The present invention relates to the art of spray texturing, and more particularly to nozzle assemblies with which spray texturing can be accomplished to provide spray patterns of varying texture (i.e. with either finer or more coarse particle size).
When drywall panels are installed in a building, and the seams taped, prior to painting the wall surface, there is often applied a spray texture, which is followed by painting. The spray texture will provide a desirable background pattern, and also obscure some of the seams that might appear in the drywall surface.
There are in the prior art various spray texturing tools or devices which utilize pressurized air to spray the texture material onto the wall surface. Some of these use compressed air as the gaseous medium to spray the textured material, with the pressurized air being derived from a remote source that feeds the air through a hose to the tool. There are also tools which are totally handheld, with the pressurized air being produced by manually reciprocating the piston of an air pump that is built into the tool.
When an existing drywall surface is being repaired, quite often a small section of drywall will be removed and another piece of drywall put in its place. The seams of this piece of drywall must then be taped, and (if the surrounding surface is textured) then have a texture surface treatment that would make it match with the surrounding drywall surface. It is, of course, desirable to have the spray pattern on the patch match that of the surrounding surface.
Also, when a rather small “patch” of drywall is to be spray textured, there is the matter of convenience. One approach has been simply to provide the spray texture material in an aerosol can, and the textured material is dispensed directly from the can to be sprayed onto the drywall surface. However, one of the considerations is how this can be accomplished in a manner to provide proper matching of the texture with that which is on the surrounding drywall.
U.S. Pat. No. 5,037,011 (Woods) discloses such an aerosol texture spraying device where the spray texture material is dispensed directly from the nozzle of the aerosol can. In a commercial embodiment of a device such as this, when there is higher pressure in the container, there is a relatively fine spray pattern. For a more coarse pattern (i.e. with larger particle sizes), the can is inverted and the nozzle depressed to dispense a certain amount of the propellant gas for a few seconds. Then the can is turned upright and the spray texture material dispensed at a lower pressure to provide the spray pattern with larger particle sizes.
U.S. Pat. No. 5,310,095 issued to the present Applicant discloses an apparatus for discharging a spray texture material through a nozzle means having a nozzle discharge opening to dispense this material. There is further provided a first delivery tube means having a first discharge passageway of a first predetermined cross-sectional area. The material discharge apparatus is operated to cause the textured material to be discharged through the tube means. Then a second discharge tube means is positioned to receive material from the discharge nozzle means, and this second tube means has a second discharge passageway with a second predetermined cross-sectional area different from the first cross-sectional area. Thus, the '095 patent disclosed obtaining a finer spray pattern by utilizing a tube means with a passageway having a lesser cross-sectional area and a coarse pattern by discharging said material through the tube means having a greater cross-sectional area.
A primary problem with the method disclosed in the '095 patent is that a plurality of parts must be manufactured, shipped, sold, assembled and stored by the end user in order to maintain the capability of the product to create different texture patterns.
With the '095 patent, three straws must be sold in connection with the aerosol can. While this method is quite inexpensive from a manufacturing point of view, the shipping and sale of the product are somewhat complicated by the need to attach the three straws to the aerosol can. Further, the end user must install the straws into the actuating member of the aerosol can; this is difficult to accomplish without depressing the actuating member and discharging some of the texture material. Also, after the product disclosed in the '095 patent is used, the user must store the straws such that they are easily available when needed.
Accordingly, the need exists for a spray texturing device that is easy to use, inexpensive to manufacture, does not require user assembly, and does not require the shipment and storage of a plurality of parts.
From the foregoing, it should be apparent that one object of the present invention is to provide an improved apparatus for applying spray texture material to a patch in a wall or the like.
The present invention may be embodied as an aerosol assembly for dispensing texture material. The aerosol assembly comprises a main container assembly, a secondary container, and a conduit. The main container assembly comprises a main container containing texture material, an aerosol valve assembly, and an actuator member. The aerosol valve assembly is operable in a normally closed configuration and an open configuration. Displacement of the actuator member places the aerosol valve assembly from the normally closed configuration to the open configuration. The conduit is connected between the main container and the secondary container to allow fluid flow between the main container and the secondary container. When the actuator member is displaced to place the aerosol valve assembly into the open configuration, the pressurized fluid within the secondary container enters the primary container to force texture material out of the main container.
In
With reference to
It is recognized that in the prior art tubular members have been used in combination with an aerosol spray can to deliver a material, such as a lubricant. To the best knowledge of the applicants, however, this use has been primarily to enable the aerosol container to deliver the fluid, such as a lubricating oil, to a somewhat inaccessible location, and not to achieve the ends of the present invention.
In the following detailed description of the invention, a number of embodiments of the present invention are described. These embodiments illustrate the present invention incorporates two features that may be used singly or together. These two features are the use of an elongate passageway through which texture material may pass before it exits an aerosol device and the use of a plurality of outlet orifice configurations, where by outlet orifice has a different cross-sectional area for each of the configurations. The technical advantages obtained by these features will be described in detail below.
The embodiments of the present invention described in this application illustrate that a given embodiment can contain one or both of these features and that these features can be implemented in a variety of different configurations.
Accordingly, the present application illustrates that, for a given set of design criteria, the designer has significant flexibility to construct an aerosol device for dispensing texture material that accomplishes the design goals inherent in the set of criteria.
To return to our description of the aerosol dispensing device 22, as indicated above, the basic design is or may be conventional. As shown herein, the device 22 comprises a cylindrical container 26 and a dispensing nozzle member 28 positioned at the top of the container 26. As is common in the prior art, this dispensing member 28 in its upright position blocks flow of material from the container 26. This dispensing member 28 is attached to a downwardly extending stem 30, and when the member 28 is depressed, a valve opens within the container 22 so that the material in the container 22 flows upwardly through the stem 30 and laterally out a nozzle formed in the dispensing nozzle member 28. Since the manner in which this is achieved is well known in the prior art, this will not be described in detail herein.
Reference is now made to
In the present invention, the nozzle member 28 is provided with a counterbore 36 having a moderately enlarged diameter, relative to the diameter of the nozzle opening 34. Both the nozzle opening 34 and the counter-bore 36 have a cylindrical configuration. The dispensing tube 24 has an outside diameter so that its end portion is able to fit snugly within the counterbore 36, with the end surface of the tube 34 bearing against the forwardly facing annular shoulder 38 defined by the counterbore 36 with the nozzle opening 34.
In one preferred embodiment of the present invention, a plurality of dispensing tubes 24 are provided, and in the present embodiment, there are three such tubes, 24a, 24b and 24c. It can be seen from examining
It has been found that by selecting different diameters for the discharge passageway 40, the spray texture pattern can be controlled more accurately. With the smaller diameter 40a of the discharge tube 24a, shown in
In
With regard to the spray texture material itself, if has been found that quite desirable results can be achieved where the basic composition of the spray texture material comprises a resin or resins, particulate filler material and a propellant. Also, there is a solvent, and desirably dryers to accelerate the drying reaction of the resin with oxygen.
More specifically, the resin or resins desirably comprise alkyd resins, and more specifically those which are generally called bodying alkyds or puffing alkyds.
Such alkyds are sometimes used for what are called “architectural coatings”. The resins are made somewhat more gelatinous than would be used in other applications, this depending upon the spray characteristics that are desired. If the alkyd resins are made more gelatinous or viscous, a coarser spray pattern would be expected for a particular set of conditions.
The particulate filler material desirably has various particle sizes, and this can be a filler material or materials which are well known in the prior art, such as calcium carbonate, silica, talc, wollastonite, various types of pigments, etc.
The propellant is desirably a liquefied hydrocarbon gas, with this liquefied gas being dispersed throughout the texture material composition, such as being dissolved therein or otherwise dispersed therein. The propellant is characterized that under the higher pressure within the container the propellant remains dispersed or dissolved as a liquid throughout the spray texture material, and upon release of pressure, the propellant begins going back to its gaseous form to act as a propellant and push the material up the stem passageway 32 and out the nozzle opening 34.
The solvent is desirably aromatic and/or aliphatic hydrocarbons, ketones, etc.
The dryer or dryers would normally be metallic dryer, such as various metal salts. These are already well known in the art, so these will not be described in detail herein.
It has been found that this type of texture material can be sprayed by using the present invention to provide a reasonably consistent spray texture for a given configuration of the tube 24. Also, it has been found that this consistency of spray pattern can be accomplished throughout the discharge of the great majority of the spray texture material within the container 26.
With regard to the particular dimensions utilized in this preferred embodiment of the present invention, reference is made to
Thus, it can be seen in the arrangements of
In the intermediate size of
In
A tube length as short as one half inch has been tried, and this is able to provide a substantial improvement of performance over what would have been obtained simply by discharging the spray texture directly from the nozzle opening 34, without any tube, relative to controlling spray pattern. The shorter tube 24 (as small as one half inch) provides a significant benefit, but not the full benefit of the longer tube 24. The very short tube (e.g. one half inch) has a lesser quality of performance when used with the larger diameter passageway 40 than with the smaller passageway.
To describe now the operation of the present invention, an aerosol dispensing device 22 is provided as described previously herein with the spray texture material contained within the can 26 at a desired pressure. As is common with aerosol cans, it is desirable to shake the device 22 for a few seconds prior to depressing the nozzle control member 28.
If a relatively fine texture is desired, then a smaller diameter tube such as at 24a is used. For spray texture patterns having larger particle size, the larger diameter tube is used.
The person directs the nozzle opening 34 and the tube 24 toward the wall surface to be sprayed and depresses the nozzle member 28. As the spray texture material is discharged, the container 26 is moved back and forth and is tilted to different angles to spray the desired area.
As indicated earlier, it has been found that not only can a “fineness” or “coarseness” (i.e. smaller particle size or larger particle size, respectively) be controlled with reasonable precision by the present invention, but this consistency of the spraying pattern can be maintained throughout the discharge of the great majority of the spray material within the container 26. While these phenomena are not totally understood, it is believed that the following can be reasonably hypothesized to provide at least a partial explanation.
First, the separation of the texture material into particles of smaller or larger size is due in part to the character of the material itself, and also due in part to the way the forces are exerted on the material to tend to break it up into particles. More particularly, it can be hypothesized that if there is a greater shear force tending to separate the particles, it would be expected that there would be a finer pattern.
It is also recognized that when a fluid is moving through a conduit or tube, there is commonly what is called a velocity gradient along a transverse cross section of the flow of material. More precisely, the material immediately adjacent to the wall surface may have a very low velocity or practically no velocity. The adjacent material just a small distance away from the wall will have a somewhat greater velocity, but will still be retarded significantly due to the shear force provided by the material that is closer to the wall surface. As the cross section of the liquid material is analyzed closer toward the center, the shear force becomes less and the velocity becomes more uniform.
With the foregoing in mind, it also has to be recognized that if the diameter of the tube or conduit is reduced by one half, the cross-sectional area is reduced by one quarter. Thus, for the smaller tube (i.e. one half diameter) the surface area that provides a retarding force is doubled relative to the volume of flow at the same velocity). This would indicate that for a given cross-sectional segment of the fluid material being discharged, there is relatively greater shear force exerted for the smaller inside diameter tube. This would lead to the conclusion that for the discharge of a given amount of fluid at a certain velocity and at the same pressure, there would be a smaller particle size than if a tube of greater inside diameter were used.
Another phenomenon to be considered is with regard to the pressure which is forcing the textured material out of the tube 24. It can be surmised that if the pressure is greater, the velocity of the material traveling through the tube 24 would be greater, so that the shear forces exerted on the texture material would be greater so that smaller particle sizes would result.
It can be seen in
Experimental results using different size tubes seem to verify this conclusion.
In
Finally, with reference to
However, it has to be recognized that while the above hypothesis can be proposed with reasonable justification, there are likely other phenomena involved which the applicants are either not aware of or have not fully evaluated. For example, with the propellant being disbursed in (and presumably dissolved in) the texture composition, it can be surmised that this propellant continues to go out of solution or dispersion into its gaseous form and expand to provide the propellant force, and this continues as the quantity of texture material continues to be reduced. This may also have a desirable effect on the formation of the particles and of the particle size, relative to consistency.
Nevertheless, regardless of the accuracy or correctness of the above explanations, it has been found that the spray pattern (and more particularly the particle size of the spray pattern) can be achieved with greater consistency and within relatively greater limits of particle size, than the prior art devices known to the applicants. Further, the consistency of the spray pattern can be maintained for the discharge of a large proportion of spray texture material from the apparatus 10.
It is to be recognized, of course, that various relative dimensions could be changed without departing from the basic teachings of the present invention. For example, it has been found that with spray texture material of a character which are acceptable in present day use, that a range of tube inside diameters of approximately one half of a tenth of an inch to one and one half tenth of an inch would give a reasonable range of texture spray patterns. However, it can be surmised that tube diameters outside of this range (e.g. one quarter of a tenth of an inch to possibly as high as one quarter of an inch would also provide acceptable texture spray patterns, depending upon a variety of circumstances, such as the viscosity and other characteristics of the spray texture material itself, the discharge pressure, the volumetric rate at which the spray texture material is delivered to the tube 24, and other factors.
Referring now to
The outlet member 126 has first, second, and third outlet orifices 128a, 128b, and 128c formed therein. As shown in
To operate the spray texturing apparatus 120, the valve assembly 124 is operated to allow the spray material within the container 122 to pass through the nozzle passageway 130. The texture material thus exits the spray texturing apparatus 120 through whichever of the outlet orifices 128a, 128b, or 128c is aligned with the nozzle passageway 130.
As shown in
The spray texturing apparatus 120 obtains the same basic result as the apparatus 10 described above and the prior art assembly shown in
Referring again to
The valve assembly 124 basically comprises: (a) the outlet member 128 described above; (b) an actuator member 136 having a valve stem 138; (c) a valve seat 140; (d) a valve housing 142; (e) a valve member 144; (f) a valve spring 146; and (g) a collection tube 148 that extends into the spray material within the container 122. Essentially, the valve assembly 124 creates a path that allows the pressure within the container 122 to cause the texture material to flow through the nozzle passageway 130.
The valve assembly 124 is constructed and operates basically as follows. The valve seat 140 and valve housing 142 mate with and are held by the container cap 134 near a valve hole 150 in the cap 134. The valve member 144 and valve spring 146 are mounted within the valve housing 142 such that the valve spring 146 urges the valve member 144 towards the valve seat 140. The valve stem 138 extends through the valve hole 150 and is attached to the valve member 144; pressing the actuator member 136 towards the container 122 into an open position forces the valve member 144 away from the valve seat 140 against the urging of the valve spring 146.
When the valve member 144 is forced away from the valve seat 140, an exit passageway 152 for the spray material is created. This exit passageway 152 allows the spray material to exit the apparatus 120 by passing: through the collection tube 136; through the center of the valve housing 142; around the valve member 144; through a slot 154 formed in the valve stem 138; through a vertical passageway 156 formed in the actuator member 136; through the nozzle passageway 130 described above; and through the one of the outlet orifices 128a, 128b, or 128c aligned with the nozzle passageway 130. At this point, the spray material forms the spray 18 as described above.
The exemplary outlet member 126 basically comprises a disc portion 158 and a cylindrical portion 160. The first, second, and third outlet orifices 128a, 128b, and 128c are formed in the disc portion 158. Center axes A, B, and C of the outlet orifices 128a, 128b, and 128c are equidistant from a center axis D of the disc portion 158; the distances between the center axes A, B, and C of these outlet orifices 128a, 128b, and 128c and the center axis D of the disc portion 158 are represented by the reference character X in
The cylindrical portion 160 of the outlet member 126 has a center axis E which is aligned with the center axis D of the disc portion 158. Additionally, an outlet portion 162 of the actuator member 126 through which the nozzle passageway 130 extends has a generally cylindrical outer surface 164. A center axis F of the actuator member outer surface 164 is aligned with the center axes D and E described above.
Also, a center axis G of the nozzle passageway 130 is arranged parallel to the center axis F of the actuator member outer surface 164. The center axis G of this nozzle passageway 130 is spaced away from actuator member center axis F the same distance X that exists between the center axes A, B, and C of the nozzle exit orifices and the center axis D of the disc portion 158.
Finally, an inner surface 166 of the outlet member cylindrical portion 160 is cylindrical and has substantially the same diameter d, taking into account tolerances, as the cylindrical outer surface 164 of the outlet portion 162 of the actuator member 136. An outlet surface 168 of the outlet portion 162 is disc-shaped and has substantially the same diameter d as the outlet member inner surface 166 and the actuator member outer surface 164.
Accordingly, as shown in
When the outlet member 126 is so mounted on the actuator member 136, an annular projection 172 formed on the inner surface 166 of the outlet member cylindrical portion 160 engages an annular indentation 174 formed in the outer surface 164 of the actuator member outlet portion 162. The projection 172 and indentation 174 are arranged parallel to the actuator member outlet surface 168 and thus allow rotation of the outlet member 126 relative to the actuator member 136.
Further, the engagement of the projection 172 with the indentation 174 prevents inadvertent removal of the outlet member 126 from the actuator member 136; however, both the projection 172 and indentation 174 are rounded to allow the outlet member 126 to be attached to and detached from the actuator member 136 when desired. The outlet member cylindrical portion 160, the projection 172, and indentation 174 thus form an attachment means 176 for rotatably attaching the outlet member 126 to the actuator member 136.
As shown in
Referring now to
The spray texturing apparatus 220 basically comprises an aerosol container 222, a valve assembly 224 mounted on the container 222, and an outlet member 226 attached to the valve assembly 224. The valve assembly 224 further comprises an actuator member 236. The primary difference between the apparatus 120 and the apparatus 220 is in the construction of the outlet member 226 and the actuator member 236 and the manner in which these members 226 and 236 inter-operate.
In particular, the outlet member 226 simply comprises a disc portion 258. An attachment means 276 for attaching the outlet member 226 to the actuator member 236 basically comprises an indentation or hole 272 formed in the outlet member disc portion 258 and a projection 274 formed on an outlet surface 268 formed on the actuator member 236. The hole 272 and projection 274 lie along a center axis D of the disc portion 258 and a center axis F extending through the actuator member 236. The interaction of the hole 272 and the projection 274 allow the outlet member 226 to be rotated about the axes D and F. A rounded end 280 of the projection 274 prevents inadvertent removal of the outlet member 226 from the actuator member 236.
Accordingly, it should be clear from the foregoing discussion and
Referring now to
The spray texturing apparatus 320 basically comprises an aerosol container 322, a valve assembly 324 mounted on the container 322, and an outlet member 326 attached to the valve assembly 324. The valve assembly 324 further comprises an actuator member 336. The primary difference between the apparatus 120 and the apparatus 320 is in the construction of the outlet member 326 and the actuator member 336 and the manner in which these members 326 and 336 inter-operate.
In particular, the outlet member 326 simply comprises a disc portion 358. An attachment means 376 for attaching the outlet member 326 to the actuator member 336 basically an annular ring 374 having a center axis E fastened to the actuator member 236. An annular projection 380 extends inwardly from the ring 374. The diameter of the disc portion 358 is substantially the same as that of the ring 374, taking into account tolerances, and slightly larger than that of the projection 380.
The outlet member 326 is attached to the actuator member 336 by placing the outlet member 326 within the ring 374 and attaching the ring 374 onto the actuator member 336 with: (a) the outlet member 326 between the annular projection 380 and an outlet surface 368 of the actuator member 336; and (b) a center axis D of the disc member 358 aligned with the axis E of the ring 374 and a center axis F of the actuator member 336. The outlet member 326 can rotate within the ring 374 about the axes D, E, and F, and the annular projection 380 prevents inadvertent removal of the outlet member 326 from the actuator member 336. A handle 382 is provided on the outlet member 326 to facilitate rotation outlet member 326.
The attachment means 376 accomplishes the same basic function as the attachment means 176 described above. The apparatus 320 thus operates in all other respects in the same basic manner as the apparatus 120 described above.
Referring now to
The spray texturing apparatus 420 basically comprises an aerosol container 422, a valve assembly 424 mounted on the container 422, and an outlet member 426 attached to the valve assembly 424. The valve assembly 424 further comprises an actuator member 436. The primary difference between the apparatus 120 and the apparatus 420 is in the construction of the outlet member 426 and the actuator member 436 and the manner in which these members 426 and 436 inter-operate.
In particular, the outlet member 426 comprises a disc portion 458 having a lower surface 466 and a cylindrical portion 460 having an inner surface 470. In the exemplary apparatus 420, the actuator member 436 has an upper surface 464 and a cylindrical outer surface 468. When the valve assembly 424 is assembled, a center axis D of the disc portion 458, a center axis E of the cylindrical portion 460, and a vertical center axis F of the stem portion 436 are aligned.
An attachment means 476 for attaching the outlet member 426 to the actuator member 436 basically comprises an annular ring 472 formed on the outlet member cylindrical portion 460 and a notch or indentation 474 formed around the cylindrical outer surface 468 of the actuator member 436. This attachment means 476 allows the outlet member 426 to rotate relative to the actuator member 436 about the axes D, E, and F but prevents inadvertent removal of the outlet member 426 from the actuator member 436.
With this configuration, the first, second, and third outlet orifices 428a, 428b, and 428c are formed in the cylindrical portion 460 of the outlet member 426. These orifices 428a, 428b, and 428c are formed with their center axes A, B, and C orthogonal to, arranged at a given vertical point H along, and radially extending outwardly from the vertical center axis F of the stem portion 436. A center axis G of a nozzle passageway 430 formed in the actuator member 436 also is orthogonal to, radially extends from, and intersects at the given point H the vertical center axis F of the stem portion 436.
To facilitate rotation of the outlet member 426 relative to the actuator member 436, a peripheral flange 480 is formed at the bottom of the actuator member 436. The user can grasp this flange 480 to hold the actuator member 436 in place as the outlet member 426 is being rotated about its axis D. Thus, rotation of the outlet member 426 relative to the actuator member 436 about the axes D, E, and F allows any one of these orifices 428a, 428b, and 428c to be aligned with a center axis G of a nozzle passageway 430 formed in the actuator member 436. The first outlet orifice 428a is shown aligned with the nozzle passageway 430 in
The attachment means 476 thus also accomplishes the same basic function as the attachment means 176 described above. Accordingly, the apparatus 420 operates in all other respects in the same basic manner as the apparatus 120 described above.
Referring now to
The spray texturing apparatus 520 basically comprises an aerosol container 522, a valve assembly 524 mounted on the container 522, and an outlet member 526 attached to the valve assembly 524. The valve assembly 524 further comprises an actuator member 536. The primary difference between the apparatus 120 and the apparatus 520 is in the construction of the outlet member 526 and the actuator member 536 and the manner in which these members 526 and 536 inter-operate.
In particular, in the apparatus 520 a nozzle passageway 530 formed in the actuator member 536 terminates at the top rather than the side of the actuator member 536. The outlet member 526 comprises a disc member 558 attached to an outlet surface 568 on the upper end of the actuator member 536. A hole 572 formed in the disc member 558 and a projection 574 formed on the outlet surface 568 comprise an attachment means 576 for attaching the outlet member 526 onto the actuator member 536.
The attachment means 576 allows the outlet member 526 to be rotated about a center axis D thereof relative to the actuator member 536 such that any one of the center axes A, B, or C of outlet orifices 528a, 528b, and 528c can be aligned with a center axis G of the nozzle passageway 520.
Finger engaging wings 580 and 582 are formed on the actuator member 536 to allow the user to depress the actuator member 536 and spray the texture material within the container without getting texture material on the fingers.
The nozzle passageway identified by the reference character 530a in
Referring now to
The aerosol assembly 602 comprises a container 606, a valve assembly 608, and an actuator member 610. As is well known in the art, depressing the actuator member 610 moves the valve assembly 608 into its open position in which an exit passageway is defined from the interior to the exterior of the container 606. This exit passageway terminates in a nozzle opening 612 formed in the actuator member 610.
The outlet assembly 604 comprises a straw 614 and one or more constricting members 616. The straw member 614 is adapted to fit into the nozzle opening 612 such that texture material exiting the aerosol portion 602 passes through a discharge opening 618 defined by the straw 614.
The restricting sleeves 616 are adapted to fit onto the straw 614. Additionally, as shown in
The outlet assembly 604 as described above thus results in at least four different texture patterns. One is formed by the straw 614 without any constricting sleeve mounted thereon, and three are formed by the different constricting sleeves 616a, 616b, and 616c shown in
Also, as shown in
The aerosol device 600 thus employs an elongate discharge opening as formed by the straw 614 and provides constricting sleeves 616 that allow a cross-sectional area of the discharge opening 618 to be reduced, thereby allowing the device 600 to dispense texture material in a manner that forms different texture patterns.
Referring now to
The single constricting disc 630 thus performs essentially the same function as the three constricting sleeves 616a, 616b, and 616c described above. A possible advantage to the outlet portion 626 is that it requires the fabrication and storage of only two parts (the straw 628 and the disc 630) rather than four parts (the straw 614 and the constricting sleeves 616a, 616b, and 616c).
Referring now to
The outlet assembly 634 comprises a straw 636 and one or more constricting plugs 638. The straw 636 is essentially the same as the straw 614 described above, although the straw 636 is preferably made out of more rigid material than that from which the straw 614 is made.
The straw 636 and plugs 638 define a discharge passageway 640 through which texture material must pass as it exits the aerosol portion 602. The discharge passageway 640 comprises an outlet portion 642 defined by a central bore 644 formed in the plugs 638. As shown in
A number of mechanisms can be employed to mount the constricting plugs 638 on to the straw 636. The exemplary configuration shown in
An external flange 650 is formed on each of the constricting plugs 638 primarily to facilitate removal of these plugs 638 from the straw 636 when different spray texture patterns are required.
Referring now to
In particular, the outlet assembly 652 comprises a straw 654 and a constricting disc 656. The straw 654 is mounted onto the actuator member 610, and the constricting disc 656 is mounted on a distal end of the straw 654.
The straw 654 is similar in shape to the straw 614 described above and it is similar in both shape and function to the straw 636 described above. In particular, the straw 654 is made out of semi-rigid material that allows a pressure fit to be formed that will mechanically engage the straw 654 both to the actuator member 610 and to the constricting disc 656.
Referring now to
The reduced diameter portion 662 define an outlet portion 664 of a discharge passageway 666 defined by the outlet portion 652. As can be seen from
The embodiment of the present invention shown in
Referring now to
Referring now to
The outlet assembly 678 comprises a straw 680, a fixed member 682, and a movable member 684. The exit portion 678 defines a discharge passageway 686 that extends through the straw 680 and is defined by a first bore 688 defined by the fixed member 682 and a second bore 690 defined by the movable member 684.
The fixed member 682 is mounted onto the end of the straw 680 using a pressure fit established in a manner similar to that formed between the cylindrical member 672 and straw 670 described above. The movable member 684 is mounted within the fixed member 682 such that the movable member 684 may be rotated about an axis 692 transverse to a dispensing axis 694 defined by the discharge passageway 686.
As shown by a comparison of
Referring now to
The discharge assembly 700 comprises a straw 702 and a plug disc 704. The outlet portion 700 includes a discharge passageway 706 defined in part by the straw 702 and in part by one of a plurality of bores 708 formed in the plug disc 704. In particular, as shown in
Referring now to
As shown in
The discharge member 716 comprises a plate portion 722 and a plurality of plug portions 724 extending therefrom. The bores 720 extend through the plugs 724, and outer surfaces 726 of the plugs are adapted to fit within the actuator member 610 such that texture material leaving the aerosol portion 602 passes through the discharge passageway 718 defined by one of the bores 720. A selected one of the plugs 724 is inserted into the actuator member 610 depending on the texture pattern desired.
The embodiment shown in
Referring now to
The outlet assembly 728 comprises a fixed member 730, a rotatable member 732, and a plurality of straws 734. The fixed member 730 has a plug portion 736 adapted to form a pressure fit with the actuator member 610 and a plate portion 738. The rotatable member 732 comprises a cavity adapted to mate with the plate portion 738 of the fixed member 730 such that a plurality of bores 740 in the movable member 732 may be brought into alignment with a bore 742 formed in the plug portion 736. This is accomplished by rotating the movable member 732 about an axis 744 relative to the fixed member 730. Detents or other registration means can be provided to positively lock the movable member 732 relative to the fixed member 730 when the bores 740 are in alignment with the bore 742.
Each of the bores 740 has an increased diameter portion 746 sized and dimensioned to receive one of the straws 734. Each of the straws 734 has an internal bore 748.
Texture material exiting the aerosol device 602 passes through a discharge passageway 750 formed by the bores 742, 740, and 748. Additionally, as perhaps best shown by
The outlet portion 728 otherwise allows the selection of one of a plurality of texture patterns and does so using an elongate discharge passageway to provide the benefits described above.
Referring now to
By rotating the cap 758 about the axis 764, bores 768 of the straws 766 may be brought into registration with a portion 770 of an exit passageway 772. The portion 770 of the exit passageway 772 extends through the cylindrical portion 756.
Additionally, each of the bores 768 has a different cross-sectional area. A desired texture pattern may be selected by placing one of the straws 768 in registration with the passageway portion 770. The overall effect is somewhat similar to that of the discharge portion 728. While the discharge portion 752 eliminates one part as compared to the discharge portion 728, the discharge portion 752 requires a specially made actuator member. In contrast, the discharge portion 728 uses a standard actuator member.
Referring now to
But with the discharge members or straws 774, a bore 776 of each of the straws 774 will have the same cross-sectional area except at one location identified by reference character 778 in
The system shown in
Referring now to
The discharge assembly 780 comprises a flexible straw 784, a rigid hollow cylinder 786, and a tensioning plate 788. The straw 784 is securely attached at one end to the actuator member 782 and at its distal end to the tensioning plate 788. A central bore 790 defined by the straw 784 is in communication with a bore 792 formed in the tensioning plate 788. Thus, texture material flowing out of the aerosol portion 602 passes through the bores 790 and 792, at which point it is deposited on the surface being coated.
The outer cylinder 786 is mounted onto the actuator member 782 such that it spaces the tensioning plate 788 in one of a plurality of fixed distances from the actuator member 782. More specifically, extending from the tensioning plate 788 are first and second tabs 794 and 796. Formed on the cylinder 786 are rows of teeth 798 and 800. Engaging portions 802 and 804 on the tabs 794 and 796 are adapted to engage the teeth 798 and 800 to hold the tensioning plate 788 at one of the plurality of locations along the cylinder 786.
As the tensioning plate moves away from the actuator member 782 (compare
Referring now to
In particular, the discharge portion 810 comprises a straw 814 and a tensioning cylinder 816. The straw 814 is flexible and is connected at one end to the actuator member 812 and a distal end to the tensioning cylinder 816. The tensioning cylinder 816 is threaded to mount on a spacing cylinder 818 integrally formed with the actuator member 812.
When the tensioning cylinder 816 is rotated about its longitudinal axis, the threads thereon engage the threads on the spacing cylinder 818 to cause the tensioning cylinder 816 to move towards and away from the actuator member 812. Additionally, as the ends of the straw 814 are securely attached to the actuator member and the tensioning cylinder, rotation of the tensioning cylinder 816 causes the straw 814 to twist as shown in
Referring now to
The discharge assembly 822 comprises a mounting cap 834 adapted to be attached to the actuator member 824 such that a plurality of bores 836 in the cap 834 can be brought into registration with the exit passageway 832. Mounted on the mounting cap 834 are a plurality of straws 838 having central bores 840 of different cross-sectional areas. These straws 838 are mounted onto the mounting cap 834 such that the bores 840 are in communication with a corresponding one of the bores 836 formed in the mounting cap 834. By rotating the mounting cap 834 relative to the actuator member 824, one of the central bores 840 is brought into registration with the exit passageway portion 832 such that texture material passing through the exit passageway 832 exits the system through the aligned central bore 840. Each of the straws 838 thus corresponds to a different texture pattern, and the desired texture pattern may be selected by aligning an appropriate central bore 840 with the exit passageway 832.
The system shown in
Referring now to
The discharge portion 842 comprises a mounting cap 850 and a plurality of straws 852 mounted on the cap 850. Each of these straws defines a center bore 854. The cross-sectional areas of the central bores 854 are all different and thus allowed the formation of different texture patterns.
The mounting cap 850 has a plurality of bores 856 formed therein, with each bore 856 having a corresponding straw 852. Additionally, the bores 856 are spaced from each other such that rotation of the mounting cap 850 relative to the actuator member 854 aligns one of the bores 856, and thus the central bore 854 of one of the straws 852 such that texture material exiting the aerosol portion 602 passes through a selected central bore 854 of one of the straws 852.
The system shown in
Referring now to
The actuator assembly 854 comprises three straw members 856 each having a central bore 858. These straw members 856 are joined together to form an integral unit, but are spaced from each other as shown at 860 in
The cross-sectional areas of the bores 858a, 858b, and 858c are different, and different spray texture patterns may be obtained by inserting one of the straws into the actuator member such that texture material flows through central bore 858 associated therewith. In this context, it should be apparent that the output portion 854 is used in the same basic manner as the plurality of straws described in relation to
Referring now to
Shown at 868 is yet another structure 870 defining a bore 872 having a triangular cross section. Shown at 874 is a structure 876 having a bore 878 configured in a rectangular shape. At 880 in
Bores such as the bores 878 and 884 described above that are wider than they are tall may, in addition to defining a certain cross-sectional area, also create desirable spray characteristics such as a fan shape.
Referring now to
The box member 890 defines a chamber 894 through which texture material must pass before it passes through a discharge opening 896. The chamber 894 acts as a pressure accumulator that will smooth out any variations in pressure in the texture material as it is dispensed through the opening 896.
Referring now to
From the discussion of the other embodiments above, it should be clear that a plurality of curved straws such as the straw 900 may be provided each having an internal bore with a different cross-sectional area. This would allow the texture material not only to be applied upwardly with the aerosol portion 602 being held upright but would allow different spray texture patterns to be applied.
Referring now to
Referring now to
The main container 912 is similar to a conventional aerosol container as described above except that it has an additional port 920 to which the conduit 916 is connected. The secondary container 914 is adapted to contain a pressurized fluid such as air or nitrogen. The pressurized fluid is preferably inert.
The compressed fluid within the secondary container 914 is allowed to enter the primary container 912 to force texture material out of the main container 912. The valve 918 controls the amount of pressure applied on the texture material by the compressed fluid within the secondary container 914.
Thus, rather than relying on an internally provided propellant gas to stay at a desired pressure associated with a consistent spray texture pattern, an external gas source is applied with a valve to ensure that the pressure remains at its desired level while the texture material is being dispensed.
It is to be recognized that various modifications can be made without departing from the basic teaching of the present invention.
This is a continuation of U.S. application Ser. No. 11/810,504 filed Jun. 5, 2007, which is a continuation of U.S. application Ser. No. 11/153,743 filed Jun. 14, 2005, now U.S. Pat. No. 7,226,001, which is a continuation of U.S. application Ser. No. 10/726,132 filed Dec. 1, 2003, now U.S. Pat. No. 6,905,050, which is a continuation of U.S. application Ser. No. 10/241,678 filed Sep. 10, 2002, now U.S. Pat. No. 6,659,312, which is a continuation of U.S. application Ser. No. 09/904,878, filed Jul. 11, 2001, now U.S. Pat. No. 6,446,842, which is a continuation of U.S. application Ser. No. 09/659,886, filed Sep. 12, 2000, now U.S. Pat. No. 6,276,570 B1, which is a continuation of U.S. application Ser. No. 09/407,807, filed Sep. 28, 1999, now U.S. Pat. No. 6,116,473, which is a continuation of U.S. application Ser. No. 08/626,834, filed Apr. 2, 1996, now U.S. Pat. No. 5,715,975, which is a continuation-in-part of U.S. application Ser. No. 08/321,559, filed Oct. 12, 1994, now U.S. Pat. No. 5,524,798, which is a continuation-in-part of U.S. application Ser. No. 08/238,471, filed May 5, 1994, now U.S. Pat. No. 5,409,148, which is a continuation of U.S. application Ser. No. 07/840,795, filed Feb. 24, 1992, now U.S. Pat. No. 5,310,095, and U.S. application Ser. No. 08/216,155, filed Mar. 22, 1994, now U.S. Pat. No. 5,450,983. The contents of all related applications listed above are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
208330 | Palmer | Sep 1878 | A |
351968 | Derrick | Nov 1886 | A |
D25916 | Woods | Aug 1896 | S |
568976 | Regan | Oct 1896 | A |
579418 | Bookwalter | Mar 1897 | A |
582397 | Shone | May 1897 | A |
658586 | Reiling | Sep 1900 | A |
930095 | Seagrave | Aug 1909 | A |
941671 | Campbell | Nov 1909 | A |
1093907 | Birnbaum | Apr 1914 | A |
1154974 | Custer | Sep 1915 | A |
1486156 | Needham | Mar 1924 | A |
2127188 | Schellin et al. | Aug 1938 | A |
2149930 | Plastaras | Mar 1939 | A |
D134562 | Murphy | Dec 1942 | S |
2307014 | Becker et al. | Jan 1943 | A |
2320964 | Yates | Jun 1943 | A |
2388093 | Smith | Oct 1945 | A |
2530808 | Cerasi | Nov 1950 | A |
2785926 | Lataste | Mar 1957 | A |
2790680 | Rosholt | Apr 1957 | A |
2976897 | Beckworth | Mar 1961 | A |
2997243 | Kolb | Aug 1961 | A |
3083872 | Meshberg | Apr 1963 | A |
3184326 | Bartlett | May 1965 | A |
3246850 | Bourke | Apr 1966 | A |
3258208 | Greenbaum, II | Jun 1966 | A |
3342282 | Huling | Sep 1967 | A |
3377028 | Bruggeman | Apr 1968 | A |
3472457 | McAvoy | Oct 1969 | A |
3514042 | Freed | May 1970 | A |
3575319 | Safianoff | Apr 1971 | A |
3596835 | Smith et al. | Aug 1971 | A |
3613954 | Bayne | Oct 1971 | A |
3703994 | Nigro | Nov 1972 | A |
3704831 | Clark | Dec 1972 | A |
3776470 | Tsuchiya | Dec 1973 | A |
3777981 | Probst et al. | Dec 1973 | A |
3795366 | McGhie et al. | Mar 1974 | A |
3799398 | Morane et al. | Mar 1974 | A |
3811369 | Ruegg | May 1974 | A |
3891128 | Smrt | Jun 1975 | A |
3936002 | Geberth, Jr. | Feb 1976 | A |
3982698 | Anderson | Sep 1976 | A |
4147284 | Mizzi | Apr 1979 | A |
4187985 | Goth | Feb 1980 | A |
4310108 | Motoyama et al. | Jan 1982 | A |
4411387 | Stern et al. | Oct 1983 | A |
4546905 | Nandagiri et al. | Oct 1985 | A |
4815414 | Duffy et al. | Mar 1989 | A |
4887651 | Santiago | Dec 1989 | A |
D307649 | Henry | May 1990 | S |
4955545 | Stern et al. | Sep 1990 | A |
4961537 | Stern | Oct 1990 | A |
5037011 | Woods | Aug 1991 | A |
5069390 | Stern et al. | Dec 1991 | A |
5100055 | Rokitenetz et al. | Mar 1992 | A |
5188295 | Stern et al. | Feb 1993 | A |
5307964 | Toth | May 1994 | A |
5310095 | Stern et al. | May 1994 | A |
5323963 | Ballu | Jun 1994 | A |
5368207 | Cruysberghs | Nov 1994 | A |
5409148 | Stern et al. | Apr 1995 | A |
D358989 | Woods | Jun 1995 | S |
5421519 | Woods | Jun 1995 | A |
5450983 | Stern et al. | Sep 1995 | A |
5524798 | Stern et al. | Jun 1996 | A |
5562235 | Cruysberghs | Oct 1996 | A |
5570813 | Clark, II | Nov 1996 | A |
5715975 | Stern et al. | Feb 1998 | A |
5799879 | Ottl et al. | Sep 1998 | A |
5941462 | Sandor | Aug 1999 | A |
6254015 | Abplanalp | Jul 2001 | B1 |
6276570 | Stern et al. | Aug 2001 | B1 |
6446842 | Stern et al. | Sep 2002 | B2 |
6905050 | Stern et al. | Jun 2005 | B1 |
Number | Date | Country |
---|---|---|
1586067 | Feb 1970 | FR |
2659847 | Sep 1991 | FR |
867713 | May 1961 | GB |
977860 | Dec 1964 | GB |
1144385 | Mar 1969 | GB |
1926796 | Mar 1970 | GE |
8-332414 | Dec 1996 | JP |
Number | Date | Country | |
---|---|---|---|
Parent | 11810504 | Jun 2007 | US |
Child | 11982154 | US | |
Parent | 11153743 | Jun 2005 | US |
Child | 11810504 | US | |
Parent | 10726132 | Dec 2003 | US |
Child | 11153743 | US | |
Parent | 10241678 | Sep 2002 | US |
Child | 10726132 | US | |
Parent | 09904878 | Jul 2001 | US |
Child | 10241678 | US | |
Parent | 09659886 | Sep 2000 | US |
Child | 09904878 | US | |
Parent | 09407807 | Sep 1999 | US |
Child | 09659886 | US | |
Parent | 08626834 | Apr 1996 | US |
Child | 09407807 | US | |
Parent | 07840795 | Feb 1992 | US |
Child | 08238471 | US | |
Parent | 08216155 | Mar 1994 | US |
Child | 07840795 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 08321559 | Oct 1994 | US |
Child | 08626834 | US | |
Parent | 08238471 | May 1994 | US |
Child | 08321559 | US |