADLRLVYLALAHMIKFRGHFLIEGE-LNAENTDVQKL--FADFVGVYDRT--FDDS-H   LSEITVDAS---SI
211





WP_002277364
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_002279025
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_002279859
144
DSTEKADLRLVYLALAHMIKFRGHFLIEGE-LNAENTDVQKL--FADFVGVYDRT--FDDS-H   LSEITVDAS---SI
211





WP_002280230
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_002281696
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_002282247
144
DSTEKADLRLVYLALAHMIKFRGHFLIEGE-LNAENTDVQKL--FADFVGVYDRT--FDDS-H   LSEITVDAS---SI
211





WP_002282906
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_002283846
144
DNPEKTDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_002287255
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_002288990
144
DNPEKTDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_002289641
144
DNPEKTDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_002290427
144
DNPEKTDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_002295753
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_002296423
144
DNPEKTDLRLVYLALAHIIKFGGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_002304487
144
NSTEKADLRLVYLSLAHMIKFRGHFLIEGQ-LKAENTNVQAL--FKDFVEVYDKT--VEES-H   LSEMTVDAL---SI
211





WP_002305844
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_002307203
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQKL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_002310390
144
DNPEKTDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_002352408
144
DNPEKTDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_012997688
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_014677909
144
DNPEKTDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_019312892
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_019313659
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_019314093
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQKL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_019315370
144
DNPEKTDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_019803776
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_019805234
144
DNPEKTDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_024783594
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_024784288
144
DSTEKADLRLVYLALAHMIKFRGHFLIEGE-LNAENTDVQKL--FADFVGVYDRT--FDDS-H   LSEITVDAS---SI
211





WP_024784666
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_024784894
144
DNPEKTDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_024786433
144
DSTEKADLRLVYLALAHMIKFRGHFLIEGE-LNAENTDVQKL--FADFVGVYDRT--FDDS-H   LSEITVDAS---SI
211





WP_049473442
144
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





WP_049474547
144
DNPEKTDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
211





EMC03581
137
DNPEKVDLRLVYLALAHIIKFRGHFLIEGK-FDTRNNDVQRL--FQEFLAVYDNT--FENS-S   LQEQNVQVE---EI
204





WP_000428612
145
DSKEKTDLRLIYLALAHMIKYRGHFLYEDT-FDIKNNDIQKI--FNEFISIYNNT--FEGN-S   LSGQNVQVE---AI
212





WP_000428613
145
DSKEKTDLRLIYLALAHMIKYRGHFLYEDT-FDIKNNDIQKI--FSEFISIYDNT--FEGS-S   LSGQNAQVE---AI
212





WP_049523028
144
DSKEKVDLRLIYLALAHIIKYRGHFLYEDS-FDIKNNDIQKI--FNEFTILYDNT--FEES-S   LSKGNAQVE---EI
211





WP_003107102
113
DSDEKADLRLIYLALAHIIKFRGHFLIEGD-LDSQNTDVNAL--FLKLVDTYNLM--FEDD--   IDTQTIDAT---VI
180





WP_054279288
146
DNTEKADLRLIYLALAHIIKFRGHFLIEGA-LSANNTDVQQL--VHALVDAYNIM--FEED--   LDIEAIDVK---AI
213





WP_049531101
145
DSKEKADLRLIYLTLAHMIKYRGHFLYEES-FDIKNNDIQKI--FNEFISIYDNT--FEGS-S   LSGQNAQVE---AI
212





WP_049538452
145
DSKEKADLRLIYLALAHMIKYRGHFLYEEA-FDIKNNDIQKI--FNEFINIYDNT--FEGS-S   LSGQNEQVE---AI
212





WP_049549711
145
DSKEKADLRLIYLVLAHMIKYRGHFLYEEA-FDIKNNDIQKI--FNEFISIYDNT--FEGS-S   LSGQNAQVE---TI
212





WP_007896501
146
DRDQKADLRLIYLALSHIIKFRGHFLIEGK-LNSENTDVQKL--FIALVTVYNLL--FEEE--   IAGETCDAK---AL
213





EFR44625
98
DRDQKADLRLIYLALSHIIKFRGHFLIEGK-LNSENTDVQKL--FIALVTVYNLL--FEEE--   IAGETCDAK---AL
165





WP_002897477
144
DSKEKSDVRLIYLALAHMIKYRGHFLYEET-FDIKNNDIQKI--FNEFINIYDNT--FEGS-S   LSGQNAQVE---AI
211





WP_002906454
144
DSKEKTDLRLIYLALAHMIKYRGHFLYEES-FDIKNNDIQKI--FNEFISIYDNT--FEGS-S   LSGQNAQVE---AI
211





WP_009729476
145
DSKEKTDLRLIYLALAHMIKYRGHFLYEEA-FDIKNNDIQKI--FNEFISIYNNT--FEGN-S   LSGQNVQVE---AI
212





CQR24647
144
DSSEKADLRLVYLALAHIIKYRGHFLIDEP-IDIRNMNSQNL--FKEELLAFDGI--QVDC-Y   LASKHTDIS---GI
211





WP_000066813
145
DSKEKTDLRLIYLALAHMIKYRGHFLYEES-FDIKNNDIQKI--FSEFISIYDNT--FEGK-S   LSGQNAQVE---AI
212





WP_009754323
145
DSKEKADLRLIYLALAHITKYRGHFLYEEA-FDIKNNDIQKI--FNEFINIYDNT--FEGS-S   LSGQNAQVE---AI
212





WP_044674937
144
DSSQKADIRLIYLALAHIIKYRGHELFEGD-LKSENKDVQHL--FNDFVEMFDKT--VEGS-Y   LSENLPNVA---DV
211





WP_044676715
144
DSSQKADIRLIYLALAHIIKYRGHELFEGD-LKSENKDVQHL--FNDFVEMFDKT--VEGS-Y   LSENLPNVA---DV
211





WP_044680361
144
DSSQKADIRLIYLALAHIIKYRGHELFEGD-LKSENKDVQHL--FNDFVEMFDKT--VEGS-Y   LSENLPNVA---DV
211





WP_044681799
144
DSSQKADIRLIYLALAHIIKYRGHELFEGD-LKSENKDVQHL--FNDFVEMFDKT--VEGS-Y   LSENLPNVA---DV
211





WP_049533112
144
DISQKADLRLVYLALAHMIKFRGHFLIEGQ-LKAENTNVQAL--FKDFVEVYDKT--VEES-H   LSEMTVDAL---SI
211





WP_029090905
101
SQHRQFDIREVYLAIHHLIKYRGHFIYEDQPFTTDGNQLQHH--IKAIITMINSTl---NR--   IIPETIDINvfeKI
171





WP_006506696
140
ESTEKADPRLIYLALHHIVKYRGNFLYEGQkFNMDASNIEDK--LSDIFTQFTSFnnIPYEdD   --KKNLEIL---EI
210





AIT42264
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN--   INASGVDAK---AI
211





WP_034440723
143
DSNQKADLRLIYLALAHMIKYRGHFLIEGD-LKMDGISISES--FQEFIDSYNEVcaLEDE-N   NDELLTQIE---NI
217





AKQ21048
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN--   INASGVDAK---AI
211





WP_004636532
144
DNPEKADLRLVYTALAHIVKYRGHFLIEGE-LNTENTSISET--FEQFLDTYSDI--FKEQ--   LVGDISKVE---EI
210





WP_002364836
144
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENISVKEQ--FQQFMIIYNQT--FVNGeS   PLPESVLIE---EE
217





WP_016631044
95
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENTSVKDQ--FQQFMVIYNQT--FVNGeS   PLPESVLIE---EE
168





EMS75795

---------------------------------------------------------------   --------------






WP_002373311
144
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENTSVKEQ--FQQFMVIYNQT--FVNGeS   PLPESVLIE---EE
217





WP_002378009
144
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENISVKEQ--FQQFMIIYNQT--FVNGeS   PLPESVLIE---EE
217





WP_002407324
144
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENISVKEQ--FQQFMIIYNQT--FVNGeS   PLPESVLIE---EE
217





WP_002413717
144
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENISVKEQ--FQQFMIIYNQT--FVNGeS   PLPESVLIE---EE
217





WP_010775580
144
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENISVKEQ--FQQFMIIYNQT--FVNGeS   PLPESVLIE---EE
217





WP_010818269
144
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENISVKEQ--FQQFMIIYNQT--FVNGeS   PLPESVLIE---EE
217





WP_010824395
144
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENTSVKDQ--FQQFMVIYNQT--FVNGeS   PLPESVLIE---EE
217





WP_016622645
144
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENISVKEK--FQQFMIIYNQT--FVNGeG   PLPESVLIE---EE
217





WP_033624816
144
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENISVKDQ--FQQFMVIYNQT--FVNGeS   PLPESVLIE---EE
217





WP_033625576
144
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENISVKEQ--FQQFMIIYNQT--FVNGeS   PLPESVLIE---EE
217





WP_033789179
144
DSSEQADLRLIYLALAHIVKYRGHFLIEGK-LSTENISVKEQ--FQQFMIIYNQT--FVNGeS   PLPESVLIE---EE
217





WP_002310644
144
DSSEKADIRLVYLAMAHLLKYRGHFLIEGE-LNTENSSVTET--FRQFLSTYNQQ--FSEA-D   KLDEAVDCS---FV
216





WP_002312694
144
DSSEKADIRLVYLAMAHLLKYRGHFLIEGE-LNTENSSVTET--FRQFLSTYNQQ--FSEA-G   KLDEAVDCS---FV
216





WP_002314015
144
DSSEKADIRLVYLAMAHLLKYRGHFLIEGE-LNTENSSVTET--FRQFLSTYNQQ--FSEA-D   KLDEAVDCS---FV
216





WP_002320716
144
DSSEKADIRLVYLAMAHLLKYRGHFLIEGE-LNTENSSVTET--FRQFLSTYNQQ--FSEA-D   KLDEAVDCS---FV
216





WP_002330729
144
DSSEKADIRLVYLAMAHLLKYRGHFLIEGE-LNTENSSVTET--FRQFLSTYNQQ--FSEA-D   KLDEAVDCS---FV
216





WP_002335161
144
DSSEKADIRLVYLAMAHLLKYRGHFLIEGE-LNTENSSVTET--FRQFLSTYNQQ--FSEA-D   KLDEAVDCS---FV
216





WP_002345439
144
DSSEKADIRLVYLAMAHLLKYRGHFLIEGE-LNTENSSVTET--FRQFLSTYNQQ--FSEA-D   KLDEAVDCS---FV
216





WP_034867970
144
DSTEKEDLRLVYLALAHLLKYRGHFLFEGD-LDTENTSIEES--FRVFLEQYSKQ--SDQP--   -LIVHQPVL---TI
209





WP_047937432
144
DSSEKADIRLVYLAMAHLLKYRGHFLIEGE-LNTENSSVTET--FRQFLSTYNQQ--FSEA-D   KLDEAVDCS---FV
216





WP_010720994
144
DSTEKGDLRLVYLALAHLLKYRGHFLFEGD-LDTENTSIEES--FRVFLEQYGKQ--SDQP--   -LIVHQPVL---TI
209





WP_010737004
144
DSTEKEDLRLVYLALAHLLKYRGHFLFEGD-LDTENTSIEES--FRVFLEQYSKQ--SDQP--   -LIVHQPVL---TI
209





WP_034700478
144
DSTEKEDLRLVYLALAHLLKYRGHFLFEGD-LDTENTSIEES--FRVFLEQYGKQ--SDQP--   -LIVHQPVL---TI
209





WP_007209003
144
DGDEKADLRLVYLAIAHIIKFRGNFLIEGE-LNTENNSVIELs--KVFVQLYNQTl-SELE--   FIDESIDFS---EV
214





WP_023519017
144
NSKEQADIRLVYLAIAHCLKYRGHFLFEGE-LDTENTSVTEN--YQQFLQAYQQF--FPEP--   -IGDLDDAV---PI
209





WP_010770040
144
DTSEQADLRLVYLALAHIVKYRGHFLIEGE-LNTENSSVSET--FRTFIQVYNQI--FRENe-   PLAVPDNIE---EL
212





WP_048604708
144
DAEEKADLRLVYLALAHIIKYRGHFLIEGR-LSTENTSTEET--FKTFLQKYNQT--FN----   PVDETISIG---SI
208





WP_010750235
144
DSTEKADIRLVYLALAHMIKYRGHFLFEGE-LDTENTSVEET--FKEFIDIYNEQ--FEEG--   -IIFYKDIP---LI
209





AII16583
183
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN--   INASGVDAK---AI
250





WP_029073316
145
ESKEKEDPRLIYLALHHIVKYRGNFLYEGQkFSMDVSNIEDK--MIDVLRQFNEInlFEYVeD   --KKIDEVL---NV
215





WP_031589969
145
ESKEKEDPRLIYLALHHIVKYRGNFLYEGQkFSMDVSNIEDK--MIDVLRQFNEInlFEYVeD   --KKIDEVL---NV
215





KDA45870
145
NNDRPADLRLVYLALAHIIKYRGNFLLEGE-IDLRTTDINKV--FAEFSETLNEN--SDENlG   ----KLDVA---DI
209





WP_039099354
133
TEKRQFDIREIYLAMHHIVKYRGHFLNEAPvSSEKSSEINLVahFDRLNTIFADL--FSESgF   -TDKLAEVK---AL
206





AKP02966
138
INKNKADIRLVYLALHNILKYRGNFTYEHQkFNISTLNSNLS---KELIELNQQLikYDIS--   -FPDNCDWNhisDI
208





WP_010991369
144
NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTQNTSVDGI--YKQFIQTYNQV--FASGiE   KLEDNKDVA---KI
217





WP_033838504
144
NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTQNTSVDGI--YKQFIQTYNQV--FASGiE   KLEDNKDVA---KI
217





EHN60060
147
NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTQNTSVDGI--YKQFIQTYNQV--FASGiE   KLEDNKDVA---KI
220





EFR89594

---------------------------------------------------------------   --------------






WP_038409211
144
NSSDKADLRLVYLALAHIIKYRGNFLIEGM-LDTKNTSVDEV--FKQFIQTYNQI--FASDiE   RLEENKEVA---EI
217





EFR95520

---------------------------------------------------------------   --------------






WP_003723650
144
NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTKNTSVDEV--YKQFIETYNQV--FMSNiE   KVEENIEVA---NI
217





WP_003727705
144
NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTKNTSVDEV--YKQFIQTYNQV--FMSNiE   KVEENTEVA---SI
217





WP_003730785
144
NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTKNTSVDEV--YKQFIQTYNQV--FMSNiE   KVEENTEVA---SI
217





WP_003733029
144
DSQKKADLRLVYLALAHIIKYRGHFLIEGA-LDTKNTSIDEM--FKQFLQIYNQV--FANDiE   KTEKNQEVA---QI
217





WP_003739838
144
NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTKNTSVDGV--YKQFIQTYNQV--FISNiE   KMEENTTVA---DI
217





WP_014601172
144
NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTKNTSVDGV--YEQFIQTYNQV--FMSNiE   KVEENIEVA---NI
217





WP_023548323
144
NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTKNTSVDGV--YEQFILTYNQV--FMSNiE   KVEENIEVA---NI
217





WP_031665337
144
NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTKNTSVDGV--YEQFIQTYNQV--FMSNiE   KVEENIEVA---NI
217





WP_031669209
144
DSQKKADLRLVYLALAHIIKYRGHFLIEGA-LDTKNTSIDEM--FKQFLQIYNQV--FANDiE   KTEKNQEVA---QI
217





WP_033920898
144
NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTKNTSVDGV--YEQFIQTYNQV--FMSNiE   KVEENIEVA---NI
217





AKI42028
147
NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTKNTSVDGV--YEQFIQTYNQV--FMSNiE   KVEENIEVA---NI
220





AKI50529
147
NSSEKADLRLVYLALAHIIKYRGNFLIEGA-LDTKNTSVDGV--YEQFIQTYNQV--FMSNiE   KVEENIEVA---NI
220





EFR83390

---------------------------------------------------------------   --------------






WP_046323366
144
NSSDKADLRLVYLALAHIIKYRGNFLIEGK-LDTKNTSVDEV--FKQFIKTYNQV--FASDiE   RIEENNEVA---KI
217





AKE81011
160
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN--   INASGVDAK---AI
227





CUO82355
144
ESTEKADPRLIYLALHHIVKYRGNFLYEGQkFNMDASNIEDK--LSDVETQFADEnnIPYEdD   --KKNLEIL---EI
214





WP_033162887
145
ENKEKADPRLIYLALHHIVKYRGNFLYEGQsFTMDNSDIEER--LNSAIEKFMSIneFDNRiV   --SDINSMI---AV
215





AGZ01981
177
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN--   INASGVDAK---AI
244





AKA60242
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN--   INASGVDAK---AI
211





AKS40380
144
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN--   INASGVDAK---AI
211





4UN5_B
148
DSTDKADLRLIYLALAHMIKFRGHFLIEGD-LNPDNSDVDKL--FIQLVQTYNQL--FEEN--   INASGVDAK---AI
215





WP_010922251
212


embedded image


277


WP_039695303
213
LTEK-ISKSRRLENLIKY-Y-PT   EKKNTLFGNLIALALGLQPNFKTNF--KLSED-A---KLQ--FSKDTYEEDLEE
278





WP_045635197
212
FTDK-ISKSAKRERVLKL-F-PD   EKSTGLFSEFLKLIVGNQADFKKHF--DLEDK-A---PLQ--FSKDTYDEDLEN
277





5AXW_A
135
LSTK--------EQISRN-S--K   ----------------------------LEEKyVa--ELQ--------------
157





WP_009880683

-----------------------   ------------------------------------------------------






WP_010922251
212
LSAR-LSKSRRLENLIAQ-L-PG   EKKNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277





WP_011054416
212
LSAR-LSKSRRLENLIAQ-L-PG   EKKNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277





WP_011284745
212
LSAR-LSKSRRLENLIAQ-L-PG   EKKNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277





WP_011285506
212
LSAR-LSKSRRLENLIAQ-L-PG   EKKNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277





WP_011527619
212
LSAR-LSKSRRLENLIAQ-L-PG   EKKNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277





WP_012560673
212
LSAR-LSKSRRLENLIAQ-L-PG   EKRNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277





WP_014407541
212
LSAR-LSKSRRLENLIAQ-L-PG   EKRNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277





WP_020905136
212
LSAR-LSKSRRLENLIAQ-L-PG   EKKNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277





WP_023080005
212
LSAR-LSKSRRLENLIAQ-L-PG   EKKNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277





WP_023610282
212
LSAR-LSKSRRLENLIAQ-L-PG   EKKNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277





WP_030125963
212
LSAR-LSKSRRLENLIAQ-L-PG   EKKNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277





WP_030126706
212
LSAR-LSKSRRLENLIAQ-L-PG   EKKNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277





WP_031488318
212
LSAR-LSKSRRLENLIAQ-L-PG   EKRNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277





WP_032460140
212
LSAR-LSKSRRLENLIAQ-L-PG   EKRNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277





WP_032461047
212
LSAR-LSKSRRLENLIAQ-L-PG   EKRNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277





WP_032462016
212
LSAR-LSKSRRLENLIAQ-L-PG   EKKNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277





WP_032462936
212
LSAR-LSKSRRLENLIAQ-L-PG   EKKNGLFGNLIALLLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277





WP_032464890
212
LSAR-LSKSRRLENLIAQ-L-PG   EKKNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277





WP_033888930
37
LSAR-LSKSRRLENLIAQ-L-PG   EKKNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
102





WP_038431314
212
LSAR-LSKSRRLENLIAQ-L-PG   EKKNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277





WP_038432938
212
LSAR-LSKSRRLENLIAQ-L-PG   EKKNGLFGNLIALSLGLTPNFKSNF--DLAED-T---KLQ--LSKDTYDDDLDN
277





WP_038434062
212
LSAR-LSKSRRLENLIAQ-L-PG   EKRNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277





BAQ51233
123
LSAR-LSKSRRLENLIAQ-L-PG   EKKNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
188





KGE60162

-----------------------   ------------------------------------------------------






KGE60856

-----------------------   ------------------------------------------------------






WP_002989955
212
LSAR-LSKSRRLENLIAQ-L-PG   EKKNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277





WP_003030002
212
LTEK-VSKSRRLENLIAH-Y-PA   EKKNTLFGNLIALSLGLQPNFKTNF--QLSED-A---KLQ--FSKDTYEEDLEG
277





WP_003065552
215
LTEK-ISKSRRLENLIKY-Y-PT   EKKNTLFGNLIALALGLQPNFKMNF--KLSED-A---KLQ--FSKDSYEEDLGE
280





WP_001040076
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_001040078
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_001040080
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_001040081
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_001040083
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_001040085
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_001040087
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_001040088
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_001040089
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_001040090
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_001040091
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_001040092
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_001040094
213
LTDK-ISKSAKKDRILAR-Y-PN   QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_001040095
213
LTDK-ISKSAKKDRILAR-Y-PN   QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_001040096
213
LTDK-ISKSAKKDRILAR-Y-PN   QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_001040097
213
LTDK-ISKSAKKDRILAR-Y-PN   QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_001040098
213
LTDK-ISKSAKKDRILAR-Y-PN   QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_001040099
213
LTDK-ISKSAKKDRILAR-Y-PN   QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_001040100
213
LTDK-ISKSAKKDRILAR-Y-PN   QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_001040104
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_001040105
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_001040106
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_001040107
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_001040108
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_001040109
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_001040110
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_015058523
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_017643650
213
LTDK-ISKSAKKDRILAR-Y-PN   QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_017647151
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_017648376
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_017649527
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_017771611
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_017771984
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





CFQ25032
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





CFV16040
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





KLJ37842
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





KLJ72361
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





KLL20707
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





KLL42645
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_047207273
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_047209694
213
LTDK-ISKSAKKDRILAR-Y-PN   QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_050198062
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_050201642
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_050204027
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_050881965
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_050886065
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





AHN30376
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





EAO78426
213
LTDK-ISKSAKKDRILAQ-Y-PN   QKSTGIFAEFLKLIVGNQADFKKYF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





CCW42055
213
LTDK-ISKSAKKDRILAQ-Y-PD   QKSTGIFAEFLKLIVGNQADFKKHF--NLEDK-T---PLQ--FAKDSYDEDLEN
278





WP_003041502
212
LTEK-VSKSRRLENLIAH-Y-PA   EKKNTLFGNLIALFLGLQPNFKTNF--QLSED-A---KLQ--FSKDTYEEDLEG
277





WP_037593752
213
LTEK-VSKSSRLENLIAH-Y-PT   EKKNTLFGNLIALSLGLQPNFKTNF--QLSED-A---KLQ--FSKDTYEEDLEE
278





WP_049516684
213
LTEK-VSKSRRLENLVEC-Y-PT   EKKNTLFGNLIALSLGLQPNFKTNF--QLSED-A---KLQ--FSKDTYEEDLEG
278





GAD46167
212
LTEK-VSKSSRLENLIAH-Y-PT   EKKNTLFGNLIALSLGLQPNFKTNF--QLSED-A---KLQ--FSKDTYEEDLEE
277





WP_018363470
213
LTEK-ISKSRRLENLINN-Y-PK   EKKNTLFGNLIALALGLQPNFKTNF--KLSED-A---KLQ--FSKDTYEEDLEE
278





WP_003043819
212
LSAR-LSKSKRLEKLIAV-F-PN   EKKNGLFGNIIALALGLTPNFKSNF--DLTED-A---KLQ--LSKDTYDDDLDE
277





WP_006269658
212
LTEK-VSKSSRLENLIAH-Y-PT   EKKNTLFGNLIALSLDLHPNFKTNF--QLSED-A---KLQ--FSKDTYEEDLEG
277





WP_048800889
212
LTEK-VSKSRRLENLVKC-Y-PT   EKKNTLFGNLIALSLGLQPNFKTNF--QLSED-A---KLQ--FSKDTYEEDLEE
277





WP_012767106
212
LSAR-LSKSRRLENLIAQ-L-PG   EKRNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277





WP_014612333
212
LSAR-LSKSKRLENLIAQ-L-PG   EKKNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277





WP_015017095
212
LSAR-LSKSRRLENLIAQ-L-PG   EKRNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277





WP_015057649
212
LSAR-LSKSRRLENLIAQ-L-PG   EKRNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277





WP_048327215
212
LSAR-LSKSRRLENLIAQ-L-PG   EKRNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277





WP_049519324
212
LSAR-LSKSRRLENLIAQ-L-PG   EKRNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277





WP_012515931
212
LSAA-LSKSKRLENLISL-I-PG   QKKTGIFGNIIALSLGLTPNFKANF--GLSKD-V---KLQ--LAKDTYADDLDS
277





WP_021320964
212
LSAA-LSKSKRLENLISL-I-PG   QKKTGIFGNIIALSLGLTPNFKANF--GLSKD-V---KLQ--LAKDTYADDLDS
277





WP_037581760
212
LSAA-LSKSKRLENLISL-I-PG   QKKTGIFGNIIALSLGLTPNFKANF--GLSKD-V---KLQ--LAKDTYADDLDS
277





WP_004232481
212
LTEK-ISKSRRLENLIKQ-Y-PT   EKKNTLFGNLVALALGLQPNFKTNF--KLSED-A---KLQ--FSKDTYDEDLEE
277





WP_009854540
213
LTEK-ISKSRRLENLIKY-Y-PT   EKKNTLFGNLIALALGLQPNFKMNF--KLSED-A---KLQ--FSKDTYEEDLEE
278





WP_012962174
213
LTEK-FSKSRRLENLIKH-Y-PT   EKKNTLFGNLVALALGLQPNFKTSF--KLSED-A---KLQ--FSKDTYEEDLEE
278





WP_039695303
213
LTEK-ISKSRRLENLIKY-Y-PT   EKKNTLFGNLIALALGLQPNFKTNF--KLSED-A---KLQ--FSKDTYEEDLEE
278





WP_014334983
212
LTEK-VSKSRRLENLIKQ-Y-PT   EKKNTLFGNLIALALGLQPNFKTNF--KLSED-A---KLQ--FSKDTYEEDLEE
277





WP_003099269
212
LTSK-TSKSRRLENLIAE-I-PN   QKRNMLFGNLVSLALGLTPNFKTNF--ELLED-A---KLQ--ISKDSYEEDLDN
277





AHY15608
212
LTSK-TSKSRRLENLIAE-I-PN   QKRNMLFGNLVSLALGLTPNFKTNF--ELLED-A---KLQ--ISKDSYEEDLDN
277





AHY17476
212
LTSK-TSKSRRLENLIAE-I-PN   QKRNMLFGNLVSLALGLTPNFKTNF--ELLED-A---KLQ--ISKDSYEEDLDN
277





ESR09100

-----------------------   ------------------------------------------------------






AGM98575
212
LTSK-TSKSRRLENLIAE-I-PN   QKRNMLFGNLVSLALGLTPNFKTNF--ELLED-A---KLQ--ISKDSYEEDLDN
277





ALF27331
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277





WP_018372492
210
FTEN-SSKAKRVETILGL-F-PD   ETAAGNLDKFLKLMLGNQADFKKVF--DLEEK----iTLQ--FSKDSYEEDLEL
275





WP_045618028
213
FTDK-ISKSAKRERVLKL-F-PD   EKSTGLFSEFLKLIVGNQADFKKHF--DLEEK-A---PLQ--FSKDTYDEDLEN
278





WP_045635197
212
FTDK-ISKSAKRERVLKL-F-PD   EKSTGLFSEFLKLIVGNQADFKKHF--DLEDK-A---PLQ--FSKDTYDEDLEN
277





WP_002263549
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277





WP_002263887
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277





WP_002264920
212
LTEK-ISKSRRLEKLINN-Y-PK   EKKNTLFRNLVALSLGLQPNFKTNF--KLSED-A---KLQ--FSKDTYEEDLEE
277





WP_002269043
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDIYEEELEV
277





WP_002269448
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277





WP_002271977
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEDLEE
277





WP_002272766
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEDLEE
277





WP_002273241
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277





WP_002275430
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277





WP_002276448
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277





WP_002277050
212
LTEK-ISKSRRLEKLINN-Y-PK   EKKNTLFGNLIALSLGLQPNFKTNF--KLSED-A---KLQ--FSKDTYEEDLEE
277





WP_002277364
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277





WP_002279025
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277





WP_002279859
212
LTEK-ISKSRRLEKLINN-Y-PK   EKKNTLFGNLIALSLGLQPNFKTNF--KLSED-A---KLQ--FSKDTYEEELEV
277





WP_002280230
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277





WP_002281696
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277





WP_002282247
212
LTEK-ISKSRRLEKLINN-Y-PK   EKKNTLFGNLIALSLGLQPNFKTNF--KLSED-A---KLQ--FSKDTYEEDLEE
277





WP_002282906
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277





WP_002283846
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDIYEEELEV
277





WP_002287255
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277





WP_002288990
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDIYEEELEV
277





WP_002289641
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGCFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277





WP_002290427
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDIYEEELEV
277





WP_002295753
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277





WP_002296423
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDIYEEELEV
277





WP_002304487
212
LTEK-VSKSRRLENLVEC-Y-PT   EKKNTLFGNLIALSLGLQPNFKTNF--QLSED-A---KLQ--FSKDTYEEDLEG
277





WP_002305844
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277





WP_002307203
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--LSKDTYEEELEV
277





WP_002310390
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDIYEEELEV
277





WP_002352408
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDIYEEELEV
277





WP_012997688
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277





WP_014677909
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDIYEEELEV
277





WP_019312892
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277





WP_019313659
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIIGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277





WP_019314093
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--LSKDTYEEELEV
277





WP_019315370
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277





WP_019803776
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-V---PLQ--FSKDTYEEELEV
277





WP_019805234
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDIYEEELEV
277





WP_024783594
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277





WP_024784288
212
LTEK-ISKSRRLEKLINN-Y-PK   EKKNTLFGNLIALSLGLQPNFKTNF--KLSED-A---KLQ--FSKDTYEEDLEE
277





WP_024784666
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277





WP_024784894
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277





WP_024786433
212
LTEK-ISKSRRLEKLINN-Y-PK   EKKNTLFGNLIALSLGLQPNFKTNF--KLSED-A---KLQ--FSKDTYEEDLEE
277





WP_049473442
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEDLEE
277





WP_049474547
212
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
277





EMC03581
205
LTDK-ISKSAKKDRVLKL-F-PN   EKSNGRFAEFLKLIVGNQADFKKHF--ELEEK-A---PLQ--FSKDTYEEELEV
270





WP_000428612
213
FTDK-ISKSAKRERVLKL-F-PD   EKSTGLFSEFLKLIVGNQADFKKHF--DLEEK-A---PLQ--FSRDTYDEDLEN
278





WP_000428613
213
FTDK-ISKSAKRERVLKL-F-PD   EKSTGLFSEFLKLIVGNQADFKKHF--DLGEK-A---PLQ--FSKDTYDEDLEN
278





WP_049523028
212
FTDK-ISKSAKRDRVLKL-F-PD   EKSTGLFSEFLKLIVGNQADFKKHF--DLEEK-A---PLQ--FSKDTYEEDLES
277





WP_003107102
181
LTEK-MSKSRRLENLIAK-I-PN   QKKNTLFGNLISLSLGLTPNFKANF--ELSED-A---KLQ--ISKESFEEDLDN
246





WP_054279288
214
LTEK-ISKTRRLENLISN-I-PG   QKKNGLFGNLIALSLGLTPNFKSHF--NLPED-A---KLQ--LAKDTYDEELNN
279





WP_049531101
213
FTDK-ISKSTKRERVLKL-F-PD   QKSTGLFSEFLKLIVGNQADFKKHF--DLEEK-A---PLQ--FSKDTYDEDLEN
278





WP_049538452
213
FSDK-ISKSAKRERVLKL-F-PD   EKSTGLFSEFLKLIVGNQADFKKHF--DLEEK-A---PLQ--FSKDTYDEDLEN
278





WP_049549711
213
FTDK-ISKSAKRERVLKL-F-PD   EKSTGLFSEFLKLIVGNQADFKKHF--DLGEK-A---PLQ--FSKDTYDEDLEN
278





WP_007896501
214
LTAK-TSKSKRLESLISE-F-PG   QKKNGLFGNLLALALGLRPNEKSNF--GLSED-A---KLQ--ITKDTYEEELDN
279





EFR44625
166
LTAK-TSKSKRLESLISE-F-PG   QKKNGLFGNLLALALGLRPNEKSNF--GLSED-A---KLQ--ITKDTYEEELDN
231





WP_002897477
212
FTDK-ISKSAKRERVLKL-F-PD   EKSTGLFSEFLKLIVGNQADFKKHF--DLEEK-A---PLQ--FSKDTYDEELEN
277





WP_002906454
212
FTDK-ISKSTKRERVLKL-F-SD   EKSTGLFSEFLKLIVGNQADFKKHF--DLEEK-A---PLQ--FSKDTYDEDLEN
277





WP_009729476
213
FTDK-ISKSAKRERVLKL-F-PD   EKSTGLFSEFLKLIVGNQADFKKHF--DLEEK-A---PLQ--FSRDTYDEDLEN
278





CQR24647
212
ITAK-ISKSRKVEAVLEQ-F-PD   QKKNSFFGNMVSLVFGLMPNFKSNF--ELDED-A---KLQ--FSRDSYDEDLEN
277





WP_000066813
213
FTDK-ISKSTKRERVLKL-F-PD   EKSTGLFSEFLKLIVGNQADFKKHF--DLEEK-A---PLQ--FSKDTYDEDLEN
278





WP_009754323
213
FTGK-ISKSVKREHVLKL-F-PD   EKSTGLFSEFLKLIVGNQADFKKHF--DLEEK-A---SLQ--FSKDTYDEDLEN
278





WP_044674937
212
LVEK-VSKSRRLENILHY-F-PN   EKKNGLFGNFLALALGLQPNFKTNF--ELAED-A---KIQ--FSKETYEEDLEE
277





WP_044676715
212
LVEK-VSKSRRLENILHY-F-PN   EKKNGLFGNFLTLALGLQPNFKTNF--ELAED-A---KIQ--FSKETYEEDLEE
277





WP_044680361
212
LVEK-VSKSRRLENILHY-F-PN   EKKNGLFGNFLALALGLQPNFKTNF--ELAED-A---KIQ--FSKETYEEDLEE
277





WP_044681799
212
LVEK-VSKSRRLENILHY-F-PN   EKKNGLFGNFLALALGLQPNFKTNF--ELAED-A---KIQ--FSKETYEEDLEE
277





WP_049533112
212
LTEK-VSKSRRLENLIAH-Y-PA   EKKNTLFGNLIALSLGLQPNFKTNF--QLSED-A---KLQ--FSKDTYEEDLEG
277





WP_029090905
172
LLDRmMNRSSKVKFLIEL---TG   KQDKPLLKELFNLIVGLKAKPASIFe---QENlAtivETM-nMSTEQVQLDLLT
243





WP_006506696
211
LKKP-LSKKAKVDEVMTL-IaPE   KDYKSAFKELVTGIAGNKMNVTKMIlcEPIKQ-Gds-EIKlkFSDSNYDDQFSE
283





AIT42264
212
LSAR-LSKSRRLENLIAQ-L-PG   EKKNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277





WP_034440723
218
FKQD-ISRSKKLDQAIAL-F-QG   -KRQSLFGIFLTLIVGNKANFQKIF--NLEDD----iKLD--LKEEDYDENLEE
283





AKQ21048
212
LSAR-LSKSRRLENLIAQ-L-PG   EKKNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277





WP_004636532
211
LSSK-QSRSRKHEQIMAL-F-PN   ENKLGNFGRFMMLIVGNTSNFKPVF--DLDDE-Y---KLK--LSDETYEEDLDT
276





WP_002364836
218
LTEK-ASRTKKSEKVLQQ-F-PQ   EKANGLFGQFLKLMVGNKADFKKVF--GLEEE-A---KI--tYASESYEEDLEG
283





WP_016631044
169
LTEK-ASRTKKSEKVLQQ-F-PQ   EKANGLFGQFLKLMVGNKADFKKVF--GLEEE-A---KI--tYASESYEEDLEG
234





EMS75795
1
-----------------------   ----------------------------MDEE-A---KIQ--LSKESYEEELES
20





WP_002373311
218
LTEK-ASRTKKSEKVLQQ-F-PQ   EKANGLFGQFLKLMVGNKADFKKVF--GLEEE-A---KI--tYASESYEEDLEG
283





WP_002378009
218
LTEK-ASRTKKSEKVLQQ-F-PQ   EKANGLFGQFLKLMVGNKADFKKVF--GLEEE-A---KI--tYASESYEEDLEG
283





WP_002407324
218
LTEK-ASRTKKSEKVLQQ-F-PQ   EKANGLFGQFLKLMVGNKADFKKVF--GLEEE-A---KI--tYASESYEEDLEG
283





WP_002413717
218
LTEK-ASRTKKSEKVLQQ-F-PQ   EKANGLFGQFLKLMVGNKADFKKVF--GLEEE-A---KI--tYASESYEEDLEG
283





WP_010775580
218
LTEK-ASRTKKSEKVLQQ-F-PQ   EKANGLFGQFLKLMVGNKADFKKVF--GLEEE-A---KIKitYASESYEEDLEG
285





WP_010818269
218
LTEK-ASRTKKSEKVLQQ-F-PQ   EKANGLFGQFLKLMVGNKADFKKVF--GLEEE-A---KI--tYASESYEEDLEG
283





WP_010824395
218
LTEK-ASRTKKSEKVLQQ-F-PQ   EKANGLFGQFLKLMVGNKADFKKVF--GLEEE-A---KI--tYASESYEEDLEG
283





WP_016622645
218
LTEK-ASRTKKSEKVLQQ-F-PQ   EKANGLFGQFLKLMVGNKADFKKVF--GLEEE-A---KI--tYASESYEEDLEG
283





WP_033624816
218
LTEK-ASRTKKSEKVLQQ-F-PQ   EKANGLFGQFLKLMVGNKADFKKVF--GLEEE-A---KI--tYASESYEEDLEG
283





WP_033625576
218
LTEK-ASRTKKSEKVLQQ-F-PQ   EKANGLFGQFLKLMVGNKADFKKVF--GLEEE-A---KI--tYASESYEEDLEG
283





WP_033789179
218
LTEK-ASRTKKSEKVLQQ-F-PQ   EKANGLFGQFLKLMVGNKADFKKVF--GLEEE-A---KI--tYASESYEEDLEG
283





WP_002310644
217
FTEK-MSKTKKAETLLKY-F-PH   EKSNGYLSQFIKLMVGNQGNFKNVF--GL-EE-A---KLQ--FSKETYEEDLEE
281





WP_002312694
217
FTEK-MSKTKKAETLLKY-F-PH   EKSNGYLSQFIKLMVGNQGNFKNVF--GL-EEeA---KLQ--FSKETYEEDLEE
282





WP_002314015
217
FTEK-MSKTKKAETLLKY-F-PH   EKSNGYLSQFIKLMVGNQGNFKNVF--GL-EEeA---KLQ--FSKETYEEDLEE
282





WP_002320716
217
FTEK-MSKTKKAETLLKY-F-PH   EKSNGYLSQFIKLMVGNQGNFKNVF--GL-EEeA---KLQ--FSKETYEEDLEE
282





WP_002330729
217
FTEK-MSKTKKAETLLKY-F-PH   EKSNGYLSQFIKLMVGNQGNFKNVF--GL-EE-A---KLQ--FSKETYEEDLEE
281





WP_002335161
217
FTEK-MSKTKKAETLLKY-F-PH   EKSNGYLSQFIKLMVGNQGNFKNVF--GL-EEeA---KLQ--FSKETYEEDLEE
282





WP_002345439
217
FTEK-MSKTKKAETLLKY-F-PH   EKSNGYLSQFIKLMVGNQGNFKNVF--GL-EEeA---KLQ--FSKETYEEDLEE
282





WP_034867970
210
LTDK-LSKTKKVEEILKY-Y-PT   EKINSFFAQCLKLIVGNQANFKRIF--DLEAE-V---KLQ--FSKETYEEDLES
275





WP_047937432
217
FTEK-MSKTKKAETLLKY-F-PH   EKSNGYLSQFIKLMVGNQGNFKNVF--GL-EEeA---KLQ--FSKETYEEDLEE
282





WP_010720994
210
LTDK-LSKTKKVEEILKY-Y-PT   EKINSFFAQCLKLIVGNQANFKRIF--DLEAE-V---KLQ--FSKETYEEDLES
275





WP_010737004
210
LTDK-LSKTKKVEEILKY-Y-PT   EKINSFFAQCLKLIVGNQANFKRIF--DLEAE-V---KLQ--FSKETYEEDLES
275





WP_034700478
210
LTDK-LSKTKKVEEILKY-Y-PT   EKINSFFAQCLKLIVGNQANFKRIF--DLEAE-V---KLQ--FSKETYEEDLES
275





WP_007209003
215
LTQQ-LSKSERADNVLKL-F-PD   EKGTGIFAQFIKLIVGNQGNFKKVF--QLEED----qKLQ--LSTDDYEENIEN
280





WP_023519017
210
LTER-LSKAKRVEKVLAY-Y-PS   EKSTGNFAQFLKLMVGNQANFKKTF--DLEEE-M---KLN--FTRDCYEEDLNE
275





WP_010770040
213
FSEK-VSRARKVEAILSV-Y-SE   EKSTGTLAQFLKLMVGNQGRFKKTF--DLEED-G---IIQ--IPKEEYEEELET
278





WP_048604708
209
FADK-VSRAKKAEGVLAL-F-PD   EKRNGTEDQFLKMIVGNQGNFKKTF--ELEED-A---KLQ--FSKEEYDESLEA
274





WP_010750235
210
LTDK-LSKSKKVEKILQY-Y-PK   EKTTGCLAQFLKLIVGNQGNFKQAF--HLDEE-V---KIQ--ISKETYEEDLEK
275





AII16583
251
LSAR-LSKSRRLENLIAQ-L-PG   EKKNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
316





WP_029073316
216
LKEP-LSKKHKADKAFAL-FdTT   KDNKAAYKELCAALAGNKFNVTKMLkeAELHD-EdekDISfkFSDATFDDAFVE
289





WP_031589969
216
LKEP-LSKKHKAEKAFAL-FdTT   KDNKAAYKELCAALAGNKFNVTKMLkeAELHD-EdekDISfkFSDATFDDAFVE
289





KDA45870
210
FKDNtFSKTKKSEELLKL---SG   -KKNQLAHQLFKMMVGNMGSFKKVL--GTDEE----hKLS--FGKDTYEDDLND
275





WP_039099354
207
LLDNhQSASNRQRQALLLiYtPS   KQNKAIATELLKAILGLKAKFNVLT--GIEAEdVktwTLT--FNAENFDEEMVK
285





AKP02966
209
LIGR-GNATQKSSNILNN-F--T   KETKKLLKEVINLILGNVAHLNTIFktSLTKDeE---KLS--FSGKDIESKLDD
278





WP_010991369
218
LVEK-VTRKEKLERILKL-Y-PG   EKSAGMFAQFISLIVGSKGNFQKPF--DLIEK-S---DIE--CAKDSYEEDLES
283





WP_033838504
218
LVEK-VTRKEKLERILKL-Y-PG   EKSAGMFAQFISLIVGSKGNFQKPF--DLIEK-S---DIE--CAKDSYEEDLES
283





EHN60060
221
LVEK-VTRKEKLERILKL-Y-PG   EKSAGMFAQFISLIVGSKGNFQKPF--DLIEK-S---DIE--CAKDSYEEDLES
286





EFR89594
1
---------------LKL-Y-PG   EKSTGMFAQFISLIVGSKGNFQKPF--DLIEK-S---DIE--CAKDSYEEDLES
52





WP_038409211
218
LSEK-LTRREKLDKILKL-Y-TG   EKSTGMFARFINLIIGSKGDFKKVF--DLDEK-A---EIE--CAKDTYEEDLEA
283





EFR95520

-----------------------   ------------------------------------------------------






WP_003723650
218
LAGK-FTRREKFERILQL-Y-PG   EKSTGMFAQFISLIVGSKGNFQKVF--DLIEK-T---DIE--CAKDSYEEDLET
283





WP_003727705
218
LAGK-FTRREKFERILRL-Y-PG   EKSTGMFAQFISLIVGNKGNFQKVF--NLVEK-T---DIE--CAKDSYEEDLEA
283





WP_003730785
218
LAGK-FTRREKFERILRL-Y-PG   EKSTGMFAQFISLIVGNKGNFQKVF--NLVEK-T---DIE--CAKDSYEEDLEA
283





WP_003733029
218
LAEK-FTRKDKLDKILSL-Y-PG   EKTTGVFAQFVNIIVGSTGKFKKHF--NLHEK-K---DIN--CAEDTYDTDLES
283





WP_003739838
218
LAGK-FTRKEKLERILQL-Y-PG   EKSTGMFAQFISLIVGSKGNFQKVF--DLVEK-T---DIE--CAKDSYEEDLEA
283





WP_014601172
218
LAGK-FTRREKFERILQL-Y-PG   EKSTGMFAQFISLIVGSKGNFQKVF--DLIEK-T---DIE--CAKDSYEEDLEA
283





WP_023548323
218
LAGK-FTRREKFERILQL-Y-PG   EKSTGMFAQFISLIVGSKGNFQKVF--DLIEK-T---DIE--CAKDSYEEDLET
283





WP_031665337
218
LAGK-FTRREKFERILQL-Y-PG   EKSTGMFAQFISLIVGSKGNFQKVF--DLIEK-T---DIE--CAKDSYEEDLET
283





WP_031669209
218
LAEK-FTRKDKLDKILSL-Y-PG   EKTTGVFAQFVNIIVGSTGKFKKHF--NLHEK-K---DIN--CAEDTYDTDLES
283





WP_033920898
218
LARK-FTRREKFERILQL-Y-PG   EKSTGMFAQFISLIVGSKGNFQKVF--DLIEK-T---DIE--CAKDSYEEDLET
283





AKI42028
221
LAGK-FTRREKFERILQL-Y-PG   EKSTGMFAQFISLIVGSKGNFQKVF--DLIEK-T---DIE--CAKDSYEEDLEA
286





AKI50529
221
LARK-FTRREKFERILQL-Y-PG   EKSTGMFAQFISLIVGSKGNFQKVF--DLIEK-T---DIE--CAKDSYEEDLET
286





EFR83390

-----------------------   ------------------------------------------------------






WP_046323366
218
FSEK-LTKREKLDKILNL-Y-PN   EKSTDLFAQFISLIIGSKGNFKKFF--NLTEK-T---DIE--CAKDSYEEDLEV
283





AKE81011
228
LSAR-LSKSRRLENLIAQ-L-PG   EKKNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
293





CUO82355
215
LKKP-LSKKAKVDEVMAL-IsPE   KEEKSAYKELVTGIAGNKMNVTKMIlcESIKQ-Gds-EIKlkFSDSNYDDQFSE
287





WP_033162887
216
LSKI-YQRSKKADDLLKI-MnPT   KEEKAAYKEFTKALVGLKENISKMIlaQEVKK-Gdt-DIVleFSNANYDSTIDE
288





AGZ01981
245
LSAR-LSKSRRLENLIAQ-L-PG   EKKNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
310





AKA60242
212
LSAR-LSKSRRLENLIAQ-L-PG   EKKNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277





AKS40380
212
LSAR-LSKSRRLENLIAQ-L-PG   EKKNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
277





4UN5_B
216
LSAR-LSKSRRLENLIAQ-L-PG   EKKNGLFGNLIALSLGLTPNFKSNF--DLAED-A---KLQ--LSKDTYDDDLDN
281





WP_010922251
278


embedded image


356


WP_039695303
279
LLGKIGDDYADLFTSAKNLYDAILLSGILTVDDNSTKAPLSASMIKRYVEHHEDLEKLKEFIKAN-KSELYHDIFKDKNK
357





WP_045635197
278
LLGQIGDDFTDLFVSAKKLYDAILLSGILTVTDPSTKAPLSASMIERYENHQNDLAALKQFIKNN-LPEKYDEVFSDQSK
356





5AXW_A
158
---------------------------------------------------------LERLKKDG-------EVR-----
168





WP_009880683
1
---------------------------------------LSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
40





WP_010922251
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
356





WP_011054416
278
LLAQIGDQYADLFLAAKNLSDATLLSDILRVNSEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
356





WP_011284745
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRLNSEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
356





WP_011285506
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
356





WP_011527619
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRLNSEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
356





WP_012560673
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
356





WP_014407541
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
356





WP_020905136
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRLNSEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
356





WP_023080005
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
356





WP_023610282
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
356





WP_030125963
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKASLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
356





WP_030126706
278
LLAQIGDQYADLFLAAKNLSDATLLSDILRVNSEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
356





WP_031488318
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
356





WP_032460140
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
356





WP_032461047
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
356





WP_032462016
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
356





WP_032462936
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
356





WP_032464890
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRLNSEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
356





WP_033888930
103
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
181





WP_038431314
278
LLAQIGDQYADLFLAAKNLSDATLLSDILRVNSEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
356





WP_038432938
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
356





WP_038434062
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
356





BAQ51233
189
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
267





KGE60162

--------------------------------------------------------------------------------






KGE60856

--------------------------------------------------------------------------------






WP_002989955
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRLNSEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
356





WP_003030002
278
LLGEIGDEYADLFASAKNLYDAILLSGILTVDDNSTKAPLSASMVKRYEEHQKDLKKLKDFIKVN-APDQYNAIFKDKNK
356





WP_003065552
281
LLGKIGDDYADLFTSAKNLYDAILLSGILIVDDNSTKAPLSASMIKRYVEHQEDLEKLKEFIKAN-KSELYHDIFKDKNK
359





WP_001040076
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVTDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIVADSSK
357





WP_001040078
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





WP_001040080
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





WP_001040081
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





WP_001040083
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





WP_001040085
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





WP_001040087
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





WP_001040088
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





WP_001040089
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





WP_001040090
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





WP_001040091
279
LLRQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





WP_001040092
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVTDLSTKAPLSAYMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





WP_001040094
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVTDLSTKAPLSASMIQHYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





WP_001040095
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVTDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





WP_001040096
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVTDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





WP_001040097
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVTDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





WP_001040098
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVTDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





WP_001040099
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVTDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





WP_001040100
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVTDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





WP_001040104
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





WP_001040105
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





WP_001040106
279
LLGQIGDEFADLFSVAKKLYDSVLLSGILTVTDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFTDSSK
357





WP_001040107
279
LLGQIGDEFADLFSVAKKLYDSVLLSGILTVTDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFTDSSK
357





WP_001040108
279
LLGQIGDEFADLFSVAKKLYDSVLLSGILTVTDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFTDSSK
357





WP_001040109
279
LLGQIGDEFADLFSVAKKLYDSVLLSGILTVTDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFTDSSK
357





WP_001040110
279
LLGQIGDEFADLFSVAKKLYDSVLLSGILTVTDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFTDSSK
357





WP_015058523
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVTDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





WP_017643650
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVTDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





WP_017647151
279
LLGQIGDEFADLFSVAKKLYDSVLLSGILTVTDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFTDSSK
357





WP_017648376
279
LLGQIGDEFADLFSVAKKLYDSVLLSGILTVTDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFTDSSK
357





WP_017649527
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





WP_017771611
279
LLGQIGDEFADLFSVAKKLYDSVLLSGILTVTALSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFTDSSK
357





WP_017771984
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





CFQ25032
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKASLSDSMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





CFV16040
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





KLJ37842
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





KLJ72361
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





KLL20707
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





KLL42645
279
LLGQIGDEFADLFSVAKKLYDSVLLSGILTVTDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFTDSSK
357





WP_047207273
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





WP_047209694
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVTDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





WP_050198062
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





WP_050201642
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





WP_050204027
279
LLGQIGDEFADLFSVAKKLYDSVLLSGILTVTDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFTDSSK
357





WP_050881965
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





WP_050886065
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





AHN30376
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVTDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





EAO78426
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVIDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





CCW42055
279
LLGQIGDEFADLFSAAKKLYDSVLLSGILTVTDLSTKAPLSASMIQRYDEHREDLKQLKQFVKAS-LPEKYQEIFADSSK
357





WP_003041502
278
LLGEVGDEYADLFASAKNLYDAILLSGILTVDDNSTKAPLSASMVKRYEEHQKDLKKFEDFIKVN-ALDQYNAIFKDKNK
356





WP_037593752
279
LLGEIGDEYADLFASAKNLYDAILLSGILAVDDNTTKAPLSASMVKRYEEHQKDLKKLKDFIKVN-APDQYNAIFKDKNK
357





WP_049516684
279
LLGEIGDEYADLFASAKNLYDAILLSGILAVDDNTTKAPLSASMVKRYEEHQKDLKKLKDFIKVN-APAQYDDIFKDETK
357





GAD46167
278
LLGEIGDEYADLFASAKNLYDAILLSGILAVDDNTTKAPLSASMVKRYEEHQKDLKKLKDFIKVN-APDQYNAIFKDKNK
356





WP_018363470
279
LLGKIGDDYADLFTSSKNLYDAILLSGILTVDDNSTKAPLSASMIKRYVEHHEDLEKLKEFIKAN-KSELYHDIFKDKTQ
357





WP_003043819
278
LLGQIGDQYADLFSAAKNLSDAILLSDILRSNSEVTKAPLSASMVKRYDEHHQDLALLKTLVRQQ-FPEKYAEIFKDDTK
356





WP_006269658
278
FLGEVGDEYADLFASAKNLYDAILLSGILTVDDNSTKAPLSASMVKRYEEHQKDLKKLKDFIKVN-APDQYNAIFKDKNK
356





WP_048800889
278
LLGKIGDDYADLFTSAKNLYDTILLSGILAVDDNSTKALLSASMIKRYEEHQKDLKKLKDFIKVN-APAQYDDIFKDETK
356





WP_012767106
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
356





WP_014612333
278
LLAQIGNQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
356





WP_015017095
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
356





WP_015057649
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
356





WP_048327215
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
356





WP_049519324
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNSEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
356





WP_012515931
278
LLAQIGDQYADLFLAAKNLSDAILLSDILTESDEITRAPLSASMVKRYREHHKDLVTLKTLIKDQ-LPEKYQEIFLDKTK
356





WP_021320964
278
LLAQIGDQYADLFLAAKNLSDAILLSDILTESDEITRAPLSASMVKRYREHHKDLVTLKTLIKDQ-LPEKYQEIFLDKTK
356





WP_037581760
278
LLAQIGDQYADLFLAAKNLSDAILLSDILTESDEITRAPLSASMVKRYREHHKDLVTLKTLIKDQ-LPEKYQEIFLDKTK
356





WP_004232481
278
LLGKIGDDYADLFTAAKNLYDAILLSGILTVDDNSTKAPLSASMIKRYEEHHEDLEKLKTFIKVN-NFDKYHEIFKDKSK
356





WP_009854540
279
LLGKIGDDYADLFTSAKNLYDAILLSGILTVDDNSTKAPLSASMIKRYVEHHEDLEKLKEFIKAN-KSELYHDIFKDKNK
357





WP_012962174
279
LIGKIGDEYADLFTSAKNLYDAILLSGILTVADNTTKAPLSASMIKRYNEHQVDLKKLKEFIKNN-ASDKYDEIFNDKDK
357





WP_039695303
279
LLGKIGDDYADLFTSAKNLYDAILLSGILTVDDNSTKAPLSASMIKRYVEHHEDLEKLKEFIKAN-KSELYHDIFKDKNK
357





WP_014334983
278
LLGKVGDDYADLFISAKNLYDAILLSGILTVDDNSTKAPLSASMIKRYVEHHEDLEKLKEFIKIN-KLKLYHDIFKDKTK
356





WP_003099269
278
LLAQIGDQYADLFIAAKKLSDAILLSDIITVKGASTKAPLSASMVQRYEEHQQDLALLKNLVKKQ-IPEKYKEIFDNKEK
356





AHY15608
278
LLAQIGDQYADLFIAAKKLSDAILLSDIITVKGASTKAPLSASMVQRYEEHQQDLALLKNLVKKQ-IPEKYKEIFDNKEK
356





AHY17476
278
LLAQIGDQYADLFIAAKKLSDAILLSDIITVKGASTKAPLSASMVQRYEEHQQDLALLKNLVKKQ-IPEKYKEIFDNKEK
356





ESR09100

--------------------------------------------------------------------------------






AGM98575
278
LLAQIGDQYADLFIAAKKLSDAILLSDIITVKGASTKAPLSASMVQRYEEHQQDLALLKNLVKKQ-IPEKYKEIFDNKEK
356





ALF27331
278
LLAQIEDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_018372492
276
LLSKIDEEYAALFDLAKKVYDAVLLSNILTVKEKNTKAPLSASMIKRYEEHKDDLKAFKRFFRER-LPEKYETMFKDLTK
354





WP_045618028
279
LLVQIGDDFADLFLVAKKLYDAILLSGILTVTDPSTKAPLSASMIDRYENHQKDLAALKQFIKTN-LPEKYDEVFSDQSK
357





WP_045635197
278
LLGQIGDDFTDLFVSAKKLYDAILLSGILTVTDPSTKAPLSASMIERYENHQNDLAALKQFIKNN-LPEKYDEVFSDQSK
356





WP_002263549
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVGTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_002263887
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVGTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_002264920
278
LLGKIGDDYADLFTLAKNLYDAILLSGILTADDSSTKAPLSASMIKRYAEHHEDLEKLKEFIKAN-KPELYHDIFKDETK
356





WP_002269043
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_002269448
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_002271977
278
LLGKIGDDYADLFTLAKNLYDAILLSGILTADDSSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_002272766
278
LLGKIGDDYADLFTLAKNLYDAILLSGILTADDSSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_002273241
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_002275430
278
LLTQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_002276448
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_002277050
278
LLGKIGDDYADLFTLAKNLYDAILLSGILTADDSSTKAPLSASMIKRYAEHHEDLEKLKEFIKAN-KPELYHDIFKDETK
356





WP_002277364
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_002279025
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTADDSSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_002279859
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_002280230
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_002281696
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_002282247
278
LLGKIGDDYADLFTLAKNLYDAILLSGILTADDSSTKAPLSASMIKRYAEHHEDLEKLKEFIKAN-KPELYHDIFKDETK
356





WP_002282906
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVGTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_002283846
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_002287255
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_002288990
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_002289641
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLTQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_002290427
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_002295753
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_002296423
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_002304487
278
LLGEIGDEYADLFASAKNLYDAILLSGILAVDDNTTKAPLSASMVKRYKEHKEELAAFKRFIKEK-LPKKYEEIFKDDTK
356





WP_002305844
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_002307203
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_002310390
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_002352408
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_012997688
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_014677909
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_019312892
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_019313659
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVGTQAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_019314093
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_019315370
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLTQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_019803776
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVGTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_019805234
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_024783594
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVGTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_024784288
278
LLGKIGDDYADLFTLAKNLYDAILLSGILTADDSSTKAPLSASMIKRYAEHHEDLEKLKEFIKAN-KPELYHDIFKDETK
356





WP_024784666
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLVQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_024784894
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLTQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_024786433
278
LLGKIGDDYADLFTLAKNLYDAILLSGILTADDSSTKAPLSASMIKRYAEHHEDLEKLKEFIKAN-KPELYHDIFKDETK
356





WP_049473442
278
LLGKIGDDYADLFTLAKNLYDAILLSGILTADDSSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
356





WP_049474547
278
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLTQLKQFIRQK-LSDKYNEVFSDVSK
356





EMC03581
271
LLAQIGDNYAELFLSAKKLYDSILLSGILTVTDVSTKAPLSASMIQRYNEHQMDLAQLKQFIRQK-LSDKYNEVFSDVSK
349





WP_000428612
279
LLGQIGDDFADLFVAAKKLYDAILLSGILTVTDPSTKAPLSASMIERYENHQKDLATLKQFIKTN-LPEKYDEVFSDQSK
357





WP_000428613
279
LLGQIGDDFADLFLVAKKLYDAILLSGILTVTDPSTKAPLSASMIERYENHQKDLAVLKQFIKNN-LPEKYDEVFSDQSK
357





WP_049523028
278
LLGQIGDVYADLFVVAKKLYDAILLAGILSVKDPGTKAPLSASMIERYDNHQNDLSALKQFVRRN-LPEKYAEVFSDDSK
356





WP_003107102
247
LLAQIGDQYADLFIAAKNLSDAILLSDILTVKGVNTKAPLSASMVQRFNEHQDDLKLLKKLVKVQ-LPEKYKEIFDIKDK
325





WP_054279288
280
LLTQIGDEYADLFLSAKNLSDAILLSDILTVNGDGTQAPLSASLIKRYEEHRQDLALLKQMFKEQ-LPDLYRDVFTDENK
358





WP_049531101
279
LLGQIGDDFADLFLVAKKLYDAILLSGILTVTDPSTKAPLSASMIERYENHQKDLAALKQFIKNN-LPEKYDEVFSDQSK
357





WP_049538452
279
LLGQIGDGFADLFLVAKKLYDAILLSGILTVTDPSTKAPLSASMIERYQNHQNDLASLKQFIKNN-LPEKYDEVFSDQSK
357





WP_049549711
279
LLGQIGDDFADLFLVAKKLYDAILLSGILTVTDPSTKAPLSASMIERYENHQKDLTTLKQFIKNN-LPEKYDEVFSDQSK
357





WP_007896501
280
LLAEIGDHYADLFLAAKNLSDAILLSDILTLSDENTRAPLSASMIKRYEEHQEDLALLKKLVKEQ-MPEKYWEIFSNAKK
358





EFR44625
232
LLAEIGDHYADLFLAAKNLSDAILLSDILTLSDENTRAPLSASMIKRYEEHQEDLALLKKLVKEQ-MPEKYWEIFSNAKK
310





WP_002897477
278
LLGQIGDDFADLFLIAKKLYDAILLSGILTVTDPSTKAPLSASMIERYENHQKDLAALKQFIKNN-LPEKYVEVFSDQSK
356





WP_002906454
278
LLGQIGDGFADLFLVAKKLYDAILLSGILTVTDPSTKAPLSASMIERYENHQEDLAALKQFIKNN-LSEKYAEVFSDQSK
356





WP_009729476
279
LLGQIGDDFADLFLVAKKLYDAILLSGILTVTNPSTKAPLSASMIERYENHQKDLASLKQFIKNN-LPEKYDEVFSDQSE
357





CQR24647
278
LLGIIGDEYADVFVAAKKVYDSILLSGILTTNNHSTKAPLSASMIDRYDEHNSDKKLLRDFIRTNiGKEVEKEVFYDTSK
357





WP_000066813
279
LLGQIGDDFADLFLVAKKLYDAILLSGILTVKDLSTKAPLSASMIERYENHQKDLAALKQFIQNN-LQEKYDEVFSDQSK
357





WP_009754323
279
LLGQIGDDFADLFLVAKKLYDAILLSGILTVTDPSTKAPLSASMIERYENHQEDLAALKQFIKNN-LPEKYAEVFSDQSK
357





WP_044674937
278
LLGKIGDDYADLFIATKSLYDGILLAGILSTTDSTTKAPLSSSMVNRYEEHKKDLALLKNFIHQN-LSDSYKEVFNDKLK
356





WP_044676715
278
LLGKIGDDYADLFIATKSLYDGILLAGILSTTDSTTKAPLSSSMVNRYEEHQKDLALLKNFIHQN-LSDSYKEVFNDKLK
356





WP_044680361
278
LLGKIGDDYADLFIATKSLYDGILLAGILSTTDSTTKAPLSSSMVNRYEEHQKDLALLKNFIHQN-LSDSYKEVFNDKLK
356





WP_044681799
278
LLGKIGDDYADLFIATKSLYDGILLAGILSTTDSTTKAPLSSSMVNRYEEHKKDLALLKNFIHQN-LSDSYKEVFNDKLK
356





WP_049533112
278
LLGEIGDEYADLFASAKNLYDAILLSGILTVDDNSTKAPLSASMVKRYEEHQKDLKKLKDFIKVN-APDQYNAIFKDKNK
356





WP_029090905
244
LADVLADEEYDLLLTAQKIYSAIILDESMDGYEYFA-----EAKKESYRKHQEELVLVKKMLKSNaITNDERAKF---EY
315





WP_006506696
284
VEKDLGE-YVEFVDALHNVYSWVELQTIMGATHTD-NASISEAMVSRYNKHHDDLKLLKDCIKNN-VPNKYFDMFRNDSE
360





AIT42264
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
356





WP_034440723
284
LLSNIDEGYRDVFLQAKNVYNAIELSKILKTDGKETKAPLSAQMVELYNQHREDLKKYKDYIKAY-LPEKYGETFKDATK
362





AKQ21048
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
356





WP_004636532
277
LLGMTDDVFLDVFMAAKNVYDAVEMSAIISTDTGNSKAVLSNQMINFYDEHKVDLAQLKQFFKTH-LPDKYYECFSDPSK
355





WP_002364836
284
ILAKVGDEYSDVFLAAKNVYDAVELSTILADSDKKSHAKLSSSMIVRFTEHQEDLKKFKRFIREN-CPDEYDNLFKNEQK
362





WP_016631044
235
ILAKVGDEYSDVFLAAKNVYDAVELSTILADSDKKSHAKLSSSMIVRFTEHQEDLKKFKRFIREN-CPDEYDNLFKNEQK
313





EMS75795
21
LLEKSGEEFRDVFLQAKKVYDAILLSDILSTKKQNSKAKLSLGMIERYDSHKKDLEELKQFVKAN-LPEKTAIFFKDSSK
99





WP_002373311
284
ILAKVGDEYSDVFLAAKNVYDAVELSTILADSDKKSHAKLSSSMIVRFTEHQEDLKKFKRFIREN-CPDEYDNLFKNEQK
362





WP_002378009
284
ILAKVGDEYSDVFLAAKNVYDAVELSTILADSDKKSHAKLSSSMIVRFTEHQEDLKNFKRFIREN-CPDEYDNLFKNEQK
362





WP_002407324
284
ILAKVGDEYSDVFLAAKNVYDAVELSTILADSDKKSHAKLSSSMIVRFTEHQEDLKNFKRFIREN-CPDEYDNLFKNEQK
362





WP_002413717
284
ILAKVGDEYSDVFLAAKNVYDAVELSTILADSDKKSHAKLSSSMIVRFTEHQEDLKKFKRFIREN-CPDEYDNLFKNEQK
362





WP_010775580
286
ILAKVGDEYSDVFLAAKNVYDAVELSTILADSDKKSHAKLSSSMIVRFTEHQEDLKNFKRFIREN-CPDEYDNLFKNEQK
364





WP_010818269
284
ILAKVGDEYSDVFLAAKNVYDAVELSTILADSDKKSHAKLSSSMIVRFTEHQEDLKKFKRFIREN-CPDEYDNLFKNEQK
362





WP_010824395
284
ILAKVGDEYSDVFLAAKNVYDAVELSTILADSDKKSHAKLSSSMIVRFTEHQEDLKNFKRFIREN-CPDEYDNLFKNEQK
362





WP_016622645
284
ILAKVGDEYSDVFLAAKNVYDAVELSTILADSDKKSYAKLSSSMIVRFTEHQEDLKKFKRFIREN-CPDEYDNLFKNEQK
362





WP_033624816
284
ILAKVGDEYSDVFLAAKNVYDAVELSTILADSDKKSHAKLSSSMIVRFTEHQEDLKNFKRFIREN-CPDEYDNLFKNEQK
362





WP_033625576
284
ILAKVGDEYSDVFLAAKNVYDAVELSTILADSDKKSHAKLSSSMIVRFTEHQEDLKKFKRFIREN-CPDEYDNLFKNEQK
362





WP_033789179
284
ILAKVGDEYSDVFLAAKNVYDAVELSTILADSDKKSHAKLSSSMIVRFTEHQEDLKNFKRFIREN-CPDEYDNLFKNEQK
362





WP_002310644
282
LLEKIGDDYIDLFVQAKNVYDAVLLSEILSDSTKNTRAKLSAGMIRRYDAHKEDLVLLKRFVKEN-LPKKYRAFFGDNSV
360





WP_002312694
283
LLEKIGDDYIDLFVQAKNVYDAVLLSEILSDSTKNTRAKLSAGMIRRYDAHKEDLVLLKRFVKEN-LPKKYRAFFGDNSV
361





WP_002314015
283
LLEKIGDDYIDLFVQAKNVYDAVLLSEILSDSTKNTRAKLSAGMIRRYDAHKEDLVLLKRFVKEN-LPKKYRAFFGDNSV
361





WP_002320716
283
LLEKIGDDYIDLFVQAKNVYDAVLLSEILSDSTKNTRAKLSAGMIRRYDAHKEDLVLLKRFVKEN-LPKKYRAFFGDNSV
361





WP_002330729
282
LLEKIGDDYIDLFVQAKNVYDAVLLSEILSDSTKNTRAKLSAGMIRRYDAHKEDLVLLKRFVKEN-LPKKYRAFFGDNSV
360





WP_002335161
283
LLEKIGDDYIDLFVQAKNVYDAVLLSEILSDSTKNTRAKLSAGMIRRYDAHKEDLVLLKRFVKEN-LPKKYRAFFGDNSV
361





WP_002345439
283
LLEKIGDDYIDLFVQAKNVYDAVLLSEILSDSTKNTRAKLSAGMIRRYDAHKEDLVLLKRFVKEN-LPKKYRAFFGDNSV
361





WP_034867970
276
LLEKIGDEYLDIFLQAKKVHDAILLSEIISSTVKHTKAKLSSGMVERYERHKADLAKFKQFVKEN-VPQKATVFFKDTTK
354





WP_047937432
283
LLEKIGDDYIDLFVQAKNVYDAVLLSEILSDSTKNTRAKLSAGMIRRYDAHKEDLVLLKRFVKEN-LPKKYRAFFGDNSV
361





WP_010720994
276
LLEKIGDEYLDIFLQAKKVHDAILLSEIISSTVKHTQAKLSSGMVERYERHKADLAKFKQFVKEN-VPQKATVFFKDTTK
354





WP_010737004
276
LLEKIGDEYLDIFLQAKKVHDAILLSEIISSTVKHTKAKLSSGMVERYERHKADLAKFKQFVKEN-VPQKATVFFKDTTK
354





WP_034700478
276
LLEKIGDEYLDIFLQAKKVHDAILLSEIISSTVKHTQAKLSSGMVERYERHKADLAKFKQFVKEN-VPQKATVFFKDTTK
354





WP_007209003
281
LLAIIGDEYGDIFVAAQNLYQAILLAGILTSTEK-TRAKLSASMIQRYEEHAKDLKLLKRFVKEH-IPDKYAEIFNDATK
358





WP_023519017
276
LLEKTSDDYAELFLKAKGVYDAILLSQILSKSDDETKAKLSANMKLRFEEHQRDLKQLKELVRRD-LPKKYDDFFKNRSK
354





WP_010770040
279
LLAIIGDEYAEIFSATKSVYDAVALSGILSVTDGDTKAKLSASMVERYEAHQKDLVQFKQFIRKE-LPEMYAPIFRDNSV
357





WP_048604708
275
LLGEIGDEYADVFEAAKNVYNAVELSGILTVTDNSTKAKLSASMIKRYEDHKTDLKLFKEFIRKN-LPEKYHEIFNDKNT
353





WP_010750235
276
LLRKSNEEMIDVFLQVKKVYDAILLSDILSTKMKDTKAKLSAGMIERYQNHKKDLEELKQFVRAH-LHEKVTVFFKDSSK
354





AII16583
317
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
395





WP_029073316
290
KQPLLGD-CVEFIDLLHDIYSWVELQNILGSAHTS-EPSISAAMIQRYEDHKNDLKLLKDVIRKY-LPKKYFEVFRDEKS
366





WP_031589969
290
KQPLLGD-CVEFIDLLHDIYSWVELQNILGSAHTS-EPSISAAMIQRYEDHKNDLKLLKDVIRKY-LPKKYFEVFRDEKS
366





KDA45870
276
LLAEAGDQYLDIFVAAKKVYDAAILASILDVKDTQTKTVFSQAMIERYEEHQKDLIELKRVFKKY-LPEKCHDFFSE-PK
353





WP_039099354
286
LESSLDDNAHQIIESLQELYSGVLLAGIVPENQSLS-----QAMITKYDDHQKHLKMLKAVREAL-APEDRQRLKQAYDQ
359





AKP02966
279
LDSILDDDQFTVLDTANRIYSTITLNEIL-----NGESYFSMAKVNQYENHAIDLCKLRDMWHTT----KNEKAV-GLSR
348





WP_010991369
284
LLALIGDEYAELFVAAKNAYSAVVLSSIITVAETETNAKLSASMIERFDTHEEDLGELKAFIKLH-LPKHYEEIFSNTEK
362





WP_033838504
284
LLALIGDEYAELFVAAKNAYSAVVLSSIITVAETETNAKLSASMIERFDTHEEDLGELKAFIKLH-LPKHYEEIFSNTEK
362





EHN60060
287
LLALIGDEYAELFVAAKNAYSAVVLSSIITVAETETNAKLSASMIERFDTHEEDLGELKAFIKLH-LPKHYEEIFSNTEK
365





EFR89594
53
LLALIGDEYAELFVAAKNAYSAVVLSSIITVAETETNAKLSASMIERFDTHEEDLGELKAFIKLH-LPKHYEEIFSNTEK
131





WP_038409211
284
LLAKIGDEYAEIFVAAKSTYNAVVLSNIITVTDTETKAKLSASMIERFDKHAKDLKRLKAFFKMQ-LPEKFNEVFNDIEK
362





EFR95520

--------------------------------------------------------------------------------






WP_003723650
284
LLAIIGDEYAELFVAAKNTYNAVVLSSIITVTDTETNAKLSASMIERFDAHEKDLVELKAFIKLN-LPKQYEEIFSNAAI
362





WP_003727705
284
LLAIIGDEYAELFVAAKNTYNAVVLSSIITVTATETNAKLSASMIERFDAHEKELGELKAFIKLH-LPKQYQEIFNNAEI
362





WP_003730785
284
LLAIIGDEYAELFVAAKNTYNAVVLSSIITVTATETNAKLSASMIERFDAHEKELGELKAFIKLH-LPKQYQEIFNNAEI
362





WP_003733029
284
LLAIIGDEFAEVFVAAKNAYNAVVLSNIITVTDSTTRAKLSASLIERFENHKEDLKKMKRFVRTY-LPEKYDEIFDDTEK
362





WP_003739838
284
LLAIIGDEYAELFVAAKNTYNAVVLSSIITVTDTETNAKLSASMIERFDAHEKDLSELKAFIKLH-LPKQYEEIFSNVAI
362





WP_014601172
284
LLAIIGDEYAELFVAAKNTYNAVVLSSIITVTATETNAKLSASMIERFDAHEKDLGELKAFIKLH-LPKQYQEIFNNAAI
362





WP_023548323
284
LLAIIGDEYAELFVAAKNTYNAVVLSSIITVTDTETNAKLSASMIERFDAHEKDLVELKAFIKLN-LPKQYEEIFSNAAI
362





WP_031665337
284
LLAIIGDEYAELFVAAKNTYNAVVLSSIITVNDTETNAKLSASMIERFDAHEKDLVELKAFIKLN-LPKQYEEIFSNAAI
362





WP_031669209
284
LLAIIGDEFAEVFVAAKNAYNAVVLSNIITVTDSTTRAKLSASLIERFENHKEDLKKMKRFVRTY-LPEKYDEIFDDTEK
362





WP_033920898
284
LLAIIGDEYAELFVAAKNTYNAVVLSSIITVTDTETNAKLSASMIERFDAHEKDLVELKAFIKLN-LPKQYEEIFSNAAI
362





AKI42028
287
LLAIIGDEYAELFVAAKNTYNAVVLSSIITVTATETNAKLSASMIERFDAHEKDLGELKAFIKLH-LPKQYQEIFNNAAI
365





AKI50529
287
LLAIIGDEYAELFVAAKNTYNAVVLSSIITVTDTETNAKLSASMIERFDAHEKDLVELKAFIKLN-LPKQYEEIFSNAAI
365





EFR83390

--------------------------------------------------------------------------------






WP_046323366
284
LLARVGDEYAEIFVAAKNAYNAVVLSSIITVSNTETKAKLSASMIERFDKHDKDLKRMKAFFKVR-LPENFNEVFNDVEK
362





AKE81011
294
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
372





CUO82355
288
VENDLGE-YVEFIDSLHNIYSWVELQTIMGATHTD-NASISEAMVSRYNKHHEDLQLLKKCIKDN-VPKKYFDMFRNDSE
364





WP_033162887
289
LQSELGE-YIEFIEMLHNIYSWVELQAILGATHTD-NPSISAAMVERYEEHKKDLRVLKKVIREE-LPDKYNEVFRKDNR
365





AGZ01981
311
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
389





AKA60242
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
356





AKS40380
278
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
356





4UN5_B
282
LLAQIGDQYADLFLAAKNLSDAILLSDILRVNTEITKAPLSASMIKRYDEHHQDLTLLKALVRQQ-LPEKYKEIFFDQSK
360





WP_010922251
357


embedded image


419


WP_039695303
358
--NGYAG   YIEN   G    VKQDEFYKYLKNILSK-IkiDGSDYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
422





WP_045635197
357
--DGYAG   YIDG   K    TTQETFYKYIKNLLSK-F--EGTDYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





5AXW_A
169
------G   SINR   -    ---------------K------TSDYVk----------------------------EA
183





WP_009880683
41
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
103





WP_010922251
357
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419





WP_011054416
357
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPYQIHLGEL
419





WP_011284745
357
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419





WP_011285506
357
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419





WP_011527619
357
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419





WP_012560673
357
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419





WP_014407541
357
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419





WP_020905136
357
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419





WP_023080005
357
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPYQIHLGEL
419





WP_023610282
357
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPYQIHLGEL
419





WP_030125963
357
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419





WP_030126706
357
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPYQIHLGEL
419





WP_031488318
357
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419





WP_032460140
357
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419





WP_032461047
357
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419





WP_032462016
357
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419





WP_032462936
357
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419





WP_032464890
357
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLa--KLNRKDLLRKQRTFDNGSIPHQIHLGEL
419





WP_033888930
182
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTFDNGSIPHQIHLGEL
244





WP_038431314
357
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419





WP_038432938
357
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPYQIHLGEL
419





WP_038434062
357
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419





BAQ51233
268
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTFDNGSIPHQIHLGEL
330





KGE60162

-------   ----   -    ----------------------------------------------------------






KGE60856

-------   ----   -    ----------------------------------------------------------






WP_002989955
357
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419





WP_003030002
357
--KGYAG   YIEN   G    VKQDEFYKYLKGILLQ-I--NGSGDFL--DKIDREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_003065552
360
--NGYAG   YIEN   G    VKQDEFYKYLKNTLSK-Ia--GSDYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
422





WP_001040076
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EGSEYFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_001040078
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_001040080
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_001040081
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_001040083
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_001040085
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_001040087
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_001040088
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_001040089
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_001040090
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_001040091
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_001040092
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EDSEYFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_001040094
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EGSEYLL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_001040095
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EGSEYLL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_001040096
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EGSEYLL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_001040097
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EGSEYLL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_001040098
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EGSEYLL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_001040099
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EGSEYLL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_001040100
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EGSEYLL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_001040104
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_001040105
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_001040106
358
--DGYAG   YIEG   K    TNQGAFYKYLSKLLTK-Q--EGSEYFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_001040107
358
--DGYAG   YIEG   K    TNQGAFYKYLSKLLTK-Q--EGSEYFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_001040108
358
--DGYAG   YIEG   K    TNQGAFYKYLSKLLTK-Q--EGSEYFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_001040109
358
--DGYAG   YIEG   K    TNQGAFYKYLSKLLTK-Q--EGSEYFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_001040110
358
--DGYAG   YIEG   K    TNQGAFYKYLSKLLTK-Q--EGSEYFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_015058523
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EDSEYFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_017643650
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EGSEYLL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_017647151
358
--DGYAG   YIEG   K    TNQGAFYKYLSKLLTK-Q--EGSEYFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_017648376
358
--DGYAG   YIEG   K    TNQGAFYKYLSKLLTK-Q--EGSEYFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_017649527
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_017771611
358
--DGYAG   YIEG   K    TNQGAFYKYLSKLLTK-Q--EGSEYFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_017771984
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





CFQ25032
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





CFV16040
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





KLJ37842
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





KLJ72361
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





KLL20707
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





KLL42645
358
--DGYAG   YIEG   K    TNQGAFYKYLSKLLTK-Q--EGSEYFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_047207273
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_047209694
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EGSEYLL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_050198062
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_050201642
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_050204027
358
--DGYAG   YIES   K    TNQGAFYKYLSKLLTK-Q--EGSEYFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_050881965
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_050886065
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





AHN30376
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EDSEYFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





EAO78426
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EDSENFL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





CCW42055
358
--DGYAG   YIEG   K    TNQEAFYKYLSKLLTK-Q--EGSEYLL--EKIKNEDFLRKQRTFDNGSIPHQVHLTEL
420





WP_003041502
357
--KGYAG   YIES   G    VKQDEFYKYLKGILLQ-I--NGSGDFL--DKIDREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_037593752
358
--KGYAG   YIES   G    VEQDEFYKYLKGILLK-I--NGSGDFL--DKIDCEDFLRKQRTFDNGSIPHQIHLQEM
420





WP_049516684
358
--NGYAG   YIEN   G    VKQDEFYKYLKNTLSK-I--DGSDYFL--DKIDREDFLRKQRTFDNGSIPHQIHLQEM
420





GAD46167
357
--KGYAG   YIES   G    VEQDEFYKYLKGILLK-I--NGSGDFL--DKIDCEDFLRKQRTFDNGSIPHQIHLQEM
419





WP_018363470
358
--NGYAG   YIEN   G    VKQDEFYKYLKGILTK-I--NGSDYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
420





WP_003043819
357
--NGYAG   YVGI   G    ATQEEFYKFIKPILEK-M--DGAEELLa--KLNRDDLLRKQRTFDNGSIPHQIHLKEL
429





WP_006269658
357
--KGYAS   YIES   G    VKQDEFYKYLKGILLK-I--NGSGDFL--DKIDREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_048800889
357
--NGYAG   YIEN   G    VKQDEFYKYLKNTLSK-I--DGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_012767106
357
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419





WP_014612333
357
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419





WP_015017095
357
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419





WP_015057649
357
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419





WP_048327215
357
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419





WP_049519324
357
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLa--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419





WP_012515931
357
--NGYAG   YIEG   Q    VSQEEFYKYLKPILAR-L--DGSEPLLl--KIDREDFLRKQRTFDNGSIPHQIHLEEL
419





WP_021320964
357
--NGYAG   YIEG   Q    VSQEEFYKYLKPILAR-L--DGSEPLLl--KIDREDFLRKQRTFDNGSIPHQIHLEEL
419





WP_037581760
357
--NGYAG   YIEG   Q    VSQEEFYKYLKPILAR-L--DGSEPLLl--KIDREDFLRKQRTFDNGSIPHQIHLEEL
419





WP_004232481
357
--NGYAG   YIEN   G    VKQDIFYKHLKSIISE-K--NGGQYFL--DKIEREDFLRKQRTFDNGSIPYQIHLQEM
419





WP_009854540
358
--NGYAG   YIEN   G    VKQDEFYKYLKNTLSK-I--DGSDYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
420





WP_012962174
358
--NGYAG   YIEN   G    VKQDEFYKYLKTTLSK-I--DGSDYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
420





WP_039695303
358
--NGYAG   YIEN   G    VKQDEFYKYLKNILSK-IkiDGSDYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
422





WP_014334983
357
--NGYAG   YIDN   G    VKQDEFYKYLKTILTK-I--DDSDYFL--DKIERDDFLRKQRTFDNGSIPHQIHLQEM
419





WP_003099269
357
--NGYAG   YIDG   K    TSQEEFYKYIKPILLK-L--DGTEKLIs--KLEREDFLRKQRTFDNGSIPHQIHLNEL
419





AHY15608
357
--NGYAG   YIDG   K    TSQEEFYKYIKPILLK-L--DGTEKLIs--KLEREDFLRKQRTFDNGSIPHQIHLNEL
419





AHY17476
357
--NGYAG   YIDG   K    TSQEEFYKYIKPILLK-L--DGTEKLIs--KLEREDFLRKQRTFDNGSIPHQIHLNEL
419





ESR09100

-------   ----   -   ----------------------------------------------------------






AGM98575
357
--NGYAG   YIDG   K    TSQEEFYKYIKPILLK-L--DGTEKLIs--KLEREDFLRKQRTFDNGSIPHQIHLNEL
419





ALF27331
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_018372492
355
--PSYAA   YVSG   A    VTEDDFYKESKGLLID-V--EGAEYFL--EKIEREDFLRKQRTFDNGAIPNQVHVKEL
432





WP_045618028
358
--DGYAG   YIDG   K    TTQEAFYKYIKNLLSK-L--EGADYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
420





WP_045635197
357
--DGYAG   YIDG   K    TTQETFYKYIKNLLSK-F--EGTDYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_002263549
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_002263887
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_002264920
357
--NGYAG   YIEN   G    VKQDEFYKYLKNTLSK-I--AGSDYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_002269043
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_002269448
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_002271977
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_002272766
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_002273241
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_002275430
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_002276448
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_002277050
357
--NGYAG   YIEN   G    VKQDEFYKYLKNTLSK-I--AGSDYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_002277364
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_002279025
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_002279859
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_002280230
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_002281696
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_002282247
357
--NGYAG   YIEN   G    VKQDEFYKYLKNTLSK-I--TGSDYFL--DQIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_002282906
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_002283846
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_002287255
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_002288990
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_002289641
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_002290427
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_002295753
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_002296423
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_002304487
357
--NGYAG   YVGA   D    ATEEEFYKYVKGILNK-V--EGADVWL--DKIDREDFLRKQRTFDNGSIPHQIHLQEM
429





WP_002305844
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_002307203
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_002310390
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_002352408
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_012997688
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_014677909
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_019312892
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_019313659
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_019314093
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_019315370
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGNGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_019803776
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_019805234
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_024783594
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_024784288
357
--NGYAG   YIEN   G    VKQDEFYKYLKNTLSK-I--TGSDYFL--DQIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_024784666
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_024784894
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_024786433
357
--NGYAG   YIEN   G    VKQDEFYKYLKNTLSK-I--AGSDYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_049473442
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_049474547
357
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





EMC03581
350
--DGYAG   YIDG   K    TNQEAFYKYLKGLLNK-I--EGSGYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
412





WP_000428612
358
--DGYAG   YIDG   K    TTQESFYKYIKNLLSK-F--EGADYFL--EKIEREDFLRKQRTFDNGSIPHQIHLQEM
420





WP_000428613
358
--DGYAG   YIDG   K    TTQEAFYKYIKNLLSK-F--EGTDYFL--EKIEREDFLRKQRTFDNGSIPHQIHLQEM
420





WP_049523028
357
--DGYAG   YIDG   K    TTQEGFYKYIKNLISK-I--EGAEYFL--EKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_003107102
326
--NGYAG   YING   K    TSQEDFYKYIKPILSK-L--KGAESLIs--KLEREDFLRKQRTFDNGSIPHQIHLNEL
388





WP_054279288
359
--DGYAG   YISG   K    TSQEAFYKYIKPILET-L--DGAEDFLt--KINREDFLRKQRTFDNGSIPHQIHLGEL
421





WP_049531101
358
--EGYAG   YIDS   K    TTQEAFYKYIKNLLSK-I--DGADYLL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
420





WP_049538452
358
--DGYAG   YVDG   K    TTQEAFYKYIKNLLSK-F--EGADYFL--EKIEREDFLRKQRTFDNGSIPHQIHLQEM
420





WP_049549711
358
--DGYAG   YIDG   K    TTQEAFYKYIKNLLSK-F--EGTDYFL--EKIEREDFLRKQRTFDNGSIPHQIHLQEM
420





WP_007896501
359
--NGYAG   YIEG   K    VSQEDFYRYIKPILSR-L--KGGDEFLa--KIDRDDFLRKQRTFDNGSIPHQIHLKEL
421





EFR44625
311
--NGYAG   YIEG   K    VSQEDFYRYIKPILSR-L--KGGDEFLa--KIDRDDFLRKQRTFDNGSIPHQIHLKEL
373





WP_002897477
357
--DGYAG   YIDG   K    TTQEAFYKYIKNLLSK-F--EGADYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_002906454
357
--DGYAG   FIDG   K    TTQEAFYKYIKNLLSK-L--EGADYFL--NKIEREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_009729476
358
--DGYAG   YIDG   K    TTQETFYKYIKNLLSK-F--EGADYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
420





CQR24647
358
--NGYAG   YIDG   K    TNQEDFYKYLKNLLQK-V--DGGDYFI--EKIEREDFLRKQRTFDNGSIPHQVHLDEM
420





WP_000066813
358
--DGYAG   YIDG   K    TTQEAFYKYIKNLLSK-F--EGADYFL--DKIEREDFLKKQRTFDNGSIPHQIHLQEM
420





WP_009754323
358
--DGYAG   YIDG   K    TTQEAFYKYIKNLLSK-F--EGADYFL--DKIEREDFLRKQRTFDNGSIPHQIHLQEM
420





WP_044674937
357
--DGYAG   YIEG   K    TTQENFYRFIKKAIEK-I--EGSDYFI--DKIDREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_044676715
357
--DGYAG   YIEG   K    TTQENFYRFIKKAIEK-I--EGSNYFI--DKIDREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_044680361
357
--DGYAG   YIEG   K    TTQENFYRFIKKAIEK-I--EGSNYFI--DKIDREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_044681799
357
--DGYAG   YIEG   K    TTQENFYRFIKKAIEK-I--EGSDYFI--DKIDREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_049533112
357
--KGYAG   YIEN   G    VKQDEFYKYLKGILLQ-I--NGSGDFL--DKIDREDFLRKQRTFDNGSIPHQIHLQEM
419





WP_029090905
316
fyTDYIG   YEES   K    SKEERLFKHIELLLAKeNvlTTVEHALleKNITFASLLPLQRSSRNAVIPYQVHEKEL
403





WP_006506696
361
ksKGYYN   YINR   K    APVDEFYKYVKKCIEK-VdtPEAKQILn--DIELENFLLKQNSRTNGSVPYQMQLDEM
429





AIT42264
357
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419





WP_034440723
363
--NGYAG   YIDG   K    TSQEDFYKFVKAQLKG---eENGEYFL--EAIENENFLRKQRSFYNGVIPYQIHLQEL
425





AKQ21048
357
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419





WP_004636532
356
--NGYAG   YIDG   K    TNQEDFYKYIEKVMKT-IksDKKDYFL--DKIDREVFLRKQRSFYNSVIPHQIHLQEM
420





WP_002364836
363
--DGYAG   YIAH   A    VSQLKFYQYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTFDNGVIPHQIHLAEL
427





WP_016631044
314
--DGYAG   YIAH   A    VSQLKFYQYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTFDNGVIPHQIHLAEL
378





EMS75795
100
--NGYAG   YIDG   K    TTQEDFYKFLKKELNG-I--AGSERFM--EKVDQENFLLKQRTTANGVIPHQVHLTEL
162





WP_002373311
363
--DGYAG   YIAH   A    VSQLKFYQYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTFDNGVIPHQIHLAEL
427





WP_002378009
363
--DGYAG   YITH   A    VSQLKFYQYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTFDNGVIPHQIHLAEL
427





WP_002407324
363
--DGYAG   YITH   A    VSQLKFYQYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTFDNGVIPHQIHLAEL
427





WP_002413717
363
--DGYAG   YIAH   A    VSQLKFYQYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTFDNGVIPHQIHLAEL
427





WP_010775580
365
--DGYAG   YIAH   A    VSQLKFYQYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTFDNGVIPHQIHLAEL
429





WP_010818269
363
--DGYAG   YIAH   A    VSQLKFYQYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTFDNGVIPHQIHLAEL
427





WP_010824395
363
--DGYAG   YITH   A    VSQLKFYQYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTFDNGVIPHQIHLAEL
427





WP_016622645
363
--DGYAG   YIAH   A    VSQLKFYQYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTFDNGVIPHQIHLAEL
427





WP_033624816
363
--DGYAG   YIAH   A    VSQLKFYQYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTFDNGVIPHQIHLAEL
427





WP_033625576
363
--DGYAG   YIAH   A    VSQLKFYQYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTFDNGVIPHQIHLAEL
427





WP_033789179
363
--DGYAG   YIAH   A    VSQLKFYQYVKKIIQD-I--AGAEYFL--EKIAQENFLRKQRTFDNGVIPHQIHLAEL
427





WP_002310644
361
--NGYAG   YIEG   H    ATQEDFYKFVKKELTG-I--RGSEVFL--TKIEQENFLRKQRTFDNGVIPHQIHLTEL
423





WP_002312694
362
--NGYAG   YIEG   H    ATQEAFYKFVKKELTG-I--RGSEVFL--TKIEQENFLRKQRTFDNGVIPHQIHLSEL
424





WP_002314015
362
--NGYAG   YIEG   H    ATQEDFYKFVKKELTG-I--RGSEVFL--TKIEQENFLRKQRTFDNGVIPHQIHLTEL
424





WP_002320716
362
--NGYAG   YIEG   H    ATQEDFYKFVKKELTG-I--RGSEVFL--TKIEQENFLRKQRTFDNGVIPHQIHLTEL
424





WP_002330729
361
--NGYAG   YIEG   H    ATQEDFYKFVKKELTG-I--RGSEVFL--TKIEQENFLRKQRTFDNGVIPHQIHLTEL
423





WP_002335161
362
--NGYAG   YIEG   H    ATQEDFYKFVKKELTG-I--RGSEVFL--TKIEQENFLRKQRTFDNGVIPHQIHLTEL
424





WP_002345439
362
--NGYAG   YIEG   H    ATQEDFYKFVKKELTG-I--RGSEVFL--TKIEQENFLRKQRTFDNGVIPHQIHLTEL
424





WP_034867970
355
--NGYAG   YIKG   K    TTQEEFYKFVKKELSG-V--VGSEPFL--EKIDQETFLLKQRTYTNGVIPHQVHLIEL
417





WP_047937432
362
--NGYAG   YIEG   H    ATQEDFYKFVKKELTG-I--RGSEVFL--TKIEQENFLRKQRTFDNGVIPHQIHLTEL
424





WP_010720994
355
--NGYAG   YIKG   K    TTQEEFYKFVKKELSG-V--VGSEPFL--EKIDQETFLLKQRTYTNGVIPHQVHLIEL
417





WP_010737004
355
--NGYAG   YIKG   K    TTQEEFYKFVKKELSG-V--VGSEPFL--EKIDQETFLLKQRTYTNGVIPHQVHLIEL
417





WP_034700478
355
--NGYAG   YIKG   K    TTQEEFYKFVKKELSG-V--VGSEPFL--EKIDQETFLLKQRTYTNGVIPHQVHLIEL
417





WP_007209003
359
--NGYAG   YIDG   K    TKEEEFYKYLKTTLVQ---kSGYQYFI--EKIEQENFLRKQRIYDNGVIPHQVHAEEL
421





WP_023519017
355
--NGYAG   YVKG   K    ATQEDFYKFLRTELAG-L--EESQSIM--EKIDLEIYLLKQRTFANGVIPHQIHLVEM
417





WP_010770040
358
--SGYAG   YVEN   S    VTQAEFYKYIKKAIEK-V--PGAEYFL--EKIEQETFLDKQRTFNNGVIPHQIHLEEL
422





WP_048604708
354
--DGYAG   YIDN   S    TSQEKFYKYITNLIEK-I--DGAEYFL--KKIENEDFLRKQRTFDNGIIPHQIHLEEL
418





WP_010750235
355
--DGYAG   YIDG   K    TTQADFYKFLKKELTG-V--PGSEPML--AKIDQENFLLKQRTPTNGVIPHQVHLTEF
417





AII16583
396
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTFDNGSIPHQIHLGEL
458





WP_029073316
367
kkNNYCN   YINH   K    TPVDEFYKYIKKLIEK-IddPDVKTILn--KIELESFMLKQNSRTNGAVPYQMQLDEL
435





WP_031589969
367
kkNNYCN   YINH   K    TPVDEFYKYIKKLIEK-IddPDVKTILn--KIELESFMLKQNSRTNGAVPYQMQLDEL
435





KDA45870
354
-iSGYAG   YIDG   K    VSEEDFYKYTKKTLKG-I--PETEEILq--KIDANNYLRKQRTFDNGAIPHQVHLKEL
417





WP_039099354
360
-------   YVDG   K    -SKEDFYGDITKALKNnPdhPIVSEIKk--LIELDQFMPKQRTKDNGAIPHQLHQQEL
425





AKP02966
349
--QAYDD   YINK   K    ---KELYTSLKKFLKVaLp-TNLAKEAe-EKISKGTYLVKPRNSENGVVPYQLNKIEM
415





WP_010991369
363
--HGYAG   YIDG   -    TKQADFYKYMKMTLEN-I--EGADYFI--AKIEKENFLRKQRTFDNGAIPHQLHLEEL
425





WP_033838504
363
--HGYAG   YIDG   -    TKQADFYKYMKMTLEN-I--EGADYFI--AKIEKENFLRKQRTFDNGAIPHQLHLEEL
425





EHN60060
366
--HGYAG   YIDG   -    TKQADFYKYMKMTLEN-I--EGADYFI--AKIEKENFLRKQRTFDNGAIPHQLHLEEL
428





EFR89594
132
--HGYAG   YIDG   -    TKQADFYKYMKTTLEN-I--EGADYFI--AKIEKENFLRKQRTFDNGAIPHQLHLEEL
194





WP_038409211
363
--DGYAG   YIDG   -    TTQEKFYKYMKKMLAN-I--DGADYFI--DQIEEENFLRKQRTFDNGTIPHQLHLEEL
425





EFR95520
1
-------   ----   -    ---------MKKMLAN-I--DGADYFI--DQIEEENFLRKQRTFDNGTIPHQLHLEEL
44





WP_003723650
363
--DGYAG   YIDG   -    TKQVDFYKYLKTILEN-I--EGSDYFI--AKIEEENFLRKQRTFDNGAIPHQLHLEEL
425





WP_003727705
363
--DGYAG   YIDG   -    TKQVDFYKYLKTTLEN-V--EGADYFI--TKIEEENFLRKQRTFDNGVIPHQLHLEEL
425





WP_003730785
363
--DGYAG   YIDG   -    TKQVDFYKYLKTTLEN-V--EGADYFI--TKIEEENFLRKQRTFDNGVIPHQLHLEEL
425





WP_003733029
363
--HGYAG   YISG   -    TKQADFYKYMKATLEK-I--EGADYFI--AKIEEENFLRKQRTFDNGVIPHQLHLEEL
425





WP_003739838
363
--DGYAG   YIDG   -    TKQVDFYKYLKTLLEN-I--EGADYFI--AKIEEENFLRKQRTFDNGAIPHQLHLEEL
425





WP_014601172
363
--DGYAG   YIDG   -    TKQVDFYKYLKTILEN-I--EGADYFI--AKIEEENFLRKQRTFDNGAIPHQLHLEEL
425





WP_023548323
363
--DGYAG   YIDG   -    TKQVDFYKYLKTTLEN-V--EGADYFI--TKIEEENFLRKQRTFDNGVIPHQLHLEEL
425





WP_031665337
363
--DGYAG   YIDG   -    TKQVDFYKYLKTILEN-I--EGSDYFI--AKIEEENFLRKQRTFDNGAIPHQLHLEEL
425





WP_031669209
363
--HGYAG   YISG   -    TKQADFYKYMKATLEK-I--EGADYFI--AKIEEENFLRKQRTFDNGVIPHQLHLEEL
425





WP_033920898
363
--DGYAG   YIDG   -    TKQVDFYKYLKTILEN-I--EGADYFI--AKIEEENFLRKQRTFDNGAIPHQLHLEEL
425





AKI42028
366
--DGYAG   YIDG   -    TKQVDFYKYLKTILEN-I--EGADYFI--AKIEEENFLRKQRTFDNGAIPHQLHLEEL
428





AKI50529
366
--DGYAG   YIDG   -    TKQVDFYKYLKTILEN-I--EGADYFI--AKIEEENFLRKQRTFDNGAIPHQLHLEEL
428





EFR83390

-------   ----   -    ----------------------------------------------------------






WP_046323366
363
--DGYAG   YIEG   -    TKQEAFYKYMKKMLEH-V--EGADYFI--NQIEEENFLRKQRTFDNGAIPHQLHLEEL
425





AKE81011
373
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTFDNGSIPHQIHLGEL
435





CUO82355
365
kvKGYYN   YINR   K    APVDEFYKFVKKCIEK-VdtPEAKQILh--DIELENFLLKQNSRTNGSVPYQMQLDEM
433





WP_033162887
366
klHNYLG   YIKY   D    TPVEEFYKYIKGLLAK-VdtDEAREILe--RIDLEKFMLKQNSRTNGSIPYQMQKDEM
434





AGZ01981
390
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTFDNGSIPHQIHLGEL
452





AKA60242
357
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419





AKS40380
357
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTFDNGSIPHQIHLGEL
419





4UN5_B
361
--NGYAG   YIDG   G    ASQEEFYKFIKPILEK-M--DGTEELLv--KLNREDLLRKQRTFDNGSIPHQIHLGEL
423





WP_010922251
420


embedded image


486


WP_039695303
423
HAILRRQGDYYPFLKE--KQD   RIEKILTFRIPYYVGPL   VRKD--SRFAWAEY---RSDEKITPWNFDKVIDKEK
489





WP_045635197
420
NAILRRQGEYYPFLKD--NKE   KIEKILTFRIPYYVGPL   ARGN--RDFAWLTR---NSDEAIRPWNFEEIVDKAS
486





5AXW_A
184
KQLLKVQKAYHQLDQSfi--D   TYIDLLETRRTYYEGPG   ---Eg-SPFGWKDI----------------------
229





WP_009880683
104
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
170





WP_010922251
420
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486





WP_011054416
420
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486





WP_011284745
420
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486





WP_011285506
420
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486





WP_011527619
420
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486





WP_012560673
420
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486





WP_014407541
420
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486





WP_020905136
420
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486





WP_023080005
420
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486





WP_023610282
420
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486





WP_030125963
420
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486





WP_030126706
420
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486





WP_031488318
420
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486





WP_032460140
420
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486





WP_032461047
420
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486





WP_032462016
420
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486





WP_032462936
420
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486





WP_032464890
420
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486





WP_033888930
245
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
311





WP_038431314
420
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486





WP_038432938
420
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486





WP_038434062
420
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486





BAQ51233
331
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
397





KGE60162

---------------------   -----------------   ------------------------------------






KGE60856

---------------------   -----------------   ------------------------------------






WP_002989955
420
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486





WP_003030002
420
HAILRRQEEHYPFLKE--NQD   KIEKILTFRIPYYVGPL   ARKG--SRFAWAEY---KADEKITPWNFDDILDKEK
486





WP_003065552
423
HAILRRQGDYYPFLKE--NQD   RIEKILTFRIPYYVGPL   ARKD--SRFSWAEY---HSDEKITPWNFDKVIDKEK
489





WP_001040076
421
RAIIRRQSEYYPFLKE--NLD   RIEKILTFRIPYYVGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





WP_001040078
421
KAIIRRQSEYYPFLKE--NQD   RIEKILTFRIPYYIGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





WP_001040080
421
KAIIRRQSEYYPFLKE--NQD   RIEKILTFRIPYYIGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





WP_001040081
421
KAIIRRQSEYYPFLKE--NQD   RIEKILTFRIPYYIGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





WP_001040083
421
KAIIRRQSEYYPFLKE--NQD   RIEKILTFRIPYYIGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





WP_001040085
421
KAIIRRQSEYYPFLKE--NQD   RIEKILTFRIPYYIGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





WP_001040087
421
KAIIRRQSEYYPFLKE--NQD   RIEKILTFRIPYYIGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





WP_001040088
421
KAIIRRQSEYYPFLKE--NQD   RIEKILTFRIPYYIGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





WP_001040089
421
KAIIRRQSEYYPFLKE--NQD   RIEKILTFRIPYYIGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





WP_001040090
421
KAIIRRQSEYYPFLKE--NQD   RIEKILTFRIPYYIGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





WP_001040091
421
KAIIRRQSEYYPFLKE--NQD   RIEKILTFRIPYYIGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





WP_001040092
421
KAIIRRQSEYYPFLKE--NQD   KIEKILTFRIPYYVGPL   ARGN--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





WP_001040094
421
RAIIRRQSEYYPFLKE--NLD   RIEKILTFRIPYYVGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





WP_001040095
421
RAIIRRQSEYYPFLKE--NLD   RIEKILTFRIPYYVGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





WP_001040096
421
RAIIRRQSEYYPFLKE--NLD   RIEKILTFRIPYYVGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





WP_001040097
421
RAIIRRQSEYYPFLKE--NLD   RIEKILTFRIPYYVGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





WP_001040098
421
RAIIRRQSEYYPFLKE--NLD   RIEKILTFRIPYYVGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





WP_001040099
421
RAIIRRQSEYYPFLKE--NLD   RIEKILTFRIPYYVGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





WP_001040100
421
RAIIRRQSEYYPLLKE--NLD   RIEKILTFRIPYYVGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





WP_001040104
421
KAIIRRQSEYYPFLKE--NQD   RIEKILTFRIPYYIGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





WP_001040105
421
KAIIRRQSEYYPFLKE--NQD   RIEKILTFRIPYYIGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





WP_001040106
421
KAIIRRQSEYYPFLKE--NLD   RIEKILTFRIPYYVGPL   AREK--SDFAWMTR---KTDDSIRPWNFEELVDKEA
487





WP_001040107
421
KAIIRRQSEYYPFLKE--NLD   RIEKILTFRIPYYVGPL   AREK--SDFAWMTR---KTDDSIRPWNFEELVDKEA
487





WP_001040108
421
KAIIRRQSEYYPFLKE--NLD   RIEKILTFRIPYYVGPL   AREK--SDFAWMTR---KTDDSIRPWNFEELVDKEA
487





WP_001040109
421
KAIIRRQSEYYPFLKE--NLD   RIEKILTFRIPYYVGPL   AREK--SDFAWMTR---KTDDSIRPWNFEELVDKEA
487





WP_001040110
421
KAIIRRQSEYYPFLKE--NLD   RIEKILTFRIPYYVGPL   AREK--SDFAWMTR---KTDDSIRPWNFEELVDKEA
487





WP_015058523
421
KAIIRRQSEYYPFLKE--NQD   KIEKILTFRIPYYVGPL   ARGN--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





WP_017643650
421
RAIIRRQSEYYPFLKE--NLD   RIEKILTFRIPYYVGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





WP_017647151
421
KAIIRRQSEYYPFLKE--NLD   RIEKILTFRIPYYVGPL   AREK--SDFAWMTR---KTDDSIRPWNFEELVDKEA
487





WP_017648376
421
KAIIRRQSEYYPFLKE--NLD   RIEKILTFRIPYYVGPL   AREK--SDFAWMTR---KTDDSIRPWNFEELVDKEA
487





WP_017649527
421
KAIIRRQSEYYPFLKE--NQD   RIEKILTFRIPYYIGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





WP_017771611
421
KAIIRRQSEYYPFLKE--NLD   RIEKILTFRIPYYVGPL   AREK--SDFAWMTR---KTDDSIRPWNFEELVDKEA
487





WP_017771984
421
KAIIRRQSEYYPFLKE--NQD   RIEKILTFRIPYYIGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





CFQ25032
421
KAIIRRQSEYYPFLKE--NQD   RIEKILTFRIPYYIGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





CFV16040
421
KAIIRRQSEYYPFLKE--NQD   RIEKILTFRIPYYIGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





KLJ37842
421
KAIIRRQSEYYPFLKE--NQD   RIEKILTFRIPYYIGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





KLJ72361
421
KAIIRRQSEYYPFLKE--NQD   RIEKILTFRIPYYIGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





KLL20707
421
KAIIRRQSEYYPFLKE--NQD   RIEKILTFRIPYYIGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





KLL42645
421
KAIIRRQSEYYPFLKE--NLD   RIEKILTFRIPYYVGPL   AREK--SDFAWMTR---KTDDSIRPWNFEELVDKEA
487





WP_047207273
421
KAIIRRQSEYYPFLKE--NQD   RIEKILTFRIPYYIGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





WP_047209694
421
RAIIRRQSEYYPFLKE--NLD   RIEKILTFRIPYYVGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





WP_050198062
421
KAIIRRQSEYYPFLKE--NQD   RIEKILTFRIPYYIGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





WP_050201642
421
KAIIRRQSEYYPFLKE--NQD   RIEKILTFRIPYYIGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





WP_050204027
421
KAIIRRQSEYYPFLKE--NLD   RIEKILTFRIPYYVGPL   AREK--SDFAWMTR---KTDDSIRPWNFEELVDKEA
487





WP_050881965
421
KAIIRRQSEYYPFLKE--NQD   RIEKILTFRIPYYIGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





WP_050886065
421
KDIIRRQSEYYPFLKE--NQD   RIEKILTFRIPYYIGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





AHN30376
421
KAIIRRQSEYYPFLKE--NQD   KIEKILTFRIPYYVGPL   ARGN--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





EAO78426
421
KAIIRRQSEYYPFLKE--NQD   RIEKILTFRIPYYIGPL   AREK--SDFAWMTR---KTDDSIRPWNFEDLVDKEK
487





CCW42055
421
RAIIRRQSEYYPFLKE--NLD   RIEKILTFRIPYYVGPL   AREK--SDFAWMTR---KTDDSIRPWNFEELVDKEA
487





WP_003041502
420
HAILRRQGEHYPFLKE--NQD   KIEKILTFRIPYYVGPL   ARKG--SRFAWAEY---KADEKITPWNFDDILDKEK
486





WP_037593752
421
HAILRRQGEHYPFLKE--NQD   KIEKILTFRIPYYVGPL   ARKG--SRFAWAEY---KADEKITPWNFDDILDKEK
487





WP_049516684
421
HAILRRQGEHYPFLKE--NQD   KIEKILTFRIPYYVGPL   ARKG--SRFAWAEY---KADEKITPWNFDDILDKEK
487





GAD46167
420
HAILRRQGEHYPFLKE--NQD   KIEKILTFRIPYYVGPL   ARKG--SRFAWAEY---KADEKITPWNFDDILDKEK
486





WP_018363470
421
HAILRRQGDYYPFLKE--NQE   EIEKILTFRIPYYVGPL   ARKD--SRFAWAEY---RSDEKITPWNFDKVIDKEK
487





WP_003043819
430
HAILRRQEEFYPFLKE--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWLTR---KSEEAITPWNFEEVVDKGA
496





WP_006269658
420
HAILRRQGEHYPFLKE--NQD   KIEKILTFRIPYYVGPL   ARKG--SRFAWAEY---KADEKITPWNFDDILDKEK
486





WP_048800889
420
HAILRRQGEHYPFLKE--NQD   KIEKILTFRIPYYVGPL   VRKG--SRFAWAEY---KADEKITPWNFDDILDKEK
486





WP_012767106
420
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486





WP_014612333
420
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486





WP_015017095
420
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486





WP_015057649
420
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486





WP_048327215
420
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486





WP_049519324
420
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486





WP_012515931
420
HAILRRQEVEYPFLKD--NRK   KIESLLTFRIPYYVGPL   ARG-h-SRFAWVKR---KFDGAIRPWNFEEIVDEEA
486





WP_021320964
420
HAILRRQEVEYPFLKD--NRK   KIESLLTFRIPYYVGPL   ARG-h-SRFAWVKR---KFDGAIRPWNFEEIVDEEA
486





WP_037581760
420
HAILRRQEVEYPFLKD--NRK   KIESLLTFRIPYYVGPL   ARG-h-SRFAWVKR---KFDGAIRPWNFEEIVDEEA
486





WP_004232481
420
RTILRRQGEYYPFLKE--NQA   KIEKILTFRIPYYVGPL   ARKN--SRFAWAKY---HSDEPITPWNFDEVVDKEK
486





WP_009854540
421
HAILRRQGDYYPFLKE--KQD   RIEKILTFRIPYYVGPL   VRKD--SRFAWAEY---RSDEKITPWNFDKVIDKEK
487





WP_012962174
421
HAILRRQGEHYAFLKE--NQA   KIEKILTFRIPYYVGPL   ARKN--SRFAWAEY---HSDEKITPWNFDEIIDKEK
487





WP_039695303
423
HAILRRQGDYYPFLKE--KQD   RIEKILTFRIPYYVGPL   VRKD--SRFAWAEY---RSDEKITPWNFDKVIDKEK
489





WP_014334983
420
HSILRRQGDYYPFLKE--NQA   KIEKILTFRIPYYVGPL   ARKD--SRFAWANY---HSDEPITPWNFDEVVDKEK
486





WP_003099269
420
KAIIRRQEKEYPFLKE--NQK   KIEKLFTFKIPYYVGPL   ANG-q-SSFAWLKR---QSNESITPWNFEEVVDQEA
486





AHY15608
420
KAIIRRQEKEYPFLKE--NQK   KIEKLFTFKIPYYVGPL   ANG-q-SSFAWLKR---QSNESITPWNFEEVVDQEA
486





AHY17476
420
KAIIRRQEKEYPFLKE--NQK   KIEKLFTFKIPYYVGPL   ANG-q-SSFAWLKR---QSNESITPWNFEEVVDQEA
486





ESR09100

---------------------   -----------------   ------------------------------------






AGM98575
420
KAIIRRQEKEYPFLKE--NQK   KIEKLFTFKIPYYVGPL   ANG-q-SSFAWLKR---QSNESITPWNFEEVVDQEA
486





ALF27331
420
RAIIRRQAEFYPFLAD--NQD   RIEKILTFRIPYYIGPL   ARGK--SDFSWLSR---KSADKITPWNFDEIVDKES
486





WP_018372492
433
QAIILNQSKYYPFLAE--NKE   KIEKILTFRIPYYVGPL   ARGN--SSFAWLQR---KSDEAIRPWNFEQVVDMET
499





WP_045618028
421
NAIIRRQGEHYPFLQE--NKE   KIEKILTFRIPYYVGPL   ARGN--RDFAWLTR---NSDQAIRPWNFEEIVDKAR
487





WP_045635197
420
NAILRRQGEYYPFLKD--NKE   KIEKILTFRIPYYVGPL   ARGN--RDFAWLTR---NSDEAIRPWNFEEIVDKAS
486





WP_002263549
420
RAIIRRQAEFYPFLAD--NQD   RIEKLLTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_002263887
420
RAIIRRQAEFYPFLAD--NQD   RIEKLLTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_002264920
420
HAILRRQGDYYPFLKE--NQD   RIEKILTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_002269043
420
RAIIRRQAEFYPFLAD--NQD   RIEKILTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_002269448
420
RAIIRRQAEFYPFLAD--NQD   RIEKILTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_002271977
420
RAIIRRQAEFYPFLAD--NQD   RIEKILTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_002272766
420
RAIIRRQAEFYPFLAD--NQD   RIEKILTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_002273241
420
RAIIRRQAEFYPFLAD--NQD   RIEKILTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_002275430
420
RAIIRRQAEFYPFLAD--NQD   RIEKILTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_002276448
420
RAIIRRQAEFYPFLAD--NQD   RIEKILTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_002277050
420
HAILRRQGDYYPFLKE--NQD   RIEKILTFRIPYYVGPL   ARKN--SRFAWAEY---HSDEAVMPWNFDQVIDKES
486





WP_002277364
420
RAIIRRQAEFYPFLAD--NQD   RIEKILTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_002279025
420
RAIIRRQSEFYPFLAD--NQD   RIEKILTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_002279859
420
RAIIRRQAEFYPFLAD--NQD   RIEKILTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_002280230
420
RAIIRRQAEFYPFLAD--NQD   RIEKILTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_002281696
420
RAIIRRQAEFYPFLAD--NQD   RIEKILTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_002282247
420
HAILRRQGDYYPFLKE--NQD   RIEKILTFRIPYYVGPL   ARKN--SRFAWAEY---HSDEAVTPWNFDQVIDKES
486





WP_002282906
420
RAIIRRQAEFYPFLAD--NQD   RIEKLLTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_002283846
420
RAIIRRQAEFYPFLAD--NQD   RIEKILTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_002287255
420
RAIIRRQAEFYPFLAD--NQD   RIEKILTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_002288990
420
RAIIRRQAEFYPFLAD--NQD   RIEKILTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_002289641
420
RAIIRRQAEFYPFLAD--NQD   RIEKLLTFRIPYYVGPL   ASGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_002290427
420
RAIIRRQAEFYPFLAD--NQD   RIEKILTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_002295753
420
RAIIRRQAEFYPFLAD--NQD   RIEKILTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_002296423
420
RAIIRRQAEFYPFLAD--NQD   RIEKILTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_002304487
430
HAILRRQGEHYPFLKE--NQD   KIEKILTFRIPYYVGPL   VRKG--SRFAWAEY---KADEKITPWNFDDILDKEK
496





WP_002305844
420
RAIIRRQAEFYPFLAD--NQD   RIEKILTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_002307203
420
RAIIRRQAEFYPFLAD--NQD   RIEKILTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_002310390
420
RAIIRRQAEFYPFLAD--NQD   RIEKILTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_002352408
420
RAIIRRQAEFYPFLAD--NQD   RIEKILTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_012997688
420
RAIIRRQAEFYPFLAD--NQD   RIEKILTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_014677909
420
RAIIRRQAEFYPFLAD--NQD   RIEKILTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_019312892
420
RAIIRRQAEFYPFLAD--NQD   RIEKILTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_019313659
420
RAIIRRQAEFYPFLAD--NQD   RIEKLLTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_019314093
420
RAIIRRQAEFYPFLAD--NQD   RIEKILTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_019315370
420
RAIIRRQAEFYPFLAD--NQD   RIEKILTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_019803776
420
RAIIRRQAEFYPFLAD--NQD   RIEKLLTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_019805234
420
RAIIRRQAEFYPFLAD--NQD   RIEKILTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_024783594
420
RAIIRRQAEFYPFLAD--NQD   RIEKLLTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_024784288
420
HAILRRQGDYYPFLKE--NQD   RIEKILTFRIPYYVGPL   ARKN--SRFAWAEY---HSDEAVTPWNFDQVIDKES
486





WP_024784666
420
RAIIRRQAEFYPFLAD--NQD   RIEKILTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_024784894
420
RAIIRRQAEFYPFLAD--NQD   RIEKLLTFRIPYYVGPL   ASGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_024786433
420
HAILRRQGDYYPFLKE--NQD   RIEKILTFRIPYYVGPL   ARKN--SRFAWAEY---HSDEAVTPWNFDQVIDKES
486





WP_049473442
420
RAIIRRQAEFYPFLAD--NQD   RIEKILTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





WP_049474547
420
RAIIRRQAEFYPFLAD--NQD   RIEKLLTFRIPYYVGPL   ASGK--SDFAWLSR---KSADKITPWNFDEIVDKES
486





EMC03581
413
RAIIRRQAEFYPFLAD--NQD   RIEKILTFRIPYYVGPL   ARGK--SDFAWLSR---KSADKITPWNFDEIVDKES
479





WP_000428612
421
NAILRRQGEHYPFLKE--NKE   KIEKILTFRIPYYVGPL   ARGN--RDFAWLTR---NSDQAIRPWNFEEIVDKAS
487





WP_000428613
421
NAILRRQGEHYPFLKD--NKE   KIEKILTFRIPYYVGPL   ARGN--RDFAWLTR---NSDEAIRPWNFEEIVDKAS
487





WP_049523028
420
NAILRHQGEYYPFLKE--NKD   KIEQILTFRIPYYVGPL   ARGN--SDFAWLSR---NSDEAIRPWNFEEMVDKSS
486





WP_003107102
389
KSIIRRQEKYYPFLKD--KQV   RIEKIFTFRIPYFVGPL   ANG-n-SSFAWVKR---RSNESITPWNFEEVVEQEA
455





WP_054279288
422
QAILERQQAYYPFLKD--NQE   KIEKILTFRIPYYIGPL   ARG-n-SRFAWLTR---TSDQKITPWNFDEMVDQEA
488





WP_049531101
421
NAILRRQGEHYPFLKE--NRE   KIEKILTFRIPYYVGPL   ARGN--RDFAWLTR---NSDQAIRPWNFEEIVDKAS
487





WP_049538452
421
NAILRRQGEHYPFLKE--NKE   KIEKILTFRIPYYVGPL   ARGN--RDFAWLTR---NSDQAIRPWNFEEIVDKAS
487





WP_049549711
421
NAILRRQGEHYPFLKE--NKE   KIEKILTFRIPYYVGPL   ARGN--RDFAWLTR---NSDQAIRPWNFEEIVDKAS
487





WP_007896501
422
HAILRRQEKYYPFLAE--QKE   KIEQLLCFRIPYYVGPL   AKGGn-SSFAWLKR---RSDEPITPWNFKDVVDEEA
489





EFR44625
374
HAILRRQEKYYPFLAE--QKE   KIEQLLCFRIPYYVGPL   AKGGn-SSFAWLKR---RSDEPITPWNFKDVVDEEA
441





WP_002897477
420
NAILRRQGEHYPFLKE--NRE   KIEKILTFRIPYYVGPL   ARDN--RDFSWLTR---NSDEPIRPWNFEEVVDKAR
486





WP_002906454
420
NAILRRQGEHYLFLKE--NRE   KIEKILAFRIPYYVGPL   ARGN--RDFAWLTR---NSDQAIRPWNFEEVVDKAS
486





WP_009729476
421
NAILRRQGEHYPFLKE--NKE   KIEKILTFRIPYYVGPL   ARGN--RDFAWLTR---NSDQAIRPWNFEEIVDKAS
487





CQR24647
421
KAILRRQGEFYPFLKE--NAE   KIQQILTFKIPYYVGPL   ARGN--SRFAWASY---NSNEKMTPWNFDNVIDKTS
487





WP_000066813
421
NAIIRRQGEHYPFLQE--NKE   KIEKILTFRIPYYVGPL   ARGN--GDFAWLTR---NSDQAIRPWNFEEIVDQAS
487





WP_009754323
421
NAILRRQGEHYPLLKE--NKE   KIEKILTFRIPYYVGPL   ARGN--RDFAWLTR---NSDQAIRPWNFEEIVDKAS
487





WP_044674937
420
HAIIRRQAEFYPFLVE--NQD   KIEKILTFRIPYYVGPL   ARGK--SEFAWLNR---KSDEKIRPWNFDEMVDKET
486





WP_044676715
420
HAIIRRQAEFYPFLVE--NQD   KIEKILTFRIPYYVGPL   ARGK--SEFAWLNR---KSDEKIRPWNFDEMVDKET
486





WP_044680361
420
HAIIRRQAEFYPFLVE--NQD   KIEKILTFRIPYYVGPL   ARGK--SEFAWLNR---KSDEKIRPWNFDEMVDKET
486





WP_044681799
420
HAIIRRQAEFYPFLVE--NQD   KIEKILTFRIPYYVGPL   ARGK--SEFAWLNR---KSDEKIRPWNFDEMVDKET
486





WP_049533112
420
HAILRRQEEHYPFLKE--NQD   KIEKILTFRIPYYVGPL   ARKG--SRFAWAEY---KADEKITPWNFDDILDKEK
486





WP_029090905
404
VAILENQATYYPFLLE--QKD   NIHKLLTFRIPYYVGPL   ADQKd-SEFAWMVR---KQAGKITPFNFEEMVDIDA
471





WP_006506696
430
IKIIDNQAEYYPILKE--KRE   QLLSILTFRIPYYFGPL   ETSEh----AWIKRlegKENQRILPWNYQDIVDVDA
498





AIT42264
420
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486





WP_034440723
426
TAVLDQQEKHYSFLKE--NRD   KIISLLTFRIPYYVGPL   AKGE--SRFAWLER--sNSEEKIKPWNEDKIVDIDK
493





AKQ21048
420
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486





WP_004636532
421
QAILDRQSQYYPFLAE--NRD   KIESLVTFRIPYYVGPL   TVSDq-SEFAWMER---QSDEPIRPWNFDEIVNKER
488





WP_002364836
428
QAIIHRQAAYYPFLKE--NQE   KIEQLVTFRIPYYVGPL   SKGDa-STFAWLKR---QSEEPIRPWNLQETVDLDQ
495





WP_016631044
379
QAIIHRQAAYYPFLKE--NQE   KIEQLVTFRIPYYVGPL   SKGDa-STFAWLKR---QSEEPIRPWNLQETVDLDQ
446





EMS75795
163
KAIIERQKPYYPSLEE--ARD   KMIRLLTFRIPYYVGPL   AQGEetSSFAWLER---KTPEKVTPWNATEVIDYSA
231





WP_002373311
428
QAIIHRQAAYYPFLKE--NQE   KIEQLVTFRIPYYVGPL   SKGDa-STFAWLKR---QSEEPIRPWNLQETVDLDQ
495





WP_002378009
428
QAIIHRQAAYYPFLKE--NQE   KIEQLVTFRIPYYVGPL   SKGDa-NTFAWLKR---QSEEPIRPWNLQETVDLDQ
495





WP_002407324
428
QAIIHRQAAYYPFLKE--NQE   KIEQLVTFRIPYYVGPL   SKGDa-STFAWLKR---QSEEPIRPWNLQETVDLDQ
495





WP_002413717
428
QAIIHRQAAYYPFLKE--NQE   KIEQLVTFRIPYYVGPL   SKGDa-STFAWLKR---QSEEPIRPWNLQETVDLDQ
495





WP_010775580
430
QAIIHRQAAYYPFLKE--NQK   KIEQLVTFRIPYYVGPL   SKGDa-STFAWLKR---QSEEPIRPWNLQETVDLDQ
497





WP_010818269
428
QAIIHRQAAYYPFLKE--NQE   KIEQLVTFRIPYYVGPL   SKGDa-STFAWLKR---QSEEPIRPWNLQETVDLDQ
495





WP_010824395
428
QAIIHRQAAYYPFLKE--NQE   KIEQLVTFRIPYYVGPL   SKGDa-STFAWLKR---QSEEPIRPWNLQETVDLDQ
495





WP_016622645
428
QAIIHRQAAYYPFLKE--NQE   KIEQLVTFRIPYYVGPL   SKGDa-STFAWLKR---QSEEPIRPWNLQETVDLDQ
495





WP_033624816
428
QAIIHRQAAYYPFLKE--NQK   KIEQLVTFRIPYYVGPL   SKGDa-STFAWLKR---QSEEPIRPWNLQETVDLDQ
495





WP_033625576
428
QAIIHRQAAYYPFLKE--NQE   KIEQLVTFRIPYYVGPL   SKGDa-STFAWLKR---QNEKPIRPWNLQETVDLDQ
495





WP_033789179
428
QAIIHRQAAYYPFLKE--NQK   KIEQLVTFRIPYYVGPL   SKGDa-STFAWLKR---QSEEPIRPWNLQETVDLDQ
495





WP_002310644
424
RAIIANQKKHYPFLKE--EQE   KLESLLTFKIPYYVGPL   AKKQenSPFAWLIR---KSEEKIKPWNLPEIVDMEG
492





WP_002312694
425
RAIIANQKKHYPFLKE--EQE   KLESLLTFKIPYYVGPL   AKKQenSPFAWLIR---KSEEKIKPWNLPEIVDMEG
493





WP_002314015
425
RAIIANQKKHYPFLKE--EQE   KLESLLTFKIPYYVGPL   AKKQenSPFAWLIR---KSEEKIKPWNLPEIVDMEG
493





WP_002320716
425
RAIIANQKKHYPFLKE--EQE   KLESLLTFKIPYYVGPL   AKKQenSPFAWLIR---KSEEKIKPWNLPEIVDMEG
493





WP_002330729
424
RAIIANQKKHYPFLKE--EQE   KLESLLTFKIPYYVGPL   AKKQenSPFAWLIR---KSEEKIKPWNLPEIVDMEG
492





WP_002335161
425
RAIIANQKKHYPFLKE--EQE   KLESLLTFKIPYYVGPL   AKKQenSPFAWLIR---KSEEKIKPWNLPEIVDMEG
493





WP_002345439
425
RAIIANQKKHYPFLKE--EQE   KLESLLTFKIPYYVGPL   AKKQenSPFAWLIR---KSEEKIKPWNLPEIVDMEG
493





WP_034867970
418
KAIIDQQKQHYPFLEE--AGP   KIIALFKFRIPYYVGPL   AKEQeaSSFAWIER---KTAEKINPWNFSEVVDIEK
486





WP_047937432
425
RAIIANQKKHYPFLKE--EQE   KLESLLTFKIPYYVGPL   AKKQenSPFAWLIR---KSEEKIKPWNLPEIVDMEG
493





WP_010720994
418
KAIIDQQKQHYPFLEE--AGP   KIIALFKFRIPYYVGPL   AKEQeaSSFAWIER---KTAEKINPWNFSEVVDIEK
486





WP_010737004
418
KAIIDQQKQHYPFLEE--AGP   KIIALFKFRIPYYVGPL   AKEQeaSSFAWIER---KTAEKINPWNFSEVVDIEK
486





WP_034700478
418
KAIIDQQKQHYPFLEE--AGP   KIIALFKFRIPYYVGPL   AKEQeaSSFAWIER---KTAEKINPWNFSEVVDIEK
486





WP_007209003
422
RAILRKQEKYYSFLKE--NHE   KIEQIFKVRIPYYVGPL   AKHNeqSRFAWNIR---KSDEPIRPWNMNDVVDENA
490





WP_023519017
418
REIMDRQKRFYPFLKG--AQG   KIEKLLTFRIPYYVGPL   AQEGq-SPFAWIKR---KSPSQITPWNFAEVVDKEN
485





WP_010770040
423
EAIIQKQATYYPFLAD--NKE   EMKQLVTFRIPYYVGPL   ADGN--SPFAWLER---ISSEPIRPGNLAEVVDIKK
489





WP_048604708
419
KAILHHQAMYYPFLQE--KFS   NFVDLLTFRIPYYVGPL   ANGN--SRFSWLSR---KSDEPIRPWNLAEVVDLSK
485





WP_010750235
418
KAIIDQQKQYYPFLEK--SKE   KMIQLLTFRIPYYVGPL   AQDKetSSFAWLER---KTTEKIKPWNAKDVIDYGA
486





AII16583
459
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
525





WP_029073316
436
NKILENQSVYYSDLKD--NED   KIRSILTFRIPYYFGPL   ITKDr--QFDWIIKkegKENERILPWNANEIVDVDK
506





WP_031589969
436
NKILENQSVYYSDLKD--NED   KIRSILTFRIPYYFGPL   ITKDr--QFDWIIKkegKENERILPWNANEIVDVDK
506





KDA45870
418
VAIVENQGKYYPFLRE--NKD   KFEKILNFRIPYYVGPL   ARGN--SKFAWLTR--a-GEGKITPYNFDEMIDKET
484





WP_039099354
426
DRIIENQQQYYPWLAE-lNPN   KLDELVAFRVPYYVGPL   QQQSsdAKFAWMIR---KAEGQITPWNFDDKVDRQA
509





AKP02966
416
EKIIDNQSQYYPFLKE--NKE   KLLSILSFRIPYYVGPL   -QSSekNPFAWMER---KSNGHARPWNFDEIVDREK
483





WP_010991369
426
EAILHQQAKYYPFLKE--NYD   KIKSLVTFRIPYFVGPL   ANGQ--SEFAWLTR---KADGEIRPWNIEEKVDFGK
492





WP_033838504
426
EAILHQQAKYYPFLKE--NYD   KIKSLVTFRIPYFVGPL   ANGQ--SEFAWLTR---KADGEIRPWNIEEKVDFGK
492





EHN60060
429
EAILHQQAKYYPFLKE--NYD   KIKSLVTFRIPYFVGPL   ANGQ--SEFAWLTR---KADGEIRPWNIEEKVDFGK
495





EFR89594
195
EAILHQQAKYYPFLKE--NYD   KIKSLVTFRIPYFVGPL   ANGQ--SEFAWLTR---KADGEIRPWNIEEKVDFGK
261





WP_038409211
426
EAILHQQAKYYPFLRK--DYE   KIRSLVTFRIPYFIGPL   ANGQ--SDFAWLTR---KADGEIRPWNIEEKVDFGK
492





EFR95520
45
EAILHQQAKYYPFLRK--DYE   KIRSLVTFRIPYFIGPL   ANGQ--SDFAWLTR---KADGEIRPWNIEEKVDFGK
111





WP_003723650
426
EAIIHQQAKYYPFLKE--DYD   KIKSLVTFRIPYFVGPL   ANGQ--SEFAWLTR---KADGEIRPWNIEEKVDFGK
492





WP_003727705
426
EAILHQQAKYYPFLRE--GYD   KIKSLVTFRIPYFVGPL   ANGQ--SEFAWLTR---KDDGEIRPWNIEEKVDFGK
492





WP_003730785
426
EAILHQQAKYYPFLRE--GYD   KIKSLVTFRIPYFVGPL   ANGQ--SEFAWLTR---KDDGEIRPWNIEEKVDFGK
492





WP_003733029
426
EAILHQQAKYYPFLRE--DYE   KIKSLVTFRIPYFVGPL   AKGQ--SEFAWLTR---KADGEIRPWNIEEKVDFGK
492





WP_003739838
426
EAILHQQAKYYPFLKE--AYD   KIKSLVTFRIPYFVGPL   ANGQ--SDFAWLTR---KADGEIRPWNIEEKVDFGK
492





WP_014601172
426
EAIIHQQAKYYPFLRE--DYE   KIKSLVTFRIPYFVGPL   AKGQ--SEFAWLTR---KADGEIRPWNIEEKVDFGK
492





WP_023548323
426
EAILHQQAKYYPFLRE--DYE   KIKSLVTFRIPYFVGPL   AKGQ--SEFAWLTR---KADGEIRPWNIEEKVDFGK
492





WP_031665337
426
EAIIHQQAKYYTFLKE--DYD   KIKSLVTFRIPYFVGPL   ANGQ--SEFAWLTR---KADGEIRPWNIEEKVDFGK
492





WP_031669209
426
EAILHQQAKYYPFLRE--DYE   KIKSLVTFRIPYFVGPL   AKGQ--SEFAWLTR---KADGEIRPWNIEEKVDFGK
492





WP_033920898
426
EAIIHQQAKYYPFLRE--DYE   KIKSLVTFRIPYFVGPL   AKGQ--SEFAWLTR---KADGEIRPWNIEEKVDFGK
492





AKI42028
429
EAIIHQQAKYYPFLRE--DYE   KIKSLVTFRIPYFVGPL   AKGQ--SEFAWLTR---KADGEIRPWNIEEKVDFGK
495





AKI50529
429
EAIIHQQAKYYPFLRE--DYE   KIKSLVTFRIPYFVGPL   AKGQ--SEFAWLTR---KADGEIRPWNIEEKVDFGK
495





EFR83390

---------------------   -----------------   ------------------------------------






WP_046323366
426
EAILHQQAKYYPFLKV--DYE   KIKSLVTFRIPYFVGPL   ANGQ--SEFSWLTR---KADGEIRPWNIEEKVDFGK
492





AKE81011
436
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
502





CUO82355
434
IKIIDNQAKYYPVLKE--KRE   QLLSILTFRIPYYFGPL   ETSEh----AWIKRlegKENQRILPWNYQDTVDVDA
502





WP_033162887
435
IQIIDNQSVYYPQLKE--NRD   KLISILEFRIPYYFGPL   AHSE----FAWIKKfedKQKERILPWNYDQIVDIDA
503





AGZ01981
453
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
519





AKA60242
420
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486





AKS40380
420
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
486





4UN5_B
424
HAILRRQEDFYPFLKD--NRE   KIEKILTFRIPYYVGPL   ARG-n-SRFAWMTR---KSEETITPWNFEEVVDKGA
490





WP_010922251
487


embedded image


561


WP_039695303
490
SAEKFITRMTLNDLYLPEEKVLPKHSHVYETYAVYNELTKIKYVN--EQGKES-FFDSNMKQEIFDHVFK--ENR-KVTK
563





WP_045635197
487
SAEDFINKMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIA--EGLRDYqFLDSGQKKQIVNQLFK--ENR-KVTE
561





5AXW_A
230
--KEWYEMLMGHCTYFPEELRSVKYAYNADLYNALNDLNNLVITR--DENEKLeYYE---KFQIIENVFK--QKK-KPTL
299





WP_009880683
171
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV
245





WP_010922251
487
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV
561





WP_011054416
487
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV
561





WP_011284745
487
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV
561





WP_011285506
487
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV
561





WP_011527619
487
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV
561





WP_012560673
487
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV
561





WP_014407541
487
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV
561





WP_020905136
487
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV
561





WP_023080005
487
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV
561





WP_023610282
487
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV
561





WP_030125963
487
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV
561





WP_030126706
487
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV
561





WP_031488318
487
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPeFLSGEQKKAIVDLLFK--TNR-KVTV
561





WP_032460140
487
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV
561





WP_032461047
487
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV
561





WP_032462016
487
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV
561





WP_032462936
487
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV
561





WP_032464890
487
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV
561





WP_033888930
312
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV
386





WP_038431314
487
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV
561





WP_038432938
487
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV
561





WP_038434062
487
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV
561





BAQ51233
398
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV
472





KGE60162

--------------------------------------------------------------------------------






KGE60856

--------------------------------------------------------------------------------






WP_002989955
487
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV
561





WP_003030002
487
SAEKFITRMTLNDLYLPEEKVLPKHSLLYETFTVYNELTKVKYVN--EQGEAK-FFDANMKQEIFDHVFK--ENR-KVTK
560





WP_003065552
490
SAEKFITRMTLNDLYLPEEKVLPKHSHVYETYAVYNELTKIKYVN--EQGKDS-FFDSNMKQEIFDHVFK--ENR-KVTK
563





WP_001040076
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRFLA--EGFKDFqFLNRKQKETIENSLEK--EKR-KVTE
562





WP_001040078
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVEK--EHR-KVSK
561





WP_001040080
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVEK--EHR-KVSK
561





WP_001040081
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVEK--EHR-KVSK
561





WP_001040083
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVEK--EHR-KVSK
561





WP_001040085
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVEK--EHR-KVSK
561





WP_001040087
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVEK--EHR-KVSK
561





WP_001040088
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVEK--EHR-KVSK
561





WP_001040089
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561





WP_001040090
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561





WP_001040091
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561





WP_001040092
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDENVKQEIFDGVFK--EHR-KVSK
561





WP_001040094
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRFLA--EGFKDFqFLNRKQKETIFNELFK--EKR-KVTE
562





WP_001040095
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRFLA--EGFKDFqFLNRKQKETIFNELFK--EKR-KVTE
562





WP_001040096
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRFLA--EGFKDFqFLNRKQKETIFNELFK--EKR-KVTE
562





WP_001040097
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRFLA--EGFKDFqFLNRKQKETIFNELFK--EKR-KVTE
562





WP_001040098
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRFLA--EGFKDFqFLNRKQKETIFNELFK--EKR-KVTE
562





WP_001040099
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRFLA--EGFKDFqFLNRKQKETIFNELFK--EKR-KVTE
562





WP_001040100
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRFLA--EGFKDFqFLNRKQKETIFNELFK--EKR-KVTE
562





WP_001040104
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561





WP_001040105
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561





WP_001040106
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561





WP_001040107
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561





WP_001040108
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561





WP_001040109
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561





WP_001040110
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561





WP_015058523
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDENVKQEIFDGVFK--EHR-KVSK
561





WP_017643650
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRFLA--EGFKDFqFLNRKQKETIFNELFK--EKR-KVTE
562





WP_017647151
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561





WP_017648376
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561





WP_017649527
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561





WP_017771611
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561





WP_017771984
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561





CFQ25032
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561





CFV16040
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561





KLJ37842
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561





KLJ72361
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561





KLL20707
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561





KLL42645
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561





WP_047207273
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561





WP_047209694
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRFLA--EGFKDFqFLNRKQKETIFNELFK--EKR-KVTE
562





WP_050198062
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561





WP_050201642
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561





WP_050204027
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561





WP_050881965
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561





WP_050886065
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561





AHN30376
488
SAEAFIHRMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDENVKQEIFDGVFK--EHR-KVSK
561





EAO78426
488
SAEAFIHRMTNNDFYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EHR-KVSK
561





CCW42055
488
SAEAFIHCMTNNDLYLPEEKVLPKHSLIYEKFTVYNELTKVRYKN--EQGETY-FFDSNIKQEIFDGVFK--EYR-KVSK
561





WP_003041502
487
SAEKFITRMTLNDLYLPEEKVLPKHSLLYETFTVYNELTKVKYVN--EQGEAK-FFDANMKQEIFDHVFK--ENR-KVTK
560





WP_037593752
488
SAEKFITRMTLNDLYLPEEKVLPKHSPLYETFTVYNELTKVKYVN--EQGEAK-FFDTNMKQEIFDHVFK--ENR-KVTK
561





WP_049516684
488
SAEKFITRMTLNDLYLPEEKVLPKHSPLYETFTVYNELTKVKYVN--EQGEAK-FFDTNMKQEIFDHVFK--ENR-KVTK
561





GAD46167
487
SAEKFITRMTLNDLYLPEEKVLPKHSPLYETFTVYNELTKVKYVN--EQGEAK-FFDTNMKQEIFDHVFK--ENR-KVTK
560





WP_018363470
488
SAEKFITRMTLNDLYLPEEKVLPKHSHVYETFAVYNELTKVKYVN--EQGKDS-FFDSNMKQEIFDHVFK--ENR-KVTK
561





WP_003043819
497
SAQSFIERMTNFDEQLPNKKVLPKHSLLYEYFTVYNELTKVKYVT--ERMRKPeFLSGEQKKAIVDLLFK--TNR-KVTV
571





WP_006269658
487
SAEKFITRMTLNDLYLPEEKVLPKHSPLYEAFTVYNELTKVKYVN--EQGEAK-FFDTNMKQEIFDHVFK--ENR-KVTK
560





WP_048800889
487
SAEKFITRMTLNDLYLPEEKVLPKHSLLYEIFTVYNELTKVKYVN--EQGEAK-FFDANMKQEIFDHVFK--ENP-KVTK
560





WP_012767106
487
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPeFLSGKQKEAIVDLLFK--TNR-KVTV
561





WP_014612333
487
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPeFLSGKQKEAIVDLLFK--TNR-KVTV
561





WP_015017095
487
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPeFLSGKQKEAIVDLLFK--TNR-KVTV
561





WP_015057649
487
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPeFLSGKQKEAIVDLLFK--TNR-KVTV
561





WP_048327215
487
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPeFLSGKQKEAIVDLLFK--TNR-KVTV
561





WP_049519324
487
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV
561





WP_012515931
487
SAQIFIEKMTKNDLYLPNEKVLPKHSLLYETFTVYNELTKVKYAT--EGMTRPqFLSADQKQAIVDLLFK--TNR-KVTV
561





WP_021320964
487
SAQIFIEKMTKNDLYLPNEKVLPKHSLLYETFTVYNELTKVKYAT--EGMTRPqFLSADQKQAIVDLLFK--TNR-KVTV
561





WP_037581760
487
SAQIFIEKMTKNDLYLPNEKVLPKHSLLYETFTVYNELTKVKYAT--EGMTRPqFLSADQKQAIVDLLFK--TNR-KVTV
561





WP_004232481
487
SAEKFITRMTLNDLYLPEEKVLPKHSYVYETFAVYNELTKIKYVN--EQGKSF-FFDANMKQEIFDHVFK--ENR-KVTK
560





WP_009854540
488
SAEKFITRMTLNDLYLPEEKVLPKHSHVYETYAVYNELTKIKYVN--EQGKES-FFDSNMKQEIFDHVFK--ENR-KVTK
561





WP_012962174
488
SAEKFITRMTLNDLYLPEEKVLPKHSLVYETYTVYNELTKVKYVN--EQGKSN-FFDANMKQEIFEHVFK--ENR-KVTK
561





WP_039695303
490
SAEKFITRMTLNDLYLPEEKVLPKHSHVYETYAVYNELTKIKYVN--EQGKES-FFDSNMKQEIFDHVFK--ENR-KVTK
563





WP_014334983
487
SAEKFITRMTLNDLYLPEEKVLPKHSHVYETFTVYNELTKIKYVN--EQGESF-FFDANMKQEIFDHVFK--ENR-KVTK
560





WP_003099269
487
SARAFIERMTNFDTYLPEEKVLPKHSPLYEMFMVYNELTKVKYQT--EGMKRPvFLSSEDKEEIVNLLFK--KER-KVTV
561





AHY15608
487
SARAFIERMTNFDTYLPEEKVLPKHSPLYEMFMVYNELTKVKYQT--EGMKRPvFLSSEDKEEIVNLLFK--KER-KVTV
561





AHY17476
487
SARAFIERMTNFDTYLPEEKVLPKHSPLYEMFMVYNELTKVKYQT--EGMKRPvFLSSEDKEEIVNLLFK--KER-KVTV
561





ESR09100

--------------------------------------------------------------------------------






AGM98575
487
SARAFIERMTNFDTYLPEEKVLPKHSPLYEMFMVYNELTKVKYQT--EGMKRPvFLSSEDKEEIVNLLFK--KER-KVTV
561





ALF27331
487
SAEAFINRMTNYDLYLPNQKVLPRHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_018372492
500
SASRFIERMTLHDLYLPDEKVLPRHSLIYEKYTVFNELTKVRFTP--EGGKEV-YESKTDKENIFDSLEK--RYR-KVTK
573





WP_045618028
488
SAEDFINKMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIA--EGLRDYqFLDSGQKQQIVTQLFK--EKR-KVTE
562





WP_045635197
487
SAEDFINKMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIA--EGLRDYqFLDSGQKKQIVNQLFK--ENR-KVTE
561





WP_002263549
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_002263887
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELIKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_002264920
487
SVEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_002269043
487
SVEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_002269448
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_002271977
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_002272766
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_002273241
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_002275430
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_002276448
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_002277050
487
SAQAFIEHMTNNDLYLPNEKVLPKHSPLYEKYTVYNELTKIKYVT--EIGEAK-FFDANLKQEIFDGLEK--HER-KVTK
560





WP_002277364
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_002279025
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGETA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_002279859
487
SVEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_002280230
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_002281696
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_002282247
487
SAQAFIEHMTNNDLYLPNEKVLPKHSPLYEKYTVYNELTKIKYVT--EIGEAK-FFDANLKQEIFDGLEK--HER-KVTK
560





WP_002282906
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_002283846
487
SVEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_002287255
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_002288990
487
SVEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_002289641
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_002290427
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_002295753
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_002296423
487
SVEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_002304487
497
SAEKFITRMTLNDLYLPEEKVLPKHSLLYETFTVYNELTKVKYVN--EQGEAK-FFDANMKQEIFDHVFK--ENR-KVTK
570





WP_002305844
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_002307203
487
SVEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_002310390
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_002352408
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_012997688
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_014677909
487
SVEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_019312892
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_019313659
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_019314093
487
SVEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_019315370
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_019803776
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_019805234
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_024783594
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_024784288
487
SAQAFIEHMTNNDLYLPNEKVLPKHSPLYEKYTVYNELTKIKYVT--EIGEAK-FFDANLKQEIFDGLEK--HER-KVTK
560





WP_024784666
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_024784894
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_024786433
487
SAQAFIEHMTNNDLYLPNEKVLPKHSPLYEKYTVYNELTKIKYVT--EIGEAK-FFDANLKQEIFDGLEK--HER-KVTK
560





WP_049473442
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_049474547
487
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
560





EMC03581
480
SAEAFINRMTNYDLYLPNQKVLPKHSLLYEKFTVYNELTKVKYKT--EQGKTA-FFDANMKQEIFDGVEK--VYR-KVTK
553





WP_000428612
488
SAESFINKMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIA--EGLRDYqFLDSRQKKDIFYTLFKaeDKR-KVTE
564





WP_000428613
488
SAEDFINKMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIA--EGLRDYqFLDSGQKKQIVTQLFK--EKR-KVTE
562





WP_049523028
487
SAEDFIHRMTNYDLYLPEEKVLPKHSLLYETFTVYNELTKVKYIA--EGMKDYqFLDSGQKKQIVNQLFK--EKR-KVTE
561





WP_003107102
456
SAKVFIERMTNFDTYLPEEKVLPKHSLLYEMFTVYNELTKVKYQA--EGMRKPeFLSSEEKIEIVSNLFK--TER-KVTV
530





WP_054279288
489
SAQAFIERMTNFDEYLPQEKVLPKHSLTYEYFTVYNELTKVKYVT--EGMTKPeFLSAGQKEQIVELLFK--KYR-KVTV
563





WP_049531101
488
SAEAFINKMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIA--EGLRDYqFLDSGQKKKIINQLFK--EKR-KVTE
562





WP_049538452
488
SAEDFINKMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIA--EGLRDYqFLDSGQKKQIVNQLFK--EKR-KVTE
562





WP_049549711
488
SAEDFINKMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIA--EGLRDYqFLDSGQKKQIVNQLFK--EKR-KVTE
562





WP_007896501
490
SAQAFIEGMTNYDTYLPEEKVLPKHSPLYEMFTVYNELTKVKYIA--ENMTKPlYLSAEQKEATIDHLFK--QTR-KVTV
564





EFR44625
442
SAQAFIEGMTNYDTYLPEEKVLPKHSPLYEMFTVYNELTKVKYIA--ENMTKPlYLSAEQKEATIDHLFK--QTR-KVTV
516





WP_002897477
487
SAEDFIHRMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIA--EGLRDYqFLDSGQKKQIVNQLFK--EKR-KVTE
561





WP_002906454
487
SAEDFINKMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIA--EGLRDYqFLDSGQKKQIVNQLFK--DKR-KVTE
561





WP_009729476
488
SAEDFINKMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIA--EGLRDYqFLDSGQKKQIVTQLFK--EKR-KVTE
562





CQR24647
488
SAQAFIERMTNNDLYLPDQKVLPKHSLLYQKFAVYNELTKIKYVT--ETGEAR-LEDVFLKKEIFDGLEK--KER-KVTK
561





WP_000066813
488
SAEDFINKMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIA--EGLTRYqFLDKKQKKDIFDTFFKaeNKR-KVTE
564





WP_009754323
488
SAESFINKMTNYDLYLPEEKVLPKHSLLYETFAVYNELTKVKFIA--EGLRDYqFFDSGQKKQIVNQLFK--EKR-KVTE
562





WP_044674937
487
SAENFITRMTNYDQYLPDQKVLPKHSLLYEKFAVYNELTKVKFIA--EGMRDYqFLDSGQKKDIVKTLFK--TKR-KVTA
561





WP_044676715
487
SAENFITRMTNYDQYLPDQKVLPKHSLLYEKFAVYNELTKVRYVT--EQGKSF-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_044680361
487
SAENFITRMTNYDQYLPDQKVLPKHSLLYEKFAVYNELTKVRYVT--EQGKSF-FFDANMKQEIFDGVEK--VYR-KVTK
560





WP_044681799
487
SAENFITRMTNYDQYLPDQKVLPKHSLLYEKFAVYNELTKVKFIA--EGMRDYqFLDSGQKKDIVKTLFK--TKR-KVTA
561





WP_049533112
487
SAEKFITRMTLNDLYLPEEKVLPKHSLLYETFTVYNELTKVKYVN--EQGEAK-FFDANMKQEIFDHVEK--ENR-KVTK
560





WP_029090905
472
SSEAFIKRMTNKCTYLIHEDVIPKHSFSYAKFEVLNELNKIRLDG------KP--IDIPLKKRIFEGLFL---EKtKVTQ
540





WP_006506696
499
TAEGFIKRMRSYCTYFPDEEVLPKNSLIVSKYEVYNELNKIRVDD--------kLLEVDVKNDIYNELFM--KNK-TVTE
567





AIT42264
487
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV
561





WP_034440723
494
SAELFIENLTSRDTYLPDEPVLPKRSLIYQKFTIFNELTKISYID--ERGILQ-NESSREKIAIENDLEK---NKsKVTK
567





AKQ21048
487
SAQSFIERMTNEDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV
561





WP_004636532
489
SAEKFIERMTNMDTYLLEEKVLPKRSLLYQTFEVYNELTKVRYTN--EQGKTE-KLNRQQKAEIIETLFK-qKNR--VRE
562





WP_002364836
496
SATAFIERMTNEDTYLPSEKVLPKHSLLYEKFMVFNELTKISYTD--DRGIKA-NFSGKEKEKIFDYLEK--TRR-KVKK
569





WP_016631044
447
SATAFIERMTNEDTYLPSEKVLPKHSLLYEKFMVFNELTKISYTD--DRGIKA-NFSGKEKEKIFDYLEK--TRR-KVKK
520





EMS75795
232
SAMKFIQRMINYDTYLPTEKVLPKHSILYQKYTIFNELTKVAYKD--ERGIKH-QFSSKEKREIFKELFQ--KQR-KVTV
305





WP_002373311
496
SATAFIERMTNEDTYLPSEKVLPKHSLLYEKFMVFNELTKISYTD--DRGIKA-NFSGKEKEKIFDYLEK--TRR-KVKK
569





WP_002378009
496
SATAFIERMTNEDTYLPSEKVLPKHSLLYEKFMVFNELTKISYTD--DRGIKA-NFSGKEKEKIFDYLEK--TRR-KVKK
569





WP_002407324
496
SATAFIERMTNEDTYLPSEKVLPKHSLLYEKFMVFNELTKISYTD--DRGIKA-NFSGKEKEKIFDYLEK--TRR-KVKK
569





WP_002413717
496
SATAFIERMTNEDTYLPSEKVLPKHSLLYEKFMVFNELTKISYTD--DRGIKA-NFSGKEKEKIFDYLEK--TRR-KVKK
569





WP_010775580
498
SATAFIERMTNEDTYLPSEKVLPKHSLLYEKFMVFNELTKISYTD--DRGIKA-NFSGKEKEKIFDYLEK--TRR-KVKK
571





WP_010818269
496
SATAFIERMTNEDTYLPSEKVLPKHSLLYEKFMVFNELTKISYTD--DRGIKA-NFSGKEKEKIFDYLEK--TRR-KVKK
569





WP_010824395
496
SATAFIERMTNEDTYLPSEKVLPKHSLLYEKFMVFNELTKISYTD--DRGIKA-NFSGKEKEKIFDYLEK--TRR-KVKK
569





WP_016622645
496
SATAFIERMTNEDTYLPSEKVLPKHSLLYEKFMVFNELTKISYTD--DRGIKA-NFSGKEKEKIFDYLEK--TRR-KVKK
569





WP_033624816
496
SATAFIERMTNEDTYLPSEKVLPKHSLLYEKFMVFNELTKISYTD--DRGIKA-NFSGKEKEKIFDYLEK--TRR-KVKK
569





WP_033625576
496
SATAFIERMTNEDTYLPSEKVLPKHSLLYEKFMVFNELTKISYTD--DRGIKA-NFSGKEKEKIFDYLEK--TRR-KVKK
569





WP_033789179
496
SATAFIERMTNEDTYLPSEKVLPKHSLLYEKFMVFNELTKISYTD--DRGIKA-NFSGKEKEKIFDYLEK--TRR-KVKK
569





WP_002310644
493
SAVRFIERMINTDMYMPHNKVLPKNSLLYQKFSIYNELTKVRYQD--ERGQMN-YFSSIEKKEIFHELFE--KNR-KVTK
566





WP_002312694
494
SAVRFIERMINTDMYMPHNKVLPKNSLLYQKFSIYNELTKVRYQD--ERGQMN-YFSSIEKKEIFHELFE--KNR-KVTK
567





WP_002314015
494
SAVRFIERMNNTDMYIPHNKVLPKNSLLYQKFSIYNELTKVRYQD--ERGQMN-YFSSIEKKEIFHELFE--KNR-KVTK
567





WP_002320716
494
SAVRFIERMINTDMYIPHNKVLPKNSLLYQKFSIYNELTKVRYQD--ERGQMN-YFSSIEKKEIFHELFE--KNR-KVTK
567





WP_002330729
493
SAVRFIERMINTDMYIPHNKVLPKNSLLYQKFSIYNELTKVRYQD--ERGQMN-YFSSIEKKEIFHELFE--KNR-KVTK
566





WP_002335161
494
SAVRFIERMINTDMYMPHNKVLPKNSLLYQKFSIYNELTKVRYQD--ERGQMN-YFSSIEKKEIFHELFE--KNR-KVTK
567





WP_002345439
494
SAVRFIERMINTDMYIPHNKVLPKNSLLYQKFSIYNELTKVRYQD--ERGQMN-YFSSIEKKEIFHELFE--KNR-KVTK
567





WP_034867970
487
SAMRFIQRMTKQDTYLPTEKVLPKNSLLYQKYMIFNELTKVSYKD--ERGVKQ-YFSGDEKQQIFKQLFQ--KERgKITV
561





WP_047937432
494
SAVRFIERMINTDMYMPHNKVLPKNSLLYQKFSIYNELTKVRYQD--ERGQMN-YFSSIEKKEIFHELFE--KNR-KVTK
567





WP_010720994
487
SAMRFIQRMTKQDTYLPTEKVLPKNSLFYQKYMIFNELTKVSYKD--ERGVKQ-YFSGDEKQQIFKQLFQ--KERgKITV
561





WP_010737004
487
SAMRFIQRMTKQDTYLPTEKVLPKNSLLYQKYMIFNELTKVSYKD--ERGVKQ-YFSGDEKQQIFKQLFQ--KERgKITV
561





WP_034700478
487
SAMRFIQRMTKQDTYLPTEKVLPKNSLLYQKYMIFNELTKVSYKD--ERGVKQ-YFSGDEKQQIFKQLFQ--KERgKITV
561





WP_007209003
491
SAVAFIERMTIKDIYL-NENVLPRHSLIYEKFTVFNELTKVLYAD--DRGVFQ-RFSAEEKEDIFEKLFK--SER-KVTK
563





WP_023519017
486
SAIEFIERMTNQDTYLPKEKVLPKQSLIYQRFMIFNELTKVSYTD--ERGKSH-YESSEQKRKIFNELFK--QHP-RVTE
559





WP_010770040
490
SATKFIERMTNEDTYLPTEKVLPKHSMIYEKYMVYNELTKVSYVD--ERGMNQ-RFSGEEKKQIVEELFK--QSR-KVTK
563





WP_048604708
486
SAELFIERMTNFDLYLPSEKVLPKHSMLYEKYTVYNELTKVTYKD--EQGKVQ-NFSSEEKERIFIDLFK--QHR-KVTK
559





WP_010750235
487
SATKFIQRMINYDTYLPTEKVLPKYSMLYQKYTIFNELTKVAYKD--DRGIKH-QESSEEKLRIFQELFK--KQR-RVTK
560





AII16583
526
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV
600





WP_029073316
507
TADEFIKRMRNFCTYFPDEPVLAKNSLTVSKYEVLNEINKLRIND--------hLIKRDIKDKMLHTLFM--DHK-SISA
575





WP_031589969
507
TADEFIKRMRNFCTYFPDEPVMAKNSLTVSKYEVLNEINKLRIND--------hLIKRDMKDKMLHTLFM--DHK-SISA
575





KDA45870
485
SAEDFIKRMTINDLYLPTEPVLPKHSLLYERYTIFNELAGVRYVT--ENGEAK-YEDAQTKRSIFE-LFKl--DR-KVSE
557





WP_039099354
510
SANEFIKRMTTTDTYLLAEDVLPKQSLIYQRFEVLNELNGLKIDD--QPITTE------LKQAIFTDLFM---QKtSVTV
578





AKP02966
484
SSNKFIRRMTVTDSYLVGEPVLPKNSLIYQRYEVLNELNNIRITEnlKTNPTGsRLTVETKQHIYNELFK--NYK-KITV
560





WP_010991369
493
SAVDFIEKMTNKDTYLPKENVLPKHSLCYQKYLVYNELTKVRYIN--DQGKTS-YFSGQEKEQIFNDLFK--QKR-KVKK
566





WP_033838504
493
SAVDFIEKMTNKDTYLPKENVLPKHSLCYQKYLVYNELTKVRYIN--DQGKTS-YFSGQEKEQIFNDLFK--QKR-KVKK
566





EHN60060
496
SAVDFIEKMTNKDTYLPKENVLPKHSLCYQKYLVYNELTKVRYIN--DQGKTS-YFSGQEKEQIFNDLFK--QKR-KVKK
569





EFR89594
262
SAVDFIEKMTNKDTYLPKENVLPKHSLCYQKYLVYNELTKVRYIN--DQGKTS-YFSGQEKEQIFNDLFK--QKR-KVKK
335





WP_038409211
493
SAIDFIEKMTNKDTYLPKENVLPKHSLCYQKYMVYNELTKIRYID--DQGKTH-HFSGQEKQQIENGLEK--QQR-KVKK
566





EFR95520
112
SAIDFIEKMTNKDTYLPKENVLPKHSLCYQKYMVYNELTKIRYID--DQGKTH-HFSGQEKQQIENGLEK--QQR-KVKK
185





WP_003723650
493
SAVDFIEKMTNKDTYLPKENVLPKHSLCYQKYMVYNELTKIRYID--DQGKTN-YFSGREKQQVFNDLEK--QKR-KVKK
566





WP_003727705
493
SAVDFIEKMTNKDTYLPKENVLPKHSLCYQKYMVYNELTKIRYID--DQGKTN-YFSGREKQQIFNDLFK--QKR-KVKK
566





WP_003730785
493
SAVDFIEKMTNKDTYLPKENVLPKHSLCYQKYMVYNELTKIRYID--DQGKTN-YFSGREKQQIFNDLFK--QKR-KVKK
566





WP_003733029
493
SAVDFIEKMTNKDTYLPKENVLPKHSLCYQKYMVYNELTKVRYID--DQGKTN-YFSGQEKQQIFNDLFK--QKR-KVKK
566





WP_003739838
493
SAVDFIEKMTNKDTYLPKENVLPKHSLYYQKYMVYNELTKVRYID--DQGKTN-YFSGQEKQQIENDYFK--QKR-KVSK
566





WP_014601172
493
SAVDFIEKMTNKDTYLPKENVLPKHSLCYQKYMVYNELTKVRYID--DQGKTN-YFSGQEKQQIFNDLFK--QKR-KVKK
566





WP_023548323
493
SAVDFIEKMTNKDTYLPKENVLPKHSLCYQKYMVYNELTKIRYID--DQGKTN-YFSGQEKQQIFNDLFK--QKR-KVKK
566





WP_031665337
493
SAVDFIEKMTNKDTYLPKENVLPKHSLCYQKYMVYNELTKVRYID--DQGKTN-YFSGQEKQQIFNDLFK--QKR-KVKK
566





WP_031669209
493
SAVDFIEKMTNKDTYLPKENVLPKHSLCYQKYMVYNELTKVRYID--DQGKTN-YFSGQEKQQIFNDLFK--QKR-KVKK
566





WP_033920898
493
SAVDFIEKMTNKDTYLPKENVLPKHSLCYQKYMVYNELTKIRYID--DQGKTN-YFSGQEKQQIFNDLFK--QKR-KVKK
566





AKI42028
496
SAVDFIEKMTNKDTYLPKENVLPKHSLCYQKYMVYNELTKVRYID--DQGKTN-YFSGQEKQQIFNDLFK--QKR-KVKK
569





AKI50529
496
SAVDFIEKMTNKDTYLPKENVLPKHSLCYQKYMVYNELTKIRYID--DQGKTN-YFSGQEKQQIFNDLFK--QKR-KVKK
569





EFR83390
1
---------------------------------------------------------------IFNDLFK--QKR-KVKK
14





WP_046323366
493
SAIDFIEKMTNKDTYLPKENVLPKHSMCYQKYMVYNELTKIRYTD--DQGKTH-YFSGQEKQQIFNDLFK--QKR-KVKK
566





AKE81011
503
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV
577





CUO82355
503
TAEGFIKRMRSYCTYFPDEEVLPKNSLIVSKYEVYNELNKIRVDD--------kLLEVDVKNDIYNELFM--KNK-TVTE
571





WP_033162887
504
TAEGFIERMKNTGTYFPDEPVMAKNSLTVSKFEVLNELNKIRING--------kLIAVETKKELLSDLFM--KNK-TITD
572





AGZ01981
520
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV
594





AKA60242
487
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV
561





AKS40380
487
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV
561





4UN5_B
491
SAQSFIERMTNFDKNLPNEKVLPKHSLLYEYFTVYNELTKVKYVT--EGMRKPaFLSGEQKKAIVDLLFK--TNR-KVTV
565





WP_010922251
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDREMIE
633





WP_039695303
564
EKLLNYLNKE--FPEYRIKDLIGLDKEnkSFNASLGTYHDLKKIL-DK   AFLDDKVNEEVIEDIIKTLTLFEDKDMIH
637





WP_045635197
562
KDIIHYLHN---VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDK   EFMDDAKNEAILENIVHTLTIFEDREMIK
632





5AXW_A
300
KQIAKEILVNe--EDIKGYRVTSTGKPe---FTNLKVYHDIKDITARK   ------ENAELLDQIAKILTIYQSSEDIQ
368





WP_009880683
246
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDREMIE
317





WP_010922251
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDREMIE
633





WP_011054416
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDREMIE
633





WP_011284745
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDREMIE
633





WP_011285506
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDREMIE
633





WP_011527619
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDREMIE
633





WP_012560673
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDREMIE
633





WP_014407541
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGAYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDRGMIE
633





WP_020905136
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDREMIE
633





WP_023080005
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNTSLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDKEMIE
633





WP_023610282
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNTSLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDKEMIE
633





WP_030125963
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDREMIE
633





WP_030126706
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDREMIE
633





WP_031488318
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDREMIE
633





WP_032460140
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDREMIE
633





WP_032461047
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDREMIE
633





WP_032462016
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDREMIE
633





WP_032462936
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDKEMIE
633





WP_032464890
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDREMIE
633





WP_033888930
387
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDREMIE
458





WP_038431314
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDREMIE
633





WP_038432938
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNTSLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDKEMIE
633





WP_038434062
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDREMIE
633





BAQ51233
473
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDREMIE
544





KGE60162

------------------------------------------------   -----------------------------






KGE60856

------------------------------------------------   -----------------------------






WP_002989955
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDREMIE
633





WP_003030002
561
DKLLNYLNKE--FEEFRIVNLTGLDKEnkAFNSSLGTYHDLRKIL-DK   SFLDDKANEKTIEDIIQTLTLFEDREMIR
634





WP_003065552
564
EKLLNYLNKE--FPEYRIKDLIGLDKEnkSFNASLGTYHDLKKIL-DK   AFLDDKVNEEVIEDIIKTLTLFEDKDMIH
637





WP_001040076
563
KDIISFLNK---VDGYEGIAIKGIEKQ---FNASLSTYHDLKKIL-GK   DFLDNTDNELILEDIVQTLTLFEDREMIK
632





WP_001040078
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





WP_001040080
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





WP_001040081
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





WP_001040083
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK   DFLDNPDNESILEDIIQTLTLFEDREMIK
635





WP_001040085
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





WP_001040087
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





WP_001040088
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





WP_001040089
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





WP_001040090
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





WP_001040091
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





WP_001040092
562
KQLLDFLAKE--FEEFRIVDVTGLDKEnkAFNASLGTYHDLKKIL-DK   DFLDNPDNESILEDIVQTITLFEDREMIK
635





WP_001040094
563
KDIISFLNK---VDGYEGIAIKGIEKQ---FNASLSTYHDLKKIL-GK   DFLDNTDNELILEDIVQTLTLFEDREMIR
632





WP_001040095
563
KDIISFLNK---VDGYEGIAIKGIEKQ---FNASLSTYHDLKKIL-GK   DFLDNTDNELILEDIVQTLTLFEDREMIR
632





WP_001040096
563
KDIISFLNK---VDGYEGIAIKGIEKQ---FNASLSTYHDLKKIL-GK   DFLDNTDNELILEDIVQTLTLFEDREMIR
632





WP_001040097
563
KDIISFLNK---VDGYEGIAIKGIEKQ---FNASLSTYHDLKKIL-GK   DFLDNTDNELILEDIVQTLTLFEDREMIR
632





WP_001040098
563
KDIISFLNK---VDGYEGIAIKGIEKQ---FNASLSTYHDLKKIL-GK   DFLDNTDNELILEDIVQTLTLFEDREMIR
632





WP_001040099
563
KDIISFLNK---VDGYEGIAIKGIEKQ---FNASLSTYHDLKKIL-GK   DFLDNTDNELILEDIVQTLTLFEDREMIR
632





WP_001040100
563
KDIISFLNK---VDGYEGIAIKGIEKQ---FNASLSTYHDLKKIL-GK   DFLDNTDNELILEDIVQTLTLFEDREMIR
632





WP_001040104
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





WP_001040105
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





WP_001040106
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLKKIL-DK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





WP_001040107
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLKKIL-DK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





WP_001040108
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLKKIL-DK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





WP_001040109
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLKKIL-DK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





WP_001040110
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLKKIL-DK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





WP_015058523
562
KQLLDFLAKE--FEEFRIVDVTGLDKEnkAFNASLGTYHDLKKIL-DK   DFLDNPDNESILEDIVQTITLFEDREMIK
635





WP_017643650
563
KDIISFLNK---VDGYEGIAIKGIEKQ---FNASLSTYHDLKKIL-GK   DFLDNTDNELILEDIVQTLTLFEDREMIR
632





WP_017647151
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLKKIL-DK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





WP_017648376
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLKKIL-DK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





WP_017649527
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





WP_017771611
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLKKIL-DK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





WP_017771984
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





CFQ25032
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





CFV16040
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





KLJ37842
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





KLJ72361
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





KLL20707
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





KLL42645
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLKKIL-DK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





WP_047207273
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





WP_047209694
563
KDIISFLNK---VDGYEGIAIKGIEKQ---FNASLSTYHDLKKIL-GK   DFLDNTDNELILEDIVQTLTLFEDREMIR
632





WP_050198062
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





WP_050201642
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





WP_050204027
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLKKIL-DK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





WP_050881965
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





WP_050886065
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





AHN30376
562
KQLLDFLAKE--FEEFRIVDVTGLDKEnkAFNASLGTYHDLKKIL-DK   DFLDNPDNESILEDIVQTITLFEDREMIK
635





EAO78426
562
KKLLDFLAKE--YEEFRIVDVIGLDKEnkAFNASLGTYHDLEKIL-DK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





CCW42055
562
KQLLDFLAKE--FEEFRIVDVTGLDKEnkAFNASLGTYHDLEKIL-GK   DFLDNPDNESILEDIVQTLTLFEDREMIK
635





WP_003041502
561
DKLLNYLNKE--FEEFRIVNLTGLDKEnkVFNSSLGTYHDLRKIL-NK   SFLDNKENAQIIEDIIQTLTLFEDREMIR
634





WP_037593752
562
DKLLNYLNKE--FEEFRIVNLTGLDKEnkAFNSSLGTYHDLRKIL-DK   SFLDDKANEKTIEDIIQTLTLFEDREMIR
635





WP_049516684
562
DKLLNYLNKE--FEEFRIVNLTGLDKEnkAFNASLGTYHDLRKIL-DK   SFLDDKVNEKIIEDIIQTLTLFEDREMIR
635





GAD46167
561
DKLLNYLNKE--FEEFRIVNLTGLDKEnkAFNSSLGTYHDLRKIL-DK   SFLDDKANEKTIEDIIQTLTLFEDREMIR
634





WP_018363470
562
EKLLNYLDKE--FPEYRIQDLVGLDKEnkSFNASLGTYHDLKKIL-DK   SFLDDKVNEEVIEDIIKTLTLFEDREMIQ
635





WP_003043819
572
KQLKEDYFKK--IECFDSVEIIGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDREMIE
643





WP_006269658
561
DKLLNYLNKE--FEEFRIVNLTGLDKEnkAFNSSLGTYHDLRKIL-DK   SFLDDKANEKTIEDIIQTLTLFEDREMIR
634





WP_048800889
561
DKLLNYLDKE--FDEFRIVDLTGLDKEnkAFNASLGTYHDLRKIL-DK   SFLDDKANEKTIEDIIQTLTLFEDREMIR
634





WP_012767106
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDKEMIE
633





WP_014612333
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDKEMIE
633





WP_015017095
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDKEMIE
633





WP_015057649
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDKEMIE
633





WP_048327215
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDKEMIE
633





WP_049519324
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDKEMIE
633





WP_012515931
562
KQLKENYFKK--IECWDSVEITGVEDS---FNASLGTYHDLLKIIQDK   DFLDNPDNQKIIEDIILTLTLFEDKKMIS
633





WP_021320964
562
KQLKENYFKK--IECWDSVEITGVEDS---FNASLGTYHDLLKIIQDK   DFLDNPDNQKIIEDIILTLTLFEDKKMIS
633





WP_037581760
562
KQLKENYFKK--IECWDSVEITGVEDS---FNASLGTYHDLLKIIQDK   DFLDNPDNQKIIEDIILTLTLFEDKKMIS
633





WP_004232481
561
AKLLSYLNNE--FEEFRINDLIGLDKDskSFNASLGTYHDLKKIL-DK   SFLDDKTNEQIIEDIVLTLTLFEDRDMIH
634





WP_009854540
562
EKLLNYLNKE--FPEYRIKDLIGLDKEnkSFNASLGTYHDLKKIL-DK   AFLDDKVNEEVIEDIIKTLTLFEDKDMIH
635





WP_012962174
562
DKFLNYLNKE--FPEYRIQDLIGLDKEnkSFNASLGTYHDLKKIL-DK   SFLDDKTNETIIEDIIQTLTLFEDRDMIR
635





WP_039695303
564
EKLLNYLNKE--FPEYRIKDLIGLDKEnkSFNASLGTYHDLKKIL-DK   AFLDDKVNEEVIEDIIKTLTLFEDKDMIH
637





WP_014334983
561
AKLLSYLNNE--FEEFRINDLIGLDKDskSFNASLGTYHDLKKIL-DK   SFLDDKTNGQIIEDIVLTLTLFEDRDMIH
634





WP_003099269
562
KQLKEEYFSK--MKCFHTVTILGVEDR---FNASLGTYHDLLKIFKDK   AFLDDEANQDILEEIVWTLTLFEDQAMIE
633





AHY15608
562
KQLKEEYFSK--MKCFHTVTILGVEDR---FNASLGTYHDLLKIFKDK   AFLDDEANQDILEEIVWTLTLFEDQAMIE
633





AHY17476
562
KQLKEEYFSK--MKCFHTVTILGVEDR---FNASLGTYHDLLKIFKDK   AFLDDEANQDILEEIVWTLTLFEDQAMIE
633





ESR09100

------------------------------------------------   -----------------------------






AGM98575
562
KQLKEEYFSK--MKCFHTVTILGVEDR---FNASLGTYHDLLKIFKDK   AFLDDEANQDILEEIVWTLTLFEDQAMIE
633





ALF27331
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_018372492
574
RKLKDFIEKElgYGYIDIDNIKGVEEQ---FNASYTTYQDLLKIIGDK   EFLDNEENKDLLEEIIYILTVFEDRKMIE
647





WP_045618028
563
KDIIQYLHN---VDSYDGIELKGIEKQ---FNASLSTYHDLLKIIKDK   EFMDDSKNEAILENIVHTLTIFEDREMIK
633





WP_045635197
562
KDIIHYLHN---VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDK   EFMDDAKNEAILENIVHTLTIFEDREMIK
632





WP_002263549
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_002263887
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_002264920
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_002269043
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_002269448
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_002271977
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_002272766
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_002273241
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_002275430
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_002276448
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_002277050
561
KKLRTFLDKN--FDEFRIVDIQGLDKEteTFNASYATYQDLLKVIKDK   VFMDNPENAEILENIVLTLTLFEDREMIK
635





WP_002277364
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_002279025
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_002279859
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_002280230
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_002281696
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_002282247
561
KKLRTFLDKN--FDEFRIVDIQGLDKEteTFNASYATYQDLLKVIKDK   VFMDNPENAEILENIVLTLTLFEDREMIK
635





WP_002282906
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_002283846
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_002287255
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_002288990
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_002289641
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_002290427
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_002295753
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_002296423
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_002304487
571
DKLLNYLNKE--FEEFRIVNLTGLDKEnkVFNSSLGTYHDLRKIL-NK   SFLDNKENEQIIEDIIQTLTLFEDREMIR
644





WP_002305844
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_002307203
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_002310390
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_002352408
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_012997688
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_014677909
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_019312892
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_019313659
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_019314093
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_019315370
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_019803776
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_019805234
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_024783594
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_024784288
561
KKLRTFLDKN--FDEFRIVDIQGLDKEteTFNASYATYQDLLKVIKDK   VFMDNPENAEILENIVLTLTLFEDREMIK
635





WP_024784666
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_024784894
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_024786433
561
KKLRTFLDKN--FDEFRIVDIQGLDKEteTFNASYATYQDLLKVIKDK   VFMDNPENAEILENIVLTLTLFEDREMIK
635





WP_049473442
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





WP_049474547
561
DKLMDFLEKE--FDEFRIVDLTGLDKEnkVFNASYGTYHDLCKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
634





EMC03581
554
DKLMDFLEKE--FDEFRIVDLTGLDKEnkAFNASYGTYHDLRKIL-DK   DFLDNSKNEKILEDIVLTLTLFEDREMIR
627





WP_000428612
565
KDIIQYLHT---VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDK   EFMDDPNNEEILENIVHTLTIFEDREMIK
635





WP_000428613
563
KDIIQFLHN---VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDK   EFMDDSKNEEILENIVHTLTIFEDREMIK
633





WP_049523028
562
KDIIHYLHN---VDGYDGIELKGIEKH---FNSSLSTYHDLLKIIKDK   EFMDDPKNEEIFENIVHTLTIFEDRVMIK
632





WP_003107102
531
KQLKENYFNK--IRCLDSITISGVEDK---FNASLGTYHDLLNIIKNQ   KILDDEQNQDSLEDIVLTLTLFEDEKMIA
602





WP_054279288
564
KQLKEDFFSK--IECFDTVDISGVEDK---FNASLGTYHDLLKIIKDK   AFLDNSENENIIEDIILTLTLFEDKEMIA
635





WP_049531101
563
KDLIHYLHN---VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDK   RFMDEPKNQEILENIVHTLTIFEDREMIK
633





WP_049538452
563
KDIIQYLHN---VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDK   EFMDDSKNEEILENIVHTLTIFEDREMIK
633





WP_049549711
563
KDIIHYLHT---VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDK   EFMDDSKNEAILENIVHTLTIFEDREMIK
633





WP_007896501
565
KDLKEKYFSQ--IEGLENVDVTGVEGA---FNASLGTYNDLLKIIKDK   AFLDDEANAEILEEIVLILTLFQDEKLIE
636





EFR44625
517
KDLKEKYFSQ--IEGLENVDVTGVEGA---FNASLGTYNDLLKIIKDK   AFLDDEANAEILEEIVLILTLFQDEKLIE
588





WP_002897477
562
KDIIHYLHN---VDGYDGIELKGIEKQ---FNANLSTYHDLLKITKDK   EFMDDPKNEEILENIVHTLTIFEDREMIK
632





WP_002906454
562
KDIIHYLHN---VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDK   EFMDNPKNGEILENIIHTLTIFEDREMIK
632





WP_009729476
563
KDIIQFLHN---VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDK   AFMDDAKNEAILENIVHTLTIFEDREMIK
633





CQR24647
562
KKILNFLDKN--FDEFRITDIQGLDNEtgNFNASYGTYHDLLKIIGDK   EFMDSSDNVDVLEDIVLSLTLFEDREMIK
636





WP_000066813
565
KDIIHYLHN---VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDK   AFMDDSKNEEILENIIHTLTIFEDREMIK
635





WP_009754323
563
KDIIHYLHN---VDGYDGIELKGIEKQ---FNASLSTYHDLLKIIKDK   EFMDNHKNQEILENIVHTLTIFEDREMIK
633





WP_044674937
562
KDIKAYL-EN--SNGYAGVELKGLEEQ---FNASLPTYHDLLKILRDK   AFIDAEENQEILEDIVLTLTLFEDREMIR
632





WP_044676715
561
EKLMDFLGKE--FDEFRIVDLLGLDKDnkSFNASLGTYHDLKKIV-SK   DLLDNPENEDILENVVLTLTLFEDREMIR
634





WP_044680361
561
EKLMDFLGKE--FDEFRIVDLLGLDKDnkSFNASLGTYHDLKKIV-SK   DLLDNPENEDILENVVLTLTLFEDREMIR
634





WP_044681799
562
KDIKAYL-EN--SNGYAGVELKGLEEQ---FNASLPTYHDLLKILRDK   AFIDAEENQEILEDIVLTLTLFEDREMIR
632





WP_049533112
561
DKLLNYLGKE--FDEFRIVDLTGLDKEnkVFNSSLGTYHDLRKIL-DK   SFLDNKENEQIIEDIIQTLTLFEDREMIR
634





WP_029090905
541
TSLKKWLAEH---EHMTVSVVQGTQKEt-EFATSLQAEHREVKIF-DR   ETVSNPANEEMFEKIIYWSTVFEDKKIMR
612





WP_006506696
568
KKLKNWLVNNqcCS--KDAEIKGFQKEn-QFSTSLTPWIDETNIFGKI   ----DQSNFDLIENIIYDLTVFEDKKIMK
637





AIT42264
562
KQLKEDYFKK--IECEDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDREMIE
633





WP_034440723
568
NQLVKYIENK---EQIIAPEIKGIEDS---FNSNYSTYIDLSKIPDMK   --LLEKDEDEILEEIIKILTIFEDRKMRK
637





AKQ21048
562
KQLKEDYFKK--IECEDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDREMIE
633





WP_004636532
563
KDIANYLEQ---YGYVDGTDIKGVEDK---FNASLSTYNDLAKIDGAK   AYLDDPEYADVWEDIIKILTIFEDKAMRK
633





WP_002364836
570
KDIIQFYRNE--YN-TEIVTLSGLEED--QFNASFSTYQDLLKCGLTR   AELDHPDNAEKLEDIIKILTIFEDRQRIR
641





WP_016631044
521
KDIIQFYRNE--YN-TEIVTLSGLEED--QFNASFSTYQDLLKCGLTR   AELDHPDNAEKLEDIIKILTIFEDRQRIR
592





EMS75795
306
KKLQQFLSAN--YN-IEDAEILGVDKA---FNSSYATYHDFLDLAKPN   ELLEQPEMNAMFEDIVKILTIFEDREMIR
381





WP_002373311
570
KDIIQFYRNE--YN-TEIVTLSGLEED--QFNASFSTYQDLLKCGLTR   AELDHPDNAEKLEDIIKILTIFEDRQRIR
641





WP_002378009
570
KDIIQFYRNE--YN-TEIVTLSGLEED--QFNASFSTYQDLLKCGLTR   AELDHPDNAEKLEDIIKILTIFEDRQRIR
641





WP_002407324
570
KDIIQFYRNE--YN-TEIVTLSGLEED--QFNASFSTYQDLLKCGLTR   AELDHPDNAEKLEDIIKILTIFEDRQRIR
641





WP_002413717
570
KDIIQFYRNE--YN-TEIVTLSGLEED--QFNASFSTYQDLLKCGLTR   AELDHPDNAEKLEDIIKILTIFEDRQRIR
641





WP_010775580
572
KDIIQFYRNE--YN-TEIVTLSGLEED--QFNASFSTYQDLLKCGLTR   AELDHPDNAEKLEDIIKILTIFEDRQRIR
643





WP_010818269
570
KDIIQFYRNE--YN-TEIVTLSGLEED--QFNASFSTYQDLLKCGLTR   AELDHPDNAEKLEDIIKILTIFEDRQRIR
641





WP_010824395
570
KDIIQFYRNE--YN-TEIVTLSGLEED--QFNASFSTYQDLLKCGLTR   AELDHPDNAEKLEDIIKILTIFEDRQRIR
641





WP_016622645
570
KDIIQFYRNE--YN-TEIVTLSGLEED--QFNASFSTYQDLLKCGLTR   AELDHPDNAEKLEDIIKILTIFEDRQRIR
641





WP_033624816
570
KDIIQFYRNE--YN-TEIVTLSGLEED--QFNASFSTYQDLLKCGLTR   AELDHPDNAEKLEDIIKILTIFEDRQRIR
641





WP_033625576
570
KDIIQFYRNE--YN-TEIVTLSGLEED--QFNASFSTYQDLLKCGLTR   AELDHPDNAEKLEDIIKILTIFEDRQRIR
641





WP_033789179
570
KDIIQFYRNE--YN-TEIVTLSGLEED--QFNASFSTYQDLLKCGLTR   AELDHPDNAEKLEDIIKILTIFEDRQRIR
641





WP_002310644
567
KDLQEFLYLK--YD-IKHAELSGIEKA---FNASYTTYHDFLTMSENK   QWLEDPELASMFEEIIKTLTVFEDREMIK
641





WP_002312694
568
KDLQEFLYLK--YD-IKHAELSGIEKA---FNASYTTYHDFLTMSENK   QWLEDPELASMFEEIIKTLTVFEDREMIK
642





WP_002314015
568
KDLQEFLYLK--YD-IKHAELSGIEKA---FNASYTTYHDFLTMSENK   QWLEDPELASMFEEIIKTLTVFEDREMIK
642





WP_002320716
568
KDLQEFLYLK--YD-IKHAELSGIEKA---FNASYTTYHDFLTMSENK   QWLEDPELASMFEEIIKTLTVFEDREMIK
642





WP_002330729
567
KDLQEFLYLK--YD-IKHAELSGIEKA---FNASYTTYHDFLTMSENK   QWLEDPELASMFEEIIKTLTVFEDREMIK
641





WP_002335161
568
KDLQEFLYLK--YD-IKHAELSGIEKA---FNASYTTYHDFLTMSENK   QWLEDPELASMFEEIIKTLTVFEDREMIK
642





WP_002345439
568
KDLQEFLYLK--YD-IKHAELSGIEKA---FNASYTTYHDFLTMSENK   QWLEDPELASMFEEIIKTLTVFEDREMIK
642





WP_034867970
562
KKLQNFLYTH--YH-IENAQIFGIEKA---FNASYSTYHDFMKLAKTN   EWLEQPEMEPIFEDIVKILTIFEDRQMIK
637





WP_047937432
568
KDLQEFLYLK--YD-IKHAELSGIEKA---FNASYTTYHDFLTMSENK   QWLEDPELASMFEEIIKTLTVFEDREMIK
642





WP_010720994
562
KKLQNFLYTH--YH-IENAQIFGIEKA---FNASYSTYHDFMKLAKTN   EWLEQPEMEPIFEDIVKILTIFEDRQMIK
637





WP_010737004
562
KKLQNFLYTH--YH-IENAQIFGIEKA---FNASYSTYHDFMKLAKTN   EWLEQPEMEPIFEDIVKILTIFEDRQMIK
637





WP_034700478
562
KKLQNFLYTH--YH-IENAQIFGIEKA---FNASYSTYHDFMKLAKTN   EWLEQPEMEPIFEDIVKILTIFEDRQMIK
637





WP_007209003
564
KKLENYLRIEl---SISSPSVKGIEEQ---FNANFGTYLDLKKFDELH   PYLDDEKYQDTLEEVIKVLTVFEDRSMIQ
634





WP_023519017
560
KQLRKFLELN--EQ-IDSTEIKGIETS---FNASYSTYHDLLKLS---   TLLDDPDMTTMFEEIIKILTIFEDREMIR
631





WP_010770040
564
KLLEKFLSNE--FG-LVDVAIKGIE-T--SFNAGYGTYHDFLKIGITR   EQLDKEENSETLEEIVKILTVFEDRKMIR
634





WP_048604708
560
KDLSNFLRNE--YN-LDDVIIDGIE-N--KFNASFNTYHDFLKLKIDP   KVLDDPANEPMFEEIVKILTIFEDRKMLR
630





WP_010750235
561
KKLQHFLSAN--YN-IEDAEILGVDKV---FNSSYATYHDFLELAKPY   ELLEQPEMEEMFEDIVKIITIFEDREMVR
636





AII16583
601
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDREMIE
672





WP_029073316
576
NAMKKWLVKNqyFSNTDDIKIEGFQKEn-ACSTSLTPWIDFTKIFGEI   ----NNSNYELIEKIIYDVTVFEDKKILR
647





WP_031589969
576
NAMKKWLVKNqyFSNTDDIKIEGFQKEn-ACSTSLTPWIDFTKIFGKI   ----NESNYDFIEKIIYDVTVFEDKKILR
647





KDA45870
558
KMVIKHLKVV--MPAIRIQALKGLDNGk--FNASYGTYKDLVDMGVAP   ELLNDEVNSEKWEDIIKTLTIFEGRKLIK
630





WP_039099354
579
KNIQDYLVSEk--RYASRPAITGLSDEnk-FNSRLSTYHDLKTIVGDA   --VDDVDKQADLEKCIEWSTIFEDGKIYS
650





AKP02966
561
KKLTKWLIAQg---YYKNPILIGLSQKd-EFNSTLTTYLDMKKIFGSS   -FMENNKNYNQIEELIEWLTIFEDKQILN
632





WP_010991369
567
KDLELFLRNM--SH-VESPTIEGLE-D--SFNSSYSTYHDLLKVGIKQ   EILDNPVNTEMLENIVKILTVFEDKRMIK
637





WP_033838504
567
KDLELFLRNM--SH-VESPTIEGLE-D--SFNSSYSTYHDLLKVGIKQ   EILDNPVNTEMLENIVKILTVFEDKRMIK
637





EHN60060
570
KDLELFLRNM--SH-VESPTIEGLE-D--SFNSSYSTYHDLLKVGIKQ   EILDNPVNTEMLENIVKILTVFEDKRMIK
640





EFR89594
336
KDLELFLRNM--SH-VESPTIEGLE-D--SFNSSYSTYHDLLKVGIKQ   EILDNPVNTEMLENIVKILTVFEDKRMIK
406





WP_038409211
567
KDLERFLYTI--NH-IESPTIEGVE-D--AFNSSFATYHDLQKGGVTQ   EILDNPLNADMLEEIVKILTVFEDKRMIK
637





EFR95520
186
KDLERFLYTI--NH-IESPTIEGVE-D--AFNSSFATYHDLQKGGVTQ   EILDNPLNADMLEEIVKILTVFEDKRMIK
256





WP_003723650
567
KDLELFLRNI--NH-IESPTIEGLE-D--SFNASYATYHDLLKVGMKQ   EILDNPLNTEMLEDIVKILTVFEDKPMIK
637





WP_003727705
567
KDLELFLRNI--NH-IESPTIEGLE-D--SFNASYATYHDLLKVGLKQ   EILDNPLNTEILEDIVKILTVFEDKRMIK
637





WP_003730785
567
KDLELFLRNI--NH-IESPTIEGLE-D--SFNASYATYHDLLKVGLKQ   EILDNPLNTEILEDIVKILTVFEDKRMIK
637





WP_003733029
567
KDLELFLRNI--NQ-IESPTIEGLE-D--SFNASYATYHDLLKVGMKQ   EILDNPLNTEMLEDIVKILTVFEDKRMIK
637





WP_003739838
567
KDLEQFLRNM--SH-IESPTIEGLE-D--SFNSSYATYHDLLKVGIKQ   EVLENPLNTEMLEDIVKILTVFEDKRMIK
637





WP_014601172
567
KDLELFLRNI--NH-IESPTIEGLE-D--SFNASYATYHDLLKVGMKQ   EILDNPLNTEMLEDIVKILTVFEDKPMIK
637





WP_023548323
567
KDLELFLRNI--NH-VESPTIEGLE-D--SFNASYATYHDLMKVGIKQ   EILDNPLNTEMLEDIVKILTVFEDKRMIK
637





WP_031665337
567
KDLELFLRNI--NQ-IESPTIEGLE-D--SFNASYATYHDLLKVGMKQ   EILDNPLNTEMLEDIVKILTVFEDKRMIK
637





WP_031669209
567
KDLELFLRNI--NQ-IESPTIEGLE-D--SFNASYATYHDLLKVGMKQ   EILDNPLNTEMLEDIVKILTVFEDKRMIK
637





WP_033920898
567
KDLELFLRNI--NH-VESPTIEGLE-D--SFNASYATYHDLMKVGIKQ   EILDNPLNTEMLEDIVKILTVFEDKRMIK
637





AKI42028
570
KDLELFLRNI--NH-IESPTIEGLE-D--SFNASYATYHDLLKVGMKQ   EILDNPLNTEMLEDIVKILTVFEDKPMIK
640





AKI50529
570
KDLELFLRNI--NH-VESPTIEGLE-D--SFNASYATYHDLMKVGIKQ   EILDNPLNTEMLEDIVKILTVFEDKRMIK
640





EFR83390
15
KDLELFLRNI--NQ-IESPTIEGLE-D--SFNASYATYHDLLKVGMKQ   EILDNPLNTEMLEDIVKILTVFEDKRMIK
85





WP_046323366
567
KDLELFLYNM--NH-VESPTVEGVE-D--AFNSSFTTYHDLQKVGVPQ   EILDDPLNTEMLEEIIKILTVFEDKRMIN
637





AKE81011
578
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDREMIE
649





CUO82355
572
KKLKNWLVNNqcCR--KDAEIKGFQKEn-QFSTSLTPWIDFTNIFGKI   ----DQSNFDLIEKIIYDLTVFEDKKIMK
641





WP_033162887
573
KKLKDWLVTHqyYDINEELKIEGYQKDl-QFSTSLAPWIDFTKIFGEI   ----NASNYQLIEKIIYDISIFEDKKILK
644





AGZ01981
595
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDREMIE
666





AKA60242
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDREMIE
633





AKS40380
562
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDREMIE
633





4UN5_B
566
KQLKEDYFKK--IECFDSVEISGVEDR---FNASLGTYHDLLKIIKDK   DFLDNEENEDILEDIVLTLTLFEDREMIE
637





WP_010922251
634


embedded image


702


WP_039695303
638
ERLQKYSDIFTANQLKKLER-RHYTGWGRLSYKLINGIRNK   ENNKTILDYLI    DDG---SANRNFMQLINDDTL
706





WP_045635197
633
QRLAQYDSLFDEKVIKALTR-RHYTGWGKLSAKLINGICDK   QTGNTILDYLI    DDG---KINRNFMQLINDDGL
701





5AXW_A
369
EELTNLNSELTQEEIEQISNlKGYTGTHNLSLKAINLILDE   ---------LW    -------TNDNQIAIFNRLKL
426





WP_009880683
318
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLIHDDSL
386





WP_010922251
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLIHDDSL
702





WP_011054416
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLIHDDSL
702





WP_011284745
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLIHDDSL
702





WP_011285506
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLIHDDSL
702





WP_011527619
634
ERLKTYAHLFDDKVMKQLKR-RRYTVWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLIHDDSL
702





WP_012560673
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLIHDDSL
702





WP_014407541
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLIHDDSL
702





WP_020905136
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLIHDDSL
702





WP_023080005
634
ERLKKYANLFDDKVMKQLKR-RHYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLINDDSL
702





WP_023610282
634
ERLKKYANLFDDKVMKQLKR-RHYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLINDDSL
702





WP_030125963
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLIHDDSL
702





WP_030126706
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLIHDDSL
702





WP_031488318
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLIHDDSL
702





WP_032460140
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLIHDDSL
702





WP_032461047
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLIHDDSL
702





WP_032462016
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLIHDDSL
702





WP_032462936
634
ERLKKYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLIHDDSL
702





WP_032464890
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLIHDDSL
702





WP_033888930
459
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLIHDDSL
527





WP_038431314
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLIHDDSL
702





WP_038432938
634
ERLKKYANLFDDKVMKQLKR-RHYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLINDDSL
702





WP_038434062
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLIHDDSL
702





BAQ51233
545
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLIHDDSL
613





KGE60162

-----------------------------------------   -----------    ---------------------






KGE60856

-----------------------------------------   -----------    ---------------------






WP_002989955
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLIHDDSL
702





WP_003030002
635
QRLQKYSDIFTKAQLKKLER-RHYTGWGRLSYKLINGIRNK   ENKKTILDYLI    DDG---YANRNFMQLINDDAL
703





WP_003065552
638
ERLQKYSDIFTADQLKKLER-RHYTGWGRLSYKLINGIRNK   ENNKTILDYLI    DDG---SANRNFMQLINDDTL
706





WP_001040076
633
KRLDIYKDFFTESQLKKLYR-RHYTGWGRLSAKLINGIRNK   ENQKTILDYLI    DDG---SANRNFMQLIKDAGL
701





WP_001040078
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    DDG---RSNRNFMQLINDDGL
704





WP_001040080
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    DDG---RSNRNFMQLINDDGL
704





WP_001040081
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    DDG---RSNRNFMQLINDDGL
704





WP_001040083
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    DDG---RSNRNFMQLINDDGL
704





WP_001040085
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    DDG---RSNRNFMQLINDDGL
704





WP_001040087
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    DDG---RSNRNFMQLINDDGL
704





WP_001040088
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    DDG---RSNRNFMQLINDDGL
704





WP_001040089
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    DDG---RSNRNFMQLINDDGL
704





WP_001040090
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    DDG---RSNRNFMQLINDDGL
704





WP_001040091
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    DDG---RSNRNFMQLINDDGL
704





WP_001040092
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDR   ESQKTILDYLI    SDG---RANRNFMQLINDDGL
704





WP_001040094
633
KRLDIYKDFFTESQLKKLYR-RHYTGWGRLSAKLINGIRNK   ENQKTILDYLI    DDG---SANRNFMQLIKDAGL
701





WP_001040095
633
KRLDIYKDFFTESQLKKLYR-RHYTGWERLSAKLINGIRNK   ENQKTILDYLI    DDG---SANRNFMQLIKDAGL
701





WP_001040096
633
KRLDIYKDFFTESQLKKLYR-RHYTGWGRLSAKLINGIRNK   ENQKTILDYLI    DDG---SANRNFMQLIKDAGL
701





WP_001040097
633
KRLDIYKDFFTESQLKKLYR-RHYTGWGRLSAKLINGIRNK   ENQKTILDYLI    DDG---SANRNFMQLIKDAGL
701





WP_001040098
633
KRLDIYKDFFTESQLKKLYR-RHYTGWGRLSAKLINGIRNK   ENQKTILDYLI    DDG---SANRNFMQLIKDAGL
701





WP_001040099
633
KRLDIYKDFFTESQLKKLYR-RHYTGWGRLSAKLINGIRNK   ENQKTILDYLI    DDG---SANRNFMQLIKDAGL
701





WP_001040100
633
KRLDIYKDFFTESQLKKLYR-RHYTGWGRLSAKLINGIRNK   ENQKTILDYLI    DDG---SANRNFMQLIKDAGL
701





WP_001040104
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    DDG---RSNRNFMQLINDDGL
704





WP_001040105
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    DDG---RSNRNFMQLINDDGL
704





WP_001040106
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    SDG---RANRNFMQLIHDDGL
704





WP_001040107
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    SDG---RANRNFMQLIHDDGL
704





WP_001040108
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    SDG---RANRNFMQLIHDDGL
704





WP_001040109
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    SDG---RANRNFMQLIHDDGL
704





WP_001040110
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    SDG---RANRNFMQLIHDDGL
704





WP_015058523
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDR   ESQKTILDYLI    SDG---RANRNFMQLINDDGL
704





WP_017643650
633
KRLDIYKDFFTESQLKKLYR-RHYTGWGRLSAKLINGIRNK   ENQKTILDYLI    DDG---SANRNFMQLIKDAGL
701





WP_017647151
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    DDG---KSNRNFMQLIHDDGL
704





WP_017648376
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    DDG---KSNRNFMQLIHDDGL
704





WP_017649527
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    DDG---RSNRNFMQLINDDGL
704





WP_017771611
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    SDG---RANRNFMQLIHDDGL
704





WP_017771984
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    DDG---RSNRNFMQLINDDGL
704





CFQ25032
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    DDG---RSNRNFMQLINDDGL
704





CFV16040
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    DDG---RSNRNFMQLINDDGL
704





KLJ37842
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    DDG---RSNRNFMQLINDDGL
704





KLJ72361
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    DDG---RSNRNFMQLINDDGL
704





KLL20707
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    DDG---RSNRNFMQLINDDGL
718





KLL42645
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    SDG---RANRNFMQLIHDDGL
704





WP_047207273
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    DDG---RSNRNFMQLINDDGL
704





WP_047209694
633
KRLDIYKDFFTESQLKKLYR-RHYTGWGRLSAKLINGIRNK   ENQKTILDYLI    DDG---SANRNFMQLIKDAGL
701





WP_050198062
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    DDG---RSNRNFMQLINDDGL
704





WP_050201642
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    DDG---RSNRNFMQLINDDGL
704





WP_050204027
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    SDG---RANRNFMQLIHDDGL
704





WP_050881965
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    DDG---RSNRNFMQLINDDGL
704





WP_050886065
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    DDG---RSNRNFMQLINDDGL
704





AHN30376
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDR   ESQKIILDYLI    SDG---RANRNFMQLINDDGL
704





EAO78426
636
KRLENYKDLFTESQLKKLYR-RHYTGWGRLSAKLINGIRDK   ESQKTILDYLI    DDG---RSNRNFMQLINDDGL
704





CCW42055
636
KRLDIYKDFFTESQLKKLYR-RHYTGWGRLSAKLINGIRNK   ENQKTILDYLI    DDG---SANRNFMQLIKDAGL
704





WP_003041502
635
QRLQKYSDIFTKAQLKKLER-RHYTGWGRLSYKLINGIRNK   ENKKTILDYLI    DDG---YANRNFMQLINDDAL
703





WP_037593752
636
QRLQKYSDIFTKAQLKKLER-RHYTGWGRLSYKLINGIRNK   ENKKTILDYLI    DDG---YANRNFMQLINDDAL
704





WP_049516684
636
QRLQKYSDIFTTQQLKKLER-RHYTGWGRLSYKLINGIRNK   ENKKTILDYLI    DDG---YANRNFMQLINDDAL
704





GAD46167
635
QRLQKYSDIFTKAQLKKLER-RHYTGWGRLSYKLINGIRNK   ENKKTILDYLI    DDG---YANRNFMQLINDDAL
703





WP_018363470
636
QRLQKYSDIFTKQQLKKLER-RHYTGWGRLSYKLINGIRNK   ENNKTILDYLI    DDG---SANRNFMQLINDDAL
704





WP_003043819
644
ERLKTYAHLFDDKVMKQLKR-RHYTGWGRLSRKMINGIRDK   QSGKTILDFLK    -DGf---SNRNFMQLIHDDSL
712





WP_006269658
635
QRLQKYSDIFTKAQLKKLER-RHYTGWGRLSYKLINGIRNK   ENKKTILDYLI    DDG---YANRNFMQLINDDAL
703





WP_048800889
635
QRLQKYSDIFTKAQLKKLER-RHYTGWGRLSYKLINGIRNK   ENNKTILEYLV    DDG---YANRNFMQLINDDTL
703





WP_012767106
634
ERLKKYANLFDDKVMKQLKR-RHYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLINDDSL
702





WP_014612333
634
ERLKKYANLFDDKVMKQLKR-RHYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLINDDSL
702





WP_015017095
634
ERLKTYAHLFDDKVMKQLKR-RHYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFIQLIHDDSL
702





WP_015057649
634
ERLKKYANLFDDKVMKQLKR-RHYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLINDDSL
702





WP_048327215
634
ERLKTYAHLFDDKVMKQLKR-RHYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFIQLIHDDSL
702





WP_049519324
634
ERLKTYAHLFDDKVMKQLKR-RHYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFIQLIHDDSL
702





WP_012515931
634
KRLDQYAHLFDKVVLNKLER-HHYTGWGRLSGKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLIHDSEL
702





WP_021320964
634
KRLDQYAHLFDKVVLNKLER-HHYTGWGRLSGKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLIHDSEL
702





WP_037581760
634
KRLDQYAHLFDKVVLNKLER-HHYTGWGRLSGKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLIHDSEL
702





WP_004232481
635
ERLQKYSDIFTSQQLKKLER-RHYTGWGRLSYKLINGIRNK   ENNKTILDFLI    DDG---DANRNFMQLINDDSL
703





WP_009854540
636
ERLQKYSDIFTANQLKKLER-RHYTGWGRLSYKLINGIRNK   ENNKTILDYLI    DDG---SANRNFMQLINDDTL
704





WP_012962174
636
QRLQKYSDIFTPQQLKKLER-RHYTGWGRLSYKLINGIRNK   ENGKSILDYLI    DDG---YANRNFMQLISDDTL
704





WP_039695303
638
ERLQKYSDIFTANQLKKLER-RHYTGWGRLSYKLINGIRNK   ENNKTILDYLI    DDG---SANRNFMQLINDDTL
706





WP_014334983
635
ERLQKYSDFFTSQQLKKLER-RHYTGWGRLSYKLINGIRNK   ENNKTILDFLI    DDG---HANRNFMQLINDESL
703





WP_003099269
634
RRLVKYADVFEKSVLKKLKK-RHYTGWGRLSQKLINGIKDK   QTGKTILGFLK    -DGv---ANRNFMQLINDSSL
702





AHY15608
634
RRLVKYADVFEKSVLKKLKK-RHYTGWGRLSQKLINGIKDK   QTGKTILGFLK    -DGv---ANRNFMQLINDSSL
702





AHY17476
634
RRLVKYADVFEKSVLKKLKK-RHYTGWGRLSQKLINGIKDK   QTGKTILGFLK    -DGv---ANRNFMQLINDSSL
702





ESR09100

-----------------------------------------   -----------    ---------------------






AGM98575
634
RRLVKYADVFEKSVLKKLKK-RHYTGWGRLSQKLINGIKDK   QTGKTILGFLK    -DGv---ANRNFMQLINDSSL
702





ALF27331
635
KRLENYSDLLTKEQVKNLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_018372492
648
KRLSELNIPFENKIIKKLAR-KKYTGWGNLSRKLIDGIRNR   ETNRTILGHLI    DDGf---SNRNLMQLINDDGL
716





WP_045618028
634
QRLAHYASIFDEKVIKALTR-RHYTGWGKLSAKLINGIYDK   QSKKTILDYLI    DDG---EINRNFMQLINDDGL
702





WP_045635197
633
QRLAQYDSLFDEKVIKALTR-RHYTGWGKLSAKLINGICDK   QTGNTILDYLI    DDG---KINRNFMQLINDDGL
701





WP_002263549
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_002263887
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_002264920
635
KRLKNYSDLLTKEQLKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_002269043
635
KRLKNYSDLLTKEQLKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_002269448
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_002271977
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_002272766
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_002273241
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_002275430
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTLLDYLI    DDG---NSNRNFMQLINDDAL
703





WP_002276448
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_002277050
636
QRLAKYADVFDKKVIDQLAR-RHYTGWGRLSAKLLNGIRDK   QSCKTIMDYLI    DDA---QSNRNLMQLITDDNL
704





WP_002277364
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_002279025
635
KRLKNYSDLLTKEQLKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_002279859
635
KRLKNYSDLLTKEQLKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_002280230
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_002281696
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_002282247
636
QRLAKYADVFDKKVIDQLAR-RHYTGWGRLSAKLLNGIRDK   QSCKTIMDYLI    DDA---QSNRNLMQLITDDNL
704





WP_002282906
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_002283846
635
KRLKNYSDLLTKEQLKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_002287255
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_002288990
635
KRLKNYSDLLTKEQLKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_002289641
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_002290427
635
KRLKNYSDLLTKEQLKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_002295753
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_002296423
635
KRLKNYSDLLTKEQLKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_002304487
645
QRLQKYSDIFTKAQLKKLER-RHYTGWGRLSYKLINGIRDK   QSNKTILGYLI    DDG---YSNRNFMQLINDDAL
713





WP_002305844
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_002307203
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTLLDYLI    DDG---NSNRNFMQLINDDAL
703





WP_002310390
635
KRLKNYSDLLTKEQLKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_002352408
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTLLDYLI    DDG---NSNRNFMQLINDDAL
703





WP_012997688
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_014677909
635
KRLKNYSDLLTKEQLKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_019312892
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_019313659
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_019314093
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTLLDYLI    DDG---NSNRNFMQLINDDAL
703





WP_019315370
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTLLDYLI    DDG---NSNRNFMQLINDDAL
703





WP_019803776
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_019805234
635
KRLKNYSDLLTKEQLKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_024783594
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_024784288
636
QRLAKYADVFDKKVIDQLAR-RHYTGWGRLSAKLLNGIRDK   QSCKTIMDYLI    DDA---QSNRNLMQLITDDNL
704





WP_024784666
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_024784894
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_024786433
636
QRLAKYADVFDKKVIDQLAR-RHYTGWGRLSAKLLNGIRDK   QSCKTIMDYLI    DDA---QSNRNLMQLITDDNL
704





WP_049473442
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





WP_049474547
635
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
703





EMC03581
628
KRLENYSDLLTKEQVKKLER-RHYTGWGRLSAELIHGIRNK   ESRKTILDYLI    DDG---NSNRNFMQLINDDAL
696





WP_000428612
636
QRLAQYDSLFDEKVIKALTR-RHYTGWGKLSSKLINGIRDK   QTGKTILDYLM    DDG---YNNRNFMQLINDDEL
704





WP_000428613
634
QRLAQYDSLFDEKVIKALIR-RHYTGWGKLSAKLIDGICDK   QTGNTILDYLI    DDG---KNNRNFMQLINDDGL
702





WP_049523028
633
QRLNQYDSIFDEKVIKALTR-RHYTGWGKLSAKLINGIRDK   KTSKTILDYLI    DDG---YSNRNFMQLINDDGL
701





WP_003107102
603
KRLSKYESIFDPSILKKLKK-RHYTGWGRLSQKLINGIRDK   QTGKTILDFLI    -DGq---ANRNFMQLINDPSL
671





WP_054279288
636
NRLAVYEDLFDQNVLKQLKR-RHYTGWGRLSKQLINGMRDK   HTGKTILDFLK    -DGf---INRNFMQLINDDNL
704





WP_049531101
634
QRLAQYASIFDEKVIKTLTR-RHYTGWGKLSAKLINCIRDR   KTGKTILDYLI    DDG---YNNRNFMQLINDDGL
702





WP_049538452
634
QRLAQYDSIFDEKVIKALTR-RHYTGWGKLSAKLINGIRDK   QTGKTILDYLI    DDG---YSNRNFMQLINDDGL
702





WP_049549711
634
QRLAQYDSLFDKKVIKALTR-RHYTGWGKLSAKLINGICDK   QTGNTILDYLI    DDG---EINRNFMQLINDDGL
702





WP_007896501
637
KRLAKYANLFEKSVLKKLRK-RHYRGWGRLSRQLIDGMKDK   ASGKTILDFLK    -DDf---ANRNFIQLINDSSL
705





EFR44625
589
KRLAKYANLFEKSVLKKLRK-RHYRGWGRLSRQLIDGMKDK   ASGKTILDFLK    -DDf---ANRNFIQLINDSSL
657





WP_002897477
633
QRLAQYDTLFDEKVIKALTR-RHYTGWGKLSAKLINGIRDK   QSGKTILDYLI    DDD---KINRNFMQLINDDGL
701





WP_002906454
633
QRLAQYDTLFDEKVIKALTR-RHYTGWGKLSAKLINGIRDK   QTGKTILEYLI    DDG---DCNRNFMQLINDDGL
701





WP_009729476
634
QRLAQYDSLFDEKVIKALTR-RHYTGWGKLSAKLINGISDK   QTGNTILDYLI    DDG---EINRNFMQLINDDGL
702





CQR24647
637
QRLLKYEDIFSKKVIANLTR-RHYTGWGRLSAKLINGIKDK   HSRKTILDYLI    DDG---HSNRNFMQLINDDNL
705





WP_000066813
636
QRLAQYDSLFDEKVIKALTR-RHYTGWGKLSAKLINGIRDK   KSGKTILDYLI    DDG---EINRNFMQLIHDDGL
704





WP_009754323
634
QRLAQYDSIFDEKVIKALTR-RHYTGWGKLSAKLINGICDK   KTGKTILDYLI    DDG---YNNRNFMQLINDDGL
702





WP_044674937
633
KRLEKYKDILTEEQRKKLER-RHYTGWGRLSAKLINGILDK   VTRKTILGYLI    DDG---TSNRNFMQLINDDTL
701





WP_044676715
635
KRLEKYKDVLTEEQRKKLER-RHYTGWGRLSAKLINGIRDK   VTRKTILDYLI    DDG---TSNRNFMQLINDDTL
703





WP_044680361
635
KRLEKYKDVLTEEQRKKLER-RHYTGWGRLSAKLINGIRDK   VTRKTILDYLI    DDG---TSNRNFMQLINDDTL
703





WP_044681799
633
KRLEKYKDILTEEQRKKLER-RHYTGWGRLSAKLINGILDK   VTRKTILGYLI    DDG---TSNRNFMQLINDDTL
701





WP_049533112
635
QRLQKYSDIFTKAQLKKLER-CHYTGWGRLSYKLINGIRNK   ENKKTILDYLI    DDG---YANRNFMQLINDDAL
703





WP_029090905
613
RKLSEYPQLTEQQQVQLAQV--RFRGWGRLSQRLINRIKTP   EDHKLSINEIL    ------QTNENFMQIIRNKDY
682





WP_006506696
638
RRLKKKYALPDDKVKQILKL--KYKDWSRLSKKLLDGIVAD   SV--TVLDVLE    -------SRLNLMEIINDKDL
705





AIT42264
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLIHDDSL
702





WP_034440723
638
RQLMKFKDKLSEKAINQLSK-KHYTGWGQLSEKLINGIRDE   QSNKTILDYLI    DNGcpkNMNRNFMQLINDDTL
710





AKQ21048
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLIHDDSL
702





WP_004636532
634
KQLQTYSDTLSPEILKKLER-KHYTGWGRFSKKLINGLRDE   GSNKTILDYLK    DEGssgPTNRNFMQLIRDNTL
706





WP_002364836
642
TQLSTFKGQFSAEVLKKLER-KHYTGWGRLSKKLINGIYDK   ESGKTILGYLI    DDGvskHYNRNFMQLINDSQL
714





WP_016631044
593
TQLSTFKGQFSAEVLKKLER-KHYTGWGRLSKKLINGIYDK   ESGKTILDYLV    DDGvskHYNRNFMQLINDSQL
665





EMS75795
382
TQLKKYQSVLGDGFEKKLVK-KHYTGWGRLSERLINGIRDK   KTNKTILDYLI    DDDfpyNRNRNFMQLINDDSL
454





WP_002373311
642
TQLSTFKGQFSAEVLKKLER-KHYTGWGRLSKKLINGIYDK   ESGKTILDYLV    DDGvskHYNRNFMQLINDSQL
714





WP_002378009
642
TQLSTFKGQFSAEVLKKLER-KHYTGWGRLSKKLINGIYDK   ESGKTILDYLI    DDGvskHYNRNFMQLINDSQL
714





WP_002407324
642
TQLSTFKGQFSAEVLKKLER-KHYTGWGRLSKKLINGIYDK   ESGKTILDYLV    DDGvskHYNRNFMQLINDSQL
714





WP_002413717
642
TQLSTFKGQFSAEVLKKLER-KHYTGWGRLSKKLINGIYDK   ESGKTILDYLV    DDGvskHYNRNFMQLINDSQL
714





WP_010775580
644
TQLSTFKGQFSEEVLKKLER-KHYTGWGRLSKKLINGIYDK   ESGKTILDYLI    DDGvskHYNRNFMQLINDSQL
716





WP_010818269
642
TQLSTFKGQFSAEVLKKLER-KHYTGWGRLSKKLINGIYDK   ESGKTILGYLI    DDGvskHYNRNFMQLINDSQL
714





WP_010824395
642
TQLSTFKGQFSAEVLKKLER-KHYTGWGRLSKKLINGIYDK   ESGKTILDYLI    DDGvskHYNRNFMQLINDSQL
714





WP_016622645
642
TQLSTFKGQFSAEVLKKLER-KHYTGWGRLSKKLINGIYDK   ESGKTILDYLV    DDGvskHYNRNFMQLINDSQL
714





WP_033624816
642
TQLSTFKGQFSAEVLKKLER-KHYTGWGRLSKKLINGIYDK   ESGKTILDYLI    DDGvskHYNRNFMQLINDSQL
714





WP_033625576
642
TQLSTFKGQFSAEVLKKLER-KHYTGWGRLSKKLINGIYDK   ESGKTILDYLI    DDGvskHYNRNFMQLINDSQL
714





WP_033789179
642
TQLSTFKGQFSEEVLKKLER-KHYTGWGRLSKKLINGIYDK   ESGKTILDYLI    DDGvskHYNRNFMQLINDSQL
714





WP_002310644
642
TRLSHHEATLGKHIIKKLTK-KHYTGWGRLSKELIQGIRDK   QSNKTILDYLI    DDDfphHRNRNFMQLINDDSL
714





WP_002312694
643
TRLSHHEATLGKHIIKKLTK-KHYTGWGRLSKELIQGIRDK   QSNKTILDYLI    DDDfphHRNRNFMQLINDDSL
715





WP_002314015
643
TRLSHHEATLGKHIIKKLTK-KHYTGWGRLSKELIQGIRDK   QSNKTILDYLI    DDDfphHRNRNFMQLINDDSL
715





WP_002320716
643
TRLSHHEATLGKHIIKKLTK-KHYTGWGRLSKELIQGIRDK   QSNKTILDYLI    DDDfphHRNRNFMQLINDDSL
715





WP_002330729
642
TRLSHHEATLGKHIIKKLTK-KHYTGWGRLSKELIQGIRDK   QSNKTILDYLI    DDDfphHRNRNFMQLINDDSL
714





WP_002335161
643
TRLSHHEATLGKHIIKKLTK-KHYTGWGRLSKELIQGIRDK   QSNKTILDYLI    DDDfphHRNRNFMQLINDDSL
715





WP_002345439
643
TRLSHHEATLGKHIIKKLTK-KHYTGWGRLSKELIQGIRDK   QSNKTILDYLI    DDDfphHRNRNCMQLINDDSL
715





WP_034867970
638
HQLSKYQEVFGEKLLKEFAR-KHYTGWGRFSAKLIHGIRDR   KTNKTILDYLI    DDDvpaNRNRNLMQLINDEHL
710





WP_047937432
643
TRLSHHEATLGKHIIKKLTK-KHYTGWGRLSKELIQGIRDK   QSNKTILDYLI    DDDfphHRNRNFMQLINDDSL
715





WP_010720994
638
HQLSKYQEVFGEKLLKEFAR-KHYTGWGRFSAKLIHGIRDR   KTNKTILDYLI    DDDvpaNRNRNLMQLINDEHL
710





WP_010737004
638
HQLSKYQEVFGEKLLKEFAR-KHYTGWGRFSAKLIHGIRDR   KTNKTILDYLI    DDDvpaNRNRNLMQLINDEHL
710





WP_034700478
638
HQLSKYQEVFGEKLLKEFAR-KHYTGWGRFSAKLIHGIRDR   KTNKTILDYLI    DDDvpaNRNRNLMQLINDEHL
710





WP_007209003
635
NQLEQLPLNLSTKTIKALSR-RKYTGWGRLSARLIDGIHDK   NSGKTILDYLI    DESdsyIVNRNFMQLINDDHL
707





WP_023519017
632
EQLKPYETVLGLPAIKKLAK-KHYTGWGRLSEKMIQGMREK   QSRKTILDYLI    DDDfpcNRNRNFMQLINDDHL
704





WP_010770040
635
EQLKKYTYLFDEEVLKKLER-RHYTGWGRLSAKLLIGIKEK   RTHKTILDYLI    DDGgkqPINRNLMQLINDSDL
707





WP_048604708
631
EQLSKFSDRLSEKTIKDLER-RHYTGWGRLSAKLINGIHDK   QSNKTILDYLI    DDApkkNINRNFMQLINDNRL
703





WP_010750235
637
TQLKKYQRILGEEIFKKLVK-KKYTGWGRLSKRLINGIRDQ   KTNKTILDYLI    DDDfpyNRNRNFMQLINDDHL
709





AII16583
673
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLIHDDSL
741





WP_029073316
648
RRLKKEYDLDEEKIKKILKL--KYSGWSRLSKKLLSGIKTK   RTPETVLEVME    -------TNMNLMQVINDEKL
717





WP_031589969
648
RRLKKEYDLDEEKIKKILKL--KYSGWSRLSKKLLSGIKTK   RTPETVLEVME    -------TNMNLMQVINDEKL
717





KDA45870
631
RRLENYRDFLGEDILRKLSR-KKYTGWGRLSAKLLDGIYDK   KTHKTILDCLM    EDYs-----QNFMQLINDDTY
698





WP_039099354
651
AKLNEIDWLTDQQRVQLAAK--RYRGWGRLSAKLLTQIVN-   ANGQRIMDLLW    -------TTDNFMRIVHSE--
712





AKP02966
633
EKLHSSNYSYTSDQIKKISN-MRYKGWGRLSKKILTCITTE   TNTPKSLQLSN    -DLm-wTTNNNFISIISNDKY
706





WP_010991369
638
EQLQQFSDVLDGVVLKKLER-RHYTGWGRLSAKLLMGIRDK   QSHLTILDYLM    DDG----LNRNLMQLINDSNL
706





WP_033838504
638
EQLQQFSDVLDGVVLKKLER-RHYTGWGRLSAKLLMGIRDK   QSHLTILDYLM    DDG----LNRNLMQLINDSNL
706





EHN60060
641
EQLQQFSDVLDGVVLKKLER-RHYTGWGRLSAKLLMGIRDK   QSHLTILDYLM    DDG----LNRNLMQLINDSNL
709





EFR89594
407
EQLQQFSDVLDGVVLKKLER-RHYTGWGRLSAKLLMGIRDK   QSHLTILDYLM    DDG----LNRNLMQLINDSNL
475





WP_038409211
638
EQLQSFSDVLDGTILKKLER-RHYTGWGRLSAKLLTGIRDK   HSHLTILDYLM    DDG----LNRNLMQLINDSNL
706





EFR95520
257
EQLQSFSDVLDGTILKKLER-RHYTGWGRLSAKLLTGIRDK   HSHLTILDYLM    DDG----LNRNLMQLINDSNL
325





WP_003723650
638
EQLQQFSDVLDGGVLKKLER-RHYTGWGRLSAKLLVGIREK   QSHLTILDYLM    DDG----LNRNLMQLINDSNL
706





WP_003727705
638
EQLEQFSDVLDGVVLKKLER-RHYTGWGRLSAKLLVGIRDK   QSHLTILDYLM    DDG----LNRNLMQLINDSNL
706





WP_003730785
638
EQLEQFSDVLDGVVLKKLER-RHYTGWGRLSAKLLVGIRDK   QSHLTILDYLM    DDG----LNRNLMQLINDSNL
706





WP_003733029
638
EQLQQFSDVLDGTVLKKLER-RHYTGWGRLSAKLLVGIRDK   QSHLTILDYLM    DDG----LNRNLMQLINDSNL
706





WP_003739838
638
EQLQQFSDVLDGAVLKKLER-RHYTGWGRLSAKLLVGIRDK   QSHLTILDYLM    DDG----LNRNLMQLINDSNL
706





WP_014601172
638
EQLQQFSDVLDGGVLKKLER-RHYTGWGRLSAKLLVGIREK   QSHLTILDYLM    DDG----LNRNLMQLINDSNL
706





WP_023548323
638
EQLQQFSDVLDGTVLKKLER-RHYTGWGRLSAKLLVGIRDK   QSHLTILDYLM    DDG----LNRNLMQLINDSNL
706





WP_031665337
638
EQLQQFSDVLDGVVLKKLER-RHYTGWGRLSAKLLVGIRDK   QSHLTILEYLM    DDG----LNRNLMQLINDSNL
706





WP_031669209
638
EQLQQFSDVLDGTVLKKLER-RHYTGWGRLSAKLLVGIRDK   QSHLTILDYLM    DDG----LNRNLMQLINDSNL
706





WP_033920898
638
EQLQQFSDVLDGTVLKKLER-RHYTGWGRLSAKLLVGIRDK   QSHLTILDYLM    DDG----LNRNLMQLINDSNL
706





AKI42028
641
EQLQQFSDVLDGGVLKKLER-RHYTGWGRLSAKLLVGIREK   QSHLTILDYLM    DDG----LNRNLMQLINDSNL
709





AKI50529
641
EQLQQFSDVLDGTVLKKLER-RHYTGWGRLSAKLLVGIRDK   QSHLTILDYLM    DDG----LNRNLMQLINDSNL
709





EFR83390
86
EQLQQFSDVLDGVVLKKLER-RHYTGWGRLSAKLLVGIRDK   QSHLTILEYLM    DDG----LNRNLMQLINDSNL
154





WP_046323366
638
ERLQEFSNVLDEAVLKKLER-RHYTGWGRLSAKLLIGIRDK   ESHLTILDYLM    DDK----HNRNLMQLINDSNL
706





AKE81011
650
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLIHDDSL
718





CUO82355
642
RRLKKKYALPDDKIKQILKL--KYKDWSRLSKKLLDGIVAD   SV--TVLDVLE    -------SRLNLMEIINDKEL
709





WP_033162887
645
RRLKKVYQLDDLLVDKILKL--NYTGWSRLSEKLLTGMTAD   KA--TVLFVLE    -------SNKNLMEIINDEKL
712





AGZ01981
667
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLIHDDSL
735





AKA60242
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLIHDDSL
702





AKS40380
634
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLIHDDSL
702





4UN5_B
638
ERLKTYAHLFDDKVMKQLKR-RRYTGWGRLSRKLINGIRDK   QSGKTILDFLK    -DGf---ANRNFMQLIHDDSL
706





WP_010922251
703


embedded image


777


WP_039695303
707
PFKQIIQKSQVVG-DVDD-IEAVVHDLPGSPAIKKGILQSVKIVDELVKVMG-GNPDNIVIEMARENQ   TTNRGRSQS
780





WP_045635197
702
SFKEIIQKAQVIG-KTDD-VKQVVQELSGSPAIKKGILQSIKIVDELVKVMG-HAPESIVIEMARENQ   TTARGKKNS
775





5AXW_A
427
VPKKVDLSQQKEI---PT---TLVDDFILSPVVKRSFIQSIKVINAIIKKYG--LPNDIIIELAREKN   --------S
487





WP_009880683
387
TFKEDLQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ   TTQKGQKNS
461





WP_010922251
703
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ   TTQKGQKNS
777





WP_011054416
703
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ   TTQKGQKNS
777





WP_011284745
703
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ   TTQKGQKNS
777





WP_011285506
703
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ   TTQKGQKNS
777





WP_011527619
703
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ   TTQKGQKNS
777





WP_012560673
703
TFKEDLQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ   TTQKGQKNS
777





WP_014407541
703
TFKEDIQKAQVSG-QGHS-LHEQIANLAGSPAIKKGILQTVKIVDELVKVMG-HKPENIVIEMARENQ   TTQKGQKNS
776





WP_020905136
703
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ   TTQKGQKNS
777





WP_023080005
703
TFKEAIQKAQVSG-QGHS-LHEQIANLAGSPAIKKGILQTVKIVDELVKVMG-HKPENIVIEMARENQ   TTQKGQKNS
776





WP_023610282
703
TFKEAIQKAQVSG-QGHS-LHEQIANLAGSPAIKKGILQTVKIVDELVKVMG-HKPENIVIEMARENQ   TTQKGQKNS
776





WP_030125963
703
TFKEDLQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ   TTQKGQKNS
777





WP_030126706
703
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ   TTQKGQKNS
777





WP_031488318
703
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ   TTQKGQKNS
777





WP_032460140
703
TFKEDLQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ   TTQKGQKNS
777





WP_032461047
703
TFKEDLQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ   TTQKGQKNS
777





WP_032462016
703
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ   TTQKGQKNS
777





WP_032462936
703
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ   TTQKGQKNS
777





WP_032464890
703
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ   TTQKGQKNS
777





WP_033888930
528
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ   TTQKGQKNS
602





WP_038431314
703
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ   TTQKGQKNS
777





WP_038432938
703
TFKEAIQKAQVSG-QGHS-LHEQIANLAGSPAIKKGILQTVKIVDELVKVMG-HKPENIVIEMARENQ   TTQKGQKNS
776





WP_038434062
703
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKIVDELVKVMGrHKPENIVIEMARENQ   TTQKGQKNS
777





BAQ51233
614
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ   TTQKGQKNS
688





KGE60162

--------------------------------------------------------------------   ---------






KGE60856

--------------------------------------------------------------------   ---------






WP_002989955
703
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ   TTQKGQKNS
777





WP_003030002
704
SFKEEIARAQIIG-DVDD-IANVVHDLPGSPAIKKGILQSVKIVDELVKVMG-HNPANIIIEMARENQ   MTDKGRRNS
777





WP_003065552
707
PFKQIIQKSQVVG-DVDD-IEAVVHDLPGSPAIKKGILQSVKIVDELVKVMG-DNPDNIVIEMARENQ   TTNRGRSQS
780





WP_001040076
702
SFKPIIDKARTGS-HSDN-LKEVIGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTAKGLSRS
775





WP_001040078
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTNQGRRNS
778





WP_001040080
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTNQGRRNS
778





WP_001040081
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTNQGRRNS
778





WP_001040083
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTNQGRRNS
778





WP_001040085
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTNQGRRNS
778





WP_001040087
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTNQGRRNS
778





WP_001040088
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTNQGRRNS
778





WP_001040089
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTNQGRRNS
778





WP_001040090
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVVG-YEPEQIVVEMARENQ   TTNQGRRNS
778





WP_001040091
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTNQGRRNS
778





WP_001040092
705
SFKSIISKAQSGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTNQGRRNS
778





WP_001040094
702
SFKPIIDKARTGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTAKGLSRS
775





WP_001040095
702
SFKPIIDKARTGS-HLDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTAKGLSRS
775





WP_001040096
702
SFKPIIDKARTGS-HLDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTAKGLSRS
775





WP_001040097
702
SFKPIIDKARTGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTAKGLSRL
775





WP_001040098
702
SFKPIIDKARTGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTAKGLSRS
775





WP_001040099
702
SFKPIIDKARTGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTAKGLSRS
775





WP_001040100
702
SFKPIIDKARTGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTAKGLSRS
775





WP_001040104
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTNQGRRNS
778





WP_001040105
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTNQGRRNS
778





WP_001040106
705
SFKPIIDKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQVVVEMARENQ   TTNQGRRNT
778





WP_001040107
705
SFKPIIDKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQVVVEMARENQ   TTNQGRRNT
778





WP_001040108
705
SFKPIIDKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQVVVEMARENQ   TTNQGRRNT
778





WP_001040109
705
SFKPIIDKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQVVVEMARENQ   TTNQGRRNT
778





WP_001040110
705
SFKPIIDKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQVVVEMARENQ   TTNQGRRNT
778





WP_015058523
705
SFKSIISKAQSGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTNQGRRNS
778





WP_017643650
702
SFKPIIDKARTGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTAKGLSRL
775





WP_017647151
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTNQGRRNS
778





WP_017648376
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTNQGRRNS
778





WP_017649527
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTNQGRRNS
778





WP_017771611
705
SFKPIIDKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQVVVEMARENQ   TTNQGRRNT
778





WP_017771984
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTNQGRRNS
778





CFQ25032
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTNQGRRNS
778





CFV16040
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTNQGRRNS
778





KLJ37842
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTNQGRRNS
778





KLJ72361
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTNQGRRNS
778





KLL20707
719
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTNQGRRNS
792





KLL42645
705
SFKPIIDKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQVVVEMARENQ   TTNKGRRNT
778





WP_047207273
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTNQGRRNS
778





WP_047209694
702
SFKPIIDKARTGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTAKGLSRS
775





WP_050198062
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTNQGRRNS
778





WP_050201642
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTNQGRRNS
778





WP_050204027
705
SFKPIIDKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQVVVEMARENQ   TTNQGRRNT
778





WP_050881965
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTNQGRRNS
778





WP_050886065
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTNQGRRNS
778





AHN30376
705
SFKSIISKAQSGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTNQGRRNS
778





EAO78426
705
SFKSIISKAQAGS-HSDN-LKEVVGELAGSPAIKKGILQSLKIVDELVKVMG-YEPEQIVVEMARENQ   TTNQGRRNS
778





CCW42055
705
SFKSIISKAQSGS-HSDN-LKEVVSELAGSPAIKKGILQSLKIVDELVKVMG-YKPEQIVVEMARENQ   TTNQGRRNS
778





WP_003041502
704
SFKEEIAKAQIIG-DVDD-IANVVHDLPGSPAIKKGILQSVKIVDELVKVMG-HNPANIIIEMARENQ   TTDRGRRNS
777





WP_037593752
705
SFKEEIARAQIIG-DVDD-IANVVHDLPGSPAIKKGILQSVKIVDELVKVMG-HNPANIIIEMARENQ   TTDKGRRNS
778





WP_049516684
705
SFKEEIARAQIIG-DVDD-IANVVHDLPGSPAIKKGILQSVKIVDELVKVMG-HNPANIIIEMARENQ   TTDKGRRNS
778





GAD46167
704
SFKEEIARAQIIG-DVDD-IANVVHDLPGSPAIKKGILQSVKIVDELVKVMG-HNPANIIIEMARENQ   TTDKGRRNS
777





WP_018363470
705
SFKQIIQEAQVVG-DVDD-IETVVHDLPGSPAIKKGILQSVKIVDELIKVMG-DNPDNIVIEMARENQ   TTNRGRSQS
778





WP_003043819
713
TFKEEIEKAQVSG-QGDS-LHEQIADLAGSPAIKKGILQTVKIVDELVKVMG-HKPENIVIEMARENQ   TTTKGLQQS
786





WP_006269658
704
SFKEEIARAQIID-DVDD-IANVVHDLPGSPAIKKGILQSVKIVDELVKVMG-HNPANIIIEMARENQ   TTDKGRRNS
777





WP_048800889
704
PFKQIIKDAQAID-DVDD-IELIVHDLPGSPAIKKGILQSIKIVDELVKVMG-YNPDNIVIEMARENQ   TTTKGRRNS
777





WP_012767106
703
TFKEAIQKAQVSG-QGHS-LHEQIANLAGSPAIKKGILQSVKVVDELVKVMG-HKPENIVIEMARENQ   TTQKGQKNS
776





WP_014612333
703
TFKEAIQKAQVSG-QGHS-LHEQIANLAGSPAIKKGILQSVKVVDELVKVMG-HKPENIVIEMARENQ   TTQKGQKNS
776





WP_015017095
703
TFKEAIQKAQVSG-QGHS-LHEQIANLAGSPAIKKGILQSVKVVDELVKVMG-HKPENIVIEMARENQ   TTQKGQKNS
776





WP_015057649
703
TFKEAIQKAQVSG-QGHS-LHEQIANLAGSPAIKKGILQSVKVVDELVKVMG-HKPENIVIEMARENQ   TTQKGQKNS
776





WP_048327215
703
TFKEAIQKAQVSG-QGHS-LHEQIANLAGSPAIKKGILQSVKVVDELVKVMG-HKPENIVIEMARENQ   TTQKGQKNS
776





WP_049519324
703
TFKEAIQKAQVSG-QGHS-LHEQIANLAGSPAIKKGILQSVKVVDELVKVMG-HKPENIVIEMARENQ   TTQKGQKNS
776





WP_012515931
703
SFIDEIAKAQVIG-KTEY-SKDLVGNLAGSPAIKKGISQTIKIVDELVKIMG-YLPQQIVIEMARENQ   TTAQGIKNA
776





WP_021320964
703
SFIDEIAKAQVIG-KTEY-SKDLVGNLASSPAIKKGISQTIKIVDELVKIMG-YLPQQIVIEMARENQ   TTAQGIKNA
776





WP_037581760
703
SFIDEIAKAQVIG-KTEY-SKDLVGNLAGSPAIKKGISQTIKIVDELVKIMG-YLPQQIVIEMARENQ   TTAQGIKNA
776





WP_004232481
704
SFKTTIQEAQVVG-DVDD-IEAVVHDLPGSPAIKKGILQSVKIVDELVKVMG-HNPQNIVIEMARENQ   ITGYGRNRS
777





WP_009854540
705
PFKQIIQKSQVVG-DVDD-IEAVVHDLPGSPAIKKGILQSVKIVDELVKVMG-DNPDNIVIEMARENQ   TTNRGRSQS
778





WP_012962174
705
PFKQIIKDAQIIG-DIDD-VTSVVRELPGSPAIKKGILQSVKIVDELVKVMG-HNPDNIVIEMARENQ   TTNRGRNQS
778





WP_039695303
707
PFKQIIQKSQVVG-DVDD-IEAVVHDLPGSPAIKKGILQSVKIVDELVKVMG-GNPDNIVIEMARENQ   TTNRGRSQS
780





WP_014334983
704
SFKTIIQEAQVVG-DVDD-IEAVVHDLPGSPAIKKGILQSVKIVDELVKVMG-DNPDNIVIEMARENQ   TTGYGRNKS
777





WP_003099269
703
DFAKIIKNEQEKTiKNES-LEETIANLAGSPAIKKGILQSIKIVDEIVKIMG-QNPDNIVIEMARENQ   STMQGIKNS
777





AHY15608
703
DFAKIIKNEQEKTiKNES-LEETIANLAGSPAIKKGILQSIKIVDEIVKIMG-QNPDNIVIEMARENQ   STMQGIKNS
777





AHY17476
703
DFAKIIKNEQEKTiKNES-LEETIANLAGSPAIKKGILQSIKIVDEIVKIMG-QNPDNIVIEMARENQ   STMQGIKNS
777





ESR09100

--------------------------------------------------------------------   ---------






AGM98575
703
DFAKIIKNEQEKTiKNES-LEETIANLAGSPAIKKGILQSIKIVDEIVKIMG-QNPDNIVIEMARENQ   STMQGIKNS
777





ALF27331
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
777





WP_018372492
717
DFKEIIRKAQTIE-NIDT-NQALVSSLPGSPAIKKGILQSLNIVDEIIAIMG-YAPTNIVIEMARENQ   TTQKGRDNS
790





WP_045618028
703
SFKEIIQKAQVVG-KTND-VKQVVQELPGSPAIKKGILQSIKLVDELVKVMG-HAPESIVIEMARENQ   TTARGKKNS
776





WP_045635197
702
SFKEIIQKAQVIG-KTDD-VKQVVQELSGSPAIKKGILQSIKIVDELVKVMG-HAPESIVIEMARENQ   TTARGKKNS
775





WP_002263549
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
777





WP_002263887
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
777





WP_002264920
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
777





WP_002269043
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
777





WP_002269448
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRQNS
777





WP_002271977
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
777





WP_002272766
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
777





WP_002273241
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTKQGRRNS
777





WP_002275430
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
777





WP_002276448
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTKQGRRNS
777





WP_002277050
705
TFKDDIVKAQYVD-NSDD-LHQVVQSLAGSPAIKKGILQSLKIVDELVKVMG-KEPEQIVVEMARENQ   TTAKGRRNS
778





WP_002277364
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
777





WP_002279025
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
777





WP_002279859
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
777





WP_002280230
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTKQGRRNS
777





WP_002281696
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
777





WP_002282247
705
TFKDDIVKAQYVD-NSDD-LHQVVQSLAGSPAIKKGILQSLKIVDELVKVMG-KEPEQIVVEMARENQ   TTAKGRRNS
778





WP_002282906
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
777





WP_002283846
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
777





WP_002287255
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
777





WP_002288990
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
777





WP_002289641
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
777





WP_002290427
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSLAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
777





WP_002295753
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTKQGRRNS
777





WP_002296423
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
777





WP_002304487
714
SFKEEIAKAQVIG-EMDG-LNQVVSDIAGSPAIKKGILQSLKIVDELVKVMG-HNPANIVIEMARENQ   TTAKGRRSS
787





WP_002305844
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTKQGRRNS
777





WP_002307203
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
777





WP_002310390
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSLAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
777





WP_002352408
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGQRNS
777





WP_012997688
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
777





WP_014677909
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
777





WP_019312892
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
777





WP_019313659
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
777





WP_019314093
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
777





WP_019315370
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
777





WP_019803776
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
777





WP_019805234
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSLAIKKGILQNLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
777





WP_024783594
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
777





WP_024784288
705
TFKDDIVKAQYVD-NSDD-LHQVVQSLAGSPAIKKGILQSLKIVDELVKVMG-KEPEQIVVEMARENQ   TTAKGRRNS
778





WP_024784666
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
777





WP_024784894
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
777





WP_024786433
705
TFKDDIVKAQYVD-NSDD-LHQVVQSLAGSPAIKKGILQSLKIVDELVKVMG-KEPEQIVVEMARENQ   TTAKGRRNS
778





WP_049473442
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
777





WP_049474547
704
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
777





EMC03581
697
SFKEEIAKAQVIG-ETDN-LNQVVSDIAGSPAIKKGILQSLKIVDELVKIMG-HQPENIVVEMARENQ   FTNQGRRNS
770





WP_000428612
705
SFKEIIKKAQVVG-KTDD-VKQVVQELPGSPAIKKGILQSIKLVDELVKVMG-HEPESIVIEMARENQ   TTARGKKNS
778





WP_000428613
703
SFKEITQKAQVVG-KTDD-VKQVVQELPGSPAIKKGILQSIKIVDELVKVMG-HTPESIVIEMARENQ   TTARGKKNS
776





WP_049523028
702
SFKETIQKAQVVG-ETND-VKQVVQELPGSPAIKKGILQSIKIVDELVKVMG-HAPESVVIEMARENQ   TTNKGKSKS
775





WP_003107102
672
DFASIIKEAQEKTiKSEK-LEETIANLAGSPAIKKGILQSVKIVDEVVKVMG-YEPSNIVIEMARENQ   STQRGINNS
746





WP_054279288
705
SFKEEIKKAQEGG-LKDS-INDQIRDLAGSPAIKKGILQTINIVDEIVKIMG-KAPQHIVVEMARDVQ   KTDIGVKQS
778





WP_049531101
703
SFKEIIQESQVVG-KPDD-VKQIVQELPGSSAIKKGILQSIKLVDELVKVMG-HDPESIVIEMARENQ   TTARGKKNS
776





WP_049538452
703
SFKEIIQKAQVFG-KTND-VKQVVQELPGSPAIKKGILQSIKIVEELVKVMG-HEPESIVIEMARENQ   TTTRGKKNS
776





WP_049549711
703
SFKKIIQKSQVVG-ETDD-VKQVVRELPGSPAIKKGILQSIKIVDELVKVMD-HAPESIVIEMARENQ   TTARGKKNS
776





WP_007896501
706
DFEKLIDDAQKKAiKRES-LTEAVANLAGSPAIKKGILQSLKVVDEIVKVMG-HNPDNIVIEMSRENQ   TTAQGLKNA
780





EFR44625
658
DFEKLIDDAQKKAiKRES-LTEAVANLAGSPAIKKGILQSLKVVDEIVKVMG-HNPDNIVIEMSRENQ   TTAQGLKNA
732





WP_002897477
702
SFKEIIQKAQVVG-KTDD-VKQVVQELPGSPAIKKGILQSIKIVDELVKVMG-YALESIVIEMARENQ   TTARGKKNS
775





WP_002906454
702
SFKEIIQKAQVVG-KTDD-VKQVVQEIPGSPAIKKGILQSIKIVDELVKVMG-HNPESIVIEMARENQ   TTAKGKKNS
775





WP_009729476
703
SFKEIIQKAQVVG-KTND-VKQVVQELPGSPAIKKGILQSIKIVDELVKVMG-HAPESIVIEMARENQ   TTARGKKNS
776





CQR24647
706
SFKDEIANSQVIG-DGDD-LHQVVQELAGSPAIKKGILQSLKIVDELVKVMG-YNPEQIVVEMARENQ   TTARGRNNS
779





WP_000066813
705
SFKEIIQKAQVFG-KTND-VKQVVQELPGSPAIKKGILQSIKIVDELVKVMG-HAPESIVIEMARENQ   TTARGKKNS
778





WP_009754323
703
SFKEIIQKAQVVG-KTDD-LTQVVRELSGSPAIKKGILQSIKIVDELVKIMG-YAPESIVIEMARENQ   TTAKGKKNS
776





WP_044674937
702
SFVDEIRLAQGSG-EAED-YRAEVQNLAGSPAIKKGILQSLKIVDELIEVMG-YDPEHIVVEMARENQ   FTNQGRRNS
775





WP_044676715
704
SFVDEIRLAQGSG-EAED-YRAEVQNLAGSPAIKKGILQSLKIVDELIEVMG-YDPEHIVVEMARENQ   FTNQGRRNS
777





WP_044680361
704
SFVDEIRLAQGSG-EAED-YRAEVQNLAGSPAIKKGILQSLKIVDELIEVMG-YDPEHIVVEMARENQ   FTNQGRRNS
777





WP_044681799
702
SFVDEIRLAQGSG-EAED-YRAEVQNLAGSPAIKKGILQSLKIVDELIEVMG-YDPEHIVVEMARENQ   FTNQGRRNS
775





WP_049533112
704
SFKEEIAKAQVIG-ETDD-LNQVVSDIAGSPAIKKGILQSLKIVDELVKVMG-YNPANIVIEMARENQ   TTDKGRRNS
777





WP_029090905
683
LFKKIIEEQFENEtALLN--KQRIDELAASPANKKGIWQAIKIVKELEKVLQ-QPAENIFIEFARSDE   ES----KRS
752





WP_006506696
706
GYAQMIEEATSCPeDGKF-TYEEVERLAGSPALKRGIWQSLQIVEEITKVMK-CRPKYIYIEFERSEE   -----KERT
776





AIT42264
703
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ   TTQKGQKNS
777





WP_034440723
711
SFKEKIRKAQDIN-QVND-IKEIVKDLPGSPAIKKGIYQSIRIVDEIIRKMK-DRPKNIVIEMARENQ   TTQEGKNKS
784





AKQ21048
703
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ   TTQKGQKNS
777





WP_004636532
707
SFKKKIEDAQTIE-DTTH-IYDTVAELPGSPAIKKGIRQALKIVEEIIDIIG-YEPENIVVEMARESQ   TTKKGKDLS
780





WP_002364836
715
SFKNAIQKAQSSE-HEET-LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG-YAPKRIVVEMARENQ   TTSTGKRRS
788





WP_016631044
666
SFKNAIQKAQSSE-HEET-LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG-YAPKRIVVEMARENQ   TTSTGKRRS
739





EMS75795
455
SFKEELANELALA-GNQS-LLEVVEALLGSPAIKKGIWQTLKIVEELIEIIG-YNPKNIVVEMARENQ   RT----NRS
524





WP_002373311
715
SFKNAIQKAQSSE-HEET-LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG-YAPKRIVVEMARENQ   TTSTGKRRS
788





WP_002378009
715
SFKNAIQKAQSSE-HEET-LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG-YAPKRIVVEMARENQ   TTSTGKRRS
788





WP_002407324
715
SFKNAIQKAQSSE-HEET-LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG-YAPKRIVVEMARENQ   TTSTGKRRS
788





WP_002413717
715
SFKNAIQKAQSSE-HEET-LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG-YAPKRIVVEMARENQ   TTSTGKRRS
788





WP_010775580
717
SFKNAIQKAQSSE-HEET-LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG-YAPKRIVVEMARENQ   TTSTGKRRS
790





WP_010818269
715
SFKNAIQKAQSSE-HEET-LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG-YAPKRIVVEMARENQ   TTSTGKRRS
788





WP_010824395
715
SFKNAIQKAQSSE-HEET-LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG-YAPKRIVVEMARENQ   TTSTGKRRS
788





WP_016622645
715
SFKNAIQKAQSSE-HEET-LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG-YAPKRIVVEMARENQ   TTSTGKRRS
788





WP_033624816
715
SFKNAIQKAQSSE-HEET-LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG-YAPKRIVVEMARENQ   TTSTGKRRS
788





WP_033625576
715
SFKNAIQKAQSSE-HEET-LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG-YAPKRIVVEMARENQ   TTSTGKRRS
788





WP_033789179
715
SFKNAIQKAQSSE-HEET-LSETVNELAGSPAIKKGIYQSLKIVDELVAIMG-YAPKRIVVEMARENQ   TTSTGKRRS
788





WP_002310644
715
SFKKEIKKAQMIT-DTEN-LEEIVKELTGSPAIKKGILQSLKIVDEIVGIMG-YEPANIVVEMARENQ   TTGRGLKSS
788





WP_002312694
716
SFKKEIKKAQMIT-DTEN-LEEIVKELTGSPAIKKGILQSLKIVDEIVGIMG-YEPANIVVEMARENQ   TTGRGLKSS
789





WP_002314015
716
SFKKEIKKAQMIT-DTEN-LEEIVKELTGSPAIKKGILQSLKIVDEIVGIMG-YEPANIVVEMARENQ   TTGRGLKSS
789





WP_002320716
716
SFKKEIKKAQMIT-DTEN-LEEIVKELTGSPAIKKGILQSLKIVDEIVGIMG-YEPANIVVEMARENQ   TTGRGLKSS
789





WP_002330729
715
SFKKEIKKAQMIT-DTEN-LEEIVKELTGSPAIKKGILQSLKIVDEIVGIMG-YEPANIVVEMARENQ   TTGRGLKSS
788





WP_002335161
716
SFKKEIKKAQMIT-DTEN-LEEIVKELTGSPAIKKGILQSLKIVDEIVGIMG-YEPANIVVEMARENQ   TTGRGLKSS
789





WP_002345439
716
SFKKEIKKAQMIT-DTEN-LEEIVKELTGSPAIKKGILQSLKIVDEIVGIMG-YEPANIVVEMARENQ   TTGRGLKSS
789





WP_034867970
711
SFKEEIAKATVFS-KHKS-LVDVIQDLPGSPAIKKGIWQSLKIVEELIAIIG-YKPKNIVIEMARENQ   KT----HRT
780





WP_047937432
716
SFKKEIKKAQMIT-DTEN-LEEIVKELTGSPAIKKGILQSLKIVDEIVGIMG-YEPANIVVEMARENQ   TTGRGLKSS
789





WP_010720994
711
SFKEEIAKATVFS-KHKS-LVDVIQDLPGSPAIKKGIWQSLKIVEELIAIIG-YKPKNIVIEMARENQ   KT----HRT
780





WP_010737004
711
SFKEEIAKATVFS-KHKS-LVDVIQDLPGSPAIKKGIWQSLKIVEELIAIIG-YKPKNIVIEMARENQ   KT----HRT
780





WP_034700478
711
SFKEEIAKATVFS-KHKS-LVDVIQDLPGSPAIKKGIWQSLKIVEELIAIIG-YKPKNIVIEMARENQ   KT----HRT
780





WP_007209003
708
SFKKIIEDSQPYK-EQQS-AEEIVSELSGSPAIKKGILQSLKIVDELVAIMG-YKPKNIVVEMARENQ   TTGRGKQNS
781





WP_023519017
705
SFKETIANELIMS-DSNV-LLDQVKAIPGSPAVKKGIWQSIKIVEEIIGIIG-KAPKNIVIEMARENQ   RTSR----S
774





WP_010770040
708
SFKSEIAEAQSDM-NTED-LHEVVQNLAGSPAIKKGILQSLKIVDELVDIMG-SLPKNIVVEMARENQ   TTSRGRTNS
781





WP_048604708
704
TFKEEIEKEQLKA-NSEEsLIEIVQNLAGSPAIKKGIFQSLKIVDELVEIMG-YAPTNIVVEMARENQ   TTANGRRNS
778





WP_010750235
710
SFKEEIAKELTLS-DKQS-LLEVVEAIPGSPAIKKGIWQTLKIVEELIAIIG-YKPKNIVIEMARENQ   TTTGGKNRS
783





AII16583
742
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ   TTQKGQKNS
816





WP_029073316
718
GFKKTIDDANSTSvSGKF-SYAEVQELAGSPAIKRGIWQALLIVDEIKKIMK-HEPAHVYIEFARNED   -----KERK
788





WP_031589969
718
GFKKTIDDANSTSvSGKF-SYAEVQELAGSPAIKRGIWQALLIVDEIKKIMK-HEPAHVYIEFARNED   -----KERK
788





KDA45870
699
SFKETIKNAQVIE-KEET-LAKTVQELPGSPAIKKGILQSLEIVDEIIKVMG-YKPKSIVVEMARETQ   --THGTRKR
771





WP_039099354
713
DFDKLITEANQMM-LAENdVQDVINDLYTSPQNKKALRQILLVVNDIQKAMKgQAPERILIEFAREDE   VNPRLSVQR
788





AKP02966
707
DFKNYIENHNLNKnEDQN-ISNLVNDIHVSPALKRGITQSIKIVQEIVKFMG-HAPKYIFIEVTRETK   TTSRGKRIQ
785





WP_010991369
707
SFKSIIEKEQVTT-ADKD-IQSIVADLAGSPAIKKGILQSLKIVDELVSVMG-YPPQTIVVEMARENQ   TTGKGKNNS
780





WP_033838504
707
SFKSIIEKEQVTT-ADKD-IQSIVADLAGSPAIKKGILQSLKIVDELVSVMG-YPPQTIVVEMARENQ   TTGKGKNNS
780





EHN60060
710
SFKSIIEKEQVTT-ADKD-IQSIVADLAGSPAIKKGILQSLKIVDELVSVMG-YPPQTIVVEMARENQ   TTGKGKNNS
783





EFR89594
476
SFKSIIEKEQVTT-ADKD-IQSIVADLAGSPAIKKGILQSLKIVDELVSVMG-YPPQTIVVEMARENQ   TTGKGKNNS
549





WP_038409211
707
SFKSIIEKEQVST-ADKG-IQSIVAELAGSPAIKKGILQSLKIVDELVGIMG-YPPQTIVVEMARENQ   TTGKGKNNS
780





EFR95520
326
SFKSIIEKEQVST-ADKG-IQSIVAELAGSPAIKKGILQSLKIVDELVGIMG-YPPQTIVVEMARENQ   TTGKGKNNS
399





WP_003723650
707
SFKSIIEKEQVST-TDKD-LQSIVAELAGSPAIKKGILQSLKIVDELVSIMG-YPPQTIVVEMARENQ   TTGKGKNNS
780





WP_003727705
707
SFKSIIEKEQVST-TDKD-LQSIVADLAGSPAIKKGILQSLKIVDELVSIMG-YPPQTIVVEMARENQ   TTGKGKNNS
780





WP_003730785
707
SFKSIIEKEQVST-TDKD-LQSIVADLAGSPAIKKGILQSLKIVDELVSIMG-YPPQTIVVEMARENQ   TTGKGKNNS
780





WP_003733029
707
SFKSIIEKEQVST-TDKD-LQSIVAELAGSPAIKKGILQSLKIVDELVSVMG-YPPQTIVVEMARENQ   TTNKGKNNS
780





WP_003739838
707
SFKSIIEKEQVST-TDKD-LQSIVADLAGSPAIKKGILQSLKIVDELVSIMG-YPPQTIVVEMARENQ   TTVKGKNNS
780





WP_014601172
707
SFKSIIEKEQVST-TDKD-LQSIVADLAGSPAIKKGILQSLKIVDELVSIMG-YPPQTIVVEMARENQ   TTGKGKNNS
780





WP_023548323
707
SFKSIIEKEQVST-ADKD-LQSIVADLAGSPAIKKGILQSLKVVEELVSVMG-YPPQTIVVEMARENQ   TTNKGKNNS
780





WP_031665337
707
SFKSIIEKEQVST-TDKD-LQSIVAELAGSPAIKKGILQSLKIVDELVSIMG-YPPQTIVVEMARENQ   TTGKGKNNS
780





WP_031669209
707
SFKSIIEKEQVST-ADKD-LQSIVADLAGSPAIKKGILQSLKIVDELVSVMG-YPPQTIVVEMARENQ   TTNKGKNNS
780





WP_033920898
707
SFKSIIEKEQVST-ADKD-LQSIVADLAGSPAIKKGILQSLKVVEELVSVMG-YPPQTIVVEMARENQ   TTNKGKNNS
780





AKI42028
710
SFKSIIEKEQVST-TDKD-LQSIVADLAGSPAIKKGILQSLKIVDELVSIMG-YPPQTIVVEMARENQ   TTGKGKNNS
783





AKI50529
710
SFKSIIEKEQVST-ADKD-LQSIVADLAGSPAIKKGILQSLKVVEELVSVMG-YPPQTIVVEMARENQ   TTNKGKNNS
783





EFR83390
155
SFKSIIEKEQVST-TDKD-LQSIVADLAGSPAIKKGILQSLKIVDELVSIMG-YPPQTIVVEMARENQ   TTVKGKNNS
228





WP_046323366
707
SFKSIIEKEQVST-ADKD-IQSIVADLAGSPAIKKGILQSLKIVDELVGIMG-YPPQTIVVEMARENQ   TTGKGKNNS
780





AKE81011
719
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ   TTQKGQKNS
793





CUO82355
710
GYAQMIEEASSCPkDGKF-TYEEVAKLAGSPALKRGIWQSLQIVEEITKVMK-CRPKYIYIEFERSEE   -----KERT
780





WP_033162887
713
GYKQIIEESNMQDiEGPF-KYDEVKKLAGSPAIKRGIWQALLVVREITKFMK-HEPSHIYIEFAREEQ   -----KVRK
783





AGZ01981
736
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ   TTQKGQKNS
810





AKA60242
703
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ   TTQKGQKNS
777





AKS40380
703
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ   TTQKGQKNS
777





4UN5_B
707
TFKEDIQKAQVSG-QGDS-LHEHIANLAGSPAIKKGILQTVKVVDELVKVMGrHKPENIVIEMARENQ   TTQKGQKNS
781





WP_010922251
778


embedded image


841


WP_039695303
781
QQRLKKLQNSLK    PSYI   E----DK--VE---NSHLQNDQLFLYYIQNGKDMYTGDEL--D--IDHLSDYDIDHI
851





WP_045635197
776
QQRYKRIEDSLK    ILAS   NILKENP--TD---NNQLQNDRLFLYYLQNGKDMYTGEAL--D--INQLSSYDIDHI
843





5AXW_A
488
KDAQKMINEMQK    QTNE   EIIRTTGk--E---NAKYLIEKIKLHDMQEGKCLYSLEAIplEdlLNNPFNYEVDHI
561





WP_009880683
462
RERMKRIEEGIK    ELGS   DILKEYP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
525





WP_010922251
778
RERMKRIEEGIK    ELGS   QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841





WP_011054416
778
RERMKRIEEGIK    ELGS   DILKEYP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841





WP_011284745
778
RERMKRIEEGIK    ELGS   QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841





WP_011285506
778
RERMKRIEEGIK    ELGS   QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841





WP_011527619
778
RERMKRIEEGIK    ELGS   QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841





WP_012560673
778
RERMKRIEEGIK    ELGS   DILKEYP--VE---TTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841





WP_014407541
777
RERMKRIEEGIK    ELGS   QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
840





WP_020905136
778
RERMKRIEEGIK    ELGS   QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841





WP_023080005
777
RERMKRIEEGIK    ELGS   QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
840





WP_023610282
777
RERMKRIEEGIK    ELGS   QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
840





WP_030125963
778
RERMKRIEEGIK    ELGS   DILKEYP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841





WP_030126706
778
RERMKRIEEGIK    ELGS   DILKEYP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841





WP_031488318
778
RERMKRIEEGIK    ELGS   DILKEYP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841





WP_032460140
778
RERMKRIEEGIK    ELGS   DILKEYP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841





WP_032461047
778
RERMKRIEEGIK    ELGS   DILKEYP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841





WP_032462016
778
RERMKRIEEGIK    ELGS   QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841





WP_032462936
778
RERMKRIEEGIK    ELGS   DILKEYP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841





WP_032464890
778
RERMKRIEEGIK    ELGS   QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841





WP_033888930
603
RERMKRIEEGIK    ELGS   QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
666





WP_038431314
778
RERMKRIEEGIK    ELGS   DILKEYP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841





WP_038432938
777
RERMKRIEEGIK    ELGS   QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
840





WP_038434062
778
RERMKRIEEGIK    ELGS   DILKEYP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841





BAQ51233
689
RERMKRIEEGIK    ELGS   QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
752





KGE60162
1
------------    ----   -------------------------------------QEL--D--INRLSGYDVDHI
16





KGE60856

------------    ----   ---------------------------------------------------------






WP_002989955
778
RERMKRIEEGIK    ELGS   QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841





WP_003030002
778
QQRLKLLQDSLK    PVNI   K-----N--VE---NQQLQNDRLFLYYIQNGKDMYTGETL--D--INNLSQYDIDHI
840





WP_003065552
781
QQRLKKLQNSLK    PSYI   E----DK--VE---NSHLQNDQLFLYYIQNGKDMYTGDEL--D--IDHLSDYDIDHI
851





WP_001040076
776
RQRLTTLRESLA    NLKS   EKKPKYV--KDqveNHHLSDDRLFLYYLQNGKDMYTDDEL--D--IDNLSQYDIDHI
846





WP_001040078
779
RQRYKLLDDGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846





WP_001040080
779
RQRYKLLDDGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846





WP_001040081
779
RQRYKLLDDGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846





WP_001040083
779
RQRYKLLDDGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846





WP_001040085
779
RQRYKLLDDGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDDLSQYDIDHI
846





WP_001040087
779
RQRYKLLDDGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846





WP_001040088
779
RQRYKLLDDGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846





WP_001040089
779
RQRYKLLDDGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846





WP_001040090
779
RQRYKLLDDGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846





WP_001040091
779
RQRYKLLDDGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846





WP_001040092
779
RQRYKLLEDGVK    NLAS   DILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846





WP_001040094
776
RQRLTTLRESLA    NLKS   EKKPKYV--KDqveNHHLSDDRLFLYYLQNGKDMYTDDEL--D--IDNLSQYDIDHI
846





WP_001040095
776
RQRLTTLRESLA    NLKS   EKKPKYV--KDqveNHHLSDDRLFLYYLQNGKDMYTDDEL--D--IDNLSQYDIDHI
846





WP_001040096
776
RQRLTTLRESLA    NLKS   EKKPKYV--KDqveNHHLSDDRLFLYYLQNGKDMYTDDEL--D--IDNLSQYDIDHI
846





WP_001040097
776
RQRLTTLRESLA    NLKS   EKKPKYV--KDqveNHHLSDDRLFLYYLQNGKDMYTDDEL--D--IDNLSQYDIDHI
846





WP_001040098
776
RQRLTTLRESLA    NLKS   EKKPKYV--KDqveNHHLSDDRLFLYYLQNGKDMYTDDEL--D--IDNLSQYDIDHI
846





WP_001040099
776
RQRLTTLRESLA    NLKS   EKKPKYV--KDqveNHHLSDDRLFLYYLQNGKDMYTDDEL--D--IDNLSQYDIDHI
846





WP_001040100
776
RQRLTTLRESLA    NLKS   EKKPKYV--KDqveNHHLSDDRLFLYYLQNGKDMYTDDEL--D--IDNLSQYDIDHI
846





WP_001040104
779
RQRYKLLDDGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846





WP_001040105
779
RQRYKLLDDGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846





WP_001040106
779
RQRYKLLEEGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846





WP_001040107
779
RQRYKLLEEGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846





WP_001040108
779
RQRYKLLEEGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGETL--D--IDNLSQYDIDHI
846





WP_001040109
779
RQRYKLLEEGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846





WP_001040110
779
RQRYKLLEEGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846





WP_015058523
779
RQRYKLLEDGVK    NLAS   DILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846





WP_017643650
776
RQRLTTLRESLA    NLKS   EKKPKYV--KDqveNHHLSDDRLFLYYLQNGKDMYTDDEL--D--IDNLSQYDIDLI
846





WP_017647151
779
RQRYKLLDDGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGKAL--D--IDNLSQYDIDHI
846





WP_017648376
779
RQRYKLLDDGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGKAL--D--IDNLSQYDIDHI
846





WP_017649527
779
RQRYKLLDDGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846





WP_017771611
779
RQRYKLLEEGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846





WP_017771984
779
RQRYKLLDDGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846





CFQ25032
779
RQRYKLLDDGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846





CFV16040
779
RQRYKLLDDGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846





KLJ37842
779
RQRYKLLDDGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846





KLJ72361
779
RQRYKLLDDGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846





KLL20707
793
RQRYKLLDDGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
860





KLL42645
779
RQRYKLLEEGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846





WP_047207273
779
RQRYKLLDDGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846





WP_047209694
776
RQRLTTLRESLA    NLKS   EKKPKYV--KDqveNHHLSDDRLFLYYLQNGKDMYTDDEL--D--IDNLSQYDIDHI
846





WP_050198062
779
RQRYKLLDDGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846





WP_050201642
779
RQRYKLLDDGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846





WP_050204027
779
RQRYKLLEEGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846





WP_050881965
779
RQRYKLLDDGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846





WP_050886065
779
RQRYKLLDDGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846





AHN30376
779
RQRYKLLEDGVK    NLAS   DILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDSLSQYDIDHI
846





EAO78426
779
RQRYKLLDDGVK    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTGEAL--D--IDNLSQYDIDHI
846





CCW42055
779
RQRYKLLDDGVR    NLAS   NILKEYP--TD---NQALQNERLFLYYLQNGRDMYTEKAL--D--IDNLSQYDIDHI
846





WP_003041502
778
QQRLKLLQDSLK    PVNI   K-----N--VE---NQQLQNDRLFLYYIQNGKDMYTGETL--D--INNLSQYDIDHI
840





WP_037593752
779
QQRLKLLQDSLK    PVNI   K-----N--VE---NQQLQNDRLFLYYIQNGKDMYTGETL--D--INNLSQYDIDHI
841





WP_049516684
779
QQRLKLLQDSLK    PVNI   K-----N--VE---NQQLQNDRLFLYYIQNGKDMYTGETL--D--INNLSQYDIDHI
841





GAD46167
778
QQRLKLLQDSLK    PVNI   K-----N--VE---NQQLQNDRLFLYYIQNGKDMYTGETL--D--INNLSQYDIDHI
840





WP_018363470
779
QQRLKKLQNSLK    PSYI   E----DK--VE---NSHLQNDQLFLYYIQNGKDMYTGDEL--D--IDHLSDYDIDHI
849





WP_003043819
787
RERKKRIEEGIK    ELES   QILKENP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
850





WP_006269658
778
QQRLKLLQDSLK    PVNI   K-----N--VE---NQQLQNDRLFLYYIQNGKDMYTGETL--D--INNLSQYDIDHI
840





WP_048800889
778
QQRLKLLQDSLT    PVSI   K-----N--VE---NQQLQNDRLFLYYIQNGKDMYTGEEL--D--IHHLSDYDIDHI
840





WP_012767106
777
RERMKRIEEGIK    ELGS   QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
840





WP_014612333
777
RERMKRIEEGIK    ELGS   QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
840





WP_015017095
777
RERMKRIEEGIK    ELGS   QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
840





WP_015057649
777
RERMKRIEEGIK    ELGS   QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
840





WP_048327215
777
RERMKRIEEGIK    ELGS   QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
840





WP_049519324
777
RERMKRIEEGIK    ELGS   QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
840





WP_012515931
777
RQRMRKLEETAK    KLGS   NILKEHP--VD---NSQLQNDKRYLYYLQNGKDMYTGDDL--D--IDYLSSYDIDHI
840





WP_021320964
777
RQRMRKLEETAK    KLGS   NILKEHP--VD---NSQLQNDKRYLYYLQNGKDMYTGDDL--D--IDYLSSYDIDHI
840





WP_037581760
777
RQRMRKLEETAK    KLGS   NILKEHP--VD---NSQLQNDKRYLYYLQNGKDMYTGDDL--D--IDYLSSYDIDHI
840





WP_004232481
778
NQRLKRLQDSLK    PSYV   D----SK--VE---NSHLQNDRLFLYYIQNGKDMYTGEEL--D--IDHLSDYDIDHI
848





WP_009854540
779
QQRLKKLQSSLK    PSYI   E----DK--VE---NSHLQNDQLFLYYIQNGKDMYTGDEL--D--IDHLSDYDIDHI
849





WP_012962174
779
QQRLKKLQDSLK    PSYI   E----GK--VE---NNHLQDDRLFLYYIQNGKDMYTGDEL--D--IDHLSDYDIDHI
849





WP_039695303
781
QQRLKKLQNSLK    PSYI   E----DK--VE---NSHLQNDQLFLYYIQNGKDMYTGDEL--D--IDHLSDYDIDHI
851





WP_014334983
778
NQRLKRLQDSLK    PSYV   D----SK--VE---NSHLQNDRLFLYYIQNGKDMYTGEEL--D--IDRLSDYDIDHI
848





WP_003099269
778
RQRLRKLEEVHK    NTGS   KILKEYN--VS---NTQLQSDRLYLYLLQDGKDMYTGKEL--D--YDNLSQYDIDHI
841





AHY15608
778
RQRLRKLEEVHK    NTGS   KILKEYN--VS---NTQLQSDRLYLYLLQDGKDMYTGKEL--D--YDNLSQYDIDHI
841





AHY17476
778
RQRLRKLEEVHK    NTGS   KILKEYN--VS---NTQLQSDRLYLYLLQDGKDMYTGKEL--D--YDNLSQYDIDHI
841





ESR09100

------------    ----   ---------------------------------------------------------






AGM98575
778
RQRLRKLEEVHK    NTGS   KILKEYN--VS---NTQLQSDRLYLYLLQDGKDMYTGKEL--D--YDNLSQYDIDHI
841





ALF27331
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_018372492
791
AQRLKKIEDGIK    -LGS   DLLKQNP--IQd--NKDLQKEKLFLYYMQNGIDLYTGQPLncD--PDSLAFYDVDHI
857





WP_045618028
777
QQRYKRIEDALK    NLAH   NILKEHP--TD---NIQLQNDRLFLYYLQNGKDMYTGKSL--D--INQLSSCDIDHI
844





WP_045635197
776
QQRYKRIEDSLK    ILAS   NILKENP--TD---NNQLQNDRLFLYYLQNGKDMYTGEAL--D--INQLSSYDIDHI
843





WP_002263549
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_002263887
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_002264920
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_002269043
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_002269448
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_002271977
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_002272766
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_002273241
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_002275430
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_002276448
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_002277050
779
QQRYKRLKEAIK    DLNH   KILKEHP--TD---NQALQNNRLFLYYLQNGRDMYTGESL--D--INRLSDYDIDHV
846





WP_002277364
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---HSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_002279025
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_002279859
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_002280230
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_002281696
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_002282247
779
QQRYKRLKEAIK    DLNH   KILKEHP--TD---NQALQNNRLFLYYLQNGRDMYTGESL--D--INRLSDYDIDHV
846





WP_002282906
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_002283846
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_002287255
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---HSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_002288990
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_002289641
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_002290427
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_002295753
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_002296423
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_002304487
788
QKRYKRLEEAIK    DLNH   KILKEHP--TD---NQALQNDRLFLYYLQNGRDMYTEDPL--D--INRLSDYDIDHI
855





WP_002305844
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_002307203
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_002310390
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_002352408
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_012997688
778
QQRLKGLTDSIK    EFGS   QILKEHP--VK---HSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_014677909
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_019312892
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_019313659
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_019314093
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_019315370
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_019803776
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_019805234
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_024783594
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_024784288
779
QQRYKRLKEAIK    DLNH   KILKEHP--TD---NQALQNNRLFLYYLQNGRDMYTGESL--D--INRLSDYDIDHV
846





WP_024784666
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---HSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_024784894
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_024786433
779
QQRYKRLKEAIK    DLNH   KILKEHP--TD---NQALQNNRLFLYYLQNGRDMYTGESL--D--INRLSDYDIDHV
846





WP_049473442
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





WP_049474547
778
QQRLKGLTDSIK    EFGS   QILKEHP--VE---NSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
841





EMC03581
771
QQRLKGLTDSIK    EFGS   QILKEHP--VE---HSQLQNDRLFLYYLQNGRDMYTGEEL--D--IDYLSQYDIDHI
834





WP_000428612
779
QQRYKRIEDSLK    ILAS   KILKEHP--TD---NIQLQNDRLFLYYLQNGRDMYTGKPL--D--INQLSSYDIDHI
846





WP_000428613
777
QQRYKRIEDALK    NLAS   NILKEHP--TN---NIQLQNDRLFLYYLQNGRDMYTGKPL--D--INQLSSYDIDHI
844





WP_049523028
776
QQRLKTLSDAIS    ELG-   NILKEHP--TD---NIQLQNDRLFLYYLQNGKDMYTGEAL--D--INQLSNYDIDHI
839





WP_003107102
747
RERLRKLEEVHK    NIGS   KILKEHE--IS---NAQLQSDRVYLYLLQDGKDMYTGKDL--D--FDRLSQYDIDHI
810





WP_054279288
779
RERMKRVQEVLK    KLGS   QLLKEHP--VE---NFQLQNERLYLYYLQNGKDMYTGEEL--S--ISNLSHYDIDHI
842





WP_049531101
777
QQRYKRIEDSLK    ILAS   NILKEHP--TD---NIQLQNDRLFLYYLQNGKDMYTGNPL--D--INHLSSYDIDHI
844





WP_049538452
777
QQRYKRIENSLK    ILAS   KILKEHP--TD---NNQLQNDRLFLYYLQNGKDMYTGEAL--D--INQLSSCDIDHI
844





WP_049549711
777
QQRYKRIEDSLK    ILAS   NILKENP--TD---NNQLQNDRLFLYYLQNGKDMYTGEAL--D--INQLSSYDIDHI
844





WP_007896501
781
RQRLKKIKEVHK    KTGS   RILEDNSerIT---NLTLQDNRLYLYLLQDGKDMYTGQDL--D--INNLSQYDIDHI
846





EFR44625
733
RQRLKKIKEVHK    KTGS   RILEDNSerIT---NLTLQDNRLYLYLLQDGKDMYTGQDL--D--INNLSQYDIDHI
798





WP_002897477
776
QQRYKRIEDALK    NLAP   NILKENP--TD---NIQLKNDRLFLYYLQNGKDMYTGKPL--D--INQLSSYDIDHI
843





WP_002906454
776
QQRYKRIEDALK    NLAP   NILKENP--TD---NIQLQNDRLFLYYLQNGKDMYTGKAI--D--INQLSNYDIDHI
843





WP_009729476
777
QQRYKRIEDSLK    ILAS   KILKEHP--TD---NIQLQNDRLFLYYLQNGKDMYTGEAL--D--INQLSSCDIDHI
844





CQR24647
780
QQRLGSLTKAIQ    DFGS   DILKRYP--VE---NNQLQNDQLYLYYLQNGKDMYTGDTL--D--IHNLSQYDIDHI
843





WP_000066813
779
QQRYKRIEDSLK    NLAS   NILKENP--TD---NIQLQNDRLFLYYLQNGRDMYTGKPL--E--INQLSNYDIDHI
846





WP_009754323
777
QQRYKRIEDALK    NLAP   TISKENP--TD---NIQLQNDRLFLYYLQNGKDMYTGEAL--D--INQLSSYDIDHI
844





WP_044674937
776
QQRYKKIENAIK    NLNS   KILKEYP--TN---NQALQNDRLFLYYLQNGKDMYTDEEL--D--IDQLSQYDIDHI
843





WP_044676715
778
QQRYKKIENAIK    NLNS   KILKEYP--TN---NQALQNDRLFLYYLQNGKDMYTDEEL--D--IDQLSQYDIDHI
845





WP_044680361
778
QQRYKKIENAIK    NLNS   KILKEYP--TN---NQALQNDRLFLYYLQNGKDMYTDEEL--D--IDQLSQYDIDHI
845





WP_044681799
776
QQRYKKIENAIK    NLNS   KILKEYP--TN---NQALQNDRLFLYYLQNGKDMYTDEEL--D--IDQLSQYDIDHI
843





WP_049533112
778
QQRLKLLQDSLK    PVNI   K-----N--VE---NQQLQNDRLFLYYIQNGKDMYTGETL--D--INNLSQYDIDHI
840





WP_029090905
753
TPRDKFIEKAYA    ETDT   EHLKELK---Qr--SKQLSSQRLFLYFIQNGKCMYSGEHL--D--IERLDSYEVDHI
823





WP_006506696
777
ESKIKKLENVYK    DEQT   SVLEELKg-FDn--TKKISSDSLFLYFTQLGKCMYSGKKL--D--IDSLDKYQIDHI
849





AIT42264
778
RERMKRIEEGIK    ELGS   QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841





WP_034440723
785
KARLKKIQEGLE    NLDS   HVEKQAL---D---EEMLKSPKYYLYCLQNGKDIYTGKDL--D--IGQLQTYDIDHI
848





AKQ21048
778
RERMKRIEEGIK    ELGS   QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841





WP_004636532
781
KERLEKLTEAIK    EFDG   --VKVKD--LK---NENLRNDRLYLYYLQNGRDMYTNEPL--D--INNLSKYDIDHI
845





WP_002364836
789
IQRLKIVEKAMA    EIGS   NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI
852





WP_016631044
740
IQRLKIVEKAMA    EIGS   NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI
803





EMS75795
525
KPRLKALEEALK    SFDS   PLLKEQP--VD---NQALQKDRLYLYYLQNGKDMYTGEAL--D--IDRLSEYDIDHI
588





WP_002373311
789
IQRLKIVEKAMA    EIGS   NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI
852





WP_002378009
789
IQRLKIVEKAMA    EIGS   NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI
852





WP_002407324
789
IQRLKIVEKAMA    EIGS   NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI
852





WP_002413717
789
IQRLKIVEKAMA    EIGS   NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI
852





WP_010775580
791
IQRLKIVEKAMA    EIGS   NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI
854





WP_010818269
789
IQRLKIVEKAMA    EIGS   NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI
852





WP_010824395
789
IQRLKIVEKAMA    EIGS   NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI
852





WP_016622645
789
IQRLKIVEKAMA    EIGS   NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI
852





WP_033624816
789
IQRLKIVEKAMA    EIGS   NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI
852





WP_033625576
789
IQRLKIVEKAMA    EIGS   NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI
852





WP_033789179
789
IQRLKIVEKAMA    EIGS   NLLKEQP--TT---NEQLRDTRLFLYYMQNGKDMYTGDEL--S--LHRLSHYDIDHI
852





WP_002310644
789
RPRLKALEESLK    DFGS   QLLKEYP--TD---NSSLQKDRLYLYYLQNGRDMYTGAPL--D--IHRLSDYDIDHI
852





WP_002312694
790
RPRLKALEESLK    DFGS   QLLKEYP--TD---NSSLQKDRLYLYYLQNGRDMYTGAPL--D--IHRLSDYDIDHI
853





WP_002314015
790
RPRLKALEESLK    DFGS   QLLKEYP--TD---NSSLQKDRLYLYYLQNGRDMYTGAPL--D--IHRLSDYDIDHI
853





WP_002320716
790
RPRLKALEESLK    DFGS   QLLKEYP--TD---NSSLQKDRLYLYYLQNGRDMYTGAPL--D--IHRLSDYDIDHI
853





WP_002330729
789
RPRLKALEESLK    DFGS   QLLKEYP--TD---NSSLQKDRLYLYYLQNGRDMYTGAPL--D--IHRLSDYDIDHI
852





WP_002335161
790
RPRLKALEESLK    DFGS   QLLKEYP--TD---NSSLQKDRLYLYYLQNGRDMYTGAPL--D--IHRLSDYDIDHI
853





WP_002345439
790
RPRLKALEESLK    DFGS   QLLKEYP--TD---NSSLQKDRLYLYYLQNGRDMYTGAPL--D--IHRLSDYDIDHI
853





WP_034867970
781
SPRLKALENGLK    QIGS   TLLKEQP--TD---NKALQKERLYLYYLQNGRDMYTGEPL--E--IENLHQYEVDHI
844





WP_047937432
790
RPRLKALEESLK    DFGS   QLLKEYP--TD---NSSLQKDRLYLYYLQNGRDMYTGAPL--D--IHRLSDYDIDHI
853





WP_010720994
781
KPRLKALENGLK    QIGS   TLLKEQP--TD---NKALQKERLYLYYLQNGRDMYTGEPL--E--IENLHQYEVDHI
844





WP_010737004
781
SPRLKALENGLK    QIGS   TLLKEQP--TD---NKALQKERLYLYYLQNGRDMYTGEPL--E--IENLHQYEVDHI
844





WP_034700478
781
KPRLKALENGLK    QIGS   TLLKEQP--TD---NKALQKERLYLYYLQNGRDMYTGEPL--E--IENLHQYEVDHI
844





WP_007209003
782
KPRLKGIENGLK    EFSD   SVLKGSS--ID---NKQLQNDRLYLYYLQNGKDMYTGHEL--D--IDHLSTYDIDHI
845





WP_023519017
775
RPRLKALEEALK    NIDS   PLLKDYP--TD---NQALQKDRLYLYYLQNGKDMYTGEPL--E--IHRLSEYDIDHI
838





WP_010770040
782
NPRMKALEEAMR    NLRS   NLLKEYP--TD---NQALQNDRLYLYYLQNGKDMYTGLDL--S--LHNLSSYDIDHI
845





WP_048604708
779
RPRLKNLEKAID    DLDS   EILKKHP--VD---NKALQKDRLYLYYLQNGKDMYTNEEL--D--IHKLSTYDIDHI
842





WP_010750235
784
KPRLKSLEEALK    NFDS   QLLKERP--VD---NQSLQKDRLYLYYLQNGKDMYTGESL--D--IDRLSEYDIDHI
847





AII16583
817
RERMKRIEEGIK    ELGS   QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
880





WP_029073316
789
DSFVNQMLKLYK    DFED   EANKHLKg-EDa--KSKIRSERLKLYYTQMGKCMYTGKSL--D--IDRLDTYQVDHI
860





WP_031589969
789
DSFVNQMLKLYK    DFED   EANKHLKg-EDa--KSKIRSERLKLYYTQMGKCMYTGKSL--D--IDRLDTYQVDHI
860





KDA45870
772
EDRVQQIVKNLK    ELPK   ------P---S---NAELSDERKYLYCLQNGRDMYTGAPL--D--YDHLQFYDVDHI
833





WP_039099354
789
KRQVEQVYQNIS    EL--   EIRNELK---Dl-sNSALSNTRLFLYFMQGGRDMYTGDSL--N--IDRLSTYDIDHI
856





AKP02966
786
RLQSKLLNKANG    -LVP   EELKKHKn--D------LSSERIMLYFLQNGKSLYSEESL--N--INKLSDYQVDHI
858





WP_010991369
781
RPRYKSLEKAIK    EFGS   QILKEHP--TD---NQELRNNRLYLYYLQNGKDMYTGQDL--D--IHNLSNYDIDHI
844





WP_033838504
781
RPRYKSLEKAIK    EFGS   QILKEHP--TD---NQELRNNRLYLYYLQNGKDMYTGQDL--D--IHNLSNYDIDHI
844





EHN60060
784
RPRYKSLEKAIK    EFGS   QILKEHP--TD---NQELRNNRLYLYYLQNGKDMYTGQDL--D--IHNLSNYDIDHI
847





EFR89594
550
RPRYKSLEKAIK    EFGS   QILKEHP--TD---NQELKNNRLYLYYLQNGKDMYTGQDL--D--IHNLSNYDIDHI
613





WP_038409211
781
KPRFISLEKAIK    EFGS   QILKEHP--TD---NQCLKNDRLYLYYLQNGKDMYTGKEL--D--IHNLSNYDIDHI
844





EFR95520
400
KPRFISLEKAIK    EFGS   QILKEHP--TD---NQCLKNDRLYLYYLQNGKDMYTGKEL--D--IHNLSNYDIDHI
463





WP_003723650
781
KPRYKSLEKAIK    EFGS   QILKEHP--TD---NQELKNNRLYLYYLQNGKDMYTGQEL--D--IHNLSNYDIDHI
844





WP_003727705
781
KPRYKSLEKAIK    DEGS   QILKEHP--TD---NQELKNNRLYLYYLQNGKDIYTGQEL--D--IHNLSNYDIDHI
844





WP_003730785
781
KPRYKSLEKAIK    DEGS   QILKEHP--TD---NQELKNNRLYLYYLQNGKDIYTGQEL--D--IHNLSNYDIDHI
844





WP_003733029
781
KPRYKSLEKAIK    EFGS   QILKEHP--TD---NQELKNNRLYLYYLQNGKDMYTGQEL--D--IHNLSNYDIDHI
844





WP_003739838
781
RPRYKSLEKAIK    EFGS   QILKEHP--TD---NQELRNNRLYLYYLQNGKDMYTGQEL--D--IHNLSNYDIDHI
844





WP_014601172
781
KPRYKSLEKAIK    EFGS   KILKEHP--TD---NQELKNNRLYLYYLQNGKDMYTGQEL--D--IHNLSNYDIDHI
844





WP_023548323
781
KPRYKSLEKAIK    EFGS   QILKEHP--TD---NQELKNNRLYLYYLQNGKDMYTGQEL--D--IHNLSNYDIDHI
844





WP_031665337
781
KPRYKSLEKAIK    EFGS   QILKEHP--TD---NQELKNNRLYLYYLQNGKDMYTGQEL--D--IHNLSNYDIDHI
844





WP_031669209
781
KPRYKSLEKAIK    EFGS   QILKEHP--TD---NQELKNNRLYLYYLQNGKDMYTGQEL--D--IHNLSNYDIDHI
844





WP_033920898
781
KPRYKSLEKAIK    EFGS   QILKEHP--TD---NQELKNNRLYLYYLQNGKDMYTGQEL--D--IHNLSNYDIDHI
844





AKI42028
784
KPRYKSLEKAIK    EFGS   KILKEHP--TD---NQELKNNRLYLYYLQNGKDMYTGQEL--D--IHNLSNYDIDHI
847





AKI50529
784
KPRYKSLEKAIK    EFGS   QILKEHP--TD---NQELKNNRLYLYYLQNGKDMYTGQEL--D--IHNLSNYDIDHI
847





EFR83390
229
RPRYKSLEKAIK    EFGS   QILKEHP--TD---NQELKNNRLYLYYLQNGKDIYTGQEL--D--IHNLSNYDIDHI
292





WP_046323366
781
KPRFTSLEKAIK    ELGS   QILKEHP--TD---NQGLKNDRLYLYYLQNGKDMYTGQEL--D--IHNLSNYDIDHV
844





AKE81011
794
RERMKRIEEGIK    ELGS   QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
857





CUO82355
781
ESKIKKLENVYK    DEQT   SVLEELKg-FDn--TKKISSDSLFLYFTQLGKCMYSGKKL--D--IDSLDKYQIDHI
853





WP_033162887
784
ESKIAKLQKIYE    NLQT   QVYESLKk-EDa--KKRMETDALYLYYLQMGKSMYSGKPL--D--IDKLSTYQIDHI
855





AGZ01981
811
RERMKRIEEGIK    ELGS   QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
874





AKA60242
778
RERMKRIEEGIK    ELGS   QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDAI
841





AKS40380
778
RERMKRIEEGIK    ELGS   QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDHI
841





4UN5_B
782
RERMKRIEEGIK    ELGS   QILKEHP--VE---NTQLQNEKLYLYYLQNGRDMYVDQEL--D--INRLSDYDVDAI
845





WP_010922251
842


embedded image


910


WP_039695303
852
IPQAFIKDDSIDNRVLTSSAKNRG-KSDD--VP   S--LDIVRARKA-EWVRLYKSGLISKRKFDNLTKA--ERGGLTE
920





WP_045635197
844
IPQAFIKDDSLDNRVLTSSKDNRG-KSDN--VP   S--IEVVQKRKA-FWQQLLDSKLISERKFNNLTKA--ERGGLDE
912





5AXW_A
562
IPRSVSFDNSFNNKVLVKQEEASK-KGNR--TP   Fqy-LSSSDSKI-SYETFKKHILNLAKGKGRISKTk-KEYLLEE
632





WP_009880683
526
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWKQLLNAKLITQRKFDNLTKA--ERGGLSE
594





WP_010922251
842
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
910





WP_011054416
842
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
910





WP_011284745
842
VPQSFIKDDSIDNKVLTRSDKNRG-KSNN--VP   S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
910





WP_011285506
842
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
910





WP_011527619
842
VPQSFIKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
910





WP_012560673
842
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWKQLLNAKLITQRKFDNLTKA--ERGGLSE
910





WP_014407541
841
VPQSFIKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
909





WP_020905136
842
VPQSFIKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
910





WP_023080005
841
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
909





WP_023610282
841
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
909





WP_030125963
842
VPQSFIKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
910





WP_030126706
842
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
910





WP_031488318
842
VPQSFIKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWKQLLNAKLITQRKFDNLTKA--ERGGLSE
910





WP_032460140
842
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWKQLLNAKLITQRKFDNLTKA--ERGGLSE
910





WP_032461047
842
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWKQLLNAKLITQRKFDNLTKA--ERGGLSE
910





WP_032462016
842
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
910





WP_032462936
842
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWKQLLNAKLITQRKFDNLTKA--ERGGLSE
910





WP_032464890
842
VPQSFIKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
910





WP_033888930
667
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
735





WP_038431314
842
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
910





WP_038432938
841
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
909





WP_038434062
842
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWKQLLNAKLITQRKFDNLTKA--ERGGLSE
910





BAQ51233
753
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
821





KGE60162
17
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
85





KGE60856

---------------------------------   --------------------------------------------






WP_002989955
842
VPQSFIKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
910





WP_003030002
841
IPQAFIKDNSLDNRVLTRSDKNRG-KSDD--VP   S--IEVVHEMKS-FWSKLLSVKLITQRKFDNLTKA--ERGGLTE
909





WP_003065552
852
IPQAFIKDDSIDNRVLTSSAKNRG-KSDD--VP   S--LDIVRARKA-EWVRLYKSGLISKRKFDNLTKA--ERGGLTE
920





WP_001040076
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_001040078
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_001040080
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_001040081
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_001040083
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_001040085
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_001040087
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_001040088
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_001040089
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_001040090
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_001040091
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_001040092
847
VPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--IDIVKARKA-FWKKLLDAKLISQRKYDNLTKA--ERGGLTP
915





WP_001040094
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--VEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_001040095
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_001040096
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_001040097
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--VEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_001040098
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--VEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_001040099
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--VEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_001040100
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--VEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_001040104
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_001040105
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_001040106
847
VPQAFIKDDSIDNRVLVSSAKNRG-KSDN--VP   S--IDIVKARKA-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_001040107
847
VPQAFIKDDSIDNRVLVSSAKNRG-KSDN--VP   S--IDIVKARKA-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_001040108
847
VPQAFIKDDSIDNRVLVSSAKNRG-KSDN--VP   S--IDIVKARKA-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_001040109
847
VPQAFIKDDSIDNRVLVSSAKNRG-KSDN--VP   S--IDIVKARKA-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_001040110
847
VPQAFIKDDSIDNRVLVSSAKNRG-KSDN--VP   S--IDIVKARKA-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_015058523
847
VPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--IDIVKARKA-FWKKLLDAKLISQRKYDNLTKA--ERGGLTP
915





WP_017643650
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--VEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_017647151
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_017648376
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_017649527
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_017771611
847
VPQAFIKDDSIDNRVLVSSAKNRG-KSDN--VP   S--IDIVKARKA-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_017771984
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





CFQ25032
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





CFV16040
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





KLJ37842
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





KLJ72361
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





KLL20707
861
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
929





KLL42645
847
VPQAFIKDDSIDNRVLVSSAKNRG-KSDN--VP   S--IDIVKARKA-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_047207273
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_047209694
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--VEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_050198062
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_050201642
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_050204027
847
VPQAFIKDDSIDNRVLVSSAKNRG-KSDN--VP   S--IDIVKARKA-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_050881965
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_050886065
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





AHN30376
847
VPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--IDIVKARKA-FWKKLLDAKLISQRKYDNLTKA--ERGGLTP
915





EAO78426
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





CCW42055
847
IPQAFIKDDSIDNRVLVSSAKNRG-KSDD--VP   S--LEIVKDCKV-FWKKLLDAKLMSQRKYDNLTKA--ERGGLTS
915





WP_003041502
841
IPQAYIKDDSFDNRVLTSSSENRG-KSDN--VP   S--IEVVCARKA-DWMRLRKAGLISQRKFDNLTKA--ERGGLTE
909





WP_037593752
842
IPQAFIKDNSLDNRVLTRSDKNRG-KSDD--VP   S--IEVVHEMKS-FWSKLLSVKLITQRKFDNLTKA--ERGGLTE
910





WP_049516684
842
IPQAFIKDNSLDNRVLTRSDKNRG-KSDD--VP   S--IEVVHEMKS-FWSKLLSVKLITQRKFDNLTKA--ERGGLTE
910





GAD46167
841
IPQAFIKDNSLDNRVLTRSDKNRG-KSDD--VP   S--IEVVHEMKS-FWSKLLSVKLITQRKFDNLTKA--ERGGLTE
909





WP_018363470
850
IPQAFIKDDSIDNRVLTSSAKNRG-KSDD--VP   S--LGIVRARKA-EWVRLYKSGLISKRKFDNLTKA--ERGGLTE
918





WP_003043819
851
VPQSFIKDDSIDNKVLTRSVENRG-KSDN--VP   S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
919





WP_006269658
841
IPQAFIKDNSLDNRVLTRSDKNRG-KSDD--VP   S--IEVVHEMKS-FWSKLLSVKLITQRKFDNLTKA--ERGGLTE
909





WP_048800889
841
IPQAFIKDDSIDNRVLTSSAKNRG-KSDN--VP   N--LEVVCDRKA-DWIRLREAGLISQRKFDNLTKA--ERGGLTE
909





WP_012767106
841
VPQSFIKDDSIDNKILTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
909





WP_014612333
841
VPQSFIKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
909





WP_015017095
841
VPQSFIKDDSIDNKVLTRSDKNRG-KSDD--VP   S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
909





WP_015057649
841
VPQSFIKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
909





WP_048327215
841
VPQSFIKDDSIDNKVLTRSDKNRG-KSDD--VP   S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
909





WP_049519324
841
VPQSFIKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
909





WP_012515931
841
IPQSFIKNNSIDNKVLTSQGANRG-KLDN--VP   S--EAIVRKMKG-YWQSLLRAGAISKQKFDNLTKA--ERGGLTQ
909





WP_021320964
841
IPQSFIKNNSIDNKVLTSQGANRG-KLDN--VP   S--EAIVRKMKG-YWQSLLRAGAISKQKFDNLTKA--ERGGLTQ
909





WP_037581760
841
IPQSFIKNNSIDNKVLTSQGANRG-KLDN--VP   S--EAIVRKMKG-YWQSLLRAGAISKQKFDNLTKA--ERGGLTQ
909





WP_004232481
849
IPQAFIKDNSIDNRVLTSSAKNRG-KSDD--VP   S--IEIVRNRKS-YWYKLYKSGLISKRKFDNLTKA--ERGGLTE
917





WP_009854540
850
IPQAFIKDDSIDNRVLTSSAKNRG-KSDD--VP   S--LDIVRARKA-EWVRLYKSGLISKRKFDNLTKA--ERGGLTE
918





WP_012962174
850
IPQAFIKDDSIDNRVLTSSAKNRG-KSDD--VP   S--LDIVHDRKA-DWIRLYKSGLISKRKFDNLTKA--ERGGLTE
918





WP_039695303
852
IPQAFIKDDSIDNRVLTSSAKNRG-KSDD--VP   S--LDIVRARKA-EWVRLYKSGLISKRKFDNLTKA--ERGGLTE
920





WP_014334983
849
IPQAFIKDNSIDNKVLTSSAKNRG-KSDD--VP   S--IEIVRNRRS-YWYKLYKSGLISKRKFDNLTKA--ERGGLTE
917





WP_003099269
842
IPQSFIKDNSIDNTVLTTQASNRG-KSDN--VP   N--IETVNKMKS-FWYKQLKSGAISQRKFDHLTKA--ERGALSD
910





AHY15608
842
IPQSFIKDNSIDNTVLTTQASNRG-KSDN--VP   N--IETVNKMKS-FWYKQLKSGAISQRKFDHLTKA--ERGALSD
910





AHY17476
842
IPQSFIKDNSIDNTVLTTQASNRG-KSDN--VP   N--IETVNKMKS-FWYKQLKSGAISQRKFDHLTKA--ERGALSD
910





ESR09100

---------------------------------   --------------------------------------------






AGM98575
842
IPQSFIKDNSIDNTVLTTQASNRG-KSDN--VP   N--IETVNKMKS-FWYKQLKSGAISQRKFDHLTKA--ERGALSD
910





ALF27331
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_018372492
858
VPRSYIKNDSEDNKVLTTSKGNRK-KLDD--VP   A--KEVVEKMEN-TWRRLHAAGLISDIKLSYLMKGe-----LTE
923





WP_045618028
845
IPQAFIKDDSLDNRVLTSSKDNRG-KSDN--VP   S--LEIVQKRKA-FWQQLLDSKLISERKFNNLTKA--ERGGLDE
913





WP_045635197
844
IPQAFIKDDSLDNRVLTSSKDNRG-KSDN--VP   S--IEVVQKRKA-FWQQLLDSKLISERKFNNLTKA--ERGGLDE
912





WP_002263549
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_002263887
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_002264920
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKG--ERGGLTD
910





WP_002269043
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_002269448
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--EDVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_002271977
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_002272766
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KDVVRKMKP-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_002273241
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_002275430
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KDVVRKMKP-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_002276448
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_002277050
847
IPQAFIKDNSIDNRVLTSSKANRG-KSDD--VP   S--EDVVNRMRP-FWNKLLSSGLISQRKYNNLTKK--E---LTP
912





WP_002277364
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KNVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_002279025
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KDVVRKMKP-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_002279859
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKG--ERGGLTD
910





WP_002280230
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_002281696
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KNVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_002282247
847
IPQAFIKDNSIDNRVLTSSKANRG-KSDD--VP   S--EDVVNRMRP-FWNKLLSSGLISQRKYNNLTKK--E---LTL
912





WP_002282906
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_002283846
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KNVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_002287255
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KNVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_002288990
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_002289641
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_002290427
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKG--ERGGLTD
910





WP_002295753
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_002296423
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KNVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_002304487
856
IPQAFIKDNSIDNRVLTRSDKNRG-KSDD--VP   S--EEVVHKMKP-FWSKLLSAKLITQRKFDNLTKA--ERGGLTD
924





WP_002305844
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_002307203
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_002310390
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKG--ERGGLTD
910





WP_002352408
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_012997688
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KNVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_014677909
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_019312892
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KNVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_019313659
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_019314093
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_019315370
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KDVVRKMKP-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_019803776
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_019805234
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKG--ERGGLTD
910





WP_024783594
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_024784288
847
IPQAFIKDNSIDNRVLTSSKANRG-KSDD--VP   S--EDVVNRMRP-FWNKLLSSGLISQRKYNNLTKK--E---LTL
912





WP_024784666
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KNVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_024784894
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_024786433
847
IPQAFIKDNSIDNRVLTSSKANRG-KSDD--VP   S--EDVVNRMRP-FWNKLLSSGLISQRKYNNLTKK--E---LTL
912





WP_049473442
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KDVVRKMKP-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





WP_049474547
842
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KDVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
910





EMC03581
835
IPQAFIKDNSIDNRVLTSSKENRG-KSDD--VP   S--KNVVRKMKS-YWSKLLSAKLITQRKFDNLTKA--ERGGLTD
903





WP_000428612
847
VPQAFIKDDSLDNRVLTSLKDNRG-KSDN--VP   S--LEVVEKMKT-FWQQLLDSKLISYRKFNNLTKA--ERGGLDE
915





WP_000428613
845
VPQAFIKDDSLDNRVLTSLKDNRG-KSDN--VP   S--IEVVQKRKA-FWQQLLDSKLISERKFNNLTKA--ERGGLDE
913





WP_049523028
840
IPQAFIKDDSLDNRVLTSSKDNRG-KSDN--VP   S--LEIVEKMKG-FWQQLLDSKLISERKFNNLTKA--ERGGLDE
908





WP_003107102
811
IPQSFIKDNSIDNIVLTSQESNRG-KSDN--VP   Y--IAIVNKMKS-YWQHQLKSGAISQRKFDNLTKA--ERGGLSE
879





WP_054279288
843
IPRSFIKDDSIDNKVLTRSEHNRG-KTDN--VP   S--IEVVKRMKP-YWQKLLDTKVISQRKFDNLTKA--ERGGLQE
911





WP_049531101
845
IPQAFIKDDSLDNRVLTSSKDNRG-KSDN--VP   S--LEVVQKRKA-FWQQLLESKLISERKFNNLTKA--ERGGLNE
913





WP_049538452
845
IPQAFIKDDSLDNRVLTSSKENRG-KSDN--VP   C--LEVVDKMKV-FWQQLLDFKLISYRKFNNLTKA--ERGGLDE
913





WP_049549711
845
IPQAFIKDDSLDNRVLTSSKDNRG-KSDN--VP   S--LEVVQKRKA-FWQQLLDSKLISERKFNNLTKAerERDGLNE
915





WP_007896501
847
IPQSFIKDNSIDNLVLTTQKANRG-KSDN--VP   S--IEVVRDMKDrVWRRQLANGAISRQKFDHLTKA--ERGGLAD
916





EFR44625
799
IPQSFIKDNSIDNLVLTTQKANRG-KSDN--VP   S--IEVVRDMKDrVWRRQLANGAISRQKFDHLTKA--ERGGLAD
868





WP_002897477
844
IPQAFIKDDSIDNRVLTSSKDNRG-KSDN--VP   S--LEVVQKRKA-FWQQLLDSKLISERKFNNLTKA--ERGGLDE
912





WP_002906454
844
IPQAFIKDDSLDNRVLTSSKDNRG-KSDN--VP   S--IEVVQKRKA-FWQQLLDSKLISERKFNNLTKA--KRGGLDE
912





WP_009729476
845
IPQAFIKDDSLDNRVLTSSKDNRG-KSDN--VP   S--LEVVDKMKV-FWQQLLDSKLISYRKFNNLTKA--ERGGLNE
913





CQR24647
844
IPQSFIKDNSLDNRVLTNSKSNRG-KSDN--VP   S--NEVVKRMKG-FWLKQLDAKLISQRKFDNLTKA--ERGGLSA
912





WP_000066813
847
IPQAFIKDDSLDNRVLTSSKDNRG-KSDN--VP   S--LEVVEKMKA-FWQQLLDSKLISERKFNNLTKAerERGGLNE
917





WP_009754323
845
IPQAFIKDDSLDNRVLTSSKDNRG-KSDN--VP   S--LEVVKKRKA-FWQQLLDSKLISERKFNNLTKA--ERGGLDE
913





WP_044674937
844
IPQAFIKDDSLDNKVLTKSAKNRG-KSDD--VP   S--LEIVHKKKN-FWKQLLDSQLISQRKFDNLTKA--ERGGLTN
912





WP_044676715
846
IPQAFIKDDSLDNKVLTKSAKNRG-KSDD--VP   S--LEIVHKKKN-FWKQLLDSQLISQRKFDNLTKA--ERGGLTN
914





WP_044680361
846
IPQAFIKDDSLDNKVLTKSAKNRG-KSDD--VP   S--LEIVHKKKN-FWKQLLDSQLISQRKFDNLTKA--ERGGLTN
914





WP_044681799
844
IPQAFIKDDSLDNKVLTKSAKNRG-KSDD--VP   S--LEIVHKKKN-FWKQLLDSQLISQRKFDNLTKA--ERGGLTN
912





WP_049533112
841
IPQAFIKDDSEDNRVLTSSSENRG-KSDN--VP   S--IEVVRARKA-DWMRLRKAGLISQRKFDNLTKA--ERGGLTE
909





WP_029090905
824
LPQSYIKDNSIENLALVKKVENQR-KKDSllLN   S---SIINQNYS-RWEQLKNAGLIGEKKFRNLTRTk-----ITD
890





WP_006506696
850
VPQSLVKDDSEDNRVLVVPSENQR-KLDDlvVP   ---FDIRDKMYR-FWKLLFDHELISPKKFYSLIKTe-----YTE
916





AIT42264
842
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
910





WP_034440723
849
IPRSFITDNSEDNLVLTSSTVNRG-KLDN--VP   Sp--DIVRQQKG-FWKQLLRAGLMSQRKFNNLTKGk-----LTD
914





AKQ21048
842
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
910





WP_004636532
846
IPQSFTTDNSIDNKVLVSRTKNQGnKSDD--VP   S--INIVHKMKP-FWRQLHKAGLISDRKEKNLTKA--EHGGLTE
915





WP_002364836
853
IPQSFMKDDSLDNLVLVGSTENRG-KSDD--VP   S--KEVVKDMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL
921





WP_016631044
804
IPQSFMKDDSLDNLVLVGSTENRG-KSDD--VP   S--KEVVKDMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL
872





EMS75795
589
IPRSFIVDNSIDNKVLVSSKENRL-KMDD--VP   D--QKVVIRMRR-YWEKLLRANLISERKFAYLTKLe-----LTP
654





WP_002373311
853
IPQSFMKDDSLDNLVLVGSTENRG-KSDD--VP   S--KKVVKKMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL
921





WP_002378009
853
IPQSFMKDDSLDNLVLVGSTENRG-KSDD--VP   S--KEVVKDMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL
921





WP_002407324
853
IPQSFMKDDSLDNLVLVGSTENRG-KSDD--VP   S--KEVVKDMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL
921





WP_002413717
853
IPQSFMKDDSLDNLVLVGSTENRG-KSDD--VP   S--KEVVKDMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL
921





WP_010775580
855
IPQSFMKDDSLDNLVLVGSTENRG-KSDD--VP   S--KEVVKKMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL
923





WP_010818269
853
IPQSFMKDDSLDNLVLVGSTENRG-KSDD--VP   S--KEVVKDMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL
921





WP_010824395
853
IPQSFMKDDSLDNLVLVGSTENRG-KSDD--VP   S--KEVVKDMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL
921





WP_016622645
853
IPQSFMKDDSLDNLVLVGSTENRG-KSDD--VP   S--KEVVKDMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL
921





WP_033624816
853
IPQSFMKDDSLDNLVLVGSTENRG-KSDD--VP   S--KEVVKKMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL
921





WP_033625576
853
IPQSFMKDDSLDNLVLVGSTENRG-KSDD--VP   S--KEVVKKMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL
921





WP_033789179
853
IPQSFMKDDSLDNLVLVGSTENRG-KSDD--VP   S--KEVVKKMKA-YWEKLYAAGLISQRKFQRLTKG--EQGGLTL
921





WP_002310644
853
IPRSFTTDNSIDNKVLVSSKENRL-KKDD--VP   S--EKVVKKMRS-FWYDLYSSKLISKRKLDNLTKIk-----LTE
918





WP_002312694
854
IPRSFTTDNSIDNKVLVSSKENRL-KKDD--VP   S--EKVVKKMRS-FWYDLYSSKLISKRKLDNLTKIk-----LTE
919





WP_002314015
854
IPRSFTTDNSIDNKVLVSSKENRL-KKDD--VP   S--EKVVKKMRS-FWYDLYSSKLISKRKLDNLTKIk-----LTE
919





WP_002320716
854
IPRSFTTDNSIDNKVLVSSKENRL-KKDD--VP   S--EKVVKKMRS-FWYDLYSSKLISKRKLDNLTKIk-----LTE
919





WP_002330729
853
IPRSFTTDNSIDNKVLVSSKENRL-KKDD--VP   S--EKVVKKMRS-FWYDLYSSKLISKRKLDNLTKIk-----LTE
918





WP_002335161
854
IPRSFTTDNSIDNKVLVSSKENRL-KKDD--VP   S--EKVVKKMRS-FWYDLYSSKLISKRKLDNLTKIk-----LTE
919





WP_002345439
854
IPRSFTTDNSIDNKVLVSSKENRL-KKDD--VP   S--EKVVKKMRS-FWYDLYSSKLISKRKLDNLTKIk-----LTE
919





WP_034867970
845
IPRSFIVDNSIDDKVLVASKQNQK-KRDD--VP   K--KQIVNEQRI-FWNQLKEAKLISTKKYAYLTKIe-----LTP
910





WP_047937432
854
IPRSFTTDNSIDNKVLVSSKENRL-KKDD--VP   S--EKVVKKMRS-FWYDLYSSKLISKRKLDNLTKIk-----LTE
919





WP_010720994
845
IPRSFIVDNSIDNKVLVASKQNQK-KRDD--VP   K--KQIVNEQRI-FWNQLKEAKLISPKKYAYLTKIe-----LTP
910





WP_010737004
845
IPRSFIVDNSIDNKVLVASKQNQK-KRDD--VP   K--KQIVNEQRI-FWNQLKEAKLISPKKYAYLTKIe-----LTP
910





WP_034700478
845
IPRSFIVDNSIDNKVLVASKQNQK-KRDD--VP   N--KQIVNEQRI-FWNQLKEAKLISPKKYAYLTKIe-----LTP
910





WP_007209003
846
IPQSFLTDNSIDNRVLTTSKSNRG-KSDN--VP   S--EEVVRKMDR-FWRKLLNAKLISERKYTNLTKKe-----LTE
911





WP_023519017
839
IPRSFIVDNSLDNKVLVSSKVNRG-KLDN--AP   D--PLVVKRMRS-HWEKLHQAKLISDKKLANLTKQn-----LTE
904





WP_010770040
846
VPQSFTTDNSLDNRVLVSSKENRG-KKDD--VP   S--KEVVQKNIT-LWETLKNSNLISQKKYDNLTKG--LRGGLTE
914





WP_048604708
843
IPQSFIVDNSLDNRVLVSSSKNRG-KLDD--VP   S--KEVVKKMRA-FWESLYRSGLISKKKFDNLVKA--ESGGLSE
911





WP_010750235
848
IPRSFIVDHSLDNKVLVSSKENRL-KKDD--VP   D--SKVVKRMKA-YWEKLLRANLISERKFSYLTKLe-----LTD
913





AII16583
881
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
949





WP_029073316
861
VPQSLLKDDSIDNKVLVLSSENQR-KLDDlvIP   ---EMIRNKMFG-FWNKLYENKIISPKKFYSLIKSe-----YSD
927





WP_031589969
861
VPQSLLKDDSIDNKVLVLSSENQR-KLDDlvIP   ---SSIRNKMYG-FWEKLFNNKIISPKKFYSLIKTe-----FNE
927





KDA45870
834
IPQSFLKDDSIENKVLTIKKENVR-KING--LP   S--EAVIQKMGS-FWKKLLDAGAMTNKKYDNLRRNl--HGGLNE
902





WP_039099354
857
LPQSFIKDNSLDNRVLVSQRMNRS-KADQ--VP   S--VELGQKMQI-QWEQMLRAGLITKKKYDNLTLNp--------
923





AKP02966
859
LPRTYIPDDSLENKALVLAKENQR-KADDllLN   S---NVIDKNLE-RWTYMLNNNMMGLKKFKNLTRRv-----ITD
925





WP_010991369
845
VPQSFITDNSIDNLVLTSSAGNRE-KGDD--VP   P--LEIVRKRKV-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTE
913





WP_033838504
845
VPQSFITDNSIDNLVLTSSAGNRE-KGDD--VP   P--LEIVRKRKV-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTE
913





EHN60060
848
VPQSFITDNSIDNLVLTSSAGNRE-KGDD--VP   P--LEIVRKRKV-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTE
916





EFR89594
614
VPQSFITDNSIDNLVLTSSAGNRE-KGND--VP   P--LEIVQKRKV-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTE
682





WP_038409211
845
IPQSFITDNSIDNRVLVSSTANRE-KGDN--VP   L--LEVVRKRKA-FWEKLYQAKLMSKRKFDYLTKA--ERGGLTE
913





EFR95520
464
IPQSFITDNSIDNRVLVSSTANRE-KGDN--VP   L--LEVVRKRKA-FWEKLYQAKLMSKRKFDYLTKA--ERGGLTE
532





WP_003723650
845
VPQSFITDNSIDNLVLTSSAGNRE-KGGD--VP   P--LEIVRKRKV-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTE
913





WP_003727705
845
VPQSFITDNSIDNLVLTSSAGNRE-KGGD--VP   P--LEIVRKRKV-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTE
913





WP_003730785
845
VPQSFITDNSIDNLVLTSSAGNRE-KGGD--VP   P--LEIVRKRKV-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTE
913





WP_003733029
845
VPQSFITDNSVDNLVLTSSAGNRE-KGDN--VP   P--LEIVQKRKI-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTE
913





WP_003739838
845
VPQSFITDNSIDNLVLTSSAGNRE-KGDD--VP   P--LEIVRKRKV-FWEKLFQGNLMSKRKFDYLTKA--ERGGLTE
913





WP_014601172
845
VPQSFITDNSIDNLVLTSSAGNRE-KGGD--VP   P--LEIVRKRKV-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTD
913





WP_023548323
845
VPQSFITDNSIDNLVLTSSAGNRE-KGDN--VP   P--LEIVQKRKI-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTE
913





WP_031665337
845
VPQSFITDNSIDNLVLTSSAGNRE-KGGD--VP   P--LEIVRKRKV-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTE
913





WP_031669209
845
VPQSFITDNSVDNLVLTSSAGNRE-KGDN--VP   P--LEIVQKRKI-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTE
913





WP_033920898
845
VPQSFITDNSIDNLVLTSSAGNRE-KGDN--VP   P--LEIVQKRKI-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTE
913





AKI42028
848
VPQSFITDNSIDNLVLTSSAGNRE-KGGD--VP   P--LEIVRKRKV-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTD
916





AKI50529
848
VPQSFITDNSIDNLVLTSSAGNRE-KGDN--VP   P--LEIVQKRKI-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTE
916





EFR83390
293
VPQSFITDNSIDNLVLTSSAGNRE-KGDD--VP   P--LEIVRKRKV-FWEKLYQGNLMSKRKFDYLTKA--ERGGLTE
361





WP_046323366
845
VPQSFITDNSIDNRVLASSAANRE-KGDN--VP   S--LEVVRKRKV-YWEKLYQAKLMSKRKFDYLTKA--ERGGLTE
913





AKE81011
858
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
926





CUO82355
854
VPQSLVKDDSFDNRVLVLPSENQR-KLDDlvVP   ---FDIRDKMYR-FWKLLFDHELISPKKFYSLIKTe-----YTE
920





WP_033162887
856
LPQSLIKDDSFDNRVLVLPEENQW-KLDSetVP   ---FEIRNKMIG-FWQMLHENGLMSNKKFFSLIRTd-----FSD
922





AGZ01981
875
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
943





AKA60242
842
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
910





AKS40380
842
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
910





4UN5_B
846
VPQSFLKDDSIDNKVLTRSDKNRG-KSDN--VP   S--EEVVKKMKN-YWRQLLNAKLITQRKFDNLTKA--ERGGLSE
914





WP_010922251
911


embedded image


981


WP_039695303
921
AD   KAGFIKRQLVETRQITKHVAQILDARFNTEHDENDKVIR--DVKVITLKSNLVSQFRKDF    EFYKVREINDY
991





WP_045635197
913
RD   KVGFIKRQLVETRQITKHVAQILDARYNTEVNEKDKKNR--TVKIITLKSNLVSNFRKEF    RLYKVREINDY
983





5AXW_A
633
RD   QKDFINRNLVDTRYATRGLMNLLRSYFR---------VNnlDVKVKSINGGFTSFLRRKW    KFKKERNKGYK
702





WP_009880683
595
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVRVITLKSKLVSDFRKDF    QFYKVREINNY
665





WP_010922251
911
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF    QFYKVREINNY
981





WP_011054416
911
LD   KVGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVRVITLKSKLVSDFRKDF    QFYKVREINNY
981





WP_011284745
911
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF    QFYKVREINNY
981





WP_011285506
911
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF    QFYKVREINNY
981





WP_011527619
911
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF    QFYKVREINNY
981





WP_012560673
911
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVRVITLKSKLVSDFRKDF    QFYKVREINNY
981





WP_014407541
910
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF    QFYKVREINNY
980





WP_020905136
911
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF    QFYKVREINNY
981





WP_023080005
910
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF    QFYKVREINNY
980





WP_023610282
910
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF    QFYKVREINNY
980





WP_030125963
911
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF    QFYKVREINNY
981





WP_030126706
911
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF    QFYKVREINNY
981





WP_031488318
911
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF    QFYKVREINNY
981





WP_032460140
911
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVRVITLKSKLVSDFRKDF    QFYKVREINNY
981





WP_032461047
911
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVRVITLKSKLVSDFRKDF    QFYKVREINNY
981





WP_032462016
911
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF    QFYKVREINNY
981





WP_032462936
911
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVRVITLKSKLVSDFRKDF    QFYKVREINNY
981





WP_032464890
911
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF    QFYKVREINNY
981





WP_033888930
736
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF    QFYKVREINNY
806





WP_038431314
911
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF    QFYKVREINNY
981





WP_038432938
910
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF    QFYKVREINNY
980





WP_038434062
911
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF    QFYKVREINNY
981





BAQ51233
822
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF    QFYKVREINNY
892





KGE60162
86
LD   KVGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVRVITLKSKLVSDFRKDF    QFYKVREINNY
156





KGE60856

--   ------------------------------------------------------------    -----------






WP_002989955
911
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF    QFYKVREINNY
981





WP_003030002
910
ED   KAGFIKRQLVETRQITKHVAQILDERENTEEDGNKRRIR--NVKIITLKSNLVSNFRKEF    ELYKVREINDY
980





WP_003065552
921
AD   KAGFIKRQLVETRQITKHVAQILDARFNTESDENDKVIR--DVKVITLKSNLVSQFRKDF    EFYKVREINDY
991





WP_001040076
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    VFYKIREVNNY
986





WP_001040078
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNDY
986





WP_001040080
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





WP_001040081
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





WP_001040083
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





WP_001040085
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





WP_001040087
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





WP_001040088
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





WP_001040089
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





WP_001040090
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





WP_001040091
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





WP_001040092
916
DD   KAGFIQRQLVETRQITKHVARILDERFNNKVDDNNKPIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





WP_001040094
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





WP_001040095
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





WP_001040096
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





WP_001040097
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





WP_001040098
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





WP_001040099
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





WP_001040100
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





WP_001040104
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





WP_001040105
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





WP_001040106
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNDY
986





WP_001040107
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNDY
986





WP_001040108
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNDY
986





WP_001040109
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNDY
986





WP_001040110
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNDY
986





WP_015058523
916
DD   KAGFIQRQLVETRQITKHVARILDERFNNKVDDNNKPIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





WP_017643650
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





WP_017647151
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





WP_017648376
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





WP_017649527
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





WP_017771611
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNDY
986





WP_017771984
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





CFQ25032
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





CFV16040
916
DD   KARFIQRQLVEIRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





KLJ37842
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTVKSNLVSNFRKEF    GFYKIREVNNY
986





KLJ72361
916
DD   KARFIQRQLVETRQITKHVARILDELFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





KLL20707
930
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
1000





KLL42645
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNDY
986





WP_047207273
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





WP_047209694
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





WP_050198062
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





WP_050201642
916
DD   KARFIQRQLVETRQITKHVASILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





WP_050204027
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNDY
986





WP_050881965
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





WP_050886065
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





AHN30376
916
DD   KAGFIQRQLVETRQITKHVARILDERFNNKVDDNNKPIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





EAO78426
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNNY
986





CCW42055
916
DD   KARFIQRQLVETRQITKHVARILDERFNNELDSKGRRIR--KVKIVTLKSNLVSNFRKEF    GFYKIREVNDY
986





WP_003041502
910
ND   KAGFIKRQLVETRQITKHVAQVLDARFNAKHDENKKVIR--DVKIITLKSNLVSQFRKDF    KFYKVREINDY
980





WP_037593752
911
ED   KAGFIKRQLVETRQITKHVAQILDERFNTEFDGAQRRIR--NVKIITLKSNLVSNFRKEF    ELYKVREINDY
981





WP_049516684
911
ED   KAGFIKRQLVETRQITKHVAQILDERFNTEFDGAQRRIR--NVKIITLKSNLVSNFRKEF    ELYKVREINDY
981





GAD46167
910
ED   KAGFIKRQLVETRQITKHVAQILDERFNTEFDGAQRRIR--NVKIITLKSNLVSNFRKEF    ELYKVREINDY
980





WP_018363470
919
AD   KAGFIKRQLVETRQITKHVAQILDARFNTERDENDKVIR--DVKVITLKSNLVSQFRKEF    KFYKVREINDY
989





WP_003043819
920
AD   KAGFIKRQLVETRQITKHVARILDSRMNTKRDKNDKPIR--EVKVITLKSKLVSDFRKDF    QLYKVRDINNY
990





WP_006269658
910
ED   KAGFIKRQLVETRQITKHVAQILDERFNTEFDGNKRRIR--NVKIITLKSNLVSNFRKEF    ELYKVREINDY
980





WP_048800889
910
ND   KAGFIHRQLVETRQITKHVAQILDARFNPKRDDNKKVIR--DVKIITLKSNLVSQFRRDF    KLYKVREINDY
980





WP_012767106
910
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF    QFYKVREINNY
980





WP_014612333
910
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF    QFYKVREINNY
980





WP_015017095
910
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF    QFYKVREINNY
980





WP_015057649
910
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF    QFYKVREINNY
980





WP_048327215
910
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF    QFYKVREINNY
980





WP_049519324
910
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF    QFYKVREINNY
980





WP_012515931
910
VD   KAGFIQRQLVETRQITKHVAQILDSRFNTEFDDHNKRIR--KVHIITLKSKLVSDFRKEF    GLYKIRDINHY
980





WP_021320964
910
VD   KAGFIQRQLVETRQITKHVAQILDSRFNTEFDDHNKRIR--KVHIITLKSKLVSDFRKEF    GLYKIRDINHY
980





WP_037581760
910
VD   KAGFIQLQLVETRQITKHVAQILDSRFNTEFDDHNKRIR--KVHIITLKSKLVSDFRKEF    GLYKIRDINHY
980





WP_004232481
918
TD   KAGFIKRQLVETRQITKHVAQILDARFNTKCDENDKVIR--DVKVITLKSSLVSQFRKEF    KFYKVREINDY
988





WP_009854540
919
AD   KAGFIKRQLVETRQITKHVAQILDARFNTEHDENDKVIR--DVKVITLKSNLVSQFRKDF    EFYKVREINDY
989





WP_012962174
919
ND   KAGFIKRQLVETRQITKHVAQILDSRFNTERDENDKVIR--NVKVITLKSNLVSQFRKDF    KFYKVREINDY
989





WP_039695303
921
AD   KAGFIKRQLVETRQITKHVAQILDARFNTEHDENDKVIR--DVKVITLKSNLVSQFRKDF    EFYKVREINDY
991





WP_014334983
918
AD   KAGFIKRQLVETRQITKHVAQILDARFNTKRDENDKVIR--DVKVITLKSNLVSQFRKEF    KFYKVREINDY
988





WP_003099269
911
FD   KAGFIKRQLVETRQITKHVAQILDSRFNSNLTEDSKSNR--NVKIITLKSKMVSDFRKDF    GFYKLREVNDY
981





AHY15608
911
FD   KAGFIKRQLVETRQITKHVAQILDSRFNSNLTEDSKSNR--NVKIITLKSKMVSDFRKDF    GFYKLREVNDY
981





AHY17476
911
FD   KAGFIKRQLVETRQITKHVAQILDSRFNSNLTEDSKSNR--NVKIITLKSKMVSDFRKDF    GFYKLREVNDY
981





ESR09100

--   ------------------------------------------------------------    -----------






AGM98575
911
FD   KAGFIKRQLVETRQITKHVAQILDSRFNSNLTEDSKSNR--NVKIITLKSKMVSDFRKDF    GFYKLREVNDY
981





ALF27331
911
DD   KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_018372492
924
ED   KAGFIRRQLVETRQITKHVARLLDEKLNRKKNENGEKLR--TTKIITLKSVFASRFRANF    DLYKLRELNHY
994





WP_045618028
914
RD   KVGFIKRQLVETRQITKHVAQILDARFNTEVTEKDKKDR--SVKIITLKSNLVSNFRKEF    RLYKVREINDY
984





WP_045635197
913
RD   KVGFIKRQLVETRQITKHVAQILDARYNTEVNEKDKKNR--TVKIITLKSNLVSNFRKEF    RLYKVREINDY
983





WP_002263549
911
DD   KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_002263887
911
DD   KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_002264920
911
DD   KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_002269043
911
DD   KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_002269448
911
DD   KAGFIKRQLVETRQITKHVARILDERFYTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_002271977
911
DD   KAGFIKRQLVETRQITKHVARILDERFYTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_002272766
911
DD   KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_002273241
911
DD   KAGFIKRQLVETRQITKHVARILDERFYTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_002275430
911
DD   KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_002276448
911
DD   KAGFIKRQLVETRQITKHVARILDERFYTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_002277050
913
DD   KAGFIKRQLVETRQITKHVARMLDERFNKEFDDNNKRIR--RVKIVTLKSNLVSSFRKEF    ELYKVREINDY
983





WP_002277364
911
DD   KAGFIKRQLVETRQITKHVARILDERFHTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_002279025
911
DD   KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_002279859
911
DD   KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_002280230
911
DD   KAGFIKRQLVETRQITKHVARILDERFYTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_002281696
911
DD   KAGFIKRQLVETRQITKHVARILDERFHTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_002282247
913
DD   KAGFIKRQLVETRQITKHVARMLDERFNKEFDDNNKRIR--RVKIVTLKSNLVSSFRKEF    ELYKVREINDY
983





WP_002282906
911
DD   KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_002283846
911
DD   KAGFIKRQLVETRQITKHVARILDERFHTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_002287255
911
DD   KAGFIKRQLVETRQITKHVARILDERFHTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_002288990
911
DD   KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_002289641
911
DD   KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_002290427
911
DD   KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_002295753
911
DD   KAGFIKRQLVETRQITKHVARILDERFYTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_002296423
911
DD   KAGFIKRQLVETRQITKHVARILDERFHTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_002304487
925
DD   KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
995





WP_002305844
911
DD   KAGFIKRQLVETRQITKHVARILDERFYTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_002307203
911
DD   KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_002310390
911
DD   KAGFIKHQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_002352408
911
DD   KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_012997688
911
DD   KAGFIKRQLVETRQITKHVARILDERFHTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_014677909
911
DD   KAGFIKRQLVETRQITKHVARILDERFYTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_019312892
911
DD   KAGFIKRQLVETRQITKHVARILDERFHTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_019313659
911
DD   KAGFIKRQLVETRQITKHVARILDERFHTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_019314093
911
DD   KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_019315370
911
DD   KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_019803776
911
DD   KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_019805234
911
DD   KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_024783594
911
DD   KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_024784288
913
DD   KAGFIKRQLVETRQITKHVARMLDERFNKEFDDNNKRIR--RVKIVTLKSNLVSSFRKEF    ELYKVREINDY
983





WP_024784666
911
DD   KAGFIKRQLVETRQITKHVARILDERFHTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_024784894
911
DD   KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_024786433
913
DD   KAGFIKRQLVETRQITKHVARMLDERFNKEFDDNNKRIR--RVKIVTLKSNLVSSFRKEF    ELYKVREINDY
983





WP_049473442
911
DD   KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





WP_049474547
911
DD   KAGFIKRQLVETRQITKHVARILDERFNTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
981





EMC03581
904
DD   KAGFIKRQLVETRQITKHVARILDERFHTETDENNKKIR--QVKIVTLKSNLVSNFRKEF    ELYKVREINDY
974





WP_000428612
916
RD   KVGFIKRQLVETRQITKHVAQILDARYNTEVNEKDKKNR--TVKIITLKSNLVSNFRKEF    RLYKIREINDY
986





WP_000428613
914
RD   KVGFIKRQLVETRQITKHVAQILDARFNKEVNEKDKKNR--TVKIITLKSNLVSNFRKEF    RLYKVREINDY
984





WP_049523028
909
RD   KVGFIKRQLVETRQITKHVAQILDDRFNAEVNEKNQKLR--SVKIITLKSNLVSNFRKEF    GLYKVREINDY
979





WP_003107102
880
YD   KAGFIKRQLVETRQITKHVAQILNNRFNNNVDDSSKNKR--PVKIITLKSKMVSDFRKEF    GFYKIREVNDY
950





WP_054279288
912
SD   KANFIQRQLVETRQITKHVAQILDSRFNTERDEKDRPIR--RVKVITLKSKFVSDFRQDF    GFYKLREINDY
982





WP_049531101
914
RD   KVGFIKRQLVETRQITKHVAQILDSRFNTKVNEKNQKIR--TVKIITLKSNLVSNFRKEF    RLYKVREINDY
984





WP_049538452
914
RD   KVGFIRRQLVETRQITKHVAQILDSRFNTEVTEKDKKNR--NVKIITLKSNLVSNFRKEF    GLYKVREINDY
984





WP_049549711
916
LD   KVGFIKRQLVETRQITKHVAQILDARFNKEVTEKDKKNR--NVKIITLKSNLVSNFRKEF    RLYKVREINDY
986





WP_007896501
917
SD   KARFLRRQLVETRQITKHVAQLLDSRFNSKSNQNKKLAR--NVKIITLKSKIVSDFRKDF    GLYKLREVNNY
987





EFR44625
869
SD   KARFLRRQLVETRQITKHVAQLLDSRFNSKSNQNKKLAR--NVKIITLKSKIVSDFRKDF    GLYKLREVNNY
939





WP_002897477
913
RD   KVGFIRRQLVETQQITKNVAQILDARFNTEVKEKNQKIR--TVKIITLKSNLVSNFRKEF    GLYKVREINNY
983





WP_002906454
913
RD   KVGFIKRQLVETRQITKHVAQLLDTRFNTEVNEENQKIR--TVKIITLKSNLVSNFRKEF    GLYKVREINDY
983





WP_009729476
914
LD   KVGFIKRQLVETRQITKHVAQILDARFNKEVTEKDKKNR--TVKIITLKSNLVSNFRKEF    ELYKVREINDY
984





CQR24647
913
ED   KAGFIKRQLVETRQITKHVARILDERFNRDFDKNDKRIR--NVKIVTLKSNLVSNERKEF    GFYKVREINNF
983





WP_000066813
918
LD   KVGFIKRQLVETRQITKHVAQFLDARFNKEVTEKDKKNR--NVKIITLKSNLVSNFRKEF    GLYKVREINDY
988





WP_009754323
914
RD   KVGFIKRQLVETRQITKHVARILDARFNTEVSEKNQKIR--SVKIITLKSNLVSNFRKEF    KLYKVREINDY
984





WP_044674937
913
ED   KARFIQRQLVETRQITKHVARILDTRFNTKLDEAGNRIRdpKVNIITLKSNLVSQFRKDY    QLYKVREINNY
985





WP_044676715
915
ED   KARFIQRQLVETRQITKHVARILDTRFNTKLDEAGNRIRdpKVNIITLKSNLVSQFRKDY    QLYKVREINNY
987





WP_044680361
915
ED   KARFIQRQLVETRQITKHVARILDTRFNTKLDEAGNRIRdpKVNIITLKSNLVSQFRKDY    QLYKVREINNY
987





WP_044681799
913
ED   KARFIQRQLVETRQITKHVARILDTRFNTKLDEAGNRIRdpKVNIITLKSNLVSQFRKDY    QLYKVREINNY
985





WP_049533112
910
ND   KAGFIKRQLVETRQITKHVAQVLDARFNAKHDENKKVIR--DVKIITLKSNLVSQFRKDF    KFYKVREINDY
980





WP_029090905
891
RD   KEGFIARQLVETRQITKHVTQLLQQEY-----------K-dTTKVFAIKATLVSGLRRKF    EFIKNRNVNDY
951





WP_006506696
917
RD   EERFINRQLVETRQITKNVTQIIEDHYST-------------TKVAAIRANLSHEFRVKN    HIYKNRDINDY
976





AIT42264
911
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF    QFYKVREINNY
981





WP_034440723
915
RD   RQQFINRQLVETRQITKHVANLLSHHLNEK-----KEVG--EINIVLLKSALTSQFRKKF    DFYKVREVNDY
980





AKQ21048
911
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF    QFYKVREINNY
981





WP_004636532
916
AD   RAHFLNRQLVETRQITKHVANLLDSQYNTAEEQ-----R---INIVLLKSSMTSRFRKEF    KLYKVREINDY
980





WP_002364836
922
ED   KAHFIQRQLVETRQITKNVAGILDQRYNANSKE-----K--KVQIITLKASLTSQFRSIF    GLYKVREVNDY
987





WP_016631044
873
ED   KAHFIQRQLVETRQITKNVAGILDQRYNAKSKE-----K--KVQIITLKASLTSQFRSIF    GLYKVREVNDY
938





EMS75795
655
ED   KARFIQRQLVETRQITKHVAAILDQYFN-QPEE-SK-NK--GIRIITLKSSLVSQFRKTF    GINKVREINNH
722





WP_002373311
922
ED   KAHFIQRQLVETRQITKNVAGILDQRYNAKSKE-----K--KVQIITLKASLTSQFRSIF    GLYKVREVNDY
987





WP_002378009
922
ED   KAHFIQRQLVETRQITKNVAGILDQRYNAKSKE-----K--KVQIITLKASLTSQFRSIF    GLYKVREVNDY
987





WP_002407324
922
ED   KAHFIQRQLVETRQITKNVAGILDQRYNAKSKE-----K--KVQIITLKASLTSQFRSIF    GLYKVREVNDY
987





WP_002413717
922
ED   KAHFIQRQLVETRQITKNVAGILNQRYNANSKE-----K--KVQIITLKASLTSQFRSIF    GLYKVREVNDY
987





WP_010775580
924
ED   KAHFIQRQLVETRQITKNVAGILDQRYNAKSKE-----K--KVQIITLKASLTSQFRSIF    GLYKVREVNDY
989





WP_010818269
922
ED   KAHFIQRQLVETRQITKNVAGILDQRYNAKSKE-----K--KVQIITLKASLTSQFRSIF    GLYKVREVNDY
987





WP_010824395
922
ED   KAHFIQRQLVETRQITKNVAGILDQLYNAKSKE-----K--KVQIITLKASLTSQFRSIF    GLYKVREVNDY
987





WP_016622645
922
ED   KAHFIQRQLVETRQITKNVAGILDQRYNAKSKE-----K--KVQIITLKASLTSQFRSIF    GLYKVREVNDY
987





WP_033624816
922
ED   KAHFIQRQLVETRQITKNVAGILDQRYNAKSKE-----K--KVQIITLKASLTSQFRSIF    GLYKVREVNDY
987





WP_033625576
922
ED   KAHFIQRQLVETRQITKNVAGILDQRYNAKSKE-----K--KVQIITLKASLTSQFRSIF    GLYKVREVNDY
987





WP_033789179
922
ED   KAHFIQRQLVETRQITKNVAGILDQRYNAKSKE-----K--KVQIITLKASLTSQFRSIF    GLYKVREVNDY
987





WP_002310644
919
ED   KAGFIKRQLVETRQITKHVAGILHHRFN-KAEDTNEPIR--KVRIITLKSALVSQFRNRF    GIYKVREINEY
988





WP_002312694
920
ED   KAGFIKRQLVETRQITKHVAGILHHRFN-KAEDTNDPIR--KVRIITLKSALVSQFRNRF    GIYKVREINEY
989





WP_002314015
920
ED   KAGFIKRQLVETRQITKHVAGILHHRFN-KAEDTNEPIR--KVRIITLKSALVSQFRNRF    GIYKVREINEY
989





WP_002320716
920
ED   KAGFIKRQLVETRQITKHVAGILHHRFN-KAEDTNEPIR--KVRIITLKSALVSQFRNRF    GIYKVREINEY
989





WP_002330729
919
ED   KAGFIKRQLVETRQITKHVAGILHHRFN-KAEDTNEPIR--KVRIITLKSALVSQFRNRF    GIYKVREINEY
988





WP_002335161
920
ED   KAGFIKRQLVETRQITKHVAGILHHRFN-KAEDTNEPIR--KVRIITLKSALVSQFRNRF    GIYKVREINEY
989





WP_002345439
920
ED   KAGFIKRQLVETRQITKHVAGILHHRFN-KAEDTNEPIR--KVRIITLKSALVSQFRNRF    GIYKVREINEY
989





WP_034867970
911
ED   KARFIQRQLVETRQITKHVANILHQSFN-QEEEGTD-CD--GVQIITLKATLTSQFRQTF    GLYKVREINPH
979





WP_047937432
920
ED   KAGFIKRQLVETRQITKHVAGILHHRFN-KAEDTNEPIR--KVRIITLKSALVSQFRNRF    GIYKVREINEY
989





WP_010720994
911
ED   KARFIQRQLVETRQITKHVANILHQSFN-QEEEGTD-CD--GVQIITLKATLTSQFRQTF    GLYKVREINPH
979





WP_010737004
911
ED   KARFIQRQLVETRQITKHVANILHQSFN-QEEEGTD-CD--GVQIITLKATLTSQFRQTF    GLYKVREINPH
979





WP_034700478
911
ED   KARFIQRQLVETRQITKHVANILHQSFN-QEEEGTD-CD--GVQIITLKATLTSQFRQTF    GLYKVREINPH
979





WP_007209003
912
SD   KAGFLKRQLVETRQITKHVATILDSKFNE--DSNNRDVQ-----IITLKSALVSEFRKTF    NLYKVREINDL
977





WP_023519017
905
AD   KARFIQRQLVETRQITKHVANLLHQHFN-LPEEVSA-TE--KTSIITLKSTLTSQFRQMF    DIYKVREINHH
973





WP_010770040
915
DD   RAHFIKRQLVETRQITKHVARILDQRFNSQKDEEGKTIR--AVRVVTLKSSLTSQFRKQF    AIHKVREINDY
985





WP_048604708
912
DD   KAGFIHRQLVETRQITKNVARILHQRFNSEKDEEGNLIR--KVRIITLKSALTSQFRKNY    GIYKIREINDY
982





WP_010750235
914
DD   KARFIQRQLVETRQITKHVAAILHQYFN-QTQELEK-EK--DIRIITLKSSLVSQFRQVF    GIHKVREINHH
982





AII16583
950
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF    QFYKVREINNY
1020





WP_029073316
928
KD   KERFINRQIVETRQITKHVAQIISNHYET-------------TKVVTVRADLSHAFRERY    HIYKNRDINDF
987





WP_031589969
928
KD   QERFINRQIVETRQITKHVAQIIDNHYEN-------------TKVVTVRADLSHQFRERY    HIYKNRDINDF
987





KDA45870
903
KL   KERFIERQLVETRQITKYVAQLLDQRLN--YDGNGVELD-eKIAIVTLKAQLASQFRSEF    KLRKVRALNNL
972





WP_039099354
924
-D   MKGFINRQLVETRQVIKLATNLLMEQYGED-----------NIELITVKSGLTHQMRTEF    DFPKNRNLNNH
990





AKP02966
926
KD   KLGFIHRQLVQTSQMVKGVANILNSMYK---NQGTTCIQ--------ARANLSTAFRKAL    ELVKNRNINDF
999





WP_010991369
914
AD   KARFIHRQLVETRQITKNVANILHQRFNYEKDDHGNTMK--QVRIVTLKSALVSQFRKQF    QLYKVRDVNDY
984





WP_033838504
914
AD   KARFIHRQLVETRQITKNVANILHQRFNYEKDDHGNTMK--QVRIVTLKSALVSQFRKQF    QLYKVRDVNDY
984





EHN60060
917
AD   KARFIHRQLVETRQITKNVANILHQRFNYEKDDHGNTMK--QVRIVTLKSALVSQFRKQF    QLYKVRDVNDY
987





EFR89594
683
AD   KARFIHRQLVETRQITKNVANILHQRFNYGKDDHGNTMK--QVRIVTLKSALVSQFRKQF    QLYKVRGVNDY
753





WP_038409211
914
AD   KANFIQRQLVETRQITKNVANILYQRFNCKQDENGNEVE--QVRIVTLKSTLVSQFRKQF    QLYKVREVNDY
984





EFR95520
533
AD   KANFIQRQLVETRQITKNVANILYQRFNCKQDENGNEVE--QVRIVTLKSTLVSQFRKQF    QLYKVREVNDY
603





WP_003723650
914
AD   KARFIHRQLVETRQITKNVANILYQRFNKETDNHGNTME--QVRIVTLKSALVSQFRKQF    QLYKVREVNGY
984





WP_003727705
914
AD   KARFIHRQLVETRQITKNVANILHQRFNKETDNHGNTME--QVRIVTLKSALVSQFRKQF    QLYKVREVNDY
984





WP_003730785
914
AD   KARFIHRQLVETRQITKNVANILHQRFNKETDNHGNTME--QVRIVTLKSALVSQFRKQF    QLYKVREVNDY
984





WP_003733029
914
AD   KARFIHRQLVETRQITKNVANILHQRFNYKTDGNKDTME--TVRIVTLKSALVSQFRKQF    QFYKVREVNDY
984





WP_003739838
914
AD   KATFIHRQLVETRQITKNVANILHQRFNNETDNHGNNME--QVRIVMLKSALVSQFRKQF    QLYKVREVNDY
984





WP_014601172
914
AD   KARFIHRQLVETRQITKNVANILHQRFNNETDNHGNTME--QVRIVTLKSALVSQFRKQF    QLYKVREVNDY
984





WP_023548323
914
AD   KARFIHRQLVETRQITKNVANILHQRFNYKTDDNEDTME--PVRIVTLKSALVSQFRKQF    QLYKVREVNDY
984





WP_031665337
914
AD   KARFIHRQLVETRQITKNVANILHQRFNKETDNHGNTME--QVRIVTLKSALVSQFRKQF    QLYKVREVNDY
984





WP_031669209
914
AD   KARFIHRQLVETRQITKNVANILHQRFNYKTDGNKDTME--TVRIVTLKSALVSQFRKQF    QFYKVREVNDY
984





WP_033920898
914
AD   KARFIHRQLVETRQITKNVANILHQRFNYKTDDNEDTME--PVRIVTLKSALVSQFRKQF    QLYKVREVNDY
984





AKI42028
917
AD   KARFIHRQLVETRQITKNVANILHQRFNNETDNHGNTME--QVRIVTLKSALVSQFRKQF    QLYKVREVNDY
987





AKI50529
917
AD   KARFIHRQLVETRQITKNVANILHQRFNYKTDDNEDTME--PVRIVTLKSALVSQFRKQF    QLYKVREVNDY
987





EFR83390
362
AD   KARFIHRQLVETRQITKNVANILHQRFNNETDNHGNTME--QVRIVTLKSALVSQFRKQF    QLYKVREVNDY
432





WP_046323366
914
AD   KARFIHRQLVETRQITKNVANILHQRFNCKKDESGNVIE--QVRIVTLKAALVSQFRKQF    QLYKVREVNDY
984





AKE81011
927
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF    QFYKVREINNY
997





CUO82355
921
RD   EERFINRQLVETRQITKNVTQIIEDHYST-------------TKVAAIRANLSHEFRVKN    HIYKNRDINDY
980





WP_033162887
923
KD   KERFINRQLVETRQIIKNVAVIINDHYTN-------------TNIVTVRAELSHQFRERY    KIYKNRDINDF
982





AGZ01981
944
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF    QFYKVREINNY
1014





AKA60242
911
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF    QFYKVREINNY
981





AKS40380
911
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF    QFYKVREINNY
981





4UN5_B
915
LD   KAGFIKRQLVETRQITKHVAQILDSRMNTKYDENDKLIR--EVKVITLKSKLVSDFRKDF    QFYKVREINNY
985





WP_010922251
982


embedded image


1051


WP_039695303
992
HHAHDAYLNAVVGTALLKKYPKL-ASEFVYGEYKKYDI   S---SD------   KATAK--YfFYSNLM-NFFKTKVK
1058





WP_045635197
984
HHAHDAYLNAVVAKAILKKYPKL-EPEFVYGEYQKYDL   SkdpKEV---EK   ATEKY--F-FYSNLL-NFFKEEVH
1055





5AXW_A
703
HHAEDALI--------------IaNADFIFKEWKKLDK   Nq-mFE----EK   ETEQEykEiFITPHQiKHIKDFKD
771





WP_009880683
666
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDI   S---EQEi--GK   ATAKY--F-FYSNIM-NFFKTEIT
735





WP_010922251
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKY--F-FYSNIM-NFFKTEIT
1051





WP_011054416
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKY--F-FYSNIM-NFFKTEIT
1051





WP_011284745
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKY--F-FYSNIM-NFFKTEIT
1051





WP_011285506
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKY--F-FYSNIM-NFFKTEIT
1051





WP_011527619
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKY--F-FYSNIM-NFFKTEIT
1051





WP_012560673
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDI   S---EQEi--GK   ATAKY--F-FYSNIM-NFFKTEIT
1051





WP_014407541
981
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKY--F-FYSNIM-NFFKTEIT
1050





WP_020905136
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKY--F-FYSNIM-NFFKTEIT
1051





WP_023080005
981
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKY--F-FYSNIM-NFFKTEIT
1050





WP_023610282
981
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKY--F-FYSNIM-NFFKTEIT
1050





WP_030125963
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKY--F-FYSNIM-NFFKTEIT
1051





WP_030126706
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKY--F-FYSNIM-NFFKTEIT
1051





WP_031488318
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKY--F-FYSNIM-NFFKTEIT
1051





WP_032460140
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDI   S---EQEi--GK   ATAKY--F-FYSNIM-NFFKTEIT
1051





WP_032461047
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDI   S---EQEi--GK   ATAKY--F-FYSNIM-NFFKTEIT
1051





WP_032462016
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKY--F-FYSNIM-NFFKTEIT
1051





WP_032462936
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKY--F-FYSNIM-NFFKTEIT
1051





WP_032464890
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKY--F-FYSNIM-NFFKTEIT
1051





WP_033888930
807
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKY--F-FYSNIM-NFFKTEIT
876





WP_038431314
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKY--F-FYSNIM-NFFKTEIT
1051





WP_038432938
981
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKY--F-FYSNIM-NFFKTEIT
1050





WP_038434062
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKY--F-FYSNIM-NFFKTEIT
1051





BAQ51233
893
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKY--F-FYSNIM-NFFKTEIT
962





KGE60162
157
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKY--F-FYSNIM-NFFKTEIT
226





KGE60856

--------------------------------------   ------------   ------------------------






WP_002989955
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKY--F-FYSNIM-NFFKTEIT
1051





WP_003030002
981
HHAHDAYLNAVVGNALLLKYPQL-EPEFVYGEYPKYN-   S---YR---sRK   SATEK--FlFYSNIL-RFFKKE--
1041





WP_003065552
992
HHAHDAYLNAVVGTALLKKYPKL-ASEFVYGEYKKYDI   S---SD------   KATAK--YfFYSNLM-NFFKRVIR
1058





WP_001040076
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_001040078
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGLYRRKK-   L---SKI---VR   ATRKM--F-FYSNLM-NMFKRVVR
1057





WP_001040080
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_001040081
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_001040083
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_001040085
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_001040087
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_001040088
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_001040089
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_001040090
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_001040091
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_001040092
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_001040094
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_001040095
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_001040096
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_001040097
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_001040098
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_001040099
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_001040100
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_001040104
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_001040105
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_001040106
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_001040107
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





wP_001040108
987
HHAHDAYLNAVVAKAILTKYPQL-EREFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_001040109
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_001040110
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_015058523
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_017643650
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_017647151
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_017648376
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_017649527
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_017771611
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_017771984
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





CFQ25032
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





CFV16040
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





KLJ37842
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





KLJ72361
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





KLL20707
1001
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1063





KLL42645
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_047207273
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_047209694
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_050198062
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_050201642
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_050204027
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_050881965
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_050886065
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





AHN30376
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





EAO78426
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





CCW42055
987
HHAHDAYLNAVVAKAILTKYPQL-EPEFVYGDYPKYN-   S---YKT---RK   ATEKL--F-FYSNIM-NFFKTKVT
1049





WP_003041502
981
HHAHDAYLNAVIGTALLKKYPKL-ASEFVYGEFKKYDV   S---DK---eIG   KATAK--YfFYSNLM-NFFKKEVK
1050





WP_037593752
982
HHAHDAYLNAVVGNALLLKYPQL-EPEFVYGEYPKYN-   S---YR---sRK   SATEK--FlFYSNIL-RFFKKE--
1042





WP_049516684
982
HHAHDAYLNAVVGNALLLKYPQL-EPEFVYGEYPKYN-   S---YR---sRK   SATEK--FlFYSNIL-RFFKKE--
1042





GAD46167
981
HHAHDAYLNAVVGNALLLKYPQL-EPEFVYGEYPKYN-   S---YR---sRK   SATEK--FlFYSNIL-RFFKKE--
1041





WP_018363470
990
HHAHDAYLNAVVGTALLKKYPKL-APEFVYGEYKKYDV   S---SDDhseMG   KATAK--YfFYSNLM-NFFKRVIR
1062





WP_003043819
991
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKR--F-FYSNIM-NFFKTEVK
1060





WP_006269658
981
HHAHDAYLNAVVGNALLLKYPQL-EPEFVYGEYPKYN-   S---YR---sRK   SATEK--FlFYSNIL-RFFKKE--
1041





WP_048800889
981
HHAHDAYLNAVVGTALLKKYPKL-TSEFVYGEYKKYDV   S---DND--eIG   KATAK--YfFYSNLM-NFFKTEVK
1051





WP_012767106
981
HHAHDAYLNAVVGTALIKKYTKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKR--F-FYSNIM-NFFKTEIT
1050





WP_014612333
981
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKR--F-FYSNIM-NFFKTEIT
1050





WP_015017095
981
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKR--F-FYSNIM-NFFKTEIT
1050





WP_015057649
981
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKR--F-FYSNIM-NFFKTEIT
1050





WP_048327215
981
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKR--F-FYSNIM-NFFKTEIT
1050





WP_049519324
981
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKR--F-FYSNIM-NFFKTEIT
1050





WP_012515931
981
HHAHDAYLNAVVAKAILGKYPQL-APEFVYGDYPKYN-   S---FKEr--QK   ATQKM--L-FYSNIL-KFFKDQES
1043





wP_021320964
981
HHAHDAYLNAVVAKAILGKYPQL-APEFVYGDYPKYN-   S---FKEr--QK   ATQKT--L-FYSNIL-KFFKDQES
1043





WP_037581760
981
HHAHDAYLNAVVAKAILGKYPQL-APEFVYGDYPKYN-   S---FKEr--QK   ATQKT--L-FYSNIL-KFFKDQES
1043





WP_004232481
989
HHAHDAYLNAVVGTALLKKYPKL-APEFVYGEYKKYDV   S---SDNhseLG   KATAK--YfFYSNLM-NFFKTEVK
1061





WP_009854540
990
HHAHDAYLNAVVGTALLKKYPKL-ASEFVYGEYKKYDI   S---SD------   KATAK--YfFYSNLM-NFFKTKVK
1056





WP_012962174
990
HHAHDAYLNAVVGTALLKKYPKL-APEFVYGEYKKYDI   S---GD------   KATAK--YfFYSNLM-NFFKRVIR
1056





WP_039695303
992
HHAHDAYLNAVVGTALLKKYPKL-ASEFVYGEYKKYDI   S---SD------   KATAK--YfFYSNLM-NFFKTKVK
1058





WP_014334983
989
HHAHDAYLNAVVGTALLKKYPKL-TPEFVYGEYKKYDV   S---SDDyseMG   KATAK--YfFYSNLM-NFFKTEVK
1061





WP_003099269
982
HHAQDAYLNAVVGTALLKKYPKL-EAEFVYGDYKHYDL   P---DSSl--GK   ATTRM--F-FYSNLM-NFFKKEIK
1051





AHY15608
982
HHAQDAYLNAVVGTALLKKYPKL-EAEFVYGDYKHYDL   P---DSSl--GK   ATTRM--F-FYSNLM-NFFKKEIK
1051





AHY17476
982
HHAQDAYLNAVVGTALLKKYPKL-EAEFVYGDYKHYDL   P---DSSl--GK   ATTRM--F-FYSNLM-NFFKKEIK
1051





ESR09100

--------------------------------------   ------------   ------------------------






AGM98575
982
HHAQDAYLNAVVGTALLKKYPKL-EAEFVYGDYKHYDL   P---DSSl--GK   ATTRM--F-FYSNLM-NFFKKEIK
1051





ALF27331
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_018372492
995
HHAHDAYLNAVVAQALLKVYPKF-ERELVYGSYVKESI   ----FS----RK   ATERM---rMYNNIL-KFISKD--
1055





WP_045618028
985
HHAHDPYLNAVVAKAILKKYPKL-EPEFVYGDYQKYDL   TkdpKEV---EK   ATEKY--F-FYSNLL-NFFKEEVH
1056





WP_045635197
984
HHAHDAYLNAVVAKAILKKYPKL-EPEFVYGEYQKYDL   SkdpKEV---EK   ATEKY--F-FYSNLL-NFFKEEVH
1055





WP_002263549
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_002263887
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_002264920
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_002269043
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_002269448
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_002271977
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_002272766
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HE---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_002273241
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_002275430
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HE---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_002276448
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_002277050
984
HHAHDAYLNAVVVKALLVKYPKL-EPEFVYGEYPKYN-   S---YR---eRK   ATQKM--F-FYSNIM-NMFKSKVK
1046





WP_002277364
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_002279025
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HE---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_002279859
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_002280230
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_002281696
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_002282247
984
HHAHDAYLNAVVVKALLVKYPKL-EPEFVYGEYPKYN-   S---YR---eRK   ATQKM--F-FYSNIM-NMFKSKVK
1046





WP_002282906
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_002283846
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_002287255
982
HHTHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_002288990
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_002289641
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_002290427
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_002295753
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_002296423
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_002304487
996
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKG--
1055





WP_002305844
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_002307203
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_002310390
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_002352408
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_012997688
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_014677909
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_019312892
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_019313659
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_019314093
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_019315370
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HE---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_019803776
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_019805234
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_024783594
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_024784288
984
HHAHDAYLNAVVVKALLVKYPKL-EPEFVYGEYLKYN-   S---YR---eRK   ATQKM--F-FYSNIM-NMFKSKVK
1046





WP_024784666
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_024784894
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_024786433
984
HHAHDAYLNAVVVKALLVKYPKL-EPEFVYGEYPKYN-   S---YR---eRK   ATQKM--F-FYSNIM-NMFKSKVK
1046





WP_049473442
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HE---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





WP_049474547
982
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1041





EMC03581
975
HHAHDAYLNAVIGKALLGVYPQL-EPEFVYGDYPHFH-   G---HK---eNK   ATAKK--F-FYSNIM-NFFKKD--
1034





WP_000428612
987
HHAHDAYLNAVVAKAILKKYPKL-EPEFVYGDYQKYDL   SkdpKEI---EK   ATEKY--F-FYSNLL-NFFKEEVH
1058





WP_000428613
985
HHAHDAYLNAVVAKAILKKYPKL-EPEFVYGDYQKYDL   SrnpKEV---EK   ATEKY--F-FYSNLL-NFFKEEVH
1056





WP_049523028
980
HHAHDAYLNAVVAKAILKKYPKL-EPEFVYGDYQKYDL   TkdpKEI---EK   ATEKY--F-FYSNLL-NFFKDKVY
1051





WP_003107102
951
HHAHDAYLNAVVGTALLKKYPKL-EAEFVYGDYKHYDL   S---DTSl--GK   ATAKM--F-FYSNIM-NFFKKEVR
1020





WP_054279288
983
HHAHDAYLNAVVGTALLKMYPKL-ASEFVYGDYQKYDL   S---GKAs--GH   ATAKY--F-FYSNLM-NFFKSEVK
1052





WP_049531101
985
HHAHDAYLNAVVAKAILKKYPKL-EPEFVYGDYQKYDL   SrdpKEI---EK   ATEKY--F-FYSNLL-NFFKEEVH
1056





WP_049538452
985
HHAHDAYLNAVVAKAILKKYPKL-EPEFVYGDYQKYDL   SkdpKDI---EK   ATEKY--F-FYSNLL-NFFKEEVH
1056





WP_049549711
987
HHAHDAYLNAVVAKAILKKYPKL-EPEFVYGDYQKNDL   SkdpKDI---EK   ATEKY--F-FYSNLL-NFFKEEVH
1058





WP_007896501
988
HHAHDAYLNAVVGTALLKKYPKL-EAEFVYGDYKHFDL   S---DPSl--GK   ATAKV--F-FYSNIM-NFFKEELS
1057





EFR44625
940
HHAHDAYLNAVVGTALLKKYPKL-EAEFVYGDYKHFDL   S---DPSl--GK   ATAKV--F-FYSNIM-NFFKEELS
1009





WP_002897477
984
HHAHDAYLNAVVAKAILKKYPKL-EPEFVYGDYQKYDL   FkpsKEI---EK   ATEKY--F-FYSNLL-NFFKEEVL
1055





WP_002906454
984
HHAHDAYLNAVVAKAILKKYPKL-EPEFVYGDYQKYDL   SkasNTI---DK   ATEKY--F-FYSNLL-NFFKEKVR
1055





WP_009729476
985
HHAHDAYLNAVVAKAILKKYPKL-EPEFVYGDYQKYDL   SkdpKEI---EK   ATEKY--F-FYSNLL-NFFKEEVH
1056





CQR24647
984
HHAHDAYLNAVVAKALLIRYPKL-EPEFVYGEYPKYN-   S---YRE---RK   ATEKM--F-FYSNIM-NMFKTTIK
1046





WP_000066813
989
HHAHDAYLNAVLAKAILKKYPKL-EPEFVYGDYQKYDL   SrepKEV---EK   ATQKY--F-FYSNLL-NFFKEEVH
1060





WP_009754323
985
HHAHDAYLNAVVAKAILKKYPKL-EPEFVYGDYQKYDL   SkdpKEV---EK   ATEKY--F-FYSNLL-NFFKEEVH
1056





WP_044674937
986
HHAHDAYLNAVVATALLKKYPQL-APEFVYGDYPKYN-   S---YKS---RK   ATEKV--L-FYSNIM-NFFRRVLV
1048





WP_044676715
988
HHAHDAYLNAVVATALLKKYPQL-APEFVYGDYPKYN-   S---YKS---RK   ATEKV--L-FYSNIM-NFFRRVLV
1050





WP_044680361
988
HHAHDAYLNAVVATALLKKYPQL-APEFVYGDYPKYN-   S---YKS---RK   ATEKV--L-FYSNIM-NFFRRVLV
1050





WP_044681799
986
HHAHDAYLNAVVATALLKKYPQL-APEFVYGDYPKYN-   S---YKS---RK   ATEKV--L-FYSNIM-NFFRRVLV
1048





WP_049533112
981
HHAHDAYLNAVIGTALLKKYPKL-ASEFVYGEFKKYDV   S---DK---eIG   KATAK--YfFYSNLM-NFFKKEVK
1050





WP_029090905
952
HHAQDAFLVAFLGTNITSNYPKI-EMEYLFKGYQHYLN   ------Ev--GK   AAKPKftF-IVENLS---------
1007





WP_006506696
977
HHAHDAYIVALIGGFMRDRYPNMhDSKAVYSEYMKMFR   ----NKNd--QK   -----g---FVINSM-NYPY-EV-
1038





AIT42264
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKY--F-FYSNIM-NFFKTEIT
1051





WP_034440723
981
HHAHDAYLNGVIALKLLELYPYM-AKDLIYGKYSYHRK   G---------DK   ATQAK--Y-KMSNII-ERFSQDL-
1041





AKQ21048
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKY--F-FYSNIM-NFFKTEIT
1051





WP_004636532
981
HHGHDAYLNAVVATTIMKVYPNL-KPQFVYGQYKKTSM   ----FKE---EK   ATARK--H-FYSNIT-KFFKKEKV
1042





WP_002364836
988
HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQT   ----FKE---NK   ATAKA--I-IYTNLL-RFFTED--
1047





WP_016631044
939
HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQT   ----FKE---NK   ATAKA--I-IYTNLL-RFFTED--
998





EMS75795
723
HHAHDAYLNGVVAIALLKKYPKL-EPEFVYGNYTKFNL   ----AT---eNK   ATAKK--E-FYSNIL-RFFEKE--
782





WP_002373311
988
HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQA   ----FKE---NK   ATAKT--I-IYTNLM-RFFTED--
1047





WP_002378009
988
HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQT   ----FKE---NK   ATAKA--I-IYTNLL-RFFTED--
1047





WP_002407324
988
HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQT   ----FKE---NK   ATAKA--I-IYTNLL-RFFTED--
1047





WP_002413717
988
HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQT   ----FKE---NK   ATAKA--I-IYTNLL-RFFTED--
1047





WP_010775580
990
HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQA   ----FKE---NK   ATAKA--I-IYTNLL-RFFTED--
1049





WP_010818269
988
HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQT   ----FKE---NK   ATAKA--I-IYTNLL-RFFTED--
1047





WP_010824395
988
HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQT   ----FKE---NK   ATAKT--I-IYTNLM-RFFTED--
1047





WP_016622645
988
HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQT   ----FKE---NK   ATAKA--I-IYTNLL-RFFTED--
1047





WP_033624816
988
HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQA   ----FKE---NK   AMAKA--I-IYTNLL-RFFTED--
1047





WP_033625576
988
HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQA   ----FKE---NK   ATAKA--I-IYTNLM-RFFTEV--
1047





WP_033789179
988
HHGQDAYLNCVVATTLLKVYPNL-APEFVYGEYPKFQA   ----FKE---NK   ATAKA--I-IYTNLL-RFFTED--
1047





WP_002310644
989
HHAHDAYLNGVVALALLKKYPQL-APEFVYGEYLKFNA   ----HK---aNK   ATVKK--E-FYSNIM-KFFESD--
1048





WP_002312694
990
HHAHDAYLNGVVALALLKKYPQL-APEFVYGEYLKFNA   ----HK---aNK   ATVKK--E-FYSNIM-KFFESD--
1049





WP_002314015
990
HHAHDAYLNGVVALALLKKYPQL-APEFVYGEYLKFNA   ----HK---aNK   ATVKK--E-FYSNIM-KFFESD--
1049





WP_002320716
990
HHAHDAYLNGVVALALLKKYPQL-APEFVYGEYLKFNA   ----HK---aNK   ATVKK--E-FYSNIM-KFFESD--
1049





WP_002330729
989
HHAHDAYLNGVVALALLKKYPQL-APEFVYGEYLKFNA   ----HK---aNK   ATVKK--E-FYSNIM-KFFESD--
1048





WP_002335161
990
HHAHDAYLNGVVALALLKKYPQL-APEFVYGEYLKFNA   ----HK---aNK   ATVKK--E-FYSNIM-KFFESD--
1049





WP_002345439
990
HHAHDAYLNGVVALALLKKYPQL-APEFVYGEYLKFNA   ----HK---aNK   ATVKK--E-FYSNIM-KFFESD--
1049





WP_034867970
980
HHAHDAYLNGFIANVLLKRYPKL-APEFVYGKYVKYSL   ----AR---eNK   ATAKK--E-FYSNIL-KFLESD--
1039





WP_047937432
990
HHAHDAYLNGVIALALLKKYPQL-APEFVYGEYLKFNA   ----HK---aNK   ATVKK--E-FYSNIM-KFFESD--
1049





WP_010720994
980
HHAHDAYLNGFIANVLLKRYPKL-APEFVYGKYVKYSL   ----AR---eNK   ATAKK--E-FYSNIL-KFLESD--
1039





WP_010737004
980
HHAHDAYLNGFIANVLLKRYPKL-APEFVYGKYVKYSL   ----AR---eNK   ATAKK--E-FYSNIL-KFLESD--
1039





WP_034700478
980
HHAHDAYLNGFIANVLLKRYPKL-APEFVYGKYVKYSL   ----AR---eNK   ATAKK--E-FYSNIL-KFLESD--
1039





WP_007209003
978
HHAHDAYLNAVVALSLLRVYPQL-KPEFVYGEYGKNS-   ----IHDq--NK   ATIKK---qFYSNIT-RYFASK--
1037





WP_023519017
974
HHAHDAYLNGVVAMTLLKKYPKL-APEFVYGSYIKGDI   ----NQ---iNK   ATAKK--E-FYSNIM-KFFESE--
1033





WP_010770040
986
HHGHDAYLNGVVANSLLRVYPQL-QPEFVYGDYPKFNA   ----YKA---NK   ATAKK--Q-LYTNIM-KFFAED--
1045





WP_048604708
983
HHAHDAYLNGVVATALLKIYPQL-EPEFVYGEFHRFNA   ----FKE---NK   ATAKK--Q-FYSNLM-EFSKSD--
1042





WP_010750235
983
HHAHDAYLNAVVALALLKKYPRL-APEFVYGSFAKFHL   ----VK---eNK   ATAKK--E-FYSNIL-KFFEKE--
1042





AII16583
1021
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKY--F-FYSNIM-NFFKTEIT
1090





WP_029073316
988
HHAHDAYIATILGTYIGHRFESL-DAKYIYGEYQKIFR   ----NKNk--DK   ---KDg---FILNSM-RNLYADK-
1052





WP_031589969
988
HHAHDAYIATILGTYIGHRFESL-DAKYIYGEYKRIFR   ----QKNk--GK   ---NDg---FILNSM-RNIYADK-
1052





KDA45870
973
HHAHDAYLNAVVANLIMAKYPEL-EPEFVYGKYRKTK-   ----FKGl--GK   ATAKN---tLYANVL-YFLKENEV
1034





WP_039099354
991
HHAFDAYLTAFVGLYLLKRYPKL-KPYFVYGEYQKAS-   ----QQ----DK   ---RN--F----NFL-NGLKKD--
1043





AKP02966
1000
HHAQDAYLASFLGTYRLRRFPTD-EMLLMNGEYNKFYG   -----KElysKK   -SRKN-gF-IISPLV---------
1062





WP_010991369
985
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGDYHQFDW   ----FKA---NK   ATAKK--Q-FYTNIM-LFFAQK--
1044





WP_033838504
985
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGDYHQFDW   ----FKA---NK   ATAKK--Q-FYTNIM-LFFAQK--
1044





EHN60060
988
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGDYHQFDW   ----FKA---NK   ATAKK--Q-FYTNIM-LFFAQK--
1047





EFR89594
754
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGDYHQFDW   ----FKA---NK   ATAKK--Q-FYTNIM-LFFAQK--
813





WP_038409211
985
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGDYHQFDW   ----FKA---NK   ATAKK--Q-FYTNIM-RFFAKE--
1044





EFR95520
604
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGDYHQFDW   ----FKA---NK   ATAKK--Q-FYTNIM-RFFAKE--
663





WP_003723650
985
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGEYHQFDW   ----FKA---NK   ATAKK--Q-FYTNIM-LFFAQK--
1044





WP_003727705
985
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGEYHQFDW   ----FKA---NK   ATAKK--Q-FYTNIM-LFFAQK--
1044





WP_003730785
985
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGEYHQFDW   ----FKA---NK   ATAKK--Q-FYTNIM-LFFAQK--
1044





WP_003733029
985
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGEYHQFGW   ----FKA---NK   ATAKK--Q-FYTNIM-LFFAQK--
1044





WP_003739838
985
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGEYHQFDW   ----FKA---NK   ATAKK--Q-FYTNIM-LFFAQK--
1044





WP_014601172
985
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGEYHQFDW   ----FKA---NK   ATAKK--Q-FYTNIM-LFFGQK--
1044





WP_023548323
985
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGEYHQFDW   ----FKA---NK   ATAKK--Q-FYTNIM-LFFAQK--
1044





WP_031665337
985
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGEYHQFDW   ----FKA---NK   ATAKK--Q-FYTNIM-LFFAQK--
1044





WP_031669209
985
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGEYHQFDW   ----FKA---NK   ATAKK--Q-FYTNIM-LFFAQK--
1044





WP_033920898
985
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGEYHQFDW   ----FKA---NK   ATAKK--Q-FYTNIM-LFFAQK--
1044





AKI42028
988
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGEYHQFDW   ----FKA---NK   ATAKK--Q-FYTNIM-LFFGQK--
1047





AKI50529
988
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGEYHQFDW   ----FKA---NK   ATAKK--Q-FYTNIM-LFFAQK--
1047





EFR83390
433
HHAHDAYLNGVVANTLLKVYPQL-EPEFVYGEYHQFDW   ----FKA---NK   ATAKK--Q-FYTNIM-LFFAQK--
492





WP_046323366
985
HHAHDAYLNCVVANTLLKVYPQL-EPEFVYGDYHQFDW   ----FKA---NK   ATAKK--Q-FYTNIM-LFFAKK--
1044





AKE81011
998
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKY--F-FYSNIM-NFFKTEIT
1067





CUO82355
981
HHAHDAYIVALIGGFMRDRYPNMhDSKAVYSEYMKMFR   ----NKNd--QK   -----g---FVINSM-NYPY-EV-
1042





WP_033162887
983
HHAHDAYIACIVGQFMHQNFEHL-DAKIIYGQYK----   -----KNy--KK   ---NYg---FILNSM-NHLQSDI-
1042





AGZ01981
1015
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKY--F-FYSNIM-NFFKTEIT
1084





AKA60242
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKY--F-FYSNIM-NFFKTEIT
1051





AKS40380
982
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKY--F-FYSNIM-NFFKTEIT
1051





4UN5_B
986
HHAHDAYLNAVVGTALIKKYPKL-ESEFVYGDYKVYDV   S---EQEi--GK   ATAKY--F-FYSNIM-NFFKTEIT
1055





WP_010922251
1052


embedded image


1114


WP_039695303
1059
YAD-GTVFERPIIE    T-NAD-GE-IAWNKQIDFEKVRKVLS-YPQVNIVKKVETQT   GGFSK    ESIL-PKG-
1120





WP_045635197
1056
YAD-GTIVKRENIE    Y-SKDtGE-IAWNKEKDFAIIKKVLS-LPQVNIVKKREVQT   GGFSK    ESIL-PKG-
1118





5AXW_A
772
YKYsHRVDKKPNRE    VNNLN-GL---YDKDND--KLKKLINkSPEKLLMYHHDPQT   --YQK    KLIMeQYGd
852





WP_009880683
736
LAN-GEIRKRPLIE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
798





WP_010922251
1052
LAN-GEIRKRPLIE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
1114





WP_011054416
1052
LAN-GEIRKRPLIE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
1114





WP_011284745
1052
LAN-GEIRKRPLIE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
1114





WP_011285506
1052
LAN-GEIRKRPLIE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
1114





WP_011527619
1052
LAN-GEIRKRPLIE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
1114





WP_012560673
1052
LAN-GEIRKRPLIE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
1114





WP_014407541
1051
LAN-GEIRKRPLIE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
1113





WP_020905136
1052
LAN-GEIRKRPLIE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
1114





WP_023080005
1051
LAN-GEIRKRPLIE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
1113





WP_023610282
1051
LAN-GEIRKRPLIE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
1113





WP_030125963
1052
LAN-GEIRKRPLIE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
1114





WP_030126706
1052
LAN-GEIRKRPLIE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
1114





WP_031488318
1052
LAN-GEIRKRPLIE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
1114





WP_032460140
1052
LAN-GEIRKRPLIE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
1114





WP_032461047
1052
LAN-GEIRKRPLIE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
1114





WP_032462016
1052
LAN-GEIRKRPLIE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
1114





WP_032462936
1052
LAN-GEIRKRPLIE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
1114





WP_032464890
1052
LAN-GEIRKRPLIE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
1114





WP_033888930
877
LAN-GEIRKRPLIE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
939





WP_038431314
1052
LAN-GEIRKRPLIE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
1114





WP_038432938
1051
LAN-GEIRKRPLIE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
1113





WP_038434062
1052
LAN-GEIRKRPLIE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
1114





BAQ51233
963
LAN-GEIRKRPLIE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
1025





KGE60162
227
LAN-GEIRKRPLIE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
289





KGE60856
1
------------IE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
52





WP_002989955
1052
LAN-GEIRKRPLIE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
1114





WP_003030002
1042
-----------DIQ    T-NED-GE-IAWNKEKHIKILRKVLS-YPQVNIVKKTEEQT   GGFSK    ESIL-PKG-
1093





WP_003065552
1059
YSN-GKVIVRPVVE    Y-SKD-TEdIAWDKKSNFRTICKVLS-YPQVNIVKKVETQT   GGFSK    ESIL-PKG-
1121





WP_001040076
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_001040078
1058
LAD-GSIVVRPVIE    TGRYM-GK-TAWDKKKHFATVRKVLS-YPQVNIVKKTEIQT   GGFSK    ESIL-AHG-
1120





WP_001040080
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_001040081
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_001040083
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_001040085
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_001040087
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_001040088
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_001040089
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_001040090
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_001040091
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_001040092
1050
LAD-ETVVVKDDIE    VNNET-GE-IAWDKKKHFATVRKVLS-YPQVNIVKKTEVQT   GGFSK    ESIL-AHS-
1112





WP_001040094
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_001040095
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEVQT   GGFSK    ESIL-AHG-
1112





WP_001040096
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEVQT   GGFSK    ESIL-AHG-
1112





WP_001040097
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_001040098
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_001040099
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_001040100
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_001040104
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_001040105
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_001040106
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_001040107
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_001040108
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_001040109
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_001040110
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_015058523
1050
LAD-ETVVVKDDIE    VNNET-GE-IAWDKKKHFATVRKVLS-YPQVNIVKKTEVQT   GGFSK    ESIL-AHS-
1112





WP_017643650
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_017647151
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_017648376
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_017649527
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_017771611
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_017771984
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





CFQ25032
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





CFV16040
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





KLJ37842
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





KLJ72361
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





KLL20707
1064
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT   GGFSK    ESIL-AHG-
1126





KLL42645
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_047207273
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_047209694
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_050198062
1050
LAD-GTVVIKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_050201642
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_050204027
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQVNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_050881965
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_050886065
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





AHN30376
1050
LAD-ETVVVKDDIE    VNNET-GE-IAWDKKKHFATVRKVLS-YPQVNIVKKTEVQT   GGFSK    ESIL-AHS-
1112





EAO78426
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





CCW42055
1050
LAD-GTVVVKDDIE    VNNDT-GE-IVWDKKKHFATVRKVLS-YPQNNIVKKTEIQT   GGFSK    ESIL-AHG-
1112





WP_003041502
1051
FAD-GTVVERPDIE    T-SED-GE-IAWNKQTDFKIVRKVLS-YPQVNIVKKTEVQT   HGLDR    PSPK-PKP-
1122





WP_037593752
1043
-----------DIQ    T-NED-GE-IAWNKEKHIKILRKVLS-YPQVNIVKKTEEQT   GGFSK    ESIL-PKG-
1094





WP_049516684
1043
-----------DIQ    T-NED-GE-IAWNKEKHIKILRKVLS-YPQVNIVKKTEEQT   GGFSK    ESIL-PKG-
1094





GAD46167
1042
-----------DIQ    T-NED-GE-IAWNKEKHIKILRKVLS-YPQVNIVKKTEEQT   GGFSK    ESIL-PKG-
1093





WP_018363470
1063
YSN-GKVIVRPVVE    Y-SKDtGE-IAWNKRTDFEKVRKVLS-YPQVNIVKKVETQT   GGFSK    ESIL-PKG-
1125





WP_003043819
1061
LAN-GEIRKRPLIE    TNGET-GE-VVWNKEKDFATVRKVLA-MPQVNIVKKTEVQT   GGFSK    ESIL-SKR-
1123





WP_006269658
1042
-----------DIQ    T-NED-GE-IAWNKEKHIKILRKVLS-YPQVNIVKKTEEQT   GGFSK    ESIL-PKG-
1093





WP_048800889
1052
FAD-GTVVERPDIE    T-SED-GE-IAWNKQTDFKIVRKVLS-YPQVNIVKKVEKQT   GRFSK    ESIL-PKG-
1113





WP_012767106
1051
LAN-GEIRKRPLIE    TNEET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GALTN    ESIY-ARG-
1113





WP_014612333
1051
LAN-GEIRKRPLIE    TNEET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GALTN    ESIY-ARG-
1113





WP_015017095
1051
LAN-GEIRKRPLIE    TNEET-GE-IVWNKGRDFATVRKVLS-MPQVNIVKKTEVQT   GALTN    ESIY-ARG-
1113





WP_015057649
1051
LAN-GEIRKRPLIE    TNEET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GALTN    ESIY-ARG-
1113





WP_048327215
1051
LAN-GEIRKRPLIE    TNEET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GALTN    ESIY-ARG-
1113





WP_049519324
1051
LAN-GEIRKRPLIE    TNEET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GALTN    ESIY-ARG-
1113





WP_012515931
1044
L------------H    VNSD--GE-EIWNANKHLPIIKNVLS-IPQVNIVKKTEVQT   GGFYK    ESIL-SKG-
1094





WP_021320964
1044
L------------H    VNSD--GE-EIWNANKHLPIIKNVLS-IPQVNIVKKTEVQT   GGFYK    ESIL-SKG-
1094





WP_037581760
1044
L------------H    VNSD--GE-EIWNANKHLPIIKNVLS-IPQVNIVKKTEVQT   GGFYK    ESIL-SKG-
1094





WP_004232481
1062
YAD-GRVFERPDIE    T-NAD-GE-VVWNKQRDFNIVRKVLS-YPQVNIVKKVEVQT   GGFSK    ESIL-PKG-
1123





WP_009854540
1057
YAD-GTVFERPIIE    T-NAD-GE-IAWNKQIDFEKVRKVLS-YPQVNIVKKVETQT   GGFSK    ESIL-PKG-
1118





WP_012962174
1057
YSN-GKVVVRPVIE    C-SKDtGE-IAWNKQTDFEKVRRVLS-YPQVNIVKKVETQT   GGFSK    ESIL-PKG-
1119





WP_039695303
1059
YAD-GTVFERPIIE    T-NAD-GE-IAWNKQIDFEKVRKVLS-YPQVNIVKKVETQT   GGFSK    ESIL-PKG-
1120





WP_014334983
1062
YAD-GRVFERPDIE    T-NAD-GE-VVWNKQKDFDIVRKVLS-YPQVNIVKKVEAQT   GGFSK    ESIL-SKG-
1123





WP_003099269
1052
LAD-DTIFTRPQIE    VNTET-GE-IVWDKVKDMQTIRKVMS-YPQVNIVMKTEVQT   GGFSK    ESIW-PKG-
1114





AHY15608
1052
LAD-DTIFTRPQIE    VNTET-GE-IVWDKVKDMQTIRKVMS-YPQVNIVMKTEVQT   GGFSK    ESIW-PKG-
1114





AHY17476
1052
LAD-DTIFTRPQIE    VNTET-GE-IVWDKVKDMQTIRKVMS-YPQVNIVMKTEVQT   GGFSK    ESIW-PKG-
1114





ESR09100

--------------    -----------------------------------------   -----    ---------






AGM98575
1052
LAD-DTIFTRPQIE    VNTET-GE-IVWDKVKDMQTIRKVMS-YPQVNIVMKTEVQT   GGFSK    ESIW-PKG-
1114





ALF27331
1042
-----------DVR    T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_018372492
1056
--K----------K    --DQEtGE-IVWDKKEIENIVKKVIY-SSPVNIVKKREEQS   GALFK    QSNM-AVGy
1108





WP_045618028
1057
YAD-GTIVKRENIE    Y-SKDtGE-IAWNKEKDFATIKKVLS-LPQVNIVKKTEEQT   GGLFD    NNIV-SKKk
1124





WP_045635197
1056
YAD-GTIVKRENIE    Y-SKDtGE-IAWNKEKDFAIIKKVLS-LPQVNIVKKREVQT   GGFSK    ESIL-PKG-
1118





WP_002263549
1042
-----------DVR    T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_002263887
1042
-----------DVR    T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_002264920
1042
-----------DVR    T-DKN-GE-IIWKKDEYISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_002269043
1042
-----------DVR    T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_002269448
1042
-----------DVR    T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_002271977
1042
-----------DVR    T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_002272766
1042
-----------DVR    T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_002273241
1042
-----------DVR    T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_002275430
1042
-----------DVR    T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_002276448
1042
-----------DVR    T-DRN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_002277050
1047
LAD-DQIVERPMIE    VNDET-GE-IAWDKTKHITTVKKVLS-YPQVNIVKKVEEQT   GGLFD    -----PKS-
1111





WP_002277364
1042
-----------DVR    T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_002279025
1042
-----------DVR    T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_002279859
1042
-----------DVR    T-DKN-GE-IIWKKDEYISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_002280230
1042
-----------DVR    T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_002281696
1042
-----------DVR    T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_002282247
1047
LAD-DQIVERPMIE    VNDET-GE-IAWDKTKHITTVKKVLS-YPQVNIVKKVEEQT   GGLFD    -----PKS-
1111





WP_002282906
1042
-----------DVR    I-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_002283846
1042
-----------DVR    T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_002287255
1042
-----------DVR    T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_002288990
1042
-----------DVR    T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_002289641
1042
-----------DVR    T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_002290427
1042
-----------DVR    T-DKN-GE-IIWKKDEYISNIKKVLS-YPQVNIVKKVEEQT   GGFFK    ESIL-PKG-
1093





WP_002295753
1042
-----------DVR    T-DKN-GE-IIWKKDEYISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_002296423
1042
-----------DVR    T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_002304487
1056
-----------DVR    T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1107





WP_002305844
1042
-----------DVR    T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_002307203
1042
-----------DVR    T-DKN-GE-IIWKKDEYISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_002310390
1042
-----------DVR    T-DKN-GE-IIWKKDEYISNIKKVLS-YPQVNIVKKVEEQT   GGFFK    ESIL-PKG-
1093





WP_002352408
1042
-----------DVR    T-DKN-GE-IIWKKDEYISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_012997688
1042
-----------DVR    T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_014677909
1042
-----------DVR    T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_019312892
1042
-----------DVR    T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_019313659
1042
-----------DVR    T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_019314093
1042
-----------DVR    T-DKN-GE-IIWKKDEYISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_019315370
1042
-----------DVR    T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_019803776
1042
-----------DVR    T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_019805234
1042
-----------DVR    T-DKN-GE-IIWKKDEYISNIKKVLS-YPQVNIVKKVEEQT   GGFFK    ESIL-PKG-
1093





WP_024783594
1042
-----------DVR    T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_024784288
1047
LAD-DQIVERPMIE    VNDET-GE-IAWDKTKHITTVKKVLS-YPQVNIVKKVEEQT   GGLFD    -----PKS-
1111





WP_024784666
1042
-----------DVR    T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_024784894
1042
-----------DVR    T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_024786433
1047
LAD-DQIVERPMIE    VNDET-GE-IAWDKTKHITTVKKVLS-YPQVNIVKKVEEQT   GGLFD    -----PKS-
1111





WP_049473442
1042
-----------DVR    T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





WP_049474547
1042
-----------DVR    T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1093





EMC03581
1035
-----------DVR    T-DKN-GE-IIWKKDEHISNIKKVLS-YPQVNIVKKVEEQT   GGFSK    ESIL-PKG-
1086





WP_000428612
1059
YAD-GTIVKRENIE    Y-SKDtGE-IAWNKEKDFATIKKVLS-LPQVNIVKKREVQT   GGFSK    ESIL-PKG-
1121





WP_000428613
1057
YAD-GTIVKRENIE    Y-SKDtGE-IAWNKEKDFATIKKVLS-YPQVNIVKKREVQT   GGFSK    ESIL-PKG-
1119





WP_049523028
1052
YAD-GTIIQRGNVE    Y-SKDtGE-IAWNKKRDFAIVRKVLS-YPQVNIVKKTEEQT   GGFSK    ESIL-PKG-
1114





WP_003107102
1021
LAD-GTVITRPQIE    TNTET-GE-IVWDKVKDIKTIRKVLS-IPQINVVKKTEVQT   GGFSK    ESIL-SKR-
1083





WP_054279288
1053
LAN-GNIIKRSPIE    VNEET-GE-IVWDKTKDFGTVRKVLS-APQVNIVKKTEIQT   GGFSN    ETIL-SKG-
1115





WP_049531101
1057
YAD-GTIVKRENIE    Y-SKDtGE-IAWNKEIDFATIRKILS-LSQVNIVKKTEEQT   GGLFD    NNIV-SKKk
1124





WP_049538452
1057
YAD-GTIVKRENIE    Y-SKDtGE-IAWNKEKDFATIKKILS-LPQVNIVKKTEEQT   GGLFD    NNIV-SKKk
1124





WP_049549711
1059
YAD-GTIVKRENIE    Y-SKDtGE-IAWNKEKDFATIKKVLS-YPQVNIVKKTEEQT   GGLFD    NNIV-SKEk
1126





WP_007896501
1058
LAD-GTLMKRPVIE    TNTET-GE-VVWDKVKDFKTIRKVLS-YPQVNIVKKTEIQS   GAFSK    ESVL-SKG-
1120





EFR44625
1010
LAD-GTLMKRPVIE    TNTET-GE-VVWDKVKDFKTIRKVLS-YPQVNIVKKTEIQS   GAFSK    ESVL-SKG-
1072





WP_002897477
1056
YAD-GTIRKRENIE    Y-SKDtGE-IAWDKEKDFATIKKVLS-YPQVNIVKKREVQT   GGFSK    ESIL-PKG-
1118





WP_002906454
1056
YAD-GTIKKRENIE    Y-SNDtGE-IAWNKEKDFATIKKVLS-LPQVNIVKKTEEQT   GGLFD    NNIV-SKKk
1123





WP_009729476
1057
YAD-GTIVKRENIE    Y-SKDtGE-IAWNKEKDFATIKKVLS-LPQVNIVKKREVQT   GGFSK    ESIL-PKG-
1119





CQR24647
1047
LAD-GRVVEKPVIE    ANEET-GE-IAWDKTKHFANVKKVLS-YPQVSIVKKVEEQT   GGFSK    ESIL-PKG-
1109





WP_000066813
1061
YAD-GTIVKRENIE    Y-SKDtGE-IAWNKEKDFATVKKVLS-LPQVNIVKKTEVQT   GGFSK    ESIL-PKG-
1123





WP_009754323
1057
YAD-GTIVKRENIE    Y-SKDtGE-IAWNKEKDFVTIKKVLS-YPQVNIVKKREVQT   GGFSK    ESIL-PKG-
1119





WP_044674937
1049
YSKtGEVRIRPVIE    VNKET-GE-IVWDKKSDFRTVRKVLS-YPQVNVVKKVEMQT   GGFSK    ESIL-QHG-
1112





WP_044676715
1051
YSKtGEVRIRPVIE    VNKET-GE-IVWDKKSDFRTVRKVLS-YPQVNVVKKVEMQT   GGFSK    ESIL-QHG-
1114





WP_044680361
1051
YSKtGEVRIRPVIE    VNKET-GE-IVWDKKSDFRTVRKVLS-YPQVNVVKKVEMQT   GGFSK    ESIL-QHG-
1114





WP_044681799
1049
YSKtGEVRIRPVIE    VNKET-GE-IVWDKKSDFKTVRKVLS-YPQVNVVKKVEMQT   GGFSK    ESIL-QHG-
1112





WP_049533112
1051
FAD-GTVVERPDIE    T-SED-GE-IAWNKQTDFKIVRKVLS-YPQVNIVKKTEVQT   HGLDR    PSPK-PKP-
1122





WP_029090905
1008
-KQ----------Q    --NSTtGE-VKWNPEVDIAKLKRILN-FKQCNIVRKVEEQS   GALFK    ETIY-PVEe
1061





WP_006506696
1039
--D-----------    ------GK-LIWNP-DLINEIKKCFY-YKDCYCTTKLDQKS   GQLFN    -TVL-SNDa
1084





AIT42264
1052
LAN-GEIRKRPLIE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
1114





WP_034440723
1042
------------LA    --NPD-GE-IAWEKDKDLNTIRKVLS-SKQINIIKKAEEGK   GRLFK    ETIN-SRPs
1092





AKQ21048
1052
LAN-GEIRKRPLIE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
1114





WP_004636532
1043
--------------    VNEET-GE-ILWDTERHLSTIKRVLS-WKQMNIVKKVEKQK   GQLWK    ETIY-PKG-
1092





WP_002364836
1048
--E----------P    RFTKD-GE-ILWSN-SYLKTIKKELN-YHQMNIVKKVEVQK   GGFSK    ESIK-PKG-
1098





WP_016631044
999
--E----------P    RFTKD-GE-ILWSN-SYLKTIKKELN-YHQMNIVKKVEVQK   GGFSK    ESIK-PKG-
1049





EMS75795
783
--E----------Y    SYDEN-GE-IFWDKARHIPQIKKVIS-SHQVNIVKKVEVQT   GGFYK    ETVN-PKG-
834





WP_002373311
1048
--E----------P    RFTKD-SE-ILWSN-SYLKTIKKELN-YHQMNIVKKVEVQK   GGFSK    ESIK-PKG-
1098





WP_002378009
1048
--E----------P    RFTKD-GE-ILWSN-SYLKTIKKELN-YHQMNIVKKVEVQK   GGFSK    ESIK-PKG-
1098





WP_002407324
1048
--E----------P    RFTKD-GE-ILWSN-SYLKTIKKELN-YHQMNIVKKVEVQK   GGFSK    ESIK-PKG-
1098





WP_002413717
1048
--E----------P    RFTKD-GE-ILWSN-SYLKTIKKELN-YHQMNIVKKVEVQK   GGFSK    ESIK-PKG-
1098





WP_010775580
1050
--E----------P    RFTKD-GE-ILWSN-SYLKTIKKELN-YHQMNIVKKVEVQK   GGFSK    ESIK-PKG-
1100





WP_010818269
1048
--E----------P    RFTKD-GE-ILWSN-SYLKTIKKELN-YHQMNIVKKVEVQK   GGFSK    ESIK-PKG-
1098





WP_010824395
1048
--E----------P    RFTKD-GE-ILWSN-SYLKTIKKELN-YHQMNIVKKVEVQK   GGFSK    ESIK-PKG-
1098





WP_016622645
1048
--E----------P    RFTKD-GE-ILWSN-SYLKTIKKELN-YHQMNIVKKVEVQK   GGFSK    ESIK-PKG-
1098





WP_033624816
1048
--E----------P    RFTKD-GE-ILWSN-SYLKTIKKELN-YHQMNIVKKVEVQK   GGFSK    ESIK-PKG-
1098





WP_033625576
1048
--E----------P    RFTKD-GE-ILWSN-SYLKTIKKELN-YHQMNIVKKVEVQK   GGFSK    ESIK-PKG-
1098





WP_033789179
1048
--E----------P    RFTKD-GE-ILWSN-SYLKTIKKELN-YHQMNIVKKVEVQK   GGFSK    ESIK-PKG-
1098





WP_002310644
1049
--T----------P    VCDEN-GE-IFWDKSKSIAQVKKVIN-HHHMNIVKKTEIQK   GGFSK    ETVE-PKK-
1100





WP_002312694
1050
--T----------P    VCDEN-GE-IFWDKSKSIAQVKKVIN-HHHMNIVKKTEIQK   GGFSK    ETVE-PKK-
1101





WP_002314015
1050
--T----------P    VCDEN-GE-IFWDKSKSIAQVKKVIN-HHHMNIVKKTEIQK   GGFSK    ETVE-PKK-
1101





WP_002320716
1050
--T----------P    VCDEN-GE-IFWDKSKSIAQVKKVIN-HHHMNIVKKTEIQK   GGFSK    ETVE-PKK-
1101





WP_002330729
1049
--T----------P    VCDEN-GE-IFWDKSKSIAQVKKVIN-HHHMNIVKKTEIQK   GGFSE    ETVE-PKK-
1100





WP_002335161
1050
--T----------P    VCDEN-GE-IFWDKSKSIAQVKKVIN-HHHMNIVKKTEIQK   GGFSK    ETVE-PKK-
1101





WP_002345439
1050
--T----------P    VCDEN-GE-IFWDKSKSIAQVKKVIN-HHHMNIVKKTEIQK   GGFSK    ETVE-PKK-
1101





WP_034867970
1040
--E----------P    FCDEN-GE-IYWEKSHHLPRIKKVLS-SHQVNVVKKVEQQK   GGFYK    ETVN-SKE-
1091





WP_047937432
1050
--T----------P    VCDEN-GE-IFWDKSKSIAQVKKVIN-HHHMNIVKKTEIQK   GGFSK    ETVE-PKK-
1101





WP_010720994
1040
--E----------P    FCDEN-GE-IYWEKSHHLPRIKKVLS-SHQVNVVKKVEQQK   GGFYK    ETVN-SKE-
1091





WP_010737004
1040
--E----------P    FCDEN-GE-IYWEKSHHLPRIKKVLS-SHQVNVVKKVEQQK   GGFYK    ETVN-SKE-
1091





WP_034700478
1040
--E----------P    FCDEN-GE-IYWEKSHHLPRIKKVLS-SHQVNVVKKVEQQK   GGFYK    ETVN-SKE-
1091





WP_007209003
1038
--D-----------    IINDD-GE-ILWNKQETIAQVIKTLG-MHQVNVVKKVEIQK   GGFSK    ESIQ-PKG-
1089





WP_023519017
1034
--E----------I    ICDEQ-GE-VIWNKKRDLSTIKKTIG-AHQVNIVKKVEKQK   GGFYK    ETIN-SKA-
1085





WP_010770040
1046
--A----------V    IIDEN-GE-ILWDK-KNIATVKKVMS-YPQMNIVKKPEIQT   GSFSK    ETIK-PKG-
1096





WP_048604708
1043
--K----------V    IIDEN-GE-ILWNQ-KKIVTVKKVMN-YRQMNIVKKVEIQK   GGFSK    ESIL-PKG-
1093





WP_010750235
1043
--E----------Q    FCDEN-GE-IFWDKRKHIQQIKKVIS-SHQVNIVKKVEVQT   GSFYK    ETVN-TKE-
1094





AII16583
1091
LAN-GEIRKRPLIE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
1153





WP_029073316
1053
--D-----------    ----T-GE-VVWDP-EWISRIKKCFY-YKDCFVTKKLEENN   GSFFN    -TVR-PNDe
1099





WP_031589969
1053
--D-----------    ----T-GE-IVWDP-NYIDRIKKCFY-YKDCFVTKKLEENN   GTFFN    -TVL-PNDt
1099





KDA45870
1035
YPF-----------    -----------WDKARDLPTIKRYLY-RAQVNKVRKAERQT   GGFSD    EMLV-PKS-
1078





WP_039099354
1044
-------------E    LVDEN-TEaVIWNKESGLAYLNKIYQ-FKKILVTREVHENS   GALFN    QTLYaAKDd
1097





AKP02966
1063
--N-------GTTQ    --DRNtGE-IIWNVG-FRDKILKIFN-YHQCNVTRKTEIKT   GQFYD    QTIYsPKNp
1118





WP_010991369
1045
--D----------R    IIDEN-GE-ILWDK-KYLDTVKKVMS-YRQMNIVKKTEIQK   GEFSK    ATIK-PKG-
1095





WP_033838504
1045
--D----------R    IIDEN-GE-ILWDK-KYLDTVKKVMS-YRQMNIVKKTEIQK   GEFSK    ATIK-PKG-
1095





EHN60060
1048
--D----------R    IIDEN-GE-ILWDK-KYLDTVKKVMS-YRQMNIVKKTEIQK   GEFSK    ATIK-PKG-
1098





EFR89594
814
--D----------R    IIDEN-GE-ILWDK-KYLDTVKKVMS-YRQMNIVKKTEIQK   GEFSK    ATIK-PKG-
864





WP_038409211
1045
--N----------Q    IIDKN-GE-ILWDN-RYLDTIKKVLS-YRQMNIVKKTEIQK   GEFSN    ATVN-PKG-
1095





EFR95520 
664
--N----------Q    IIDKN-GE-ILWDN-RYLDTIKKVLS-YRQMNIVKKTEIQK   GEFSN    ATVN-PKG-
714





WP_003723650
1045
--E----------R    IIDEN-GE-ILWDK-KYLETIKKVLD-YRQMNIVKKTEIQK   GEFSK    ATIK-PKG-
1095





WP_003727705
1045
--E----------R    IIDEN-GE-ILWDK-KYLETIKKVLD-YRQINIVKKTEIQK   GEFSK    ATIK-PKG-
1095





WP_003730785
1045
--E----------R    IIDEN-GE-ILWDK-KYLETIKKVLD-YRQINIVKKTEIQK   GEFSK    ATIK-PKG-
1095





WP_003733029
1045
--D----------R    IIDEN-GE-ILWDK-RYLETVKKVLG-YRQMNIVKKTEIQK   GEFSN    VTPN-PKG-
1095





WP_003739838
1045
--E----------R    IIDEN-GE-ILWDK-KYLETIKKVLD-YRQMNIVKKTEIQK   GEFSK    ATIK-PKG-
1095





WP_014601172
1045
--E----------R    IIDEN-GE-ILWDK-KYLETIKKVLD-YRQMNIVKKTEIQK   GEFSK    ATIK-PKG-
1095





WP_023548323
1045
--E----------R    IIDEN-GE-ILWDK-KYLETIKKVLN-YRQMNIVKKTEIQK   GEFSN    QNPK-PRG-
1095





WP_031665337
1045
--E----------R    IIDEN-GE-ILWDK-KYLETIKKVLD-YRQMNIVKKTEIQK   GEFSK    ATIK-PKG-
1095





WP_031669209
1045
--D----------R    IIDEN-GE-ILWDK-RYLETVKKVLG-YRQMNIVKKTEIQK   GEFSN    VTPN-PKG-
1095





WP_033920898
1045
--E----------R    IIDEN-GE-ILWDK-KYLETIKKVLN-YRQMNIVKKTEIQK   GEFSN    QNPK-PRG-
1095





AKI42028
1048
--E----------R    IIDEN-GE-ILWDK-KYLETIKKVLD-YRQMNIVKKTEIQK   GEFSK    ATIK-PKG-
1098





AKI50529
1048
--E----------R    IIDEN-GE-ILWDK-KYLETIKKVLN-YRQMNIVKKTEIQK   GEFSN    QNPK-PRG-
1098





EFR83390
493
--E----------R    IIDEN-GE-ILWDK-KYLETIKKVLD-YRQMNIVKKTEIQK   GEFSK    ATIK-PKG-
543





WP_046323366
1045
--D----------R    IIDEN-GE-ILWDK-KYLDTIKKVLN-YRQMNIVKKTEIQK   GEFSN    ATAN-PKG-
1095





AKE81011
1068
LAN-GEIRKRPLIE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
1130





CUO82355
1043
--D-----------    ------GK-LIWNP-DLINEIKKCFY-YKDCYCTTKLDQKS   GQMFN    -TVL-PNDa
1088





WP_033162887
1043
--D-----------    ----T-GE-VMWDP-AKIGKIKSCFY-YKDVYVTKKLEQNS   GTLFN    -TVL-PNDa
1089





AGZ01981
1085
LAN-GEIRKRPLIE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
1147





AKA60242
1052
LAN-GEIRKRPLIE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
1114





AKS40380
1052
LAN-GEIRKRPLIE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
1114





4UN5_B
1056
LAN-GEIRKRPLIE    TNGET-GE-IVWDKGRDFATVRKVLS-MPQVNIVKKTEVQT   GGFSK    ESIL-PKR-
1118





WP_010922251
1115
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME   RSSFEK
1176





WP_039695303
1121
--DSD   KLIPRKTkKV-YW-DTKKYGGFDSPTVAYSV-FVVAD--VE--KGKAKKLKTVKELVGISIME   RSFFEE
1185





WP_045635197
1119
--NSD   KLIPRKT-KDILL-DTTKYGGFDSPVIAYSI-LLIAD--IE--KGKAKKLKTVKTLVGITIME   KAAFEE
1183





5AXW_A
853
--EKN   -LYKYYEeTGNYL---TKYSKKDNGPVIKKI------------KYYGNKLNAHLDITDDYPNS   -VKLSL
912





WP_009880683
799
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELVGITIME   RSSFEK
860





WP_010922251
1115
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME   RSSFEK
1176





WP_011054416
1115
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME   RSSFEK
1176





WP_011284745
1115
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME   RSSFEK
1176





WP_011285506
1115
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME   RSSFEK
1176





WP_011527619
1115
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME   RSSFEK
1176





WP_012560673
1115
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELVGITIME   RSSFEK
1176





WP_014407541
1114
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME   RSSFEK
1175





WP_020905136
1115
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGLTIME   RSSFEK
1176





WP_023080005
1114
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME   RSSFEK
1175





WP_023610282
1114
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME   RSSFEK
1175





WP_030125963
1115
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME   RSSFEK
1176





WP_030126706
1115
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME   RSSFEK
1176





WP_031488318
1115
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME   RSSFEK
1176





WP_032460140
1115
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELVGITIME   RSSFEK
1176





WP_032461047
1115
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELVGITIME   RSSFEK
1176





WP_032462016
1115
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME   RSSFEK
1176





WP_032462936
1115
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME   RSSFEK
1176





WP_032464890
1115
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME   RSSFEK
1176





WP_033888930
940
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME   RSSFEK
1001





WP_038431314
1115
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME   RSSFEK
1176





WP_038432938
1114
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME   RSSFEK
1175





WP_038434062
1115
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME   RSSFEK
1176





BAQ51233
1026
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME   RSSFEK
1087





KGE60162
290
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME   RSSFEK
351





KGE60856
53
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME   RSSFEK
114





WP_002989955
1115
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME   RSSFEK
1176





WP_003030002
1094
--ESD   KLIPRKT-KNSYW-NPKKYGGFDSPVVAYSI-LVFAD--VE--KGKSKKLRKVQDMVGITIME   KKRFEK
1158





WP_003065552
1122
--DSD   KLIPRKTkKA-YW-DTKKYGGFDSPTVAYSV-FVVAD--VE--KGKAKKLKTVKELVGISIME   RSFFEE
1186





WP_001040076
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





WP_001040078
1121
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSKFEK
1185





WP_001040080
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





WP_001040081
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





WP_001040083
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





WP_001040085
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





WP_001040087
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





WP_001040088
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





WP_001040089
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





WP_001040090
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





WP_001040091
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





WP_001040092
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVLAD--IK--KGKAQKLKTVKELIGITIME   RERFEK
1177





WP_001040094
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





WP_001040095
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





WP_001040096
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





WP_001040097
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





WP_001040098
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





WP_001040099
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPKVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





WP_001040100
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





WP_001040104
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





WP_001040105
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





WP_001040106
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RFRFEK
1177





WP_001040107
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RFRFEK
1177





WP_001040108
1113
--NSD   KlIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RFRFEK
1177





WP_001040109
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RFRFEK
1177





WP_001040110
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RFRFEK
1177





WP_015058523
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVLAD--IK--KGKAQKLKTVKELIGITIME   RERFEK
1177





WP_017643650
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





WP_017647151
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





WP_017648376
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





WP_017649527
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





WP_017771611
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RFRFEK
1177





WP_017771984
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVAAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





CFQ25032
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





CFV16040
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





KLJ37842
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





KLJ72361
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





KLL20707
1127
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1191





KLL42645
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RFRFEK
1177





WP_047207273
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





WP_047209694
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





WP_050198062
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





WP_050201642
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





WP_050204027
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RFRFEK
1177





WP_050881965
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





WP_050886065
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





AHN30376
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVLAD--IK--KGKAQKLKTVKELIGITIME   RERFEK
1177





EAO78426
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





CCW42055
1113
--NSD   KLIPRKT-KDIYL-DPKKYGGFDSPIVAYSV-LVVAD--IK--KGKAQKLKTVTELLGITIME   RSRFEK
1177





WP_003041502
1123
--DSS   ENLVGVK-RNL---DPKKYGGYAGISNSYAV-LVKAI--IE--KGVKKKETMVLEFQGISILD   RITFEK
1185





WP_037593752
1095
--ESD   KLIPRKT-KNSYW-NPKKYGGFDSPVVAYSI-LVFAD--VE--KGKSKKLRKVQDMVGITIME   KKRFEK
1159





WP_049516684
1095
--ESD   KLIPRKT-KNSYW-NPKKYGGFDSPVVAYSI-LVFAD--VE--KGKSKKLRKVQDMVGITIME   KKRFEK
1159





GAD46167
1094
--ESD   KLIPRKT-KNSYW-NPKKYGGFDSPVVAYSI-LVFAD--VE--KGKSKKLRKVQDMVGITIME   KKRFEK
1158





WP_018363470
1126
--DSD   KLIPRKTkKV-LW-EPKKYGGFDSPTVAYSV-LVVAD--VE--KGKTKKLKTVKELVGISIME   RSFFEK
1190





WP_003043819
1124
--ESA   KLIP----RKKGW-DTRKYGGEGSPTVAYSI-LVVAK--VE--KGKAKKLKSVKVLVGITIME   KGSYEK
1185





WP_006269658
1094
--ESD   KLIPRKT-KNSYW-DPKKYGGFDSPVVAYSI-LVFAD--VE--KGKSKKLRKVQDMVGITIME   KKRFEK
1158





WP_048800889
1114
--DSD   KLIARKTkEN-YW-DTKKYGGFDSPTVAYSV-LVVAD--IK--KGKAKKLKTVKELVGISIME   RPFFEK
1178





WP_012767106
1114
--SFD   KLIS----RKHRF-ESSKYGGEGSPTVTYSV-LVVAKskVQ--DGKVKKIKTGKELIGMTLLD   KLVFEK
1177





WP_014612333
1114
--SFD   KLIS----RKHRF-ESSKYGGEGSPTVTYSV-LVVAKskVQ--DGKVKKIKTGKELIGITLLD   KLVFEK
1177





WP_015017095
1114
--SFD   KLIS----RKHRF-ESSKYGGEGSPTVTYSV-LVVAKskVQ--DGKVKKIKTGKELIGITLLD   KLVFEK
1177





WP_015057649
1114
--SFD   KLIS----RKHRF-ESSKYGGEGSPTVTYSV-LVVAKskVQ--DGKVKKIKTGKELIGITLLD   KLVFEK
1177





WP_048327215
1114
--SFD   KLIS----RKHRF-ESSKYGGEGSPTVTYSV-LVVAKckVQ--DGKVKKIKTGKELIGITLLD   KLVFEK
1177





WP_049519324
1114
--SFD   KLIS----RKHRF-ESSKYGGEGSPTVTYSV-LVVAKskVQ--DGKVKKIKTGKELIGITLLD   KLVFEK
1177





WP_012515931
1095
--NSD   KLIP----RKNNW-DTRKYGGFDSPTVAYSV-LVIAK--ME--KGKAKVLKPVKEMVGITIME   RTAFEE
1156





WP_021320964
1095
--NSD   KLIP----RKNNW-DTRKYGGFDSPTVAYSV-LVIAK--ME--KGKAKVLKPVKEMVGITIME   RIAFEE
1156





WP_037581760
1095
--NSD   KLIP----RKNNW-DTRKYGGFDSPTVAYSV-LVIAK--ME--KGKAKVLKPVKEMVGITIME   RIAFEE
1156





WP_004232481
1124
--DSD   KLIPRKTkKL-QW-ETQKYGGFDSPTVAYSV-LVVAD--VE--KGKTRKLKTVKELVGISIME   RSSFEE
1188





WP_009854540
1119
--DSD   KLIPRKTkKV-YW-DTKKYGGFDSPTVAYSV-FVVAD--VE--KGKAKKLKTVKELVGISIME   RSFFEE
1183





WP_012962174
1120
--NSD   KLIPRKTkKF-RW-DTPKYGGFDSPNIAYSV-EVIAD--VE--KGKAKKLKTVKELVGISIME   RSSFEE
1184





WP_039695303
1121
--DSD   KLIPRKTkKV-YW-DTKKYGGFDSPTVAYSV-FVVAD--VE--KGKAKKLKTVKELVGISIME   RSFFEE
1185





WP_014334983
1124
--DSD   KLIPRKTkKV-YW-NTKKYGGFDSPTVAYSV-LVVAD--IE--KGKAKKLKTVKELVGISIME   RSFFEE
1188





WP_003099269
1115
--DSD   KLIA----RKKSW-DPKKYGGFDSPIIAYSV-LVVAK--IA--KGKTQKLKTIKELVGIKIME   QDEFEK
1176





AHY15608
1115
--DSD   KLIA----RKKSW-DPKKYGGFDSPIIAYSV-LVVAK--IA--KGKTQKLKTIKELVGIKIME   QDEFEK
1176





AHY17476
1115
--DSD   KLIA----RKKSW-DPKKYGGFDSPIIAYSV-LVVAK--IA--KGKTQKLKTIKELVGIKIME   QDEFEK
1176





ESR09100
1
-----   -------------------------------------------------------------ME   QDEFEK
8





AGM98575
1115
--DSD   KLIA----RKKSW-DPKKYGGFDSPIIAYSV-LVVAK--IA--KGKTQKLKTIKELVGIKIME   QDEFEK
1176





ALF27331
1094
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAN--IE--KGKSKKLKLVKDLVGITIME   RTIFEK
1158





WP_018372492
1109
---NN   KLIP----RKKDW-SVDKYGGFIEPAESYSLaIFYTD--IN-----GKKPKKKSTIIAISRME   KKDYEK
1167





WP_045618028
1125
vvDAS   KLTPIKS-G---L-SPEKYGGYARPTIAYSV-LVIAD--IE--KGKAKKLKRIKEMVGITVQD   KKKFEA
1188





WP_045635197
1119
--NSD   KLIPRKT-KDILL-DTTKYGGFDSPVIAYSI-LLIAD--IE--KGKAKKLKTVKTLVGITIME   KAAFEE
1183





WP_002263549
1094
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_002263887
1094
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_002264920
1094
--DSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_002269043
1094
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_002269448
1094
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_002271977
1094
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_002272766
1094
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_002273241
1094
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_002275430
1094
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_002276448
1094
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_002277050
1112
--PLE   KLVPLKK----AL-NPEKYGGYQKPTTAYPI-LLIVD---------------TKQLIPISVMD   KKRFEQ
1166





WP_002277364
1094
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_002279025
1094
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_002279859
1094
--DSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_002280230
1094
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_002281696
1094
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_002282247
1112
--PLE   KLVPLKK----AL-NPEKYGGYQKPTTAYPI-LLIVD---------------TKQLIPISVMD   KKRFEQ
1166





WP_002282906
1094
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_002283846
1094
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_002287255
1094
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_002288990
1094
--NSY   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_002289641
1094
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_002290427
1094
--DSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_002295753
1094
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_002296423
1094
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_002304487
1108
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1172





WP_002305844
1094
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_002307203
1094
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_002310390
1094
--DSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_002352408
1094
--DSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_012997688
1094
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_014677909
1094
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_019312892
1094
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_019313659
1094
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_019314093
1094
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_019315370
1094
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_019803776
1094
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_019805234
1094
--DSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_024783594
1094
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KSKSKKLKTVKALVGVTIME   KMTFER
1158





WP_024784288
1112
--PLE   KLVPLKK----AL-NPEKYGGYQKPTTAYPI-LLIVD---------------TKQLIPISVMD   KKRFEQ
1166





WP_024784666
1094
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_024784894
1094
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_024786433
1112
--PLE   KLVPLKK----AL-NPEKYGGYQKPTTAYPI-LLIVD---------------TKQLIPISVMD   KKRFEQ
1166





WP_049473442
1094
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





WP_049474547
1094
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1158





EMC03581
1087
--NSD   KLIPRKT-KKFYW-DTKKYGGFDSPIVAYSI-LVIAD--IE--KGKSKKLKTVKALVGVTIME   KMTFER
1151





WP_000428612
1122
--NSD   KLIPRKT-KDILW-DTTKYGGFDSPVIAYSI-LLIAD--IE--KGKAKRLKTVKTLVGITIME   KATFEK
1186





WP_000428613
1120
--NSD   KLIPRKT-KDILW-ETTKYGGFDSPVIAYSI-LLIAD--IE--KGKAKKLKTVKTLVGITIME   KAAFEE
1184





WP_049523028
1115
--NSD   KLIPRKT-KNVQL-DTTKYGGFDSPVIAYSI-LLVAD--VE--KGKSKKLKTVKSLIGITIME   KVKFEA
1179





WP_003107102
1084
--DSD   KLIP----RKNNW-DPKKYGGEGSPITAYSV-LVVAK--VT--KGKSQKTKSVKELVGITIME   QNEFEK
1145





WP_054279288
1116
--KSS   KLIP----RKNKWrDTTKYGGENTPTVAYSV-LVVAK--VE--KGKAKKLKPVKELVGITIME   RTKFEA
1178





WP_049531101
1125
vvDAS   KLIPIKS-G---L-SPEKYGGYARPTIAYSV-LVIAD--IE--KGKAKKLKRIKEMVGITIQD   KKKFEA
1188





WP_049538452
1125
vvDAS   KLIPIKS-G---L-SPEKYGGYARPTIAYSV-LVIAD--IE--KGKTKKLKRIKEMIGITVQD   KKIFES
1188





WP_049549711
1127
vvDAS   KLIPIKS-G---L-SPEKYGGYARPTIAYSV-LVIAD--IE--KGKTKKLKRIKEMVGITIQD   KKKFEA
1190





WP_007896501
1121
--NSD   KLIE----RKKGW-DPKKYGGFDSPNTAYSI-FVVAK--VA--KRKAQKLKTVKEIVGITIME   QAEYEK
1182





EFR44625
1073
--NSD   KLIE----RKKGW-DPKKYGGFDSPNTAYSI-FVVAK--VA--KRKAQKLKTVKEIVGITIME   QAEYEK
1134





WP_002897477
1119
--NSD   KLIPRKT-KDILW-DTTKYGGFDSPVIAYSI-LLIAD--IE--KGKAKKLKTVKTLVGITIME   KAAFEE
1183





WP_002906454
1124
vvDAS   KLIPIKS-S---L-SPEKYGGYARPTIAYSV-LVIAD--IEkgKGKAKKLKRIKEIVGITIQD   KKKFES
1189





WP_009729476
1120
--NSD   KLIPRKT-KDILW-DTTKYGGFDSPVIAYSI-LLIAD--IE--KGKAKKLKTVKTLVGITIME   KDAFEK
1184





CQR24647
1110
--GSD   KLIARKT-KNNYL-STQKYGGFDSPTVAYSI-MFVAD--IE--KGKSKRLKTVKEMIGITIME   RSRFES
1174





WP_000066813
1124
--NSD   KLIPRKT-KEILW-DTTKYGGFDSPVIAYSI-LLIAD--IE--KGKAKKLKTVKTLVGITIME   KATFEK
1188





WP_009754323
1120
--NSD   KLIPRKT-KDILW-DTTKYGGFDSPVIAYSI-LLIAD--IE--KGKAKKLKTVKTLVGITIME   KAAFEK
1184





WP_044674937
1113
--DSD   KLIPRKT-EKFYL-DTKKYGGFDSPTIAYSV-LLIAD--IE--KGKAKKLKRVKELIGITIME   RMAFEK
1177





WP_044676715
1115
--DSD   KLIPRKT-EKFYL-DTKKYGGFDSPTIAYSV-LLIAD--IE--KGKAKKLKRVKELIGITIME   RMAFEK
1179





WP_044680361
1115
--DSD   KLIPRKT-EKFYL-DTKKYGGFDSPTIAYSV-LLIAD--IE--KGKAKKLKRVKELIGITIME   RMAFEK
1179





WP_044681799
1113
--DSD   KLIPRKT-EKFYL-DTKKYGGFDSPTIAYSV-LLIAD--IE--KGKAKKLKRVKELIGITIME   RMAFEK
1177





WP_049533112
1123
--DSS   ENLVGVK-RNL---DPKKYGGYAGISNSYAV-LVKAI--IE--KGVKKKETMVLEFQGISILD   RITFEK
1185





WP_029090905
1062
--SSS   KTIP----LKKHL-DTAIYGGYTAVNYASYA---LIQ--FK----KGRKLK--REIIGIPLAV   QTRIDN
1117





WP_006506696
1085
haDKG   AVVP---vNKNRS-DVHKYGGFSG--LQYTI----VA--IEgqKKKGKKTELVKKISGVPLHL   KAASIN
1149





AIT42264
1115
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME   RSSFEK
1176





WP_034440723
1093
k-KTE   KRIP----IKNNL-DPNIYGGYIEEKMAYYI----AInyLE--NGKTKK-----AIVGISIKD   KKDFEG
1149





AKQ21048
1115
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME   RSSFEK
1176





WP_004636532
1093
--DSS   KLIP----VKEGM-DPQKYGGLSQVSEAFAV-VIT----HE--KGKKKQLK--SDLISIPIVD   QKAYEQ
1150





WP_002364836
1099
--PSN   KLIP----VKNGL-DPQKYGGFDSPIVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME   KTRFEQ
1156





WP_016631044
1050
--PSN   KLIP----VKNGL-DPQKYGGFDSPVVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME   KTRFEQ
1107





EMS75795
835
--KPD   KLIQ----RKAGW-DVSKYGGFGSPVVAYAV-AFI----YE--KGKAR--KKAKAIEGITIMK   QSLFEQ
892





WP_002373311
1099
--PSN   KLIP----VKNGL-DPQKYGGFDSPVVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME   KTRFEQ
1156





WP_002378009
1099
--PSN   KLIP----VKNGL-DPQKYGGFDSPIVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME   KTRFEQ
1156





WP_002407324
1099
--PSN   KLIP----VKNGL-DPQKYGGFDSPIVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME   KTRFEQ
1156





WP_002413717
1099
--PSN   KLIP----VKNGL-DPQKYGGFDSPVVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME   KTRFEQ
1156





WP_010775580
1101
--PSN   KLIP----VKNGL-DPQKYGGFDSPVVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME   KTRFEQ
1158





WP_010818269
1099
--PSN   KLIP----VKNGL-DPQKYGGFDSPIVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME   KTRFEQ
1156





WP_010824395
1099
--PSN   KLIP----VKNGL-DPQKYGGFDSPVVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME   KTRFEQ
1156





WP_016622645
1099
--PSN   KLIP----VKNGL-DPQKYGGFDSPIVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME   KTRFEQ
1156





WP_033624816
1099
--PSN   KLIP----VKNGL-DPQKYGGFDSPVVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME   KTRFEQ
1156





WP_033625576
1099
--PSN   KLIP----VKNGL-DPQKYGGFDSPVVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME   KTKFEQ
1156





WP_033789179
1099
--PSN   KLIP----VKNGL-DPQKYGGFDSPVVAYTV-LF--T--HE--KGK-KPL-IKQEILGITIME   KTRFEQ
1156





WP_002310644
1101
--DSS   KLLP----RKNNW-DPAKYGGLGSPNVAYTV-AFT----YE--KGKAR--KRTNALEGITIME   REAFEQ
1158





WP_002312694
1102
--DSS   KLLP----RKNNW-DPAKYGGLGSPNVAYTV-AFT----YE--KGKAR--KRTNALEGITIME   REAFEQ
1159





WP_002314015
1102
--DSS   KLLP----RKNNW-DPAKYGGLGSPNVAYTV-AFT----YE--KGKAR--KRTNALEGITIME   REAFEQ
1159





WP_002320716
1102
--DSS   KLLP----RKNNW-DPAKYGGLGSPNVAYTV-AFT----YE--KGKAR--KRTNALEGITIME   REAFEQ
1159





WP_002330729
1101
--DSS   KLLP----RKNNW-DPAKYGGLGSPNVAYTV-AFT----YE--KGKAR--KRTNALEGITIME   REAFEQ
1158





WP_002335161
1102
--DSS   KLLP----RKNNW-DPAKYGGLGSPNVAYTV-AFT----YE--KGKAR--KRTNALEGITIME   REAFEQ
1159





WP_002345439
1102
--DSS   KLLP----RKNNW-DPTKYGGLGSPNVAYTV-AFT----YE--KGKAR--KRTNALEGITIME   REAFEQ
1159





WP_034867970
1092
--KPD   KLIE----RKNNW-DVTKYGGFGSPVIAYAI-AFV----YA--KGKTQ--KKTRAIEGITIME   QAAFEK
1149





WP_047937432
1102
--DSS   KLLP----RKNNW-DPAKYGGLGSPNVAYTV-AFT----YE--KGKAR--KRTNALEGITIME   REAFEQ
1159





WP_010720994
1092
--KPD   KLIE----RKNNW-DVTKYGGFGSPVIAYAI-AFV----YA--KGKTQ--KKTKAIEGITIME   QAAFEK
1149





WP_010737004
1092
--KPD   KLIE----RKNNW-DVTKYGGFGSPVIAYAI-AFV----YA--KGKTQ--KKTRAIEGITIME   QAAFEK
1149





WP_034700478
1092
--KPD   KLIE----RKNNW-DVTKYGGFGSPVIAYAI-AFV----YA--KGKTQ--KKTRAIEGITIME   QAAFEK
1149





WP_007209003
1090
--ESQ   KLIR----RKQQW-NTKKYGGFDSPVVAYAI---LLS--FD--KGK-RKARSFK-IVGITIQD   RESFEG
1147





WP_023519017
1086
--NPE   KLIP----RKASL-DPLKYGGYGSPLVAYTV-IFI----FE--KGKQK--KVTKGIEGITVME   QLRFEQ
1143





WP_010770040
1097
--DSD   KLIS----RKTNW-SPKLYGGFDSPQVAYSV-II--T--YE--KGK-KKVRA-KAIVGITIME   QSLFKK
1154





WP_048604708
1094
--DSD   KLIS----RKKEW-DTTKYGGFDSPNVAYSV-VI--R--YE--KGK-TRKLV-KTIVGITIME   RAAFEK
1151





WP_010750235
1095
--KPD   KLIK----RKNNW-DVTKYGGFGSPVVAYAV-VFT----YE--KGKNH--KKAKAIEGITIME   QALFEK
1152





AII16583
1154
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME   RSSFEK
1215





WP_029073316
1100
hsEKG   AKVP---vNKLRS-NVHKYGGFEG--LKYSI----VA--IKgkKKKGKKIIDVNKLVGIPLMY   KNVDDE
1164





WP_031589969
1100
nsDKD   ATVP---vNKYRS-NVNKYGGFSG--VNSFI----VA--IKgkKKKGKKVIEVNKLTGIPLMY   KNADEE
1164





KDA45870
1079
--DSG   KLLP----RKEGL-DPVKYGGYAKAVESYAV-LITAD-eVK--KGKTKKVKT---LVNIPIID   SKKYEA
1138





WP_039099354
1098
k-ASG   QLIPAKQdRPTAL-----YGGYSGKTVAYMC---IVR--IKnkKGDLYKVCGVETSWLAQLKQ   KKAFLK
1170





AKP02966
1119
k----   KLIA----QKKDM-DPNIYGGFSGDNKSSIT---IVK--ID-----NNKIKPVA--IPIRLIN   ----DK
1172





WP_010991369
1096
--NSS   KLIP----RKTNW-DPMKYGGLDSPNMAYAV-VI--E--YA--KGK-NKLVFEKKIIRVTIME   RKAFEK
1154





WP_033838504
1096
--NSS   KLIS----RKTNW-DPMKYGGLDSPNMAYAV-VI--E--YA--KGK-NKLVFEKKIIRVTIME   RKAFEK
1154





EHN60060
1099
--NSS   KLIS----RKTNW-DPMKYGGLDSPNMAYAV-VI--E--YA--KGK-NKLVFEKKIIRVTIME   RKAFEK
1157





EFR89594
865
--NSS   KLIP----RKTNW-DPMKYGGLDSPNMAYAV-VI--E--YA--KGK-NKLVFEKKIIRVTIME   RKAFEK
923





WP_038409211
1096
--NSS   KLIS----RKADW-NPIKYGGFDGSNMAYSI-VI--E--YE--KRK-KKTVIKKELIQINIME   RVAFEK
1154





EFR95520
715
--NSS   KLIS----RKADW-NPIKYGGFDGSNMAYSI-VI--E--YE--KRK-KKTVIKKELIQINIME   RVAFEK
773





WP_003723650
1096
--NSS   KLIP----RKENW-DPMKYGGLDSPNMAYAV-II--E--HA--KGK-KKIVIEKKLIQINIME   RKMFEK
1154





WP_003727705
1096
--NSS   KLIP----RKENW-DPMKYGGLDSPNMAYAV-II--E--HA--KGK-KKIVIEKKLIQINIME   RKMFEK
1154





WP_003730785
1096
--NSS   KLIP----RKENW-DPVKYGGLDSPNMAYAV-II--E--HA--KGK-KKIVIEKKLIQINIME   RKMFEK
1154





WP_003733029
1096
--KSN   KLIP----RKKDW-DPIKYGGFDGSKMAYAI-II--E--YE--KQK-RKVRIEKKLIQINIME   REAFEK
1154





WP_003739838
1096
--NSS   KLIP----RKENW-DPMKYGGLDSPNMAYAV-II--E--HA--KGK-KKVVFEKKIIRITIME   RKAFEK
1154





WP_014601172
1096
--NSS   KLIP----RKENW-DPMKYGGLDSPNMAYAV-II--E--HA--KGK-KKLIFEKKIIRITIME   RKMFEK
1154





WP_023548323
1096
--DSS   KLIP----KKTNL-NPIKYGGFEGSNMAYAI-II--E--HE--KRK-KKVTIEKKLIQINIME   RKAFEK
1154





WP_031665337
1096
--NSS   KLIP----RKENW-DPMKYGGLDSPNMAYAV-II--E--HA--KGK-KRIVIEKKLIQINIME   RKMFEK
1154





WP_031669209
1096
--KSN   KLIP----RKKDW-DPIKYGGFDGSKMAYAI-II--E--YE--KQK-RKVRIEKKLIQINIME   REAFEK
1154





WP_033920898
1096
--DSS   KLIP----KKTNL-NPIKYGGFEGSNMAYAI-II--E--HE--KRK-KKVTIEKKLIQINIME   RKAFEK
1154





AKI42028
1099
--NSS   KLIP----RKENW-DPMKYGGLDSPNMAYAV-II--E--HA--KGK-KKLIFEKKIIRITIME   RKMFEK
1157





AKI50529
1099
--DSS   KLIP----KKTNL-NPIKYGGFEGSNMAYAI-II--E--HE--KRK-KKVTIEKKLIQINIME   RKAFEK
1157





EFR83390
544
--NSS   KLIP----RKENW-DPMKYGGLDSPNMAYAV-II--E--HA--KGK-KKIVIEKKLIQINIME   RKMFEK
602





WP_046323366
1096
--NSS   KLIP----RKADW-DPIKYGGFDGSNMAYAI-VI--E--HE--KRK-KKTVIKKELIQINIME   RTAFEK
1154





AKE81011
1131
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME   RSSFEK
1192





CUO82355
1089
hsAKG   AVIP---vNKNRK-DVNKYGGFSG--LQYVI----AA--IEgtKKKGKKLVKVRKLSGIPLYL   KQADIK
1153





WP_033162887
1090
hsEKG   ATVP---lNKYRA-DVHKYGGFGN--VQSII----VA--IEgkKKKGKKLIDVRKLTSIPLHL   KNAPVE
1154





AGZ01981
1148
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME   RSSFEK
1209





AKA60242
1115
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME   RSSFEK
1176





AKS40380
1115
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME   RSSFEK
1176





4UN5_B
1119
--NSD   KLIA----RKKDW-DPKKYGGFDSPTVAYSV-LVVAK--VE--KGKSKKLKSVKELLGITIME   RSSFEK
1180





WP_010922251
1177


embedded image


1239


WP_039695303
1186
NPV---EFLE---NKGYHN--I-REDKLIK--LPKYSLFE---FEGGRRRLLAS   ASELQKGNEMVLPGYLVELLYHA
1248





WP_045635197
1184
NPI---TFLE---NKGYHN--V-RKENILC--LPKYSLFE---LENGRRRLLAS   AKELQKGNEIVLPVYLTTLLYHS
1246





5AXW_A
913
KPYrfdVYLD---NGVYKFvtV-KNLDVIK----KENYYE---VNSKAYEEAKK   -KKISNQAEFIASFYNNDLIKIN
978





WP_009880683
861
DPV---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNFLYLA
923





WP_010922251
1177
NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNFLYLA
1239





WP_011054416
1177
DPI---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNFLYLA
1239





WP_011284745
1177
NPI---DFLE---AKGYKE--V-RKDLIVK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNFLYLA
1239





WP_011285506
1177
NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNFLYLA
1239





WP_011527619
1177
NPI---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNFLYLA
1239





WP_012560673
1177
DPV---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNFLYLA
1239





WP_014407541
1176
NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNFLYLA
1238





WP_020905136
1177
NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNFLYLA
1239





WP_023080005
1176
NPI---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNFLYLA
1238





WP_023610282
1176
NPI---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNFLYLA
1238





WP_030125963
1177
NPI---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNFLYLA
1239





WP_030126706
1177
NPI---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNFLYLA
1239





WP_031488318
1177
NPI---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNFLYLA
1239





WP_032460140
1177
DPV---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNFLYLA
1239





WP_032461047
1177
DPV---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNFLYLA
1239





WP_032462016
1177
NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNFLYLA
1239





WP_032462936
1177
NPI---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNFLYLA
1239





WP_032464890
1177
NPI---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNFLYLA
1239





WP_033888930
1002
NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNFLYLA
1064





WP_038431314
1177
NPI---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNFLYLA
1239





WP_038432938
1176
NPI---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNFLYLA
1238





WP_038434062
1177
NPI---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNFLYLA
1239





BAQ51233
1088
NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNFLYLA
1150





KGE60162
352
DPI---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNFLYLA
414





KGE60856
115
DPI---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNFLYLA
177





WP_002989955
1177
NPI---DFLE---AKGYKE--V-RKDLIIK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNFLYLA
1239





WP_003030002
1159
HPV---DFLE---QRGYRN--V-RLEKIIK--LPKYSLFE---LENKRRRLLAS   ARELQKGNELVIPQRFTTLLYHS
1221





WP_003065552
1187
NPV---EFLE---NKGYHN--I-REDKLIK--LPKYSLFE---FEGGKRRLLAS   ASELQKGNEMVIPGHLVKLLYHA
1249





WP_001040076
1178
NPS---AFLE---SKGYLN--I-RTDKLII--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQFMKFLYLA
1240





WP_001040078
1186
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQFMKFLYLA
1248





WP_001040080
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQFMKFLYLA
1240





WP_001040081
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS   AGETIDRLQKGNELALPTQFMKFLYLA
1240





WP_001040083
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQFMKFLYLA
1240





WP_001040085
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQFMKFLYLA
1240





WP_001040087
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQFMKFLYLA
1240





WP_001040088
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQFMKFLYLA
1240





WP_001040089
1178
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQFMKFLYLA
1240





WP_001040090
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQFMKFLYLA
1240





WP_001040091
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQFMKFLYLA
1240





WP_001040092
1178
NPS---AFLE---SKGYLN--I-RTDKLII--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQYMKFLYLA
1240





WP_001040094
1178
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQFMKFLYLA
1240





WP_001040095
1178
NPS---AFLE---SKGYLN--I-RTDKLII--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQYMKFLYLA
1240





WP_001040096
1178
NPS---AFLE---SKGYLN--I-RTDKLII--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQYMKFLYLA
1240





WP_001040097
1178
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS   ADELQKGNELALPTQFMKFLYLA
1240





WP_001040098
1178
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQFMKFLYLA
1240





WP_001040099
1178
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQFMKFLYLA
1240





WP_001040100
1178
NPS---AFLE---SKGYLD--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQFMKFLYLA
1240





WP_001040104
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQFMKFLYLA
1240





WP_001040105
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQFMKFLYLA
1240





WP_001040106
1178
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQYMKFLYLA
1240





WP_001040107
1178
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQYMKFLYLA
1240





WP_001040108
1178
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQYMKFLYLA
1240





WP_001040109
1178
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQYMKFLYLA
1240





WP_001040110
1178
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQYMKFLYLA
1240





WP_015058523
1178
NPS---AFLE---SKGYLN--I-RTDKLII--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQYMKFLYLA
1240





WP_017643650
1178
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS   ADELQKGNELALPTQFMKFLYLA
1240





WP_017647151
1178
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQFMKFLYLA
1240





WP_017648376
1178
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQFMKFLYLA
1240





WP_017649527
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQFMKFLYLA
1240





WP_017771611
1178
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQYMKFLYLA
1240





WP_017771984
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQFMKFLYLA
1240





CFQ25032
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQFMKFLYLA
1240





CFV16040
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQFMKFLYLA
1240





KLJ37842
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQFMKFLYLA
1240





KLJ72361
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQFMKFLYLA
1240





KLL20707
1192
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQFMKFLYLA
1254





KLL42645
1178
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQYMKFLYLA
1240





WP_047207273
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQFMKFLYLA
1240





WP_047209694
1178
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQFMKFLYLA
1240





WP_050198062
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQFMKFLYLA
1240





WP_050201642
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQFMKFLYLA
1240





WP_050204027
1178
NPS---AFLE---SKGYLN--I-RDDKLMI--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQYMKFLYLA
1240





WP_050881965
1178
NLS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQFMKFLYLA
1240





WP_050886065
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQFMKFLYLA
1240





AHN30376
1178
NPS---AFLE---SKGYLN--I-RTDKLII--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQYMKFLYLA
1240





EAO78426
1178
NPS---AFLE---SKGYLN--I-RADKLII--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQFMKFLYLA
1240





CCW42055
1178
NPS---AFLE---SKGYLN--I-RTDKLII--LPKYSLFE---LENGRRRLLAS   AGELQKGNELALPTQFMKFLYLA
1240





WP_003041502
1186
DKR---AFLL---GKGYKD--I-K--KIIE--LPKYSLFE---LKDGSRRMLAS   RGEIHKGNELFVPQKFTTLLYHA
1253





WP_037593752
1160
NPV---DFLE---QRGYRN--V-RLEKIIK--LPKYSLFE---LENKRRRLLAS   ARELQKGNELVIPQRFTTLLYHS
1222





WP_049516684
1160
HPV---DFLE---QRGYRN--V-RLEKIIK--LPKYSLFE---LENKRRRLLAS   ARELQKGNELVIPQRFTTLLYHS
1222





GAD46167
1159
NPV---DFLE---QRGYRN--V-RLEKIIK--LPKYSLFE---LENKRRRLLAS   ARELQKGNELVIPQRFTTLLYHS
1221





WP_018363470
1191
NPV---EFLK---NKGYQN--V-QEDKLMK--LPKYSLFE---FEGGRRRLLAS   ATELQKGNEIMLSAHLVALLYHA
1253





WP_003043819
1186
DPI---GFLE---AKGYKD--I-KKELIFK--LPKYSLFE---LENGRRRMLAS   --ELQKANELVLPQHLVRLLYYT
1248





WP_006269658
1159
NPV---DFLE---QRGYRN--V-RLEKIIK--LPKYSLFE---LENKRRRLLAS   AKELQKGNELVIPQRFTTLLYHS
1221





WP_048800889
1179
NPI---MFLE---SKGYRN--I-QKDKLIK--LPKYSLFE---FEGGRRRLLAS   AVELQKGNEMVLPQYLNNLLYHA
1241





WP_012767106
1178
NPL---KFIE---DKGYGN--V-QIDKCIK--LPKYSLFE---FENGTRRMLAS   RGDLQKANEMFLPAKLVTLLY--
1245





WP_014612333
1178
NPL---KFIE---DKGYGN--V-QIDKCIK--LPKYSLFE---FENGTRRMLAS   RGDLQKANEMFLPAKLVTLLY--
1245





WP_015017095
1178
NPL---KFIE---DKGYGN--V-QIDKCIK--LPKYSLFE---FENGTRRMLAS   RGDLQKANEMFLPAKLVTLLY--
1245





WP_015057649
1178
NPL---KFIE---DKGYGN--V-QIDKCIK--LPKYSLFE---FENGTRRMLAS   RGDLQKANEMFLPAKLVTLLY--
1245





WP_048327215
1178
NPL---KFIE---DKGYGN--V-QIDKCIK--LPKYSLFE---FENGTRRMLAS   RGDLQKANEMFLPAKLVTLLY--
1245





WP_049519324
1178
NPL---KFIE---DKGYGN--V-QIDKCIK--LPKYSLFE---FENGTRRMLAS   RGDLQKANEMFLPAKLVTLLY--
1245





WP_012515931
1157
NPV---VFLE---ARGYRE--I-QEHLIIK--LPKYSLFE---LENGRRRLLAS   -SELQKGNELFLPVDYMTFLYLA
1219





WP_021320964
1157
NPV---VFLE---AKGYRE--I-QEHLIIK--LPKYSLFE---LENGRRRLLAS   -SELQKGNELFLPVDYMTFLYLA
1219





WP_037581760
1157
NPV---VFLE---AKGYRE--I-QEHLIIK--LPKYSLFE---LENGRRRLLAS   -SELQKGNELFLPVDYMTFLYLA
1219





WP_004232481
1189
NPV---SFLE---KKGYHN--V-QEDKLIK--LPKYSLFE---FEGGRRRLLAS   ATELQKGNEVVLPQYMVNLLYHS
1251





WP_009854540
1184
NPV---EFLE---NKGYHN--I-REDKLIK--LPKYSLFE---FEGGRRRLLAS   ASELQKGNEMVLPGYLVELLYHA
1246





WP_012962174
1185
NPV---VFLE---KKGYQN--V-QEDNLIK--LPKYSLFE---FEGGRRRLLAS   ASELQKGNEVVLSRHLVELLYHA
1247





WP_039695303
1186
NPV---EFLE---NKGYHN--I-REDKLIK--LPKYSLFE---FEGGRRRLLAS   ASELQKGNEMVLPGYLVELLYHA
1248





WP_014334983
1189
NPV---SFLE---KKGYHN--V-QEDKLIK--LPKYSLFE---FEGGRRRLLAS   ATELQKGNEVMLPAHLVELLYHA
1251





WP_003099269
1177
DPI---AFLE---KKGYQD--I-QTSSIIK--LPKYSLFE---LENGRKRLLAS   --ELQKGNELALPNKYVKFLYLA
1239





AHY15608
1177
DPI---AFLE---KKGYQD--I-QTSSIIK--LPKYSLFE---LENGRKRLLAS   --ELQKGNELALPNKYVKFLYLA
1239





AHY17476
1177
DPI---AFLE---KKGYQD--I-QTSSIIK--LPKYSLFE---LENGRKRLLAS   --ELQKGNELALPNKYVKFLYLA
1239





ESR09100
9
DPI---AFLE---KKGYQD--I-QTSSIIK--LPKYSLFE---LENGRKRLLAS   -KELQKGNELALPNKYVKFLYLA
71





AGM98575
1177
DPI---AFLE---KKGYQD--I-QTSSIIK--LPKYSLFE---LENGRKRLLAS   --ELQKGNELALPNKYVKFLYLA
1239





ALF27331
1159
NPV---AFLE---RKGYRN--V-QEENIVK--LPKYSLFE---LENGRRRLLAS   ARELQKGNEIVLPNHLGTMLYHA
1221





WP_018372492
1168
EPEr---FLA---QKGFER--V-EKT--IK--LPKYSLFE---MEKGRRRLLAS   SGELQKGNQVLLPEHLIRLLSYA
1228





WP_045618028
1189
NPI---AYLE---ECGYKN--I-NPNLIIK--LPKYSLFE---FNNGQRRLLAS   SIELQKGNELIVPYHFTALLYHA
1251





WP_045635197
1184
NPI---TFLE---NKGYHN--V-RKENILC--LPKYSLFE---LENGRRRLLAS   AKELQKGNEIVLPVYLTTLLYHS
1246





WP_002263549
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_002263887
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_002264920
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_002269043
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_002269448
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_002271977
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_002272766
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_002273241
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_002275430
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_002276448
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_002277050
1167
NPV---KFLK---DKGYQQ--I-EKNNFVK--LPKYTLVD---IGNGIKRLWAS   SKEVHKGNQLVVSKKSQDLLYHA
1229





WP_002277364
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_002279025
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_002279859
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_002280230
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_002281696
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_002282247
1167
NPV---KFLK---DKGYQQ--I-EKNNFVK--LPKYTLVD---IGNGIKRLWAS   SKEVHKGNQLVVSKKSQDLLYHA
1229





WP_002282906
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_002283846
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_002287255
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_002288990
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_002289641
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_002290427
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_002295753
1159
DPI---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_002296423
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_002304487
1173
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLETLLYHA
1235





WP_002305844
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_002307203
1159
DPI---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_002310390
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_002352408
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPDHLGTLLYHA
1221





WP_012997688
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_014677909
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_019312892
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_019313659
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_019314093
1159
DPI---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_019315370
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_019803776
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_019805234
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_024783594
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_024784288
1167
NPV---KFLK---DKGYQQ--I-EKNNFVK--LPKYTLVD---IGNGIKRLWAS   SKEVHKGNQLVVSKKSQDLLYHA
1229





WP_024784666
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_024784894
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_024786433
1167
NPV---KFLK---DKGYQQ--I-EKNNFVK--LPKYTLVD---IGNGIKRLWAS   SKEVHKGNQLVVSKKSQDLLYHA
1229





WP_049473442
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





WP_049474547
1159
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1221





EMC03581
1152
DPV---AFLE---RKGYRN--V-QEENIIK--LPKYSLFK---LENGRKRLLAS   ARELQKGNEIVLPNHLGTLLYHA
1214





WP_000428612
1187
SPI---AFLE---NKGYHN--V-RKENILC--LPKYSLFE---LKNGRRRMLAS   AKELQKGNEIVLPVHLTTLLYHA
1249





WP_000428613
1185
NPI---TFLE---NKGYHN--V-RKENILC--LPKYSLFE---LENGRRRLLAS   AKELQKGNEIVLPVYLTTLLYHS
1247





WP_049523028
1180
NPV---AFLE---GKGYQN--V-VEENIIR--LPKYSLFE---LENGRRRMLAS   AKELQKGNEMVLPSYLIALLYHA
1242





WP_003107102
1146
DRI---TFLE---KKGYQD--I-QESLIIK--LPKFSLFE---LENGRKRLLAS   --ELQKGNELSLPNKYIQFLYLA
1208





WP_054279288
1179
NPI---AFLE---SKGYHD--I-QEHLMIT--LPKYSLFE---LENGRRRLLAS   --ELQKGNEMVLPQHLVTELYRV
1241





WP_049531101
1189
NPT---AYLE---EYGYKN--I-NPNLIIK--LPKYSLFK---FNDGQRRLLAS   SIELQKGNELILPYHFTTLLYHA
1251





WP_049538452
1189
NPI---AYLE---ECGYKN--I-NPNLIIK--LPKYSLFE---FNGGQRRLLAS   SIELQKGNELILPYHFTALLYHT
1251





WP_049549711
1191
NPI---AYLE---ECGYKN--I-NPNLIIK--LPKYSLFE---FNGGQRRLLAS   SIELQKGNELILPYHFTALLYHA
1253





WP_007896501
1183
DNI---AFLE---KKGYQD--I-QEKLLIK--LPKYSLFE---LENGRRRLLAS   --EFQKGNELALSGKYMKELYLA
1245





EFR44625
1135
DNI---AFLE---KKGYQD--I-QEKLLIK--LPKYSLFE---LENGRRRLLAS   --EFQKGNELALSGKYMKELYLA
1197





WP_002897477
1184
NPI---TFLE---NKGYHN--V-RKENILC--LPKYSLFE---LENGRRRLLAS   AKELQKGNEIVLPVCLTTLLYHS
1246





WP_002906454
1190
NPV---TYLE---ECGYKN--I-NSNLIIK--LPKYSLFE---ENDGQRRLLAS   SIELQKGNELILPYHLTALLYHA
1252





WP_009729476
1185
NPI---AFLE---NKGYHN--V-CKENILC--LPKYSLFE---LENGRRRLLAS   AKELQKCNEIVLPVYLTTLLYHS
1247





CQR24647
1175
NSV---TFLE---EKGYRN--I-RENTIIK--FPKYSLFE---LENGRRRLLAS   AIELQKGNEMFLPQQEVNLLYHA
1237





WP_000066813
1189
NPI---TFLE---NKGYHN--V-RKENILC--LPKYSLFE---LESGRRRMLAS   AKELQKGNEIVLPVYLTTLLYHS
1251





WP_009754323
1185
NPI---TFLE---NKGYHN--V-RKENILC--LPKYSLFE---LENGRRRLLAS   AKELQKGNEIVLPVYLTTLLYHS
1247





WP_044674937
1178
NPI---EFLE---HKGYKN--I-LEKNIIK--LPKYSLFE---LENGRRRLLAS   AKELQKGNEMILPPHLVTLLYHS
1240





WP_044676715
1180
NPI---EFLE---HKGYKN--I-LEKNIIK--LPKYSLFE---LENGRRRLLAS   AKELQKGNEMILPPHLVTLLYHS
1242





WP_044680361
1180
NPI---EFLE---HKGYKN--I-LEKNIIK--LPKYSLFE---LENGRRRLLAS   AKELQKGNEMILPPHLVTLLYHS
1242





WP_044681799
1178
NPI---EFLE---HKGYKN--I-LEKNIIK--LPKYSLFE---LENGRRRLLAS   AKELQKGNEMILPPHLVTLLYHS
1240





WP_049533112
1186
DKR---AFLL---GKGYKD--I-K--KIIE--LPKYSLFE---LKDGSRRMLAS   RGEIHKGNELFVPQKETTLLYHA
1253





WP_029090905
1118
SETslqAYIA---EQIKSE--VeILN----grILKYQLIS----NNGNRLYIAG   -SERHNARQLIVSDEAAKVIWLI
1181





WP_006506696
1150
EKI---NYIE--eKEGLSD--VrIIK---Dn-IPVNQMIEm----DGGEYLLTS   --EYVNARQLVLNEKQCALIADI
1211





AIT42264
1177
NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNELYLA
1239





WP_034440723
1150
QTT---EYLG---KIGFNK--AsIIN---S--FKNYTLFE---LENGSRRMIVG   KGELQKGNQMYLPQNLLEEVYHL
1217





AKQ21048
1177
NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNELYLA
1239





WP_004636532
1151
HPT---AYLE---EAGYNN--P-TV--LHE--LFKYQLFE---LEDGSRRMIAS   AKEEQKGNQMVLPLELVELLYHA
1211





WP_002364836
1157
NPI---LFLE---EKGFLR--P-RV--LMK--LPKYTLYE---FPEGRRRLLAS   AKEAQKGNQMVLPEHLLTLLYHA
1217





WP_016631044
1108
NPI---LFLE---EKGFLR--P-RV--LMK--LPKYTLYE---FPEGRRRLLAS   AKEAQKGNQMVLPEHLLTLLYHA
1168





EMS75795
893
DPI---GFLS---NKGYSN--V-TKF--IK--LSKYTLYE---LENGRRRMVAS   -KEAQKANSFILPEKLVTLLYHA
953





WP_002373311
1157
NPI---LFLE---EKGFLR--P-RV--LMK--LPKYTLYE---FPEGRRRLLAS   AKEAQKGNQMVLPEHLLTLLYHA
1217





WP_002378009
1157
NPI---LFLE---EKGFLR--P-RV--LMK--LPKYTLYQ---FPEGRRRLLAS   AKEAQKGNQMVLPEHLLTLLYHA
1217





WP_002407324
1157
NPI---LFLE---EKGFLR--P-RV--LMK--LPKYTLYE---FPEGRRRLLAS   AKEAQKGNQMVLPEHLLTLLYHA
1217





WP_002413717
1157
NPI---LFLE---EKGFLR--P-RV--LMK--LPKYTLYE---FPEGRRRLLAS   AKEAQKGNQMVLPEHLLTLLYHA
1217





WP_010775580
1159
NPI---LFLE---EKGFLR--P-RV--LMK--LPKYTLYE---FPEGRRRLLAS   AKEAQKGNQMVLPEHLLTLLYHA
1219





WP_010818269
1157
NPI---LFLE---EKGFLR--P-RV--LMK--LPKYTLYE---FPEGRRRLLAS   AKEAQKGNQMVLPEHLLTLLYHA
1217





WP_010824395
1157
NPI---LFLE---EKGFLR--P-RV--LMK--LPKYTLYE---FPEGRRRLLAS   AKEAQKGNQMVLPEHLLTLLYHA
1217





WP_016622645
1157
NPI---LFLE---EKGFLR--P-RV--LMK--LPKYTLYE---FPEGRRRLLAS   AKEAQKGNQMVLPEHLLTLLYHA
1217





WP_033624816
1157
NPI---LFLE---EKGFLR--P-RV--LMK--LPKYTLYE---FPEGRRRLLAS   AKEAQKGNQMVLPERLLTLLYHA
1217





WP_033625576
1157
NPI---LFLE---EKGFLR--P-RV--LMK--LPKYTLYE---FPEGRRRLLAS   AKEAQKGNQMVLPEHLLTLLYHA
1217





WP_033789179
1157
NPI---LFLE---EKGFLR--P-RV--LMK--LPKYTLYE---FPEGRRRLLAS   AKEAQKGNQMVLPEHLLTLLYHA
1217





WP_002310644
1159
SPV---LFLK---NKGYEQ--A-EIE--MK--LPKYALFE---LENGRKRMVAS   -KEAQKANSFLLPEHLVTLLYHA
1219





WP_002312694
1160
SPV---LFLK---NKGYEQ--A-EIE--MK--LPKYALFE---LENGRKRMVAS   -KEAQKANSFLLPEHLVTLLYHA
1220





WP_002314015
1160
SPV---LFLK---NKGYEQ--A-EIE--MK--LPKYALFE---LENGRKRMVAS   -KEAQKANSFLLPEHLVTLLYHA
1220





WP_002320716
1160
SPV---LFLK---NKGYEQ--A-EIE--MK--LPKYALFE---LENGRKRMVAS   -KEAQKANSFLLPEHLVTLLYHA
1220





WP_002330729
1159
SPV---LFLK---NKGYEQ--A-EIE--MH--LPKYALFE---LENGRKRMVAS   -KEAQKANSFLLPEHLVTLLYHA
1219





WP_002335161
1160
SPV---LFLK---NKGYEQ--A-EIE--MH--LPKYALFE---LENGRKRMVAS   -KEAQKANSFLLPEHLVTLLYHA
1220





WP_002345439
1160
SPV---LFLK---NKGYEQ--A-EIE--MH--LPKYALFE---LENGRKRMVAS   -KEAQKANSFLLPEHLVTLLYHA
1220





WP_034867970
1150
DPT---TFLK---EKGFPQ--V-TEF--IK--LPKYTLFE---FDNGRRRFLAS   -KESQKGNPFILSDQLVTLLYHA
1210





WP_047937432
1160
SPV---LFLK---NKGYEQ--A-EIE--MH--LPKYALFE---LENGRKRMVAS   -KEAQKANSFLLPEHLVTLLYHA
1220





WP_010720994
1150
DPT---TFLK---DKGFPQ--V-TEF--IK--LPKYTLFE---FDNGRRRFLAS   -KESQKGNPFILSDQLVTLLYHA
1210





WP_010737004
1150
DPT---TFLK---EKGFPQ--V-TEF--IK--LPKYTLFE---FDNGRRRFLAS   -KESQKGNPFILSDQLVTLLYHA
1210





WP_034700478
1150
DPT---TFLK---DKGFPH--V-TEF--IK--LPKYTLFE---FDNGRRRFLAS   -KESQKGNPFILSDQLVTLLYHA
1210





WP_007209003
1148
NPIl---YLS---KKDYHN---pKVEAI----LPKYSLFE---FENGRRRMVAS   -SETQKGNQLIIPGHLMELLYHS
1208





WP_023519017
1144
DPR---EFLK---TKGYEG--V-KQW--LI--LPKYILFE---AQGGYRRMIAS   -QETQKANSLILPENLVTLLYHA
1204





WP_010770040
1155
DPV---SLLE---EKGYAN--P-EV--LIH--LPKYTLYE---LENGRRRLLAS   ANEAQKGNQLVLPASLVTLLYHA
1215





WP_048604708
1152
NER---EFLK---NKGYQN--P-QI--CMK--LPKYSLYE---FDDGRRRLLAS   AKEAQKGNQMVLPAHLVTFLYHA
1212





WP_010750235
1153
DPI---SFLI---EKGYSN--V-NQF--IK--LPKYTLFE---LANGQRRMLAS   -QELQKANSFILPEKLVTLLYHA
1213





AII16583
1216
NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNFLYLA
1278





WP_029073316
1165
TKI---NYIK--eSEGLEE--VkIIK---E--ILKNQLIEi----NGGLEYVTS   --EIVNARQLILDFNCTRIIDGI
1225





WP_031589969
1165
IKI---NYLK--qAEDLEE--VqIGK---E--ILKNQLIEk----DGGLYYIVA   --EIINAKQLILNESQTKLVCEI
1225





KDA45870
1139
DPT---AYLA---SRGYTNvtNsFIL-------PKYSLLEd---PEGRRRYLAS   -KEFQKANELILPQHLVELLYWV
1199





WP_039099354
1171
QKI-spQFTKv---KKQKGtiV-KVVEDFEv-IAPHILINqrfFDNGQELTLGS   ----HNEQELILDKTAVKLLNGA
1241





AKP02966
1173
KTL--qNWLE---ENVKHKksIqIIK---Nn-VPIGQIIY------SKKVGLLS   -REIANRQQLILPPEHSALLRIL
1237





WP_010991369
1155
DEK---AFLE---EQGYRQ--P-KV--LAK--LPKYTLYE---CEEGRRRMLAS   ANEAQKGNQQVLPNHLVTLLHHA
1215





WP_033838504
1155
DEK---AFLE---EQGYRQ--P-KV--LAK--LPKYTLYE---CEEGRRRMLAS   ANEAQKGNQQVLPNHLVTLLHHV
1215





EHN60060
1158
DEK---AFLE---EQGYRQ--P-KV--LAK--LPKYTLYE---CEEGRRRMLAS   ANEAQKGNQQVLPNHLVTLLHHV
1218





EFR89594
924
DEK---AFLE---EQGYRQ--P-KV--LAK--LPKYTLYE---CEEGRRRMLAS   ANEAQKGNQQVLPNHLVTLLHHA
984





WP_038409211
1155
DQK---AFLE---EKGYYS--P-KV--LTK--IPKYTLYE---CENGRRRMLGS   ANEAQKGNQMVLPNHLMTLLYHA
1215





EFR95520
774
DQK---AFLE---EKGYYS--P-KV--LTK--IPKYTLYE---CENGRRRMLGS   ANEAQKGNQMVLPNHLMTLLYHA
834





WP_003723650
1155
DEE---AFLE---EKGYRH--P-KV--LTK--LPKYTLYE---CEKGRRRMLAS   ANEAQKGNQLVLSNHLVSLLYHA
1215





WP_003727705
1155
DEE---AFLE---EKGYHQ--P-KV--LTK--LPKYTLYE---CEKGRRRMLSS   ANEAQKGNQLVLSNHLVSLLYHA
1215





WP_003730785
1155
DEE---AFLE---EKGYHQ--P-KV--LTK--LPKYTLYE---CEKGRRRMLSS   ANEAQKGNQLVLSNHLVSLLYHA
1215





WP_003733029
1155
DEK---TFLE---EKGYHQ--P-KV--LTK--VPKYTLYE---CKNGRRRMLGS   ANEAHKGNQMLLPNHLMALLYHA
1215





WP_003739838
1155
DEK---SFLE---KQGYRQ--P-KV--LTK--LPKYTLYE---CENGRRRMLAS   ANEAQKGNQQVLKGQLITLLHHA
1215





WP_014601172
1155
DEE---AFLE---EKGYRH--P-KV--LTK--LPKYTLYE---CEKGRRRMLAS   ANEAQKGNQLVLSNHLVSLLYHA
1215





WP_023548323
1155
DEK---VFLE---GKGYHQ--P-KV--LTK--LPKYALYE---CENGRRRMLGS   ANEVHKGNQMLLPNHLMTLLYHA
1215





WP_031665337
1155
DEE---AFLE---EKGYRH--P-KV--LTK--LPKYTLYE---CEKGRRRMLAS   ANEAQKGNQLVLSNHLVSLLYHA
1215





WP_031669209
1155
DEK---TFLE---EKGYHQ--P-KV--LTK--VPKYTLYE---CENGRRRMLGS   ANEAHKGNQMLLPNHLMALLYHA
1215





WP_033920898
1155
DEK---VFLE---GKGYHQ--P-KV--LTK--LPKYALYE---CENGRRRMLGS   ANEVHKGNQMLLPNHLMTLLYHA
1215





AKI42028
1158
DEE---AFLE---EKGYRH--P-KV--LTK--LPKYTLYE---CEKGRRRMLAS   ANEAQKGNQLVLSNHLVSLLYHA
1218





AKI50529
1158
DEK---VFLE---GKGYHQ--P-KV--LTK--LPKYALYE---CENGRRRMLGS   ANEVHKGNQMLLPNHLMTLLYHA
1218





EFR83390
603
DEE---AFLE---EKGYRH--P-KV--LTK--LPKYTLYE---CEKGRRRMLAS   ANEAQKGNQLVLSNHLVSLLYHA
663





WP_046323366
1155
DQK---EFLE---GKGYRN--P-KV--ITK--IPKYTLYE---CENGRRRMLGS   ANEAQKGNQMVLPNHLMTLLYHA
1215





AKE81011
1193
NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNFLYLA
1255





CUO82355
1154
EQI---EYVE--kEEKLSD--VkIIK---Nn-IPLNQLIEi----DGRQYLLTS   --ECVNAMQLVLNEEQCKLIADI
1215





WP_033162887
1155
EQL---SYIAspeHEDLID--VrIVK---E--ILKNQLIEi----DGGLYYVTS   --EYVTARQLSLNEQSCKLISEI
1217





AGZ01981
1210
NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNFLYLA
1272





AKA60242
1177
NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNFLYLA
1239





AK540380
1177
NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNFLYLA
1239





4UN5_B
1181
NPI---DFLE---AKGYKE--V-KKDLIIK--LPKYSLFE---LENGRKRMLAS   -GELQKGNELALPSKYVNFLYLA
1243





WP_010922251
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
1305





WP_039695303
1249
HRAD----NFNS-TEYLN--YVSEHKKEFEKVLSCVEDFANLYVDVE--KNLSKIR-A    VAD-SM---DNFSIEE--
1308





WP_045635197
1247
KNVH----KLDE-PGHLE--YIQKHRNEFKDLLNLVSEFSQKYVLAD--ANLEKIK-S    LYA-DN---EQADIEI--
1306





5AXW_A
979
GELYRVIgVNNDlLNRIE---VNMIDITYREYLENMNDKRPPRIIKTiaSKTQSIK-K    LYEvKSk--KHPQIIKkg
1056





WP_009880683
924
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
989





WP_010922251
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
1305





WP_011054416
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
1305





WP_011284745
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
1305





WP_011285506
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
1305





WP_011527619
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
1305





WP_012560673
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
1305





WP_014407541
1239
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
1304





WP_020905136
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
1305





WP_023080005
1239
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
1304





WP_023610282
1239
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
1304





WP_030125963
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
1305





WP_030126706
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
1305





WP_031488318
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
1305





WP_032460140
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
1305





WP_032461047
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
1305





WP_032462016
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
1305





WP_032462936
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
1305





WP_032464890
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
1305





WP_033888930
1065
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
1130





WP_038431314
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
1305





WP_038432938
1239
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
1304





WP_038434062
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
1305





BAQ51233
1151
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
1216





KGE60162
415
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
480





KGE60856
178
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
243





WP_002989955
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
1305





WP_003030002
1222
YQIE----KNYE-PEHRE--YVEKHKDEFKELLEYISVFSRKYVLAD--NNLTKIE-M    LFS-KN---KDAEVSS--
1281





WP_003065552
1250
QRIN----SFNS-TKYLD--YVSAHKKEFEKVLSCVEDFANLYVDVE--KNLSKIR-A    VAD-SM---DNFSIEE--
1309





WP_001040076
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDIFQIINDFSKRVILAD--ANLEKIN-R    LYQ-DNk--ENIPVDE--
1306





WP_001040078
1249
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1314





WP_001040080
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1306





WP_001040081
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1306





WP_001040083
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1306





WP_001040085
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1306





WP_001040087
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1306





WP_001040088
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1306





WP_001040089
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1306





WP_001040090
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1306





WP_001040091
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1306





WP_001040092
1241
SRYNESKgKPEEiEKKQE--FVNQHISYFDDILQLINDFSKRVILAD--ANLEKIN-K    LYS-DNk--DNTPVDE--
1306





WP_001040094
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K    LYQ-DNk--ENIPVDE--
1306





WP_001040095
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K    LYQ-DNk--ENIPVDE--
1306





WP_001040096
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K    LYQ-DNk--ENIPVDE--
1306





WP_001040097
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K    LYQ-DNk--ENIPVDE--
1306





WP_001040098
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K    LYQ-DNk--ENIPVDE--
1306





WP_001040099
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K    LYQ-DNk--ENIPVDE--
1306





WP_001040100
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K    LYQ-DNk--ENIPVDE--
1306





WP_001040104
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1306





WP_001040105
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1306





WP_001040106
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1306





WP_001040107
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1306





WP_001040108
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1306





WP_001040109
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1306





WP_001040110
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1306





WP_015058523
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K    LYS-DNk--DNTPVDE--
1306





WP_017643650
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K    LYQ-DNk--ENIPVDE--
1306





WP_017647151
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1306





WP_017648376
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1306





WP_017649527
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1306





WP_017771611
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1306





WP_017771984
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1306





CFQ25032
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1306





CFV16040
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1306





KLJ37842
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1306





KLJ72361
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1306





KLL20707
1255
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1320





KLL42645
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1306





WP_047207273
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1306





WP_047209694
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K    LYQ-DNk--ENIPVDE--
1306





WP_050198062
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1306





WP_050201642
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1306





WP_050204027
1241
SRYNELKgKPEEiEQKQE--FVVQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1306





WP_050881965
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1306





WP_050886065
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1306





AHN30376
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K    LYS-DNk--DNTPVDE--
1306





EAO78426
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQLINDFSKRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1306





CCW42055
1241
SRYNESKgKPEEiEKKQE--FVNQHVSYFDDILQIINDFSNRVILAD--ANLEKIN-K    LYQ-DNk--ENISVDE--
1306





WP_003041502
1254
KRIN----NPIN-KDHIE--YVKKHRDDFKELLNYVLEFNEKYVGAT--KNGERLK-E    AVA-DF---DSKSNEE--
1313





WP_037593752
1223
YQIE----KNYE-PEHRE--YVEKHKDEFKELLEYISVFSRKYVLAD--NNLTKIE-M    LFS-KN---KDAEVSS--
1282





WP_049516684
1223
YRIE----KDYE-PEHRE--YVEKHKDEFKELLEYISVFSRKYVLAD--NNLTKIE-M    LFS-KN---KDAEVSS--
1282





GAD46167
1222
YQIE----KNYE-PEHRE--YVEKHKDEFKELLEYISVFSRKYVLAD--NNLTKIE-M    LFS-KN---KDAEVSS--
1281





WP_018363470
1254
HRIG----NFNS-AEHLK--YVSEHKKEFEEVLSCVENFANVYVDVE--KNLSKIR-A    AAD-SM---DNFSIEE--
1313





WP_003043819
1249
QNISATTgSNNLg-------YIEQHREEFKEIFEKIIDFSEKYILKN--KVNSNLK-S    SFD-EQfavSDSIL--l-
1310





WP_006269658
1222
YRIE----KDYE-PEHRE--YVEKHKDEFKELLEYISVFSRKYVLAD--NNLTKIE-M    LFS-KN---KDAEVSS--
1281





WP_048800889
1242
HRID----NSDN-SEHLK--YITEHKEEFGKLLSYIENFAKSYVDVD--KNLEKIQ-L    AVE-KI---DSFSVKE--
1301





WP_012767106
1246
-HAHKIEsSKE--LEHEA--YILDHYNDLYQLLSYIERFASLYVDVE--KNISKVK-E    LFS-NI---ESYSISEi-
1308





WP_014612333
1246
-HAHKIEsSKE--LEHEA--YILDHYNDLYQLLSYIERFASLYVDVE--KNISKVK-E    LFS-NI---ESYSISEi-
1308





WP_015017095
1246
-HAHKIEsSKE--LEHEA--YILDHYNDLYQLLSYIERFASLYVDVE--KNISKVK-E    LFS-NI---ESYSISEi-
1308





WP_015057649
1246
-HAHKIEsSKE--LEHEA--YILDHYNDLYQLLSYIERFASLYVDVE--KNISKVK-E    LFS-NI---ESYSISEi-
1308





WP_048327215
1246
-HAHKIEsSKE--LEHEA--YILDHYNDLYQLLSYIERFASLYVDVE--KNISKVK-E    LFS-NI---ESYSISEi-
1308





WP_049519324
1246
-HAHKIEsSKE--LEHEA--YILDHYNDLYQLLSYIERFASLYVDVE--KNISKVK-E    LFS-NI---ESYSISEi-
1308





WP_012515931
1220
AHYHELTgSSEDvLRKKY--FVDRHLHYFDDIIQMINDFAERHILAS--SNLEKIN-H    TYH-NN---SDLPVNEr-
1285





WP_021320964
1220
AHYHELTgSSEDvLRKKY--FVERHLHYFDDIIQMINDFAERHILAS--SNLEKIN-H    TYH-NN---SDLPINEr-
1285





WP_037581760
1220
AHYHELTgSSEDvLRKKY--FVERHLHYFDDIIQMINDFAERHILAS--SNLEKIN-H    TYH-NN---SDLPVNEr-
1285





WP_004232481
1252
QHVN----NSHK-PEHLN--YVKQHKDEFKDIFNLIISIARINILKP--KVVDNL---    -IN-EF---TEYGQED--
1308





WP_009854540
1247
HRAD----NFNS-TEYLN--YVSEHKKEFEKVLSCVEDFANLYVDVE--KNLSKIR-A    VAD-SM---DNFSIEE--
1306





WP_012962174
1248
HRVN----SFNN-SEHLK--YVSEHKKEFGEVLSCVENFAKSYVDVE--KNLGKIR-A    VAD-KI---DTFSIED--
1307





WP_039695303
1249
HRAD----NFNS-TEYLN--YVSEHKKEFEKVLSCVEDFANLYVDVE--KNLSKIR-A    VAD-SM---DNFSIEE--
1308





WP_014334983
1252
HRID----SFNS-TEHLK--YVSEHKKEFEKVLSCVENFSNLYVDVE--KNLSKVR-A    AAE-SM---TNFSLEE--
1311





WP_003099269
1240
SHYTKFTgKEEDrEKKRS--YVESHLYYFDEIMQIIVEYSNRYILAD--SNLIKIQ-N    LYK-EKd---NFSIEEq-
1305





AHY15608
1240
SHYTKFTgKEEDrEKKRS--YVESHLYYFXEVKSSF----------------------    ------------------
1273





AHY17476
1240
SHYTKFTgKEEDrEKKRS--YVESHLYXFX----------------------------    ------------------
1267





ESR09100
72
SHYTKFTgKEEDrEKKRS--YVESHLYYFDEIMQIIVEYSNRYILAD--SNLIKIQ-N    LYK--Ek--DNFSIEEq-
137





AGM98575
1240
SHYTKFTgKEEDrEKKRS--YVESHLYYFDVRLSQVFRVTNVEF--------------    ------------------
1281





ALF27331
1222
KNIH----KVDE-PKHLD--YVKKHKDEFKELLDVVSNFSKKNILAE--SNLEKIE-E    LYA-QN---NNKDITE--
1281





WP_018372492
1229
KKVDVLVkSKDD---DYD---LEEHRAEFAELLDCIKKFNDMYILAS--SNMSKIE-E    IYQ-KNi---DAPIEE--
1289





WP_045618028
1252
QRIN----KISE-PIHKQ--YVETHQSEFKELLTAIISLSKKYI-QK--PNVESL---    LQQ-AF---DQSDKDIyq
1310





WP_045635197
1247
KNVH----KLDE-PGHLE--YIQKHRNEFKDLLNLVSEFSQKYVLAD--ANLEKIK-S    LYA-DN---EQADIEI--
1306





WP_002263549
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_002263887
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_002264920
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_002269043
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_002269448
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_002271977
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_002272766
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_002273241
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_002275430
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_002276448
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_002277050
1230
HHL-------DN-DYSNE--YVKNHYQQFDILFNEITSFSKKCKLGK--EHIQKIE-E    AYSkER---DSASIEE--
1287





WP_002277364
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_002279025
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_002279859
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_002280230
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_002281696
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_002282247
1230
HHL-------DN-DYSNE--YVKNHYQQFDILFNEITSFSKKCKLGK--EHIQKIE-E    AYSkER---DFASIEE--
1287





WP_002282906
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_002283846
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_002287255
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_002288990
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_002289641
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_002290427
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_002295753
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_002296423
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_002304487
1236
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1295





WP_002305844
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_002307203
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_002310390
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_002352408
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_012997688
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_014677909
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_019312892
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_019313659
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_019314093
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_019315370
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_019803776
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_019805234
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_024783594
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_024784288
1230
HHL-------DN-DYSNE--YVKNHYQQFDILFNEITSFSKKCKLGK--EHIQKIE-E    AYSkER---DFASIEE--
1287





WP_024784666
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_024784894
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_024786433
1230
HHL-------DN-DYSNE--YVKNHYQQFDILFNEITSFSKKCKLGK--EHIQKIE-E    AYSkER---DSASIEE--
1287





WP_049473442
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





WP_049474547
1222
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1281





EMC03581
1215
KNIH----KVDE-PKHLD--YVDKHKDEFKELLDVVSNFSKKYTLAE--GNLEKIK-E    LYA-QN---NGEDLKE--
1274





WP_000428612
1250
KNIH----RLDE-PEHLE--YIQKHRNEFKGLLNLVSEFSQKYVLAD--ANLEKIK-N    LYA-DN---EQADIEI--
1309





WP_000428613
1248
KNVH----KLDE-PEHLE--YIQKHRNEFKDLLNLVSEFSQKYVLAD--ANLEKIQ-N    LYA-DN---EQADIEI--
1307





WP_049523028
1243
KRIQ----KKDE-PEHLE--YIKQHHSEFNDLLNFVSEFSQKYVLAE--SNLEKIK-N    LYI-DN---EQTNMEE--
1302





WP_003107102
1209
SRYTSFSgKEEDrEKHRH--FVESHLHYFDEIKDIIADFSRRYILAD--ANLEKIL-T    LYN-EKn---QFSIEEq-
1274





WP_054279288
1242
SKRDK--gTQSEnME-----YISNHKEKFIEIFHYIIRYAEKNVIKP--KVIERLN-D    TFNqKF---NDSDLTEl-
1303





WP_049531101
1252
QRIN----KISE-PIHKQ--YVETHQSEFEELLTTIISLSKKYI-QK--PIVESL---    LQQ-AF---EQADKDIyq
1310





WP_049538452
1252
QRIN----KISE-PIHKQ--YVEAHQNEFKELLTTIISLSKKYI-QK--PNVESL---    LQQ-AF---EQADKDIyq
1310





WP_049549711
1254
QRIN----KFSE-PIHKQ--YVEAHQNEFKELLTIIISLSKKYI-QK--PNVESL---    LHQ-AF---EQADNDIyq
1312





WP_007896501
1246
SRYDKLSsKIESeQQKKL--FVEQHLHYFDEILDIVVKHATCYIKAE--NNLKKII-S    LYK-KK---EAYSINEq-
1311





EFR44625
1198
SRYDKLSsKIESeQQKKL--FVEQHLHYFDEILDIVVKHATCYIKAE--NNLKKII-S    LYK-KK---EAYSINEq-
1263





WP_002897477
1247
KNLH----KLDE-PEHLE--YIQKHRNEFKDLLNLVSEFSQKYILAE--ANLEKIK-D    LYA-DN---EQADIEI--
1306





WP_002906454
1253
QRIN----KISE-PIHKQ--YVEAHQNEFKELLTTIISLSKKYI-QK--PNVELL---    LQQ-AF---DQADKDIyq
1311





WP_009729476
1248
KNVH----KLDE-PGHLE--YIQKHRNEFKDLLNLVSEFSQKYVLAD--ANLEKIK-N    LYA-DN---EQADIEI--
1307





CQR24647
1238
QHAN----KEDS----VI--YLEKHRHELSELFHHIIGVSEKTILKP--KVEMTLN-E    AFE-KHf--EFDEVSE--
1295





WP_000066813
1252
KNVH----KLDE-PEHLE--YIQKHRYEFKDLLNLVSEFSQKYVLAD--ANLEKIK-N    LYA-DN---EQADIEI--
1311





WP_009754323
1248
KNVH----KLDE-PEHLE--YIQKHRYEFKDLLNLVSEFSQKYVLAE--ANLEKIK-S    LYV-DN---EQADIEI--
1307





WP_044674937
1241
SNIH----KITE-PIHLN--YVNKNKHEFKELLRHISDFSTRYILAQ--DRLSKIE-E    LYD-KN---DGDDISD--
1300





WP_044676715
1243
SNIH----KITE-PIHLN--YVNKNKHEFKELLRHISDFSTRYILAQ--DRLSKIE-E    LYD-KN---DGDDISD--
1302





WP_044680361
1243
SNIH----KITE-PIHLN--YVNKNKHEFKELLRHISDFSTRYILAQ--DRLSKIE-E    LYD-KN---DGDDISD--
1302





WP_044681799
1241
SNIH----KITE-PIHLN--YVNKNKHEFKELLRHISDFSTRYILAQ--DRLSKIE-E    LYD-KN---DGDDISD--
1300





WP_049533112
1254
KRIN----NPIN-KDHIE--YVKKHRDDFKELLNYVLEFNEKYVGAT--KNGERLK-E    AVA-DF---DSKSNEE--
1313





WP_029090905
1182
STKQA-----DE-AMFLKyyRLEHLEAVFEEL---IRKQAADYQIFE--KLIKKIEvN    FYS----c----TYNEk-
1240





WP_006506696
1212
YNAIYKQ-DYDNlDDILMi-----------QLYIELTNKMKVLYPAY-rGIAEKFE-S    YVV----i----SKEEk-
1268





AIT42264
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
1305





WP_034440723
1218
KHYNE-----DE--TSHK--FIVEHKAYFDELLNYIVEFANKYLELE--NSIEKIK-D    LYH-----gKGPDVEEke
1276





AKQ21048
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
1305





WP_004636532
1212
NRYDKVK-----fPDSIE--YVHDNLAKFDDLLEYVIDFSNKYINAD--KNVQKIQ-K    IYK-EH---GTEDVEL--
1271





WP_002364836
1218
KQCLL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKVQQIV-K    LFE-AN---QTADVKE--
1277





WP_016631044
1169
KQCLL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKVQQIV-K    LFE-AN---QTADVKE--
1228





EMS75795
954
QHYDEIAhKESF-----D--YVNDHLSEFREILDQVIDFSNRYTIAA--KNTEKIA-E    LFE-QN---QESTVQS--
1013





WP_002373311
1218
KQCLL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKVQQIV-K    LFE-AN---QTADVKE--
1277





WP_002378009
1218
KQCLL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKVQQIV-K    LFE-AN---QTADVKE--
1277





WP_002407324
1218
KQCLL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKVQQIV-K    LFE-AN---QTADVKE--
1277





WP_002413717
1218
KQCLL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKVQQIV-K    LFE-AN---QTADVKE--
1277





WP_010775580
1220
KQCLL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKVQQIV-K    LFE-AN---QTADVKE--
1279





WP_010818269
1218
KQCLL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKVQQIV-K    LFE-AN---QTADVKE--
1277





WP_010824395
1218
KQCLL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKVQQIV-K    LFE-AN---QTADVKE--
1277





WP_016622645
1218
KQCLL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKVQQIV-K    LFE-AN---QTADVKE--
1277





WP_033624816
1218
KQCLL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKVQQIV-K    LFE-AN---QTADVKE--
1277





WP_033625576
1218
KQCLL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKVQQIV-K    LFE-TN---QTADVKE--
1277





WP_033789179
1218
KQCLL----PNQ-SESLA--YVEQHQPEFQEILERVVDFAEVHTLAK--SKVQQIV-K    LFE-AN---QTADVKE--
1277





WP_002310644
1220
KQYDEIShKESF-----D--YVNEHHKEFSEVFARVLEFAGKYTLAE--KNIEKLE-K    IYK-EN---QTDDLAK--
1279





WP_002312694
1221
KQYDEIShKESF-----D--YVNEHHKEFSEVFARVLEFAGKYTLAE--KNIEKLE-K    IYK-EN---QTDDLAK--
1280





WP_002314015
1221
KQYDEIShKESF-----D--YVNEHHKEFSEVFARVLEFAGKYTLAE--KNIEKLE-K    IYK-EN---QTDDLAK--
1280





WP_002320716
1221
KQYDEIShKESF-----D--YVNEHHKEFSEVFARVLEFAGKYTLAE--KNIEKLE-K    IYK-EN---QTDDLAK--
1280





WP_002330729
1220
KQYDEIShKESF-----D--YVNEHHKEFSEVFARVLEFAGKYTLAE--KNIEKLE-K    IYK-EN---QTDDLAK--
1279





WP_002335161
1221
KQYDEIShKESF-----D--YVNEHHKEFSEVFARVLEFAGKYTLAE--KNIEKLE-K    IYK-EN---QTDDLAK--
1280





WP_002345439
1221
KQYDEIShKESF-----D--YVNEHHKEFSEVFARVLEFAGKYTLAE--KNIEKLE-K    IYK-EN---QTDDLAK--
1280





WP_034867970
1211
QHYDKITyQESF-----D--YVNTHLSDFSAILTEVLAFAEKYTLAD--KNIERIQ-E    LYE-EN---KYGETSM--
1270





WP_047937432
1221
KQYDEIShKESF-----D--YVNEHHKEFSEVFARVLEFAGKYTLAE--KNIEKLE-K    IYK-EN---QTDDLAK--
1280





WP_010720994
1211
QHYDKITyQESF-----D--YVNTHLSDFSAILTEVLAFAEKYTLAD--KNIERIQ-E    LYE-EN---KYGEISM--
1270





WP_010737004
1211
QHYDKITyQESF-----D--YVNTHLSDFSAILTEVLAFAEKYTLAD--KNIERIQ-E    LYE-EN---KYGETSM--
1270





WP_034700478
1211
QHYDKITyQESF-----D--YVNTHLSDFSAILTEVLAFAEKYTLAD--KNIERIQ-E    LYE-EN---KYGEISM--
1270





WP_007209003
1209
KKIIN--gKNSD---SVS--YIQNNKEKFREIFEYIVDFSSKYISAD--ANLNKIE-K    IFE-NNfh----KASEqe
1269





WP_023519017
1205
RHYDEINhKVSF-----D--YVNAHKEGFNDIFDFISDFGVRYILAP--QHLEKIK-V    AYE-KN---KEVDLKE--
1264





WP_010770040
1216
KQVDE-----DS-GKSEE--YVREHRAEFAEILNYVQAFSETKILAN--KNLQTIL-K    LYE-EN---KEADIKE--
1274





WP_048604708
1213
KHCNE-----KP-D-SLK--YVTEHQSGFSEIMAHVKDFAEKYTLVD--KNLEKIL-S    LYA-KN---MDSEVKE--
1270





WP_010750235
1214
NHYDEIAyKDSY-----D--YVNEHFSNFQDILDKVIIFAEKYTSAP--QKLNQII-A    TYE-KN---QEADRKI--
1273





AII16583
1279
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
1344





WP_029073316
1226
YKAMKYK-NYSElSQEEIm-----------NVYDIFVEKLKLYYPTY-kNIATNFE-N    FEN----i----SDEEk-
1282





WP_031589969
1226
YKAMKYK-NYDNlDSEKIi-----------DLYRLLINKMELYYPEYrkQLVKKFE-D    LKV----i----SIEEk-
1283





KDA45870
1200
NAKDG--------EQKLE-----DHKAEFKELFDKIMEFADKYVVAP--KNSEKIR-R    LYE-ENq-----DATPme
1253





WP_039099354
1242
LPLTQ-----SEeLAEQV----------YDEILDQVMHYFPLYDTNQfrAKLSAGKaA    DGN-KMv-----QVGQqv
1306





AKP02966
1238
QIPDE------DpDQILAf----YDKNILVEILQELITKMKKFYPFY--KNEQEFLaS    FNQ--------ATTSEk-
1296





WP_010991369
1216
ANCEV-----SD-GKSLD--YIESNREMFAELLAHVSEFAKRYTLAE--ANLNKIN-Q    LFE-QN---KEGDIKA--
1274





WP_033838504
1216
ANCEV-----SD-GKSLD--YIESNREMFAELLAHVSEFAKRYTLAE--ANLNKIN-Q    LFE-QN---KEGDIKA--
1274





EHN60060
1219
ANCEV-----SD-GKSLD--YIESNREMFAELLAHVSEFAKRYTLAE--ANLNKIN-Q    LFE-QN---KEGDIKA--
1277





EFR89594
985
ANCEV-----SD-GKSLD--YIESNREMFAELLAHVSEFAKRYTLAE--ANLNKIN-Q    LFE-QN---KEGDIKA--
1043





WP_038409211
1216
KNCEA-----ND-GESLA--YIEMHREMFAELLAYISEFAKRYTLAN--DRLEKIN-M    FFE-QN---KKGDIKV--
1274





EFR95520
835
KNCEA-----ND-GESLA--YIEMHREMFAELLAYISEFAKRYTLAN--DRLEKIN-M    FFE-QN---KKGDIKV--
893





WP_003723650
1216
KNCEA-----SD-GKSLK--YIEAHRETFSELLAQVSEFATRYTLAD--ANLSKIN-N    LFE-QN---KEGDIKA--
1274





WP_003727705
1216
KNCEA-----SD-GKSLK--YIEAHRETFSELLAQVSEFATKYTLAD--ANLSKIN-N    LFE-QN---KEGDIKA--
1274





WP_003730785
1216
KNCEA-----SD-GKSLK--YIEAHRETFSELLAQVSEFATKYTLAD--ANLSKIN-N    LFE-QN---KEGDIKA--
1274





WP_003733029
1216
EKYEA-----ID-GESLA--YIEVHRALFDELLAYISEFARKYTLSN--DRLDEIN-M    LYE-RN---KDGDVKS--
1274





WP_003739838
1216
KNCEA-----SD-GKSLD--YIESNREMFGELLAHVSEFAKRYTLAD--ANLSKIN-Q    LFE-QN---KDNDIKV--
1274





WP_014601172
1216
KNCEA-----SD-GKSLK--YIEAHRETFSELLAQVSEFATRYTLAD--ANLSKIN-N    LFE-QN---KEGDIQA--
1274





WP_023548323
1216
EKREA-----ID-GESLA--YIEAHKAVFGELLAHISEFARKYTLAN--DKLDEIN-M    LYE-RN---KDGDVKS--
1274





WP_031665337
1216
KNCEA-----SD-GKSLK--YIEAHRETFSELLAQVSEFATRYTLAD--ANLSKIN-N    LFE-QN---KEGDIKA--
1274





WP_031669209
1216
EKYEA-----ID-GESLA--YIEVHRALFDELLAYISEFARKYTLSN--DRLDEIN-M    LYE-RN---KDGDVKS--
1274





WP_033920898
1216
EKREA-----ID-GESLA--YIEAHKAVFGELLAHISEFARKYTLAN--DKLDEIN-M    LYE-RN---KDGDVKS--
1274





AKI42028
1219
KNCEA-----SD-GKSLK--YIEAHRETFSELLAQVSEFATRYTLAD--ANLSKIN-N    LFE-QN---KEGDIQA--
1277





AKI50529
1219
EKREA-----ID-GESLA--YIEAHKAVFGELLAHISEFARKYTLAN--DKLDEIN-M    LYE-RN---KDGDVKS--
1277





EFR83390
664
KNCEA-----SD-GKSLK--YTEAHRETFSELLAQVSEFATRYTLAD--ANLSKIN-N    LFE-QN---KEGDIKX--
722





WP_046323366
1216
KNCEA-----SD-GKSLA--YIESHREMFAELLDSISEFASRYTLAD--ANLEKIN-T    IFE-QN---KSGDVKV--
1274





AKE81011
1256
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
1321





CUO82355
1216
YNAIYKQ-DFDGlDNMLMi-----------QLYLQLIDKLKTLYPIY-mGIVEKFE-K    FVS----i----SKEEk-
1272





WP_033162887
1218
YAAMLKK-RYEYlDEEEIf-----------DLYLQLLQKMDTLYPAY-kGIAKRFF-D    FKN----i----DVVEk-
1274





AGZ01981
1273
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
1338





AKA60242
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
1305





AKS40380
1240
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
1305





4UN5_B
1244
SHYEKLKgSPEDnEQKQL--FVEQHKHYLDEIIEQISEFSKRVILAD--ANLDKVL-S    AYN-KH---RDKPIREq-
1309





WP_010922251
1306


embedded image


1365


WP_039695303
1309
ISN---SFI   NLLTLTALGAP-ADFNFLG--EKI--PRK--R-YTSTKECL   NATLIHQSITGLYETRIDLSKL--
1369





WP_045635197
1307
LAN---SFI   NLLTFTALGAP-AAFKFFG--KDI--DRK--R-YTTVSEIL   NATLIHQSITGLYETWIDLSKL--
1367





5AXW_A

---------   -----------------------------------------   ------------------------






WP_009880683
990
-AE---NII   HLFTLTNLGAP-AAFKCFD--TTI--GRN--R-YKSIKEVL   DATLIHQSITGLYETRIDLSQL--
1049





WP_010922251
1306
-AE---NII   HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL   DATLIHQSITGLYETRIDLSQL--
1365





WP_011054416
1306
-AE---NII   HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL   DATLIHQSITGLYETRIDLSQL--
1365





WP_011284745
1306
-AE---NII   HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL   DATFIHQSITGLYETRIDLSQL--
1365





WP_011285506
1306
-AE---NII   HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL   DATLIHQSITGLYETRIDLSQL--
1365





WP_011527619
1306
-AE---NII   HLFTLTNLGAP-TAFKYFD--TTI--DRK--R-YTSTKEVL   DATFIHQSITGLYETRIDLSQL--
1365





WP_012560673
1306
-AE---NII   HLFTLTNLGAP-AAFKCFD--TTI--GRN--R-YKSIKEVL   DATLIHQSITGLYETRIDLSQL--
1365





WP_014407541
1305
-AE---NII   HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL   DATLIHQSITGLYETRIDLSQL--
1364





WP_020905136
1306
-AE---NII   HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL   DATLIHQSITGLYETRIDLSQL--
1365





WP_023080005
1305
-AK---NII   HLFTLTNLGAP-AAFKYFD--TTI--ERN--R-YKSIKEVL   DATLIHQSITGLYETRIDLSQL--
1364





WP_023610282
1305
-AK---NII   HLFTLTNLGAP-AAFKYFD--TTI--ERN--R-YKSIKEVL   DATLIHQSITGLYEIRIDLSQL--
1364





WP_030125963
1306
-AE---NII   HLFTLTNLGAP-AAFKYFD--TTI--GRN--R-YKSIKEVL   DATLIHQSITGLYETRIDLSQL--
1365





WP_030126706
1306
-AE---NII   HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL   DATLIHQSITGLYETRIDLSQL--
1365





WP_031488318
1306
-AE---NII   HLFTLTNFGAP-AAFIYFD--TTI--GRN--R-YKSIKEVL   DATLIHQSITGLYETRIDLSQL--
1365





WP_032460140
1306
-AE---NII   HLFTLTNLGAP-AAFKYFD--TTI--GRN--R-YKSIKEVL   DATLIHQSITGLYETRIDLSQL--
1365





WP_032461047
1306
-AE---NII   HLFTLTNLGAP-AAFKYFD--TTI--GRN--R-YKSIKEVL   DATLIHQSITGLYETRIDLSQL--
1365





WP_032462016
1306
-AE---NII   HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL   DATLIHQSITGLYETRIDLSQL--
1365





WP_032462936
1306
-AE---NII   HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL   DATLIHQSITGLYETRIDLSQL--
1365





WP_032464890
1306
-AE---NII   HLFTLTNLGAP-TAFKYFD--TTI--DRK--R-YTSTKEVL   DATFIHQSITGLYETRIDLSQL--
1365





WP_033888930
1131
-AE---NII   HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL   DATLIHQSITGLYETRIDLSQL--
1190





WP_038431314
1306
-AE---NII   HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL   DATLIHQSITGLYETRIDLSQL--
1365





WP_038432938
1305
-AK---NII   HLFTLTNLGAP-AAFKYFD--TTI--ERN--R-YKSIKEVL   DATLIHQSITGLYETRIDLSQL--
1364





WP_038434062
1306
-AE---NII   HLFTLTNLGAP-AAFKYFD--TTI--GRN--R-YKSIKEVL   DATLIHQSITGLYETRIDLSQL--
1365





BAQ51233
1217
-AE---NII   HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL   DATLIHQSITGLYETRIDLSQL--
1276





KGE60162
481
-AE---NII   HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL   DATLIHQSITGLYETRIDLSQL--
540





KGE60856
244
-AE---NII   HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL   DATLIHQSITGLYETRIDLSQL--
303





WP_002989955
1306
-AE---NII   HLFTLTNLGAP-TAFKYFD--TTI--DRK--R-YTSTKEVL   DATFIHQSITGLYETRIDLSQL--
1365





WP_003030002
1282
LAK---SFI   SLLTFTAFGAP-AAFNFFG--ENI--DRK--R-YTSVTECL   NATLIHQSITGLYETRIDLSKL--
1342





WP_003065552
1310
ISN---SFI   NLLTLTALGAP-ADFNFLG--EKI--PRK--R-YTSTKECL   NATLIHQSITGLYETRIDLSKI--
1370





WP_001040076
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





WP_001040078
1315
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLSKL--
1375





WP_001040080
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





WP_001040081
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





WP_001040083
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





WP_001040085
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





WP_001040087
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





WP_001040088
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





WP_001040089
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





WP_001040090
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





WP_001040091
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





WP_001040092
1307
LAK---NII   NLFTFTSLGAP-AAFKFFD--KSV--DRK--R-YTSTKEVL   DSTLIHQSITGLYETRIDLGKL--
1367





WP_001040094
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





WP_001040095
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





WP_001040096
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





WP_001040097
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





WP_001040098
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





WP_001040099
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHKSITGLYETRIDLGKL--
1367





WP_001040100
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





WP_001040104
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





WP_001040105
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





WP_001040106
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





WP_001040107
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





WP_001040108
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





WP_001040109
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQFITGLYETRIDLGKL--
1367





WP_001040110
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





WP_015058523
1307
LAK---NII   NLFTFTSLGAP-AAFKFFD--KSV--DRK--R-YTSTKEVL   DSTLIHQSITGLYETRIDLGKL--
1367





WP_017643650
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





WP_017647151
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





WP_017648376
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





WP_017649527
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





WP_017771611
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





WP_017771984
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





CFQ25032
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





CFV16040
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





KLJ37842
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





KLJ72361
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





KLL20707
1321
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1381





KLL42645
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





WP_047207273
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





WP_047209694
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHKSITGLYETRIDLGKL--
1367





WP_050198062
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





WP_050201642
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





WP_050204027
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





WP_050881965
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KII--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





WP_050886065
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





AHN30376
1307
LAK---NII   NLFTFTSLGAP-AAFKFFD--KSV--DRK--R-YTSTKEVL   DSTLIHQSITGLYETRIDLGKL--
1367





EAO78426
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





CCW42055
1307
LAN---NII   NLFTFTSLGAP-AAFKFFD--KIV--DRK--R-YTSTKEVL   NSTLIHQSITGLYETRIDLGKL--
1367





WP_003041502
1314
ICT---SFL   GLFELTSLGSA-SDFEFLG--VKI--PRY--RdYTPSSLLK   DSTLIHQSITGLYETRIDLSKL--
1383





WP_037593752
1283
LAK---SFI   SLLTFTAFGAP-AAFNFFG--ENI--DRK--R-YTSVTECL   NATLIHQSITGLYETRIDLSKL--
1343





WP_049516684
1283
LAK---SFI   SLLTFTAFGAP-AAFNFFG--ENI--DRK--R-YTSVTECL   NATLIHQSITGLYETRIDLSKL--
1343





GAD46167
1282
LAK---SFI   SLLTFTAFGAP-AAFNFFG--ENI--DRK--R-YTSVTECL   NATLIHQSITGLYETRIDLSKL--
1342





WP_018363470
1314
ISD---SFI   NLLTLTALGAP-ADFNFLG--EKI--PRK--R-YNSTKECL   NATLIHQSITGLYETRIDLSKL--
1374





WP_003043819
1311
-SN---SFV   SLLKYTSFGAS-GGFTFLD--LDVkqGRL--R-YQTVTEVL   DATLIYQSITGLYETRTDLSQL--
1372





WP_006269658
1282
LAK---SFI   SLLTFTAFGAP-AAFNFFG--ENI--DRK--R-YTSVTECL   NATLIHQSITGLYETRIDLSKL--
1342





WP_048800889
1302
ISN---SFI   HLLTLTALGAP-ADFNFLG--EKI--PRK--R-YTSTKECL   NATLIHQSITGLYETQTDLSKL--
1362





WP_012767106
1309
-CS---SVI   NLLTLTASGAP-ADFKFLG--TTI--PRK--R-YGSPQSIL   SSTLIHQSITGLYETRIDLSQL--
1368





WP_014612333
1309
-CS---SVI   NLLTLTASGAP-ADFKFLG--TTI--PRK--R-YGSPQSIL   SSTLIHQSITGLYETRIDLSQL--
1368





WP_015017095
1309
-CS---SVI   NLLTLTASGAP-ADFKFLG--TTI--PRK--R-YGSPQSIL   SSTLIHQSITGLYETRIDLSQL--
1368





WP_015057649
1309
-CS---SVI   NLLTLTASGAP-ADFKFLG--TTI--PRK--R-YGSPQSIL   SSTLIHQSITGLYETRIDLSQL--
1368





WP_048327215
1309
-CS---SVI   NLLTLTASGAP-ADFKFLG--TTI--PRK--R-YGSPQSIL   SSTLIHQSITGLYETRIDLSQL--
1368





WP_049519324
1309
-CS---SVI   NLLTLTASGAP-ADFKFLG--TTI--PRK--R-YGSPQSIL   SSTLIHQSITGLYETRIDLSQL--
1368





WP_012515931
1286
-AE---NII   NVFTFVALGAP-AAFKFFD--ATI--DRK--R-YTSTKEVL   NATLIHQSVTGLYETRIDLSQL--
1345





WP_021320964
1286
-AE---NII   NVFTFVALGAP-AAFKFFD--ATI--DRK--R-YTSTKEVL   NATLIHQSVTGLYETRIDLSQL--
1345





WP_037581760
1286
-AE---NII   NVFTFVALGAP-AAFKFFD--ATI--DRK--R-YTSTKEVL   NATLIHQSVTGLYETRIDLSQL--
1345





WP_004232481
1309
ISSlseSFI   NLLKFISFGAP-GAFKFLK--LDV--KQSnlR-YKSTTEAL   SATLIHQSVTGLYETRIDLSKL--
1374





WP_009854540
1307
ISN---SFI   NLLTLTALGAP-ADFNFLG--EKI--PRK--R-YTSTKECL   TATLIHQSITGLYETRIDLSKL--
1367





WP_012962174
1308
ISI---SFV   NLLTLTALGAP-ADFNFLG--EKI--PRK--R-YTSTKECL   NATLIHQSITGLYETRIDLSKL--
1368





WP_039695303
1309
ISN---SFI   NLLTLTALGAP-ADFNFLG--EKI--PRK--R-YTSTKECL   NATLIHQSITGLYETRIDLSKL--
1369





WP_014334983
1312
ISA---SFI   NLLTLTALGAP-ADFNFLG--EKI--PRK--R-YTSTKECL   SATLIHQSVTGLYETRIDLSKL--
1372





WP_003099269
1306
-AI---NML   NLFTFTDLGAP-SAFKFFN--GDI--DRK--R-YSSTNEII   NSTLIYQSPTGLYETRIDLSKL--
1365





AHY15608

---------   -----------------------------------------   ------------------------






AHY17476

---------   -----------------------------------------   ------------------------






ESR09100
138
-AI---NML   NLFTFTDLGAP-SAFKFFNg--DI--DRK--R-YSSTNEII   NSTLIYQSPTGLYETRIDLSKL--
197





AGM98575

---------   -----------------------------------------   ------------------------






ALF27331
1282
LAS---SFI   NLLTFTAIGAP-AAFKFFD--NNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSRL--
1342





WP_018372492
1290
VAR---SFV   -LLNFTMMGAA-TDFKFFG--QII--PRK--R-YPSTTECL   KSTLIHQSVTGLYETRIDLSKL--
1350





WP_045618028
1311
LSE---SFI   SLLKLISFGAP-GTFKFLG--VEI--SQSnvR-YQSVSSCF   NATLIHQSITGLYETRIDLSKL--
1373





WP_045635197
1307
LAN---SFI   NLLTFTALGAP-AAFKFFG--KDI--DRK--R-YTTVSEIL   NATLIHQSITGLYETWIDLSKL--
1367





WP_002263549
1282
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLNKL--
1342





WP_002263887
1282
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLNKL--
1342





WP_002264920
1282
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSKL--
1342





WP_002269043
1282
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLNKL--
1342





WP_002269448
1282
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSKL--
1342





WP_002271977
1282
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSKL--
1342





WP_002272766
1282
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSKL--
1342





WP_002273241
1282
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSKL--
1342





WP_002275430
1282
LSS---SFI   NLLTFTAIGAP-AAFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSKL--
1342





WP_002276448
1282
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSKL--
1342





WP_002277050
1288
LAD---GFI   KLLGFTQLGAT-SPFSFLG--IKL--NQK--Q-YTGKKDYL   EATLIHQSITGLYETRIDLNKL--
1352





WP_002277364
1282
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSKL--
1342





WP_002279025
1282
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSKL--
1342





WP_002279859
1282
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSKL--
1342





WP_002280230
1282
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSKL--
1342





WP_002281696
1282
LSS---SFI   NLLTFTAIGAP-AAFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSKL--
1342





WP_002282247
1288
LAD---GFI   KLLGFTQLGAT-SPFSFLG--IKL--NQK--Q-YTGKKDYL   EATLIHQSITGLYETRIDLSKL--
1352





WP_002282906
1282
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSKL--
1342





WP_002283846
1282
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSKL--
1342





WP_002287255
1282
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSKL--
1342





WP_002288990
1282
LAS---SFI   NLLTFTAIGAP-AAFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSKL--
1342





WP_002289641
1282
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSKL--
1342





WP_002290427
1282
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSKL--
1342





WP_002295753
1282
LAS---SFI   NLLTFTAIGAP-AAFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSKL--
1342





WP_002296423
1282
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSKL--
1342





WP_002304487
1296
LAS---SFI   NLLTFTAIGAP-AAFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLNKL--
1356





WP_002305844
1282
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSKL--
1342





WP_002307203
1282
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSKL--
1342





WP_002310390
1282
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSKL--
1342





WP_002352408
1282
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSKL--
1342





WP_012997688
1282
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSKL--
1342





WP_014677909
1282
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSKL--
1342





WP_019312892
1282
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSKL--
1342





WP_019313659
1282
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLNKL--
1342





WP_019314093
1282
LAS---SFI   NLLTFTAIGAP-AAFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSKL--
1342





WP_019315370
1282
LSS---SFI   NLLTFTAIGAP-AAFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSKL--
1342





WP_019803776
1282
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLNKL--
1342





WP_019805234
1282
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSKL--
1342





WP_024783594
1282
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLNKL--
1342





WP_024784288
1288
LAD---GFI   KLLGFTQLGAT-SPFSFLG--IKL--NQK--Q-YTGKKDYL   EATLIHQSITGLYETRIDLSKL--
1352





WP_024784666
1282
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSKL--
1342





WP_024784894
1282
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSKL--
1342





WP_024786433
1288
LAD---GFI   KLLGFTQLGAT-SPFSFLG--IKL--NQK--Q-YTGKKDYL   EATLIHQSITGLYETRIDLSKL--
1352





WP_049473442
1282
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSKL--
1342





WP_049474547
1282
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   KATLIHQSITGLYETRIDLSKL--
1342





EMC03581
1275
LAS---SFI   NLLTFTAIGAP-ATFKFFD--KNI--DRK--R-YTSTTEIL   NATLIHQSITGLYETRIDLSKL--
1335





WP_000428612
1310
LAN---SFI   NLLTFTALGAP-AAFKFFG--KDV--DRK--R-YTTVSEIL   NATLIHQSITGLYETRIDLSKL--
1370





WP_000428613
1308
LAN---SFI   NLLTFTALGAP-AAFKFFG--KDI--DRK--R-YTTVSEIL   NATLIHQSITGLYETRIDLSKL--
1368





WP_049523028
1303
IAN---SFI   NLLTFTAFGAP-AVFKFFG--KDI--ERK--R-YSTVTEIL   KATLIHQSLTGLYETRIDLSKL--
1363





WP_003107102
1275
-AT---NML   NLFTFTGLGAP-ATLKFFN--VDI--DRK--R-YTSSTEIL   NSTLIRQSITGLYETRIDLSKI--
1334





WP_054279288
1304
-SI---SFL   NLFKFTSFGAP-EKFTFLN--SEIkqDDV--R-YRSTKECL   NSTLIHQSVTGLYETRIDLSQF--
1365





WP_049531101
1311
LSE---SFI   SLLKLTSFGAP-GAFRFLG--VEI--SQSnvR-YQSVSSCF   NATLIHQSITGLYETRIDLSKL--
1373





WP_049538452
1311
LSE---SFI   SLLKLTSFGAP-GAFKFLG--VEI--SQSsvR-YKPNSQFL   DATLIHQSITGLYETRIDLSKL--
1373





WP_049549711
1313
LSE---SFI   SLLKLTSFGAP-GAFKFLG--AEI--SQSsvR-YKPNSQFL   DTTLIHQSITGLYETRIDLSKL--
1375





WP_007896501
1312
-AL---NML   NLFIFTSLGAP-STFVFFD--ETI--DRK--R-YTTSSDVL   NGILIQQSITGLYETRIDLSRF--
1371





EFR44625
1264
-AL---NML   NLFIFTSLGAP-STFVFFD--ETI--DRK--R-YTTSSDVL   NGILIQQSITGLYETRIDLSRF--
1323





WP_002897477
1307
LAN---SFI   NLLTFTALGAP-AAFKFFG--KDV--DRK--R-YTTVSEIL   NATLIHQSITGLYETRIDLSKL--
1367





WP_002906454
1312
LSE---SFI   SLLKLTSFGAP-GAFKFLG--VEI--SQSsvR-YKPNSQFL   DTTLIHQSITGLYETRIDLSKL--
1374





WP_009729476
1308
LAN---SFI   NLLTFTALGAP-AAFKFFG--KDV--DRK--R-YTTVSEIL   NATLIHQSITGLYETRIDLSKL--
1368





CQR24647
1296
LAQ---SFI   SLLKFTAFGAP-GGFKFLD--ADI--KQSnlR-YQTVTEVL   SSTLIHQSVTGLYETRIDLSKL--
1358





WP_000066813
1312
LAN---SFI   NLLTFTALGAP-AAFKFLG--KDV--DRK--R-YTTVSEIL   NATLIHQSITGLYETRIDLSKL--
1372





WP_009754323
1308
LAN---SFI   NLLTFTALGAP-AAFKFFG--KDV--DRK--R-YTTVSEIL   NATLIHQSITGLYETRIDLSKL--
1368





WP_044674937
1301
LTS---SFV   NLLTFTAIGAP-AAFKFLG--SVI--DRK--R-YTSIAEIL   EATLIHQSVTGLYETRIDLSKL--
1361





WP_044676715
1303
LTS---SFV   NLLTFTAIGAP-AAFKFLG--SVI--DRK--R-YTSIAEIL   EATLIHQSVTGLYETRIDLSKL--
1363





WP_044680361
1303
LTS---SFV   NLLTFTAIGAP-AAFKFLG--SVI--DRK--R-YTSIAEIL   EATLIHQSVTGLYETRIDLSKL--
1363





WP_044681799
1301
LTS---SFV   NLLTFTAIGAP-AAFKFLG--SVI--DRK--R-YTSIAEIL   EATLIHQSVTGLYETRIDLSKL--
1361





WP_049533112
1314
ICT---SFL   GLFELTSLGSA-SDFEFLG--VKI--PRY--RdYTPSSLLK   DSTLIHQSITGLYETRIDLSKL--
1383





WP_029090905
1241
-VK----VI   ELLKITQANATnGDLKLLK----M-sNREg-R-LGSVSVAL   DFKIINQSVTGLYQSIEDYNN---
1300





WP_006506696
1269
-AN----II   QMLIVMHRGPQnGNIVYDDf--KI-sDRIg-R-LKTKNHNL   NIVFISQSPTGIYTKKYKL-----
1329





AIT42264
1306
-AE---NII   HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL   DATLIHQSITGLYETRIDLSQL--
1365





WP_034440723
1277
LVE---SFI   NLLAITKCGPA-ADITFLG--EKI--SRK--R-YRSTNCLW   GSEVIFQSPTGLYETRLRLE----
1335





AKQ21048
1306
-AE---NII   HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL   DATLIHQSITGLYETRIDLSQL--
1365





WP_004636532
1272
TVE---SFV   NLMTFTAMGAP-ATFKFYG--ESI--TRS--R-YTSITEFR   GSTLIFQSITGLYETRYKL-----
1329





WP_002364836
1278
IAA---SFI   QLMQFNAMGAP-STFKFFQ--DKI--ERA--R-YTSIKEIF   DATIIYQSTTGLYETRRKV-----
1335





WP_016631044
1229
IAA---SFI   QLMQFNAMGAP-STFKFFQ--DKI--ERA--R-YTSIKEIF   DATIIYQSPTGLYETRRKV-----
1286





EMS75795
1014
LSQ---SFI   NLMQLNAMGAP-ADFKFFD--VII--PRK--R-YPSLTEIW   ESTIIYQSITGLRETRTRMATLwd
1076





WP_002373311
1278
IAA---SFI   QLMQFNAMGAP-STFKFFQ--DKI--ERA--R-YTSIKEIF   DATIIYQSTTGLYETRRKV-----
1335





WP_002378009
1278
IAA---SFI   QLMQFNAMGAP-STFKFFQ--DKI--ERA--R-YTSIKEIF   DATIIYQSTTGLYETRRKV-----
1335





WP_002407324
1278
IAA---SFI   QLMQFNAMGAP-STFKFFQ--DKI--ERA--R-YTSIKEIF   DATIIYQSTTGLYETRRKV-----
1335





WP_002413717
1278
IAA---SFI   QLMQFNAMGAP-STFKFFQ--DKI--ERA--R-YTSIKEIF   DATIIYQSTTGLYETRRKV-----
1335





WP_010775580
1280
IAA---SFI   QLMQFNAMGAP-STFKFFQ--DKI--ERA--R-YTSIKEIF   DATIIYQSTTGLYETRRKV-----
1337





WP_010818269
1278
IAA---SFI   QLMQFNAMGAP-STFKFFQ--DKI--ERA--R-YTSIKEIF   DATIIYQSTTGLYETRRKV-----
1335





WP_010824395
1278
IAA---SFI   QLMQFNAMGAP-STFKFFQ--DKI--ERA--R-YTSIKEIF   DATIIYQSTTGLYETRRKV-----
1335





WP_016622645
1278
IAA---SFI   QLMQFNAMGAP-STFKFFQ--DKI--ERA--R-YTSIKEIF   DATIIYQSTTGLYETRRKV-----
1335





WP_033624816
1278
IAA---SFI   QLMQFNAMGAP-STFKFFQ--DKI--ERA--R-YTSIKEIF   DATIIYQSTTGLYETRRKV-----
1335





WP_033625576
1278
IAA---SFI   QLMQFNAMGAP-STFKFFQ--DKI--ERA--R-YTSIKEIF   DATIIYQSTTGLYETRRKV-----
1335





WP_033789179
1278
IAA---SFI   QLMQFNAMGAP-STFKFFQ--DKI--ERA--R-YTSIKEIF   DATIIYQSTTGLYETRRKV-----
1335





WP_002310644
1280
LAS---SFV   NLMQFNAMGAP-ADFKFFD--VTI--PRK--R-YTSLTEIW   QSTIIHQSITGLYETRIRMGK---
1339





WP_002312694
1281
LAS---SFV   NLMQFNAMGAP-ADFKFFD--VTI--PRK--R-YTSLTEIW   QSTIIHQSITGLYETRIRMGK---
1340





WP_002314015
1281
LAS---SFV   NLMQFNAMGAP-ADFKFFD--VTI--PRK--R-YTSLTEIW   QSTIIHQSITGLYETRIRMGK---
1340





WP_002320716
1281
LAS---SFV   NLMQFNAMGAP-ADFKFFD--VTI--PRK--R-YTSLTEIW   QSTIIHQSITGLYETRIRMGK---
1340





WP_002330729
1280
LAS---SFV   NLMQFNAMGAP-ADFKFFD--VTI--PRK--R-YTSLTEIW   QSTIIHQSITGLYETRIRMGK---
1339





WP_002335161
1281
LAS---SFV   NLMQFNAMGAP-ADFKFFD--VTI--PRK--R-YTSLTEIW   QSTIIHQSITGLYETRIRMGK---
1340





WP_002345439
1281
LAS---SFV   NLMQFNAMGAP-ADFKFFD--VTI--PRK--R-YTSLTEIW   QSTIIHQSITGLYETRIRMGK---
1340





WP_034867970
1271
IAQ---SFL   QLLQFNAIGAP-ADFKFFG--VTI--PRK--R-YTSLTEIW   DATIIYQSVTGLYETRIRMGDLwa
1333





WP_047937432
1281
LAS---SFV   NLMQFNAMGAP-ADFKFFD--VTI--PRK--R-YTSLTEIW   QSTIIHQSITGLYETRIRMGK---
1340





WP_010720994
1271
IAQ---SFL   QLLQFNAIGAP-ADFKFFG--VTI--PRK--R-YTSLTEIW   DATIIYQSVTGLYETRIRMGDLwa
1333





WP_010737004
1271
IAQ---SFL   QLLQFNAIGAP-ADFKFFG--VTI--PRK--R-YTSLTEIW   DATIIYQSVTGLYETRIRMGDLwa
1333





WP_034700478
1271
IAQ---SFL   QLLQFNAIGAP-ADFKFFG--VTI--PRK--R-YTSLTEIW   DATIIYQSVTGLYETRIRMGDLwa
1333





WP_007209003
1270
IAK---SFI   NLLTFTAMGAP-ADFEFFG--EKI--PRK--R-YVSISEII   DAVFIHQSITGLYETRVRLTEV--
1330





WP_023519017
1265
MID---AIL   SLLKFTLFGAS-VEFKFFD--IKI---LK--R-YKSLTDIW   EATIIYQSVTGLYERRVEVRKLwd
1326





WP_010770040
1275
IAE---SFV   NLMKFSAYGAP-MDFKFFG--KTI--PRS--R-YTSVGELL   SATIINQSITGLYETRRKL-----
1332





WP_048604708
1271
IAQ---SFV   DLMQLNAFGAP-ADFKFFG--ETI--PRK--R-YTSVNELL   EATIINQSITGLYETRRRL-----
1328





WP_010750235
1274
MAH---SFV   NLMQFNALGAP-ADFKFFD--TTI--TRK--R-YTSLTEIW   QSTIIYQSVTGLYETRRRMADLwd
1336





AII16583
1345
-AE---NII   HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL   DATLIHQSITGLYETRIDLSQL--
1404





WP_029073316
1283
-CE----VI   QMLVVMHAGPQnGNITFDDf--KL-sNRLg-R-LNCKTISL   TTVFIADSPTGMYSKKYKL-----
1343





WP_031589969
1284
-CN----II   QILATLHCNSSiGKIMYSDf--KI-sTTIg-R-LNGRTISL   DISFIAESPTGMYSKKYKL-----
1344





KDA45870
1254
LGK---NFV   ELLRYTADGAA-SDFKFFG--ENI--PRK--R-YNSAGSLL   NGTLIYQSKTGLYETRIDLGKL--
1314





WP_039099354
1307
ILDr----V   -LIGLHANAAV-SDLGVLKisTPL--GKM--Q---QPSGIS   DTQIIYQSPTGLFERRVALRDL--
1368





AKP02966
1297
INSl-eELI   TLLHANSTSAH-LIFNNIE-kKAF--GRK-------THGLT   DTDFIYQSVTGLYETRIHIE----
1356





WP_010991369
1275
IAQ---SFV   DLMAFNAMGAP-ASFKFFE--TTI--ERK--R-YNNLKELL   NSTIIYQSITGLYESRKRL-----
1332





WP_033838504
1275
IAQ---SFV   DLMAFNAMGAP-ASFKFFE--TTI--ERK--R-YNNLKELL   NSTIIYQSITGLYESRKRL-----
1332





EHN60060
1278
IAQ---SFV   DLMAFNAMGAP-ASFKFFE--TTI--ERK--R-YNNLKELL   NSTIIYQSITGLYESRKRL-----
1335





EFR89594
1044
IAQ---SFV   DLMAFNAMGAP-ASFKFFE--TTI--ERK--R-YNNLKELL   NSTIIYQSITGLYESRKRL-----
1101





WP_038409211
1275
IAK---SFD   KLKVFNAFGAP-RDFEFFE--TTI--KRK--R-YYNIKELL   NATIIYQSITGLYEARKRL-----
1332





EFR95520
894
IAK---SFD   KLKVFNAFGAP-RDFEFFE--TTI--KRK--R-YYNIKELL   NATIIYQSITGLYEARKRL-----
951





WP_003723650
1275
IAQ---SFV   DLMAFNAMGAP-ASFKFFE--ATI--DRK--R-YTNLKELL   SSTIIYQSITGLYESRKRL-----
1332





WP_003727705
1275
IAQ---SFV   DLMAFNAMGAP-ASFKFFE--ATI--DRK--R-YTNLKELL   SSTIIYQSITGLYESRKRL-----
1332





WP_003730785
1275
IAQ---SFV   DLMAFNAMGAP-ASFKFFE--ATI--DRK--R-YTNLKELL   SSTIIYQSITGLYESRKRL-----
1332





WP_003733029
1275
IAE---SFV   SLKKFNAFGVH-QDFSFFG--TKI--ERK--R-DRKLNELL   NSTIIYQSITGLYESRKRL-----
1332





WP_003739838
1275
IAQ---SFV   NLMAFNAMGAP-ASFKFFE--ATI--ERK--R-YTNLKELL   SATIIYQSITGLYEARKRL-----
1332





WP_014601172
1275
IAQ---SFV   DLMAFNAMGAP-ASFKFFE--ATI--DRK--R-YTNLKELL   SSTIIYQSITGLYESRKRL-----
1332





WP_023548323
1275
IAE---SFV   SLKKFNAFGVH-KDFNFFG--TTI--KRK--R-DRKLKELL   NSTIIYQSITGLYESRKRL-----
1332





WP_031665337
1275
IAQ---SFV   DLMAFNAMGAP-ASFKFFE--ATI--DRK--R-YTNLKELL   SSTIIYQSITGLYESRKRL-----
1332





WP_031669209
1275
IAE---SFV   SLKKFNAFGVH-QDFSFFG--TKI--ERK--R-DRKLNELL   NSTIIYQSITGLYESRKRL-----
1332





WP_033920898
1275
IAE---SFV   SLKKFNAFGVH-KDFNFFG--TTI--KRK--R-DRKLKELL   NSTIIYQSITGLYESRKRL-----
1332





AKI42028
1278
IAQ---SFV   DLMAFNAMGAP-ASFKFFE--ATI--DRK--R-YTNLKELL   SSTIIYQSITGLYESRKRL-----
1335





AKI50529
1278
IAE---SFV   SLKKFNAFGVH-KDFNFFG--TTI--KRK--R-DRKLKELL   NSTIIYQSITGLYESRKRL-----
1335





EFR83390
723
IAQ---SFV   DLMVFNAMGAP-ASFKFFE--ATI--DRK--R-YTNLKELL   SSTIIYQSITGLYESRKRL-----
780





WP_046323366
1275
IAQ---SFV   NLLEFNAMGAP-ASFKYFE--TNI--ERK--R-YNNLKELL   NATIIYQSITGLYEARKRL-----
1332





AKE81011
1322
-AE---NII   HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL   DATLIHQSITGLYETRIDLSQL--
1381





CUO82355
1273
-AN----VI   QMLIIMHKGPQnGNIIYDDf--NV-gKRIg-R-LNGRTFYL   NIEFISQSPTGIYTKKYKL-----
1333





WP_033162887
1275
-CD----VI   QILIIMHAGPMnGNIMYDDf--KF-tNRIg-R-FTHKNIDL   KTTFISTSVTGLFSKKYKL-----
1335





AGZ01981
1339
-AE---NII   HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL   DATLIHQSITGLYETRIDLSQL--
1398





AKA60242
1306
-AE---NII   HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL   DATLIHQSITGLYETRIDLSQL--
1365





AKS40380
1306
-AE---NII   HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL   DATLIHQSITGLYETRIDLSQL--
1365





4UN5_B
1310
-AE---NII   HLFTLTNLGAP-AAFKYFD--TTI--DRK--R-YTSTKEVL   DATLIHQSITGLYETRIDLSQL--
1369





WP_010922251
1366
GGD
1368





WP_039695303
1370
GEE
1372





WP_045635197
1368
GED
1370





5AXW_A

---






WP_009880683
1050
GGD
1052





WP_010922251
1366
GGD
1368





WP_011054416
1366
GGD
1368





WP_011284745
1366
GGD
1368





WP_011285506
1366
GGD
1368





WP_011527619
1366
GGD
1368





WP_012560673
1366
GGD
1368





WP_014407541
1365
GGD
1367





WP_020905136
1366
GGD
1368





WP_023080005
1365
GGD
1367





WP_023610282
1365
GGD
1367





WP_030125963
1366
GGD
1368





WP_030126706
1366
GGD
1368





WP_031488318
1366
GGD
1368





WP_032460140
1366
GGD
1368





WP_032461047
1366
GGD
1368





WP_032462016
1366
GGD
1368





WP_032462936
1366
GGD
1368





WP_032464890
1366
GGD
1368





WP_033888930
1191
GGD
1193





WP_038431314
1366
GGD
1368





WP_038432938
1365
GGD
1367





WP_038434062
1366
GGD
1368





BAQ51233
1277
GGD
1279





KGE60162
541
GGD
543





KGE60856
304
GGD
306





WP_002989955
1366
GGD
1368





WP_003030002
1343
GED
1345





WP_003065552
1371
GEE
1373





WP_001040076
1368
GED
1370





WP_001040078
1376
GED
1378





WP_001040080
1368
GED
1370





WP_001040081
1368
GED
1370





WP_001040083
1368
GED
1370





WP_001040085
1368
GED
1370





WP_001040087
1368
GED
1370





WP_001040088
1368
GGD
1370





WP_001040089
1368
GED
1370





WP_001040090
1368
GED
1370





WP_001040091
1368
GED
1370





WP_001040092
1368
GED
1370





WP_001040094
1368
GED
1370





WP_001040095
1368
GEG
1370





WP_001040096
1368
GEG
1370





WP_001040097
1368
GED
1370





WP_001040098
1368
GED
1370





WP_001040099
1368
GED
1370





WP_001040100
1368
GED
1370





WP_001040104
1368
GED
1370





WP_001040105
1368
GED
1370





WP_001040106
1368
GED
1370





WP_001040107
1368
GED
1370





WP_001040108
1368
GED
1370





WP_001040109
1368
GED
1370





WP_001040110
1368
GED
1370





WP_015058523
1368
GED
1370





WP_017643650
1368
GED
1370





WP_017647151
1368
GED
1370





WP_017648376
1368
GED
1370





WP_017649527
1368
GED
1370





WP_017771611
1368
GED
1370





WP_017771984
1368
GED
1370





CFQ25032
1368
GED
1370





CFV16040
1368
GED
1370





KLJ37842
1368
GED
1370





KLJ72361
1368
GGD
1370





KLL20707
1382
GED
1384





KLL42645
1368
GED
1370





WP_047207273
1368
GED
1370





WP_047209694
1368
GED
1370





WP_050198062
1368
GED
1370





WP_050201642
1368
GED
1370





WP_050204027
1368
GED
1370





WP_050881965
1368
GED
1370





WP_050886065
1368
GED
1370





AHN30376
1368
GED
1370





EAO78426
1368
GED
1370





CCW42055
1368
GED
1370





WP_003041502
1384
GED
1386





WP_037593752
1344
GED
1346





WP_049516684
1344
GED
1346





GAD46167
1343
GED
1345





WP_018363470
1375
GEE
1377





WP_003043819
1373
GGD
1375





WP_006269658
1343
GED
1345





WP_048800889
1363
GED
1365





WP_012767106
1369
GGD
1371





WP_014612333
1369
GGD
1371





WP_015017095
1369
GGD
1371





WP_015057649
1369
GGD
1371





WP_048327215
1369
GGD
1371





WP_049519324
1369
GGD
1371





WP_012515931
1346
GEN
1348





WP_021320964
1346
GEN
1348





WP_037581760
1346
GEN
1348





WP_004232481
1375
GEE
1377





WP_009854540
1368
GEE
1370





WP_012962174
1369
GEE
1371





WP_039695303
1370
GEE
1372





WP_014334983
1373
GEE
1375





WP_003099269
1366
GGK
1368





AHY15608

---






AHY17476

---






ESR09100
198
GGK
200





AGM98575

---






ALF27331
1343
GGD
1345





WP_018372492
1351
GEN
1353





WP_045618028
1374
GED
1376





WP_045635197
1368
GED
1370





WP_002263549
1343
GGD
1345





WP_002263887
1343
GGD
1345





WP_002264920
1343
GGD
1345





WP_002269043
1343
GGD
1345





WP_002269448
1343
GGD
1345





WP_002271977
1343
GGD
1345





WP_002272766
1343
GGD
1345





WP_002273241
1343
GGD
1345





WP_002275430
1343
GGD
1345





WP_002276448
1343
GGD
1345





WP_002277050
1353
GGD
1355





WP_002277364
1343
GGD
1345





WP_002279025
1343
GGD
1345





WP_002279859
1343
GGD
1345





WP_002280230
1343
GGD
1345





WP_002281696
1343
GGD
1345





WP_002282247
1353
GGD
1355





WP_002282906
1343
GGD
1345





WP_002283846
1343
GGD
1345





WP_002287255
1343
GGD
1345





WP_002288990
1343
GGD
1345





WP_002289641
1343
GGD
1345





WP_002290427
1343
GGD
1345





WP_002295753
1343
GGD
1345





WP_002296423
1343
GGD
1345





WP_002304487
1357
GGD
1359





WP_002305844
1343
GGD
1345





WP_002307203
1343
GGD
1345





WP_002310390
1343
GGD
1345





WP_002352408
1343
GGD
1345





WP_012997688
1343
GGD
1345





WP_014677909
1343
GGD
1345





WP_019312892
1343
GGD
1345





WP_019313659
1343
GGD
1345





WP_019314093
1343
GGD
1345





WP_019315370
1343
GGD
1345





WP_019803776
1343
GGD
1345





WP_019805234
1343
GGD
1345





WP_024783594
1343
GGD
1345





WP_024784288
1353
GGD
1355





WP_024784666
1343
GGD
1345





WP_024784894
1343
GGD
1345





WP_024786433
1353
GGD
1355





WP_049473442
1343
GGD
1345





WP_049474547
1343
GGD
1345





EMC03581
1336
GGD
1338





WP_000428612
1371
GED
1373





WP_000428613
1369
GED
1371





WP_049523028
1364
GEE
1366





WP_003107102
1335
GGD
1337





WP_054279288
1366
GGD
1368





WP_049531101
1374
GED
1376





WP_049538452
1374
GED
1376





WP_049549711
1376
GED
1378





WP_007896501
1372
GGD
1374





EFR44625
1324
GGD
1326





WP_002897477
1368
GEE
1370





WP_002906454
1375
GED
1377





WP_009729476
1369
GED
1371





CQR24647
1359
GGE
1361





WP_000066813
1373
GED
1375





WP_009754323
1369
GED
1371





WP_044674937
1362
GGD
1364





WP_044676715
1364
GGD
1366





WP_044680361
1364
GGD
1366





WP_044681799
1362
GGD
1364





WP_049533112
1384
GED
1386





WP_029090905

---






WP_006506696

---






AIT42264
1366
GGD
1389





WP_034440723

---






AKQ21048
1366
GGD
1384





WP_004636532
1330
-ED
1332





WP_002364836
1336
-VD
1337





WP_016631044
1287
-VD
1288





EMS75795
1077
GEQ
1079





WP_002373311
1336
-VD
1337





WP_002378009
1336
-VD
1337





WP_002407324
1336
-VD
1337





WP_002413717
1336
-VD
1337





WP_010775580
1338
-VD
1339





WP_010818269
1336
-VD
1337





WP_010824395
1336
-VD
1337





WP_016622645
1336
-VD
1337





WP_033624816
1336
-VD
1337





WP_033625576
1336
-VD
1337





WP_033789179
1336
-VD
1337





WP_002310644

---






WP_002312694

---






WP_002314015

---






WP_002320716

---






WP_002330729

---






WP_002335161

---






WP_002345439

---






WP_034867970
1334
GEQ
1336





WP_047937432

---






WP_010720994
1334
GEQ
1336





WP_010737004
1334
GEQ
1336





WP_034700478
1334
GEQ
1336





WP_007209003

---






WP_023519017
1327
GER
1330





WP_010770040
1333
-VD
1334





WP_048604708
1329
-GD
1330





WP_010750235
1337
GVQ
1339





AII16583
1405
GGD
1424





WP_029073316

---






WP_031589969

---






KDA45870

---






WP_039099354

---






AKP02966

---






WP_010991369
1333
-DD
1334





WP_033838504
1333
-DD
1334





EHN60060
1336
-DD
1337





EFR89594
1102
-DD
1103





WP_038409211
1333
-ED
1334





EFR95520
952
-ED
953





WP_003723650
1333
-DD
1334





WP_003727705
1333
-DD
1334





WP_003730785
1333
-DD
1334





WP_003733029
1333
-DN
1334





WP_003739838
1333
-DG
1334





WP_014601172
1333
-DD
1334





WP_023548323
1333
-DS
1334





WP_031665337
1333
-DD
1334





WP_031669209
1333
-DN
1334





WP_033920898
1333
-DS
1334





AKI42028
1336
-DD
1337





AKI50529
1336
-DS
1337





EFR83390
781
-DD
782





WP_046323366
1333
-DD
1334





AKE81011
1382
GGD
1400





CUO82355

---






WP_033162887

---






AGZ01981
1399
GGD
1417





AKA60242
1366
GGD
1368





AKS40380
1366
GGD
1376





4UN5_B
1370
GGD
1372






EQUIVALENTS AND SCOPE, INCORPORATION BY REFERENCE

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. The scope of the present invention is not intended to be limited to the above description, but rather is as set forth in the appended claims.


In the claims articles such as “a,” “an,” and “the” may mean one or more than one unless indicated to the contrary or otherwise evident from the context. Claims or descriptions that include “or” between one or more members of a group are considered satisfied if one, more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process unless indicated to the contrary or otherwise evident from the context. The invention includes embodiments in which exactly one member of the group is present in, employed in, or otherwise relevant to a given product or process. The invention also includes embodiments in which more than one, or all of the group members are present in, employed in, or otherwise relevant to a given product or process.


Furthermore, it is to be understood that the invention encompasses all variations, combinations, and permutations in which one or more limitations, elements, clauses, descriptive terms, etc., from one or more of the claims or from relevant portions of the description is introduced into another claim. For example, any claim that is dependent on another claim can be modified to include one or more limitations found in any other claim that is dependent on the same base claim. Furthermore, where the claims recite a composition, it is to be understood that methods of using the composition for any of the purposes disclosed herein are included, and methods of making the composition according to any of the methods of making disclosed herein or other methods known in the art are included, unless otherwise indicated or unless it would be evident to one of ordinary skill in the art that a contradiction or inconsistency would arise.


Where elements are presented as lists, e.g., in Markush group format, it is to be understood that each subgroup of the elements is also disclosed, and any element(s) can be removed from the group. It is also noted that the term “comprising” is intended to be open and permits the inclusion of additional elements or steps. It should be understood that, in general, where the invention, or aspects of the invention, is/are referred to as comprising particular elements, features, steps, etc., certain embodiments of the invention or aspects of the invention consist, or consist essentially of, such elements, features, steps, etc. For purposes of simplicity those embodiments have not been specifically set forth in haec verba herein. Thus for each embodiment of the invention that comprises one or more elements, features, steps, etc., the invention also provides embodiments that consist or consist essentially of those elements, features, steps, etc.


Where ranges are given, endpoints are included. Furthermore, it is to be understood that unless otherwise indicated or otherwise evident from the context and/or the understanding of one of ordinary skill in the art, values that are expressed as ranges can assume any specific value within the stated ranges in different embodiments of the invention, to the tenth of the unit of the lower limit of the range, unless the context clearly dictates otherwise. It is also to be understood that unless otherwise indicated or otherwise evident from the context and/or the understanding of one of ordinary skill in the art, values expressed as ranges can assume any subrange within the given range, wherein the endpoints of the subrange are expressed to the same degree of accuracy as the tenth of the unit of the lower limit of the range.


In addition, it is to be understood that any particular embodiment of the present invention may be explicitly excluded from any one or more of the claims. Where ranges are given, any value within the range may explicitly be excluded from any one or more of the claims. Any embodiment, element, feature, application, or aspect of the compositions and/or methods of the invention, can be excluded from any one or more claims. For purposes of brevity, all of the embodiments in which one or more elements, features, purposes, or aspects is excluded are not set forth explicitly herein.


All publications, patents and sequence database entries mentioned herein, including those items listed above, are hereby incorporated by reference in their entirety as if each individual publication or patent was specifically and individually indicated to be incorporated by reference. In case of conflict, the present application, including any definitions herein, will control.










LENGTHY TABLES




The patent contains a lengthy table section. A copy of the table is available in electronic form from the USPTO web site (). An electronic copy of the table will also be available from the USPTO upon request and payment of the fee set forth in 37 CFR 1.19(b)(3).





Claims
  • 1. A nucleic acid molecule encoding an adenosine deaminase comprising an amino acid sequence that is at least 85% identical to the amino acid sequence of SEQ ID NOs: 1, 8, 9, 371, 372, 373, 374, or 375, with the exception of one or more substitutions at positions selected from the group consisting of amino acid residues corresponding to positions 8, 17, 18, 23, 34, 36, 45, 48, 51, 56, 59, 84, 85, 94, 95, 102, 104, 106, 107, 108, 110, 118, 123, 127, 138, 142, 146, 147, 149, 151, 152, 153, 154, 155, 156, and 157 of the amino acid sequence of SEQ ID NO: 1, wherein the adenosine deaminase deaminates adenine in deoxyribonucleic acid (DNA).
  • 2. The nucleic acid molecule of claim 1, wherein the adenosine deaminase is a TadA deaminase.
  • 3. The nucleic acid molecule of claim 1, wherein the nucleic acid molecule comprises deoxyribonucleic acid (DNA).
  • 4. The nucleic acid molecule of claim 1, wherein the nucleic acid molecule comprises ribonucleic acid (RNA).
  • 5. The nucleic acid molecule of claim 1, wherein the nucleic acid molecule is an mRNA.
  • 6. The nucleic acid molecule of claim 5, wherein the mRNA is a modified mRNA.
  • 7. The nucleic acid molecule of claim 1, wherein the nucleic acid molecule comprises one or more natural nucleosides, nucleoside analogs, chemically modified bases, biologically modified bases, intercalated bases, modified sugars, and/or modified phosphate groups.
  • 8. The nucleic acid molecule of claim 7, wherein the nucleoside analog is selected from the group consisting of 2-aminoadenosine, 2-thiothymidine, inosine, pyrrolo-pyrimidine, 3-methyl adenosine, 5-methylcytidine, 2-aminoadenosine, C5-bromouridine, C5-fluorouridine, C5-iodouridine, C5-propynyl-uridine, C5-propynyl-cytidine, C5-methylcytidine, 2-aminoadenosine, 7-deazaadenosine, 7-deazaguanosine, 8-oxoadenosine, 8-oxoguanosine, O(6)-methylguanine, and 2-thiocytidine.
  • 9. The nucleic acid molecule of claim 7, wherein the modified phosphate group is a phosphorothioate.
  • 10. The nucleic acid molecule of claim 7, wherein the biologically modified base is a methylated base.
  • 11. The nucleic acid molecule of claim 1, wherein the adenosine deaminase comprises an amino acid sequence that is at least 85% identical to the amino acid sequence of SEQ ID NO: 1 or 8.
  • 12. The nucleic acid molecule of claim 1, wherein said one or more substitutions are at positions selected from the group consisting of amino acid residues corresponding to positions 23, 36, 48, 51, 84, 106, 108, 123, 142, 146, 147, 152, 155, 156, and 157 of the amino acid sequence of SEQ ID NO: 1.
  • 13. The nucleic acid molecule of claim 12, wherein said one or more substitutions are substitutions selected from the group consisting of W23R, W23L, H36L, P48S, P48A, R51L, L84F, A106V, D108N, H123Y, A142N, S146C, D147Y, R152P, E155V, I156F, and K157N of the amino acid sequence of SEQ ID NO: 1.
  • 14. The nucleic acid molecule of claim 12, wherein said one or more substitutions comprise a group of substitutions at positions selected from the group of substitutions at positions consisting of: (i) W23, H36, P48, R51, L84, A106, D108, H123, A142, 5146, D147, R152, E155, I156, and K157;(ii) W23, H36, P48, R51, L84, A106, D108, H123, S146, D147, R152, E155, I156, and K157;(iii) H36, P48, R51, L84, A106, D108, H123, A142, 5146, D147, E155, I156, and K157;(iv) H36, P48, R51, L84, A106, D108, H123, S146, D147, E155, I156, and K157;(v) H36, R51, L84, A106, D108, H123, S146, D147, E155, I156, and K157;(vi) L84, A106, D108, H123, D147, E155, and I156;(vii) A106, D108, D147, and E155;(viii) A106 and D108; and(ix) D108; of the amino acid sequence of SEQ ID NO: 1.
  • 15. The nucleic acid molecule of claim 12, wherein said one or more substitutions comprise a group of substitutions selected from the groups of substitutions consisting of: (i) W23L, H36L, P48A, R51L, L84F, A106V, D108N, H123Y, A142N, S146C, D147Y, R152P, E155V, I156F, and K157N;(ii) W23R, H36L, P48A, R51L, L84F, A106V, D108N, H123Y, S146C, D147Y, R152P, E155V, I156F, and K157N;(iii) H36L, P48S, R51L, L84F, A106V, D108N, H123Y, A142N, S146C, D147Y, E155V, I156F, and K157N;(iv) H36L, P48S, R51L, L84F, A106V, D108N, H123Y, S146C, D147Y, E155V, I156F, and K157N;(v) H36L, R51L, L84F, A106V, D108N, H123Y, S146C, D147Y, E155V, I156F, and K157N;(vi) L84F, A106V, D108N, H123Y, D147Y, E155V, and I156F;(vii) A106V, D108N, D147Y, and E155V;(viii) A106V and D108N; and(ix) D108N; of the amino acid sequence of SEQ ID NO: 1.
  • 16. A nucleic acid molecule encoding a base editor for modifying a base within a nucleic acid sequence, wherein the base editor comprises: a) a nucleic acid programmable DNA binding protein (napDNAbp) domain, wherein said napDNAbp domain site specifically binds said nucleic acid sequence when associated with a bound nucleic acid; andb) an adenosine deaminase domain comprising said adenosine deaminase encoded by the nucleic acid molecule of claim 1.
  • 17. The nucleic acid molecule of claim 16, wherein said napDNAbp domain comprises a Cas9 domain, a Cpf1 domain, a CasX domain, a CasY domain, a C2c1 domain, a C2c2 domain, or a C2c3 domain.
  • 18. The nucleic acid molecule of claim 17, wherein said napDNAbp domain comprises a Cas9 domain.
  • 19. The nucleic acid molecule of claim 18, wherein said Cas9 domain comprises a nuclease dead Cas9 (dCas9) domain, a Cas9 nickase (nCas9) domain, or a nuclease active Cas9 domain.
  • 20. The nucleic acid molecule of claim 18, wherein said Cas9 domain comprises an amino acid sequence that is at least 85% identical to any one of SEQ ID NOs: 34-36.
  • 21. The nucleic acid molecule of claim 18, wherein said Cas9 domain comprises the amino acid sequence of any one of SEQ ID NOs: 34-36.
  • 22. The nucleic acid molecule of claim 16, wherein said adenosine deaminase domain is a TadA deaminase.
  • 23. The nucleic acid molecule of claim 16, wherein said adenosine deaminase domain is fused to the N-terminus of said napDNAbp domain.
  • 24. The nucleic acid molecule of claim 23, wherein said adenosine deaminase domain is fused via a linker.
  • 25. The nucleic acid molecule of claim 16, wherein said base editor further comprises a second adenosine deaminase domain.
  • 26. The nucleic acid molecule of claim 25, wherein said second adenosine deaminase domain is fused to the N-terminus of said adenosine deaminase domain.
  • 27. The nucleic acid molecule of claim 25, wherein said second adenosine deaminase domain does not deaminate adenine in DNA.
  • 28. The nucleic acid molecule of claim 25, wherein said second adenosine deaminase domain is capable of deaminating adenine in DNA.
  • 29. The nucleic acid molecule of claim 16 further comprising an inhibitor of base excision repair.
  • 30. The nucleic acid molecule of claim 29, wherein the inhibitor of base excision repair is a catalytically inactive inosine specific nuclease (dISN).
  • 31. The nucleic acid molecule of claim 25, wherein said second adenosine deaminase domain is fused to the C-terminus of said adenosine deaminase domain.
  • 32. The nucleic acid molecule of claim 25, wherein said second adenosine deaminase domain is a TadA adenosine deaminase.
  • 33. The nucleic acid molecule of claim 25, wherein said second adenosine deaminase comprises an amino acid sequence that is at least 85% identical to the amino acid sequence of SEQ ID NO: 1.
  • 34. The nucleic acid molecule of claim 16, wherein the nucleic acid molecule comprises deoxyribonucleic acid (DNA).
  • 35. The nucleic acid molecule of claim 16, wherein the nucleic acid molecule comprises ribonucleic acid (RNA).
  • 36. The nucleic acid molecule of claim 16, wherein the nucleic acid is an mRNA.
  • 37. The nucleic acid molecule of claim 36, wherein the mRNA is a modified mRNA.
  • 38. The nucleic acid molecule of claim 16, wherein the nucleic acid molecule comprises one or more natural nucleosides, nucleoside analogs, chemically modified bases, biologically modified bases, intercalated bases, modified sugars, and/or modified phosphate groups.
  • 39. The nucleic acid molecule of claim 38, wherein the nucleoside analog is selected from the group consisting of 2-aminoadenosine, 2-thiothymidine, inosine, pyrrolo-pyrimidine, 3-methyl adenosine, 5-methylcytidine, 2-aminoadenosine, C5-bromouridine, C5-fluorouridine, C5-iodouridine, C5-propynyl-uridine, C5-propynyl-cytidine, C5-methylcytidine, 2-aminoadenosine, 7-deazaadenosine, 7-deazaguanosine, 8-oxoadenosine, 8-oxoguanosine, O(6)-methylguanine, and 2-thiocytidine.
  • 40. The nucleic acid molecule of claim 38, wherein the modified phosphate group is a phosphorothioate.
  • 41. The nucleic acid molecule of claim 38, wherein the biologically modified base is a methylated base.
  • 42. A vector comprising the nucleic acid molecule of claim 1.
  • 43. The vector of claim 42, wherein the vector comprises a heterologous promoter driving expression of the polynucleotide.
  • 44. The vector of claim 42, wherein the vector is a viral vector.
  • 45. The vector of claim 44, wherein the viral vector is an adeno-associated virus (AAV) vector.
  • 46. A vector comprising the nucleic acid molecule of claim 16.
  • 47. The vector of claim 46, wherein the vector comprises a heterologous promoter driving expression of the nucleic acid molecule.
  • 48. The vector of claim 46, wherein the vector is a viral vector.
  • 49. The vector of claim 48, wherein the viral vector is an adeno-associated virus (AAV) vector.
  • 50. A cell comprising the vector of claim 42.
  • 51. A cell comprising the vector of claim 46.
  • 52. A pharmaceutical composition comprising the nucleic acid molecule of claim 1 encapsulated within a lipid particle.
  • 53. The pharmaceutical composition of claim 52, wherein the nucleic acid molecule is an mRNA.
  • 54. The pharmaceutical composition of claim 52 further comprising a pharmaceutically acceptable excipient.
  • 55. A pharmaceutical composition comprising the nucleic acid molecule of claim 16 encapsulated within a lipid particle.
  • 56. The pharmaceutical composition of claim 55, wherein the nucleic acid molecule is an mRNA.
  • 57. The pharmaceutical composition of claim 55 further comprising a pharmaceutically acceptable excipient.
  • 58. A kit comprising a vector comprising a heterologous promoter that drives expression of the nucleic acid molecule of claim 1.
  • 59. The kit of claim 58, wherein the vector is an AAV vector.
  • 60. A kit comprising a vector comprising a heterologous promoter that drives expression of the nucleic acid molecule of claim 16.
  • 61. The kit of claim 60, wherein the vector is an AAV vector.
RELATED APPLICATIONS

This application is a continuation of and claims priority under 35 U.S.C. § 120 to U.S. patent application U.S. Ser. No. 16/143,370, filed Sep. 26, 2018, which is a continuation of and claims priority under 35 U.S.C. § 120 to U.S. patent application U.S. Ser. No. 15/791,085, filed Oct. 23, 2017, which claims priority under 35 U.S.C. § 120 and 365(c) to and is a continuation of international PCT Application, PCT/US2017/045381, filed Aug. 3, 2017, which claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Applications, U.S. Ser. No. 62/473,714, filed Mar. 20, 2017, U.S. Ser. No. 62/454,035, filed Feb. 2, 2017, and U.S. Ser. No. 62/370,684, filed Aug. 3, 2016, each of which is incorporated herein by reference.

US Referenced Citations (445)
Number Name Date Kind
4182449 Kozlow Jan 1980 A
4186183 Steck et al. Jan 1980 A
4217344 Vanlerberghe et al. Aug 1980 A
4235871 Papahadjopoulos et al. Nov 1980 A
4261975 Fullerton et al. Apr 1981 A
4485054 Mezei et al. Nov 1984 A
4501728 Geho et al. Feb 1985 A
4663290 Weis et al. May 1987 A
4737323 Martin et al. Apr 1988 A
4774085 Fidler Sep 1988 A
4797368 Carter et al. Jan 1989 A
4837028 Allen Jun 1989 A
4873316 Meade et al. Oct 1989 A
4880635 Janoff et al. Nov 1989 A
4889818 Gelfand et al. Dec 1989 A
4897355 Eppstein et al. Jan 1990 A
4906477 Kurono et al. Mar 1990 A
4911928 Wallach Mar 1990 A
4917951 Wallach Apr 1990 A
4920016 Allen et al. Apr 1990 A
4921757 Wheatley et al. May 1990 A
4946787 Eppstein et al. Aug 1990 A
4965185 Grischenko et al. Oct 1990 A
5017492 Kotewicz et al. May 1991 A
5047342 Chatterjee Sep 1991 A
5049386 Eppstein et al. Sep 1991 A
5079352 Gelfand et al. Jan 1992 A
5139941 Muzyczka et al. Aug 1992 A
5173414 Lebkowski et al. Dec 1992 A
5223409 Ladner et al. Jun 1993 A
5244797 Kotewicz et al. Sep 1993 A
5270179 Chatterjee Dec 1993 A
5374553 Gelfand et al. Dec 1994 A
5405776 Kotewicz et al. Apr 1995 A
5436149 Barnes Jul 1995 A
5449639 Wei et al. Sep 1995 A
5496714 Comb et al. Mar 1996 A
5512462 Cheng Apr 1996 A
5580737 Polisky et al. Dec 1996 A
5614365 Tabor et al. Mar 1997 A
5658727 Barbas et al. Aug 1997 A
5668005 Kotewicz et al. Sep 1997 A
5677152 Birch et al. Oct 1997 A
5767099 Harris et al. Jun 1998 A
5780053 Ashley et al. Jul 1998 A
5830430 Unger et al. Nov 1998 A
5834247 Comb et al. Nov 1998 A
5835699 Kimura Nov 1998 A
5851548 Dattagupta et al. Dec 1998 A
5855910 Ashley et al. Jan 1999 A
5962313 Podsakoff et al. Oct 1999 A
5981182 Jacobs, Jr. et al. Nov 1999 A
6057153 George et al. May 2000 A
6063608 Kotewicz et al. May 2000 A
6156509 Schellenberger Dec 2000 A
6183998 Ivanov et al. Feb 2001 B1
6429298 Ellington et al. Aug 2002 B1
6453242 Eisenberg et al. Sep 2002 B1
6479264 Louwrier Nov 2002 B1
6503717 Case et al. Jan 2003 B2
6534261 Cox, III et al. Mar 2003 B1
6589768 Kotewicz et al. Jul 2003 B1
6599692 Case et al. Jul 2003 B1
6607882 Cox, III et al. Aug 2003 B1
6610522 Kotewicz et al. Aug 2003 B1
6689558 Case Feb 2004 B2
6824978 Cox, III et al. Nov 2004 B1
6933113 Case et al. Aug 2005 B2
6979539 Cox, III et al. Dec 2005 B2
7013219 Case et al. Mar 2006 B2
7078208 Smith et al. Jul 2006 B2
7163824 Cox, III et al. Jan 2007 B2
7479573 Chu et al. Jan 2009 B2
7595179 Chen et al. Sep 2009 B2
7670807 Lampson et al. Mar 2010 B2
7794931 Breaker et al. Sep 2010 B2
7919277 Russell et al. Apr 2011 B2
7993672 Huang et al. Aug 2011 B2
8067556 Hogrefe et al. Nov 2011 B2
8361725 Russell et al. Jan 2013 B2
8394604 Liu et al. Mar 2013 B2
8440431 Voytas et al. May 2013 B2
8440432 Voytas et al. May 2013 B2
8450471 Voytas et al. May 2013 B2
8492082 De Franciscis et al. Jul 2013 B2
8546553 Terns et al. Oct 2013 B2
8569256 Heyes et al. Oct 2013 B2
8586363 Voytas et al. Nov 2013 B2
8680069 de Fougerolles et al. Mar 2014 B2
8691750 Constien et al. Apr 2014 B2
8697359 Zhang Apr 2014 B1
8697853 Voytas et al. Apr 2014 B2
8709466 Coady et al. Apr 2014 B2
8728526 Heller May 2014 B2
8748667 Budzik et al. Jun 2014 B2
8758810 Okada et al. Jun 2014 B2
8759103 Kim et al. Jun 2014 B2
8759104 Unciti-Broceta et al. Jun 2014 B2
8771728 Huang et al. Jul 2014 B2
8790664 Pitard et al. Jul 2014 B2
8795965 Zhang Aug 2014 B2
8822663 Schrum et al. Sep 2014 B2
8846578 McCray et al. Sep 2014 B2
8900814 Yasukawa et al. Dec 2014 B2
8993233 Zhang et al. Mar 2015 B2
8999641 Zhang et al. Apr 2015 B2
9023594 Liu et al. May 2015 B2
9068179 Liu et al. Jun 2015 B1
9163284 Liu et al. Oct 2015 B2
9181535 Liu et al. Nov 2015 B2
9228207 Liu et al. Jan 2016 B2
9234213 Wu Jan 2016 B2
9267127 Liu et al. Feb 2016 B2
9322006 Liu et al. Apr 2016 B2
9322037 Liu et al. Apr 2016 B2
9340799 Liu et al. May 2016 B2
9340800 Liu et al. May 2016 B2
9359599 Liu et al. Jun 2016 B2
9388430 Liu et al. Jul 2016 B2
9394537 Liu et al. Jul 2016 B2
9458484 Ma et al. Oct 2016 B2
9512446 Joung et al. Dec 2016 B1
9526724 Oshlack et al. Dec 2016 B2
9526784 Liu et al. Dec 2016 B2
9534210 Park et al. Jan 2017 B2
9580698 Xu et al. Feb 2017 B1
9637739 {hacek over (S)}ik{hacek over (s)}nys et al. May 2017 B2
9737604 Liu et al. Aug 2017 B2
9738693 Telford et al. Aug 2017 B2
9771574 Liu et al. Sep 2017 B2
9783791 Hogrefe et al. Oct 2017 B2
9816093 Donohoue et al. Nov 2017 B1
9840538 Telford et al. Dec 2017 B2
9840690 Karli et al. Dec 2017 B2
9840699 Liu et al. Dec 2017 B2
9840702 Collingwood et al. Dec 2017 B2
9850521 Braman et al. Dec 2017 B2
9873907 Zeiner et al. Jan 2018 B2
9879270 Hittinger et al. Jan 2018 B2
9932567 Xu et al. Apr 2018 B1
9938288 Kishi et al. Apr 2018 B1
9944933 Storici et al. Apr 2018 B2
9982279 Gill et al. May 2018 B1
9999671 Liu et al. Jun 2018 B2
10059940 Zhong Aug 2018 B2
10077453 Liu et al. Sep 2018 B2
10113163 Liu et al. Oct 2018 B2
10150955 Lambowitz et al. Dec 2018 B2
10167457 Liu et al. Jan 2019 B2
10179911 Liu et al. Jan 2019 B2
10189831 Arrington et al. Jan 2019 B2
10202658 Parkin et al. Feb 2019 B2
10227581 Liu et al. Mar 2019 B2
10323236 Liu et al. Jun 2019 B2
10336997 Liu et al. Jul 2019 B2
10358670 Janulaitis et al. Jul 2019 B2
10392674 Liu et al. Aug 2019 B2
10407697 Doudna et al. Sep 2019 B2
10465176 Liu et al. Nov 2019 B2
10508298 Liu et al. Dec 2019 B2
10597679 Liu et al. Mar 2020 B2
10612011 Liu et al. Apr 2020 B2
10858639 Liu et al. Dec 2020 B2
10912833 Liu et al. Feb 2021 B2
10947530 Liu et al. Mar 2021 B2
10954548 Liu et al. Mar 2021 B2
20030082575 Schultz et al. May 2003 A1
20030087817 Cox et al. May 2003 A1
20030096337 Hillman et al. May 2003 A1
20030108885 Schultz et al. Jun 2003 A1
20030119764 Loeb et al. Jun 2003 A1
20030167533 Yadav et al. Sep 2003 A1
20030203480 Kovesdi et al. Oct 2003 A1
20040003420 Kuhn et al. Jan 2004 A1
20040115184 Smith et al. Jun 2004 A1
20040203109 Lal et al. Oct 2004 A1
20050136429 Guarente et al. Jun 2005 A1
20050222030 Allison Oct 2005 A1
20050260626 Lorens et al. Nov 2005 A1
20060088864 Smolke et al. Apr 2006 A1
20060104984 Littlefield et al. May 2006 A1
20060246568 Honjo et al. Nov 2006 A1
20070264692 Liu et al. Nov 2007 A1
20070269817 Shapero Nov 2007 A1
20080051317 Church et al. Feb 2008 A1
20080124725 Barrangou et al. May 2008 A1
20080182254 Hall et al. Jul 2008 A1
20080220502 Schellenberger et al. Sep 2008 A1
20090130718 Short May 2009 A1
20090215878 Tan et al. Aug 2009 A1
20090234109 Han et al. Sep 2009 A1
20100076057 Sontheimer et al. Mar 2010 A1
20100093617 Barrangou et al. Apr 2010 A1
20100104690 Barrangou et al. Apr 2010 A1
20100273857 Thakker et al. Oct 2010 A1
20100305197 Che Dec 2010 A1
20100316643 Eckert et al. Dec 2010 A1
20110016540 Weinstein et al. Jan 2011 A1
20110059160 Essner et al. Mar 2011 A1
20110059502 Chalasani Mar 2011 A1
20110104787 Church et al. May 2011 A1
20110177495 Liu et al. Jul 2011 A1
20110189776 Terns et al. Aug 2011 A1
20110217739 Terns et al. Sep 2011 A1
20110301073 Gregory et al. Dec 2011 A1
20120129759 Liu et al. May 2012 A1
20120141523 Castado et al. Jun 2012 A1
20120244264 Karpinsky et al. Sep 2012 A1
20120244601 Bertozzi et al. Sep 2012 A1
20120270273 Zhang et al. Oct 2012 A1
20130059931 Petersen-Mahrt et al. Mar 2013 A1
20130117869 Duchateau et al. May 2013 A1
20130130248 Haurwitz et al. May 2013 A1
20130158245 Russell et al. Jun 2013 A1
20130165389 Schellenberger et al. Jun 2013 A1
20130309720 Schultz et al. Nov 2013 A1
20130344117 Mirosevich et al. Dec 2013 A1
20130345064 Liu et al. Dec 2013 A1
20140004280 Loomis Jan 2014 A1
20140005269 Ngwuluka et al. Jan 2014 A1
20140017214 Cost Jan 2014 A1
20140018404 Chen et al. Jan 2014 A1
20140044793 Goll et al. Feb 2014 A1
20140065711 Liu et al. Mar 2014 A1
20140068797 Doudna et al. Mar 2014 A1
20140127752 Zhou et al. May 2014 A1
20140141094 Smyth et al. May 2014 A1
20140141487 Feldman et al. May 2014 A1
20140179770 Zhang et al. Jun 2014 A1
20140186843 Zhang et al. Jul 2014 A1
20140186958 Zhang et al. Jul 2014 A1
20140201858 Ostertag et al. Jul 2014 A1
20140234289 Liu et al. Aug 2014 A1
20140248702 Zhang et al. Sep 2014 A1
20140273037 Wu Sep 2014 A1
20140273226 Wu Sep 2014 A1
20140273230 Chen et al. Sep 2014 A1
20140295556 Joung et al. Oct 2014 A1
20140295557 Joung et al. Oct 2014 A1
20140342456 Mali et al. Nov 2014 A1
20140342457 Mali et al. Nov 2014 A1
20140342458 Mali et al. Nov 2014 A1
20140349400 Jakimo et al. Nov 2014 A1
20140356867 Peter et al. Dec 2014 A1
20140356956 Church et al. Dec 2014 A1
20140356958 Mali et al. Dec 2014 A1
20140356959 Church et al. Dec 2014 A1
20140357523 Zeiner et al. Dec 2014 A1
20140377868 Joung et al. Dec 2014 A1
20150010526 Liu et al. Jan 2015 A1
20150031089 Lindstrom Jan 2015 A1
20150031132 Church et al. Jan 2015 A1
20150031133 Church et al. Jan 2015 A1
20150044191 Liu et al. Feb 2015 A1
20150044192 Liu et al. Feb 2015 A1
20150044772 Zhao Feb 2015 A1
20150050699 Siksnys et al. Feb 2015 A1
20150056177 Liu et al. Feb 2015 A1
20150056629 Guthrie-Honea Feb 2015 A1
20150064138 Lu et al. Mar 2015 A1
20150064789 Paschon et al. Mar 2015 A1
20150071898 Liu et al. Mar 2015 A1
20150071899 Liu et al. Mar 2015 A1
20150071900 Liu et al. Mar 2015 A1
20150071901 Liu et al. Mar 2015 A1
20150071902 Liu et al. Mar 2015 A1
20150071903 Liu et al. Mar 2015 A1
20150071906 Liu et al. Mar 2015 A1
20150079680 Bradley et al. Mar 2015 A1
20150079681 Zhang Mar 2015 A1
20150098954 Hyde et al. Apr 2015 A1
20150118216 Liu et al. Apr 2015 A1
20150132269 Orkin et al. May 2015 A1
20150140664 Byrne et al. May 2015 A1
20150159172 Miller et al. Jun 2015 A1
20150165054 Liu et al. Jun 2015 A1
20150166980 Liu et al. Jun 2015 A1
20150166981 Liu et al. Jun 2015 A1
20150166982 Liu et al. Jun 2015 A1
20150166984 Liu et al. Jun 2015 A1
20150166985 Liu et al. Jun 2015 A1
20150191744 Wolfe et al. Jul 2015 A1
20150197759 Xu et al. Jul 2015 A1
20150211058 Carstens Jul 2015 A1
20150218573 Logue et al. Aug 2015 A1
20150225773 Farmer et al. Aug 2015 A1
20150252358 Maeder et al. Sep 2015 A1
20150275202 Liu et al. Oct 2015 A1
20150307889 Petolino et al. Oct 2015 A1
20150315252 Haugwitz et al. Nov 2015 A1
20150344549 Muir et al. Dec 2015 A1
20160015682 Cawthorne et al. Jan 2016 A2
20160017393 Jacobson et al. Jan 2016 A1
20160017396 Cann et al. Jan 2016 A1
20160032292 Storici et al. Feb 2016 A1
20160032353 Braman et al. Feb 2016 A1
20160040155 Maizels et al. Feb 2016 A1
20160046952 Hittinger et al. Feb 2016 A1
20160046961 Jinek et al. Feb 2016 A1
20160046962 May et al. Feb 2016 A1
20160053272 Wurtzel et al. Feb 2016 A1
20160053304 Wurtzel et al. Feb 2016 A1
20160074535 Ranganathan et al. Mar 2016 A1
20160076093 Shendure et al. Mar 2016 A1
20160090603 Carnes et al. Mar 2016 A1
20160090622 Liu et al. Mar 2016 A1
20160115488 Zhang et al. Apr 2016 A1
20160138046 Wu May 2016 A1
20160186214 Brouns et al. Jun 2016 A1
20160200779 Liu et al. Jul 2016 A1
20160201040 Liu et al. Jul 2016 A1
20160201089 Gersbach et al. Jul 2016 A1
20160206566 Lu et al. Jul 2016 A1
20160208243 Zhang et al. Jul 2016 A1
20160208288 Liu et al. Jul 2016 A1
20160215275 Zhong Jul 2016 A1
20160215276 Liu et al. Jul 2016 A1
20160215300 May et al. Jul 2016 A1
20160244784 Jacobson et al. Aug 2016 A1
20160244829 Bang et al. Aug 2016 A1
20160264934 Giallourakis et al. Sep 2016 A1
20160272965 Zhang et al. Sep 2016 A1
20160281072 Zhang Sep 2016 A1
20160298136 Chen et al. Oct 2016 A1
20160304846 Liu et al. Oct 2016 A1
20160304855 Stark et al. Oct 2016 A1
20160312304 Sorrentino et al. Oct 2016 A1
20160319262 Doudna et al. Nov 2016 A1
20160333389 Liu et al. Nov 2016 A1
20160340622 Abdou Nov 2016 A1
20160340662 Zhang et al. Nov 2016 A1
20160345578 Barrangou et al. Dec 2016 A1
20160346360 Quake et al. Dec 2016 A1
20160346361 Quake et al. Dec 2016 A1
20160346362 Quake et al. Dec 2016 A1
20160348074 Quake et al. Dec 2016 A1
20160348096 Liu et al. Dec 2016 A1
20160350476 Quake et al. Dec 2016 A1
20160355796 Davidson et al. Dec 2016 A1
20160369262 Reik et al. Dec 2016 A1
20170009224 Liu et al. Jan 2017 A1
20170009242 McKinley et al. Jan 2017 A1
20170014449 Bangera et al. Jan 2017 A1
20170020922 Wagner et al. Jan 2017 A1
20170037432 Donohoue et al. Feb 2017 A1
20170044520 Liu et al. Feb 2017 A1
20170044592 Peter et al. Feb 2017 A1
20170053729 Kotani et al. Feb 2017 A1
20170058271 Joung et al. Mar 2017 A1
20170058272 Carter et al. Mar 2017 A1
20170058298 Kennedy et al. Mar 2017 A1
20170073663 Wang et al. Mar 2017 A1
20170073670 Nishida et al. Mar 2017 A1
20170087224 Quake Mar 2017 A1
20170087225 Quake Mar 2017 A1
20170088587 Quake Mar 2017 A1
20170088828 Quake Mar 2017 A1
20170107536 Zhang et al. Apr 2017 A1
20170107560 Peter et al. Apr 2017 A1
20170114367 Hu et al. Apr 2017 A1
20170121693 Liu et al. May 2017 A1
20170145394 Yeo et al. May 2017 A1
20170145405 Tang et al. May 2017 A1
20170145438 Kantor May 2017 A1
20170152528 Zhang Jun 2017 A1
20170152787 Kubo et al. Jun 2017 A1
20170159033 Kamtekar et al. Jun 2017 A1
20170166928 Vyas et al. Jun 2017 A1
20170175104 Doudna et al. Jun 2017 A1
20170175142 Zhang et al. Jun 2017 A1
20170191047 Terns et al. Jul 2017 A1
20170191078 Zhang et al. Jul 2017 A1
20170198269 Zhang et al. Jul 2017 A1
20170198277 Kmiec et al. Jul 2017 A1
20170198302 Feng et al. Jul 2017 A1
20170226522 Hu et al. Aug 2017 A1
20170233703 Xie et al. Aug 2017 A1
20170233756 Begemann et al. Aug 2017 A1
20170247671 Yung et al. Aug 2017 A1
20170247703 Sloan et al. Aug 2017 A1
20170268022 Liu et al. Sep 2017 A1
20170275665 Silas et al. Sep 2017 A1
20170283797 Robb et al. Oct 2017 A1
20170283831 Zhang et al. Oct 2017 A1
20170314016 Kim et al. Nov 2017 A1
20170362635 Chamberlain et al. Dec 2017 A1
20180064077 Dunham et al. Mar 2018 A1
20180066258 Powell Mar 2018 A1
20180068062 Zhang et al. Mar 2018 A1
20180073012 Liu et al. Mar 2018 A1
20180080051 Sheikh et al. Mar 2018 A1
20180087046 Badran et al. Mar 2018 A1
20180100147 Yates et al. Apr 2018 A1
20180105867 Xiao et al. Apr 2018 A1
20180119118 Lu et al. May 2018 A1
20180127780 Liu et al. May 2018 A1
20180155708 Church et al. Jun 2018 A1
20180155720 Donohoue et al. Jun 2018 A1
20180163213 Aneja et al. Jun 2018 A1
20180170984 Harris et al. Jun 2018 A1
20180179503 Maianti et al. Jun 2018 A1
20180179547 Zhang et al. Jun 2018 A1
20180201921 Malcolm Jul 2018 A1
20180230464 Zhong Aug 2018 A1
20180230471 Storici et al. Aug 2018 A1
20180236081 Liu et al. Aug 2018 A1
20180237758 Liu et al. Aug 2018 A1
20180237787 Maianti et al. Aug 2018 A1
20180245066 Yao et al. Aug 2018 A1
20180258418 Kim Sep 2018 A1
20180265864 Li et al. Sep 2018 A1
20180273939 Yu et al. Sep 2018 A1
20180282722 Jakimo et al. Oct 2018 A1
20180298391 Jakimo et al. Oct 2018 A1
20180305688 Zhong Oct 2018 A1
20180305704 Zhang Oct 2018 A1
20180312822 Lee et al. Nov 2018 A1
20180312825 Liu et al. Nov 2018 A1
20180312828 Liu et al. Nov 2018 A1
20180312835 Yao et al. Nov 2018 A1
20180327756 Zhang et al. Nov 2018 A1
20190010481 Joung et al. Jan 2019 A1
20190055543 Tran et al. Feb 2019 A1
20190093099 Liu et al. Mar 2019 A1
20190185883 Liu et al. Jun 2019 A1
20190225955 Liu et al. Jul 2019 A1
20190233847 Savage et al. Aug 2019 A1
20190241633 Fotin-Mleczek et al. Aug 2019 A1
20190256842 Liu et al. Aug 2019 A1
20190264202 Church et al. Aug 2019 A1
20190276816 Liu et al. Sep 2019 A1
20190322992 Liu et al. Oct 2019 A1
20190352632 Liu et al. Nov 2019 A1
20190367891 Liu et al. Dec 2019 A1
20200010818 Liu et al. Jan 2020 A1
20200010835 Maianti et al. Jan 2020 A1
20200063127 Lu et al. Feb 2020 A1
20200071722 Liu et al. Mar 2020 A1
20200109398 Rubens et al. Apr 2020 A1
20200216833 Liu et al. Jul 2020 A1
20200255868 Liu et al. Aug 2020 A1
20200277587 Liu et al. Sep 2020 A1
20200323984 Liu et al. Oct 2020 A1
20200399619 Maianti et al. Dec 2020 A1
20210054416 Liu et al. Feb 2021 A1
Foreign Referenced Citations (1593)
Number Date Country
2012244264 Nov 2012 AU
2012354062 Jul 2014 AU
2015252023 Nov 2015 AU
2015101792 Jan 2016 AU
112015013786 Jul 2017 BR
2894668 Jun 2014 CA
2894681 Jun 2014 CA
2894684 Jun 2014 CA
2 852 593 Nov 2015 CA
1069962 Mar 1993 CN
103224947 Jul 2013 CN
103233028 Aug 2013 CN
103388006 Nov 2013 CN
103614415 Mar 2014 CN
103642836 Mar 2014 CN
103668472 Mar 2014 CN
103820441 May 2014 CN
103820454 May 2014 CN
103911376 Jul 2014 CN
103923911 Jul 2014 CN
103981211 Aug 2014 CN
103981212 Aug 2014 CN
104004778 Aug 2014 CN
104004782 Aug 2014 CN
104017821 Sep 2014 CN
104109687 Oct 2014 CN
104178461 Dec 2014 CN
104342457 Feb 2015 CN
104404036 Mar 2015 CN
104450774 Mar 2015 CN
104480144 Apr 2015 CN
104498493 Apr 2015 CN
104504304 Apr 2015 CN
104531704 Apr 2015 CN
104531705 Apr 2015 CN
104560864 Apr 2015 CN
104561095 Apr 2015 CN
104593418 May 2015 CN
104593422 May 2015 CN
104611370 May 2015 CN
104651392 May 2015 CN
104651398 May 2015 CN
104651399 May 2015 CN
104651401 May 2015 CN
104673816 Jun 2015 CN
104725626 Jun 2015 CN
104726449 Jun 2015 CN
104726494 Jun 2015 CN
104745626 Jul 2015 CN
104762321 Jul 2015 CN
104805078 Jul 2015 CN
104805099 Jul 2015 CN
104805118 Jul 2015 CN
104846010 Aug 2015 CN
104894068 Sep 2015 CN
104894075 Sep 2015 CN
104928321 Sep 2015 CN
105039339 Nov 2015 CN
105039399 Nov 2015 CN
105063061 Nov 2015 CN
105087620 Nov 2015 CN
105112422 Dec 2015 CN
105112445 Dec 2015 CN
105112519 Dec 2015 CN
105121648 Dec 2015 CN
105132427 Dec 2015 CN
105132451 Dec 2015 CN
105177038 Dec 2015 CN
105177126 Dec 2015 CN
105210981 Jan 2016 CN
105219799 Jan 2016 CN
105238806 Jan 2016 CN
105255937 Jan 2016 CN
105274144 Jan 2016 CN
105296518 Feb 2016 CN
105296537 Feb 2016 CN
105316324 Feb 2016 CN
105316327 Feb 2016 CN
105316337 Feb 2016 CN
105331607 Feb 2016 CN
105331608 Feb 2016 CN
105331609 Feb 2016 CN
105331627 Feb 2016 CN
105400773 Mar 2016 CN
105400779 Mar 2016 CN
105400810 Mar 2016 CN
105441451 Mar 2016 CN
105462968 Apr 2016 CN
105463003 Apr 2016 CN
105463027 Apr 2016 CN
105492608 Apr 2016 CN
105492609 Apr 2016 CN
105505976 Apr 2016 CN
105505979 Apr 2016 CN
105518134 Apr 2016 CN
105518135 Apr 2016 CN
105518137 Apr 2016 CN
105518138 Apr 2016 CN
105518139 Apr 2016 CN
105518140 Apr 2016 CN
105543228 May 2016 CN
105543266 May 2016 CN
105543270 May 2016 CN
105567688 May 2016 CN
105567689 May 2016 CN
105567734 May 2016 CN
105567735 May 2016 CN
105567738 May 2016 CN
105593367 May 2016 CN
105594664 May 2016 CN
105602987 May 2016 CN
105624146 Jun 2016 CN
105624187 Jun 2016 CN
105646719 Jun 2016 CN
105647922 Jun 2016 CN
105647962 Jun 2016 CN
105647968 Jun 2016 CN
105647969 Jun 2016 CN
105671070 Jun 2016 CN
105671083 Jun 2016 CN
105695485 Jun 2016 CN
105779448 Jul 2016 CN
105779449 Jul 2016 CN
105802980 Jul 2016 CN
105821039 Aug 2016 CN
105821040 Aug 2016 CN
105821049 Aug 2016 CN
105821072 Aug 2016 CN
105821075 Aug 2016 CN
105821116 Aug 2016 CN
105838733 Aug 2016 CN
105861547 Aug 2016 CN
105861552 Aug 2016 CN
105861554 Aug 2016 CN
105886498 Aug 2016 CN
105886534 Aug 2016 CN
105886616 Aug 2016 CN
105907758 Aug 2016 CN
105907785 Aug 2016 CN
105925608 Sep 2016 CN
105950560 Sep 2016 CN
105950626 Sep 2016 CN
105950633 Sep 2016 CN
105950639 Sep 2016 CN
105985985 Oct 2016 CN
106011104 Oct 2016 CN
106011150 Oct 2016 CN
106011167 Oct 2016 CN
106011171 Oct 2016 CN
106032540 Oct 2016 CN
106047803 Oct 2016 CN
106047877 Oct 2016 CN
106047930 Oct 2016 CN
106086008 Nov 2016 CN
106086028 Nov 2016 CN
106086061 Nov 2016 CN
106086062 Nov 2016 CN
106109417 Nov 2016 CN
106119275 Nov 2016 CN
106119283 Nov 2016 CN
106148286 Nov 2016 CN
106148370 Nov 2016 CN
106148416 Nov 2016 CN
106167525 Nov 2016 CN
106167808 Nov 2016 CN
106167810 Nov 2016 CN
106167821 Nov 2016 CN
106172238 Dec 2016 CN
106190903 Dec 2016 CN
106191057 Dec 2016 CN
106191061 Dec 2016 CN
106191062 Dec 2016 CN
106191064 Dec 2016 CN
106191071 Dec 2016 CN
106191099 Dec 2016 CN
106191107 Dec 2016 CN
106191113 Dec 2016 CN
106191114 Dec 2016 CN
106191116 Dec 2016 CN
106191124 Dec 2016 CN
106222177 Dec 2016 CN
106222193 Dec 2016 CN
106222203 Dec 2016 CN
106244555 Dec 2016 CN
106244591 Dec 2016 CN
106244609 Dec 2016 CN
106282241 Jan 2017 CN
106318934 Jan 2017 CN
106318973 Jan 2017 CN
106350540 Jan 2017 CN
106367435 Feb 2017 CN
106399306 Feb 2017 CN
106399311 Feb 2017 CN
106399360 Feb 2017 CN
106399367 Feb 2017 CN
106399375 Feb 2017 CN
106399377 Feb 2017 CN
106434651 Feb 2017 CN
106434663 Feb 2017 CN
106434688 Feb 2017 CN
106434737 Feb 2017 CN
106434748 Feb 2017 CN
106434752 Feb 2017 CN
106434782 Feb 2017 CN
106446600 Feb 2017 CN
106479985 Mar 2017 CN
106480027 Mar 2017 CN
106480036 Mar 2017 CN
106480067 Mar 2017 CN
106480080 Mar 2017 CN
106480083 Mar 2017 CN
106480097 Mar 2017 CN
106544351 Mar 2017 CN
106544353 Mar 2017 CN
106544357 Mar 2017 CN
106554969 Apr 2017 CN
106566838 Apr 2017 CN
106701763 May 2017 CN
106701808 May 2017 CN
106701818 May 2017 CN
106701823 May 2017 CN
106701830 May 2017 CN
106754912 May 2017 CN
106755026 May 2017 CN
106755077 May 2017 CN
106755088 May 2017 CN
106755091 May 2017 CN
106755097 May 2017 CN
106755424 May 2017 CN
106801056 Jun 2017 CN
106834323 Jun 2017 CN
106834341 Jun 2017 CN
106834347 Jun 2017 CN
106845151 Jun 2017 CN
106868008 Jun 2017 CN
106868031 Jun 2017 CN
106906240 Jun 2017 CN
106906242 Jun 2017 CN
106916820 Jul 2017 CN
106916852 Jul 2017 CN
106939303 Jul 2017 CN
106947750 Jul 2017 CN
106947780 Jul 2017 CN
106957830 Jul 2017 CN
106957831 Jul 2017 CN
106957844 Jul 2017 CN
106957855 Jul 2017 CN
106957858 Jul 2017 CN
106967697 Jul 2017 CN
106967726 Jul 2017 CN
106978428 Jul 2017 CN
106987570 Jul 2017 CN
106987757 Jul 2017 CN
107012164 Aug 2017 CN
107012174 Aug 2017 CN
107012213 Aug 2017 CN
107012250 Aug 2017 CN
107022562 Aug 2017 CN
107034188 Aug 2017 CN
107034218 Aug 2017 CN
107034229 Aug 2017 CN
107043775 Aug 2017 CN
107043779 Aug 2017 CN
107043787 Aug 2017 CN
107058320 Aug 2017 CN
107058328 Aug 2017 CN
107058358 Aug 2017 CN
107058372 Aug 2017 CN
107083392 Aug 2017 CN
107099533 Aug 2017 CN
107099850 Aug 2017 CN
107119053 Sep 2017 CN
107119071 Sep 2017 CN
107129999 Sep 2017 CN
107130000 Sep 2017 CN
107142272 Sep 2017 CN
107142282 Sep 2017 CN
107177591 Sep 2017 CN
107177595 Sep 2017 CN
107177625 Sep 2017 CN
107177631 Sep 2017 CN
107190006 Sep 2017 CN
107190008 Sep 2017 CN
107217042 Sep 2017 CN
107217075 Sep 2017 CN
107227307 Oct 2017 CN
107227352 Oct 2017 CN
107236737 Oct 2017 CN
107236739 Oct 2017 CN
107236741 Oct 2017 CN
107245502 Oct 2017 CN
107254485 Oct 2017 CN
107266541 Oct 2017 CN
107267515 Oct 2017 CN
107287245 Oct 2017 CN
107298701 Oct 2017 CN
107299114 Oct 2017 CN
107304435 Oct 2017 CN
107312785 Nov 2017 CN
107312793 Nov 2017 CN
107312795 Nov 2017 CN
107312798 Nov 2017 CN
107326042 Nov 2017 CN
107326046 Nov 2017 CN
107354156 Nov 2017 CN
107354173 Nov 2017 CN
107356793 Nov 2017 CN
107362372 Nov 2017 CN
107365786 Nov 2017 CN
107365804 Nov 2017 CN
107384894 Nov 2017 CN
107384922 Nov 2017 CN
107384926 Nov 2017 CN
107400677 Nov 2017 CN
107418974 Dec 2017 CN
107435051 Dec 2017 CN
107435069 Dec 2017 CN
107446922 Dec 2017 CN
107446923 Dec 2017 CN
107446924 Dec 2017 CN
107446932 Dec 2017 CN
107446951 Dec 2017 CN
107446954 Dec 2017 CN
107460196 Dec 2017 CN
107474129 Dec 2017 CN
107475300 Dec 2017 CN
107488649 Dec 2017 CN
107502608 Dec 2017 CN
107502618 Dec 2017 CN
107513531 Dec 2017 CN
107519492 Dec 2017 CN
107523567 Dec 2017 CN
107523583 Dec 2017 CN
107541525 Jan 2018 CN
107557373 Jan 2018 CN
107557378 Jan 2018 CN
107557381 Jan 2018 CN
107557390 Jan 2018 CN
107557393 Jan 2018 CN
107557394 Jan 2018 CN
107557455 Jan 2018 CN
107574179 Jan 2018 CN
107586777 Jan 2018 CN
107586779 Jan 2018 CN
107604003 Jan 2018 CN
107619829 Jan 2018 CN
107619837 Jan 2018 CN
107630006 Jan 2018 CN
107630041 Jan 2018 CN
107630042 Jan 2018 CN
107630043 Jan 2018 CN
107641631 Jan 2018 CN
107653256 Feb 2018 CN
107686848 Feb 2018 CN
206970581 Feb 2018 CN
107760652 Mar 2018 CN
107760663 Mar 2018 CN
107760684 Mar 2018 CN
107760715 Mar 2018 CN
107784200 Mar 2018 CN
107794272 Mar 2018 CN
107794276 Mar 2018 CN
107815463 Mar 2018 CN
107828738 Mar 2018 CN
107828794 Mar 2018 CN
107828826 Mar 2018 CN
107828874 Mar 2018 CN
107858346 Mar 2018 CN
107858373 Mar 2018 CN
107880132 Apr 2018 CN
107881184 Apr 2018 CN
107893074 Apr 2018 CN
107893075 Apr 2018 CN
107893076 Apr 2018 CN
107893080 Apr 2018 CN
107893086 Apr 2018 CN
107904261 Apr 2018 CN
107937427 Apr 2018 CN
107937432 Apr 2018 CN
107937501 Apr 2018 CN
107974466 May 2018 CN
107988229 May 2018 CN
107988246 May 2018 CN
107988256 May 2018 CN
107988268 May 2018 CN
108018316 May 2018 CN
108034656 May 2018 CN
108048466 May 2018 CN
108102940 Jun 2018 CN
108103092 Jun 2018 CN
108103098 Jun 2018 CN
108103586 Jun 2018 CN
108148835 Jun 2018 CN
108148837 Jun 2018 CN
108148873 Jun 2018 CN
108192956 Jun 2018 CN
108251423 Jul 2018 CN
108251451 Jul 2018 CN
108251452 Jul 2018 CN
108342480 Jul 2018 CN
108359691 Aug 2018 CN
108359712 Aug 2018 CN
108384784 Aug 2018 CN
108396027 Aug 2018 CN
108410877 Aug 2018 CN
108410906 Aug 2018 CN
108410907 Aug 2018 CN
108410911 Aug 2018 CN
108424931 Aug 2018 CN
108441519 Aug 2018 CN
108441520 Aug 2018 CN
108486108 Sep 2018 CN
108486111 Sep 2018 CN
108486145 Sep 2018 CN
108486146 Sep 2018 CN
108486154 Sep 2018 CN
108486159 Sep 2018 CN
108486234 Sep 2018 CN
108504657 Sep 2018 CN
108504685 Sep 2018 CN
108504693 Sep 2018 CN
108546712 Sep 2018 CN
108546717 Sep 2018 CN
108546718 Sep 2018 CN
108559730 Sep 2018 CN
108559732 Sep 2018 CN
108559745 Sep 2018 CN
108559760 Sep 2018 CN
108570479 Sep 2018 CN
108588071 Sep 2018 CN
108588123 Sep 2018 CN
108588128 Sep 2018 CN
108588182 Sep 2018 CN
108610399 Oct 2018 CN
108611364 Oct 2018 CN
108624622 Oct 2018 CN
108642053 Oct 2018 CN
108642055 Oct 2018 CN
108642077 Oct 2018 CN
108642078 Oct 2018 CN
108642090 Oct 2018 CN
108690844 Oct 2018 CN
108707604 Oct 2018 CN
108707620 Oct 2018 CN
108707621 Oct 2018 CN
108707628 Oct 2018 CN
108707629 Oct 2018 CN
108715850 Oct 2018 CN
108728476 Nov 2018 CN
108728486 Nov 2018 CN
108753772 Nov 2018 CN
108753783 Nov 2018 CN
108753813 Nov 2018 CN
108753817 Nov 2018 CN
108753832 Nov 2018 CN
108753835 Nov 2018 CN
108753836 Nov 2018 CN
108795902 Nov 2018 CN
108822217 Nov 2018 CN
108823248 Nov 2018 CN
108823249 Nov 2018 CN
108823291 Nov 2018 CN
108841845 Nov 2018 CN
108853133 Nov 2018 CN
108866093 Nov 2018 CN
108893529 Nov 2018 CN
108913664 Nov 2018 CN
108913691 Nov 2018 CN
108913714 Nov 2018 CN
108913717 Nov 2018 CN
208034188 Nov 2018 CN
109517841 Mar 2019 CN
0264166 Apr 1988 EP
2604255 Jun 2013 EP
2840140 Feb 2015 EP
2966170 Jan 2016 EP
3009511 Apr 2016 EP
3031921 Jun 2016 EP
3045537 Jul 2016 EP
3 115 457 Jan 2017 EP
3144390 Mar 2017 EP
3199632 Aug 2017 EP
3216867 Sep 2017 EP
3252160 Dec 2017 EP
3450553 Dec 2019 EP
2740248 Feb 2020 ES
2528177 Jan 2016 GB
2531454 Apr 2016 GB
2542653 Mar 2017 GB
1208045 Feb 2016 HK
2007-501626 Feb 2007 JP
2008-515405 May 2008 JP
2010-033344 Feb 2010 JP
2010-539929 Dec 2010 JP
2011-081011 Apr 2011 JP
2011-523353 Aug 2011 JP
2012-525146 Oct 2012 JP
2012-531909 Dec 2012 JP
101584933 Jan 2016 KR
20160133380 Nov 2016 KR
20170037025 Apr 2017 KR
20170037028 Apr 2017 KR
101748575 Jun 2017 KR
2018-0022465 Mar 2018 KR
2016104674 Aug 2017 RU
2634395 Oct 2017 RU
2652899 May 2018 RU
2015128057 Mar 2019 RU
2015128098 Mar 2019 RU
2687451 May 2019 RU
2019112514 Jun 2019 RU
2019127300 Sep 2019 RU
2701850 Oct 2019 RU
I608100 Dec 2017 TW
2018-29773 Aug 2018 TW
WO 9002809 Mar 1990 WO
WO 9116024 Oct 1991 WO
WO 9117271 Nov 1991 WO
WO 9117424 Nov 1991 WO
WO 9206188 Apr 1992 WO
WO 9206200 Apr 1992 WO
WO 9324641 Dec 1993 WO
WO 9418316 Aug 1994 WO
WO 94026877 Nov 1994 WO
WO 9604403 Feb 1996 WO
WO 9610640 Apr 1996 WO
WO 9832845 Jul 1998 WO
WO 2001036452 May 2001 WO
WO 2001038547 May 2001 WO
WO 2002059296 Aug 2002 WO
WO 2002068676 Sep 2002 WO
WO 2002103028 Dec 2002 WO
WO 2004007684 Jan 2004 WO
WO 2005014791 Feb 2005 WO
WO 2005019415 Mar 2005 WO
WO 2006002547 Jan 2006 WO
WO 2006042112 Apr 2006 WO
WO 2007025097 Mar 2007 WO
WO 2007066923 Jun 2007 WO
WO 2007136815 Nov 2007 WO
WO 2007143574 Dec 2007 WO
WO 2008005529 Jan 2008 WO
WO 2008108989 Sep 2008 WO
WO 2009098290 Aug 2009 WO
WO 2009134808 Nov 2009 WO
WO 2010011961 Jan 2010 WO
WO 2010028347 Mar 2010 WO
WO 2010054108 May 2010 WO
WO 2010054154 May 2010 WO
WO 2010068289 Jun 2010 WO
WO 2010075424 Jul 2010 WO
WO 2010102257 Sep 2010 WO
WO 2010129019 Nov 2010 WO
WO 2010129023 Nov 2010 WO
WO 2010132092 Nov 2010 WO
WO 2010144150 Dec 2010 WO
WO 2011002503 Jan 2011 WO
WO 2011017293 Feb 2011 WO
WO 2011053868 May 2011 WO
WO 2011053982 May 2011 WO
WO 2011068810 Jun 2011 WO
WO 2011075627 Jun 2011 WO
WO 2011091311 Jul 2011 WO
WO 2011109031 Sep 2011 WO
WO 2011143124 Nov 2011 WO
WO 2011147590 Dec 2011 WO
WO 2011159369 Dec 2011 WO
WO 2012054726 Apr 2012 WO
WO 2012065043 May 2012 WO
WO 2012088381 Jun 2012 WO
WO 2012125445 Sep 2012 WO
WO 2012138927 Oct 2012 WO
WO 2012149470 Nov 2012 WO
WO 2012158985 Nov 2012 WO
WO 2012158986 Nov 2012 WO
WO 2012164565 Dec 2012 WO
WO 2012170930 Dec 2012 WO
WO 2013012674 Jan 2013 WO
WO 2013013105 Jan 2013 WO
WO 2013039857 Mar 2013 WO
WO 2013039861 Mar 2013 WO
WO 2013045632 Apr 2013 WO
WO 2013047844 Apr 2013 WO
WO 2013066438 May 2013 WO
WO 2013086441 Jun 2013 WO
WO 2013086444 Jun 2013 WO
WO 2013098244 Jul 2013 WO
WO 2013119602 Aug 2013 WO
WO 2013126794 Aug 2013 WO
WO 2013130824 Sep 2013 WO
WO 2013141680 Sep 2013 WO
WO 2013142578 Sep 2013 WO
WO 2013152359 Oct 2013 WO
WO 2013160230 Oct 2013 WO
WO 2013166315 Nov 2013 WO
WO 2013169398 Nov 2013 WO
WO 2013169802 Nov 2013 WO
WO 2013176772 Nov 2013 WO
WO 2013176915 Nov 2013 WO
WO 2013176916 Nov 2013 WO
WO 2013181440 Dec 2013 WO
WO 2013186754 Dec 2013 WO
WO 2013188037 Dec 2013 WO
WO 2013188522 Dec 2013 WO
WO 2013188638 Dec 2013 WO
WO 2013192278 Dec 2013 WO
WO 2013142378 Jan 2014 WO
WO 2014004336 Jan 2014 WO
WO 2014005042 Jan 2014 WO
WO 2014011237 Jan 2014 WO
WO 2014011901 Jan 2014 WO
WO 2014018423 Jan 2014 WO
WO 2014020608 Feb 2014 WO
WO 2014022120 Feb 2014 WO
WO 2014022702 Feb 2014 WO
WO 2014036219 Mar 2014 WO
WO 2014039513 Mar 2014 WO
WO 2014039523 Mar 2014 WO
WO 2014039585 Mar 2014 WO
WO 2014039684 Mar 2014 WO
WO 2014039692 Mar 2014 WO
WO 2014039702 Mar 2014 WO
WO 2014039872 Mar 2014 WO
WO 2014039970 Mar 2014 WO
WO 2014041327 Mar 2014 WO
WO 2014043143 Mar 2014 WO
WO 2014047103 Mar 2014 WO
WO 2014055782 Apr 2014 WO
WO 2014059173 Apr 2014 WO
WO 2014059255 Apr 2014 WO
WO 2014065596 May 2014 WO
WO 2014066505 May 2014 WO
WO 2014068346 May 2014 WO
WO 2014070887 May 2014 WO
WO 2014071006 May 2014 WO
WO 2014071219 May 2014 WO
WO 2014071235 May 2014 WO
WO 2014072941 May 2014 WO
WO 2014081729 May 2014 WO
WO 2014081730 May 2014 WO
WO 2014081855 May 2014 WO
WO 2014082644 Jun 2014 WO
WO 2014085261 Jun 2014 WO
WO 2014085593 Jun 2014 WO
WO 2014085830 Jun 2014 WO
WO 2014089212 Jun 2014 WO
WO 2014089290 Jun 2014 WO
WO 2014089348 Jun 2014 WO
WO 2014089513 Jun 2014 WO
WO 2014089533 Jun 2014 WO
WO 2014089541 Jun 2014 WO
WO 2014093479 Jun 2014 WO
WO 2014093595 Jun 2014 WO
WO 2014093622 Jun 2014 WO
WO 2014093635 Jun 2014 WO
WO 2014093655 Jun 2014 WO
WO 2014093661 Jun 2014 WO
WO 2014093694 Jun 2014 WO
WO 2014093701 Jun 2014 WO
WO 2014093709 Jun 2014 WO
WO 2014093712 Jun 2014 WO
WO 2014093718 Jun 2014 WO
WO 2014093736 Jun 2014 WO
WO 2014093768 Jun 2014 WO
WO 2014093852 Jun 2014 WO
WO 2014096972 Jun 2014 WO
WO 2014099744 Jun 2014 WO
WO 2014099750 Jun 2014 WO
WO 2014104878 Jul 2014 WO
WO 2014110006 Jul 2014 WO
WO 2014110552 Jul 2014 WO
WO 2014113493 Jul 2014 WO
WO 2014123967 Aug 2014 WO
WO 2014124226 Aug 2014 WO
WO 2014125668 Aug 2014 WO
WO 2014127287 Aug 2014 WO
WO 2014128324 Aug 2014 WO
WO 2014128659 Aug 2014 WO
WO 2014130706 Aug 2014 WO
WO 2014130955 Aug 2014 WO
WO 2014131833 Sep 2014 WO
WO 2014138379 Sep 2014 WO
WO 2014143381 Sep 2014 WO
WO 2014144094 Sep 2014 WO
WO 2014144155 Sep 2014 WO
WO 2014144288 Sep 2014 WO
WO 2014144592 Sep 2014 WO
WO 2014144761 Sep 2014 WO
WO 2014144951 Sep 2014 WO
WO 2014145599 Sep 2014 WO
WO 2014145736 Sep 2014 WO
WO 2014150624 Sep 2014 WO
WO 2014152432 Sep 2014 WO
WO 2014152940 Sep 2014 WO
WO 2014153118 Sep 2014 WO
WO 2014153470 Sep 2014 WO
WO 2014158593 Oct 2014 WO
WO 2014161821 Oct 2014 WO
WO 2014164466 Oct 2014 WO
WO 2014165177 Oct 2014 WO
WO 2014165349 Oct 2014 WO
WO 2014165612 Oct 2014 WO
WO 2014165707 Oct 2014 WO
WO 2014165825 Oct 2014 WO
WO 2014172458 Oct 2014 WO
WO 2014172470 Oct 2014 WO
WO 2014172489 Oct 2014 WO
WO 2014173955 Oct 2014 WO
WO 2014182700 Nov 2014 WO
WO 2014183071 Nov 2014 WO
WO 2014184143 Nov 2014 WO
WO 2014184741 Nov 2014 WO
WO 2014184744 Nov 2014 WO
WO 2014186585 Nov 2014 WO
WO 2014186686 Nov 2014 WO
WO 2014190181 Nov 2014 WO
WO 2014191128 Dec 2014 WO
WO 2014191518 Dec 2014 WO
WO 2014191521 Dec 2014 WO
WO 2014191525 Dec 2014 WO
WO 2014191527 Dec 2014 WO
WO 2014193583 Dec 2014 WO
WO 2014194190 Dec 2014 WO
WO 2014197568 Dec 2014 WO
WO 2014197748 Dec 2014 WO
WO 2014199358 Dec 2014 WO
WO 2014200659 Dec 2014 WO
WO 2014201015 Dec 2014 WO
WO 2014204578 Dec 2014 WO
WO 2014204723 Dec 2014 WO
WO 2014204724 Dec 2014 WO
WO 2014204725 Dec 2014 WO
WO 2014204726 Dec 2014 WO
WO 2014204727 Dec 2014 WO
WO 2014204728 Dec 2014 WO
WO 2014204729 Dec 2014 WO
WO 2014205192 Dec 2014 WO
WO 2014207043 Dec 2014 WO
WO 2015002780 Jan 2015 WO
WO 2015004241 Jan 2015 WO
WO 2015006290 Jan 2015 WO
WO 2015006294 Jan 2015 WO
WO 2015006437 Jan 2015 WO
WO 2015006498 Jan 2015 WO
WO 2015006747 Jan 2015 WO
WO 2015007194 Jan 2015 WO
WO 2015010114 Jan 2015 WO
WO 2015011483 Jan 2015 WO
WO 2015013583 Jan 2015 WO
WO 2015017866 Feb 2015 WO
WO 2015018503 Feb 2015 WO
WO 2015021353 Feb 2015 WO
WO 2015021426 Feb 2015 WO
WO 2015021990 Feb 2015 WO
WO 2015024017 Feb 2015 WO
WO 2015024986 Feb 2015 WO
WO 2015026883 Feb 2015 WO
WO 2015026885 Feb 2015 WO
WO 2015026886 Feb 2015 WO
WO 2015026887 Feb 2015 WO
WO 2015027134 Feb 2015 WO
WO 2015028969 Mar 2015 WO
WO 2015030881 Mar 2015 WO
WO 2015031619 Mar 2015 WO
WO 2015031775 Mar 2015 WO
WO 2015032494 Mar 2015 WO
WO 2015033293 Mar 2015 WO
WO 2015034872 Mar 2015 WO
WO 2015034885 Mar 2015 WO
WO 2015035136 Mar 2015 WO
WO 2015035139 Mar 2015 WO
WO 2015035162 Mar 2015 WO
WO 2015040075 Mar 2015 WO
WO 2015040402 Mar 2015 WO
WO 2015042585 Mar 2015 WO
WO 2015048577 Apr 2015 WO
WO 2015048690 Apr 2015 WO
WO 2015048707 Apr 2015 WO
WO 2015048801 Apr 2015 WO
WO 2015049897 Apr 2015 WO
WO 2015051191 Apr 2015 WO
WO 2015052133 Apr 2015 WO
WO 2015052231 Apr 2015 WO
WO 2015052335 Apr 2015 WO
WO 2015053995 Apr 2015 WO
WO 2015054253 Apr 2015 WO
WO 2015054315 Apr 2015 WO
WO 2015057671 Apr 2015 WO
WO 2015057834 Apr 2015 WO
WO 2015057852 Apr 2015 WO
WO 2015057976 Apr 2015 WO
WO 2015057980 Apr 2015 WO
WO 2015059265 Apr 2015 WO
WO 2015065964 May 2015 WO
WO 2015066119 May 2015 WO
WO 2015066634 May 2015 WO
WO 2015066636 May 2015 WO
WO 2015066637 May 2015 WO
WO 2015066638 May 2015 WO
WO 2015066643 May 2015 WO
WO 2015069682 May 2015 WO
WO 2015070083 May 2015 WO
WO 2015070193 May 2015 WO
WO 2015070212 May 2015 WO
WO 2015071474 May 2015 WO
WO 2015073683 May 2015 WO
WO 2015073867 May 2015 WO
WO 2015073990 May 2015 WO
WO 2015075056 May 2015 WO
WO 2015075154 May 2015 WO
WO 2015075175 May 2015 WO
WO 2015075195 May 2015 WO
WO 2015075557 May 2015 WO
WO 2015077058 May 2015 WO
WO 2015077290 May 2015 WO
WO 2015077318 May 2015 WO
WO 2015079056 Jun 2015 WO
WO 2015079057 Jun 2015 WO
WO 2015086795 Jun 2015 WO
WO 2015086798 Jun 2015 WO
WO 2015088643 Jun 2015 WO
WO 2015089046 Jun 2015 WO
WO 2015089077 Jun 2015 WO
WO 2015089277 Jun 2015 WO
WO 2015089351 Jun 2015 WO
WO 2015089354 Jun 2015 WO
WO 2015089364 Jun 2015 WO
WO 2015089406 Jun 2015 WO
WO 2015089419 Jun 2015 WO
WO 2015089427 Jun 2015 WO
WO 2015089462 Jun 2015 WO
WO 2015089465 Jun 2015 WO
WO 2015089473 Jun 2015 WO
WO 2015089486 Jun 2015 WO
WO 2015095804 Jun 2015 WO
WO 2015099850 Jul 2015 WO
WO 2015100929 Jul 2015 WO
WO 2015103057 Jul 2015 WO
WO 2015103153 Jul 2015 WO
WO 2015105928 Jul 2015 WO
WO 2015108993 Jul 2015 WO
WO 2015109752 Jul 2015 WO
WO 2015110474 Jul 2015 WO
WO 2015112790 Jul 2015 WO
WO 2015112896 Jul 2015 WO
WO 2015113063 Jul 2015 WO
WO 2015114365 Aug 2015 WO
WO 2015115903 Aug 2015 WO
WO 2015116686 Aug 2015 WO
WO 2015116969 Aug 2015 WO
WO 2015117021 Aug 2015 WO
WO 2015117041 Aug 2015 WO
WO 2015117081 Aug 2015 WO
WO 2015118156 Aug 2015 WO
WO 2015119941 Aug 2015 WO
WO 2015121454 Aug 2015 WO
WO 2015122967 Aug 2015 WO
WO 2015123339 Aug 2015 WO
WO 2015124715 Aug 2015 WO
WO 2015124718 Aug 2015 WO
WO 2015126927 Aug 2015 WO
WO 2015127428 Aug 2015 WO
WO 2015127439 Aug 2015 WO
WO 2015129686 Sep 2015 WO
WO 2015131101 Sep 2015 WO
WO 2015133554 Sep 2015 WO
WO 2015134121 Sep 2015 WO
WO 2015134812 Sep 2015 WO
WO 2015136001 Sep 2015 WO
WO 2015138510 Sep 2015 WO
WO 2015138739 Sep 2015 WO
WO 2015138855 Sep 2015 WO
WO 2015138870 Sep 2015 WO
WO 2015139008 Sep 2015 WO
WO 2015139139 Sep 2015 WO
WO 2015143046 Sep 2015 WO
WO 2015143177 Sep 2015 WO
WO 2015145417 Oct 2015 WO
WO 2015148431 Oct 2015 WO
WO 2015148670 Oct 2015 WO
WO 2015148680 Oct 2015 WO
WO 2015148761 Oct 2015 WO
WO 2015148860 Oct 2015 WO
WO 2015148863 Oct 2015 WO
WO 2015153760 Oct 2015 WO
WO 2015153780 Oct 2015 WO
WO 2015153789 Oct 2015 WO
WO 2015153791 Oct 2015 WO
WO 2015153889 Oct 2015 WO
WO 2015153940 Oct 2015 WO
WO 2015155341 Oct 2015 WO
WO 2015155686 Oct 2015 WO
WO 2015157070 Oct 2015 WO
WO 2015157534 Oct 2015 WO
WO 2015159068 Oct 2015 WO
WO 2015159086 Oct 2015 WO
WO 2015159087 Oct 2015 WO
WO 2015160683 Oct 2015 WO
WO 2015161276 Oct 2015 WO
WO 2015163733 Oct 2015 WO
WO 2015164740 Oct 2015 WO
WO 2015164748 Oct 2015 WO
WO 2015165274 Nov 2015 WO
WO 2015165275 Nov 2015 WO
WO 2015165276 Nov 2015 WO
WO 2015166272 Nov 2015 WO
WO 2015167766 Nov 2015 WO
WO 2015167956 Nov 2015 WO
WO 2015168125 Nov 2015 WO
WO 2015168158 Nov 2015 WO
WO 2015168404 Nov 2015 WO
WO 2015168547 Nov 2015 WO
WO 2015168800 Nov 2015 WO
WO 2015171603 Nov 2015 WO
WO 2015171894 Nov 2015 WO
WO 2015171932 Nov 2015 WO
WO 2015172128 Nov 2015 WO
WO 2015173436 Nov 2015 WO
WO 2015175642 Nov 2015 WO
WO 2015179540 Nov 2015 WO
WO 2015183025 Dec 2015 WO
WO 2015183026 Dec 2015 WO
WO 2015183885 Dec 2015 WO
WO 2015184259 Dec 2015 WO
WO 2015184262 Dec 2015 WO
WO 2015184268 Dec 2015 WO
WO 2015188056 Dec 2015 WO
WO 2015188065 Dec 2015 WO
WO 2015188094 Dec 2015 WO
WO 2015188109 Dec 2015 WO
WO 2015188132 Dec 2015 WO
WO 2015188135 Dec 2015 WO
WO 2015188191 Dec 2015 WO
WO 2015189693 Dec 2015 WO
WO 2015191693 Dec 2015 WO
WO 2015191899 Dec 2015 WO
WO 2015191911 Dec 2015 WO
WO 2015193858 Dec 2015 WO
WO 2015195547 Dec 2015 WO
WO 2015195621 Dec 2015 WO
WO 2015195798 Dec 2015 WO
WO 2015198020 Dec 2015 WO
WO 2015200334 Dec 2015 WO
WO 2015200378 Dec 2015 WO
WO 2015200555 Dec 2015 WO
WO 2015200805 Dec 2015 WO
WO 2016001978 Jan 2016 WO
WO 2016004010 Jan 2016 WO
WO 2016004318 Jan 2016 WO
WO 2016007347 Jan 2016 WO
WO 2016007604 Jan 2016 WO
WO 2016007948 Jan 2016 WO
WO 2016011080 Jan 2016 WO
WO 2016011210 Jan 2016 WO
WO 2016011428 Jan 2016 WO
WO 2016012544 Jan 2016 WO
WO 2016012552 Jan 2016 WO
WO 2016014409 Jan 2016 WO
WO 2016014565 Jan 2016 WO
WO 2016014794 Jan 2016 WO
WO 2016014837 Jan 2016 WO
WO 2016016119 Feb 2016 WO
WO 2016016358 Feb 2016 WO
WO 2016019144 Feb 2016 WO
WO 2016020399 Feb 2016 WO
WO 2016021972 Feb 2016 WO
WO 2016021973 Feb 2016 WO
WO 2016022363 Feb 2016 WO
WO 2016022866 Feb 2016 WO
WO 2016022931 Feb 2016 WO
WO 2016025131 Feb 2016 WO
WO 2016025469 Feb 2016 WO
WO 2016025759 Feb 2016 WO
WO 2016026444 Feb 2016 WO
WO 2016028682 Feb 2016 WO
WO 2016028843 Feb 2016 WO
WO 2016028887 Feb 2016 WO
WO 2016033088 Mar 2016 WO
WO 2016033230 Mar 2016 WO
WO 2016033246 Mar 2016 WO
WO 2016033298 Mar 2016 WO
WO 2016035044 Mar 2016 WO
WO 2016036754 Mar 2016 WO
WO 2016037157 Mar 2016 WO
WO 2016040030 Mar 2016 WO
WO 2016040594 Mar 2016 WO
WO 2016044182 Mar 2016 WO
WO 2016044416 Mar 2016 WO
WO 2016046635 Mar 2016 WO
WO 2016049024 Mar 2016 WO
WO 2016049163 Mar 2016 WO
WO 2016049230 Mar 2016 WO
WO 2016049251 Mar 2016 WO
WO 2016049258 Mar 2016 WO
WO 2016053397 Apr 2016 WO
WO 2016054326 Apr 2016 WO
WO 2016057061 Apr 2016 WO
WO 2016057821 Apr 2016 WO
WO 2016057835 Apr 2016 WO
WO 2016057850 Apr 2016 WO
WO 2016057951 Apr 2016 WO
WO 2016057961 Apr 2016 WO
WO 2016061073 Apr 2016 WO
WO 2016061374 Apr 2016 WO
WO 2016061481 Apr 2016 WO
WO 2016061523 Apr 2016 WO
WO 2016064894 Apr 2016 WO
WO 2016069282 May 2016 WO
WO 2016069283 May 2016 WO
WO 2016069591 May 2016 WO
WO 2016069774 May 2016 WO
WO 2016069910 May 2016 WO
WO 2016069912 May 2016 WO
WO 2016070037 May 2016 WO
WO 2016070070 May 2016 WO
WO 2016070129 May 2016 WO
WO 2016072399 May 2016 WO
WO 2016072936 May 2016 WO
WO 2016073433 May 2016 WO
WO 2016073559 May 2016 WO
WO 2016073990 May 2016 WO
WO 2016075662 May 2016 WO
WO 2016076672 May 2016 WO
WO 2016077273 May 2016 WO
WO 2016077350 May 2016 WO
WO 2016080097 May 2016 WO
WO 2016080795 May 2016 WO
WO 2016081923 May 2016 WO
WO 2016081924 May 2016 WO
WO 2016082135 Jun 2016 WO
WO 2016083811 Jun 2016 WO
WO 2016084084 Jun 2016 WO
WO 2016084088 Jun 2016 WO
WO 2016086177 Jun 2016 WO
WO 2016089433 Jun 2016 WO
WO 2016089866 Jun 2016 WO
WO 2016089883 Jun 2016 WO
WO 2016090385 Jun 2016 WO
WO 2016094679 Jun 2016 WO
WO 2016094845 Jun 2016 WO
WO 2016094867 Jun 2016 WO
WO 2016094872 Jun 2016 WO
WO 2016094874 Jun 2016 WO
WO 2016094880 Jun 2016 WO
WO 2016094888 Jun 2016 WO
WO 2016097212 Jun 2016 WO
WO 2016097231 Jun 2016 WO
WO 2016097751 Jun 2016 WO
WO 2016099887 Jun 2016 WO
WO 2016100272 Jun 2016 WO
WO 2016100389 Jun 2016 WO
WO 2016100568 Jun 2016 WO
WO 2016100571 Jun 2016 WO
WO 2016100951 Jun 2016 WO
WO 2016100955 Jun 2016 WO
WO 2016100974 Jun 2016 WO
WO 2016103233 Jun 2016 WO
WO 2016104716 Jun 2016 WO
WO 2016106236 Jun 2016 WO
WO 2016106239 Jun 2016 WO
WO 2016106244 Jun 2016 WO
WO 2016106338 Jun 2016 WO
WO 2016108926 Jul 2016 WO
WO 2016109255 Jul 2016 WO
WO 2016109840 Jul 2016 WO
WO 2016110214 Jul 2016 WO
WO 2016110453 Jul 2016 WO
WO 2016110511 Jul 2016 WO
WO 2016110512 Jul 2016 WO
WO 2016111546 Jul 2016 WO
WO 2016112242 Jul 2016 WO
WO 2016112351 Jul 2016 WO
WO 2016112963 Jul 2016 WO
WO 2016113357 Jul 2016 WO
WO 2016114972 Jul 2016 WO
WO 2016115179 Jul 2016 WO
WO 2016115326 Jul 2016 WO
WO 2016115355 Jul 2016 WO
WO 2016116032 Jul 2016 WO
WO 2016120480 Aug 2016 WO
WO 2016123071 Aug 2016 WO
WO 2016123230 Aug 2016 WO
WO 2016123243 Aug 2016 WO
WO 2016123578 Aug 2016 WO
WO 2016126747 Aug 2016 WO
WO 2016130600 Aug 2016 WO
WO 2016130697 Aug 2016 WO
WO 2016131009 Aug 2016 WO
WO 2016132122 Aug 2016 WO
WO 2016133165 Aug 2016 WO
WO 2016135507 Sep 2016 WO
WO 2016135557 Sep 2016 WO
WO 2016135558 Sep 2016 WO
WO 2016135559 Sep 2016 WO
WO 2016137774 Sep 2016 WO
WO 2016137949 Sep 2016 WO
WO 2016141224 Sep 2016 WO
WO 2016141893 Sep 2016 WO
WO 2016142719 Sep 2016 WO
WO 2016145150 Sep 2016 WO
WO 2016148994 Sep 2016 WO
WO 2016149484 Sep 2016 WO
WO 2016149547 Sep 2016 WO
WO 2016150336 Sep 2016 WO
WO 2016150855 Sep 2016 WO
WO 2016154016 Sep 2016 WO
WO 2016154579 Sep 2016 WO
WO 2016154596 Sep 2016 WO
WO 2016155482 Oct 2016 WO
WO 2016161004 Oct 2016 WO
WO 2016161207 Oct 2016 WO
WO 2016161260 Oct 2016 WO
WO 2016161380 Oct 2016 WO
WO 2016161446 Oct 2016 WO
WO 2016164356 Oct 2016 WO
WO 2016164797 Oct 2016 WO
WO 2016166340 Oct 2016 WO
WO 2016167300 Oct 2016 WO
WO 2016168631 Oct 2016 WO
WO 2016170484 Oct 2016 WO
WO 2016172359 Oct 2016 WO
WO 2016172727 Oct 2016 WO
WO 2016174056 Nov 2016 WO
WO 2016174151 Nov 2016 WO
WO 2016174250 Nov 2016 WO
WO 2016176191 Nov 2016 WO
WO 2016176404 Nov 2016 WO
WO 2016176690 Nov 2016 WO
WO 2016177682 Nov 2016 WO
WO 2016178207 Nov 2016 WO
WO 2016179038 Nov 2016 WO
WO 2016179112 Nov 2016 WO
WO 2016181357 Nov 2016 WO
WO 2016182893 Nov 2016 WO
WO 2016182917 Nov 2016 WO
WO 2016182959 Nov 2016 WO
WO 2016183236 Nov 2016 WO
WO 2016183298 Nov 2016 WO
WO 2016183345 Nov 2016 WO
WO 2016183402 Nov 2016 WO
WO 2016183438 Nov 2016 WO
WO 2016183448 Nov 2016 WO
WO 2016184955 Nov 2016 WO
WO 2016184989 Nov 2016 WO
WO 2016185411 Nov 2016 WO
WO 2016186745 Nov 2016 WO
WO 2016186772 Nov 2016 WO
WO 2016186946 Nov 2016 WO
WO 2016186953 Nov 2016 WO
WO 2016187717 Dec 2016 WO
WO 2016187904 Dec 2016 WO
WO 2016191684 Dec 2016 WO
WO 2016191869 Dec 2016 WO
WO 2016196273 Dec 2016 WO
WO 2016196282 Dec 2016 WO
WO 2016196308 Dec 2016 WO
WO 2016196361 Dec 2016 WO
WO 2016196499 Dec 2016 WO
WO 2016196539 Dec 2016 WO
WO 2016196655 Dec 2016 WO
WO 2016196805 Dec 2016 WO
WO 2016196887 Dec 2016 WO
WO 2016197132 Dec 2016 WO
WO 2016197133 Dec 2016 WO
WO 2016197354 Dec 2016 WO
WO 2016197355 Dec 2016 WO
WO 2016197356 Dec 2016 WO
WO 2016197357 Dec 2016 WO
WO 2016197358 Dec 2016 WO
WO 2016197359 Dec 2016 WO
WO 2016197360 Dec 2016 WO
WO 2016197361 Dec 2016 WO
WO 2016197362 Dec 2016 WO
WO 2016198361 Dec 2016 WO
WO 2016198500 Dec 2016 WO
WO 2016200263 Dec 2016 WO
WO 2016201047 Dec 2016 WO
WO 2016201138 Dec 2016 WO
WO 2016201152 Dec 2016 WO
WO 2016201153 Dec 2016 WO
WO 2016201155 Dec 2016 WO
WO 2016205276 Dec 2016 WO
WO 2016205613 Dec 2016 WO
WO 2016205623 Dec 2016 WO
WO 2016205680 Dec 2016 WO
WO 2016205688 Dec 2016 WO
WO 2016205703 Dec 2016 WO
WO 2016205711 Dec 2016 WO
WO 2016205728 Dec 2016 WO
WO 2016205745 Dec 2016 WO
WO 2016205749 Dec 2016 WO
WO 2016205759 Dec 2016 WO
WO 2016205764 Dec 2016 WO
WO 2017001572 Jan 2017 WO
WO 2017001988 Jan 2017 WO
WO 2017004261 Jan 2017 WO
WO 2017004279 Jan 2017 WO
WO 2017004616 Jan 2017 WO
WO 2017005807 Jan 2017 WO
WO 2017009399 Jan 2017 WO
WO 2017010556 Jan 2017 WO
WO 2017011519 Jan 2017 WO
WO 2017011721 Jan 2017 WO
WO 2017011804 Jan 2017 WO
WO 2017015015 Jan 2017 WO
WO 2017015101 Jan 2017 WO
WO 2017015545 Jan 2017 WO
WO 2017015567 Jan 2017 WO
WO 2017015637 Jan 2017 WO
WO 2017017016 Feb 2017 WO
WO 2017019867 Feb 2017 WO
WO 2017019895 Feb 2017 WO
WO 2017023803 Feb 2017 WO
WO 2017023974 Feb 2017 WO
WO 2017024047 Feb 2017 WO
WO 2017024319 Feb 2017 WO
WO 2017024343 Feb 2017 WO
WO 2017024602 Feb 2017 WO
WO 2017025323 Feb 2017 WO
WO 2017027423 Feb 2017 WO
WO 2017028768 Feb 2017 WO
WO 2017029664 Feb 2017 WO
WO 2017031360 Feb 2017 WO
WO 2017031483 Feb 2017 WO
WO 2017035416 Mar 2017 WO
WO 2017040348 Mar 2017 WO
WO 2017040511 Mar 2017 WO
WO 2017040709 Mar 2017 WO
WO 2017040786 Mar 2017 WO
WO 2017040793 Mar 2017 WO
WO 2017040813 Mar 2017 WO
WO 2017043573 Mar 2017 WO
WO 2017043656 Mar 2017 WO
WO 2017044419 Mar 2017 WO
WO 2017044776 Mar 2017 WO
WO 2017044857 Mar 2017 WO
WO 2017048390 Mar 2017 WO
WO 2017049129 Mar 2017 WO
WO 2017050963 Mar 2017 WO
WO 2017053312 Mar 2017 WO
WO 2017053431 Mar 2017 WO
WO 2017053713 Mar 2017 WO
WO 2017053729 Mar 2017 WO
WO 2017053753 Mar 2017 WO
WO 2017053762 Mar 2017 WO
WO 2017053879 Mar 2017 WO
WO 2017054721 Apr 2017 WO
WO 2017058658 Apr 2017 WO
WO 2017059241 Apr 2017 WO
WO 2017062605 Apr 2017 WO
WO 2017062723 Apr 2017 WO
WO 2017062754 Apr 2017 WO
WO 2017062855 Apr 2017 WO
WO 2017062886 Apr 2017 WO
WO 2017062983 Apr 2017 WO
WO 2017064439 Apr 2017 WO
WO 2017064546 Apr 2017 WO
WO 2017064566 Apr 2017 WO
WO 2017066175 Apr 2017 WO
WO 2017066497 Apr 2017 WO
WO 2017066588 Apr 2017 WO
WO 2017066707 Apr 2017 WO
WO 2017066781 Apr 2017 WO
WO 2017068077 Apr 2017 WO
WO 2017068377 Apr 2017 WO
WO 2017069829 Apr 2017 WO
WO 2017070029 Apr 2017 WO
WO 2017070032 Apr 2017 WO
WO 2017070169 Apr 2017 WO
WO 2017070284 Apr 2017 WO
WO 2017070598 Apr 2017 WO
WO 2017070605 Apr 2017 WO
WO 2017070632 Apr 2017 WO
WO 2017070633 Apr 2017 WO
WO 2017072590 May 2017 WO
WO 2017074526 May 2017 WO
WO 2017074962 May 2017 WO
WO 2017075261 May 2017 WO
WO 2017075335 May 2017 WO
WO 2017075475 May 2017 WO
WO 2017077135 May 2017 WO
WO 2017077329 May 2017 WO
WO 2017078751 May 2017 WO
WO 2017079400 May 2017 WO
WO 2017079428 May 2017 WO
WO 2017079673 May 2017 WO
WO 2017079724 May 2017 WO
WO 2017081097 May 2017 WO
WO 2017081288 May 2017 WO
WO 2017083368 May 2017 WO
WO 2017083722 May 2017 WO
WO 2017083766 May 2017 WO
WO 2017087395 May 2017 WO
WO 2017090724 Jun 2017 WO
WO 2017091510 Jun 2017 WO
WO 2017091630 Jun 2017 WO
WO 2017092201 Jun 2017 WO
WO 2017093370 Jun 2017 WO
WO 2017093969 Jun 2017 WO
WO 2017095111 Jun 2017 WO
WO 2017096041 Jun 2017 WO
WO 2017096237 Jun 2017 WO
WO 2017100158 Jun 2017 WO
WO 2017100431 Jun 2017 WO
WO 2017104404 Jun 2017 WO
WO 2017105251 Jun 2017 WO
WO 2017105350 Jun 2017 WO
WO 2017105991 Jun 2017 WO
WO 2017106414 Jun 2017 WO
WO 2017106528 Jun 2017 WO
WO 2017106537 Jun 2017 WO
WO 2017106569 Jun 2017 WO
WO 2017106616 Jun 2017 WO
WO 2017106657 Jun 2017 WO
WO 2017106767 Jun 2017 WO
WO 2017109134 Jun 2017 WO
WO 2017109757 Jun 2017 WO
WO 2017112620 Jun 2017 WO
WO 2017115268 Jul 2017 WO
WO 2017117395 Jul 2017 WO
WO 2017118598 Jul 2017 WO
WO 2017118720 Jul 2017 WO
WO 2017123609 Jul 2017 WO
WO 2017123910 Jul 2017 WO
WO 2017124086 Jul 2017 WO
WO 2017124100 Jul 2017 WO
WO 2017124652 Jul 2017 WO
WO 2017126987 Jul 2017 WO
WO 2017127807 Jul 2017 WO
WO 2017131237 Aug 2017 WO
WO 2017132112 Aug 2017 WO
WO 2017132580 Aug 2017 WO
WO 2017136520 Aug 2017 WO
WO 2017136629 Aug 2017 WO
WO 2017136794 Aug 2017 WO
WO 2017139264 Aug 2017 WO
WO 2017139505 Aug 2017 WO
WO 2017141173 Aug 2017 WO
WO 2017142835 Aug 2017 WO
WO 2017142999 Aug 2017 WO
WO 2017143042 Aug 2017 WO
WO 2017147278 Aug 2017 WO
WO 2017147432 Aug 2017 WO
WO 2017147446 Aug 2017 WO
WO 2017147555 Aug 2017 WO
WO 2017151444 Sep 2017 WO
WO 2017151719 Sep 2017 WO
WO 2017152015 Sep 2017 WO
WO 2017155717 Sep 2017 WO
WO 2017157422 Sep 2017 WO
WO 2017158153 Sep 2017 WO
WO 2017160689 Sep 2017 WO
WO 2017160752 Sep 2017 WO
WO 2017160890 Sep 2017 WO
WO 2017161068 Sep 2017 WO
WO 2017165826 Sep 2017 WO
WO 2017165862 Sep 2017 WO
WO 2017172644 Oct 2017 WO
WO 2017172645 Oct 2017 WO
WO 2017172860 Oct 2017 WO
WO 2017173004 Oct 2017 WO
WO 2017173054 Oct 2017 WO
WO 2017173092 Oct 2017 WO
WO 2017174329 Oct 2017 WO
WO 2017176529 Oct 2017 WO
WO 2017176806 Oct 2017 WO
WO 2017178590 Oct 2017 WO
WO 2017180694 Oct 2017 WO
WO 2017180711 Oct 2017 WO
WO 2017180915 Oct 2017 WO
WO 2017180926 Oct 2017 WO
WO 2017181107 Oct 2017 WO
WO 2017181735 Oct 2017 WO
WO 2017182468 Oct 2017 WO
WO 2017184334 Oct 2017 WO
WO 2017184768 Oct 2017 WO
WO 2017184786 Oct 2017 WO
WO 2017186550 Nov 2017 WO
WO 2017189308 Nov 2017 WO
WO 2017189336 Nov 2017 WO
WO 2017190041 Nov 2017 WO
WO 2017190257 Nov 2017 WO
WO 2017190664 Nov 2017 WO
WO 2017191210 Nov 2017 WO
WO 2017191274 Nov 2017 WO
WO 2017192172 Nov 2017 WO
WO 2017192512 Nov 2017 WO
WO 2017192544 Nov 2017 WO
WO 2017192573 Nov 2017 WO
WO 2017193029 Nov 2017 WO
WO 2017193053 Nov 2017 WO
WO 2017196768 Nov 2017 WO
WO 2017197038 Nov 2017 WO
WO 2017197238 Nov 2017 WO
WO 2017197301 Nov 2017 WO
WO 2017201476 Nov 2017 WO
WO 2017205290 Nov 2017 WO
WO 2017205423 Nov 2017 WO
WO 2017207589 Dec 2017 WO
WO 2017208247 Dec 2017 WO
WO 2017209809 Dec 2017 WO
WO 2017213896 Dec 2017 WO
WO 2017213898 Dec 2017 WO
WO 2017214460 Dec 2017 WO
WO 2017216392 Dec 2017 WO
WO 2017216771 Dec 2017 WO
WO 2017218185 Dec 2017 WO
WO 2017219027 Dec 2017 WO
WO 2017219033 Dec 2017 WO
WO 2017220751 Dec 2017 WO
WO 2017222370 Dec 2017 WO
WO 2017222773 Dec 2017 WO
WO 2017222834 Dec 2017 WO
WO 2017223107 Dec 2017 WO
WO 2017223330 Dec 2017 WO
WO 2018000657 Jan 2018 WO
WO 2018002719 Jan 2018 WO
WO 2018005117 Jan 2018 WO
WO 2018005289 Jan 2018 WO
WO 2018005691 Jan 2018 WO
WO 2018005782 Jan 2018 WO
WO 2018005873 Jan 2018 WO
WO 201806693 Jan 2018 WO
WO 2018009520 Jan 2018 WO
WO 2018009562 Jan 2018 WO
WO 2018009822 Jan 2018 WO
WO 2018013821 Jan 2018 WO
WO 2018013932 Jan 2018 WO
WO 2018013990 Jan 2018 WO
WO 2018014384 Jan 2018 WO
WO 2018015444 Jan 2018 WO
WO 2018015936 Jan 2018 WO
WO 2018017754 Jan 2018 WO
WO 2018018979 Feb 2018 WO
WO 2018020248 Feb 2018 WO
WO 2018021878 Feb 2018 WO
WO 2018022480 Feb 2018 WO
WO 2018022634 Feb 2018 WO
WO 2018025206 Feb 2018 WO
WO 2018026723 Feb 2018 WO
WO 2018026976 Feb 2018 WO
WO 2018027078 Feb 2018 WO
WO 2018030608 Feb 2018 WO
WO 2018031683 Feb 2018 WO
WO 2018035250 Feb 2018 WO
WO 2018035300 Feb 2018 WO
WO 2018035423 Feb 2018 WO
WO 2018035503 Feb 2018 WO
WO 2018039145 Mar 2018 WO
WO 2018039438 Mar 2018 WO
WO 2018039440 Mar 2018 WO
WO 2018039448 Mar 2018 WO
WO 2018045630 Mar 2018 WO
WO 2018048827 Mar 2018 WO
WO 2018049073 Mar 2018 WO
WO 2018049168 Mar 2018 WO
WO 2018051347 Mar 2018 WO
WO 2018058064 Mar 2018 WO
WO 2018062866 Apr 2018 WO
WO 2018064352 Apr 2018 WO
WO 2018064371 Apr 2018 WO
WO 2018064516 Apr 2018 WO
WO 2018067546 Apr 2018 WO
WO 2018067846 Apr 2018 WO
WO 2018068053 Apr 2018 WO
WO 2018069474 Apr 2018 WO
WO 2018071623 Apr 2018 WO
WO 2018071663 Apr 2018 WO
WO 2018071868 Apr 2018 WO
WO 2018071892 Apr 2018 WO
WO 2018074979 Apr 2018 WO
WO 2018079134 May 2018 WO
WO 2018080573 May 2018 WO
WO 2018081504 May 2018 WO
WO 2018081535 May 2018 WO
WO 2018081728 May 2018 WO
WO 2018083128 May 2018 WO
WO 2018083606 May 2018 WO
WO 2018085288 May 2018 WO
WO 2018086623 May 2018 WO
WO 2018089664 May 2018 WO
WO 2018093990 May 2018 WO
WO 2018098383 May 2018 WO
WO 2018098480 May 2018 WO
WO 2018098587 Jun 2018 WO
WO 2018099256 Jun 2018 WO
WO 2018103686 Jun 2018 WO
WO 2018106268 Jun 2018 WO
WO 2018107028 Jun 2018 WO
WO 2018107103 Jun 2018 WO
WO 2018107129 Jun 2018 WO
WO 2018108272 Jun 2018 WO
WO 2018109101 Jun 2018 WO
WO 2018111946 Jun 2018 WO
WO 2018111947 Jun 2018 WO
WO 2018112336 Jun 2018 WO
WO 2018112446 Jun 2018 WO
WO 2018119354 Jun 2018 WO
WO 2018119359 Jun 2018 WO
WO 2018120283 Jul 2018 WO
WO 2018130830 Jul 2018 WO
WO 2018135838 Jul 2018 WO
WO 2018136396 Jul 2018 WO
WO 2018138385 Aug 2018 WO
WO 2018142364 Aug 2018 WO
WO 2018148246 Aug 2018 WO
WO 2018148256 Aug 2018 WO
WO 2018148647 Aug 2018 WO
WO 2018149418 Aug 2018 WO
WO 2018149888 Aug 2018 WO
WO 2018149915 Aug 2018 WO
WO 2018152197 Aug 2018 WO
WO 2018152418 Aug 2018 WO
WO 2018154380 Aug 2018 WO
WO 2018154387 Aug 2018 WO
WO 2018154412 Aug 2018 WO
WO 2018154413 Aug 2018 WO
WO 2018154418 Aug 2018 WO
WO 2018154439 Aug 2018 WO
WO 2018154459 Aug 2018 WO
WO 2018154462 Aug 2018 WO
WO 2018156372 Aug 2018 WO
WO 2018161009 Sep 2018 WO
WO 2018165504 Sep 2018 WO
WO 2018165629 Sep 2018 WO
WO 2018170015 Sep 2018 WO
WO 2018170340 Sep 2018 WO
WO 2018175502 Sep 2018 WO
WO 2018176009 Sep 2018 WO
WO 2018177351 Oct 2018 WO
WO 2018179578 Oct 2018 WO
WO 2018183403 Oct 2018 WO
WO 2018189184 Oct 2018 WO
WO 2018191388 Oct 2018 WO
WO 2018195402 Oct 2018 WO
WO 2018195545 Oct 2018 WO
WO 2018195555 Oct 2018 WO
WO 2018197020 Nov 2018 WO
WO 2018197495 Nov 2018 WO
WO 2018202800 Nov 2018 WO
WO 2018204493 Nov 2018 WO
WO 2018208755 Nov 2018 WO
WO 2018208998 Nov 2018 WO
WO 2018209158 Nov 2018 WO
WO 2018209320 Nov 2018 WO
WO 2018213351 Nov 2018 WO
WO 2018213708 Nov 2018 WO
WO 2018213726 Nov 2018 WO
WO 2018213771 Nov 2018 WO
WO 2018213791 Nov 2018 WO
WO 2018217852 Nov 2018 WO
WO 2018217981 Nov 2018 WO
WO 2018218166 Nov 2018 WO
WO 2018218188 Nov 2018 WO
WO 2018218206 Nov 2018 WO
WO 2019005886 Jan 2019 WO
WO 2019010384 Jan 2019 WO
WO 2019023680 Jan 2019 WO
WO 2019051097 Mar 2019 WO
WO 2019079347 Apr 2019 WO
WO 2019084062 May 2019 WO
WO 2019118949 Jun 2019 WO
WO 2019139645 Jul 2019 WO
WO 2019139951 Jul 2019 WO
WO 2019147014 Aug 2019 WO
WO 2019226953 Nov 2019 WO
WO 2020014261 Jan 2020 WO
WO 2020041751 Feb 2020 WO
WO 2020047124 Mar 2020 WO
WO 2020051360 Mar 2020 WO
WO 2020086908 Apr 2020 WO
WO 2020092453 May 2020 WO
WO 2020102659 May 2020 WO
WO 2020154500 Jul 2020 WO
WO 2020181178 Sep 2020 WO
WO 2020181180 Sep 2020 WO
WO 2020181193 Sep 2020 WO
WO 2020181195 Sep 2020 WO
WO 2020181202 Sep 2020 WO
WO 2020191153 Sep 2020 WO
WO 2020191171 Sep 2020 WO
WO 2020191233 Sep 2020 WO
WO 2020191234 Sep 2020 WO
WO 2020191239 Sep 2020 WO
WO 2020191241 Sep 2020 WO
WO 2020191242 Sep 2020 WO
WO 2020191243 Sep 2020 WO
WO 2020191245 Sep 2020 WO
WO 2020191246 Sep 2020 WO
WO 2020191248 Sep 2020 WO
WO 2020191249 Sep 2020 WO
WO 2020210751 Oct 2020 WO
WO 2020214842 Oct 2020 WO
Non-Patent Literature Citations (1615)
Entry
U.S. Appl. No. 14/234,031, filed Mar. 24, 2014, Liu et al.
U.S. Appl. No. 14/320,271, filed Jun. 30, 2014, Liu et al.
U.S. Appl. No. 16/441,751, filed Jun. 14, 2019, Liu et al.
U.S. Appl. No. 14/320,519, filed Jun. 30, 2014, Liu et al.
U.S. Appl. No. 14/913,458, filed Feb. 22, 2016, Liu et al.
U.S. Appl. No. 16/266,937, filed Feb. 4, 2019, Liu et al.
U.S. Appl. No. 14/320,370, filed Jun. 30, 2014, Liu et al.
U.S. Appl. No. 14/320,413, filed Jun. 30, 2014, Liu et al.
U.S. Appl. No. 14/874,123, filed Oct. 2, 2015, Liu et al.
U.S. Appl. No. 14/911,117, filed Feb. 9, 2016, Liu et al.
U.S. Appl. No. 17/160,329, filed Jan. 27, 2021, Liu et al.
U.S. Appl. No. 14/462,163, filed Aug. 18, 2014, Liu et al.
U.S. Appl. No. 14/462,189, filed Aug. 18, 2014, Liu et al.
U.S. Appl. No. 14/916,679, filed Mar. 4, 2016, Liu et al.
U.S. Appl. No. 16/860,639, filed Apr. 28, 2020, Liu et al.
U.S. Appl. No. 14/320,498, filed Jun. 30, 2014, Liu et al.
U.S. Appl. No. 14/320,467, filed Jun. 30, 2014, Liu et al.
U.S. Appl. No. 14/916,681, filed Mar. 4, 2016, Liu et al.
U.S. Appl. No. 17/103,233, filed Nov. 24, 2020, Liu et al.
U.S. Appl. No. 14/326,329, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,340, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,361, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/916,683, filed Mar. 4, 2016, Liu et al.
U.S. Appl. No. 16/796,323, filed Feb. 20, 2020, Liu et al.
U.S. Appl. No. 14/325,815, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,109, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,140, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,269, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,290, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,318, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 14/326,303, filed Jul. 8, 2014, Liu et al.
U.S. Appl. No. 15/103,608, filed Jun. 10, 2016, Liu et al.
U.S. Appl. No. 16/374,634, filed Apr. 3, 2019, Liu et al.
U.S. Appl. No. 15/329,925, filed Jan. 27, 2017, Liu et al.
U.S. Appl. No. 16/132,276, filed Sep. 14, 2018, Liu et al.
U.S. Appl. No. 16/888,646, filed May 29, 2020, Liu et al.
U.S. Appl. No. 14/529,010, filed Oct. 30, 2014, Liu et al.
U.S. Appl. No. 15/958,721, filed Apr. 20, 2018, Liu et al.
U.S. Appl. No. 17/130,812, filed Dec. 22, 2020, Liu et al.
U.S. Appl. No. 15/331,852, filed Oct. 22, 2016, Liu et al.
U.S. Appl. No. 15/960,171, filed Apr. 23, 2018, Liu et al.
U.S. Appl. No. 15/770,076, filed Apr. 20, 2018, Liu et al.
U.S. Appl. No. 16/327,744, filed Feb. 22, 2019, Maianti et al.
U.S. Appl. No. 15/852,891, filed Dec. 22, 2017, Maianti et al.
U.S. Appl. No. 16/926,436, filed Jul. 10, 2020, Maianti et al.
U.S. Appl. No. 15/852,526, filed Dec. 22, 2017, Maianti et al.
U.S. Appl. No. 16/492,534, filed Sep. 9, 2019, Liu et al.
U.S. Appl. No. 16/324,476, filed Feb. 8, 2019, Liu et al.
U.S. Appl. No. 15/791,085, filed Oct. 23, 2017, Liu et al.
U.S. Appl. No. 16/143,370, filed Sep. 26, 2018, Liu et al.
U.S. Appl. No. 16/492,548, filed Sep. 9, 2019, Maianti et al.
U.S. Appl. No. 15/784,033, filed Oct. 13, 2017, Liu et al.
U.S. Appl. No. 16/492,553, filed Sep. 9, 2019, Liu et al.
U.S. Appl. No. 15/934,945, filed Mar. 23, 2018, Liu et al.
U.S. Appl. No. 16/643,376, filed Feb. 28, 2020, Liu et al.
U.S. Appl. No. 16/612,988, filed Nov. 12, 2019, Liu et al.
U.S. Appl. No. 16/634,405, filed Jan. 27, 2020, Liu et al.
U.S. Appl. No. 16/976,047, filed Aug. 26, 2020, Liu et al.
U.S. Appl. No. 17/289,665, filed Apr. 28, 2021, Liu et al.
U.S. Appl. No. 16/756,432, filed Apr. 15, 2020, Liu et al.
U.S. Appl. No. 16/772,747, filed Jun. 12, 2020, Shen et al.
U.S. Appl. No. 17/057,398, filed Nov. 20, 2020, Liu et al.
U.S. Appl. No. 17/259,147, filed Jan. 8, 2021, Liu et al.
U.S. Appl. No. 17/270,396, filed Feb. 22, 2021, Liu et al.
U.S. Appl. No. 17/273,688, filed Mar. 4, 2021, Liu et al.
U.S. Appl. No. 17/288,504, filed Apr. 23, 2021, Liu et al.
U.S. Appl. No. 17/219,590, filed Mar. 31, 2021, Liu et al.
U.S. Appl. No. 17/219,635, filed Mar. 31, 2021, Liu et al.
Mar. 31, 2021, Liu et al.
EP 123845790.0, Mar. 18, 2015, Partial Supplementary European Search Report.
EP 123845790.0, Oct. 12, 2015, Supplementary European Search Report.
EP 19187331.4, Dec. 19, 2019 Partial European Search Report.
PCT/US2012/047778, May 30, 2013, International Search Report and Written Opinion.
PCT/US2012/047778, Feb. 6, 2014, International Preliminary Report on Patentability.
PCT/US2014/052231, Dec. 4, 2014, International Search Report and Written Opinion.
PCT/US2014/052231, Jan. 30, 2015, International Search Report and Written Opinion (Corrected Version).
PCT/US2014/052231, Mar. 3, 2016, International Preliminary Report on Patentability.
EP 18199195.1, Feb. 12, 2019, Extended European Search Report.
PCT/US2014/050283, Nov. 6, 2014, International Search Report and Written Opinion.
PCT/US2014/050283, Feb. 18, 2016, International Preliminary Report on Patentability.
PCT/US2014/054247, Mar. 27, 2015, International Search Report and Written Opinion.
PCT/US2014/054247, Mar. 17, 2016, International Preliminary Report on Patentability.
PCT/US2014/054291, Dec. 18, 2014, Invitation to Pay Additional Fees.
PCT/US2014/054291, Mar. 27, 2015, International Search Report and Written Opinion.
PCT/US2014/054291, Mar. 17, 2016, International Preliminary Report on Patentability.
PCT/US2014/054252, Mar. 5, 2015, International Search Report and Written Opinion.
PCT/US2014/054252, Mar. 17, 2016, International Preliminary Report on Patentability.
EP 19181479.7, Oct. 31, 2019, Extended European Search Report.
PCT/US2014/070038, Apr. 14, 2015, International Search Report and Written Opinion.
PCT/US2014/070038, Jun. 23, 2016, International Preliminary Report on Patentability.
EP 15830407.1, Mar. 2, 2018, Extended European Search Report.
PCT/US2015/042770, Feb. 23, 2016, International Search Report and Written Opinion.
PCT/US2015/042770, Dec. 19, 2016, International Preliminary Report on Patentability.
PCT/US2015/058479, Feb. 11, 2016, International Search Report and Written Opinion.
PCT/US2015/058479, May 11, 2017, International Preliminary Report on Patentability.
PCT/US2016/044546, Dec. 28, 2016, International Search Report and Written Opinion.
PCT/US2016/058344, Mar. 1, 2017, Invitation to Pay Additional Fees.
PCT/US2016/058344, Apr. 20, 2017, International Search Report and Written Opinion.
PCT/US2016/058344, May 3, 2018, International Preliminary Report on Patentability.
PCT/US2018/025887, Jun. 21, 2018, International Search Report and Written Opinion.
PCT/US2017/48390, Nov. 7, 2017, Invitation to Pay Additional Fees.
PCT/US2017/48390, Jan. 9, 2018, International Search Report and Written Opinion.
PCT/US2014/048390, Mar. 7, 2019, International Preliminary Report on Patentability.
PCT/US2017/068114, Mar. 20, 2018, International Search Report and Written Opinion.
PCT/US2017/068105, Apr. 4, 2018, International Search Report and Written Opinion.
PCT/US2017/068114, Jul. 4, 2019, International Preliminary Report on Patentability.
PCT/US2018/021880, Jun. 20, 2018, International Search Report and Written Opinion.
PCT/US2018/021880, Sep. 19, 2019, International Preliminary Report on Patentability.
PCT/US2017/046144, Oct. 10, 2017, International Search Report and Written Opinion.
PCT/US2017/046144, Feb. 21, 2019, International Preliminary Report on Patentability.
SG 11201900907Y, Jul. 20, 2020, Search Report and Written Opinion.
PCT/US2017/045381, Oct. 26, 2017, International Search Report and Written Opinion.
PCT/US2017/046144, Feb. 14, 2019, International Preliminary Report on Patentability.
PCT/US2018/021664, Jun. 21, 2018, International Search Report and Written Opinion.
PCT/US2018/021664, Sep. 19, 2019, International Preliminary Report on Patentability.
PCT/US2017/056671, Dec. 21, 2017, Invitation to Pay Additional Fees.
PCT/US2017/056671, Feb. 20, 2018, International Search Report and Written Opinion.
PCT/US2017/056671, Apr. 25, 2019, International Preliminary Report on Patentability.
PCT/US2018/021878, Jun. 8, 2018, Invitation to Pay Additional Fees.
PCT/US2018/021878, Aug. 20, 2018, International Search Report and Written Opinion.
PCT/US2018/021878, Sep. 19, 2019, International Preliminary Report on Patentability.
PCT/US2018/024208, Aug. 23, 2018, International Search Report and Written Opinion.
PCT/US2018/024208, Oct. 3, 2019, International Preliminary Report on Patentability.
PCT/US2018/048969, Jul. 31, 2019, International Search Report and Written Opinion.
PCT/US2018/032460, Jul. 11, 2018, International Search Report and Written Opinion.
PCT/US2018/032460, Nov. 21, 2019, International Preliminary Report on Patentability.
U.S. Appl. No. 61/874,746, filed Sep. 6, 2013, Liu et al.
U.S. Appl. No. 61/874,682, filed Sep. 6, 2013, Liu et al.
U.S. Appl. No. 61/838,178, filed Jun. 21, 2013, Joung et al.
U.S. Appl. No. 61/837,481, filed Jun. 20, 2013, Cho et al.
U.S. Appl. No. 61/803,599, filed Mar. 20, 2013, Kim et al.
U.S. Appl. No. 61/794,422, filed Mar. 15, 2013, Knight et al.
U.S. Appl. No. 61/761,046, filed Feb. 5, 2013, Knight et al.
U.S. Appl. No. 61/758,624, filed Jan. 30, 2013, Chen et al.
U.S. Appl. No. 61/734,256, filed Dec. 6, 2012, Chen et al.
U.S. Appl. No. 61/717,324, filed Oct. 23, 2012, Cho et al.
U.S. Appl. No. 61/716,256, filed Oct. 19, 2012, Jinek et al.
U.S. Appl. No. 62/357,332, filed Jun. 30, 2016, Liu et al.
U.S. Appl. No. 62/288,661, filed Jan. 29, 2016, Muir et al.
[No Author Listed] “FokI” from New England Biolabs Inc. Last accessed online via https://www.neb.com/products/r0109-foki#Product%20Information on Mar. 19, 2021. 1 page.
[No Author Listed] “Human genome.” Encyclopedia Britannica. Encyclopedia Brittanica, Inc. Published Feb. 15, 2019. Last accessed online via https://www.britannica.com/science/human-genome on Mar. 19, 2021. 2 pages.
[No Author Listed] “Nucleic Acids Sizes and Molecular Weights.” Printed Mar. 19, 2021. 2 pages.
[No Author Listed] “Zinc Finger Nuclease” from Wikipedia. Retrieved from https://en.wikipedia.org/w/index.php?title=Zinc_finger_nuclease&oldid=1007053318. Page last edited Feb. 16, 2021. Printed on Mar. 19, 2021.
[No Author Listed] Beast2: Bayesian evolutionary analysis by sampling trees. http://www.beast2.org/ Last accessed Apr. 28, 2021.
[No Author Listed] HyPhy—Hypothesis testing using Phylogenies. Last modified Apr. 21, 2017. Accessed online via http://hyphy.org/w/index.php/Main_Page on Apr. 28, 2021.
[No Author Listed] NCBI Accession No. XP_015843220.1. C ->U editing enzyme APOBEC-1 [Peromyscus maniculatus bairdii], XP002793540.
[No Author Listed] NCBI Accession No. XP_021505673.1. C ->U editing enzyme APOBEC-1 [Meriones unguiculatus], XP002793541.
[No Author Listed] Score result for SEQ 355 to W02017032580. Muir et al. 2016.
[No Author Listed] Theoretical Biochemistry Group. Institute for Theoretical Chemistry. The ViennaRNA Package. Universitat Wien. https://www.tbi.univie.ac.at/RNA/. Last accessed Apr. 28, 2021.
[No Author Listed], EMBL Accession No. Q99ZW2. Nov. 2012. 2 pages.
[No Author Listed], Invitrogen Lipofectamine™ 2000 product sheets, 2002. 2 pages.
[No Author Listed], Invitrogen Lipofectamine™ 2000 product sheets, 2005. 3 pages.
[No Author Listed], Invitrogen Lipofectamine™ LTX product sheets, 2011. 4 pages.
[No Author Listed], Thermo Fisher Scientific—How Cationic Lipid Mediated Transfection Works, retrieved from the internet Aug. 27, 2015. 2 pages.
Abremski et al., Bacteriophage P1 site-specific recombination. Purification and properties of the Cre recombinase protein. J Biol Chem. Feb. 10, 1984;259(3):1509-14.
Abudayyeh et al., C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science Aug. 2016;353(6299):aaf5573. DOI: 10.1126/science.aaf5573.
Abudayyeh et al., A cytosine deaminase for programmable single-base RNA editing. Science. Jul. 26, 2019;365(6451):382-386. doi: 10.1126/science.aax7063. Epub Jul. 11, 2019.
Abudayyeh et al., RNA targeting with CRISPR-Cas13. Nature. Oct. 12, 2017;550(7675):280-284. doi: 10.1038/nature24049. Epub Oct. 4, 2017.
Ada et al., Carbohydrate-protein conjugate vaccines. Clin Microbiol Infect. Feb. 2003;9(2):79-85. doi: 10.1046/j.1469-0691.2003.00530.x.
Adamala et al., Programmable RNA-binding protein composed of repeats of a single modular unit. Proc Natl Acad Sci U S A. May 10, 2016;113(19):E2579-88. doi: 10.1073/pnas.1519368113. Epub Apr. 26, 2016.
Adams et al., New biarsenical ligands and tetracysteine motifs for protein labeling in vitro and in vivo: synthesis and biological applications. J Am Chem Soc. May 29, 2002;124(21):6063-76. doi: 10.1021/ja017687n.
Addgene Plasmid # 44246. pdCas9-humanized, 2017, Stanley Qi.
Addgene Plasmid # 73021. PCMV-BE3, 2017, David Liu.
Addgene Plasmid # 79620. pcDNA3.1_pCMV-nCas-PmCDA1-ugi pH1-gRNA(HPRT), 2017, Akihiko Kondo.
Adli, The CRISPR tool kit for genome editing and beyond. Nat Commun. May 15, 2018;9(1):1911. doi: 10.1038/s41467-018-04252-2.
Aguilo et al., Coordination of m(6)a mRNA Methylation and Gene Transcription by ZFP217 Regulates Pluripotency and Reprogramming. Cell Stem Cell. Dec. 3, 2015;17(6):689-704. doi: 10.1016/j.stem.2015.09.005. Epub Oct. 29, 2015.
Ahmad et al., Antibody-mediated specific binding and cytotoxicity of liposome-entrapped doxorubicin to lung cancer cells in vitro. Cancer Res. Sep. 1, 1992;52(17):4817-20.
Aihara et al., A conformational switch controls the DNA cleavage activity of lambda integrase. Mol Cell. Jul. 2003;12(1):187-98.
Aik et al., Structure of human RNA N?-methyladenine demethylase Alkbhs provides insights into its mechanisms of nucleic acid recognition and demethylation. Nucleic Acids Res. Apr. 2014;42(7):4741-54. doi: 10.1093/nar/gku085. Epub Jan. 30, 2014.
Aird et al., Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template. Commun Biol. May 31, 2018;1:54. doi: 10.1038/s42003-0180054-2.
Akcakaya et al., In vivo CRISPR editing with no detectable genome-wide off-target mutations. Nature. Sep. 2018;561(7723):416-419. doi: 10.1038/s41586-018-0500-9. Epub Sep. 12, 2018. PMID: 30209390; PMCID: PMC6194229.
Akins et al., Mitochondrial plasmids of Neurospora: integration into mitochondrial DNA and evidence for reverse transcription in mitochondria. Cell. Nov. 21, 1986;47(4):505-16. doi: 10.1016/0092-8674(86)90615-x.
Akinsheye et al., Fetal hemoglobin in sickle cell anemia. Blood. Jul. 7, 2011;118(1):19-27. doi: 10.1182/blood-2011-03-325258. Epub Apr. 13, 2011.
Alarcón et al., HNRNPA2B1 Is a Mediator of m(6)A—Dependent Nuclear RNA Processing Events. Cell. Sep. 10, 2015;162(6):1299-308. doi: 10.1016/j.cell.2015.08.011. Epub Aug. 27, 2015.
Alarcón et al., N6-methyladenosine marks primary microRNAs for processing. Nature. Mar. 26, 2015;519(7544):482-5. doi: 10.1038/nature14281. Epub Mar. 18, 2015.
Alexander, HFE-associated hereditary hemochromatosis. Genet Med. May 2009;11(5):307-13. doi: 10.1097/GIM.0b013e31819d30f2.
Alexandrov et al., Signatures of mutational processes in human cancer. Nature. Aug. 22, 2013;500(7463):415-21. doi: 10.1038/nature12477. Epub Aug. 14, 2013.
Ali et al., Novel genetic abnormalities in Bernard-Soulier syndrome in India. Ann Hematol. Mar. 2014;93(3):381-4. doi: 10.1007/s00277-013-1895-x. Epub Sep. 1, 2013.
Altschul et al., Basic local alignment search tool. J Mol Biol. Oct. 5, 1990;215(3):403-10. doi: 10.1016/S0022-2836(05)80360-2.
Amato et al., Interpreting elevated fetal hemoglobin in pathology and health at the basic laboratory level: new and known ?—gene mutations associated with hereditary persistence of fetal hemoglobin. Int J Lab Hematol. Feb. 2014;36(1):13-9. doi: 10.1111/ijlh.12094. Epub Apr. 29, 2013.
Ames et al., A eubacterial riboswitch class that senses the coenzyme tetrahydrofolate. Chem Biol. Jul. 30, 2010;17(7):681-5. doi: 10.1016/j.chembiol.2010.05.020.
Amrann et al., Tightly regulated tac promoter vectors useful for the expression of unfused and fused proteins in Escherichia coli. Gene. Sep. 30, 1988;69(2):301-15.
Anders et al., Chapter One: In Vitro Enzymology of Cas9. in Methods in Enzymology, eds Doudna et al. 2014: 546:1-20.
Anders et al., Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature. Sep. 25, 2014;513(7519):569-73. doi: 10.1038/nature13579. Epub Jul. 27, 2014.
Anderson, Human gene therapy. Science. May 8, 1992;256(5058):808-13. doi: 10.1126/science.1589762.
Anzalone et al., Reprogramming eukaryotic translation with ligand-responsive synthetic RNA switches. Nat Methods. May 2016;13(5):453-8. doi: 10.1038/nmeth.3807. Epub Mar. 21, 2016.
Anzalone et al., Search-and-replace genome editing without double-strand breaks or donor DNA. Nature. Dec. 2019;576(7785):149-157. doi: 10.1038/s41586-019-1711-4. Epub Oct. 21, 2019.
Aplan, Causes of oncogenic chromosomal translocation. Trends Genet. Jan. 2006;22(1):46-55. doi: 10.1016/j.tig.2005.10.002. Epub Oct. 28, 2005.
Arakawa et al., A method to convert mRNA into a gRNA library for CRISPR/Cas9 editing of any organism. Sci Adv. Aug. 24, 2016;2(8):e1600699. doi: 10.1126/sciadv.1600699.
Araki et al., Comparative analysis of right element mutant lox sites on recombination efficiency in embryonic stem cells. BMC Biotechnol. Mar. 31, 2010;10:29. doi: 10.1186/14726750-10-29.
Araki et al., Site-specific recombinase, R, encoded by yeast plasmid pSR1. J Mol Biol. May 5, 1992;225(1):25-37. doi: 10.1016/0022-2836(92)91023-i.
Araki et al., Targeted integration of DNA using mutant lox sites in embryonic stem cells. Nucleic Acids Res. Feb. 15, 1997;25(4):868-72. doi: 10.1093/nar/25.4.868.
Arambula et al., Surface display of a massively variable lipoprotein by a Legionella diversity-generating retroelement. Proc Natl Acad Sci U S A. May 14, 2013;110(20):8212-7. doi: 10.1073/pnas.1301366110. Epub Apr. 30, 2013.
Arazoe et al., Targeted Nucleotide Editing Technologies for Microbial Metabolic Engineering. Biotechnol J. Sep. 2018;13(9):e1700596. doi: 10.1002/biot.201700596. Epub Jun. 19, 2018.
Arbab et al., Cloning-free CRISPR. Stem Cell Reports. Nov. 10, 2015;5(5):908-917. doi: 10.1016/j.stemcr.2015.09.022. Epub Oct. 29, 2015.
Arbab et al., Determinants of Base Editing Outcomes from Target Library Analysis and Machine Learning. Cell. Jul. 23, 2020;182(2):463-480.e30. doi: 10.1016/j.cell.2020.05.037. Epub Jun. 12, 2020.
Arezi et al., Novel mutations in Moloney Murine Leukemia Virus reverse transcriptase increase thermostability through tighter binding to template-primer. Nucleic Acids Res. Feb. 2009;37(2):473-81. doi: 10.1093/nar/gkn952. Epub Dec. 4, 2008.
Arnold et al., Mutants of Tn3 resolvase which do not require accessory binding sites for recombination activity. Embo J. Mar. 1, 1999;18(5):1407-14.
Asante et al., a naturally occurring variant of the human prion protein completely prevents prion disease. Nature. Jun. 25, 2015;522(7557):478-81. doi: 10.1038/nature14510. Epub Jun. 10, 2015.
Atkins et al., Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res. Sep. 6, 2016;44(15):7007-78. doi: 10.1093/nar/gkw530. Epub Jul. 19, 2016.
Auer et al., Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res. Jan. 2014;24(1):142-53. doi: 10.1101/gr.161638.113. Epub Oct. 31, 2013.
Autieri et al., IRT-1, a novel interferon-gamma-responsive transcript encoding a growth-suppressing basic leucine zipper protein. J Biol Chem. Jun. 12, 1998;273(24):14731-7. doi: 10.1074/jbc.273.24.14731.
Avidan et al., The processivity and fidelity of DNA synthesis exhibited by the reverse transcriptase of bovine leukemia virus. Eur J Biochem. Feb. 2002;269(3):859-67. doi: 10.1046/j.0014-2956.2001.02719.x.
Babacic et al., CRISPR-cas gene-editing as plausible treatment of neuromuscular and nucleotide-repeat-expansion diseases: A systematic review. PLoS One. Feb. 22, 2019;14(2):e0212198. doi: 10.1371/journal.pone.0212198.
Bacman et al., Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med. Sep. 2013;19(9):1111-3. doi: 10.1038/nm.3261. Epub Aug. 4, 2013.
Badran et al., Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance. Nature. May 5, 2016;533(7601):58-63. doi: 10.1038/nature17938. Epub Apr. 27, 2016.
Badran et al., Development of potent in vivo mutagenesis plasmids with broad mutational spectra. Nat Commun. Oct. 7, 2015;6:8425. doi: 10.1038/ncomms9425.
Bae et al., Microhomology-based choice of Cas9 nuclease target sites. Nat Methods. Jul. 2014;11(7):705-6. doi: 10.1038/nmeth.3015.
Bagyinszky et al., Characterization of mutations in PRNP (prion) gene and their possible roles in neurodegenerative diseases. Neuropsychiatr Dis Treat. Aug. 14, 2018;14:2067-2085. doi: 10.2147/NDT.S165445.
Balakrishnan et al., Flap endonuclease 1. Annu Rev Biochem. 2013;82:119-38. doi: 10.1146/annurev-biochem-072511-122603. Epub Feb. 28, 2013.
Baldari et al., A novel leader peptide which allows efficient secretion of a fragment of human interleukin 1 beta in Saccharomyces cerevisiae. EMBO J. Jan. 1987;6(1):229-34.
Banerjee et al., Cadmium inhibits mismatch repair by blocking the ATPase activity of the MSH2-MSH6 complex [published correction appears in Nucleic Acids Res. 2005;33(5):1738]. Nucleic Acids Res. 2005;33(4):1410-1419. Published Mar. 3, 2005. doi:10.1093/nar/gki291.
Banerji et al., A lymphocyte-specific cellular enhancer is located downstream of the joining region in immunoglobulin heavy chain genes. Cell. Jul. 1983;33(3):729-40. doi: 10.1016/0092-8674(83)90015-6.
Bannert et al., Retroelements and the human genome: new perspectives on an old relation. Proc Natl Acad Sci U S A. Oct. 5, 2004;101 Suppl 2(Suppl 2):14572-9. doi: 10.1073/pnas.0404838101. Epub Aug. 13, 2004.
Baranauskas et al., Generation and characterization of new highly thermostable and processive M-MuLV reverse transcriptase variants. Protein Eng Des Sel. Oct. 2012;25(10):657-68. doi: 10.1093/protein/gzs034. Epub Jun. 12, 2012.
Barnes et al., Repair and genetic consequences of endogenous DNA base damage in mammalian cells. Annu Rev Genet. 2004;38:445-76.
Barnes et al., The fidelity of Taq polymerase catalyzing PCR is improved by an N-terminal deletion. Gene. Mar. 1, 1992;112(1):29-35. doi: 10.1016/0378-1119(92)90299-5.
Barrangou et al., CRISPR provides acquired resistance against viruses in prokaryotes. Science. Mar. 23, 2007;315(5819):1709-12.
Barrangou, RNA-mediated programmable DNA cleavage. Nat Biotechnol. Sep. 2012;30(9):836-8. doi: 10.1038/nbt.2357.
Bartlett et al., Efficient expression of protein coding genes from the murine U1 small nuclear RNA promoters. Proc Natl Acad Sci U S A. Aug. 20, 1996;93(17):8852-7. doi: 10.1073/pnas.93.17.8852.
Bartosovic et al., N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3′-end processing. Nucleic Acids Res. Nov. 2, 2017;45(19):11356-11370. doi: 10.1093/nar/gkx778.
Basha et al., Influence of cationic lipid composition on gene silencing properties of lipid nanoparticle formulations of siRNA in antigen-presenting cells. Mol Ther. Dec. 2011;19(12):2186-200. doi: 10.1038/mt.2011.190. Epub Oct. 4, 2011.
Basturea et al., Substrate specificity and properties of the Escherichia coli 16S rRNA methyltransferase, RsmE. RNA. Nov. 2007;13(11):1969-76. doi: 10.1261/rna.700507. Epub Sep. 13, 2007.
Batey et al., Structure of a natural guanine-responsive riboswitch complexed with the metabolite hypoxanthine. Nature. Nov. 18, 2004;432(7015):411-5.
Beale et al., Comparison of the differential context-dependence of DNA deamination by Apobec enzymes: correlation with mutation spectra in vivo. J Mol Biol. Mar. 26, 2004;337(3):585-96.
Bebenek et al., Error-prone polymerization by HIV-1 reverse transcriptase. Contribution of template-primer misalignment, miscoding, and termination probability to mutational hot spots. J Biol Chem. May 15, 1993;268(14):10324-34.
Bedell et al., In vivo genome editing using a high-efficiency TALEN system. Nature. Nov. 1, 2012;491(7422):114-8. Doi: 10.1038/nature11537. Epub Sep. 23, 2012.
Begley, Scientists unveil the ‘most clever CRISPR gadget’ so far. STAT, Apr. 20, 2016. haps://www.statnews.com/2016/04/20/clever-crispr-advance-unveiled/.
Behr, Gene transfer with synthetic cationic amphiphiles: prospects for gene therapy. Bioconjug Chem. Sep.-Oct. 1994;5(5):382-9. doi: 10.1021/bc00029a002.
Belshaw et al., Controlling programmed cell death with a cyclophilin-cyclosporin-based chemical inducer of dimerization. Chem Biol. Sep. 1996;3(9):731-8. doi: 10.1016/s1074-5521(96)90249-5.
Belshaw et al., Controlling protein association and subcellular localization with a synthetic ligand that induces heterodimerization of proteins. Proc Natl Acad Sci U S A. May 14, 1996;93(10):4604-7. doi: 10.1073/pnas.93.10.4604.
Bennett et al., Painful and painless channelopathies. Lancet Neurol. Jun. 2014;13(6):587-99. doi: 10.1016/S1474-4422(14)70024-9. Epub May 6, 2014.
Berger et al., Reverse transcriptase and its associated ribonuclease H: interplay of two enzyme activities controls the yield of single-stranded complementary deoxyribonucleic acid. Biochemistry. May 10, 1983;22(10):2365-72. doi: 10.1021/bi00279a010.
Berkhout et al., Identification of an active reverse transcriptase enzyme encoded by a human endogenous HERV-K retrovirus. J Virol. Mar. 1999;73(3):2365-75. doi: 10.1128/JVI.73.3.2365-2375.1999.
Bernhart et al., Local RNA base pairing probabilities in large sequences. Bioinformatics. Mar. 1, 2006;22(5):614-5. doi: 10.1093/bioinformatics/btk014. Epub Dec. 20, 2005.
Bernstein et al., Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature. Jan. 18, 2001;409(6818):363-6. doi: 10.1038/35053110.
Bershtein et al., Advances in laboratory evolution of enzymes. Curr Opin; Chem Biol. Apr. 2008;12(2):151-8. doi: 10.1016/j.cbpa.2008.01.027. Epub Mar. 7, 2008. Review.
Bertolotti et al., Toward genosafe endonuclease-boosted gene targeting using breakthrough CRISP/Cas9 for next generation stem cell gene therapy culminating in efficient ex Vivo in Vivo gene repair/genomic editing. Molecular Therapy. May 2015;23(Suppl1):S139. Abstract 350. 18th Ann Meeting of the American Society of Gene and Cell Therapy. ASGCT 2015. New Orleans, LA. May 13, 2015-May 16, 2015.
Bertrand et al., Localization of ASH1 mRNA particles in living yeast. Mol Cell. Oct. 1998;2(4):437-45. doi: 10.1016/s1097-2765(00)80143-4.
Beumer et al., Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics. Apr. 2006;172(4):2391-403. Epub Feb. 1, 2006.
Bi et al., Pseudo attP sites in favor of transgene integration and expression in cultured porcine cells identified by Streptomyces phage phiC31 integrase. BMC Mol Biol. Sep. 8, 2013;14:20. doi: 10.1186/1471-2199-14-20.
Bibb et al., Integration and excision by the large serine recombinase phiRv1 integrase. Mol Microbiol. Mar. 2005;55(6):1896-910. doi: 10.1111/j.1365-2958.2005.04517.x.
Biehs et al., DNA Double-Strand Break Resection Occurs during Non-homologous End Joining in G1 but Is Distinct from Resection during Homologous Recombination. Mol Cell. Feb. 16, 2017;65(4):671-684.e5. doi: 10.1016/j.molcel.2016.12.016. Epub Jan. 26, 2017.
Billon et al., CRISPR-Mediated Base Editing Enables Efficient Disruption of Eukaryotic Genes through Induction of STOP Codons. Mol Cell. Sep. 21, 2017;67(6):1068-1079.e4. doi: 10.1016/j.molcel.2017.08.008. Epub Sep. 7, 2017.
Birling et al., Site-specific recombinases for manipulation of the mouse genome. Methods Mol Biol. 2009;561:245-63. doi: 10.1007/978-1-60327-019-9_16.
Biswas et al., A structural basis for allosteric control of DNA recombination by lambda integrase. Nature. Jun. 23, 2005;435(7045):1059-66. doi: 10.1038/nature03657.
Bitinaite et al., FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci U S A. Sep. 1, 1998;95(18):10570-5.
Blaese et al., Vectors in cancer therapy: how will they deliver? Cancer Gene Ther. Dec. 1995;2(4):291-7.
Blain et al., Nuclease activities of Moloney murine leukemia virus reverse transcriptase. Mutants with altered substrate specificities. J Biol Chem. Nov. 5, 1993;268(31):23585-92.
Blaisonneau et al., A circular plasmid from the yeast Torulaspora delbrueckii. Plasmid. 1997;38(3):202-9. doi: 10.1006/plas.1997.1315.
Blau et al., A proliferation switch for genetically?modified?cells. PNAS Apr. 1, 1997 94 (7) 3076-3081; https://doi.org/10.1073/pnas.94.7.3076.
Bloom et al., Evolving strategies for enzyme engineering. Curr Opin Struct Biol. Aug. 2005;15(4):447-52.
Boch, TALEs of genome targeting. Nat Biotechnol. Feb. 2011;29(2):135-6. Doi: 10.1038/nbt.1767.
Böck et al., Selenocysteine: the 21st amino acid. Mol Microbiol. Mar. 1991;5(3):515-20.
Bodi et al., Yeast m6A Methylated mRNAs Are Enriched on Translating Ribosomes during Meiosis, and under Rapamycin Treatment. PLoS One. Jul. 17, 2015;10(7):e0132090. doi: 10.1371/journal.pone.0132090.
Boeckle et al., Melittin analogs with high lytic activity at endosomal pH enhance transfection with purified targeted PEI polyplexes. J Control Release. May 15, 2006;112(2):240-8. Epub Mar. 20, 2006.
Boersma et al., Selection strategies for improved biocatalysts. FEBS J. May 2007;274(9):2181-95.
Bogdanove et al., Engineering altered protein-DNA recognition specificity. Nucleic Acids Res. Jun. 1, 2018;46(10):4845-4871. doi: 10.1093/nar/gky289.
Bogdanove et al., TAL effectors: customizable proteins for DNA targeting. Science. Sep. 30, 2011;333(6051):1843-6. doi: 10.1126/science.1204094.
Bohlke et al., Sense codon emancipation for proteome-wide incorporation of noncanonical amino acids: rare isoleucine codon AUA as a target for genetic code expansion. FEMS Microbiol Lett. Feb. 2014;351(2):133-44. doi: 10.1111/1574-6968.12371. Epub Jan. 27, 2014.
Bolotin et al., Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology. Aug. 2005;151(Pt 8):2551-61.
Bolusani et al., Evolution of variants of yeast site-specific recombinase Flp that utilize native genomic sequences as recombination target sites. Nucleic Acids Res. 2006;34(18):5259-69. Epub Sep. 26, 2006.
Bondeson et al., Inversion of the IDS gene resulting from recombination with IDS-related sequences is a common cause of the Hunter syndrome. Hum Mol Genet. Apr. 1995;4(4):615-21. doi: 10.1093/hmg/4.4.615.
Borchardt et al., Controlling mRNA stability and translation with the CRISPR endoribonuclease Csy4. RNA. Nov. 2015;21(11):1921-30. doi: 10.1261/rna.051227.115. Epub Sep. 9, 2015.
Borman, Improved route to single-base genome editing. Chemical & Engineering News, Apr. 25, 2016;94(17)p5. http://cen.acs.org/articles/94/i17/Improved-route-single-base-genome.html.
Boutabout et al., DNA synthesis fidelity by the reverse transcriptase of the yeast retrotransposon Ty1. Nucleic Acids Res. Jun. 1, 2001;29(11):2217-22. doi: 10.1093/nar/29.11.2217.
Box et al., A multi-domain protein system based on the HC fragment of tetanus toxin for targeting DNA to neuronal cells. J Drug Target. Jul. 2003;11(6):333-43. doi: 10.1080/1061186310001634667.
Branden and Tooze, Introduction to Protein Structure. 1999; 2nd edition. Garland Science Publisher: Mar. 2012.
Braun et al., Immunogenic duplex nucleic acids are nuclease resistant. J Immunol. Sep. 15, 1988;141(6):2084-9.
Briner et al., Guide RNA functional modules direct Cas9 activity and orthogonality. Mol Cell. Oct. 23, 2014;56(2):333-339. doi: 10.1016/j.molcel.2014.09.019.
Britt et al., Re-engineering plant gene targeting. Trends Plant Sci. Feb. 2003;8(2):90-5.
Brouns et al., Small CRISPR RNAs guide antiviral defense in prokaryotes. Science. Aug. 15, 2008;321(5891):960-4. doi: 10.1126/science.1159689.
Brown et al., Serine recombinases as tools for genome engineering. Methods. Apr. 2011;53(4):372-9. doi: 10.1016/j.ymeth.2010.12.031. Epub Dec. 30, 2010.
Brown et al., A mammalian protein targeted by G1-arresting rapamycin-receptor complex. Nature. Jun. 30, 1994;369(6483):756-8. doi: 10.1038/369756a0.
Brown et al., Characterization of the genetic elements required for site-specific integration of plasmid pSE211 in Saccharopolyspora erythraea. J Bacteriol. Apr. 1990;172(4):1877-88. doi: 10.1128/jb.172.4.1877-1888.1990.
Brown et al., Structural insights into the stabilization of MALAT1 noncoding RNA by a bipartite triple helix. Nat Struct Mol Biol. Jul. 2014;21(7):633-40. doi: 10.1038/nsmb.2844. Epub Jun. 22, 2014.
Brusse et al., Spinocerebellar ataxia associated with a mutation in the fibroblast growth factor 14 gene (SCA27): A new phenotype. Mov Disord. Mar. 2006;21(3):396-401.
Brzezicha et al., Identification of human tRNA:m5C methyltransferase catalysing intron-dependent m5C formation in the first position of the anticodon of the pre-tRNA Leu (CAA). Nucleic Acids Res. 2006;34(20):6034-43. doi: 10.1093/nar/gk1765. Epub Oct. 27, 2006.
Buchholz et al., Alteration of Cre recombinase site specificity by substrate-linked protein evolution. Nat Biotechnol. Nov. 2001;19(11):1047-52.
Buchschacher et al., Human immunodeficiency virus vectors for inducible expression of foreign genes. J Virol. May 1992;66(5):2731-9. doi: 10.1128/JVI.66.5.2731-2739.1992.
Buchwald et al., Long-term, continuous intravenous heparin administration by an implantable infusion pump in ambulatory patients with recurrent venous thrombosis. Surgery. Oct. 1980;88(4):507-16.
Buckley et al., Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1? interaction. J Am Chem Soc. Mar. 14, 2012;134(10):4465-8. doi: 10.1021/ja209924v. Epub Feb. 27, 2012.
Budisa et al., Residue-specific bioincorporation of non-natural, biologically active amino acids into proteins as possible drug carriers: structure and stability of the per-thiaproline mutant of annexin V. Proc Natl Acad Sci U S A. Jan. 20, 1998;95(2):455-9.
Budker et al., Protein/amphipathic polyamine complexes enable highly efficient transfection with minimal toxicity. Biotechniques. Jul. 1997;23(1):139, 142-7. doi: 10.2144/97231rr02.
Budworth et al., A brief history of triplet repeat diseases. Methods Mol Biol. 2013;1010:3-17. doi: 10.1007/978-1-62703-411-1_1.
Bulow et al., Multienzyme systems obtained by gene fusion. Trends Biotechnol. Jul. 1991;9(7):226-31.
Burke et al., RNA Aptamers to the Adenosine Moiety of S-adenosyl Methionine: Structural Inferences From Variations on a Theme and the Reproducibility of SELEX. Nucleic Acids Res. May 15, 1997;25(10):2020-4. doi: 10.1093/nar/25.10.2020.
Burstein et al., New CRISPR-Cas systems from uncultivated microbes. Nature Feb. 2017;542(7640):237-240.
Buskirk et al., Directed evolution of ligand dependence: small-molecule-activated protein splicing. Proc Natl Acad Sci U S A. Jul. 20, 2004;101(29):10505-10. Epub Jul. 9, 2004.
Byrne et al., Multiplex gene regulation: a two-tiered approach to transgene regulation in transgenic mice. Proc Natl Acad Sci U S A. Jul. 1989;86(14):5473-7. doi: 10.1073/pnas.86.14.5473.
Cade et al., Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Res. Sep. 2012;40(16):8001-10. Doi: 10.1093/nar/gks518. Epub Jun. 7, 2012.
Cadwell et al., Randomization of genes by PCR mutagenesis. PCR Methods Appl. Aug. 1992;2(1):28-33. doi: 10.1101/gr.2.1.28.
Cai et al., Reconstruction of ancestral protein sequences and its applications. BMC Evol Biol. Sep. 17, 2004;4:33. doi: 10.1186/1471-2148-4-33.
Calame et al., Transcriptional controlling elements in the immunoglobulin and T cell receptor loci. Adv Immunol. 1988;43:235-75. doi: 10.1016/s0065-2776(08)60367-3.
Caldecott et al., Single-strand break repair and genetic disease. Nat Rev Genet. Aug. 2008;9(8):619-31. doi: 10.1038/nrg2380.
Camarero et al., Biosynthesis of a Head-to-Tail Cyclized Protein with Improved Biological Activity. J. Am. Chem. Soc. May 29, 1999; 121(23):5597-5598. https://doi.org/10.1021/ja990929n.
Cameron, Recent advances in transgenic technology. Mol Biotechnol. Jun. 1997;7(3):253-65.
Camper et al., Postnatal repression of the alpha-fetoprotein gene is enhancer independent. Genes Dev. Apr. 1989;3(4):537-46. doi: 10.1101/gad.3.4.537.
Camps et al., Targeted gene evolution in Escherichia coli using a highly error-prone DNA polymerase I. Proc Natl Acad Sci U S A. Aug. 19, 2003;100(17):9727-32. Epub Aug. 8, 2003.
Canchaya et al., Genome analysis of an inducible prophage and prophage remnants integrated in the Streptococcus pyogenes strain SF370. Virology. Oct. 25, 2002;302(2):245-58. doi: 10.1006/viro.2002.1570.
Canver et al., Customizing the genome as therapy for the ?-hemoglobinopathies. Blood. May 26, 2016;127(21):2536-45. doi: 10.1182/blood-2016-01-678128. Epub Apr. 6, 2016.
Cargill et al.,Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet. Jul. 1999;22(3):231-8.
Carlier et al., Burkholderia cenocepacia H111 Rhy-family protein. Apr. 16, 2015. Retrieved from the Internet via https://www.ebi.ac.uk/ena/browser/api/embl/CDN65395.1?lineLimit=1000. Last retrieved Apr. 26, 2021.
Carlson et al., Negative selection and stringency modulation in phage-assisted continuous evolution. Nat Chem Biol. Mar. 2014;10(3):216-22. doi: 10.1038/nchembio.1453. Epub Feb. 2, 2014. With Supplementary Results.
Caron et al., Intracellular delivery of a Tat-eGFP fusion protein into muscle cells. Mol Ther. Mar. 2001;3(3):310-8.
Carr et al., Genome engineering. Nat Biotechnol. Dec. 2009;27(12):1151-62. doi: 10.1038/nbt.1590.
Carroll et al., Gene targeting in Drosophila and Caenorhabditis elegans with zinc-finger nucleases. Methods Mol Biol. 2008;435:63-77. doi: 10.1007/978-1-59745-232-8_5.
Carroll et al., Progress and prospects: zinc-finger nucleases as gene therapy agents. Gene Ther. Nov. 2008;15(22):1463-8. doi: 10.1038/gt.2008.145. Epub Sep. 11, 2008.
Carroll, A CRISPR approach to gene targeting. Mol Ther. Sep. 2012;20(9):1658-60. doi: 10.1038/mt.2012.171.
Carroll, Genome engineering with zinc-finger nucleases. Genetics. Aug. 2011;188(4):773-82. doi: 10.1534/genetics.111.131433. Review.
Carvalho et al., Evolution in health and medicine Sackler colloquium: Genomic disorders: a window into human gene and genome evolution. Proc Natl Acad Sci U S A. Jan. 26, 2010;107 Suppl 1(Suppl 1):1765-71. doi: 10.1073/pnas.0906222107. Epub Jan. 13, 2010.
Caspi et al., Distribution of split DnaE inteins in cyanobacteria. Mol Microbiol. Dec. 2003;50(5):1569-77. doi: 10.1046/j.1365-2958.2003.03825.x.
Cattaneo et al., SEL1L affects human pancreatic cancer cell cycle and invasiveness through modulation of PTEN and genes related to cell-matrix interactions. Neoplasia. 2005;7(11):1030-1038.
Ceccaldi et al., Repair Pathway Choices and Consequences at the Double-Strand Break. Trends Cell Biol. Jan. 2016;26(1):52-64. doi: 10.1016/j.tcb.2015.07.009. Epub Oct. 1, 2015.
Cermak et al., Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. Jul. 2011;39(12):e82. Doi: 10.1093/nar/gkr218. Epub Apr. 14, 2011.
Chadalavada et al., Wild-type is the optimal sequence of the HDV ribozyme under cotranscriptional conditions. RNA. Dec. 2007;13(12):2189-201. doi: 10.1261/rna.778107. Epub Oct. 23, 2007.
Chadwick et al., In Vivo Base Editing of PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) as a Therapeutic Alternative to Genome Editing. Arterioscler Thromb Vasc Biol. Sep. 2017;37(9):1741-1747. doi: 10.1161/ATVBAHA.117.309881. Epub Jul. 27, 2017.
Chaikind et al., A programmable Cas9-serine recombinase fusion protein that operates on DNA sequences in mammalian cells. Nucleic Acids Res. Nov. 16, 2016;44(20):9758-9770. Epub Aug. 11, 2016.
Chalberg et al., Integration specificity of phage phiC31 integrase in the human genome. J Mol Biol. Mar. 17, 2006;357(1):28-48. doi: 10.1016/j.jmb.2005.11.098. Epub Dec. 22, 2005.
Chalberg et al., phiC31 integrase confers genomic integration and long-term transgene expression in rat retina. Invest Ophthalmol Vis Sci. Jun. 2005;46(6):2140-6. doi: 10.1167/iovs.04-1252.
Chan et al., Molecular recording of mammalian embryogenesis. Nature. Jun. 2019;570(7759):77-82. doi: 10.1038/s41586-019-1184-5. Epub May 13, 2019.
Chapman et al., Playing the end game: DNA double-strand break repair pathway choice. Mol Cell. Aug. 24, 2012;47(4):497-510. doi: 10.1016/j.molcel.2012.07.029.
Charpentier et al., Biotechnology: Rewriting a genome. Nature. Mar. 7, 2013;495(7439):50-1. doi: 10.1038/495050a.
Chaturvedi et al., Stabilization of triple-stranded oligonucleotide complexes: use of probes containing alternating phosphodiester and stereo-uniform cationic phosphoramidate linkages. Nucleic Acids Res. Jun. 15, 1996;24(12):2318-23.
Chavez et al., Highly efficient Cas9-mediated transcriptional programming. Nat Methods. Apr. 2015;12(4):326-8. doi: 10.1038/nmeth.3312. Epub Mar. 2, 2015.
Chavez et al., Precise Cas9 targeting enables genomic mutation prevention. bioRxiv. Jun. 14, 2016; http://dx/doi.oreg/10.1101/058974. 6 pages.
Chavez et al., Precise Cas9 targeting enables genomic mutation prevention. Jun. 14, 2016. doi:https://doi.org/10.1101/058974. [Preprint].
Chavez et al., Precise Cas9 targeting enables genomic mutation prevention. Proc Natl Acad Sci U S A. Apr. 3, 2018;115(14):3669-3673. doi: 10.1073/pnas.1718148115. Epub Mar. 19, 2018.
Chavez et al., Therapeutic applications of the PhiC31 integrase system. Curr Gene Ther. Oct. 2011;11(5):375-81. Review.
Chelico et al., Biochemical basis of immunological and retroviral responses to DNA-targeted cytosine deamination by activation-induced cytidine deaminase and APOBEC3G. J Biol Chem. Oct. 9, 2009;284(41):27761-5. doi: 10.1074/jbc.R109.052449. Epub Aug. 13, 2009.
Chelico et al., Stochastic properties of processive cytidine DNA deaminases AID and APOBEC3G. Philos Trans R Soc Lond B Biol Sci. Mar. 12, 2009;364(1517):583-93. doi: 10.1098/rstb.2008.0195.
Chen et al., Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature. Oct. 19, 2017;550(7676):407-410. doi: 10.1038/nature24268. Epub Sep. 20, 2017.
Chen et al., Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. Oct. 2013;65(10):1357-69. doi: 10.1016/j.addr.2012.09.039. Epub Sep. 29, 2012.
Chen et al., Highly Efficient Mouse Genome Editing by CRISPR Ribonucleoprotein Electroporation of Zygotes. J Biol Chem. Jul. 8, 2016;291(28):14457-67. doi: 10.1074/jbc.M116.733154. Epub May 5, 2016.
Chen et al., m(6)a RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell. Mar. 5, 2015;16(3):289-301. doi: 10.1016/j.stem.2015.01.016. Epub Feb. 12, 2015.
Chen et al., Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G. Nature. Mar. 6, 2008;452(7183):116-9. doi: 10.1038/nature06638. Epub Feb. 20, 2008.
Chesnoy et al., Structure and function of lipid-DNA complexes for gene delivery. Annu Rev Biophys Biomol Struct. 2000;29:27-47.
Chew et al., A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods. Oct. 2016;13(10):868-74. doi: 10.1038/nmeth.3993. Epub Sep. 5, 2016.
Chew et al., A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods. Oct. 2016;13(10):868-74. doi: 10.1038/nmeth.3993. Epub Sep. 5, 2016. Supplementary Information.
Chichili et al., Linkers in the structural biology of protein-protein interactions. Protein Science. 2013;22:153-67.
Chin, Expanding and reprogramming the genetic code of cells and animals. Annu Rev Biochem. 2014;83:379-408. doi: 10.1146/annurev-biochem-060713-035737. Epub Feb. 2014.
Chipev et al., A leucine—proline mutation in the H1 subdomain of keratin 1 causes epidermolytic hyperkeratosis. Cell. Sep. 4, 1992;70(5):821-8.
Cho et al., Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases. Genome Res. Jan. 2014;24(1):132-41. doi: 10.1101/gr.162339.113. Epub Nov. 19, 2013.
Cho et al., Site-specific recombination of bacteriophage P22 does not require integration host factor. J Bacteriol. Jul. 1999;181(14):4245-9. doi: 10.1128/JB.181.14.4245-4249.1999.
Cho et al., Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. Mar. 2013;31(3):230-2. doi: 10.1038/nbt.2507. Epub Jan. 29, 2013.
Choe et al., Forging Ahead through Darkness: PCNA, Still the Principal Conductor at the Replication Fork. Mol Cell. Feb. 2, 2017;65(3):380-392. doi: 10.1016/j.molcel.2016.12.020.
Choi et al., N(6)-methyladenosine in mRNA disrupts tRNA selection and translation-elongation dynamics. Nat Struct Mol Biol. Feb. 2016;23(2):110-5. doi: 10.1038/nsmb.3148. Epub Jan. 2016.
Choi et al., Protein trans-splicing and characterization of a split family B-type DNA polymerase from the hyperthermophilic archaeal parasite Nanoarchaeum equitans. J Mol Biol. Mar. 10, 2006;356(5):1093-106. doi: 10.1016/j.jmb.2005.12.036. Epub Dec. 27, 2005.
Chong et al., Modulation of protein splicing of the Saccharomyces cerevisiae vacuolar membrane ATPase intein. J Biol Chem. Apr. 24, 1998;273(17):10567-77. doi: 10.1074/jbc.273.17.10567.
Chong et al., Utilizing the C-terminal cleavage activity of a protein splicing element to purify recombinant proteins in a single chromatographic step. Nucleic Acids Res. Nov. 15, 1998;26(22):5109-15. doi: 10.1093/nar/26.22.5109.
Chong et al., Protein splicing involving the Saccharomyces cerevisiae VMA intein. The steps in the splicing pathway, side reactions leading to protein cleavage, and establishment of an in vitro splicing system. J Biol Chem. Sep. 6, 1996;271(36):22159-68. doi: 10.1074/jbc.271.36.22159.
Chong et al., Protein splicing of the Saccharomyces cerevisiae VMA intein without the endonuclease motifs. J Biol Chem. Jun. 20, 1997;272(25):15587-90. doi: 10.1074/jbc.272.25.15587.
Chong et al., Single-column purification of free recombinant proteins using a self-cleavable affinity tag derived from a protein splicing element. Gene. Jun. 19, 1997;192(2):271-81. doi: 10.1016/s0378-1119(97)00105-4.
Choudhury et al., Engineering RNA endonucleases with customized sequence specificities. Nat Commun. 2012;3:1147. doi: 10.1038/ncomms2154.
Choulika et al., Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccharomyces cerevisiae. Mol Cell Biol. Apr. 1995;15(4):1968-73. doi: 10.1128/MCB.15.4.1968.
Christian et al, Targeting G with TAL effectors: a comparison of activities of TALENs constructed with NN and NK repeat variable di-residues. PLoS One. 2012;7(9):e45383. doi: 10.1371/journal.pone.0045383. Epub Sep. 24, 2012.
Christian et al., Targeting DNA double-strand breaks with TAL effector nucleases. Genetics. Oct. 2010;186(2):757-61. Doi: 10.1534/genetics.110.120717. Epub Jul. 26, 2010.
Christiansen et al., Characterization of the lactococcal temperate phage TP901-1 and its site-specific integration. J Bacteriol. Feb. 1994;176(4):1069-76. doi: 10.1128/jb.176.4.1069-1076.1994.
Chu et al., Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat Biotech. Feb. 13, 2015;33:543-8.
Chuai et al., DeepCRISPR: optimized CRISPR guide RNA design by deep learning. Genome Biol. Jun. 26, 2018;19(1):80. doi: 10.1186/s13059-018-1459-4.
Chuai et al., In Silico Meets in Vivo: Towards Computational CRISPR-Based sgRNA Design. Trends Biotechnol. Jan. 2017;35(1):12-21. doi: 10.1016/j.tibtech.2016.06.008. Epub Jul. 11, 2016.
Chuang et al., Novel Heterotypic Rox Sites for Combinatorial Dre Recombination Strategies. G3 (Bethesda). Dec. 29, 2015;6(3):559-71. doi: 10.1534/g3.115.025841.
Chujo et al, Trmt61B is a methyltransferase responsible for 1-methyladenosine at position 58 of human mitochondrial tRNAs. RNA. Dec. 2012;18(12):2269-76. doi: 10.1261/rna.035600.112. Epub Oct. 24, 2012.
Chung-Il et al., Artificial control of gene expression in mammalian cells by modulating RNA interference through aptamer-small molecule interaction. RNA. May 2006;12(5):710-6. Epub Apr. 10, 2006.
Chylinski et al., The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems. RNA Biol. May 2013;10(5):726-37. doi: 10.4161/rna.24321. Epub Apr. 5, 2013.
Clackson et al., Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity. Proc Natl Acad Sci U S A. Sep. 1, 1998;95(18):10437-42. doi: 10.1073/pnas.95.18.10437.
Clement et al., CRISPResso2 provides accurate and rapid genome editing sequence analysis. Nat Biotechnol. Mar. 2019;37(3):224-226. doi: 10.1038/s41587-019-0032-3.
Cobb et al., Directed evolution as a powerful synthetic biology tool. Methods. Mar. 15, 2013;60(1):81-90. doi: 10.1016/j.ymeth.2012.03.009. Epub Mar. 23, 2012.
Cokol et al., Finding nuclear localization signals. EMBO Rep. Nov. 2000;1(5):411-5. doi: 10.1093/embo-reports/kvd092.
Cole et al., Reconstructing evolutionary adaptive paths for protein engineering. Methods Mol Biol. 2013;978:115-25. doi: 10.1007/978-1-62703-293-3_8.
Cole-Strauss et al., Correction of the mutation responsible for sickle cell anemia by an RNA-DNA oligonucleotide. Science. Sep. 6, 1996;273(5280):1386-9.
Collinge, Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci. 2001;24:519-50. doi: 10.1146/annurev.neuro.24.1.519.
Cong et al., Multiplex genome engineering using CRISPR/Cas systems. Science. Feb. 15, 2013;339(6121):819-23. doi: 10.1126/science.1231143. Epub Jan. 3, 2013.
Conrad et al., A Kaposi's sarcoma virus RNA element that increases the nuclear abundance of intronless transcripts. EMBO J. May 18, 2005;24(10):1831-41. doi: 10.1038/sj.emboj.7600662. Epub Apr. 28, 2005.
Conticello, The AID/APOBEC family of nucleic acid mutators. Genome Biol. 2008;9(6):229. doi: 10.1186/gb-2008-9-6-229. Epub Jun. 17, 2008.
Cornu et al., Refining strategies to translate genome editing to the clinic. Nat Med. Apr. 3, 2017;23(4):415-423. doi: 10.1038/nm.4313.
Costa et al., Frequent use of the same tertiary motif by self-folding RNAs. EMBO J. Mar. 15, 1995;14(6):1276-85.
Cotton et al., Insertion of a Synthetic Peptide into a Recombinant Protein Framework:? A Protein Biosensor. J. Am. Chem. Soc. Jan. 22, 1999; 121(5):1100-1. https://doi.org/10.1021/ja983804b.
Covino et al., The CCL2/CCR2 Axis in the Pathogenesis of HIV-1 Infection: A New Cellular Target for Therapy? Current Drug Targets Dec. 2016;17(1):76-110. DOI : 10.2174/138945011701151217110917.
Cox et al., Conditional gene expression in the mouse inner ear using Cre-loxP. J Assoc Res Otolaryngol. Jun. 2012;13(3):295-322. doi: 10.1007/s10162-012-0324-5. Epub Apr. 24, 2012.
Cox et al., RNA editing with CRISPR-Cas13. Science. Nov. 24, 2017;358(6366):1019-1027. doi: 10.1126/science.aaq0180. Epub Oct. 25, 2017.
Cox et al., Therapeutic genome editing: prospects and challenges. Nat Med. Feb. 2015;21(2):121-31. doi: 10.1038/nm.3793.
Cox, Proteins pinpoint double strand breaks. Elife. Oct. 29, 2013;2:e01561. doi: 10.7554/eLife.01561.
Crabtree et al., Three-part inventions: intracellular signaling and induced proximity. Trends Biochem Sci. Nov. 1996;21(11):418-22. doi: 10.1016/s0968-0004(96)20027-1.
Cradick et al., CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Res. Nov. 1, 2013;41(20):9584-92. doi: 10.1093/nar/gkt714. Epub Aug. 11, 2013.
Cradick et al., ZFN-site searches genomes for zinc finger nuclease target sites and off-target sites. BMC Bioinformatics. May 13, 2011;12:152. doi: 10.1186/1471-2105-12-152.
Cradick et al., Zinc-finger nucleases as a novel therapeutic strategy for targeting hepatitis B virus DNAs. Mol Ther. May 2010;18(5):947-54. Doi: 10.1038/mt.2010.20. Epub Feb. 16, 2010.
Crick, On protein synthesis. Symp Soc Exp Biol. 1958;12:138-63.
Crystal, Transfer of genes to humans: early lessons and obstacles to success. Science. Oct. 20, 1995;270(5235):404-10. doi: 10.1126/science.270.5235.404.
Cui et al., Consequences of Cas9 cleavage in the chromosome of Escherichia coli. Nucleic Acids Res. May 19, 2016;44(9):4243-51. doi: 10.1093/nar/gkw223. Epub Apr. 8, 2016.
Cui et al., m6A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells. Cell Rep. Mar. 14, 2017;18(11):2622-2634. doi: 10.1016/j.celrep.2017.02.059.
Cui et al., Review of CRISPR/Cas9 sgRNA Design Tools. Interdiscip Sci. Jun. 2018;10(2):455-465. doi: 10.1007/s12539-018-0298-z. Epub Apr. 11, 2018.
Cui et al., Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol. Jan. 2011;29(1):64-7. Doi: 10.1038/nbt.1731. Epub Dec. 12, 2010.
Cunningham et al., Ensembl 2015. Nucleic Acids Res. Jan. 2015;43(Database issue):D662-9. doi: 10.1093/nar/gku1010. Epub Oct. 28, 2014.
Cupples et al., A set of lacZ mutations in Escherichia coli that allow rapid detection of each of the six base substitutions. Proc Natl Acad Sci U S A. Jul. 1989;86(14):5345-9.
D'Adda di Fagagna et al., The Gam protein of bacteriophage Mu is an orthologue of eukaryotic Ku. EMBO Rep. Jan. 2003;4(1):47-52.
Dahlem et al., Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet. 2012;8(8):e1002861. doi: 10.1371/journal.pgen.1002861. Epub Aug. 16, 2012.
Dahlgren et al., A novel mutation in ribosomal protein S4 that affects the function of a mutated RF1. Biochimie. Aug. 2000;82(8):683-91.
Dahlman et al., Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease. Nat Biotechnol. Nov. 2015;33(11):1159-61. doi: 10.1038/nbt.3390.
Dandage et al., beditor: A Computational Workflow for Designing Libraries of Guide RNAs for CRISPR-Mediated Base Editing. Genetics. Jun. 2019;212(2):377-385. doi: 10.1534/genetics.119.302089. Epub Apr. 1, 2019.
Dang et al., Optimizing sgRNA structure to improve CRISPR-Cas9 knockout efficiency. Genome Biol. Dec. 15, 2015;16:280. doi: 10.1186/s13059-015-0846-3.
Das et al.,The crystal structure of the monomeric reverse transcriptase from Moloney murine leukemia virus. Structure. May 2004;12(5):819-29. doi: 10.1016/j.str.2004.02.032.
Dassa et al., Fractured genes: a novel genomic arrangement involving new split inteins and a new homing endonuclease family. Nucleic Acids Res. May 2009;37(8):2560-73. doi: 10.1093/nar/gkp095. Epub Mar. 5, 2009.
Dassa et al., Trans protein splicing of cyanobacterial split inteins in endogenous and exogenous combinations. Biochemistry. Jan. 9, 2007;46(1):322-30. doi: 10.1021/bi0611762.
Datsenko et al., One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. Jun. 6, 2000;97(12):6640-5.
Davis et al., DNA double strand break repair via non-homologous end-joining. Transl Cancer Res. Jun. 2013;2(3):130-143.
Davis et al., Small molecule-triggered Cas9 protein with improved genome-editing specificity. Nat Chem Biol. May 2015;11(5):316-8. doi: 10.1038/nchembio.1793. Epub Apr. 6, 2015.
De Felipe et al., Co-translational, intraribosomal cleavage of polypeptides by the foot-and-mouth disease virus 2A peptide. J Biol Chem. Mar. 28, 2003;278(13):11441-8. doi: 10.1074/jbc.M211644200. Epub Jan. 8, 2003.
De Souza, Primer: genome editing with engineered nucleases. Nat Methods. Jan. 2012;9(1):27.
De Wit et al., the Human CD4+ T Cell Response against Mumps Virus Targets a Broadly Recognized Nucleoprotein Epitope. J Virol. Mar. 5, 2019;93(6):e01883-18. doi: 10.1128/JVI.01883-18.
Dean et al., Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science. Sep. 27, 1996;273(5283):1856-62. doi: 10.1126/science.273.5283.1856.
DeKosky et al., Large-scale sequence and structural comparisons of human naive and antigen-experienced antibody repertoires. Proc Natl Acad Sci U S A. May 10, 2016;113(19):E2636-45. doi: 10.1073/pnas.1525510113. Epub Apr. 25, 2016.
Delebecque et al., Organization of intracellular reactions with rationally designed RNA assemblies. Science. Jul. 22, 2011;333(6041):470-4. doi: 10.1126/science.1206938. Epub Jun. 23, 2011.
Deltcheva et al., CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. Mar. 31, 2011;471(7340):602-7. doi: 10.1038/nature09886.
Deng et al., Widespread occurrence of N6-methyladenosine in bacterial mRNA. Nucleic Acids Res. Jul. 27, 2015;43(13):6557-67. doi: 10.1093/nar/gkv596. Epub Jun. 11, 2015.
Deriano et al., Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu Rev Genet. 2013;47:433-55. doi: 10.1146/annurev-genet-110711-155540. Epub Sep. 11, 2013.
Deussing, Targeted mutagenesis tools for modelling psychiatric disorders. Cell Tissue Res. Oct. 2013;354(1):9-25. doi: 10.1007/s00441-013-1708-5. Epub Sep. 10, 2013.
Dever et al., CRISPR/Cas9 ?-globin gene targeting in human haematopoietic stem cells. Nature. Nov. 17, 2016;539(7629):384-389. doi: 10.1038/nature20134. Epub Nov. 7, 2016.
Dicarlo et al., Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research Apr. 2013;41(7):4336-43.
Dicarlo et al., Safeguarding CRISPR-Cas9 gene drives in yeast. Nat Biotechnol. Dec. 2015;33(12):1250-1255. doi: 10.1038/nbt.3412. Epub Nov. 16, 2015.
Dickey et al., Single-stranded DNA-binding proteins: multiple domains for multiple functions. Structure. Jul. 2, 2013;21(7):1074-84. doi: 10.1016/j.str.2013.05.013.
Dickinson et al., Experimental interrogation of the path dependence and stochasticity of protein evolution using phage-assisted continuous evolution. Proc Natl Acad Sci USA. May 2013;110(22):9007-12.
Dillon, Regulating gene expression in gene therapy. Trends Biotechnol. May 1993;11(5):167-73. doi: 10.1016/0167-7799(93)90109-M.
Ding et al., A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell. Feb. 7, 2013;12(2):238-51. Doi: 10.1016/j.stem.2012.11.011. Epub Dec. 13, 2012.
Ding et al., Permanent alteration of PCSK9 with in vivo CRISPR-Cas9 genome editing. Circ Res. Aug. 15, 2014;115(5):488-92. doi: 10.1161/CIRCRESAHA.115.304351. Epub Jun. 10, 2014.
Dingwall et al., Nuclear targeting sequences—a consensus? Trends Biochem Sci. Dec. 1991;16(12):478-81. doi: 10.1016/0968-0004(91)90184-w.
Diver et al., Single-Step Synthesis of Cell-Permeable Protein Dimerizers That Activate Signal Transduction and Gene Expression. J. Am. Chem. Soc. Jun. 4, 1997;119(22):5106-5109. https://doi.org/10.1021/ja963891c.
Dixon et al., Reengineering orthogonally selective riboswitches. Proc Natl Acad Sci U S A. Feb. 16, 2010;107(7):2830-5. doi: 10.1073/pnas.0911209107. Epub Jan. 26, 2010.
Doench et al., Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. Feb. 2016;34(2):184-191. doi: 10.1038/nbt.3437.
Doman et al., Evaluation and minimization of Cas9-independent off-target DNA editing by cytosine base editors. Nat Biotechnol. May 2020;38(5):620-628. doi: 10.1038/s41587-020-0414-6. Epub Feb. 10, 2020.
Dominissini et al., Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. Apr. 29, 2012;485(7397):201-6. doi: 10.1038/nature11112.
Dorgan et al., An enzyme-coupled continuous spectrophotometric assay for S-adenosylmethionine-dependent methyltransferases. Anal Biochem. Mar. 15, 2006;350(2):249-55. doi: 10.1016/j.ab.2006.01.004. Epub Feb. 7, 2006.
Dormiani et al., Long-term and efficient expression of human β-globin gene in a hematopoietic cell line using a new site-specific integrating non-viral system. Gene Ther. Aug. 2015;22(8):663-74. doi: 10.1038/gt.2015.30. Epub Apr. 1, 2015.
Doudna et al., Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science. Nov. 28, 2014;346(6213):1258096. doi: 10.1126/science.1258096.
Dove et al., Conversion of the omega subunit of Escherichia coli RNA polymerase into a transcriptional activator or an activation target. Genes Dev. Mar. 1, 1998;12(5):745-54.
Doyon et al., Directed evolution and substrate specificity profile of homing endonuclease I-Scel. J Am Chem Soc. Feb. 22, 2006;128(7):2477-84.
Doyon et al., Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nat Biotechnol. Jun. 2008;26(6):702-8. Doi: 10.1038/nbt1409. Epub May 25, 2008.
Drake, A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci U S A. Aug. 15, 1991;88(16):7160-4.
Dubois et al., Retroviral RNA Dimerization: From Structure to Functions. Front Microbiol. Mar. 22, 2018;9:527. doi: 10.3389/fmicb.2018.00527.
Dumas et al., Designing logical codon reassignment—Expanding the chemistry in biology. Chem Sci. Jan. 1, 2015;6(1):50-69. doi: 10.1039/c4sc01534g. Epub Jul. 14, 2014. Review.
Dunaime, Breakthrough method means CRISPR just got a lot more relevant to human health. The Verge. Apr. 20, 2016. http://www.theverge.com/2016/4/20/11450262/crispr-base-editing-single-nucleotides-dna-gene-liu-harvard.
Dunbar et al., Gene therapy comes of age. Science. Jan. 12, 2018;359(6372):eaan4672. doi: 10.1126/science.aan4672.
Dupuy et al., Le syndrome de De La Chapelle [De La Chapelle syndrome]. Presse Med. Mar. 3, 2001;30(8):369-72. French.
Durai et al., A bacterial one-hybrid selection system for interrogating zinc finger-DNA interactions. Comb Chem High Throughput Screen. May 2006;9(4):301-11.
Durai et al., Zinc finger nucleases: custom-designed molecular scissors for genome engineering of plant and mammalian cells. Nucleic Acids Res. Oct. 26, 2005;33(18):5978-90. doi: 10.1093/nar/gki912.
During et al., Controlled release of dopamine from a polymeric brain implant: in vivo characterization. Ann Neurol. Apr. 1989;25(4):351-6.
East-Seletsky et al., Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature Oct. 2016;538(7624):270-3.
Edlund et al., Cell-specific expression of the rat insulin gene: evidence for role of two distinct 5′ flanking elements. Science. Nov. 22, 1985;230(4728):912-6. doi: 10.1126/science.3904002.
Edwards et al., An Escherichia coli tyrosine transfer RNA is a leucine-specific transfer RNA in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. Feb. 15, 1991;88(4):1153-6.
Edwards et al., Crystal structures of the thi-box riboswitch bound to thiamine pyrophosphate analogs reveal adaptive RNA-small molecule recognition. Structure. Sep. 2006;14(9):1459-68.
Eick et al., Robustness of Reconstructed Ancestral Protein Functions to Statistical Uncertainty. Mol Biol Evol. Feb. 1, 2017;34(2):247-261. doi: 10.1093/molbev/msw223.
Eiler et al., Structural Basis for the Fast Self-Cleavage Reaction Catalyzed by the Twister Ribozyme. Proc Natl Acad Sci U S A. Sep. 9, 2014;111(36):13028-33. doi: 10.1073/pnas.1414571111. Epub Aug. 25, 2014.
Eltoukhy et al., Nucleic acid-mediated intracellular protein delivery by lipid-like nanoparticles. Biomaterials. Aug. 2014;35(24):6454-61. doi: 10.1016/j.biomaterials.2014.04.014. Epub May 13, 2014.
Endo et al., Toward establishing an efficient and versatile gene targeting system in higher plants. Biocatalysis and Agricultural Biotechnology 2014;3,(1):2-6.
Engel et al., The emerging role of mRNA methylation in normal and pathological behavior. Genes Brain Behay. Mar. 2018;17(3):e12428. doi: 10.1111/gbb.12428. Epub Nov. 17, 2017.
Engelward et al., Base excision repair deficient mice lacking the Aag alkyladenine DNA glycosylase. Proc Natl Acad Sci U S A. Nov. 25, 1997;94(24):13087-92.
England, Unnatural amino acid mutagenesis: a precise tool for probing; protein structure and function. Biochemistry. Sep. 21, 2004;43(37):11623-9.
Enyeart et al., Biotechnological applications of mobile group II introns and their reverse transcriptases: gene targeting, RNA-seq, and non-coding RNA analysis. Mobile DNA 5, 2 (2014). https://doi.org/10.1186/1759-8753-5-2. https://doi.org/10.1186/1759-8753-5-2.
Eriksson et al., Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature. May 15, 2003;423(6937):293-8. doi: 10.1038/nature01629. Epub Apr. 25, 2003. PMID: 12714972.
Esvelt et al., A system for the continuous directed evolution of biomolecules. Nature. Apr. 28, 2011;472(7344):499-503. doi: 10.1038/nature09929. Epub Apr. 10, 2011.
Esvelt et al., Genome-scale engineering for systems and synthetic biology. Mol Syst Biol. 2013;9:641. doi: 10.1038/msb.2012.66.
Esvelt et al., Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat Methods. Nov. 2013;10(11):1116-21. doi: 10.1038/nmeth.2681. Epub Sep. 29, 2013.
Evans et al., Protein trans-splicing and cyclization by a naturally split intein from the dnaE. gene of Synechocystis species PCC6803. J Biol Chem. Mar. 31, 2000;275(13):9091-4. doi: 10.1074/jbc.275.13.9091.
Evans et al., Semisynthesis of cytotoxic proteins using a modified protein splicing element. Protein Sci. Nov. 1998;7(11):2256-64. doi: 10.1002/pro.5560071103.
Evans et al., The cyclization and polymerization of bacterially expressed proteins using modified self-splicing inteins. J Biol Chem. Jun. 25, 1999;274(26):18359-63. doi: 10.1074/jbc.274.26.18359.
Evans et al., The in vitro ligation of bacterially expressed proteins using an intein from Methanobacterium thermoautotrophicum. J Biol Chem. Feb. 12, 1999;274(7):3923-6. doi: 10.1074/jbc.274.7.3923.
Evers et al., CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. Nat Biotechnol. Jun. 2016;34(6):631-3. doi: 10.1038/nbt.3536. Epub Apr. 25, 2016.
Extended European Search Report for EP 15830407.1, dated Mar. 2, 2018.
Fagerlund et al., The Cpf1 CRISPR-Cas protein expands genome-editing tools. Genome Biology Nov. 17, 2015;16:251. https://doi.org/10.1186/s13059-015-0824-9.
Falnes et al., DNA repair by bacterial AlkB proteins. Res Microbiol. Oct. 2003;154(8):531-8. doi: 10.1016/S0923-2508(03)00150-5.
Falnes et al., Repair of methyl lesions in DNA and RNA by oxidative demethylation. Neuroscience. Apr. 14, 2007;145(4):1222-32. doi: 10.1016/j.neuroscience.2006.11.018. Epub Dec. 18, 2006.
Fang et al., Synthetic Studies Towards Halichondrins: Synthesis of the Left Halves of Norhalichondrins and Homohalichondrins. Tetrahedron Letters 1992;33(12):1557-1560.
Farhood et al., Codelivery to mammalian cells of a transcriptional factor with cis-acting element using cationic liposomes. Anal Biochem. Feb. 10, 1995;225(1):89-93.
Fawcett et al., Transposable elements controlling I-R hybrid dysgenesis in D. melanogaster are similar to mammalian LINEs. Cell. Dec. 26, 1986;47(6):1007-15. doi: 10.1016/0092-8674(86)90815-9.
Feldstein et al., Two sequences participating in the autolytic processing of satellite tobacco ringspot virus complementary Rna. Gene. Oct. 15, 1989;82(1):53-61. doi: 10.1016/0378-1119(89)90029-2.
Felletti et al., Twister Ribozymes as Highly Versatile Expression Platforms for Artificial Riboswitches. Nat Commun. Sep. 27, 2016;7:12834. doi: 10.1038/ncomms12834.
Feng et al., Crystal structures of the human RNA demethylase Alkbh5 reveal basis for substrate recognition. J Biol Chem. Apr. 25, 2014;289(17):11571-11583. doi: 10.1074/jbc.M113.546168. Epub Mar. 10, 2014.
Feng et al., Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell. Nov. 29, 1996;87(5):905-16. doi: 10.1016/s0092-8674(00)81997-2.
Ferry et al., Rational design of inducible CRISPR guide RNAs for de novo assembly of transcriptional programs. Nat Commun. Mar. 3, 2017;8:14633. doi: 10.1038/ncomms14633.
Feuk, Inversion variants in the human genome: role in disease and genome architecture. Genome Med. Feb. 12, 2010;2(2):11. doi: 10.1186/gm132.
Filippov et al., A novel type of RNase III family proteins in eukaryotes. Gene. Mar. 7, 2000;245(1):213-21. doi: 10.1016/s0378-1119(99)00571-5.
Fine et al., Trans-spliced Cas9 allows cleavage of HBB and CCR5 genes in human cells using compact expression cassettes. Scientific Reports 2015;5(1):Article No. 10777. doi:10.1038/srep10777. With Supplementary Information.
Fire et al., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. Feb. 19, 1998;391(6669):806-11. doi: 10.1038/35888.
Fischer et al., Cryptic epitopes induce high-titer humoral immune response in patients with cancer. J Immunol. Sep. 1, 2010;185(5):3095-102. doi: 10.4049/jimmunol.0902166. Epub Jul. 26, 2010.
Fitzjohn, Diversitree: comparative phylogenetic analyses of diversification in R. Methods in Evology and Evolution. Dec. 2012;3(6):1084-92 .doi: 10.1111/j.2041-210X.2012.00234.x.
Flajolet et al., Woodchuck hepatitis virus enhancer I and enhancer II are both involved in N-myc2 activation in woodchuck liver tumors. J Virol. Jul. 1998;72(7):6175-80. doi: 10.1128/JVI.72.7.6175-6180.1998.
Flaman et al., A rapid PCR fidelity assay. Nucleic Acids Res. Aug. 11, 1994;22(15):3259-60. doi: 10.1093/nar/22.15.3259.
Fogg et al., New applications for phage integrases. J Mol Biol. Jul. 29, 2014;426(15):2703-16. doi: 10.1016/j.jmb.2014.05.014. Epub May 22, 2014.
Fogg et al., Genome Integration and Excision by a New Streptomyces Bacteriophage, Joe. Appl Environ Microbiol. Feb. 15, 2017;83(5):e02767-16. doi: 10.1128/AEM.02767-16.
Fonfara et al., Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res. Feb. 2014;42(4):2577-90. doi: 10.1093/nar/gkt1074. Epub Nov. 22, 2013.
Forster et al., Self-cleavage of virusoid RNA is performed by the proposed 55-nucleotide active site. Cell. Jul. 3, 1987;50(1):9-16. doi: 10.1016/0092-8674(87)90657-x.
Fouts et al., Sequencing Bacillus anthracis typing phages gamma and cherry reveals a common ancestry. J Bacteriol. May 2006;188(9):3402-8. doi: 10.1128/JB.188.9.3402-3408.2006.
Freitas et al., Mechanisms and signals for the nuclear import of proteins. Curr Genomics. Dec. 2009;10(8):550-7. doi: 10.2174/138920209789503941.
Freshney, Culture of Animal Cells. A Manual of Basic Technique. Alan R. Liss, Inc. New York. 1983;4.
Fu et al., Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol. Mar. 2014;32(3):279-84. doi: 10.1038/nbt.2808. Epub Jan. 26, 2014.
Fu et al., High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol. Sep. 2013;31(9):822-6. doi: 10.1038/nbt.2623. Epub Jun. 23, 2013.
Fu et al., Promises and Pitfalls of Intracellular Delivery of Proteins. Bioconjugate Chemistry. Aug. 2014;25:1602-8.
Fuchs et al., Polyarginine as a multifunctional fusion tag. Protein Sci. Jun. 2005;14(6):1538-44.
Fujisawa et al., Disease-associated mutations in CIAS1 induce cathepsin B-dependent rapid cell death of human THP-1 monocytic cells. Blood. Apr. 1, 2007;109(7):2903-11.
Fukui et al., DNA Mismatch Repair in Eukaryotes and Bacteria. J Nucleic Acids. Jul. 27, 2010;2010. pii: 260512. doi: 10.4061/2010/260512.
Fung et al., Repair at single targeted DNA double-strand breaks in pluripotent and differentiated human cells. PLoS One. 2011;6(5):e20514. doi: 10.1371/journal.pone.0020514. Epub May 25, 2011.
Furukawa et al., In vitro selection of allosteric ribozymes that sense the bacterial second messenger c-di-GMP. Methods Mol Biol. 2014;1111:209-20. doi: 10.1007/978-1-62703-755-6_15.
Gaj et al., 3rd. Genome engineering with custom recombinases. Methods Enzymol. 2014;546:79-91. doi: 10.1016/B978-0-12-801185-0.00004-0.
Gaj et al., A comprehensive approach to zinc-finger recombinase customization enables genomic targeting in human cells. Nucleic Acids Res. Feb. 6, 2013;41(6):3937-46.
Gaj et al., Enhancing the specificity of recombinase-mediated genome engineering through dimer interface redesign. J Am Chem Soc. Apr. 2, 2014;136(13):5047-56. doi: 10.1021/ja4130059. Epub Mar. 20, 2014.
Gaj et al., Expanding the scope of site-specific recombinases for genetic and metabolic engineering. Biotechnol Bioeng. Jan. 2014;111(1):1-15. doi: 10.1002/bit.25096. Epub Sep. 13, 2013.
Gaj et al., ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. Jul. 2013;31(7):397-405. doi: 10.1016/j.tibtech.2013.04.004. Epub May 9, 2013.
Gajula, Designing an Elusive CoG?GoC CRISPR Base Editor. Trends Biochem Sci. Feb. 2019;44(2):91-94. doi: 10.1016/j.tibs.2018.10.004. Epub Nov. 13, 2018.
Gallo et al., A novel pathogenic PSEN1 mutation in a family with Alzheimer's disease: phenotypical and neuropathological features. J Alzheimers Dis. 2011;25(3):425-31. doi: 10.3233/JAD-2011-110185.
Gao et al., Cationic liposome-mediated gene transfer. Gene Ther. Dec. 1995;2(10):710-22.
Gao et al., DNA-guided genome editing using the Natronobacterium gregoryi Argonaute. Nat Biotechnol. Jul. 2016;34(7):768-73. doi: 10.1038/nbt.3547. Epub May 2, 2016.
Gao et al., Self-processing of ribozyme-flanked RNAs into guide RNAs in vitro and in vivo for CRISPR-mediated genome editing. J Integr Plant Biol. Apr. 2014;56(4):343-9. doi: 10.1111/jipb.12152. Epub Mar. 6, 2014.
Gao et al., Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature. Jan. 11, 2018;553(7687):217-221. doi: 10.1038/nature25164. Epub Dec. 20, 2017.
Garcia et al., Transglycosylation: a mechanism for RNA modification (and editing?). Bioorg Chem. Jun. 2005;33(3):229-51. doi: 10.1016/j.bioorg.2005.01.001. Epub Feb. 23, 2005.
Gardlik et al., Vectors and delivery systems in gene therapy. Med Sci Monit. Apr. 2005;11(4):RA110-21. Epub Mar. 24, 2005.
Garibyan et al., Use of the rpoB gene to determine the specificity of base substitution mutations on the Escherichia coli chromosome. DNA Repair (Amst). May 13, 2003;2(5):593-608.
Garneau et al., The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature. Nov. 4, 2010;468(7320):67-71. doi: 10.1038/nature09523.
Gasiunas et al., Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A. Sep. 25, 2012;109(39):E2579-86. Epub Sep. 4, 2012. Supplementary materials included.
Gasiunas et al., RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing? Trends Microbiol. Nov. 2013;21(11):562-7. doi: 10.1016/j.tim.2013.09.001. Epub Oct. 1, 2013.
Gaudelli et al., Programmable base editing of AoT to GoC in genomic DNA without DNA cleavage. Nature. Nov. 23, 2017;551(7681):464-471. doi: 10.1038/nature24644. Epub Oct. 25, 2017. Erratum in: Nature. May 2, 2018.
Gehrke et al., An APOBEC3A-Cas9 base editor with minimized bystander and off-target activities. Nat Biotechnol. Nov. 2018;36(10):977-982. doi: 10.1038/nbt.4199. Epub Jul. 30, 2018.
GenBank Accession No. J01600.1. Brooks et al., E.coli dam gene coding for DNA adenine methylase. Apr. 26, 1993.
GenBank Accession No. U07651.1. Lu, Escherichia coli K12 negative regulator of replication initiation (seqA) gene, complete cds. Jul. 19, 1994.
Genbank Submission; NIH/NCBI Accession No. NM_001319224.2. Umar et al., Apr. 21, 2021. 7 pages.
Genbank Submission; NIH/NCBI Accession No. NM_006027.4. Umar et al., Apr. 10, 2021. 7 pages.
Genbank Submission; NIH/NCBI, Accession No. AAA66622.1. Martinelli et al., May 18, 1995. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. AGT42196. Farzadfar et al., Nov. 2, 2013. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. APG80656.1. Burstein et al., Dec. 10, 2016. 1 pages.
Genbank Submission; NIH/NCBI, Accession No. AYD60528.1. Ram et al., Oct. 2, 2018. 1 page.
Genbank Submission; NIH/NCBI, Accession No. J04623. Kita et al., Apr. 26, 1993. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. KR710351.1. Sahni et al., Jun. 1, 2015. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. NC 002737.2. Nasser et al., Feb. 7, 2021. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. NC_002737.1. Ferretti et al., Jun. 27, 2013. 1 page.
Genbank Submission; NIH/NCBI, Accession No. NC_015683.1. Trost et al., Jul. 6, 2013. 1 page.
Genbank Submission; NIH/NCBI, Accession No. NC_016782.1. Trost et al., Jun. 11, 2013. 1 page.
Genbank Submission; NIH/NCBI, Accession No. NC_016786.1. Trost et al., Aug. 28, 2013. 1 page.
Genbank Submission; NIH/NCBI, Accession No. NC_017053.1. Fittipaldi et al., Jul. 6, 2013. 1 page.
Genbank Submission; NIH/NCBI, Accession No. NC_017317.1. Trost et al., Jun. 11, 2013. 1 page.
Genbank Submission; NIH/NCBI, Accession No. NC_017861.1. Heidelberg et al., Jun. 11, 2013. 1 page.
Genbank Submission; NIH/NCBI, Accession No. NC_018010.1. Lucas et al., Jun. 11, 2013. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. NC_018721.1. Feng et al., Jun. 11, 2013. 1 pages.
Genbank Submission; NIH/NCBI, Accession No. NC_021284.1. Ku et al., Jul. 12, 2013. 1 page.
Genbank Submission; NIH/NCBI, Accession No. NC_021314.1. Zhang et al., Jul. 15, 2013. 1 page.
Genbank Submission; NIH/NCBI, Accession No. NC_021846.1. Lo et al., Jul. 22, 2013. 1 page.
Genbank Submission; NIH/NCBI, Accession No. NM_000311.5. Alves et al., Mar. 7, 2021. 5 pages.
Genbank Submission; NIH/NCBI, Accession No. NM_001319224. Umar et al., Apr. 21, 2021. 7 pages.
Genbank Submission; NIH/NCBI, Accession No. NM_003686. Umar et al., Apr. 9, 2021. 7 pages.
Genbank Submission; NIH/NCBI, Accession No. NM_003686.4. Umar et al., Apr. 9, 2021. 7 pages.
Genbank Submission; NIH/NCBI, Accession No. NM_006027. Umar et al., Apr. 10, 2021. 7 pages.
Genbank Submission; NIH/NCBI, Accession No. NM_174936. Guo et al., Oct. 28, 2015. 6 pages.
Genbank Submission; NIH/NCBI, Accession No. NP_000302.1. Alves et al., Mar. 7, 2021. 4 pages.
Genbank Submission; NIH/NCBI, Accession No. NP_472073.1. Glaser et al., Jun. 27, 2013. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. NP_955579.1. Chen et al., Aug. 13, 2018. 5 pages.
Genbank Submission; NIH/NCBI, Accession No. P42212. Prasher et al., Mar. 19, 2014. 7 pages.
Genbank Submission; NIH/NCBI, Accession No. QBJ66766. Duan et al. Aug. 12, 2020. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. RFF81513.1. Zhou et al., Aug. 21, 2018. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. SNX31424.1. Weckx, S., Feb. 16, 2018. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. TGH57013. Xu et al., Apr. 9, 2019. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. WP_016631044.1. Haft et al., Sep. 22, 2020. 1 page.
Genbank Submission; NIH/NCBI, Accession No. WP_031386437. No Author Listed., Sep. 23, 2019. 1 page.
Genbank Submission; NIH/NCBI, Accession No. WP_031589969.1. Haft et al., Oct. 9, 2019. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. WP_044924278.1. Haft et al., Oct. 9, 2019. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. WP_047338501.1. Haft et al., Oct. 9, 2019. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. WP_060798984.1. Haft et al., Oct. 9, 2019. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. WP_062913273.1. Haft et al., Oct. 9, 2019, 2 pages.
Genbank Submission; NIH/NCBI, Accession No. WP_072754838. No Author Listed., Sep. 23, 2019. 1 page.
Genbank Submission; NIH/NCBI, Accession No. WP_095142515.1. No Author Listed., Sep. 23, 2019. 1 page.
Genbank Submission; NIH/NCBI, Accession No. WP_118538418.1. No Author Listed., Oct. 13, 2019. 1 page.
Genbank Submission; NIH/NCBI, Accession No. WP_119223642.1. No Author Listed., Oct. 13, 2019. 1 page.
Genbank Submission; NIH/NCBI, Accession No. WP_119227726.1. No Author Listed., Oct. 13, 2019. 1 page.
Genbank Submission; NIH/NCBI, Accession No. WP_119623382.1. No Author Listed., Oct. 13, 2019. 1 page.
Genbank Submission; NIH/NCBI, Accession No. WP_132221894.1. No Author Listed., Sep. 23, 2019. 1 page.
Genbank Submission; NIH/NCBI, Accession No. WP_133478044.1. Haft et al., Oct. 9, 2019. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. YP_002342100.1. Bernardini et al., Jun. 10, 2013. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. YP_002344900.1. Gundogdu et al., Mar. 19, 2014. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. YP_009283008.1. Bernardini et al., Sep. 23, 2016. 2 pages.
Genbank Submission; NIH/NCBI, Accession No. YP_820832.1. Makarova et al., Aug. 27, 2013. 2 pages.
George et al., Adenosine deaminases acting on RNA, RNA editing, and interferon action. J Interferon Cytokine Res. Jan. 2011;31(1):99-117. doi: 10.1089/jir.2010.0097. Epub Dec. 23, 2010. PMID: 21182352; PMCID: PMC3034097.
Gerard et al., Influence on stability in Escherichia coli of the carboxy-terminal structure of cloned Moloney murine leukemia virus reverse transcriptase. DNA. Aug. 1986;5(4):271-9. doi: 10.1089/dna.1986.5.271.
Gerard et al., Purification and characterization of the DNA polymerase and RNase H activities in Moloney murine sarcoma-leukemia virus. J Virol. Apr. 1975;15(4):785-97. doi: 10.1128/JVI.15.4.785-797.1975.
Gerard et al., The role of template-primer in protection of reverse transcriptase from thermal inactivation. Nucleic Acids Res. Jul. 15, 2002;30(14):3118-29. doi: 10.1093/nar/gkf417.
Gerber et al., An adenosine deaminase that generates inosine at the wobble position of tRNAs. Science. Nov. 5, 1999;286(5442):1146-9. doi: 10.1126/science.286.5442.1146.
Gerber et al., RNA editing by base deamination: more enzymes, more targets, new mysteries. Trends Biochem Sci. Jun. 2001;26(6):376-84.
Gersbach et al., Directed evolution of recombinase specificity by split gene reassembly. Nucleic Acids Res. Jul. 2010;38(12):4198-206. doi: 10.1093/nar/gkq125. Epub Mar. 1, 2010.
Gersbach et al., Targeted plasmid integration into the human genome by an engineered zinc-finger recombinase. Nucleic Acids Res. Sep. 1, 2011;39(17):7868-78. doi: 10.1093/nar/gkr421. Epub Jun. 7, 2011.
Ghahfarokhi et al., Blastocyst Formation Rate and Transgene Expression are Associated with Gene Insertion into Safe and Non-Safe Harbors in the Cattle Genome. Sci Rep. Nov. 13, 2017;7(1):15432. doi: 10.1038/s41598-017-15648-3.
Gibson et al., Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods. May 2009;6(5):343-5. doi: 10.1038/nmeth.1318. Epub Apr. 12, 2009.
Gil, Position-dependent sequence elements downstream of AAUAAA are required for efficient rabbit beta-globin mRNA 3′ end formation. Cell. May 8, 1987;49(3):399-406. doi: 10.1016/0092-8674(87)90292-3.
Gilbert et al., CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 2013 154(2):442-51.
Gilleron et al., Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat Biotechnol. Jul. 2013;31(7):638-46. doi: 10.1038/nbt.2612. Epub Jun. 23, 2013.
Glasgow et al.,DNA-binding properties of the Hin recombinase. J Biol Chem. Jun. 15, 1989;264(17):10072-82.
Glassner et al., Generation of a strong mutator phenotype in yeast by imbalanced base excision repair. Proc Natl Acad Sci U S A. Aug. 18, 1998;95(17):9997-10002.
Goldberg et al., Epigenetics: a landscape takes shape. Cell. Feb. 23, 2007;128(4):635-8. doi: 10.1016/j.cell.2007.02.006.
Gong et al., Active DNA demethylation by oxidation and repair. Cell Res. Dec. 2011;21(12):1649-51. doi: 10.1038/cr.2011.140. Epub Aug. 23, 2011.
Gonzalez et al., An iCRISPR platform for rapid, multiplexable, and inducible genome editing in human pluripotent stem cells. Cell Stem Cell. Aug. 7, 2014;15(2):215-26. doi: 10.1016/j.stem.2014.05.018. Epub Jun. 12, 2014.
Goodnough et al., Development of a delivery vehicle for intracellular transport of botulinum neurotoxin antagonists. FEBS Lett. Feb. 27, 2002;513(2-3):163-8.
Gou et al., Designing single guide RNA for CIRSPR-Cas9 base editor by deep learning. Peer reviewed Thesis/Dissertation. UCLA Electronic Theses and Dissertations. Jan. 1, 2019. Retrieved from the Internet via https://escholarship.org/uc/item/7vf9z54t. Last accessed on Apr. 29, 2021.
Grainge et al., The integrase family of recombinase: organization and function of the active site. Mol Microbiol. Aug. 1999;33(3):449-56.
Gregory et al., Integration site for Streptomyces phage phiBT1 and development of site-specific integrating vectors. J Bacteriol. Sep. 2003;185(17):5320-3. doi: 10.1128/jb.185.17.5320-5323.2003.
Griffiths, Endogenous retroviruses in the human genome sequence. Genome Biol. 2001;2(6):REVIEWS1017. doi: 10.1186/gb-2001-2-6-reviews1017. Epub Jun. 5, 2001.
Grishok et al., Genes and Mechanisms Related to RNA Interference Regulate Expression of the Small Temporal RNAs that Control C. elegans Developmental Timing. Jul. 13, 2001:106(1):P23-4.
Groth et al., Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics. Apr. 2004;166(4):1775-82. doi: 10.1534/genetics.166.4.1775.
Gruber et al., Strategies for measuring evolutionary conservation of RNA secondary structures. BMC Bioinformatics. Feb. 26, 2008;9:122. doi: 10.1186/1471-2105-9-122.
Grunebaum et al., Recent advances in understanding and managing adenosine deaminase and purine nucleoside phosphorylase deficiencies. Curr Opin Allergy Clin Immunol. Dec. 2013;13(6):630-8. doi: 10.1097/ACI.0000000000000006.
Grünewald et al., Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors. Nature. May 2019;569(7756):433-437. doi: 10.1038/s41586-019-1161-z. Epub Apr. 17, 2019.
Guilinger et al., Broad specificity profiling of TALENs results in engineered nucleases with improved DNA-cleavage specificity. Nat Methods. Apr. 2014;11(4):429-35. doi: 10.1038/nmeth.2845. Epub Feb. 16, 2014.
Guilinger et al., Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol. Jun. 2014;32(6):577-82. doi: 10.1038/nbt.2909. Epub Apr. 25, 2014.
Gumulya et al., Exploring the past and the future of protein evolution with ancestral sequence reconstruction: the ‘retro’ approach to protein engineering. Biochem J. Jan. 1, 2017;474(1):1-19. doi: 10.1042/BCJ20160507.
Guo et al., Facile functionalization of FK506 for biological studies by the thiol—ene ‘click’ reaction. RSC Advances. 2014;22:11400-3.
Guo et al., Protein tolerance to random amino acid change. Proc Natl Acad Sci U S A. Jun. 22, 2004;101(25):9205-10. Epub Jun. 14, 2004.
Gupta et al., Cross-talk between cognate and noncognate RpoE sigma factors and Zn(2+)-binding anti-sigma factors regulates photooxidative stress response in Azospirillum brasilense. Antioxid Redox Signal. Jan. 1, 2014;20(1):42-59. doi: 10.1089/ars.2013.5314. Epub Jul. 19, 2013.
Gupta et al., Sequences in attB that affect the ability of phiC31 integrase to synapse and to activate DNA cleavage. Nucleic Acids Res. 2007;35(10):3407-19. doi: 10.1093/nar/gkm206. Epub May 3, 2007.
Guzman et al., Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol. 1995;177(14):4121-4130.
Haapaniemi et al., CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med. Jul. 2018;24(7):927-930. doi: 10.1038/s41591-018-0049-z. Epub Jun. 11, 2018.
Haddada et al., Gene therapy using adenovirus vectors. Curr Top Microbiol Immunol. 1995;199 ( Pt 3):297-306. doi: 10.1007/978-3-642-79586-2_14.
Haeussler et al., Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. Jul. 5, 2016;17(1):148. doi: 10.1186/s13059-016-1012-2.
Hale et al., RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell. Nov. 25, 2009;139(5):945-56. doi: 10.1016/j.cell.2009.07.040.
Halmai et al., Targeted CRIPSR/dCas9-mediated reactivation of epigenetically silenced genes suggests limited escape from the inactive X chromosome. 2nd Intl Conf on Epigenetics and Bioengineering. Oct. 4, 2018; Retrieved from the Internet: https://aiche.confex.com/aiche/epibio18/webprogram/paper544785.html. Retrieved Jun. 29, 2020.
Halperin et al., CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature. Aug. 2018;560(7717):248-252. doi: 10.1038/s41586-018-0384-8. Epub Aug. 1, 2018.
Halvas et al., Role of murine leukemia virus reverse transcriptase deoxyribonucleoside triphosphate-binding site in retroviral replication and in vivo fidelity. J Virol. Nov. 2000;74(22):10349-58. doi: 10.1128/jvi.74.22.10349-10358.2000.
Hamano-Takaku et al., a mutant Escherichia coli tyrosyl-tRNA synthetase utilizes the unnatural amino acid azatyrosine more efficiently than tyrosine. J Biol Chem. Dec. 22, 2000;275(51):40324-8.
Han, New CRISPR/Cas9-based Tech Edits Single Nucleotides Without Breaking DNA. Genome Web, Apr. 20, 2016. https://www.genomeweb.com/gene-silencinggene-editing/new-crisprcas9-based-tech-edits-single-nucleotides-without-breaking-dna.
Handa et al., Template-assisted synthesis of adenine-mutagenized cDNA by a retroelement protein complex. Nucleic Acids Res. Oct. 12, 2018;46(18):9711-9725. doi: 10.1093/nar/gky620.
Hanson et al., Codon optimality, bias and usage in translation and mRNA decay. Nat Rev Mol Cell Biol. Jan. 2018;19(1):20-30. doi: 10.1038/nrm.2017.91. Epub Oct. 11, 2017.
Harms et al., Evolutionary biochemistry: revealing the historical and physical causes of protein properties. Nat Rev Genet. Aug. 2013;14(8):559-71. doi: 10.1038/nrg3540.
Harrington et al., A thermostable Cas9 with increased lifetime in human plasma. Nat Commun. Nov. 10, 2017;8(1):1424. doi: 10.1038/s41467-017-01408-4.
Harris et al., RNA Editing Enzyme APOBEC1 and Some of Its Homologs Can Act as DNA Mutators. Mol Cell. Nov. 2002;10(5):1247-53.
Hartung et al., Correction of metabolic, craniofacial, and neurologic abnormalities in MPS I mice treated at birth with adeno-associated virus vector transducing the human alpha-L-iduronidase gene. Mol Ther. Jun. 2004;9(6):866-75.
Hasadsri et al., Functional protein delivery into neurons using polymeric nanoparticles. J Biol Chem. Mar. 13, 2009;284(11):6972-81. doi: 10.1074/jbc.M805956200. Epub Jan. 7, 2009.
Hasegawa et al., Spontaneous mutagenesis associated with nucleotide excision repair in Escherichia coli. Genes Cells. May 2008;13(5):459-69. doi: 10.1111/j.1365-2443.2008.01185.x.
Hayes et al., Stop codons preceded by rare arginine codons are efficient determinants of SsrA tagging in Escherichia coli. Proc Natl Acad Sci U S A. Mar. 19, 2002;99(6):3440-5. Epub Mar. 12, 2002.
Hector et al., CDKL5 variants: Improving our understanding of a rare neurologic disorder. Neurol Genet. Dec. 15, 2017;3(6):e200. doi: 10.1212/NXG.0000000000000200.
Heidenreich et al., Non-homologous end joining as an important mutagenic process in cell cycle-arrested cells. EMBO J. May 1, 2003;22(9):2274-83. doi: 10.1093/emboj/cdg203.
Heitz et al., Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol. May 2009;157(2):195-206. doi: 10.1111/j.1476-5381.2009.00057.x. Epub Mar. 20, 2009.
Held et al., In vivo correction of murine hereditary tyrosinemia type I by phiC31 integrase-mediated gene delivery. Mol Ther. Mar. 2005;11(3):399-408. doi: 10.1016/j.ymthe.2004.11.001.
Heller et al., Replisome assembly and the direct restart of stalled replication forks. Nat Rev Mol Cell Biol. Dec. 2006;7(12):932-43. Epub Nov. 8, 2006.
Hendricks et al., The S. cerevisiae Mag1 3-methyladenine DNA glycosylase modulates susceptibility to homologous recombination. DNA Repair (Amst). 2002;1(8):645-659.
Hermonat et al., Use of adeno-associated virus as a mammalian DNA cloning vector: transduction of neomycin resistance into mammalian tissue culture cells. Proc Natl Acad Sci U S A. Oct. 1984;81(20):6466-70. doi: 10.1073/pnas.81.20.6466.
Herschhorn et al., Retroviral reverse transcriptases. Cell Mol Life Sci. Aug. 2010;67(16):2717-47. doi: 10.1007/s00018-010-0346-2. Epub Apr. 1, 2010.
Herzig et al., A Novel Leu92 Mutant of HIV-1 Reverse Transcriptase with a Selective Deficiency in Strand Transfer Causes a Loss of Viral Replication. J Virol. Aug. 2015;89(16):8119-29. doi: 10.1128/JVI.00809-15. Epub May 20, 2015.
Hess et al., Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat Methods. Dec. 2016;13(12):1036-1042. doi: 10.1038/nmeth.4038. Epub Oct. 31, 2016.
Hickford et al., Antitumour polyether macrolides: four new halichondrins from the New Zealand deep-water marine sponge Lissodendoryx sp. Bioorg Med Chem. Mar. 15, 2009;17(6):2199-203. doi: 10.1016/j.bmc.2008.10.093. Epub Nov. 19, 2008.
Hida et al., Directed evolution for drug and nucleic acid; delivery. Adv Drug Deliv Rev. Dec. 22, 2007;59(15):1562-78. Epub Aug. 28, 2007.; Review.
Hill et al., Functional analysis of conserved histidines in ADP-glucose pyrophosphorylase from Escherichia coli.Biochem Biophys Res Commun. Mar. 17, 1998;244(2):573-7.
Hille et al., The Biology of CRISPR-Cas: Backward and Forward. Cell. Mar. 8, 2018;172(6):1239-1259. doi: 10.1016/j.cell.2017.11.032.
Hilton et al., Enabling functional genomics with genome engineering. Genome Res. Oct. 2015;25(10):1442-55. doi: 10.1101/gr.190124.115.
Hirano et al., Structural Basis for the Altered PAM Specificities of Engineered CRISPR-Cas9. Mol Cell. Mar. 17, 2016;61(6):886-94. doi: 10.1016/j.molcel.2016.02.018.
Hoang et al., UFBoot2: Improving the Ultrafast Bootstrap Approximation. Mol Biol Evol. Feb. 1, 2018;35(2):518-522. doi: 10.1093/molbev/msx281.
Hockemeyer et al., Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol. Sep. 2009;27(9):851-7. doi: 10.1038/nbt.1562. Epub Aug. 13, 2009.
Hockemeyer et al., Genetic engineering of human pluripotent cells using TALE nucleases. Nat Biotechnol. Jul. 7, 2011;29(8):731-4. doi: 10.1038/nbt.1927.
Hoernes et al., Translating the epitranscriptome. Wiley Interdiscip Rev RNA. Jan. 2017;8(1):e1375. doi: 10.1002/wrna.1375. Epub Jun. 27, 2016.
Holden et al., Crystal structure of the anti-viral APOBEC3G catalytic domain and functional implications. Nature. Nov. 6, 2008;456(7218):121-4. doi: 10.1038/nature07357. Epub Oct. 12, 2008.
Hollis et al., Phage integrases for the construction and manipulation of transgenic mammals. Reprod Biol Endocrinol. Nov. 7, 2003;1:79. doi: 10.1186/1477-7827-1-79.
Holsinger et al., Signal transduction in T lymphocytes using a conditional allele of Sos. Proc Natl Acad Sci U S A. Oct. 10, 1995;92(21):9810-4. doi: 10.1073/pnas.92.21.9810.
Hondares et al., Peroxisome Proliferator-activated Receptor α (PPARα) Induces PPARγ Co activator 1α (PGC-1α) Gene Expression and Contributes to Thermogenic Activation of Brown Fat. J Biol. Chem Oct. 2011; 286(50):43112-22. doi: 10.1074/jbc.M111.252775.
Hoogenboom et al., Natural and designer binding sites made by phage display technology. Immunol Today. Aug. 2000;21(8):371-8.
Horvath et al., CRISPR/Cas, the immune system of bacteria and archaea. Science. Jan. 8, 2010;327(5962):167-70. doi: 10.1126/science.1179555.
Horvath et al., Diversity, Activity, and Evolution of CRISPR Loci in Streptococcus thermophilus. J Bacteriol. Feb. 2008;190(4):1401-12. doi: 10.1128/JB.01415-07. Epub Dec. 7, 2007.
Hou et al., Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc Natl Acad Sci U S A. Sep. 24, 2013;110(39):15644-9. doi: 10.1073/pnas.1313587110. Epub Aug. 12, 2013.
Houdebine, The methods to generate transgenic animals and to control transgene expression. J Biotechnol. Sep. 25, 2002;98(2-3):145-60.
Howard et al., Intracerebral drug delivery in rats with lesion-induced memory deficits. J Neurosurg. Jul. 1989;71(1):105-12.
Hower et al., Shape-based peak identification for ChIP-Seq. BMC Bioinformatics. Jan. 12, 2011;12:15. doi: 10.1186/1471-2105-12-15.
Hsu et al., DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. Sep. 2013;31(9):827-32. doi: 10.1038/nbt.2647. Epub Jul. 21, 2013.
Hsu et al., DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol. Sep. 2013;31(9):827-32. doi: 10.1038/nbt.2647. Epub Jul. 21, 2013. Supplementary Information. 27 pages.
Hu et al., Chemical Biology Approaches to Genome Editing: Understanding, Controlling, and Delivering Programmable Nucleases. Cell Chem Biol. Jan. 21, 2016;23(1):57-73. doi: 10.1016/j.chembiol.2015.12.009.
Hu et al., Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature. Apr. 5, 2018;556(7699):57-63. doi: 10.1038/nature26155. Epub Feb. 28, 2018.
Huang et al., Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors. Nat Biotechnol. Jun. 2019;37(6):626-631. doi: 10.1038/s41587-019-0134-y. Epub May 20, 2019. Including Supplementary Information.
Huang et al., Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol. Aug. 5, 2011;29(8):699-700. doi: 10.1038/nbt.1939.
Huggins et al., Flap endonuclease 1 efficiently cleaves base excision repair and DNA replication intermediates assembled into nucleosomes. Mol Cell. Nov. 2002;10(5):1201-11. doi: 10.1016/s1097-2765(02)00736-0.
Humbert et al., Targeted gene therapies: tools, applications, optimization. Crit Rev Biochem Mol Biol. May-Jun. 2012;47(3):264-81. doi: 10.3109/10409238.2012.658112.
Hung et al., Protein localization in disease and therapy. J Cell Sci. Oct. 15, 2011;124(Pt 20):3381-92. doi: 10.1242/jcs.089110.
Hurt et al., Highly specific zinc finger proteins obtained by directed domain shuffling and cellbased selection. Proc Natl Acad Sci U S A. Oct. 14, 2003;100(21):12271-6. Epub Oct. 3, 2003.
Husimi, Selection and evolution of bacteriophages in cellstat. Adv Biophys. ; 1989;25:1-43. Review.
Hwang et al., Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol. Mar. 2013;31(3):227-9. doi: 10.1038/nbt.2501. Epub Jan. 29, 2013.
Hwang et al., Efficient In Vivo Genome Editing Using RNA-Guided Nucleases. Nat Biotechnol. Mar. 2013; 31(3): 227-229. doi: 10.1038/nbt.2501. Epub Jan. 29, 2013.
Hwang et al., Web-based design and analysis tools for CRISPR base editing. Bmc Bioinformatics. Dec. 27, 2018;19(1):542. doi: 10.1186/s12859-018-2585-4.
Ibba et al., Relaxing the substrate specificity of an aminoacyl-tRNA; synthetase allows in vitro and in vivo synthesis of proteins containing unnatural amino acids. FEBS Lett. May 15, 1995;364(3):272-5.
Ibba et al., Substrate specificity is determined by amino acid binding pocket size in Escherichia coli phenylalanyl-tRNA synthetase. Biochemistry. Jun. 14, 1994;33(23):7107-12.
Ihry et al., p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med. Jul. 2018;24(7):939-946. doi: 10.1038/s41591 018-0050-6. Epub Jun. 11, 2018.
Iida et al., A site-specific, conservative recombination system carried by bacteriophage P1. Mapping the recombinase gene cin and the cross-over sites cix for the inversion of the C segment. EMBO J. 1982;1(11):1445-53.
Iida et al., The Min DNA inversion enzyme of plasmid p15B of Escherichia coli 15T-: a new member of the Din family of site-specific recombinases. Mol Microbiol. Jun. 1990;4(6):991-7. doi: 10.1111/j.1365-2958.1990.tb00671.x.
Ikediobi et al., Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Mol Cancer Ther. Nov. 2006;5(11):2606-12. Epub Nov. 6, 2006.
Imanishi et al., Detection of N6-methyladenosine based on the methyl-sensitivity of MazF RNA endonuclease. Chem Commun (Camb). Nov. 30, 2017;53(96):12930-12933. doi: 10.1039/c7cc07699a.
Imburgio et al., Studies of promoter recognition and start site selection by T7 RNA polymerase using a comprehensive collection of promoter variants. Biochemistry. Aug. 29, 2000;39(34):10419-30.
Ingram, A specific chemical difference between the globins of normal human and sickle-cell anaemia haemoglobin. Nature. Oct. 13, 1956;178(4537):792-4. doi: 10.1038/178792a0.
International Preliminary Report on Patentability for PCT/US2016/058344, dated May 3, 2018.
International Preliminary Report on Patentability for PCT/US2017/045381, dated Feb. 14, 2019.
International Preliminary Report on Patentability for PCT/US2012/047778, dated Feb. 6, 2014.
International Preliminary Report on patentability for PCT/US2014/050283, dated Feb. 18, 2016.
International Preliminary Report on Patentability for PCT/US2014/052231, dated Mar. 3, 2016.
International Preliminary Report on Patentability for PCT/US2014/054247, dated Mar. 17, 2016.
International Preliminary Report on Patentability for PCT/US2014/054291, dated Mar. 17, 2016.
International Preliminary Report on Patentability for PCT/US2014/070038, dated Jun. 23, 2016.
International Preliminary Report on Patentability for PCT/US2015/042770, dated Dec. 19, 2016.
International Preliminary Report on Patentability for PCT/US2015/058479, dated May 11, 2017.
International Preliminary Report on Patentability or PCT/US2014/054252, dated Mar. 17, 2016.
International Search Report and Written Opinion for PCT/US2012/047778, dated May 30, 2013.
International Search Report and Written Opinion for PCT/US2014/050283, dated Nov. 6, 2014.
International Search Report and Written Opinion for PCT/US2014/052231, dated Dec. 4, 2014.
International Search Report and Written Opinion for PCT/US2014/052231, dated Jan. 30, 2015 (Corrected Version).
International Search Report and Written Opinion for PCT/US2014/054247, dated Mar. 27, 2015.
International Search Report and Written Opinion for PCT/US2014/054252, dated Mar. 5, 2015.
International Search Report and Written Opinion for PCT/US2014/054291, dated Mar. 27, 2015.
International Search Report and Written Opinion for PCT/US2014/070038, dated Apr. 14, 2015.
International Search Report and Written Opinion for PCT/US2015/042770, dated Feb. 23, 2016.
International Search Report and Written Opinion for PCT/US2015/058479, dated Feb. 11, 2016.
International Search Report and Written Opinion for PCT/US2016/044546, dated Dec. 28, 2016.
International Search Report and Written Opinion for PCT/US2016/058344, dated Apr. 20, 2017.
International Search Report and Written Opinion for PCT/US2017/045381, dated Oct. 26, 2017.
International Search Report and Written Opinion for PCT/US2017/046144, dated Oct. 10, 2017.
International Search Report and Written Opinion for PCT/US2017/056671, dated Feb. 20, 2018.
International Search Report and Written Opinion for PCT/US2017/068105, dated Apr. 4, 2018.
International Search Report and Written Opinion for PCT/US2017/068114, dated Mar. 20, 2018.
International Search Report and Written Opinion for PCT/US2017/48390, dated Jan. 9, 2018.
International Search Report for PCT/US2013/032589, dated Jul. 26, 2013.
International Search Report for PCT/US2018/021664, dated Jun. 21, 2018.
International Search Report for PCT/US2018/021878, dated Aug. 20, 2018.
International Search Report for PCT/US2018/021880, dated Jun. 20, 2018.
International Search Report for PCT/US2018/024208, dated Aug. 23, 2018.
International Search Report for PCT/US2018/025887, dated Jun. 21, 2018.
International Search Report for PCT/US2018/032460, dated Jul. 11, 2018.
Invitation to Pay Additional Fees for PCT/US2014/054291, dated Dec. 18, 2014.
Invitation to Pay Additional Fees for PCT/US2016/058344, dated Mar. 1, 2017.
Invitation to Pay Additional Fees for PCT/US2017/056671, dated Dec. 21, 2017.
Invitation to Pay Additional Fees for PCT/US2017/48390, dated Nov. 7, 2017.
Invitation to Pay Additional Fees for PCT/US2018/021878, dated Jun. 8, 2018.
Irion et al., Identification and targeting of the ROSA26 locus in human embryonic stem cells. Nat Biotechnol. Dec. 2007;25(12):1477-82. doi: 10.1038/nbt1362. Epub Nov. 25, 2007.
Irrthum et al., Congenital hereditary lymphedema caused by a mutation that inactivates VEGFR3 tyrosine kinase. Am J Hum Genet. Aug. 2000;67(2):295-301. Epub Jun. 9, 2000.
Ishino et al., Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol. Dec. 1987;169(12):5429-33.
Iwai et al., Circular beta-lactamase: stability enhancement by cyclizing the backbone. FEBS Lett. Oct. 8, 1999;459(2):166-72. doi: 10.1016/s0014-5793(99)01220-x.
Iwai et al., Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme. FEBS Lett. Mar. 20, 2006;580(7):1853-8. doi: 10.1016/j.febslet.2006.02.045. Epub Feb. 24, 2006.
Jaffrey et al., Emerging links between m6A and misregulated mRNA methylation in cancer. Genome Med. Jan. 12, 2017;9(1):2. doi: 10.1186/s13073-016-0395-8.
Jamieson et al., Drug discovery with engineered zinc-finger proteins. Nat Rev Drug Discov. May 2003;2(5):361-8.
Jansen et al., Backbone and nucleobase contacts to glucosamine-6-phosphate in the glmS ribozyme. Nat Struct Mol Biol. Jun. 2006;13(6):517-23. Epub May 14, 2006.
Jansen et al., Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol. Mar. 2002;43(6):1565-75.
Jardine et al., HIV-1 VACCINES. Priming a broadly neutralizing antibody response to HIV-1 using a germline-targeting immunogen. Science. Jul. 10, 2015;349(6244):156-61. doi: 10.1126/science.aac5894. Epub Jun. 18, 2015.
Jasin et al., Repair of strand breaks by homologous recombination. Cold Spring Harb Perspect Biol. Nov. 1, 2013;5(11):a012740. doi: 10.1101/cshperspect.a012740.
Jeggo, DNA breakage and repair. Adv Genet. 1998;38:185-218. doi: 10.1016/s0065-2660(08)60144-3.
Jemielity et al., Novel “anti-reverse” cap analogs with superior translational properties. RNA. Sep. 2003;9(9):1108-22. doi: 10.1261/rna.5430403.
Jenkins et al., Comparison of a preQ1 riboswitch aptamer in metabolite-bound and free states with implications for gene regulation. J Biol Chem. Jul. 15, 2011;286(28):24626-37. doi: 10.1074/jbc.M111.230375. Epub May 18, 2011.
Jiang et al., CRISPR-Cas9 Structures and Mechanisms. Annu Rev Biophys. May 22, 2017;46:505-529. doi: 10.1146/annurev-biophys-062215-010822. Epub Mar. 30, 2017.
Jiang et al., RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol. Mar. 2013;31(3):233-9. doi: 10.1038/nbt.2508. Epub Jan. 29, 2013.
Jiang et al., Structural Biology. A Cas9-guide RNA Complex Preorganized for Target DNA Recognition. Science. Jun. 26, 2015;348(6242):1477-81. doi: 10.1126/science.aab1452.
Jiang et al., Structures of a CRISPR-Cas9 R-loop complex primed for DNA cleavage. Science. Feb. 19, 2016;351(6275):867-71. doi: 10.1126/science.aad8282. Epub Jan. 14, 2016.
Jin et al., Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science. Apr. 19, 2019;364(6437):292-295. doi: 10.1126/science.aaw7166. Epub Feb. 28, 2019.
Jinek et al., A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. Aug. 17, 2012;337(6096):816-21. doi: 10.1126/science.1225829. Epub Jun. 28, 2012.
Jinek et al., RNA-programmed genome editing in human cells. Elife. Jan. 29, 2013;2:e00471. doi: 10.7554/eLife.00471.
Jinek et al., Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science. Mar. 14, 2014;343(6176):1247997. doi: 10.1126/science.1247997. Epub Feb. 6, 2014.
Johann et al., GLVR1, a receptor for gibbon ape leukemia virus, is homologous to a phosphate permease of Neurospora crassa and is expressed at high levels in the brain and thymus. J Virol. Mar. 1992;66(3):1635-40. doi: 10.1128/JVI.66.3.1635-1640.1992.
Johansson et al., RNA Recognition by the MS2 Phage Coat Protein. Seminars in Virology. 1997;8(3):176-85. https://doi.org/10.1006/smvy.1997.0120.
Johansson et al., Selenocysteine in proteins-properties and biotechnological use. Biochim Biophys Acta. Oct. 30, 2005;1726(1):1-13. Epub Jun. 1, 2005.
Johns et al., The promise and peril of continuous in vitro evolution. J Mol Evol. Aug. 2005;61(2):253-63. Epub Jun. 27, 2005.
Joho et al., Identification of a region of the bacteriophage T3 and T7 RNA polymerases that determines promoter specificity. J Mol Biol. Sep. 5, 1990;215(1):31-9.
Jore et al., Structural basis for CRISPR RNA-guided DNA recognition by Cascade. Nat Struct Mol Biol. May 2011;18(5):529-36. doi: 10.1038/nsmb.2019. Epub Apr. 3, 2011.
Joung et al.,TALENs: a widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol. Jan. 2013;14(1):49-55. doi: 10.1038/nrm3486. Epub Nov. 21, 2012.
Joyce et al., Amplification, mutation and selection of catalytic RNA. Gene. Oct. 15, 1989;82(1):83-7. doi: 10.1016/0378-1119(89)90033-4.
Judge et al., Design of noninflammatory synthetic siRNA mediating potent gene silencing in vivo. Mol Ther. Mar. 2006;13(3):494-505. Epub Dec. 15, 2005.
Jusiak et al., Comparison of Integrases Identifies Bxb1-GA Mutant as the Most Efficient Site-Specific Integrase System in Mammalian Cells. ACS Synth Biol. Jan. 18, 2019;8(1):16-24. doi: 10.1021/acssynbio.8b00089. Epub Jan. 9, 2019.
Jyothy et al., Translocation Down syndrome. Indian J Med Sci. Mar. 2002;56(3):122-6.
Kacian et al., Purification of the DNA polymerase of avian myeloblastosis virus. Biochim Biophys Acta. Sep. 24, 1971;246(3):365-83. doi: 10.1016/0005-2787(71)90773-8.
Kaczmarczyk et al., Manipulating the Prion Protein Gene Sequence and Expression Levels with CRISPR/Cas9. PLoS One. Apr. 29, 2016;11(4):e0154604. doi: 10.1371/journal.pone.0154604.
Kadoch et al., Reversible disruption of mSWI/SNF (BAF) complexes by the SS18-SSX oncogenic fusion in synovial sarcoma. Cell. Mar. 28, 2013;153(1):71-85. doi: 10.1016/j.cell.2013.02.036.
Kahmann et al., G inversion in bacteriophage Mu DNA is stimulated by a site within the invertase gene and a host factor. Cell. Jul. 1985;41(3):771-80. doi: 10.1016/s0092-8674(85)80058-1.
Kaiser et al., Gene therapy. Putting the fingers on gene repair. Science. Dec. 23, 2005;310(5756):1894-6.
Kakiyama et al., A peptide release system using a photo-cleavable linker in a cell array format for cell-toxicity analysis. Polymer J. Feb. 27, 2013;45:535-9.
Kalyaanamoorthy et al., ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. Jun. 2017;14(6):587-589. doi: 10.1038/nmeth.4285. Epub May 8, 2017.
Kandavelou et al., Targeted manipulation of mammalian genomes using designed zinc finger nucleases. Biochem Biophys Res Commun. Oct. 9, 2009;388(1):56-61. doi: 10.1016/j.bbrc.2009.07.112. Epub Jul. 25, 2009.
Kang et al., Structural Insights into riboswitch control of the biosynthesis of queuosine, a modified nucleotide found in the anticodon of tRNA. Mol Cell. Mar. 27, 2009;33(6):784-90. doi: 10.1016/j.molcel.2009.02.019. Epub Mar. 12, 2009.
Kao et al., Cleavage specificity of Saccharomyces cerevisiae flap endonuclease 1 suggests a double-flap structure as the cellular substrate. J Biol Chem. Apr. 26, 2002;277(17):14379-89. doi: 10.1074/jbc.M110662200. Epub Feb. 1, 2002.
Kappel et al., Regulating gene expression in transgenic animals.Curr Opin Biotechnol. Oct. 1992;3(5):548-53.
Karimova et al., Discovery of Nigri/nox and Panto/pox site-specific recombinase systems facilitates advanced genome engineering. Sci Rep. Jul. 22, 2016;6:30130. doi: 10.1038/srep30130.
Karimova et al., Vika/vox, a novel efficient and specific Cre/loxP-like site-specific recombination system. Nucleic Acids Res. Jan. 2013;41(2):e37. doi: 10.1093/nar/gks1037. Epub Nov. 9, 2012.
Karpenshif et al., From yeast to mammals: recent advances in genetic control of homologous recombination. DNA Repair (Amst). Oct. 1, 2012;11(10):781-8. doi: 10.1016/j.dnarep.2012.07.001. Epub Aug. 11, 2012. Review.
Karpinsky et al., Directed evolution of a recombinase that excises the provirus of most HIV-1 primary isolates with high specificity. Nat Biotechnol. Apr. 2016;34(4):401-9. doi: 10.1038/nbt.3467. Epub Feb. 22, 2016.
Kato et al., Improved purification and enzymatic properties of three forms of reverse transcriptase from avian myeloblastosis virus. J Virol Methods. Dec. 1984;9(4):325-39. doi: 10.1016/0166-0934(84)90058-2.
Katoh et al., MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. Apr. 2013;30(4):772-80. doi: 10.1093/molbev/mst010. Epub Jan. 16, 2013.
Kaufman et al., Translational efficiency of polycistronic mRNAs and their utilization to express heterologous genes in mammalian cells. EMBO J. Jan. 1987;6(1):187-93.
Kawarasaki et al., Enhanced crossover SCRATCHY: construction and high-throughput screening of a combinatorial library containing multiple non-homologous crossovers. Nucleic Acids Res. Nov. 1, 2003;31(21):e126.
Kaya et al., A bacterial Argonaute with noncanonical guide RNA specificity. Proc. Natl. Acad. Sci. USA Apr. 2016;113(15):4057-62.
Keijzers et al., Human exonuclease 1 (EXO1) activity characterization and its function on flap structures. Biosci Rep. Apr. 25, 2015;35(3):e00206. doi: 10.1042/BSR20150058.
Kellendonk et al., Regulation of Cre recombinase activity by the synthetic steroid RU 486. Nucleic Acids Res. Apr. 15, 1996;24(8):1404-11.
Kelman, PCNA: structure, functions and interactions. Oncogene. Feb. 13, 1997;14(6):629-40. doi: 10.1038/sj.onc.1200886.
Keravala et al., A diversity of serine phage integrases mediate site-specific recombination in mammalian cells. Mol Genet Genomics. Aug. 2006;276(2):135-46. doi: 10.1007/s00438-006-0129-5. Epub May 13, 2006.
Kessel et al., Murine developmental control genes. Science. Jul. 27, 1990;249(4967):374-9. doi: 10.1126/science.1974085.
Kessler et al., Gene delivery to skeletal muscle results in sustained expression and systemic delivery of a therapeutic protein. Proc Natl Acad Sci U S A. Nov. 26, 1996;93(24):14082-7. doi: 10.1073/pnas.93.24.14082.
Kiga et al., An engineered Escherichia coli tyrosyl-tRNA synthetase for site-specific incorporation of an unnatural amino acid into proteins in eukaryotic translation and its application in a wheat germ cell-free system. Proc Natl Acad Sci U S A. Jul. 23, 2002;99(15):9715-20. Epub Jul. 3, 2002.
Kilcher et al., Brochothrix thermosphacta bacteriophages feature heterogeneous and highly mosaic genomes and utilize unique prophage insertion sites. J Bacteriol. Oct. 2010;192(20):5441-53. doi: 10.1128/JB.00709-10. Epub Aug. 13, 2010.
Kim et al., DJ-1, a novel regulator of the tumor suppressor PTEN. Cancer Cell. 2005;7(3):263-273.
Kim et al., Genome-wide target specificity of CRISPR RNA-guided adenine base editors. Nat Biotechnol. Apr. 2019;37(4):430-435. doi: 10.1038/s41587-019-0050-1. Epub Mar. 4, 2019.
Kim et al., A library of TAL effector nucleases spanning the human genome. Nat Biotechnol. Mar. 2013;31(3):251-8. Doi: 10.1038/nbt.2517. Epub Feb. 17, 2013.
Kim et al., Evaluating and Enhancing Target Specificity of Gene-Editing Nucleases and Deaminases. Annu Rev Biochem. Jun. 20, 2019;88:191-220. doi: 10.1146/annurev-biochem-013118-111730. Epub Mar. 18, 2019.
Kim et al., Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nat Biotechnol. May 2017;35(5):475-480. doi: 10.1038/nbt.3852. Epub Apr. 10, 2017.
Kim et al., High cleavage efficiency of a 2A peptide derived from porcine teschovirus-1 in human cell lines, zebrafish and mice. PLoS One. 2011;6(4):e18556. doi: 10.1371/journal.pone.0018556. Epub Apr. 29, 2011.
Kim et al., Highly efficient RNA-guided base editing in mouse embryos. Nat Biotechnol. May 2017;35(5):435-437. doi: 10.1038/nbt.3816. Epub Feb. 27, 2017.
Kim et al., Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. Jun. 2014;24(6):1012-9. doi: 10.1101/gr.171322.113. Epub Apr. 2, 2014.
Kim et al., In vivo high-throughput profiling of CRISPR-Cpf1 activity. Nat Methods. Feb. 2017;14(2):153-159. doi: 10.1038/nmeth.4104. Epub Dec. 19, 2016.
Kim et al., Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol. Apr. 2017;35(4):371-376. doi: 10.1038/nbt.3803. Epub Feb. 13, 2017.
Kim et al., Mycobacteriophage Bxb1 integrates into the Mycobacterium smegmatis groEL1 gene. Mol Microbiol. Oct. 2003;50(2):463-73. doi: 10.1046/j.1365-2958.2003.03723.x.
Kim et al., Rescue of high-specificity Cas9 variants using sgRNAs with matched 5′ nucleotides. Genome Biol. Nov. 15, 2017;18(1):218. doi: 10.1186/s13059-017-1355-3.
Kim et al., Structural and kinetic characterization of Escherichia coli TadA, the wobble-specific tRNA deaminase. Biochemistry. May 23, 2006;45(20):6407-16. doi: 10.1021/bi0522394. PMID: 16700551.
Kim et al., TALENs and ZFNs are associated with different mutationsignatures. Nat Methods. Mar. 2013;10(3):185. doi: 10.1038/nmeth.2364. Epub Feb. 10, 2013.
Kim et al., Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res. Jul. 2009;19(7):1279-88. doi: 10.1101/gr.089417.108. Epub May 21, 2009.
Kim et al., The role of apolipoprotein E in Alzheimer's disease. Neuron. Aug. 13, 2009;63(3):287-303. doi: 10.1016/j.neuron.2009.06.026.
Kim et al., Transcriptional repression by zinc finger peptides. Exploring the potential for applications in gene therapy. J Biol Chem. Nov. 21, 1997;272(47):29795-800.
Kitamura et al., Uracil DNA glycosylase counteracts APOBEC3G-induced hypermutation of hepatitis B viral genomes: excision repair of covalently closed circular DNA. PLoS Pathog. 2013;9(5):e1003361. doi: 10.1371/journal.ppat.1003361. Epub May 16, 2013.
Klapacz et al., Frameshift mutagenesis and microsatellite instability induced by human alkyladenine DNA glycosylase. Mol Cell. Mar. 26, 2010;37(6):843-53. doi: 10.1016/j.molcel.2010.01.038.
Klauser et al., An engineered small RNA-mediated genetic switch based on a ribozyme expression platform. Nucleic Acids Res. May 1, 2013;41(10):5542-52. doi: 10.1093/nar/gkt253. Epub Apr. 12, 2013.
Klein et al., Cocrystal structure of a class I preQ1 riboswitch reveals a pseudoknot recognizing an essential hypermodified nucleobase. Nat Struct Mol Biol. Mar. 2009;16(3):343-4. doi: 10.1038/nsmb.1563.Epub Feb. 22, 2009.
Kleiner et al., In vitro selection of a DNA-templated small-molecule library reveals a class of macrocyclic kinase inhibitors. J Am Chem Soc. Aug. 25, 2010;132(33):11779-91. doi: 10.1021/ja104903x.
Kleinstiver et al., Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol. Dec. 2015;33(12):1293-1298. doi: 10.1038/nbt.3404. Epub Nov. 2, 2015.
Kleinstiver et al., Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature. Jul. 23, 2015;523(7561):481-5. doi: 10.1038/nature14592. Epub Jun. 22, 2015.
Kleinstiver et al., High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature. Jan. 28, 2016;529(7587):490-5. doi: 10.1038/nature16526. Epub Jan. 6, 2016.
Kleinstiver et al., Monomeric site-specific nucleases for genome editing. Proc Natl Acad Sci U S A. May 22, 2012;109(21):8061-6. doi: 10.1073/pnas.1117984109. Epub May 7, 2012.
Klement et al., Discrimination between bacteriophage T3 and T7 promoters by the T3 and T7 RNA polymerases depends primarily upon a three base-pair region located 10 to 12 base-pairs upstream from the start site. J Mol Biol. Sep. 5, 1990;215(1):21-9.
Klippel et al., Isolation and characterization of unusual gin mutants. EMBO J. Dec. 1, 1988;7(12):3983-9.
Klippel et al., The DNA invertase Gin of phage Mu: formation of a covalent complex with DNA via a phosphoserine at amino acid position 9. EMBO J. Apr. 1988;7(4):1229-37.
Klompe et al., Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature. Jul. 2019;571(7764):219-225. doi: 10.1038/s41586-019-1323-z. Epub Jun. 12, 2019.
Knott et al., Guide-bound structures of an RNA-targeting A-cleaving CRISPR-Cas13a enzyme. Nat Struct Mol Biol. Oct. 2017;24(10):825-833. doi: 10.1038/nsmb.3466. Epub Sep. 11, 2017.
Koblan et al., Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol. Oct. 2018;36(9):843-846. doi: 10.1038/nbt.4172. Epub May 29, 2018.
Kobori et al., Deep Sequencing Analysis of Aptazyme Variants Based on a Pistol Ribozyme. Acs Synth Biol. Jul. 21, 2017;6(7):1283-1288. doi: 10.1021/acssynbio.7b00057. Epub Apr. 14, 2017.
Kohli et al., A portable hot spot recognition loop transfers sequence preferences from APOBEC family members to activation-induced cytidine deaminase. J Biol Chem. Aug. 21, 2009;284(34):22898-904. doi: 10.1074/jbc.M109.025536. Epub Jun. 26, 2009.
Kohli et al., Local sequence targeting in the AID/APOBEC family differentially impacts retroviral restriction and antibody diversification. J Biol Chem. Dec. 24, 2010;285(52):40956-64. doi: 10.1074/jbc.M110.177402. Epub Oct. 6, 2010.
Köhrer et al., A possible approach to site-specific insertion of two different unnatural amino acids into proteins in mammalian cells via nonsense suppression. Chem Biol. Nov. 2003;10(11):1095-102.
Köhrer et al., Complete set of orthogonal 21st aminoacyl-tRNA synthetase-amber, ochre and opal suppressor tRNA pairs: concomitant suppression of three different termination codons in an mRNA in mammalian cells. Nucleic Acids Res. Dec. 1, 2004;32(21):6200-11. Print 2004.
Koike-Yusa et al., Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol. Mar. 2014;32(3):267-73. doi: 10.1038/nbt.2800. Epub Dec. 23, 2013.
Kolot et al., Site promiscuity of coliphage HK022 integrase as a tool for gene therapy. Gene Ther. Jul. 2015;22(7):521-7. doi: 10.1038/gt.2015.9. Epub Mar. 12, 2015.
Kolot et al., Site-specific recombination in mammalian cells expressing the Int recombinase of bacteriophage HK022. Mol Biol Rep. Aug. 1999;26(3):207-13. doi: 10.1023/a:1007096701720.
Komor et al., CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Cell. Jan. 12, 2017;168(1-2):20-36. doi: 10.1016/j.cell.2016.10.044.
Komor et al., Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci Adv. Aug. 30, 2017;3(8):eaao4774. doi: 10.1126/sciadv.aao4774. eCollection Aug. 2017.
Komor et al., Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature. Apr. 20, 2016;533(7603):420-4. doi: 10.1038/nature17946.
Komor, Editing the Genome Without Double-Stranded DNA Breaks. ACS Chem Biol. Feb. 16, 2018;13(2):383-388. doi: 10.1021/acschembio.7b00710. Epub Oct. 9, 2017.
Konermann et al., Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. Jan. 29, 2015;517(7536):583-8. doi: 10.1038/nature14136. Epub Dec. 10, 2014.
Koonin et al., Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol. 2017;37:67?78. doi:10.1016/j.mib.2017.05.008.
Kosicki et al., Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol. Sep. 2018;36(8):765-771. doi: 10.1038/nbt.4192. Epub Jul. 16, 2018.
Kotewicz et al., Cloning and overexpression of Moloney murine leukemia virus reverse transcriptase in Escherichia coli. Gene. 1985;35(3):249-58. doi: 10.1016/0378-1119(85)90003-4.
Kotewicz et al., Isolation of cloned Moloney murine leukemia virus reverse transcriptase lacking ribonuclease H activity. Nucleic Acids Res. Jan. 11, 1988;16(1):265-77. doi: 10.1093/nar/16.1.265.
Kotin, Prospects for the use of adeno-associated virus as a vector for human gene therapy. Hum Gene Ther. Jul. 1994;5(7):793-801. doi: 10.1089/hum.1994.5.7-793.
Kouzminova et al., Patterns of chromosomal fragmentation due to uracil-DNA incorporation reveal a novel mechanism of replication-dependent double-stranded breaks. Mol Microbiol. Apr. 2008;68(1):202-15. doi: 10.1111/j.1365-2958.2008.06149.x.
Kowal et al., Exploiting unassigned codons in Micrococcus luteus for tRNA-based amino acid mutagenesis. Nucleic Acids Res. Nov. 15, 1997;25(22):4685-9.
Kowalski et al., Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Mol Ther. Apr. 10, 2019;27(4):710-728. doi: 10.1016/j.ymthe.2019.02.012. Epub Feb. 19, 2019.
Kozak, An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res. Oct. 26, 1987;15(20):8125-48. doi: 10.1093/nar/15.20.8125.
Kraft et al., Deletions, Inversions, Duplications: Engineering of Structural Variants using CRISPR/Cas in Mice. Cell Rep. Feb. 10, 2015;10(5):833-839. doi: 10.1016/j.celrep.2015.01.016. Epub Feb. 7, 2015.
Kremer et al., Adenovirus and adeno-associated virus mediated gene transfer. Br Med Bull. Jan. 1995;51(1):31-44. doi: 10.1093/oxfordjournals.bmb.a072951.
Krokan et al, Uracil in DNA—occurrence, consequences and repair. Oncogene. Dec. 16, 2002;21(58):8935-48. doi: 10.1038/sj.onc.1205996.
Krokan et al., Base excision repair. Cold Spring Harb Perspect Biol. Apr. 1, 2013;5(4):a012583. doi: 10.1101/cshperspect.a012583.
Krzywkowski et al., Limited reverse transcriptase activity of phi29 DNA polymerase. Nucleic Acids Res. Apr. 20, 2018;46(7):3625-3632. doi: 10.1093/nar/gky190.
Kügler et al., Human synapsin 1 gene promoter confers highly neuron-specific long-term transgene expression from an adenoviral vector in the adult rat brain depending on the transduced area. Gene Ther. Feb. 2003;10(4):337-47. doi: 10.1038/sj.gt.3301905.
Kumar et al., Structural and functional consequences of the mutation of a conserved arginine residue in alphaA and alphaB crystallins. J Biol Chem. Aug. 20, 1999;274(34):24137-41.
Kundu et al., Leucine to proline substitution by SNP at position 197 in Caspase-9 gene expression leads to neuroblastoma: a bioinformatics analysis. 3 Biotech. 2013; 3:225-34.
Kunkel et al., Eukaryotic Mismatch Repair in Relation to DNA Replication. Annu Rev Genet. 2015;49:291-313. doi: 10.1146/annurev-genet-112414-054722.
Kunz et al., DNA Repair in mammalian cells: Mismatched repair: variations on a theme. Cell Mol Life Sci. Mar. 2009;66(6):1021-38. doi: 10.1007/s00018-009-8739-9.
Kurjan et al., Structure of a yeast pheromone gene (MF alpha): a putative alpha-factor precursor contains four tandem copies of mature alpha-factor. Cell. Oct. 1982;30(3):933-43. doi: 10.1016/0092-8674(82)90298-7.
Kury et al., De Novo Disruption of the Proteasome Regulatory Subunit PSMD12 Causes a Syndromic Neurodevelopmental Disorder. Am J Hum Genet. Feb. 2, 2017;100(2):352-363. doi: 10.1016/j.ajhg.2017.01.003. Epub Jan. 26, 2017.
Kuscu et al., CRISPR-Cas9-AID base editor is a powerful gain-of-function screening tool. Nat Methods. Nov. 29, 2016;13(12):983-984. doi: 10.1038/nmeth.4076.
Kuscu et al., CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations. Nat Methods. Jul. 2017;14(7):710-712. doi: 10.1038/nmeth.4327. Epub Jun. 5, 2017.
Kuscu et al., Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat Biotechnol. Jul. 2014;32(7):677-83. doi: 10.1038/nbt.2916. Epub May 18, 2014.
Kwart et al., Precise and efficient scarless genome editing in stem cells using CORRECT. Nat Protoc. Feb. 2017;12(2):329-354. doi: 10.1038/nprot.2016.171. Epub Jan. 19, 2017.
Kweon et al., Fusion guide RNAs for orthogonal gene manipulation with Cas9 and Cpf1. Nat Commun. Nov. 23, 2017;8(1):1723. doi: 10.1038/s41467-017-01650-w. Erratum in: Nat Commun. Jan. 16, 2018;9(1):303.
Kwon et al., Chemical basis of glycine riboswitch cooperativity. RNA. Jan. 2008;14(1):25-34. Epub Nov. 27, 2008.
Lada et al., Mutator effects and mutation signatures of editing deaminases produced in bacteria and yeast. Biochemistry (Mosc). Jan. 2011;76(1):131-46.
Lakich et al., Inversions disrupting the factor VIII gene are a common cause of severe haemophilia A. Nat Genet. Nov. 1993;5(3):236-41. doi: 10.1038/ng1193-236.
Landrum et al., ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res. Jan. 4, 2016;44(D1):D862-8. doi: 10.1093/nar/gkv1222. Epub Nov. 17, 2015.
Landrum et al., ClinVar: public archive of relationships among sequence variation and human phenotype. Nucleic Acids Res. Jan. 2014;42(Database issue):D980-5. doi: 10.1093/nar/gkt1113. Epub Nov. 14, 2013.
Langer et al., Chemical and Physical Structure of Polymers as Carriers for Controlled Release of Bioactive Agents: A Review. Journal of Macromolecular Science, 2006;23(1):61-126. DOI: 10.1080/07366578308079439.
Langer et al., New methods of drug delivery. Science. Sep. 28, 1990;249(4976):1527-33.
Larson et al., CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat Protoc. Nov. 2013;8(11):2180-96. doi: 10.1038/nprot.2013.132. Epub Oct. 17, 2013.
Lau et al., Molecular basis for discriminating between normal and damaged bases by the human alkyladenine glycosylase, AAG. Proc Natl Acad Sci U S A. Dec. 5, 2000;97(25):13573-8.
Lauer et al., Construction, characterization, and use of two Listeria monocytogenes site-specific phage integration vectors. J Bacteriol. Aug. 2002;184(15):4177-86. doi: 10.1128/jb.184.15.4177-4186.2002.
Lavergne et al., Defects in type IIA von Willebrand disease: a cysteine 509 to arginine substitution in the mature von Willebrand factor disrupts a disulphide loop involved in the interaction with platelet glycoprotein Ib-IX. Br J Haematol. Sep. 1992;82(1):66-72.
Lawrence et al., Supercharging proteins can impart unusual resilience. J Am Chem Soc. Aug. 22, 2007;129(33):10110-2. Epub Aug. 1, 2007.
Lawyer et al., High-level expression, purification, and enzymatic characterization of full-length Thermus aquaticus DNA polymerase and a truncated form deficient in 5′ to 3′ exonuclease activity. PCR Methods Appl. May 1993;2(4):275-87. doi: 10.1101/gr.2.4.275.
Lazar et al., Transforming growth factor alpha: mutation of aspartic acid 47 and leucine 48 results in different biological activities. Mol Cell Biol. Mar. 1988;8(3):1247-52.
Lazarevic et al., Nucleotide sequence of the Bacillus subtilis temperate bacteriophage SPbetac2. Microbiology (Reading). May 1999;145 ( Pt 5):1055-1067. doi: 10.1099/13500872-145-5-1055.
Le Grice et al., Purification and characterization of recombinant equine infectious anemia virus reverse transcriptase. J Virol. Dec. 1991;65(12):7004-7. doi: 10.1128/JVI.65.12.7004-7007.1991.
Leaver-Fay et al., ROSETTA3: an object-oriented software suite for the simulation and design of macromolecules. Methods Enzymol. 2011;487:545-74. doi: 10.1016/B978-0-12-381270-4.00019-6.
Leconte et al., A population-based experimental model for protein evolution: effects of mutation rate and selection stringency on evolutionary outcomes. Biochemistry. Feb. 26, 2013;52(8):1490-9. doi: 10.1021/bi3016185. Epub Feb. 14, 2013.
Ledford, Gene-editing hack yields pinpoint precision. Nature, Apr. 20, 2016. http://www.nature.com/news/gene-editing-hack-yields-pinpoint-precision-1.19773.
Lee et al., A chimeric thyroid hormone receptor constitutively bound to DNA requires retinoid X receptor for hormone-dependent transcriptional activation in yeast. Mol Endocrinol. Sep. 1994;8(9):1245-52.
Lee et al., An allosteric self-splicing ribozyme triggered by a bacterial second messenger. Science. Aug. 13, 2010;329(5993):845-8. doi: 10.1126/science.1190713.
Lee et al., Failure to detect DNA-guided genome editing using Natronobacterium gregoryi Argonaute. Nat Biotechnol. Nov. 28, 2016;35(1):17-18. doi: 10.1038/nbt.3753.
Lee et al., Group I Intron-Based Therapeutics Through Trans-Splicing Reaction. Prog Mol Biol Transl Sci. 2018;159:79-100. doi: 10.1016/bs.pmbts.2018.07.001. Epub Aug. 9, 2018.
Lee et al., PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene. Feb. 17, 2005;24(8):1477-80.
Lee et al., Recognition of liposomes by cells: in vitro binding and endocytosis mediated by specific lipid headgroups and surface charge density. Biochim Biophys Acta. Jan. 31, 1992;1103(2):185-97.
Lee et al., Ribozyme Mediated gRNA Generation for In Vitro and In Vivo CRISPR/Cas9 Mutagenesis. PLoS One. Nov. 10, 2016;11(11):e0166020. doi: 10.1371/journal.pone.0166020. eCollection 2016.
Lee et al., Site-specific integration of mycobacteriophage L5: integration-proficient vectors for Mycobacterium smegmatis, Mycobacterium tuberculosis, and bacille Calmette-Guérin. Proc Natl Acad Sci U S A. Apr. 15, 1991;88(8):3111-5. doi: 10.1073/pnas.88.8.3111.
Lee et al., Synthetically modified guide RNA and donor DNA are a versatile platform for CRISPR-Cas9 engineering. Elife. May 2, 2017;6:e25312. doi: 10.7554/eLife.25312.
Lee et al., Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res. Jan. 2010 20: 81-89; Published in Advance Dec. 1, 2009, doi:10.1101/gr.099747.109.
Lee et al., Transcriptional regulation and its misregulation in disease. Cell. Mar. 14, 2013;152(6):1237-51. doi: 10.1016/j.cell.2013.02.014.
Lei et al., Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci U S A. Oct. 23, 2012;109(43):17484-9. Doi: 10.1073/pnas.1215421109. Epub Oct. 8, 2012.
Lei et al., Site-specificity of serine integrase demonstrated by the attB sequence preference of ?BT1 integrase. FEBS Lett. Apr. 2018;592(8):1389-1399. doi: 10.1002/1873-3468.13023. Epub Mar. 25, 2018.
Lemos et al., CRISPR/Cas9 cleavages in budding yeast reveal templated insertions and strand-specific insertion/deletion profiles. Proc Natl Acad Sci U S A. Feb. 27, 2018;115(9):E2040-E2047. doi: 10.1073/pnas.1716855115. Epub Feb. 13, 2018.
Lenk et al., Pathogenic mechanism of the FIG4 mutation responsible for Charcot-Marie-Tooth disease CMT4J. PLoS Genet. Jun. 2011;7(6):e1002104. doi: 10.1371/journal.pgen.1002104. Epub Jun. 2, 2011.
Levy et al., Cytosine and adenine base editing of the brain, liver, retina, heart and skeletal muscle of mice via adeno-associated viruses. Nat Biomed Eng. 2020;4(1):97-110. doi:10.1038/s41551-019-0501-5.
Levy et al., Inhibition of calcification of bioprosthetic heart valves by local controlled-release diphosphonate. Science. Apr. 12, 1985;228(4696):190-2.
Levy et al., Membrane-associated guanylate kinase dynamics reveal regional and developmental specificity of synapse stability. J Physiol. Mar. 1, 2017;595(5):1699-1709. doi: 10.1113/JP273147. Epub Jan. 18, 2017.
Lew et al., Protein splicing in vitro with a semisynthetic two-component minimal intein. J Biol Chem. Jun. 26, 1998;273(26):15887-90. doi: 10.1074/jbc.273.26.15887.
Lewis et al., A serum-resistant cytofectin for cellular delivery of antisense oligodeoxynucleotides and plasmid DNA. Proc Natl Acad Sci U S A. Apr. 16, 1996;93(8):3176-81.
Lewis et al., Building the Class 2 CRISPR-Cas Arsenal. Mol Cell 2017;65(3);377-379.
Lewis et al., Codon 129 polymorphism of the human prion protein influences the kinetics of amyloid formation. J Gen Virol. Aug. 2006;87(Pt 8):2443-9.
Lewis et al., Cytosine deamination and the precipitous decline of spontaneous mutation during Earth's history. Proc Natl Acad Sci U S A. Jul. 19, 2016;113(29):8194-9. doi: 10.1073/pnas.1607580113. Epub Jul. 5, 2016.
Lewis et al., RNA modifications and structures cooperate to guide RNA-protein interactions. Nat Rev Mol Cell Biol. Mar. 2017;18(3):202-210. doi: 10.1038/nrm.2016.163. Epub Feb. 1, 2017.
Li et al., A Radioactivity-Based Assay for Screening Human m6A-RNA Methyltransferase, METTL3-METTL14 Complex, and Demethylase ALKBH5. J Biomol Screen. Mar. 2016;21(3):290-7. doi: 10.1177/1087057115623264. Epub Dec. 23, 2015.
Li et al., Base editing with a Cpf1-cytidine deaminase fusion. Nat Biotechnol. Apr. 2018;36(4):324-327. doi: 10.1038/nbt.4102. Epub Mar. 19, 2018.
Li et al., Current approaches for engineering proteins with diverse biological properties. Adv Exp Med Biol. 2007;620:18-33.
Li et al., Disruption of splicing-regulatory elements using CRISPR/Cas9 to rescue spinal muscular atrophy in human iPSCs and mice. National Science Review. Jan. 1, 2020:92-101. DOI: 10.1093/nsr/nwz131. Retrieved from the Internet via https://academic.oup.com/nsr/article-pdf/7/1/92/33321439/nwz131.pdf. Last accessed Apr. 28, 2021.
Li et al., Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. Jul. 15, 2009;25(14):1754-60. doi: 10.1093/bioinformatics/btp324. Epub May 18, 2009.
Li et al., Generation of Targeted Point Mutations in Rice by a Modified CRISPR/Cas9 System. Mol Plant. Mar. 6, 2017;10(3):526-529. doi: 10.1016/j.molp.2016.12.001. Epub Dec. 8, 2016.
Li et al., Highly efficient and precise base editing in discarded human tripronuclear embryos. Protein Cell. Aug. 19, 2017. doi: 10.1007/s13238-017-0458-7. [Epub ahead of print].
Li et al., Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by proliferating cell nuclear antigen. J Biol Chem. Sep. 22, 1995;270(38):22109-12. doi: 10.1074/jbc.270.38.22109.
Li et al., Loss of post-translational modification sites in disease. Pac Symp Biocomput. 2010:337-47. doi: 10.1142/9789814295291_0036.
Li et al., Modularly assembled designer TAL effector nucleases for targeted gene knockout and gene replacement in eukaryotes. Nucleic Acids Res. Aug. 2011;39(14):6315-25. doi: 10.1093/nar/gkr188. Epub Mar. 31, 2011.
Li et al., Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol. Aug. 2013;31(8):688-91. doi: 10.1038/nbt.2654.
Li et al., Protein trans-splicing as a means for viral vector-mediated in vivo gene therapy. Hum Gene Ther. Sep. 2008;19(9):958-64. doi: 10.1089/hum.2008.009.
Li et al., RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics. Aug. 4, 2011;12:323. doi: 10.1186/1471-2105-12-323.
Li et al., TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res. Jan. 2011;39(1):359-72. doi: 10.1093/nar/gkq704. Epub Aug. 10, 2010.
Liang et al., Correction of ?-thalassemia mutant by base editor in human embryos. Protein Cell. Nov. 2017;8(11):811-822. doi: 10.1007/s13238-017-0475-6. Epub Sep. 23, 2017.
Liang et al., Homology-directed repair is a major double-strand break repair pathway in mammalian cells. Proc Natl Acad Sci U S A. Apr. 28, 1998;95(9):5172-7. doi: 10.1073/pnas.95.9.5172.
Liang et al., Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. Send to; J Biotechnol. Aug. 20, 2015;208:44-53. doi: 10.1016/j.jbiotec.2015.04.024.
Lieber et al., Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol. Sep. 2003;4(9):712-20.
Lienert et al., Two- and three-input TALE-based and logic computation in embryonic stem cells. Nucleic Acids Res. Nov. 2013;41(21):9967-75. doi: 10.1093/nar/gkt758. Epub Aug. 27, 2013.
Lilley, D.M. The Varkud Satellite Ribozyme. RNA. Feb. 2004;10(2):151-8.doi: 10.1261/rna.5217104.
Lim et al., Crystal structure of the moloney murine leukemia virus RNase H domain. J Virol. Sep. 2006;80(17):8379-89. doi: 10.1128/JVI.00750-06.
Lin et al., Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery. Elife. Dec. 15, 2014;3:e04766. doi: 10.7554/eLife.04766.
Link et al., Engineering ligand-responsive gene-control elements: lessons learned from natural riboswitches. Gene Ther. Oct. 2009;16(10):1189-201. doi: 10.1038/gt.2009.81. Epub Jul. 9, 2009. Review.
Liu et al., C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism. Molecular Cell Jan. 2017;65(2):310-22.
Liu et al., Split dnaE genes encoding multiple novel inteins in Trichodesmium erythraeum. J Biol Chem. Jul. 18, 2003;278(29):26315-8. doi: 10.1074/jbc.C300202200. Epub May 24, 2003.
Liu et al., A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. Feb. 2014;10(2):93-5. doi: 10.1038/nchembio.1432. Epub Dec. 6, 2013.
Liu et al., Adding new chemistries to the genetic code. Annu Rev Biochem. 2010;79:413-44. doi: 10.1146/annurev.biochem.052308.105824.
Liu et al., Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol. Feb. 2013;9(2):106-18. doi: 10.1038/nrneurol.2012.263. Epub Jan. 8, 2013.
Liu et al., Balancing AID and DNA repair during somatic hypermutation. Trends Immunol. Apr. 2009;30(4):173-81. doi: 10.1016/j.it.2009.01.007.
Liu et al., Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell. Aug. 23, 1991;66(4):807-15. doi: 10.1016/0092-8674(91)90124-h.
Liu et al., CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature. Feb. 2019;566(7743):218-223. doi: 10.1038/s41586-019-0908-x. Epub Feb. 4, 2019. Author manuscript entitled CRISPR-CasX is an RNA-dominated enzyme active for human genome editing.
Liu et al., Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering. PLoS One. Jan. 20, 2014;9(1):e85755. doi: 10.1371/journal.pone.0085755. eCollection 2014.
Liu et al., Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc Natl Acad Sci U S A. May 27, 1997;94(11):5525-30.
Liu et al., Direct Promoter Repression by BCL11A Controls the Fetal to Adult Hemoglobin Switch. Cell. Apr. 5, 2018;173(2):430-442.e17. doi: 10.1016/j.cell.2018.03.016. Epub Mar. 29, 2018.
Liu et al., Distance determination by GIY-YIG intron endonucleases: discrimination between repression and cleavage functions. Nucleic Acids Res. Mar. 31, 2006;34(6):1755-64. Print 2006.
Liu et al., Editing DNA Methylation in the Mammalian Genome. Cell. Sep. 22, 2016;167(1):233-247.e17. doi: 10.1016/j.cell.2016.08.056.
Liu et al., Engineering a tRNA and aminoacyl-tRNA synthetase for the site-specific incorporation of unnatural amino acids into proteins in vivo. Proc Natl Acad Sci U S A. Sep. 16, 1997;94(19):10092-7.
Liu et al., Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angew Chem. Dec. 16, 2006;45(1):90-4. DOI: 10.1002/anie.200502589.
Liu et al., Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angew Chem. 2006;118(1):96-100.
Liu et al., Flap endonuclease 1: a central component of DNA metabolism. Annu Rev Biochem. 2004;73:589-615. doi:10.1146/annurev.biochem.73.012803.092453.
Liu et al., Functional Nucleic Acid Sensors. Chem Rev. May 2009;109(5):1948-98. doi: 10.1021/cr030183i.
Liu et al., Genetic incorporation of unnatural amino acids into proteins in mammalian cells. Nat Methods. Mar. 2007;4(3):239-44. Epub Feb. 25, 2007.
Liu et al., Highly efficient RNA-guided base editing in rabbit. Nat Commun. Jul. 13, 2018;9(1):2717. doi: 10.1038/s41467-018-05232-2.
Liu et al., N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature. Feb. 26, 2015;518(7540):560-4. doi: 10.1038/nature14234.
Liu et al., Probing N6-methyladenosine RNA modification status at single nucleotide resolution in mRNA and long noncoding RNA. RNA. Dec. 2013;19(12):1848-56. doi: 10.1261/rna.041178.113. Epub Oct. 18, 2013.
Liu et al., Reverse transcriptase of foamy virus. Purification of the enzymes and immunological identification. Arch Virol. 1977;55(3):187-200. doi: 10.1007/BF01319905.
Liu et al., Reverse transcriptase-mediated tropism switching in Bordetella bacteriophage. Science. Mar. 15, 2002;295(5562):2091-4. doi: 10.1126/science.1067467.
Liu et al., Saccharomyces cerevisiae flap endonuclease 1 uses flap equilibration to maintain triplet repeat stability. Mol Cell Biol. May 2004;24(9):4049-64. doi: 10.1128/MCB.24.9.4049-4064.2004.
Liu et al., The Molecular Architecture for RNA-Guided RNA Cleavage by Cas13a. Cell. Aug. 10, 2017;170(4):714-726.e10. doi: 10.1016/j.cell.2017.06.050. Epub Jul. 27, 2017.
Loessner et al., Complete nucleotide sequence, molecular analysis and genome structure of bacteriophage A118 of Listeria monocytogenes: implications for phage evolution. Mol Microbiol. Jan. 2000;35(2):324-40. doi: 10.1046/j.1365-2958.2000.01720.x.
Lombardo et al., Gene editing in human stem cells using zinc finger nucleases and integrase-defective lentiviral vector delivery. Nat Biotechnol. Nov. 2007;25(11):1298-306. Epub Oct. 28, 2007.
Long et al., Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science. Jan. 22, 2016;351(6271):400-3. doi: 10.1126/science.aad5725. Epub Dec. 31, 2015.
Lopez-Girona et al., Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia. Nov. 2012;26(11):2326-35. doi: 10.1038/leu.2012.119. Epub May 3, 2012.
Lorenz et al., ViennaRNA Package 2.0. Algorithms Mol Biol. Nov. 24, 2011;6:26. doi: 10.1186/1748-7188-6-26.
Losey et al., Crystal structure of Staphylococcus sureus tRNA adenosine deaminase tadA in complex with RNA. Nature Struct. Mol. Biol. Feb. 2006;13(2):153-9.
Lu et al., Precise Editing of a Target Base in the Rice Genome Using a Modified CRISPR/Cas9 System. Mol Plant. Mar. 6, 2017;10(3):523-525. doi: 10.1016/j.molp.2016.11.013. Epub Dec. 6, 2016.
Luan et al., Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell. Feb. 26, 1993;72(4):595-605. doi: 10.1016/0092-8674(93)90078-5.
Luckow et al., High level expression of nonfused foreign genes with Autographa californica nuclear polyhedrosis virus expression vectors. Virology. May 1989;170(1):31-9. doi: 10.1016/0042-6822(89)90348-6.
Lukacsovich et al., Repair of a specific double-strand break generated within a mammalian chromosome by yeast endonuclease I-SceI. Nucleic Acids Res. Dec. 25, 1994;22(25):5649-57. doi: 10.1093/nar/22.25.5649.
Lüke et al., Partial purification and characterization of the reverse transcriptase of the simian immunodeficiency virus TYO-7 isolated from an African green monkey. Biochemistry. Feb. 20, 1990;29(7):1764-9. doi: 10.1021/bi00459a015.
Lundberg et al., Delivery of short interfering RNA using endosomolytic cell-penetrating peptides. FASEB J. Sep. 2007;21(11):2664-71. Epub Apr. 26, 2007.
Lundquist et al., Site-directed mutagenesis and characterization of uracil-DNA glycosylase inhibitor protein. Role of specific carboxylic amino acids in complex formation with Escherichia coli uracil-DNA glycosylase. J Biol Chem. Aug. 22, 1997;272(34):21408-19.
Lynch, Evolution of the mutation rate. Trends Genet. Aug. 2010;26(8):345-52. doi: 10.1016/j.tig.2010.05.003. Epub Jun. 30, 2010.
Lyons et al., Efficient Recognition of an Unpaired Lesion by a DNA Repair Glycosylase. J. Am. Chem. Soc., 2009;131(49):17742-3. DOI: 10.1021/ja908378y.
Ma et al., Identification of pseudo attP sites for phage phiC31 integrase in bovine genome. Biochem Biophys Res Commun. Jul. 7, 2006;345(3):984-8. doi: 10.1016/j.bbrc.2006.04.145. Epub May 3, 2006.
Ma et al., In vitro protein engineering using synthetic tRNA(Ala) with different anticodons. Biochemistry. Aug. 10, 1993;32(31):7939-45.
Ma et al., PhiC31 integrase induces efficient site-specific recombination in the Capra hircus genome. DNA Cell Biol. Aug. 2014;33(8):484-91. doi: 10.1089/dna.2013.2124. Epub Apr. 22, 2014.
Ma et al., Single-Stranded DNA Cleavage by Divergent CRISPR-Cas9 Enzymes. Mol Cell. Nov. 5, 2015;60(3):398-407. doi: 10.1016/j.molcel.2015.10.030.
Ma et al., Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nature Methods. Oct. 2016;13:1029-35. doi:10.1038/nmeth.4027.
Maas et al., Identification and characterization of a human tRNA-specific adenosine deaminase related to the ADAR family of pre-mRNA editing enzymes. Proc Natl Acad Sci U S A. Aug. 3, 1999;96(16):8895-900. doi: 10.1073/pnas.96.16.8895.
Macbeth et al., Inositol hexakisphosphate is bound in the ADAR2 core and required for RNA editing. Science. Sep. 2, 2005;309(5740):1534-9. doi: 10.1126/science.1113150.
Macrae et al., Ribonuclease revisited: structural insights into ribonuclease III family enzymes. Curr Opin Struct Biol. Feb. 2007;17(1):138-45. doi: 10.1016/j.sbi.2006.12.002. Epub Dec. 27, 2006.
Maeder et al., CRISPR RNA-guided activation of endogenous human genes. Nat Methods. Oct. 2013;10(10):977-9. doi: 10.1038/nmeth.2598. Epub Jul. 25, 2013.
Maeder et al., Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol Cell. Jul. 25, 2008;31(2):294-301. doi:10.1016/j.molcel.2008.06.016.
Maeder et al., Robust, synergistic regulation of human gene expression using TALE activators. Nat Methods. Mar. 2013;10(3):243-5. doi: 10.1038/nmeth.2366. Epub Feb. 10, 2013.
Magin et al., Corf, the Rev/Rex homologue of HTDV/HERV-K, encodes an arginine-rich nuclear localization signal that exerts a trans-dominant phenotype when mutated. Virology. Aug. 15, 2000;274(1):11-6. doi: 10.1006/viro.2000.0438.
Mahfouz et al., De novo-engineered transcription activator-like effector (TALE) hybrid nuclease with novel DNA binding specificity creates double-strand breaks. Proc Natl Acad Sci U S A. Feb. 8, 2011;108(6):2623-8. doi: 10.1073/pnas.1019533108. Epub Jan. 24, 2011.
Makarova et al., Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biology Direct 2009;4:29.
Makarova et al., An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol. Nov. 2015;13(11):722-36. doi: 10.1038/nrmicro3569. Epub Sep. 28, 2015.
Makarova et al., Classification and Nomenclature of CRISPR-Cas Systems: Where from Here? CRISPR J. Oct. 2018;1(5):325-336. doi: 10.1089/crispr.2018.0033.
Makarova et al., Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol. Jun. 2011;9(6):467-77. doi: 10.1038/nrmicro2577. Epub May 9, 2011.
Makeyev et al., Evolutionary potential of an RNA virus. J Virol. Feb. 2004;78(4):2114-20.
Malashkevich et al., Crystal structure of tRNA adenosine deaminase TadA from Escherichia coli. Deposited: Mar. 10, 2005 Released: Feb. 21, 2006 doi:10.2210/pdb1z3a/pdb (2006).
Mali et al., Cas9 as a versatile tool for engineering biology. Nat Methods. Oct. 2013;10(10):957-63. doi: 10.1038/nmeth.2649.
Mali et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat Biotechnol. Sep. 2013;31(9):833-8. doi: 10.1038/nbt.2675. Epub Aug. 1, 2013.
Mali et al., RNA-guided human genome engineering via Cas9. Science. Feb. 15, 2013;339(6121):823-6. doi: 10.1126/science.1232033. Epub Jan. 3, 2013.
Malito et al., Structural basis for lack of toxicity of the diphtheria toxin mutant CRM197. Proc Natl Acad Sci U S A. Apr. 3, 2012;109(14):5229-34. doi: 10.1073/pnas.1201964109. Epub Mar. 19, 2012.
Mandal et al., Efficient ablation of genes in human hematopoietic stem and effector cells using CRISPR/Cas9. Cell Stem Cell. Nov. 6, 2014;15(5):643-52. doi: 10.1016/j.stem.2014.10.004. Epub Nov. 6, 2014.
Mandal et al., Riboswitches Control Fundamental Biochemical Pathways in Bacillus Subtilis and Other Bacteria. Cell. May 30, 2003;113(5):577-86. doi: 10.1016/s0092-8674(03)00391-x.
Mani et al., Design, engineering, and characterization of zinc finger nucleases. Biochem Biophys Res Commun. Sep. 23, 2005;335(2):447-57.
Marceau, Functions of single-strand DNA-binding proteins in DNA replication, recombination, and repair. Methods Mol Biol. 2012;922:1-21. doi: 10.1007/978-1-62703-032-8_1.
Maresca et al., Obligate ligation-gated recombination (ObLiGaRe): custom-designed nuclease-mediated targeted integration through nonhomologous end joining. Genome Res. Mar. 2013;23(3):539-46. Doi: 10.1101/gr.145441.112. Epub Nov. 14, 2012.
Marioni et al., DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. Jan. 30, 2015;16:25. doi: 10.1186/s13059-015-0584-6.
Marquart et al., Predicting base editing outcomes with an attention-based deep learning algorithm trained on high-throughput target library screeen. bioRxiv. Jul. 5, 2020. DOI:10.1101/2020.07.05.186544. Retrieved from the Internet via https://www.biorxiv.org/content/10.1101/2020.07.05.186544v1.full.pdf lased accessed on Apr. 28, 2021.
Marraffini et al., CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science. Dec. 19, 2008;322(5909):1843-5. doi: 10.1126/science.1165771.
Martinez et al., Hypermutagenesis of RNA using human immunodeficiency virus type 1 reverse transcriptase and biased dNTP concentrations. Proc Natl Acad Sci U S A. Dec. 6, 1994;91(25):11787-91. doi: 10.1073/pnas.91.25.11787.
Martsolf et al., Complete trisomy 17p a relatively new syndrome. Ann Genet. 1988;31(3):172-4.
Maruyama et al., Increasing the efficiency of precise genome editing with CRISPR-Cas9 by inhibition of nonhomologous end joining. Nat Biotechnol. May 2015;33(5):538-42. doi: 10.1038/nbt.3190. Epub Mar. 23, 2015.
Mascola et al., HIV-1 neutralizing antibodies: understanding nature's pathways Immunol Rev. Jul. 2013;254(1):225-44. doi: 10.1111/imr.12075.
Mathys et al., Characterization of a self-splicing mini-intein and its conversion into autocatalytic N- and C-terminal cleavage elements: facile production of protein building blocks for protein ligation. Gene. Apr. 29, 1999;231(1-2):1-13. doi: 10.1016/s0378-1119(99)00103-1.
Matsuura et al., A gene essential for the site-specific excision of actinophage r4 prophage genome from the chromosome of a lysogen. J Gen Appl Microbiol. 1995;41(1):53-61.
Matthews, Structures of human ADAR2 bound to dsRNA reveal base-flipping mechanism and basis for site selectivity. Nat Struct Mol Biol. May 2016;23(5):426-33. doi: 10.1038/nsmb.3203. Epub Apr. 11, 2016.
May et al., Emergent lineages of mumps virus suggest the need for a polyvalent vaccine. Int J Infect Dis. Jan. 2018;66:1-4. doi: 10.1016/j.ijid.2017.09.024. Epub Oct. 4, 2017.
McCarroll et al., Copy-number variation and association studies of human disease. Nat Genet. Jul. 2007;39(7 Suppl):537-42. doi: 10.1038/ng2080.
McDonald et al., Characterization of mutations at the mouse phenylalanine hydroxylase locus. Genomics. Feb. 1, 1997;39(3):402-5. doi: 10.1006/geno.1996.4508.
McInerney et al., Error Rate Comparison during Polymerase Chain Reaction by DNA Polymerase. Mol Biol Int. 2014;2014:287430. doi: 10.1155/2014/287430. Epub Aug. 17, 2014.
McKenna et al., Recording development with single cell dynamic lineage tracing. Development. Jun. 27, 2019;146(12):dev169730. doi: 10.1242/dev.169730.
McKenna et al., Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science. Jul. 29, 2016;353(6298):aaf7907. doi: 10.1126/science.aaf7907. Epub May 26, 2016.
McNaughton et al., Mammalian cell penetration, siRNA transfection, and DNA transfection by supercharged proteins. Proc Natl Acad Sci U S A. Apr. 14, 2009;106(15):6111-6. doi: 10.1073/pnas.0807883106. Epub Mar. 23, 2009.
McVey et al., MMEJ repair of double-strand breaks (director's cut): deleted sequences and alternative endings. Trends Genet. Nov. 2008;24(11):529-38. doi: 10.1016/j.tig.2008.08.007. Epub Sep. 21, 2008.
Mead et al., A novel protective prion protein variant that colocalizes with kuru exposure. N Engl J Med. Nov. 19, 2009;361(21):2056-65. doi: 10.1056/NEJMoa0809716.
Meckler et al., Quantitative analysis of TALE-DNA interactions suggests polarity effects. Nucleic Acids Res. Apr. 2013;41(7):4118-28. doi: 10.1093/nar/gkt085. Epub Feb. 13, 2013.
Mei et al., Recent Progress in CRISPR/Cas9 Technology. J Genet Genomics. Feb. 20, 2016;43(2):63-75. doi: 10.1016/j.jgg.2016.01.001. Epub Jan. 18, 2016.
Meinke et al., Cre Recombinase and Other Tyrosine Recombinases. Chem Rev. Oct. 26, 2016;116(20):12785-12820. doi: 10.1021/acs.chemrev.6b00077. Epub May 10, 2016.
Menéndez-Arias, Mutation rates and intrinsic fidelity of retroviral reverse transcriptases. Viruses. Dec. 2009;1(3):1137-65. doi: 10.3390/v1031137. Epub Dec. 4, 2009.
Meng et al., Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases. Nat Biotechnol. Jun. 2008;26(6):695-701. doi: 10.1038/nbt1398. Epub May 25, 2008.
Mercer et al., Chimeric TALE recombinases with programmable DNA sequence specificity. Nucleic Acids Res. Nov. 2012;40(21):11163-72. doi: 10.1093/nar/gks875. Epub Sep. 26, 2012.
Mertens et al., Site-specific recombination in bacteriophage Mu: characterization of binding sites for the DNA invertase Gin. EMBO J. Apr. 1988;7(4):1219-27.
Meyer et al., Breathing life into polycations: functionalization with pH-responsive endosomolytic peptides and polyethylene glycol enables siRNA delivery. J Am Chem Soc. Mar. 19, 2008;130(11):3272-3. doi: 10.1021/ja710344v. Epub Feb. 21, 2008.
Meyer et al., Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell. Jun. 22, 2012;149(7):1635-46. doi: 10.1016/j.cell.2012.05.003. Epub May 17, 2012.
Meyer et al., Confirmation of a second natural preQ1 aptamer class in Streptococcaceae bacteria. RNA. Apr. 2008;14(4):685-95. doi: 10.1261/rna.937308. Epub Feb. 27, 2008.
Meyer et al., Library generation by gene shuffling. Curr Protoc Mol Biol. Jan. 6, 2014;105:Unit 15.12.. doi: 10.1002/0471142727.mb1512s105.
Meyer et al., The dynamic epitranscriptome: N6-methyladenosine and gene expression control. Nat Rev Mol Cell Biol. May 2014;15(5):313-26. doi: 10.1038/nrm3785. Epub Apr. 9, 2014.
Michel et al., Mitochondrial class II introns encode proteins related to the reverse transcriptases of retroviruses. Nature. Aug. 15-21, 1985;316(6029):641-3. doi: 10.1038/316641a0.
Midoux et al., Chemical vectors for gene delivery: a current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br J Pharmacol. May 2009;157(2):166-78. doi: 10.1111/j.1476-5381.2009.00288.x.
Mihai et al., PTEN inhibition improves wound healing in lung epithelia through changes in cellular mechanics that enhance migration. Am J Physiol Lung Cell Mol Physiol. 2012;302(3):L287-L299.
Mijakovic et al., Bacterial single-stranded DNA-binding proteins are phosphorylated on tyrosine. Nucleic Acids Res. Mar. 20, 2006;34(5):1588-96. doi: 10.1093/nar/gkj514.
Miller et al., A TALE nuclease architecture for efficient genome editing. Nat Biotechnol. Feb. 2011;29(2):143-8. doi:10.1038/nbt.1755. Epub Dec. 22, 2010.
Miller et al., An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol. Jul. 2007;25(7):778-85. Epub Jul. 1, 2007.
Miller et al., Construction and properties of retrovirus packaging cells based on gibbon ape leukemia virus. J Virol. May 1991;65(5):2220-4. doi: 10.1128/JVI.65.5.2220-2224.1991.
Miller, Human gene therapy comes of age. Nature. Jun. 11, 1992;357(6378):455-60. doi: 10.1038/357455a0.
Mills et al., Protein splicing in trans by purified N- and C-terminal fragments of the Mycobacterium tuberculosis RecA intein. Proc Natl Acad Sci U S A. Mar. 31, 1998;95(7):3543-8. doi: 10.1073/pnas.95.7.3543.
Minoche et al., Evaluation of genomic high-throughput sequencing data generated on Illumina HiSeq and genome analyzer systems. Genome Biol. Nov. 8, 2011;12(11):R112. doi: 10.1186/gb-2011-12-11-r112.
Minoretti et al., A W148R mutation in the human FOXD4 gene segregating with dilated cardiomyopathy, obsessive-compulsive disorder, and suicidality. Int J Mol Med. Mar. 2007;19(3):369-72.
Mir et al., Two Active Site Divalent Ions in the Crystal Structure of the Hammerhead Ribozyme Bound to a Transition State Analogue. Biochemistry . . . Feb. 2, 2016;55(4):633-6. doi: 10.1021/acs.biochem.5b01139. Epub Jan. 19, 2016.
Mishina et al., Conditional gene targeting on the pure C57BL/6 genetic background. Neurosci Res. Jun. 2007;58(2):105-12. doi: 10.1016/j.neures.2007.01.004. Epub Jan. 18, 2007.
Mitani et al., Delivering therapeutic genes—matching approach and application. Trends Biotechnol. May 1993;11(5):162-6. doi: 10.1016/0167-7799(93)90108-L.
Mitton-Fry et al., Poly(A) tail recognition by a viral RNA element through assembly of a triple helix. Science. Nov. 26, 2010;330(6008):1244-7. doi: 10.1126/science.1195858.
Miyaoka et al., Systematic quantification of HDR and NHEJ reveals effects of locus, nuclease, and cell type on genome-editing. Sci Rep. Mar. 31, 2016;6:23549. doi: 10.1038/srep23549.
Moede et al., Identification of a nuclear localization signal, RRMKWKK, in the homeodomain transcription factor PDX-1. FEBS Lett. Nov. 19, 1999;461(3):229-34. doi: 10.1016/s0014-5793(99)01446-5.
Mohr et al., A Reverse Transcriptase-Cas1 Fusion Protein Contains a Cas6 Domain Required for Both CRISPR RNA Biogenesis and RNA Spacer Acquisition. Mol Cell. Nov. 15, 2018;72(4):700-714.e8. doi: 10.1016/j.molcel.2018.09.013. Epub Oct. 18, 2018.
Mohr et al., Thermostable group II intron reverse transcriptase fusion proteins and their use in cDNA synthesis and next-generation RNA sequencing. RNA. Jul. 2013;19(7):958-70. doi: 10.1261/rna.039743.113. Epub May 22, 2013.
Mojica et al., Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol. Feb. 2005;60(2):174-82.
Mok et al., A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature. Jul. 2020;583(7817):631-637. doi: 10.1038/s41586-020-2477-4. Epub Jul. 8, 2020.
Mol et al., Crystal structure of human uracil-DNA glycosylase in complex with a protein inhibitor: protein mimicry of DNA. Cell. Sep. 8, 1995;82(5):701-8.
Molla et al., CRISPR/Cas-Mediated Base Editing: Technical Considerations and Practical Applications. Trends Biotechnol. Oct. 2019;37(10):1121-1142. doi: 10.1016/j.tibtech.2019.03.008. Epub Apr. 14, 2019.
Monahan et al., Site-specific incorporation of unnatural amino acids into receptors expressed in Mammalian cells. Chem Biol. Jun. 2003;10(6):573-80.
Monot et al., The specificity and flexibility of 11 reverse transcription priming at imperfect T-tracts. PLoS Genet. May 2013;9(5):e1003499. doi: 10.1371/journal.pgen.1003499. Epub May 9, 2013.
Montange et al., Structure of the S-adenosylmethionine riboswitch regulatory mRNA element. Nature. Jun. 29, 2006;441(7097):1172-5.
Moore et al., Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs). PloS One. 2012;7(5):e37877. Doi: 10.1371/journal.pone.0037877. Epub May 24, 2012.
Mootz et al., Conditional protein splicing: a new tool to control protein structure and function in vitro and in vivo. J Am Chem Soc. Sep. 3, 2003;125(35):10561-9.
Mootz et al., Protein splicing triggered by a small molecule. J Am Chem Soc. Aug. 7, 2002;124(31):9044-5.
Morbitzer et al., Assembly of custom TALE-type DNA binding domains by modular cloning. Nucleic Acids Res. Jul. 2011;39(13):5790-9. doi: 10.1093/nar/gkr151. Epub Mar. 18, 2011.
Morita et al., The site-specific recombination system of actinophage TG1. FEMS Microbiol Lett. Aug. 2009;297(2):234-40. doi: 10.1111/j.1574-6968.2009.01683.x.
Morris et al., A peptide carrier for the delivery of biologically active proteins into mammalian cells. Nat Biotechnol. Dec. 2001;19(12):1173-6.
Moscou et al., A simple cipher governs DNA recognition by TAL effectors. Science. Dec. 11, 2009;326(5959):1501. doi: 10.1126/science.1178817.
Muir et al., Expressed protein ligation: a general method for protein engineering. Proc Natl Acad Sci U S A. Jun. 9, 1998;95(12):6705-10. doi: 10.1073/pnas.95.12.6705.
Muller et al., Nucleotide exchange and excision technology (NExT) DNA shuffling: a robust method for DNA fragmentation and directed evolution. Nucleic Acids Res. Aug. 1, 2005;33(13):e117. doi: 10.1093/narigni116. PMID: 16061932; PMCID: PMC1182171.
Mullins et al., Transgenesis in nonmurine species. Hypertension. Oct. 1993;22(4):630-3.
Mumtsidu et al., Structural features of the single-stranded DNA-binding protein of Epstein-Barr virus. J Struct Biol. Feb. 2008;161(2):172-87. doi: 10.1016/j.jsb.2007.10.014. Epub Nov. 1, 2007.
Mussolino et al., A novel TALE nuclease scaffold enables high genome editing activity in combination with low toxicity. Nucleic Acids Res. Nov. 2011;39(21):9283-93. Doi: 10.1093/nar/gkr597. Epub Aug. 3, 2011.
Mussolino et al., TALE nucleases: tailored genome engineering made easy. Curr Opin Biotechnol. Oct. 2012;23(5):644-50. doi: 10.1016/j.copbio.2012.01.013. Epub Feb. 17, 2012.
Muzyczka et al., Adeno-associated virus (AAV) vectors: will they work? J Clin Invest. Oct. 1994;94(4):1351. doi: 10.1172/JCI117468.
Myerowitz et al., the major defect in Ashkenazi Jews with Tay-Sachs disease is an insertion in the gene for the alpha-chain of beta-hexosaminidase. J Biol Chem. Dec. 15, 1988;263(35):18587-9.
Myers et al., Insulin signal transduction and the IRS proteins. Annu Rev Pharmacol Toxicol. 1996;36:615-58. doi: 10.1146/annurev.pa.36.040196.003151.
Nabel et al., Direct gene transfer for immunotherapy and immunization. Trends Biotechnol. May 1993;11(5):211-5. doi: 10.1016/0167-7799(93)90117-R.
Nahar et al., A G-quadruplex motif at the 3′ end of sgRNAs improves CRISPR-Cas9 based genome editing efficiency. Chem Commun (Camb). Mar. 7, 2018;54(19):2377-2380. doi: 10.1039/c7cc08893k. Epub Feb. 16, 2018.
Nahvi et al., Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. Nucleic Acids Res. Jan. 2, 2004;32(1):143-50.
Nakade et al., Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nat Commun. Nov. 20, 2014;5:5560. doi: 10.1038/ncomms6560.
Nakamura et al., Codon usage tabulated from international DNA sequence databases: status for the year 2000. Nucleic Acids Res. Jan. 1, 2000;28(1):292. doi: 10.1093/nar/28.1.292.
Naorem et al., DGR mutagenic transposition occurs via hypermutagenic reverse transcription primed by nicked template Rna. Proc Natl Acad Sci U S A. Nov. 21, 2017;114(47):E10187-E10195. doi: 10.1073/pnas.1715952114. Epub Nov. 6, 2017.
Narayanan et al., Clamping down on weak terminal base pairs: oligonucleotides with molecular caps as fidelity-enhancing elements at the 5′- and 3′-terminal residues. Nucleic Acids Res. May 20, 2004;32(9):2901-11. Print 2004.
Navaratnam et al., An overview of cytidine deaminases. Int J Hematol. Apr. 2006;83(3):195-200.
NCBI Reference Sequence: NM_002427.3. Wu et al., May 3, 2014. 5 pages.
Neel et al., Riboswitches: Classification, function and in silico approach, International Journal of Pharma Sciences and Research. 2010;1(9):409-420.
Nelson et al., Filamentous phage DNA cloning vectors: a noninfective mutant with a nonpolar deletion in gene III. Virology. 1981; 108(2): 338-50.
Nern et al., Multiple new site-specific recombinases for use in manipulating animal genomes. Proc Natl Acad Sci USA. Aug. 23, 2011;108(34):14198-203. doi: 10.1073/pnas.1111704108. Epub Aug. 9, 2011.
Newby et al., Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature. Jun. 2, 2021. doi: 10.1038/s41586-021-03609-w. Epub ahead of print.
Nguyen et al., Evolutionary drivers of thermoadaptation in enzyme catalysis. Science. Jan. 20, 2017;355(6322):289-294. doi: 10.1126/science.aah3717. Epub Dec. 22, 2016.
Nguyen et al., IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. Jan. 2015;32(1):268-74. doi: 10.1093/molbev/msu300. Epub Nov. 3, 2014.
Ni et al., A PCSK9-binding antibody that structurally mimics the EGF(A) domain of LDL-receptor reduces LDL cholesterol in vivo. J Lipid Res. 2011;52:76-86.
Ni et al., Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem. 2011;18(27):4206-14. Review.
Nishida et al., Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science. Sep. 16, 2016;353(6305):1248. pii: aaf8729. doi: 10.1126/science.aaf8729. Epub Aug. 4, 2016.
Nishikura, Functions and regulation of RNA editing by ADAR deaminases. Annu Rev Biochem. 2010;79:321-349. doi:10.1146/annurev-biochem-060208-105251.
Nishimasu et al., Crystal structure of Cas9 in complex with guide RNA and target DNA. Cell. Feb. 27, 2014;156(5):935-49. doi: 10.1016/j.cell.2014.02.001. Epub Feb. 13, 2014.
Nishimasu et al., Crystal Structure of Staphylococcus Aureus Cas9. Cell. Aug. 27, 2015;162(5):1113-26. doi: 10.1016/j.cell.2015.08.007.
Nishimasu et al., Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science. Sep. 21, 2018;361(6408):1259-1262. doi: 10.1126/science.aas9129. Epub Aug. 30, 2018.
Nomura et al., Controlling Mammalian Gene Expression by Allosteric Hepatitis Delta Virus Ribozymes. ACS Synth Biol. Dec. 20, 2013;2(12):684-9. doi: 10.1021/sb400037a. Epub May 22, 2013.
Nomura et al., Synthetic mammalian riboswitches based on guanine aptazyme. Chem Commun (Camb). Jul. 21, 2012;48(57):7215-7. doi: 10.1039/c2cc33140c. Epub Jun. 13, 2012.
Noris et al., A phenylalanine-55 to serine amino-acid substitution in the human glycoprotein IX leucine-rich repeat is associated with Bernard-Soulier syndrome. Br J Haematol. May 1997;97(2):312-20.
Nottingham et al., RNA-seq of human reference RNA samples using a thermostable group II intron reverse transcriptase. RNA. Apr. 2016;22(4):597-613. doi: 10.1261/rna.055558.115. Epub Jan. 29, 2016.
Nowak et al., Characterization of single-stranded DNA-binding proteins from the psychrophilic bacteria Desulfotalea psychrophila, Flavobacterium psychrophilum, Psychrobacter arcticus, Psychrobacter cryohalolentis, Psychromonas ingrahamii, Psychroflexus torquis, and Photobacterium profundum. BMC Microbiol. Apr. 14, 2014;14:91. doi: 10.1186/1471-2180-14-91.
Nowak et al., Guide RNA Engineering for Versatile Cas9 Functionality. Nucleic Acids Res. Nov. 16, 2016;44(20):9555-9564. doi: 10.1093/nar/gkw908. Epub Oct. 12, 2016.
Nowak et al., Structural analysis of monomeric retroviral reverse transcriptase in complex with an RNA/DNA hybrid. Nucleic Acids Res. Apr. 1, 2013;41(6):3874-87. doi: 10.1093/nar/gkt053. Epub Feb. 4, 2013.
Numrych et al., A comparison of the effects of single-base and triple-base changes in the integrase arm-type binding sites on the site-specific recombination of bacteriophage lambda. Nucleic Acids Res. Jul. 11, 1990;18(13):3953-9. doi: 10.1093/nar/18.13.3953.
Nyerges et al., A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species. Proc Natl Acad Sci U S A. Mar. 1, 2016;113(9):2502-7. doi: 10.1073/pnas.1520040113. Epub Feb. 16, 2016.
Oakes et al., CRISPR-Cas9 Circular Permutants as Programmable Scaffolds for Genome Modification. Cell. Jan. 10, 2019;176(1-2):254-267.e16. doi: 10.1016/j.cell.2018.11.052.
Oakes et al., Profiling of engineering hotspots identifies an allosteric CRISPR-Cas9 switch. Nat Biotechnol. Jun. 2016;34(6):646-51. doi: 10.1038/nbt.3528. Epub May 2, 2016.
Oakes et al., Protein engineering of Cas9 for enhanced function. Methods Enzymol. 2014;546:491-511.
O'Connell et al., Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature. Dec. 11, 2014;516(7530):263-6. doi: 10.1038/nature13769. Epub Sep. 28, 2014.
Odsbu et al., Specific N-terminal interactions of the Escherichia coli SeqA protein are required to form multimers that restrain negative supercoils and form foci. Genes Cells. Nov. 2005;10(11):1039-49.
Oeemig et al., Solution structure of DnaE intein from Nostoc punctiforme: structural basis for the design of a new split intein suitable for site-specific chemical modification. FEBS Lett. May 6, 2009;583(9):1451-6.
Offord, Advances in Genome Editing. The Scientist, Apr. 20, 2016. http://www.the-scientist.com/?articles.view/articleNo/45903/title/Advances-in-Genome-Editing/.
Oh et al., Positional cloning of a gene for Hermansky-Pudlak syndrome, a disorder of cytoplasmic organelles. Nat Genet. Nov. 1996;14(3):300-6. doi: 10.1038/ng1196-300.
Ohe et al., Purification and properties of xanthine dehydrogenase from Streptomyces cyanogenus. J Biochem. Jul. 1979;86(1):45-53.
Olivares et al., Site-specific genomic integration produces therapeutic Factor IX levels in mice. Nat Biotechnol. Nov. 2002;20(11):1124-8. doi: 10.1038/nbt753. Epub Oct. 15, 2002.
Olorunniji et al., Purification and In Vitro Characterization of Zinc Finger Recombinases. Methods Mol Biol. 2017;1642:229-245. doi: 10.1007/978-1-4939-7169-5_15.
Olorunniji et al., Site-specific recombinases: molecular machines for the Genetic Revolution. Biochem J. Mar. 15, 2016;473(6):673-84. doi: 10.1042/BJ20151112.
O'Maille et al., Structure-based combinatorial protein engineering (SCOPE). J Mol Biol. Aug. 23, 2002;321(4):677-91.
Orlando et al., Zinc-finger nuclease-driven targeted integration into mammalian genomes using donors with limited chromosomal homology. Nucleic Acids Res. Aug. 2010;38(15):e152. doi: 10.1093/nar/gkq512. Epub Jun. 8, 2010.
Orthwein et al., A mechanism for the suppression of homologous recombination in G1 cells. Nature. Dec. 17, 2015;528(7582):422-6. doi: 10.1038/nature16142. Epub Dec. 9, 2015.
Ortiz-Urda et al., Stable nonviral genetic correction of inherited human skin disease. Nat Med. Oct. 2002;8(10):1166-70. doi: 10.1038/nm766. Epub Sep. 16, 2002. Erratum in: Nat Med. Feb. 2003;9(2):237.
Osborn et al., TALEN-based gene correction for epidermolysis bullosa. Mol Ther. Jun. 2013;21(6):1151-9. doi: 10.1038/mt.2013.56. Epub Apr. 2, 2013.
Ostermeier et al., A combinatorial approach to hybrid enzymes independent of DNA homology. Nat Biotechnol. Dec. 1999;17(12):1205-9.
Ostertag et al., Biology of mammalian L1 retrotransposons. Annu Rev Genet. 2001;35:501-38. doi: 10.1146/annurev.genet.35.102401.091032.
Otomo et al., Improved segmental isotope labeling of proteins and application to a larger protein. J Biomol NMR. Jun. 1999;14(2):105-14. doi: 10.1023/a:1008308128050.
Otomo et al., NMR observation of selected segments in a larger protein: central-segment isotope labeling through intein-mediated ligation. Biochemistry. Dec. 7, 1999;38(49):16040-4. doi: 10.1021/bi991902j.
Otto et al., The probability of fixation in populations of changing size. Genetics. Jun. 1997;146(2):723-33.
Paige et al., RNA mimics of green fluorescent protein. Science. Jul. 29, 2011;333(6042):642-6. doi:10.1126/science.1207339.
Paiva et al., Targeted protein degradation: elements of PROTAC design. Curr Opin Chem Biol. Jun. 2019;50:111-119. doi: 10.1016/j.cbpa.2019.02.022. Epub Apr. 17, 2019.
Pan et al., Biological and biomedical applications of engineered nucleases. Mol Biotechnol. Sep. 2013;55(1):54-62. doi: 10.1007/s12033-012-9613-9.
Paquet et al., Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature. May 5, 2016;533(7601):125-9. doi: 10.1038/nature17664. Epub Apr. 27, 2016.
Park et al., Digenome-seq web tool for profiling CRISPR specificity. Nat Methods. May 30, 2017;14(6):548-549. doi: 10.1038/nmeth.4262.
Park et al., Highly efficient editing of the ?-globin gene in patient-derived hematopoietic stem and progenitor cells to treat sickle cell disease. Nucleic Acids Res. Sep. 5, 2019;47(15):7955-7972. doi: 10.1093/nar/gkz475.
Park et al., Sendai virus, an RNA virus with no risk of genomic integration, delivers CRISPR/Cas9 for efficient gene editing. Mol Ther Methods Clin Dev. Aug. 24, 2016;3:16057. doi: 10.1038/mtm.2016.57.
Parker et al., Admixture mapping identifies a quantitative trait locus associated with PEV1/FVC in the COPDGene Study. Genet Epidemiol. Nov. 2014;38(7):652-9. doi: 10.1002/gepi.21847. Epub Aug. 11, 2014.
Partial Supplementary European Search Report for Application No. EP 12845790.0, dated Mar. 18, 2015.
Patel et al., Flap endonucleases pass 5′-flaps through a flexible arch using a disorder-thread-order mechanism to confer specificity for free 5′-ends. Nucleic Acids Res. May 2012;40(10):4507-19. doi: 10.1093/nar/gks051. Epub Feb. 8, 2012.
Pattanayak et al., Determining the specificities of TALENs, Cas9, and other genome-editing enzymes. Methods Enzymol. 2014;546:47-78. doi: 10.1016/B978-0-12-801185-0.00003-9.
Pattanayak et al., High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol. Sep. 2013;31(9):839-43. doi: 10.1038/nbt.2673. Epub Aug. 11, 2013.
Pattanayak et al., Revealing off-target cleavage specificities of zinc-finger nucleases by in vitro selection. Nat Methods. Aug. 7, 2011;8(9):765-70. doi: 10.1038/nmeth.1670.
Pavletich et al., Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science. May 10, 1991;252(5007):809-17.
Pawson et al., Protein phosphorylation in signaling—50 years and counting. Trends Biochem Sci. Jun. 2005;30(6):286-90. doi: 10.1016/j.tibs.2005.04.013.
Pearl, Structure and function in the uracil-DNA glycosylase superfamily. Mutat Res. Aug. 30, 2000;460(3-4):165-81.
Peck et al., Directed evolution of a small-molecule-triggered intein with improved splicing properties in mammalian cells. Chem Biol. May 27, 2011;18(5):619-30. doi: 10.1016/j.chembiol.2011.02.014.
Pellenz et al., New human chromosomal safe harbor sites for genome engineering with CRISPR/Cas9, TAL effector and homing endonucleases. Aug. 20, 2018. bioRxiv doi: https://doi.org/10.1101/396390.
Pelletier, CRISPR-Cas systems for the study of the immune function. Nov. 15, 2016. https://doi.org/10.1002/9780470015902.a0026896.
Pennisi et al., The CRISPR craze. Science. Aug. 23, 2013;341(6148):833-6. doi: 10.1126/science.341.6148.833.
Pennisi et al., The Tale of the TALEs. Science. Dec. 14, 2012;338(6113):1408-11. doi: 10.1126/science.338.6113.1408.
Perach et al., Catalytic features of the recombinant reverse transcriptase of bovine leukemia virus expressed in bacteria. Virology. Jun. 20, 1999;259(1):176-89. doi: 10.1006/viro.1999.9761.
Perez et al., Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol. Jul. 2008;26(7):808-16. Doi: 10.1038/nbt1410. Epub Jun. 29, 2008.
Perez-Pinera et al., Advances in targeted genome editing. Curr Opin Chem Biol. Aug. 2012;16(3-4):268-77. doi: 10.1016/j.cbpa.2012.06.007. Epub Jul. 20, 2012.
Perez-Pinera et al., RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods. Oct. 2013;10(10):973-6. doi: 10.1038/nmeth.2600. Epub Jul. 25, 2013.
Perler et al., Protein splicing and autoproteolysis mechanisms. Curr Opin Chem Biol. Oct. 1997;1(3):292-9. doi: 10.1016/s1367-5931(97)80065-8.
Perler et al., Protein splicing elements: inteins and exteins—a definition of terms and recommended nomenclature. Nucleic Acids Res. Apr. 11, 1994;22(7):1125-7. doi: 10.1093/nar/22.7.1125.
Perler, InBase, the New England Biolabs Intein Database. Nucleic Acids Res. Jan. 1, 1999;27(1):346-7. doi: 10.1093/nar/27.1.346.
Perler, Protein splicing of inteins and hedgehog autoproteolysis: structure, function, and evolution. Cell. Jan. 9, 1998;92(1):1-4. doi: 10.1016/s0092-8674(00)80892-2.
Petek et al., Frequent endonuclease cleavage at off-target locations in vivo. Mol Ther. May 2010;18(5):983-6. Doi: 10.1038/mt.2010.35. Epub Mar. 9, 2010.
Petersen-Mahrt et al., AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature. Jul. 4, 2002;418(6893):99-103.
Petolino et al., Editing Plant Genomes: a new era of crop improvement. Plant Biotechnol J. Feb. 2016;14(2):435-6. doi: 10.1111/pbi.12542.
Peyrottes et al., Oligodeoxynucleoside phosphoramidates (P-NH2): synthesis and thermal stability of duplexes with DNA and RNA targets. Nucleic Acids Res. May 15, 1996;24(10):1841-8.
Pfeiffer et al., Mechanisms of DNA double-strand break repair and their potential to induce chromosomal aberrations. Mutagenesis. Jul. 2000;15(4):289-302. doi: 10.1093/mutage/15.4.289.
Phillips, The challenge of gene therapy and DNA delivery. J Pharm Pharmacol. Sep. 2001;53(9):1169-74.
Pickart et al., Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta. Nov. 29, 2004;1695(1-3):55-72. doi: 10.1016/j.bbamcr.2004.09.019.
Pinkert et al., An albumin enhancer located 10 kb upstream functions along with its promoter to direct efficient, liver-specific expression in transgenic mice. Genes Dev. May 1987;1(3):268-76. doi: 10.1101/gad.1.3.268.
Pirakitikulr et al., PCRless library mutagenesis via oligonucleotide recombination in yeast. Protein Sci. Dec. 2010;19(12):2336-46. doi: 10.1002/pro.513.
Plasterk et al., DNA inversions in the chromosome of Escherichia coli and in bacteriophage Mu: relationship to other site-specific recombination systems. Proc Natl Acad Sci U S A. Sep. 1983;80(17):5355-8.
Plosky et al., CRISPR-Mediated Base Editing without DNA Double-Strand Breaks. Mol Cell. May 19, 2016;62(4):477-8. doi: 10.1016/j.molcel.2016.05.006.
Pluciennik et al., PCNA function in the activation and strand direction of MutLa endonuclease in mismatch repair. Proc Natl Acad Sci U S A. Sep. 14, 2010;107(37):16066-71. doi: 10.1073/pnas.1010662107. Epub Aug. 16, 2010.
Poller et al., A leucine-to-proline substitution causes a defective alpha 1-antichymotrypsin allele associated with familial obstructive lung disease. Genomics. Sep. 1993;17(3):740-3.
Popp et al., Sortagging: a versatile method for protein labeling. Nat Chem Biol. Nov. 2007;3(11):707-8. doi: 10.1038/nchembio.2007.31. Epub Sep. 23, 2007.
Porteus, Design and testing of zinc finger nucleases for use in mammalian cells. Methods Mol Biol. 2008;435:47-61. doi: 10.1007/978-1-59745-232-8_4.
Posnick et al., Imbalanced base excision repair increases spontaneous mutation and alkylation sensitivity in Escherichia coli. J Bacteriol. Nov. 1999;181(21):6763-71.
Pospísilová et al., Hydrolytic cleavage of N6-substituted adenine derivatives by eukaryotic adenine and adenosine deaminases. Biosci Rep. 2008;28(6):335-347. doi:10.1042/BSR20080081.
Pourcel et al., CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology. Mar. 2005;151(Pt 3):653-63.
Prashant et al., CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nature Biotechnology 2013;31(9):833-8.
Prorocic et al., Zinc-finger recombinase activities in vitro. Nucleic Acids Res. Nov. 2011;39(21):9316-28. doi: 10.1093/nar/gkr652. Epub Aug. 17, 2011.
Proudfoot et al., Zinc finger recombinases with adaptable DNA sequence specificity. PLoS One. Apr. 29, 2011;6(4):e19537. doi: 10.1371/journal.pone.0019537.
Pruschy et al., Mechanistic studies of a signaling pathway activated by the organic dimerizer FK1012. Chem Biol. Nov. 1994;1(3):163-72. doi: 10.1016/1074-5521(94)90006-x.
Prykhozhij et al., CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One. Mar. 5, 2015;10(3):e0119372. doi: 10.1371/journal.pone.0119372. eCollection 2015.
Pu et al., Evolution of a split RNA polymerase as a versatile biosensor platform. Nat Chem Biol. Apr. 2017;13(4):432-438. doi: 10.1038/nchembio.2299. Epub Feb. 13, 2017.
Putnam et al., Protein mimicry of DNA from crystal structures of the uracil-DNA glycosylase inhibitor protein and its complex with Escherichia coli uracil-DNA glycosylase. J Mol Biol. Mar. 26, 1999;287(2):331-46.
Qi et al., Engineering naturally occurring trans-acting non-coding RNAs to sense molecular signals. Nucleic Acids Res. Jul. 2012;40(12):5775-86. doi: 10.1093/nar/gks168. Epub Mar. 1, 2012.
Qi et al., Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell. Feb. 28, 2013;152(5):1173-83. doi: 10.1016/j.cell.2013.02.022.
Qu et al., Global mapping of binding sites for phic31 integrase in transgenic maden-darby bovine kidney cells using ChIP-seq. Hereditas. Jan. 14, 2019;156:3. doi: 10.1186/s41065-018-0079-z.
Queen et al., Immunoglobulin gene transcription is activated by downstream sequence elements. Cell. Jul. 1983;33(3):741-8. doi: 10.1016/0092-8674(83)90016-8.
Radany et al., Increased spontaneous mutation frequency in human cells expressing the phage PBS2-encoded inhibitor of uracil-DNA glycosylase. Mutat Res. Sep. 15, 2000;461(1):41-58. doi: 10.1016/s0921-8777(00)00040-9.
Raina et al., PROTAC-induced BET protein degradation as a therapy for castration-resistant prostate cancer. Proc Natl Acad Sci U S A. Jun. 28, 2016;113(26):7124-9. doi: 10.1073/pnas.1521738113. Epub Jun. 6, 2016.
Rakonjac et al., Roles of PIII in filamentous phage assembly. J Mol Biol. 1998; 282(1)25-41.
Ramakrishna et al., Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. Jun. 2014;24(6):1020-7. doi: 10.1101/gr.171264.113. Epub Apr. 2, 2014.
Ramamurthy et al., Identification of immunogenic B-cell epitope peptides of rubella virus E1 glycoprotein towards development of highly specific immunoassays and/or vaccine. Conference Abstract. 2019.
Ramirez et al., Engineered zinc finger nickases induce homology-directed repair with reduced mutagenic effects. Nucleic Acids Res. Jul. 2012;40(12):5560-8. doi: 10.1093/nar/gks179. Epub Feb. 28, 2012.
Ramirez et al., Unexpected failure rates for modular assembly of engineered zinc fingers. Nat Methods. May 2008;5(5):374-5. Doi: 10.1038/nmeth0508-374.
Ran et al., Double Nicking by RNA-guided CRISPR Cas9 for Enhanced Genome Editing Specificity. Cell. Sep. 12, 2013;154(6):1380-9. doi: 10.1016/j.cell.2013.08.021. Epub Aug. 29, 2013.
Ran et al., Genome engineering using the CRISPR-Cas9 system. Nat Protoc. Nov. 2013;8(11):2281-308. doi: 10.1038/nprot.2013.143. Epub Oct. 24, 2013.
Ran et al., In vivo genome editing using Staphylococcus aureus Cas9. Nature. Apr. 9, 2015;520(7546):186-91. doi: 10.1038/nature14299. Epub Apr. 1, 2015.
Ranzau et al., Genome, Epigenome, and Transcriptome Editing via Chemical Modification of Nucleobases in Living Cells. Biochemistry. Feb. 5, 2019;58(5):330-335. doi: 10.1021/acs.biochem.8b00958. Epub Dec. 12, 2018.
Rashel et al., A novel site-specific recombination system derived from bacteriophage phiMR11. Biochem Biophys Res Commun. Apr. 4, 2008;368(2):192-8. doi: 10.1016/j.bbrc.2008.01.045. Epub Jan. 22, 2008.
Rasila et al., Critical evaluation of random mutagenesis by error-prone polymerase chain reaction protocols, Escherichia coli mutator strain, and hydroxylamine treatment. Anal Biochem. May 1, 2009;388(1):71-80. doi: 10.1016/j.ab.2009.02.008. Epub Feb. 10, 2009.
Raskin et al., Substitution of a single bacteriophage T3 residue in bacteriophage T7 RNA polymerase at position 748 results in a switch in promoter specificity. J Mol Biol. Nov. 20, 1992;228(2):506-15.
Raskin et al., T7 RNA polymerase mutants with altered promoter specificities. Proc Natl Acad Sci U S A. Apr. 15, 1993;90(8):3147-51.
Rath et al., Fidelity of end joining in mammalian episomes and the impact of Metnase on joint processing. BMC Mol Biol. Mar. 22, 2014;15:6. doi: 10.1186/1471-2199-15-6.
Rauch et al., Programmable RNA Binding Proteins for Imaging and Therapeutics. Biochemistry. Jan. 30, 2018;57(4):363-364. doi: 10.1021/acs.biochem.7b01101. Epub Nov. 17, 2017.
Ravishankar et al., X-ray analysis of a complex of Escherichia coli uracil DNA glycosylase (EcUDG) with a proteinaceous inhibitor. The structure elucidation of a prokaryotic UDG. Nuclei Acids Res. 26 (21): 4880-4887 (1998).
Ray et al., A compendium of RNA-binding motifs for decoding gene regulation. Nature. Jul. 11, 2013;499(7457):172-7. doi: 10.1038/nature12311.
Ray et al., Homologous recombination: ends as the means. Trends Plant Sci. Oct. 2002;7(10):435-40.
Rebar et al., Phage display methods for selecting zinc finger proteins with novel DNA-binding specificities. Methods Enzymol. 1996;267:129-49.
Rebuzzini et al., New mammalian cellular systems to study mutations introduced at the break site by non-homologous end-joining. DNA Repair (Amst). May 2, 2005;4(5):546-55.
Rees et al., Analysis and minimization of cellular RNA editing by DNA adenine base editors. Sci Adv. May 8, 2019;5(5):eaax5717. doi: 10.1126/sciadv.aax5717.
Rees et al., Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet. Dec. 2018;19(12):770-788. doi: 10.1038/s41576-018-0059-1.
Rees et al., Development of hRad51-Cas9 nickase fusions that mediate Hdr without double-stranded breaks. Nat Commun. May 17, 2019;10(1):2212. doi: 10.1038/s41467-019-09983-4.
Rees et al., Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat Commun. Jun. 6, 2017;8:15790. doi: 10.1038/ncomms15790.
Relph et al., Recent developments and current status of gene therapy using viral vectors in the United Kingdom. BMJ. 2004;329(7470):839-842. doi:10.1136/bmj.329.7470.839.
Remy et al., Gene transfer with a series of lipophilic DNA-binding molecules. Bioconjug Chem. Nov.-Dec. 1994;5(6):647-54. doi: 10.1021/bc00030a021.
Ren et al., In-line Alignment and Mg2? Coordination at the Cleavage Site of the env22 Twister Ribozyme. Nat Commun. Nov. 20, 2014;5:5534. doi: 10.1038/ncomms6534.
Ren et al., Pistol Ribozyme Adopts a Pseudoknot Fold Facilitating Site-Specific In-Line Cleavage. Nat Chem Biol. Sep. 2016;12(9):702-8. doi: 10.1038/nchembio.2125. Epub Jul. 11, 2016.
Reyon et al., Flash assembly of TALENs for high-throughput genome editing. Nat Biotechnol. May 2012;30(5):460-5. doi: 10.1038/nbt.2170.
Ribeiro et al., Protein Engineering Strategies to Expand CRISPR-Cas9 Applications. Int J Genomics. Aug. 2, 2018;2018:1652567. doi: 10.1155/2018/1652567.
Richardson et al., Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat Biotechnol. Mar. 2016;34(3):339-44. doi: 10.1038/nbt.3481. Epub Jan. 20, 2016.
Richter et al., Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR associated (Cas) systems. Viruses. Oct. 19, 2012;4(10):2291-311. doi: 10.3390/v4102291.
Riechmann et al.,. The C-terminal domain of TolA is the coreceptor for filamentous phage infection of E. coli. Cell. 1997; 90(2):351-60. PMID:9244308.
Ringrose et al., The Kw recombinase, an integrase from Kluyveromyces waltii. Eur J Biochem. Sep. 15, 1997;248(3):903-12. doi: 10.1111/j.1432-1033.1997.00903.x.
Risso et al., Hyperstability and substrate promiscuity in laboratory resurrections of Precambrian ?-lactamases. J Am Chem Soc. Feb. 27, 2013;135(8):2899-902. doi: 10.1021/ja311630a. Epub Feb. 14, 2013.
Ritchie et al., limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. Apr. 20, 2015;43(7):e47. doi: 10.1093/nar/gkv007. Epub Jan. 20, 2015.
Robinson et al., The protein tyrosine kinase family of the human genome. Oncogene. Nov. 20, 2000;19(49):5548-57. doi: 10.1038/sj.onc.1203957.
Rogozin et al., Evolution and diversification of lamprey antigen receptors: evidence for involvement of an AID-APOBEC family cytosine deaminase. Nat Immunol. Jun. 2007;8(6):647-56. doi: 10.1038/ni1463. Epub Apr. 29, 2007.
Rong et al., Homologous recombination in human embryonic stem cells using CRISPR/Cas9 nickase and a long DNA donor template. Protein Cell. Apr. 2014;5(4):258-60. doi: 10.1007/s13238-014-0032-5.
Roth et al., A widespread self-cleaving ribozyme class is revealed by bioinformatics. Nat Chem Biol. Jan. 2014;10(1):56-60. doi: 10.1038/nchembio.1386. Epub Nov. 17, 2013.
Roth et al., Purification and characterization of murine retroviral reverse transcriptase expressed in Escherichia coli. J Biol Chem. Aug. 5, 1985;260(16):9326-35.
Rouet et al., Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc Natl Acad Sci U S A. Jun. 21, 1994;91(13):6064-8. doi: 10.1073/pnas.91.13.6064.
Rouet et al., Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol. Dec. 1994;14(12):8096-106. doi: 10.1128/mcb.14.12.8096.
Rouet et al., Receptor-Mediated Delivery of CRISPR-Cas9 Endonuclease for Cell-Type-Specific Gene Editing. J Am Chem Soc. May 30, 2018;140(21):6596-6603. doi: 10.1021/jacs.8b01551. Epub May 18, 2018.
Roundtree et al.,YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. Elife. Oct. 6, 2017;6:e31311. doi: 10.7554/eLife.31311.
Rowland et al., Regulatory mutations in Sin recombinase support a structure-based model of the synaptosome. Mol Microbiol. Oct. 2009;74(2):282-98. doi: 10.1111/j.1365-2958.2009.06756.x. Epub Jun. 8, 2009.
Rowland et al., Sin recombinase from Staphylococcus aureus: synaptic complex architecture and transposon targeting. Mol Microbiol. May 2002;44(3):607-19. doi: 10.1046/j.1365-2958.2002.02897.x.
Rowley, Chromosome translocations: dangerous liaisons revisited. Nat Rev Cancer. Dec. 2001;1(3):245-50. doi: 10.1038/35106108.
Rubio et al., An adenosine-to-inosine tRNA-editing enzyme that can perform C-to-U deamination of DNA. Proc Natl Acad Sci U S A. May 8, 2007;104(19):7821-6. doi: 10.1073/pnas.0702394104. Epub May 1, 2007. PMID: 17483465; PMCID: PMC1876531.
Rubio et al., Transfer RNA travels from the cytoplasm to organelles. Wiley Interdiscip Rev RNA. Nov.-Dec. 2011;2(6):802-17. doi: 10.1002/wrna.93. Epub Jul. 11, 2011.
Rudolph et al., Synthetic riboswitches for the conditional control of gene expression in Streptomyces coelicolor. Microbiology. Jul. 2013;159(Pt 7):1416-22. doi: 10.1099/mic.0.067322-0. Epub May 15, 2013.
Rüfer et al., Non-contact positions impose site selectivity on Cre recombinase. Nucleic Acids Res. Jul. 1, 2002;30(13):2764-71. doi: 10.1093/nar/gkf399.
Rutherford et al., Attachment site recognition and regulation of directionality by the serine integrases. Nucleic Acids Res. Sep. 2013;41(17):8341-56. doi: 10.1093/nar/gkt580. Epub Jul. 2, 2013.
Ryu et al., Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy. Nat Biotechnol. Jul. 2018;36(6):536-539. doi: 10.1038/nbt.4148. Epub Apr. 27, 2018.
Sadelain et al., Safe harbours for the integration of new DNA in the human genome. Nat Rev Cancer. Dec. 1, 2011;12(1):51-8. doi: 10.1038/nrc3179.
Sadowski, The Flp recombinase of the 2-microns plasmid of Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol. 1995;51:53-91.
Sage et al., Proliferation of functional hair cells in vivo in the absence of the retinoblastoma protein. Science. Feb. 18, 2005;307(5712):1114-8. Epub Jan. 13, 2005.
Sakuma et al., MMEJ-assisted gene knock-in using TALENs and CRISPR-Cas9 with the PITCh systems. Nat Protoc. Jan. 2016;11(1):118-33. doi: 10.1038/nprot.2015.140. Epub Dec. 17, 2015.
Saleh-Gohari et al., Conservative homologous recombination preferentially repairs DNA double-strand breaks in the S phase of the cell cycle in human cells. Nucleic Acids Res. Jul. 13, 2004;32(12):3683-8. Print 2004.
Samal et al., Cationic polymers and their therapeutic potential. Chem Soc Rev. Nov. 7, 2012;41(21):7147-94. doi: 10.1039/c2cs35094g. Epub Aug. 10, 2012.
Samulski et al., Helper-free stocks of recombinant adeno-associated viruses: normal integration does not require viral gene expression. J Virol. Sep. 1989;63(9):3822-8. doi: 10.1128/JVI.63.9.3822-3828.1989.
Sander et al., CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. Apr. 2014;32(4):347-55. doi: 10.1038/nbt.2842. Epub Mar. 2, 2014.
Sander et al., In silico abstraction of zinc finger nuclease cleavage profiles reveals an expanded landscape of off-target sites. Nucleic Acids Res. Oct. 2013;41(19):e181. doi: 10.1093/nar/gkt716. Epub Aug. 14, 2013.
Sander et al., Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol. Aug. 5, 2011;29(8):697-8. doi: 10.1038/nbt.1934.
Sang, Prospects for transgenesis in the chick. Mech Dev. Sep. 2004;121(9):1179-86.
Sanjana et al., A transcription activator-like effector toolbox for genome engineering. Nat Protoc. Jan. 5, 2012;7(1):171-92. doi: 10.1038/nprot.2011.431.
Santiago et al., Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci U S A. Apr. 15, 2008;105(15):5809-14. doi: 10.1073/pnas.0800940105. Epub Mar. 21, 2008.
Santoro et al., Directed evolution of the site specificity of Cre recombinase. Proc Natl Acad Sci U S A. Apr. 2, 2002;99(7):4185-90. Epub Mar. 19, 2002.
Saparbaev et al., Excision of hypoxanthine from DNA containing dIMP residues by the Escherichia coli, yeast, rat, and human alkylpurine DNA glycosylases. Proc Natl Acad Sci U S A. Jun. 21, 1994;91(13):5873-7. doi: 10.1073/pnas.91.13.5873.
Sapranauskas et al., The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Res. Nov. 2011;39(21):9275-82. doi: 10.1093/nar/gkr606. Epub Aug. 3, 2011.
Saraconi et al., The RNA editing enzyme APOBEC1 induces somatic mutations and a compatible mutational signature is present in esophageal adenocarcinomas. Genome Biol. Jul. 31, 2014;15(7):417. doi: 10.1186/s13059-014-0417-z.
Sarkar et al., HIV-1 proviral DNA excision using an evolved recombinase. Science. Jun. 29, 2007;316(5833):1912-5. doi: 10.1126/science.1141453.
Sashital et al., Mechanism of foreign DNA selection in a bacterial adaptive immune system. Mol Cell. Jun. 8, 2012;46(5):606-15. doi: 10.1016/j.molcel.2012.03.020. Epub Apr. 19, 2012.
Sasidharan et al., The selection of acceptable protein mutations. PNAS; Jun. 12, 2007;104(24):10080-5. www.pnas.org/cgi/doi/10.1073.pnas.0703737104.
Satomura et al., Precise genome-wide base editing by the CRISPR Nickase system in yeast. Sci Rep. May 18, 2017;7(1):2095. doi: 10.1038/s41598-017-02013-7.
Saudek et al., A preliminary trial of the programmable implantable medication system for insulin delivery. N Engl J Med. Aug. 31, 1989;321(9):574-9.
Sauer et al., DNA recombination with a heterospecific Cre homolog identified from comparison of the pac-c1 regions of P1-related phages. Nucleic Acids Res. Nov. 18, 2004;32(20):6086-95. doi: 10.1093/nar/gkh941.
Savic et al., Covalent linkage of the DNA repair template to the CRISPR-Cas9 nuclease enhances homology-directed repair. Elife. May 29, 2018;7:e33761. doi: 10.7554/eLife.33761.
Saville et al., A site-specific self-cleavage reaction performed by a novel RNA in Neurospora mitochondria. Cell. May 18, 1990;61(4):685-96. doi: 10.1016/0092-8674(90)90480-3.
Schaaper et al., Base selection, proofreading, and mismatch repair during DNA replication in Escherichia coli. J Biol Chem. Nov. 15, 1993;268(32):23762-5.
Schaaper et al., Spectra of spontaneous mutations in Escherichia coli strains defective in mismatch correction: the nature of in vivo DNA replication errors. Proc Natl Acad Sci U S A. Sep. 1987;84(17):6220-4.
Schaefer et al., Understanding RNA modifications: the promises and technological bottlenecks of the ‘epitranscriptome’. Open Biol. May 2017;7(5):170077. doi: 10.1098/rsob.170077.
Schechner et al., Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat Methods. Jul. 2015;12(7):664-70. doi: 10.1038/nmeth.3433. Epub Jun. 1, 2015. Author manuscript entitled CRISPR Display: A modular method for locus-specific targeting of long noncoding RNAs and synthetic RNA devices in vivo.
Schek et al., Definition of the upstream efficiency element of the simian virus 40 late polyadenylation signal by using in vitro analyses. Mol Cell Biol. Dec. 1992;12(12):5386-93. doi: 10.1128/mcb.12.12.5386.
Schenk et al., MPDU1 mutations underlie a novel human congenital disorder of glycosylation, designated type If. J Clin Invest. Dec. 2001;108(11):1687-95. doi: 10.1172/JCI13419.
Schmitz et al., Behavioral abnormalities in prion protein knockout mice and the potential relevance of PrP(C) for the cytoskeleton. Prion. 2014;8(6):381-6. doi: 10.4161/19336896.2014.983746.
Schöller et al., Interactions, localization, and phosphorylation of the m6A generating METTL3-METTL14-WTAP complex. RNA. Apr. 2018;24(4):499-512. doi: 10.1261/rna.064063.117. Epub Jan. 18, 2018.
Schriefer et al., Low pressure DNA shearing: a method for random DNA sequence analysis. Nucleic Acids Res. Dec. 25, 1990;18(24):7455-6.
Schultz et al., Expression and secretion in yeast of a 400-kDa envelope glycoprotein derived from Epstein-Barr virus. Gene. 1987;54(1):113-23. doi: 10.1016/0378-1119(87)90353-2.
Schultz et al., Oligo-2′-fluoro-2′-deoxynucleotide N3′-->P5′ phosphoramidates: synthesis and properties. Nucleic Acids Res. Aug. 1, 1996;24(15):2966-73.
Schwank et al., Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell. Dec. 5, 2013;13(6):653-8. doi:10.1016/j.stem.2013.11.002.
Schwartz et al., Post-translational enzyme activation in an animal via optimized conditional protein splicing. Nat Chem Biol. Jan. 2007;3(1):50-4. Epub Nov. 26, 2006.
Schwarze et al., In vivo protein transduction: delivery of a biologically active protein into the mouse. Science. Sep. 3, 1999;285(5433):1569-72.
Sclimenti et al., Directed evolution of a recombinase for improved genomic integration at a native human sequence. Nucleic Acids Res. Dec. 15, 2001;29(24):5044-51.
Scott et al., Production of cyclic peptides and proteins in vivo. Proc Natl Acad Sci U S A. Nov. 23, 1999;96(24):13638-43. doi: 10.1073/pnas.96.24.13638.
Search Report and Written Opinion for SG 11201900907Y, dated Jul. 20, 2020.
Sebastían-Martín et al., Transcriptional inaccuracy threshold attenuates differences in RNA-dependent DNA synthesis fidelity between retroviral reverse transcriptases. Sci Rep. Jan. 12, 2018;8(1):627. doi: 10.1038/s41598-017-18974-8.
Seed, An LFA-3 cDNA encodes a phospholipid-linked membrane protein homologous to its receptor CD2. Nature. Oct. 29-Nov. 4, 1987;329(6142):840-2. doi: 10.1038/329840a0.
Sefton et al., Implantable pumps. Crit Rev Biomed Eng. 1987;14(3):201-40.
Segal et al., Evaluation of a modular strategy for the construction of novel polydactyl zinc finger DNA-binding proteins. Biochemistry. Feb. 25, 2003;42(7):2137-48.
Segal et al., Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences. Proc Natl Acad Sci U S A. Mar. 16, 1999;96(6):2758-63.
Sells et al., Delivery of protein into cells using polycationic liposomes. Biotechniques. Jul. 1995;19(1):72-6, 78.
Semenova et al., Interference by clustered regularly interspaced short palindromic repeat (CRISPR) RNA is governed by a seed sequence. Proc Natl Acad Sci U S A. Jun. 21, 2011;108(25):10098-103. doi: 10.1073/pnas.1104144108. Epub Jun. 6, 2011.
Semple et al., Rational design of cationic lipids for siRNA delivery. Nat Biotechnol. Feb. 2010;28(2):172-6. doi: 10.1038/nbt.1602. Epub Jan. 17, 2010.
Serganov et al., Coenzyme recognition and gene regulation by a flavin mononucleotide riboswitch. Nature. Mar. 12, 2009;458(7235):233-7. doi: 10.1038/nature07642. Epub Jan. 25, 2009.
Serganov et al., Structural basis for discriminative regulation of gene expression by adenine- and guanine-sensing mRNAs. Chem Biol. Dec. 2004;11(12):1729-41.
Serganov et al., Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature. Jun. 29, 2006;441(7097):1167-71. Epub May 21, 2006.
Seripa et al., The missing ApoE allele. Ann Hum Genet. Jul. 2007;71(Pt 4):496-500. Epub Jan. 22, 2007.
Serrano-Heras et al., Protein p56 from the Bacillus subtilis phage phi29 inhibits DNA-binding ability of uracil-DNA glycosylase. Nucleic Acids Res. 2007;35(16):5393-401. Epub Aug. 13, 2007.
Setten et al., The current state and future directions of RNAi-based therapeutics. Nat Rev Drug Discov. Jun. 2019;18(6):421-446. doi: 10.1038/s41573-019-0017-4.
Severinov et al., Expressed protein ligation, a novel method for studying protein-protein interactions in transcription. J Biol Chem. Jun. 26, 1998;273(26):16205-9. doi: 10.1074/jbc.273.26.16205.
Sha et al., Monobodies and other synthetic binding proteins for expanding protein science. Protein Sci. May 2017;26(5):910-924. doi: 10.1002/pro.3148. Epub Mar. 24, 2017.
Shah et al., Inteins: nature's gift to protein chemists. Chem Sci. 2014;5(1):446-461.
Shah et al., Kinetic control of one-pot trans-splicing reactions by using a wild-type and designed split intein. Angew Chem Int Ed Engl. Jul. 11, 2011;50(29):6511-5. doi: 10.1002/anie.201102909. Epub Jun. 8, 2011.
Shah et al., Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol. May 2013;10(5):891-9. doi: 10.4161/rna.23764. Epub Feb. 12, 2013.
Shah et al., Target-specific variants of Flp recombinase mediate genome engineering reactions in mammalian cells. FEBS J. Sep. 2015;282(17):3323-33. doi: 10.1111/febs.13345. Epub Jul. 1, 2015.
Shalem et al., High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet. May 2015;16(5):299-311. doi: 10.1038/nrg3899. Epub Apr. 9, 2015.
Shalem et al., Genome-scale CRISPR-Cas9 knockout screening in human cells. Science. Jan. 3, 2014;343(6166):84-7. doi: 10.1126/science.1247005. Epub Dec. 12, 2013.
Sharbeen et al., Ectopic restriction of DNA repair reveals that UNG2 excises AID-induced uracils predominantly or exclusively during G1 phase. J Exp Med. May 7, 2012;209(5):965-74. doi: 10.1084/jem.20112379. Epub Apr. 23, 2012.
Sharer et al., The ARF-like 2 (ARL2)-binding protein, BART. Purification, cloning, and initial characterization. J Biol Chem. Sep. 24, 1999;274(39):27553-61. doi: 10.1074/jbc.274.39.27553.
Sharma et al., Efficient introduction of aryl bromide functionality into proteins in vivo. FEBS Lett. Feb. 4, 2000;467(1):37-40.
Sharon et al., Functional Genetic Variants Revealed by Massively Parallel Precise Genome Editing. Cell. Oct. 4, 2018;175(2):544-557.e16. doi: 10.1016/j.cell.2018.08.057. Epub Sep. 20, 2018.
Shaw et al., Implications of human genome architecture for rearrangement-based disorders: the genomic basis of disease. Hum Mol Genet. Apr. 1, 2004;13 Spec No. 1:R57-64. doi: 10.1093/hmg/ddh073. Epub Feb. 5, 2004.
Shcherbakova et al., Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat Methods. Aug. 2013;10(8):751-4. doi: 10.1038/nmeth.2521. Epub Jun. 16, 2013.
Shee et al., Engineered proteins detect spontaneous DNA breakage in human and bacterial cells. Elife. Oct. 29, 2013;2:e01222. doi: 10.7554/eLife.01222.
Shen et al., Predictable and precise template-free CRISPR editing of pathogenic variants. Nature. Nov. 2018;563(7733):646-651. doi: 10.1038/s41586-018-0686-x. Epub Nov. 7, 2018.
Sheridan, First CRISPR-Cas patent opens race to stake out intellectual property. Nat Biotechnol. 2014;32(7):599-601.
Sheridan, Gene therapy finds its niche. Nat Biotechnol. Feb. 2011;29(2):121-8. doi: 10.1038/nbt.1769.
Sherwood et al., Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape. Nat Biotechnol. Feb. 2014;32(2):171-178. doi: 10.1038/nbt.2798. Epub Jan. 19, 2014.
Shi et al., Structural basis for targeted DNA cytosine deamination and mutagenesis by APOBEC3A and APOBEC3B. Nat Struct Mol Biol. Feb. 2017;24(2):131-139. doi: 10.1038/nsmb.3344. Epub Dec. 19, 2016.
Shi et al., YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. Mar. 2017;27(3):315-328. doi: 10.1038/cr.2017.15. Epub Jan. 20, 2017.
Shimantani et al., Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol. May 2017;35(5):441-443. doi: 10.1038/nbt.3833. Epub Mar. 27, 2017.
Shimojima et al., Spinocerebellar ataxias type 27 derived from a disruption of the fibroblast growth factor 14 gene with mimicking phenotype of paroxysmal non-kinesigenic dyskinesia. Brain Dev. Mar. 2012;34(3):230-3. doi: 10.1016/j.braindev.2011.04.014. Epub May 19, 2011.
Shin et al., CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome. Nat Commun. May 31, 2017;8:15464. doi: 10.1038/ncomms15464.
Shindo et al., A Comparison of Two Single-Stranded DNA Binding Models by Mutational Analysis of APOBEC3G. Biology (Basel). Aug. 2, 2012;1(2):260-76. doi: 10.3390/biology1020260.
Shingledecker et al., Molecular dissection of the Mycobacterium tuberculosis RecA intein: design of a minimal intein and of a trans-splicing system involving two intein fragments. Gene. Jan. 30, 1998;207(2):187-95. doi: 10.1016/s0378-1119(97)00624-0.
Shmakov et al., Discovery and Functional Characterization of Diverse Class 2 CRISPR Cas Systems. Molecular Cell Nov. 2015;60(3):385-97.
Shmakov et al., Diversity and evolution of class 2 CRISPR-Cas systems. Nat Rev Microbiol. Mar. 2017;15(3):169-182. doi: 10.1038/nrmicro.2016.184. Epub Jan. 23, 2017.
Shultz et al., A genome-wide analysis of FRT-like sequences in the human genome. PLoS One. Mar. 23, 2011;6(3):e18077. doi: 10.1371/journal.pone.0018077.
Siebert et al., An improved PCR method for walking in uncloned genomic DNA. Nucleic Acids Res. Mar. 25, 1995;23(6):1087-8.
Silas et al., Direct CRISPR spacer acquisition from RNA by a natural reverse transcriptase-Cas1 fusion protein. Science. Feb. 26, 2016;351(6276):aad4234. doi: 10.1126/science.aad4234.
Silva et al., Selective disruption of the DNA polymerase III α-β complex by the umuD gene products. Nucleic Acids Res. Jul. 2012;40(12):5511-22. doi: 10.1093/nar/gks229. Epub Mar. 9, 2012.
Simonelli et al., Base excision repair intermediates are mutagenic in mammalian cells. Nucleic Acids Res. Aug. 2, 2005;33(14):4404-11. Print 2005.
Singh et al., Cross-talk between diverse serine integrases. J Mol Biol. Jan. 23, 2014;426(2):318-31. doi: 10.1016/j.jmb.2013.10.013. Epub Oct. 22, 2013.
Singh et al., Real-time observation of DNA recognition and rejection by the RNA-guided endonuclease Cas9. Nat Commun. Sep. 14, 2016;7:12778. doi: 10.1038/ncomms12778.
Sirk et al., Expanding the zinc-finger recombinase repertoire: directed evolution and mutational analysis of serine recombinase specificity determinants. Nucleic Acids Res. Apr. 2014;42(7):4755-66. doi: 10.1093/nar/gkt1389. Epub Jan. 21, 2014.
Sivalingam et al., Biosafety assessment of site-directed transgene integration in human umbilical cord-lining cells. Mol Ther. Jul. 2010;18(7):1346-56. doi: 10.1038/mt.2010.61. Epub Apr. 27, 2010.
Sjoblom et al., The consensus coding sequences of human breast and colorectal cancers. Science. Oct. 13, 2006;314(5797):268-74. Epub Sep. 7, 2006.
Skretas et al., Regulation of protein activity with small-molecule-controlled inteins. Protein Sci. Feb. 2005;14(2):523-32. Epub Jan. 4, 2005.
Slaymaker et al., Rationally engineered Cas9 nucleases with improved specificity. Science. Jan. 1, 2016;351(6268):84-8. doi: 10.1126/science.aad5227. Epub Dec. 1, 2015.
Sledz et al., Structural insights into the molecular mechanism of the m(6)A writer complex. Elife. Sep. 14, 2016;5:e18434. doi: 10.7554/eLife.18434.
Smargon et al., Cas13b Is a Type VI-B CRISPR-Associated RNA-Guided RNase Differentially Regulated by Accessory Proteins Csx27 and Csx28. Mol Cell. Feb. 16, 2017;65(4):618-630.e7. doi: 10.1016/j.molcel.2016.12.023. Epub Jan. 5, 2017.
Smith et al., Expression of a dominant negative retinoic acid receptor γ in Xenopus embryos leads to partial resistance to retinoic acid. Roux Arch Dev Biol. Mar. 1994;203(5):254-265. doi: 10.1007/BF00360521.
Smith et al., Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol. Dec. 1983;3(12):2156-65. doi: 10.1128/mcb.3.12.2156.
Smith et al., Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene. Jul. 15, 1988;67(1):31-40. doi: 10.1016/0378-1119(88)90005-4.
Smith, Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. Jun. 14, 1985;228(4705):1315-7.
Smith, Phage-encoded Serine Integrases and Other Large Serine Recombinases. Microbiol Spectr. Aug. 2015;3(4). doi: 10.1128/microbiolspec.MDNA3-0059-2014.
Sommerfelt et al., Receptor interference groups of 20 retroviruses plating on human cells. Virology. May 1990;176(1):58-69. doi: 10.1016/0042-6822(90)90230-o.
Southworth et al., Control of protein splicing by intein fragment reassembly. EMBO J. Feb. 16, 1998;17(4):918-26. doi: 10.1093/emboj/17.4.918.
Southworth et al., Purification of proteins fused to either the amino or carboxy terminus of the Mycobacterium xenopi gyrase A intein. Biotechniques. Jul. 1999;27(1):110-4, 116, 118-20. doi: 10.2144/99271st04.
Spencer et al., A general strategy for producing conditional alleles of Src-like tyrosine kinases. Proc Natl Acad Sci U S A. Oct. 10, 1995;92(21):9805-9. doi: 10.1073/pnas.92.21.9805.
Spencer et al., Controlling signal transduction with synthetic ligands. Science. Nov. 12, 1993;262(5136):1019-24. doi: 10.1126/science.7694365.
Spencer et al., Functional analysis of Fas signaling in vivo using synthetic inducers of dimerization. Curr Biol. Jul. 1, 1996;6(7):839-47. doi: 10.1016/s0960-9822(02)00607-3.
Srivastava et al., An inhibitor of nonhomologous end-joining abrogates double-strand break repair and impedes cancer progression. Cell. Dec. 21, 2012;151(7):1474-87. doi: 10.1016/j.cell.2012.11.054.
Stadtman, Selenocysteine. Annu Rev Biochem. 1996;65:83-100.
Stamos et al., Structure of a Thermostable Group II Intron Reverse Transcriptase with Template-Primer and Its Functional and Evolutionary Implications. Mol Cell. Dec. 7, 2017;68(5):926-939.e4. doi: 10.1016/j.molcel.2017.10.024. Epub Nov. 16, 2017.
Steele et al., The prion protein knockout mouse: a phenotype under challenge. Prion. Apr.-Jun. 2007;1(2):83-93. doi: 10.4161/pri.1.2.4346. Epub Apr. 25, 2007.
Stella et al., Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage. Nature. Jun. 22, 2017;546(7659):559-563. doi: 10.1038/nature22398. Epub May 31, 2017.
Stenglein et al., APOBEC3 proteins mediate the clearance of foreign DNA from human cells. Nat Struct Mol Biol. Feb. 2010;17(2):222-9. doi: 10.1038/nsmb.1744. Epub Jan. 10, 2010.
Stenson et al., The Human Gene Mutation Database: towards a comprehensive repository of inherited mutation data for medical research, genetic diagnosis and next-generation sequencing studies. Hum Genet. Jun. 2017;136(6):665-677. doi: 10.1007/s00439-017-1779-6. Epub Mar. 27, 2017.
Stephens et al., The landscape of cancer genes and mutational processes in breast cancer. Nature Jun. 2012;486:400-404. doi:10.1038/nature11017.
Sternberg et al., Conformational control of DNA target cleavage by CRISPR-Cas9. Nature. Nov. 5, 2015;527(7576):110-3. doi: 10.1038/nature15544. Epub Oct. 28, 2015.
Sternberg et al., DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature.Mar. 6, 2014;507(7490):62-7. doi: 10.1038/nature13011. Epub Jan. 29, 2014.
Sterne-Weiler et al., Exon identity crisis: disease-causing mutations that disrupt the splicing code. Genome Biol. Jan. 23, 2014;15(1):201. doi: 10.1186/gb4150.
Stevens et al., Design of a Split Intein with Exceptional Protein-Splicing Activity. J Am Chem Soc. Feb. 24, 2016;138(7):2162-5. doi: 10.1021/jacs.5b13528. Epub Feb. 8, 2016.
Stevens et al., A promiscuous split intein with expanded protein engineering applications. Proc Natl Acad Sci U S A. Aug. 8, 2017;114(32):8538-8543. doi: 10.1073/pnas.1701083114. Epub Jul. 24, 2017.
Stockwell et al., Probing the role of homomeric and heteromeric receptor interactions in TGF-beta signaling using small molecule dimerizers. Curr Biol. Jun. 18, 1998;8(13):761-70. doi: 10.1016/s0960-9822(98)70299-4.
Strecker et al., RNA-guided DNA insertion with CRISPR-associated transposases. Science. Jul. 5, 2019;365(6448):48-53. doi: 10.1126/science.aax9181. Epub Jun. 6, 2019.
Strutt et al., RNA-dependent RNA targeting by CRISPR-Cas9. Elife. Jan. 5, 2018;7:e32724. doi: 10.7554/eLife.32724.
Su et al., Human DNA polymerase ? has reverse transcriptase activity in cellular environments. J Biol Chem. Apr. 12, 2019;294(15):6073-6081. doi: 10.1074/jbc.RA119.007925. Epub Mar. 6, 2019.
Sudarsan et al., An mRNA structure in bacteria that controls gene expression by binding lysine. Genes Dev. Nov. 1, 2003;17(21):2688-97.
Sudarsan et al., Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science. Jul. 18, 2008;321(5887):411-3. doi: 10.1126/science.1159519.
Suess et al., A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res. Mar. 5, 2004;32(4):1610-4.
Sun et al., Optimized TAL effector nucleases (TALENs) for use in treatment of sickle cell disease. Mol Biosyst. Apr. 2012;8(4):1255-63. doi: 10.1039/c2mb05461b. Epub Feb. 3, 2012.
Sun et al., The CRISPR/Cas9 system for gene editing and its potential application in pain research. Transl Periop & Pain Med. Aug. 3, 2016;1(3):22-33.
Supplementary European Search Report for Application No. EP 12845790.0, dated Oct. 12, 2015.
Surun et al., High Efficiency Gene Correction in Hematopoietic Cells by Donor-Template-Free CRISPR/Cas9 Genome Editing. Mol Ther Nucleic Acids. Mar. 2, 2018;10:1-8. doi: 10.1016/j.omtn.2017.11.001. Epub Nov. 10, 2017.
Suzuki et al., In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature. Dec. 1, 2016;540(7631):144-149. doi: 10.1038/nature20565. Epub Nov. 16, 2016.
Suzuki et al., VCre/VIoxP and SCre/SIoxP: new site-specific recombination systems for genome engineering. Nucleic Acids Res. Apr. 2011;39(8):e49. doi: 10.1093/nar/gkq1280. Epub Feb. 1, 2011.
Swarts et al., Argonaute of the archaeon Pyrococcus furiosus is a DNA-guided nuclease that targets cognate DNA. Nucleic Acids Res. May 26, 2015;43(10):5120-9. doi: 10.1093/nar/gkv415. Epub Apr. 29, 2015.
Swarts et al., DNA-guided DNA interference by a prokaryotic Argonaute. Nature. Mar. 13, 2014;507(7491):258-61. doi: 10.1038/nature12971. Epub Feb. 16, 2014.
Swarts et al., The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol. Sep. 2014;21(9):743-53. doi: 10.1038/nsmb.2879.
Szczepek et al., Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases. Nat Biotechnol. Jul. 2007;25(7):786-93. Epub Jul. 1, 2007.
Tabebordbar et al., In vivo gene editing in dystrophic mouse muscle and muscle stem cells. Science. Jan. 22, 2016;351(6271):407-411. doi: 10.1126/science.aad5177. Epub Dec 31, 2015.
Tagalakis et al., Lack of RNA-DNA oligonucleotide (chimeraplast) mutagenic activity in mouse embryos. Mol Reprod Dev. Jun. 2005;71(2):140-4.
Tahara et al., Potent and Selective Inhibitors of 8-Oxoguanine DNA Glycosylase. J Am Chem Soc. Feb. 14, 2018;140(6):2105-2114. doi: 10.1021/jacs.7b09316. Epub Feb. 5, 2018.
Tajiri et al., Functional cooperation of MutT, MutM and MutY proteins in preventing mutations caused by spontaneous oxidation of guanine nucleotide in Escherichia coli. Mutat Res. May 1995;336(3):257-67. doi: 10.1016/0921-8777(94)00062-b.
Takimoto et al., Stereochemical basis for engineered; pyrrolysyl-tRNA synthetase and the efficient in vivo incorporation of; structurally divergent non-native amino acids. ACS Chem Biol. Jul. 2011; 15;6(7):733-43. doi: 10.1021/cb200057a. Epub May 5, 2011.
Tambunan et al., Vaccine Design for H5N1 Based on B- and T-cell Epitope Predictions. Bioinform Biol Insights. Apr. 28, 2016;10:27-35. doi: 10.4137/BBI.S38378.
Tanenbaum et al., A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell. Oct. 23, 2014;159(3):635-46. doi: 10.1016/j.cell.2014.09.039. Epub Oct. 9, 2014.
Tanese et al., Expression of enzymatically active reverse transcriptase in Escherichia coli. Proc Natl Acad Sci U S A. Aug. 1985;82(15):4944-8. doi: 10.1073/pnas.82.15.4944.
Tang et al., Aptazyme-embedded guide RNAs enable ligand-responsive genome editing and transcriptional activation. Nat Commun. Jun. 28, 2017;8:15939. doi: 10.1038/ncomms15939.
Tang et al., Evaluation of Bioinformatic Programmes for the Analysis of Variants within Splice Site Consensus Regions. Adv Bioinformatics. 2016;2016:5614058. doi: 10.1155/2016/5614058. Epub May 24, 2016.
Tang et al., Rewritable multi-event analog recording in bacterial and mammalian cells. Science. Apr. 13, 2018;360(6385):eaap8992. doi: 10.1126/science.aap8992. Epub Feb. 15, 2018.
Tassabehji, Williams-Beuren syndrome: a challenge for genotype-phenotype correlations. Hum Mol Genet. Oct. 15, 2003;12 Spec No. 2:R229-37. doi: 10.1093/hmg/ddg299. Epub Sep. 2, 2003.
Taube et al., Reverse transcriptase of mouse mammary tumour virus: expression in bacteria, purification and biochemical characterization. Biochem J. Feb. 1, 1998;329 ( Pt 3)(Pt 3):579-87. doi: 10.1042/bj3290579. Erratum in: Biochem J Jun. 15, 1998;332(Pt 3):808.
Tebas et al., Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. Mar. 6, 2014;370(10):901-10. doi: 10.1056/NEJMoa1300662.
Tee et al., Polishing the craft of genetic diversity creation in directed evolution. Biotechnol Adv. Dec. 2013;31(8):1707-21. doi: 10.1016/j.biotechadv.2013.08.021. Epub Sep. 6, 2013.
Telenti et al., The Mycobacterium xenopi GyrA protein splicing element: characterization of a minimal intein. J Bacteriol. Oct. 1997;179(20):6378-82. doi: 10.1128/jb.179.20.6378-6382.1997.
Telesnitsky et al., RNase H domain mutations affect the interaction between Moloney murine leukemia virus reverse transcriptase and its primer-template. Proc Natl Acad Sci U S A. Feb. 15, 1993;90(4):1276-80. doi: 10.1073/pnas.90.4.1276.
Tessarollo et al., Targeted mutation in the neurotrophin-3 gene results in loss of muscle sensory neurons. Proc Natl Acad Sci U S A. Dec. 6, 1994;91(25):11844-8.
Tesson et al., Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol. Aug. 5, 2011;29(8):695-6. doi: 10.1038/nbt.1940.
Thompson et al., Cellular uptake mechanisms and endosomal trafficking of supercharged proteins. Chem Biol. Jul. 27, 2012;19(7):831-43. doi: 10.1016/j.chembiol.2012.06.014.
Thompson et al., Engineering and identifying supercharged proteins for macromolecule delivery into mammalian cells. Methods Enzymol. 2012;503:293-319. doi: 10.1016/B978-0-12-396962-0.00012-4.
Thomson et al., Mutational analysis of loxP sites for efficient Cre-mediated insertion into genomic DNA. Genesis. Jul. 2003;36(3):162-7. doi: 10.1002/gene.10211.
Thorpe et al., Functional correction of episomal mutations with short DNA fragments and RNA-DNA oligonucleotides. J Gene Med. Mar.-Apr. 2002;4(2):195-204.
Thuronyi et al., Continuous evolution of base editors with expanded target compatibility and improved activity. Nat Biotechnol. Sep. 2019;37(9):1070-1079. doi: 10.1038/s41587-019-0193-0. Epub Jul. 22, 2019.
Thyagarajan et al., Creation of engineered human embryonic stem cell lines using phiC31 integrase. Stem Cells. Jan. 2008;26(1):119-26. doi: 10.1634/stemcells.2007-0283. Epub Oct. 25, 2007.
Thyagarajan et al., Mammalian genomes contain active recombinase recognition sites. Gene. Feb. 22, 2000;244(1-2):47-54.
Thyagarajan et al., Site-specific genomic integration in mammalian cells mediated by phage phiC31 integrase. Mol Cell Biol. Jun. 2001;21(12):3926-34.
Tinland et al., The T-DNA-linked VirD2 protein contains two distinct functional nuclear localization signals. Proc Natl Acad Sci U S A. Aug. 15, 1992;89(16):7442-6. doi: 10.1073/pnas.89.16.7442.
Tirumalai et al., Recognition of core-type DNA sites by lambda integrase. J Mol Biol. Jun. 12, 1998;279(3):513-27.
Tom et al., Mechanism whereby proliferating cell nuclear antigen stimulates flap endonuclease 1. J Biol Chem. Apr. 7, 2000;275(14):10498-505. doi: 10.1074/jbc.275.14.10498.
Tone et al., Single-stranded DNA binding protein Gp5 of Bacillus subtilis phage ?29 is required for viral DNA replication in growth-temperature dependent fashion. Biosci Biotechnol Biochem. 2012;76(12):2351-3. doi: 10.1271/bbb.120587. Epub Dec. 7, 2012.
Toor et al., Crystal structure of a self-spliced group II intron. Science. Apr. 4, 2008;320(5872):77-82. doi: 10.1126/science.1153803.
Toro et al., On the Origin and Evolutionary Relationships of the Reverse Transcriptases Associated With Type III CRISPR-Cas Systems. Front Microbiol. Jun. 15, 2018;9:1317. doi: 10.3389/fmicb.2018.01317.
Toro et al., The Reverse Transcriptases Associated with CRISPR-Cas Systems. Sci Rep. Aug. 2, 2017;7(1):7089. doi: 10.1038/s41598-017-07828-y.
Torres et al., Non-integrative lentivirus drives high-frequency cre-mediated cassette exchange in human cells. PLoS One. 2011;6(5):e19794. doi: 10.1371/journal.pone.0019794. Epub May 23, 2011.
Tourdot et al., A general strategy to enhance immunogenicity of low-affinity HLA-A2. 1-associated peptides: implication in the identification of cryptic tumor epitopes. Eur J Immunol. Dec. 2000;30(12):3411-21.
Townsend et al., Role of HFE in iron metabolism, hereditary haemochromatosis, anaemia of chronic disease, and secondary iron overload. Lancet. Mar. 2, 2002;359(9308):786-90. doi: 10.1016/S0140-6736(02)07885-6.
Tracewell et al., Directed enzyme evolution: climbing fitness peaks one amino acid at a time. Curr Opin Chem Biol. Feb. 2009;13(1):3-9. doi: 10.1016/j.cbpa.2009.01.017. Epub Feb. 25, 2009.
Tratschin et al., A human parvovirus, adeno-associated virus, as a eucaryotic vector: transient expression and encapsidation of the procaryotic gene for chloramphenicol acetyltransferase. Mol Cell Biol. Oct. 1984;4(10):2072-81. doi: 10.1128/mcb.4.10.2072.
Tratschin et al., Adeno-associated virus vector for high-frequency integration, expression, and rescue of genes in mammalian cells. Mol Cell Biol. Nov. 1985;5(11):3251-60. doi: 10.1128/mcb.5.11.3251.
Trausch et al., The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. Structure. Oct. 12, 2011;19(10):1413-23. doi: 10.1016/j.str.2011.06.019. Epub Sep. 8, 2011.
Traxler et al., A genome-editing strategy to treat ?-hemoglobinopathies that recapitulates a mutation associated with a benign genetic condition. Nat Med. Sep. 2016;22(9):987-90. doi: 10.1038/nm.4170. Epub Aug. 15, 2016.
Trouet et al., A covalent linkage between daunorubicin and proteins that is stable in serum and reversible by lysosomal hydrolases, as required for a lysosomotropic drug-carrier conjugate: in vitro and in vivo studies.
Trudeau et al., On the Potential Origins of the High Stability of Reconstructed Ancestral Proteins. Mol Biol Evol. Oct. 2016;33(10):2633-41. doi: 10.1093/molbev/msw138. Epub Jul. 12, 2016.
Truong et al., Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res. Jul. 27, 2015;43(13):6450-8. doi: 10.1093/nar/gkv601. Epub Jun. 16, 2015.
Truong et al., Development of an intein-mediated split-Cas9 system for gene therapy. Nucleic Acids Res. Jul. 27, 2015;43(13):6450-8. doi: 10.1093/nar/gkv601. Epub Jun. 16, 2015. With Supplementary Data.
Tsai et al., CIRCLE-seq: a highly sensitive in vitro screen for genome-wide CRISPR-Cas9 nuclease off-targets. Nat Methods. Jun. 2017;14(6):607-614. doi: 10.1038/nmeth.4278. Epub May 1, 2017.
Tsai et al., Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat Biotechnol. Jun. 2014;32(6):569-76. doi: 10.1038/nbt.2908. Epub Apr. 25, 2014.
Tsai et al., Guide-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol. Feb. 2015;33(2):187-97. doi: 10.1038/nbt.3117. Epub Dec. 16, 2014.
Tsang et al., Specialization of the DNA-cleaving activity of a group I ribozyme through in vitro evolution. J Mol Biol. Sep. 13, 1996;262(1):31-42. doi: 10.1006/jmbi.1996.0496.
Tsutakawa et al., Human flap endonuclease structures, DNA double-base flipping, and a unified understanding of the FEN1 superfamily. Cell. Apr. 15, 2011;145(2):198-211. doi: 10.1016/j.cell.2011.03.004.
Turan et al., Recombinase-mediated cassette exchange (RMCE)—a rapidly-expanding toolbox for targeted genomic modifications. Gene. Feb. 15, 2013;515(1):1-27. doi: 10.1016/j.gene.2012.11.016. Epub Nov. 29, 2012.
Turan et al., Recombinase-mediated cassette exchange (RMCE): traditional concepts and current challenges. J Mol Biol. Mar. 25, 2011;407(2):193-221. doi: 10.1016/j.jmb.2011.01.004. Epub Jan. 15, 2011.
Turan et al., Site-specific recombinases: from tag-and-target- to tag-and-exchange-based genomic modifications. FASEB J. Dec. 2011;25(12):4088-107. doi: 10.1096/fj.11-186940. Epub Sep. 2, 2011. Review.
Tycko et al., Pairwise library screen systematically interrogates Staphylococcus aureus Cas9 specificity in human cells. bioRxiv. doi: https://doi.org/10.1101/269399 Posted Feb. 22, 2018.
Uniprot Consortium, UniProt: the universal protein knowledgebase. Nucleic Acids Res. Mar. 16, 2018;46(5):2699. doi: 10.1093/nar/gky092.
Uniprot Submission; UniProt, Accession No. P01011. Last modified Jun. 11, 2014, version 2. 15 pages.
Uniprot Submission; UniProt, Accession No. P01011. Last modified Sep. 18, 2013, version 2. 15 pages.
Uniprot Submission; UniProt, Accession No. P04264. Last modified Jun. 11, 2014, version 6. 15 pages.
Uniprot Submission; UniProt, Accession No. P04275. Last modified Jul. 9, 2014, version 107. 29 pages.
UniProtein AOA1V6. Dec. 11, 2019.
Uniprotkb Submission; Accession No. F0NH53. May 3, 2011. 4 pages.
Uniprotkb Submission; Accession No. F0NN87. May 3, 2011. 4 pages.
Uniprotkb Submission; Accession No. G3ECR1.2. No Author Listed., Aug. 12, 2020, 8 pages.
Uniprotkb Submission; Accession No. P04264. No Author Listed., Apr. 7, 2021. 12 pages.
Uniprotkb Submission; Accession No. T0D7A2. Oct. 16, 2013. 10 pages.
Uniprotkb Submission; Accession No. U2UMQ6. No Author Listed., Apr. 7, 2021, 11 pages.
Urasaki et al., Functional dissection of the To12 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics. Oct. 2006;174(2):639-49. doi: 10.1534/genetics.106.060244. Epub Sep. 7, 2006.
Urnov et al., Genome editing with engineered zinc finger nucleases. Nat Rev Genet. Sep. 2010;11(9):636-46. doi: 10.1038/nrg2842.
Urnov et al., Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature. Jun. 2, 2005;435(7042):646-51. Epub Apr. 3, 2005.
Vagner et al., Efficiency of homologous DNA recombination varies along the Bacillus subtilis chromosome. J Bacteriol. Sep. 1988;170(9):3978-82.
Van Brunt et al., Genetically Encoded Azide Containing Amino Acid in Mammalian Cells Enables Site-Specific Antibody-Drug Conjugates Using Click Cycloaddition Chemistry. Bioconjug Chem. Nov. 18, 2015;26(11):2249-60. doi: 10.1021/acs.bioconjchem.5b00359. Epub Sep. 11, 2015.
Van Brunt et al., Molecular Farming: Transgenic Animals as Bioreactors. Biotechnology (N Y). 1988;6(10):1149-1154. doi: 10.1038/nbt1088-1149.
Van Duyne et al., Teaching Cre to follow directions. Proc Natl Acad Sci U S A. Jan. 6, 2009;106(1):4-5. doi: 10.1073/pnas.0811624106. Epub Dec. 31, 2008.
Van Overbeek et al., DNA Repair Profiling Reveals Nonrandom Outcomes at Cas9-Mediated Breaks. Mol Cell. Aug. 18, 2016;63(4):633-646. doi: 10.1016/j.molcel.2016.06.037. Epub Aug. 4, 2016.
Van Swieten et al., A mutation in the fibroblast growth factor 14 gene is associated with autosomal dominant cerebellar ataxia [corrected]. Am J Hum Genet. Jan. 2003;72(1):191-9. Epub Dec. 13, 2002.
Vanamee et al., FokI requires two specific DNA sites for cleavage. J Mol Biol. May 25, 2001;309(1):69-78.
Varga et al., Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A. Feb. 28, 2006;103(9):3250-5. doi: 10.1073/pnas.0600012103. Epub Feb. 21, 2006.
Vellore et al., A group II intron-type open reading frame from the thermophile Bacillus (Geobacillus) stearothermophilus encodes a heat-stable reverse transcriptase. Appl Environ Microbiol. Dec. 2004;70(12):7140-7. doi: 10.1128/AEM.70.12.7140-7147.2004.
Verma, The reverse transcriptase. Biochim Biophys Acta. Mar. 21, 1977;473(1):1-38. doi: 10.1016/0304-419x(77)90005-1.
Vigne et al., Third-generation adenovectors for gene therapy. Restor Neurol Neurosci. Jan. 1, 1995;8(1):35-6. doi: 10.3233/RNN-1995-81208.
Vik et al., Endonuclease V cleaves at inosines in RNA. Nat Commun. 2013;4:2271. doi: 10.1038/ncomms3271.
Vilenchik et al., Endogenous DNA double-strand breaks: production, fidelity of repair, and induction of cancer. Proc Natl Acad Sci U S A. Oct. 28, 2003;100(22):12871-6. doi: 10.1073/pnas.2135498100. Epub Oct. 17, 2003.
Vitreschak et al., Regulation of the vitamin B12 metabolism and transport in bacteria by a conserved RNA structural element. RNA. Sep. 2003;9(9):1084-97.
Voigt et al., Rational evolutionary design: the theory of in vitro protein evolution. Adv Protein Chem. 2000;55:79-160.
Wacey et al., Disentangling the perturbational effects of amino acid substitutions in the DNA-binding domain of p53. Hum Genet. Jan. 1999;104(1):15-22.
Wadia et al., Modulation of cellular function by TAT mediated transduction of full length proteins. Curr Protein Pept Sci. Apr. 2003;4(2):97-104.
Wadia et al., Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis. Nat Med. Mar. 2004;10(3):310-5. Epub Feb. 8, 2004.
Wah et al., Structure of FokI has implications for DNA cleavage. Proc Natl Acad Sci U S A. Sep. 1, 1998;95(18):10564-9.
Wals et al., Unnatural amino acid incorporation in E. coli: current and future applications in the design of therapeutic proteins. Front Chem. Apr. 1, 2014;2:15. doi: 10.3389/fchem.2014.00015. eCollection 2014.
Wang et al. CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella pneumoniae. Appl Environ Microbiol. 2018;84(23):e01834-18. Published Nov. 15, 2018. doi:10.1128/AEM.01834-18.
Wang et al., AID upmutants isolated using a high-throughput screen highlight the immunity/cancer balance limiting DNA deaminase activity. Nat Struct Mol Biol. Jul. 2009;16(7):769-76. doi: 10.1038/nsmb.1623. Epub Jun. 21, 2009.
Wang et al., Continuous directed evolutions of proteins with improved soluble expression. Nature Chemical Biology. Nat Publishing Group. Aug. 20, 2018; 14(10):972-980.
Wang et al., CRISPR-Cas9 Targeting of PCSK9 in Human Hepatocytes in Vivo-Brief Report. Arterioscler Thromb Vasc Biol. May 2016;36(5):783-6. doi: 10.1161/ATVBAHA.116.307227. Epub Mar. 3, 2016.
Wang et al., Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc Natl Acad Sci U S A. Feb. 29, 2016. pii: 201520244. [Epub ahead of print].
Wang et al., Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor. Cell Res. Oct. 2017;27(1):1289-92. doi: 10.1038/cr.2017.111. Epub Aug. 29, 2017.
Wang et al., Evolution of new nonantibody proteins via iterative somatic hypermutation. Proc Natl Acad Sci U S A. Nov. 30, 2004;101(48):16745-9. Epub Nov. 19, 2004.
Wang et al., Expanding the genetic code. Annu Rev Biophys Biomol; Struct. 2006;35:225-49. Review.
Wang et al., Genetic screens in human cells using the CRISPR-Cas9 system. Science. Jan. 3, 2014;343(6166):80-4. doi: 10.1126/science.1246981. Epub Dec. 12, 2013.
Wang et al., Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes. Biotechniques. 2015:59,201-2;204;206-8.
Wang et al., N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell. Jun. 4, 2015;161(6):1388-99. doi: 10.1016/j.cell.2015.05.014.
Wang et al., N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. Jan. 2, 2014;505(7481):117-20. doi: 10.1038/nature12730. Epub Nov. 27, 2013.
Wang et al., Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature. Oct. 8, 2009;461(7265):754-61. doi: 10.1038/nature08434.
Wang et al., One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. May 9, 2013;153(4):910-8. doi: 10.1016/j.cell.2013.04.025. Epub May 2, 2013.
Wang et al., Programming cells by multiplex genome engineering and accelerated evolution. Nature. Aug. 13, 2009;460(7257):894-8. Epub Jul. 26, 2009.
Wang et al., Reading RNA methylation codes through methyl-specific binding proteins. RNA Biol. 2014;11(6):669-72. doi: 10.4161/rna.28829. Epub Apr. 24, 2014.
Wang et al., Recombinase technology: applications and possibilities. Plant Cell Rep. Mar. 2011;30(3):267-85. doi: 10.1007/s00299-010-0938-1. Epub Oct. 24, 2010.
Wang et al., Riboswitches that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling. Mol Cell. Mar. 28, 2008;29(6):691-702. doi: 10.1016/j.molcel.2008.01.012.
Wang et al., Staphylococcus aureus protein SAUGI acts as a uracil-DNA glycosylase inhibitor. Nucleic Acids Res. Jan. 2014;42(2):1354-64. doi: 10.1093/nar/gkt964. Epub Oct. 22, 2013.
Wang et al., Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature. Jun. 23, 2016;534(7608):575-8. doi: 10.1038/nature18298. Epub May 25, 2016.
Wang et al., Targeted gene addition to a predetermined site in the human genome using a ZFN-based nicking enzyme. Genome Res. Jul. 2012;22(7):1316-26. doi: 10.1101/gr.122879.111. Epub Mar. 20, 2012.
Wang et al., Uracil-DNA glycosylase inhibitor gene of bacteriophage PBS2 encodes a binding protein specific for uracil-DNA glycosylase. J Biol Chem. Jan. 15, 1989;264(2):1163-71.
Warren et al., A chimeric Cre recombinase with regulated directionality. Proc Natl Acad Sci U S A. Nov. 25, 2008;105(47):18278-83. doi: 10.1073/pnas.0809949105. Epub Nov. 14, 2008.
Warren et al., Mutations in the amino-terminal domain of lambda-integrase have differential effects on integrative and excisive recombination. Mol Microbiol. Feb. 2005;55(4):1104-12.
Watowich, The erythropoietin receptor: molecular structure and hematopoietic signaling pathways. J Investig Med. Oct. 2011;59(7):1067-72. doi: 10.2310/JIM.0b013e31820fb28c.
Waxman et al., Regulating excitability of peripheral afferents: emerging ion channel targets. Nat Neurosci. Feb. 2014;17(2):153-63. doi: 10.1038/nn.3602. Epub Jan. 28, 2014.
Weber et al., Assembly of designer TAL effectors by Golden Gate cloning. PLoS One. 2011;6(5):e19722. doi:10.1371/journal.pone.0019722. Epub May 19, 2011.
Weinberg et al., New Classes of Self-Cleaving Ribozymes Revealed by Comparative Genomics Analysis. Nat Chem Biol. Aug. 2015;11(8):606-10. doi: 10.1038/nchembio.1846. Epub Jul. 13, 2015.
Weinberg et al., The aptamer core of SAM-IV riboswitches mimics the ligand-binding site of SAM-I riboswitches. RNA. May 2008;14(5):822-8. doi: 10.1261/rna.988608. Epub Mar. 27, 2008.
Weinberger et al., Disease-causing mutations C277R and C277Y modify gating of human C1C-1 chloride channels in myotonia congenita. J Physiol. Aug. 1, 2012;590(Pt 15):3449-64. doi: 0.1113/jphysiol.2012.232785. Epub May 28, 2012.
Weinert et al., Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq. Science. Apr. 19, 2019;364(6437):286-289. doi: 10.1126/science.aav9023. Epub Apr. 18, 2019.
Wen et al., Inclusion of a universal tetanus toxoid CD4(+) T cell epitope P2 significantly enhanced the immunogenicity of recombinant rotavirus ?VP8* subunit parenteral vaccines. Vaccine. Jul. 31, 2014;32(35):4420-4427. doi: 10.1016/j.vaccine.2014.06.060. Epub Jun. 21, 2014.
West et al., Gene expression in adeno-associated virus vectors: the effects of chimeric mRNA structure, helper virus, and adenovirus VA1 RNA. Virology. Sep. 1987;160(1):38-47. doi: 10.1016/0042-6822(87)90041-9.
Wharton et al., A new-specificity mutant of 434 repressor that defines an amino acid-base pair contact. Nature. Apr. 30-May 6, 1987;326(6116):888-91.
Wharton et al., Changing the binding specificity of a repressor by redesigning an alpha-helix. Nature. Aug. 15-21, 1985;316(6029):601-5.
Wheeler et al., The thermostability and specificity of ancient proteins. Curr Opin Struct Biol. Jun. 2016;38:37-43. doi: 10.1016/j.sbi.2016.05.015. Epub Jun. 9, 2016.
Wiedenheft et al., RNA-guided genetic silencing systems in bacteria and archaea. Nature. Feb. 15, 2012;482(7385):331-8. doi: 10.1038/nature10886. Review.
Wienert et al., KLF1 drives the expression of fetal hemoglobin in British HPFH. Blood. Aug. 10, 2017;130(6):803-807. doi: 10.1182/blood-2017-02-767400. Epub Jun. 28, 2017.
Wijesinghe et al., Efficient deamination of 5-methylcytosines in DNA by human APOBEC3A, but not by AID or APOBEC3G. Nucleic Acids Res. Oct. 2012;40(18):9206-17. doi: 10.1093/nar/gks685. Epub Jul. 13, 2012.
Wijnker et al., Managing meiotic recombination in plant breeding. Trends Plant Sci. Dec. 2008;13(12):640-6. doi: 10.1016/j.tplants.2008.09.004. Epub Oct. 22, 2008.
Williams et al., Assessing the accuracy of ancestral protein reconstruction methods. PLoS Comput Biol. Jun. 23, 2006;2(6):e69. doi: 10.1371/journal.pcbi.0020069. Epub Jun. 23, 2006.
Wilson et al., Assessing annotation transfer for genomics: quantifying the relations between protein sequence, structure and function through traditional and probabilistic scores. J Mol Biol 2000;297:233-49.
Wilson et al., Formation of infectious hybrid virions with gibbon ape leukemia virus and human T-cell leukemia virus retroviral envelope glycoproteins and the gag and pol proteins of Moloney murine leukemia virus. J Virol. May 1989;63(5):2374-8. doi: 10.1128/JVI.63.5.2374-2378.1989.
Wilson et al., In Vitro Selection of Functional Nucleic Acids. Annu Rev Biochem. 1999;68:611-47. doi: 10.1146/annurev.biochem.68.1.611.
Wilson et al., Kinase dynamics. Using ancient protein kinases to unravel a modern cancer drug's mechanism. Science. Feb. 20, 2015;347(6224):882-6. doi: 10.1126/science.aaa1823.
Winkler et al., An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci U S A. Dec. 10, 2002;99(25):15908-13. Epub Nov. 27, 2002.
Winkler et al., Control of gene expression by a natural metabolite-responsive ribozyme. Nature. Mar. 18, 2004;428(6980):281-6.
Winkler et al., Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature. Oct. 31, 2002;419(6910):952-6. Epub Oct. 16, 2002.
Winoto et al., A novel, inducible and T cell-specific enhancer located at the 3′ end of the T cell receptor alpha locus. EMBO J. Mar. 1989;8(3):729-33.
Winter et al., Drug Development. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science. Jun. 19, 2015;348(6241):1376-81. doi:; 10.1126/science.aab1433. Epub May 21, 2015.
Winter et al., Targeted exon skipping with AAV-mediated split adenine base editors. Cell Discov. Aug. 20, 2019;5:41. doi: 10.1038/s41421-019-0109-7.
Wold, Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism. Annu Rev Biochem. 1997;66:61-92. doi: 10.1146/annurev.biochem.66.1.61.
Wolf et al., tadA, an essential tRNA-specific adenosine deaminase from Escherichia coli. EMBO J. Jul. 15, 2002;21(14):3841-51.
Wolfe et al., Analysis of zinc fingers optimized via phage display: evaluating the utility of a recognition code. J Mol Biol. Feb. 5, 1999;285(5):1917-34.
Wong et al., A statistical analysis of random mutagenesis methods used for directed protein evolution. J Mol Biol. Jan. 27, 2006;355(4):858-71. Epub Nov. 17, 2005.
Wong et al., The Diversity Challenge in Directed Protein Evolution. Comb Chem High Throughput Screen. May 2006;9(4):271-88.
Wood et al., A genetic system yields self-cleaving inteins for bioseparations. Nat Biotechnol. Sep. 1999;17(9):889-92. doi: 10.1038/12879.
Wood et al., Targeted genome editing across species using ZFNs and TALENs. Science. Jul. 15, 2011;333(6040):307. doi: 10.1126/science.1207773. Epub Jun. 23, 2011.
Wright et al., Continuous in vitro evolution of catalytic function. Science. Apr. 25, 1997;276(5312):614-7.
Wright et al., Rational design of a split-Cas9 enzyme complex. Proc Natl Acad Sci U S A. Mar. 10, 2015;112(10):2984-9. doi: 10.1073/pnas.1501698112. Epub Feb. 23, 2015.
Wu et al., Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell. Dec. 5, 2013;13(6):659-62. doi: 10.1016/j.stem.2013.10.016.
Wu et al., Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol. Jul. 2014;32(7):670-6. doi: 10.1038/nbt.2889. Epub Apr. 20, 2014.
Wu et al., Human single-stranded DNA binding proteins: guardians of genome stability. Acta Biochim Biophys Sin (Shanghai). Jul. 2016;48(7):671-7. doi: 10.1093/abbs/gmw044. Epub May 23, 2016.
Wu et al., Protein trans-splicing and functional mini-inteins of a cyanobacterial dnaB intein. Biochim Biophys Acta. Sep. 8, 1998;1387(1-2):422-32. doi: 10.1016/s0167-4838(98)00157-5.
Wu et al., Protein trans-splicing by a split intein encoded in a split DnaE gene of Synechocystis sp. PCC6803. Proc Natl Acad Sci U S A. Aug. 4, 1998;95(16):9226-31. doi: 10.1073/pnas.95.16.9226.
Wu et al., Readers, writers and erasers of N6-methylated adenosine modification. Curr Opin Struct Biol. Dec. 2017;47:67-76. doi: 10.1016/j.sbi.2017.05.011. Epub Jun. 16, 2017.
Xiang et al., RNA m6A methylation regulates the ultraviolet-induced DNA damage response. Nature. Mar. 23, 2017;543(7646):573-576. doi: 10.1038/nature21671. Epub Mar. 15, 2017.
Xiao et al., Genetic incorporation of multiple unnatural amino acids into proteins in mammalian cells. Angew Chem Int Ed Engl. Dec. 23, 2013;52(52):14080-3. doi: 10.1002/anie.201308137. Epub Nov. 8, 2013.
Xiao et al., Nuclear m(6)a Reader YTHDC1 Regulates mRNA Splicing. Mol Cell. Feb. 18, 2016;61(4):507-519. doi: 10.1016/j.molcel.2016.01.012. Epub Feb. 11, 2016.
Xie et al., Adjusting the attB site in donor plasmid improves the efficiency of ?C31 integrase system. DNA Cell Biol. Jul. 2012;31(7):1335-40. doi: 10.1089/dna.2011.1590. Epub Apr. 10, 2012.
Xiong et al., Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. Oct. 1990;9(10):3353-62.
Xu et al., Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies. Proc Natl Acad Sci U S A. Jan. 19, 1999;96(2):388-93. doi: 10.1073/pnas.96.2.388.
Xu et al., Accuracy and efficiency define Bxb1 integrase as the best of fifteen candidate serine recombinases for the integration of DNA into the human genome. BMC Biotechnol. Oct. 20, 2013;13:87. doi: 10.1186/1472-6750-13-87.
Xu et al., Protein splicing: an analysis of the branched intermediate and its resolution by succinimide formation. EMBO J. Dec. 1, 1994;13(23):5517-22.
Xu et al., PTMD: A Database of Human Disease-associated Post-translational Modifications. Genomics Proteomics Bioinformatics. Aug. 2018;16(4):244-251. doi: 10.1016/j.gpb.2018.06.004. Epub Sep. 21, 2018.
Xu et al., Sequence determinants of improved CRISPR sgRNA design. Genome Res. Aug. 2015;25(8):1147-57. doi: 10.1101/gr.191452.115. Epub Jun. 10, 2015.
Xu et al., Structures of human ALKBH5 demethylase reveal a unique binding mode for specific single-stranded N6-methyladenosine RNA demethylation. J Biol Chem. Jun. 20, 2014;289(25):17299-311. doi: 10.1074/jbc.M114.550350. Epub Apr. 28, 2014.
Xu et al., The mechanism of protein splicing and its modulation by mutation. EMBO J. Oct. 1, 1996;15(19):5146-53.
Yahata et al., Unified, Efficient, and Scalable Synthesis of Halichondrins: Zirconium/Nickel-Mediated One-Pot Ketone Synthesis as the Final Coupling Reaction. Angew Chem Int Ed Engl. Aug. 28, 2017;56(36):10796-10800. doi: 10.1002/anie.201705523. Epub Jul. 28, 2017.
Yamamoto et al., The ons and offs of inducible transgenic technology: a review. Neurobiol Dis. Dec. 2001;8(6):923-32.
Yamamoto et al., Virological and immunological bases for HIV-1 vaccine design. Uirusu 2007;57(2):133-139. https://doi.org/10.2222/jsv.57.133.
Yamano et al., Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA. Cell May 2016;165(4)949-62.
Yamazaki et al., Segmental Isotope Labeling for Protein NMR Using Peptide Splicing. J. Am. Chem. Soc. May 22, 1998; 120(22):5591-2. https://doi.org/10.1021/ja980776o.
Yan et al., Cas13d Is a Compact RNA-Targeting Type VI CRISPR Effector Positively Modulated by a WYL-Domain-Containing Accessory Protein. Mol Cell. Apr. 19, 2018;70(2):327-339.e5. doi: 10.1016/j.molcel.2018.02.028. Epub Mar. 15, 2018.
Yang et al., APOBEC: From mutator to editor. J Genet Genomics. Sep. 20, 2017;44(9):423-437. doi: 10.1016/j.jgg.2017.04.009. Epub Aug. 7, 2017.
Yang et al., Construction of an integration-proficient vector based on the site-specific recombination mechanism of enterococcal temperate phage phiFC1. J Bacteriol. Apr. 2002;184(7):1859-64. doi: 10.1128/jb.184.7.1859-1864.2002.
Yang et al., Engineering and optimising deaminase fusions for genome editing. Nat Commun. Nov. 2, 2016;7:13330. doi: 10.1038/ncomms13330.
Yang et al., Genome editing with targeted deaminases. BioRxiv. Preprint. First posted online Jul. 28, 2016.
Yang et al., Increasing targeting scope of adenosine base editors in mouse and rat embryos through fusion of TadA deaminase with Cas9 variants. Protein Cell. Sep. 2018;9(9):814-819. doi: 10.1007/s13238-018-0568-x.
Yang et al., New CRISPR-Cas systems discovered. Cell Res. Mar. 2017;27(3):313-314. doi: 10.1038/cr.2017.21. Epub Feb. 21, 2017.
Yang et al., One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell. Sep. 12, 2013;154(6):1370-9. doi: 10.1016/j.cell.2013.08.022. Epub Aug. 29, 2013.
Yang et al., PAM-dependent Target DNA Recognition and Cleavage by C2C1 CRISPR-Cas endonuclease. Cell Dec. 2016;167(7):1814-28.
Yang et al., Permanent genetic memory with >1-byte capacity. Nat Methods. Dec. 2014;11(12):1261-6. doi: 10.1038/nmeth.3147. Epub Oct. 26, 2014.
Yang et al., Preparation of RNA-directed DNA polymerase from spleens of Balb-c mice infected with Rauscher leukemia virus. Biochem Biophys Res Commun. Apr. 28, 1972;47(2):505-11. doi: 10.1016/0006-291x(72)90743-7.
Yang et al., Small-molecule control of insulin and PDGF receptor signaling and the role of membrane attachment. Curr Biol. Jan. 1, 1998;8(1):11-8. doi: 10.1016/s0960-9822(98)70015-6.
Yang, PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. Aug. 2007;24(8):1586-91. doi: 10.1093/molbev/msm088. Epub May 4, 2007.
Yang, Phylogenetic Analysis by Maximum Likelihood (PAML). //abacus.gene.ucl.ac.uk/software/paml.html Last accessed Apr. 28, 2021.
Yanover et al., Extensive protein and DNA backbone sampling improves structure-based specificity prediction for C2H2 zinc fingers. Nucleic Acids Res. Jun. 2011;39(11):4564-76. doi: 10.1093/nar/gkr048. Epub Feb. 22, 2011.
Yasui et al., Miscoding Properties of 2′-Deoxyinosine, a Nitric Oxide-Derived DNA Adduct, during Translesion Synthesis Catalyzed by Human DNA Polymerases. J Molec Biol. Apr. 4, 2008;377(4):1015-23.
Yasukawa et al., Characterization of Moloney murine leukaemia virus/avian myeloblastosis virus chimeric reverse transcriptases. J Biochem. Mar. 2009;145(3):315-24. doi: 10.1093/jb/mvn166. Epub Dec. 6, 2008.
Yazaki et al., Hereditary systemic amyloidosis associated with a new apolipoprotein AII stop codon mutation Stop78Arg. Kidney Int. Jul. 2003;64(1):11-6.
Yin et al., Genome editing with Cas9 in adult mice corrects a disease mutation and phenotype. Nat Biotechnol. Jun. 2014;32(6):551-3. doi: 10.1038/nbt.2884. Epub Mar. 30, 2014.
Yokoe et al., Spatial dynamics of GFP-tagged proteins investigated by local fluorescence enhancement. Nat Biotechnol. Oct. 1996;14(10):1252-6. doi: 10.1038/nbt1096-1252.
Young et al., Beyond the canonical 20 amino acids: expanding the genetic lexicon. J Biol Chem. Apr. 9, 2010;285(15):11039-44. doi: 10.1074/jbc.R109.091306. Epub Feb. 10, 2010.
Yu et al., Circular permutation: a different way to engineer enzyme structure and function. Trends Biotechnol. Jan. 2011;29(1):18-25. doi: 10.1016/j.tibtech.2010.10.004. Epub Nov. 2010.
Yu et al., Liposome-mediated in vivo E1A gene transfer suppressed dissemination of ovarian cancer cells that overexpress HER-2/neu. Oncogene. Oct. 5, 1995;11(7):1383-8.
Yu et al., Progress towards gene therapy for Hiv infection. Gene Ther. Jan. 1994;1(1):13-26.
Yu et al., Small molecules enhance CRISPR genome editing in pluripotent stem cells. Cell Stem Cell. Feb. 5, 2015;16(2):142-7. doi: 10.1016/j.stem.2015.01.003.
Yu et al., Synthesis-dependent microhomology-mediated end joining accounts for multiple types of repair junctions. Nucleic Acids Res. Sep. 2010;38(17):5706-17. doi: 10.1093/nar/gkq379. Epub May 11, 2010.
Yuan et al., Laboratory-directed protein evolution. Microbiol Mol Biol Rev. 2005; 69(3):373-92. PMID: 16148303.
Yuan et al., Tetrameric structure of a serine integrase catalytic domain. Structure. Aug. 6, 2008;16(8):1275-86. doi: 10.1016/j.str.2008.04.018.
Yuen et al., Control of transcription factor activity and osteoblast differentiation in mammalian cells using an evolved small-molecule-dependent intein. J Am Chem Soc. Jul. 12, 2006;128(27):8939-46.
Zakas et al., Enhancing the pharmaceutical properties of protein drugs by ancestral sequence reconstruction. Nat Biotechnol. Jan. 2017;35(1):35-37. doi: 10.1038/nbt.3677. Epub Sep. 26, 2016.
Zalatan et al., Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell. Jan. 15, 2015;160(1-2):339-50. doi: 10.1016/j.cell.2014.11.052. Epub Dec. 2014.
Zelphati et al., Intracellular delivery of proteins with a new lipid-mediated delivery system. J Biol Chem. Sep. 14, 2001;276(37):35103-10. Epub Jul. 10, 2001.
Zetsche et al., A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol. Feb. 2015;33(2):139-42. doi: 10.1038/nbt.3149.
Zetsche et al., Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. Oct. 22, 2015;163(3):759-71. doi: 10.1016/j.cell.2015.09.038. Epub Sep. 25, 2015.
Zettler et al., The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction. FEBS Lett. Mar. 4, 2009;583(5):909-14. doi: 10.1016/j.febslet.2009.02.003. Epub Feb. 10, 2009.
Zhang et al., II-Clamp-mediated cysteine conjugation. Nat Chem. Feb. 2016;8(2):120-8. doi: 10.1038/nchem.2413. Epub Dec. 21, 2015.
Zhang et al., A new strategy for the site-specific modification of proteins in vivo. Biochemistry. Jun. 10, 2003;42(22):6735-46.
Zhang et al., Circular intronic long noncoding RNAs. Mol Cell. Sep. 26, 2013;51(6):792-806. doi: 10.1016/j.molcel.2013.08.017. Epub Sep. 12, 2013.
Zhang et al., Comparison of non-canonical PAMs for CRISPR/Cas9-mediated Dna cleavage in human cells. Sci Rep. Jun. 2014;4:5405.
Zhang et al., Conditional gene manipulation: Cre-ating a new biological era. J Zhejiang Univ Sci B. Jul. 2012;13(7):511-24. doi: 10.1631/jzus.B1200042. Review.
Zhang et al., Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet. 2009;10:451-81. doi: 10.1146/annurev.genom.9.081307.164217.
Zhang et al., CRISPR/Cas9 for genome editing: progress, implications and challenges. Hum Mol Genet. Sep. 15, 2014;23(R1):R40-6. doi: 10.1093/hmg/ddu125. Epub Mar. 20, 2014.
Zhang et al., Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat Biotechnol. Feb. 2011;29(2):149-53. doi: 10.1038/nbt.1775. Epub Jan. 19, 2011.
Zhang et al., Myoediting: Toward Prevention of Muscular Dystrophy by Therapeutic Genome Editing. Physiol Rev. Jul. 1, 2018;98(3):1205-1240. doi: 10.1152/physrev.00046.2017.
Zhang et al., Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system. Nat Commun. Jul. 25, 2017;8(1):118. doi: 10.1038/s41467-017-00175-6.
Zhang et al., Ribozymes and Riboswitches: Modulation of RNA Function by Small Molecules. Biochemistry. Nov. 2, 2010;49(43):9123-31. doi: 10.1021/bi1012645.
Zhang et al., Stabilized plasmid-lipid particles for regional gene therapy: formulation and transfection properties. Gene Ther. Aug. 1999;6(8):1438-47.
Zhao et al., An ultraprocessive, accurate reverse transcriptase encoded by a metazoan group II intron. RNA. Feb. 2018;24(2):183-195. doi: 10.1261/rna.063479.117. Epub Nov. 6, 2017.
Zhao et al., Crystal structures of a group II intron maturase reveal a missing link in spliceosome evolution. Nat Struct Mol Biol. Jun. 2016;23(6):558-65. doi: 10.1038/nsmb.3224. Epub May 2, 2016.
Zhao et al., Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. Jan. 2017;18(1):31-42. doi: 10.1038/nrm.2016.132. Epub Nov. 3, 2016.
Zheng et al., ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. Jan. 10, 2013;49(1):18-29. doi: 10.1016/j.molcel.2012.10.015. Epub Nov. 21, 2012.
Zheng et al., DNA editing in DNA/RNA hybrids by adenosine deaminases that act on RNA. Nucleic Acids Res. Apr. 7, 2017;45(6):3369-3377. doi: 10.1093/nar/gkx050.
Zheng et al., Highly efficient base editing in bacteria using a Cas9-cytidine deaminase fusion. Commun Biol. Apr. 19, 2018;1:32. doi: 10.1038/s42003-018-0035-5.
Zheng et al., Structural basis for the complete resistance of the human prion protein mutant G127V to prion disease. Sci Rep. Sep. 4, 2018;8(1):13211. doi: 10.1038/s41598-018-31394-6.
Zhong et al., Rational Design of Aptazyme Riboswitches for Efficient Control of Gene Expression in Mammalian Cells. Elife. Nov. 2, 2016;5:e18858. doi: 10.7554/eLife.18858.
Zhou et al., Dynamic m(6)A mRNA methylation directs translational control of heat shock response. Nature. Oct. 22, 2015;526(7574):591-4. doi: 10.1038/nature15377. Epub Oct. 12, 2015.
Zhou et al., Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature. Jul. 2019;571(7764):275-278. doi: 10.1038/s41586-019-1314-0. Epub Jun. 10, 2019.
Zhou et al., Protective V127 prion variant prevents prion disease by interrupting the formation of dimer and fibril from molecular dynamics simulations. Sci Rep. Feb. 24, 2016;6:21804. doi: 10.1038/srep21804.
Zhou et al., Seamless Genetic Conversion of SMN2 to SMN1 via CRISPR/Cpf1 and Single-Stranded Oligodeoxynucleotides in Spinal Muscular Atrophy Patient-Specific Induced Pluripotent Stem Cells. Hum Gene Ther. Nov. 2018;29(11):1252-1263. doi: 10.1089/hum.2017.255. Epub May 9, 2018.
Zielenski, Genotype and phenotype in cystic fibrosis. Respiration. 2000;67(2):117-33. doi: 10.1159/000029497.
Zimmerly et al., An Unexplored Diversity of Reverse Transcriptases in Bacteria. Microbiol Spectr. Apr. 2015;3(2):MDNA3-0058-2014. doi: 10.1128/microbiolspec.MDNA3-0058-2014.
Zimmerly et al., Group II intron mobility occurs by target DNA-primed reverse transcription. Cell. Aug. 25, 1995;82(4):545-54. doi: 10.1016/0092-8674(95)90027-6.
Zimmermann et al., Molecular interactions and metal binding in the theophylline-binding core of an RNA aptamer. RNA. May 2000;6(5):659-67.
Zong et al., Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol. May 2017;35(5):438-440. doi: 10.1038/nbt.3811. Epub Feb. 27, 2017.
Zorko et al., Cell-penetrating peptides: mechanism and kinetics of cargo delivery. Adv Drug Deliv Rev. Feb. 28, 2005;57(4):529-45. Epub Jan. 22, 2005.
Zou et al., Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. Cell Stem Cell. Jul. 2, 2009;5(1):97-110. doi: 10.1016/j.stem.2009.05.023. Epub Jun. 18, 2009.
Zufferey et al., Woodchuck hepatitis virus posttranscriptional regulatory element enhances expression of transgenes delivered by retroviral vectors. J Virol. Apr. 1999;73(4):2886-92. doi: 10.1128/JVI.73.4.2886-2892.1999.
Zuker et al., Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. Jan. 10, 1981;9(1):133-48. doi: 10.1093/nar/9.1.133.
Zuo et al., Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science. Apr. 19, 2019;364(6437):289-292. doi: 10.1126/science.aav9973. Epub Feb. 28, 2019.
Zuris et al., Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotechnol. 2015;33:73-80.
Related Publications (1)
Number Date Country
20210317440 A1 Oct 2021 US
Provisional Applications (3)
Number Date Country
62473714 Mar 2017 US
62454035 Feb 2017 US
62370684 Aug 2016 US
Continuations (3)
Number Date Country
Parent 16143370 Sep 2018 US
Child 17148059 US
Parent 15791085 Oct 2017 US
Child 16143370 US
Parent PCT/US2017/045381 Aug 2017 US
Child 15791085 US