Agricultural system

Information

  • Patent Grant
  • 10251333
  • Patent Number
    10,251,333
  • Date Filed
    Tuesday, July 25, 2017
    7 years ago
  • Date Issued
    Tuesday, April 9, 2019
    5 years ago
Abstract
A hydraulic control system for controlling the down force on an agricultural implement comprises a hydraulic cylinder containing a movable ram, a source of pressurized fluid coupled to the hydraulic cylinder on a first side of the ram by a first controllable valve, a fluid sump coupled to the hydraulic cylinder on the first side of the ram by a second controllable valve, and an electrical controller coupled to the valves for opening and closing the valves. The valves may be self-latching valves that remain in an open or closed position until moved to the other position in response to a signal from the controller.
Description
FIELD OF THE INVENTION

This invention relates generally to agricultural planters and, more particularly, to gauge wheel load sensors and down pressure control systems for agricultural planters.


BRIEF SUMMARY

In accordance with one embodiment, a hydraulic control system for controlling the down force on an agricultural implement comprising a hydraulic cylinder containing a movable ram, a source of pressurized fluid coupled to the hydraulic cylinder on a first side of the ram by a first controllable valve, a fluid sump coupled to the hydraulic cylinder on the first side of the ram by a second controllable valve, and an electrical controller coupled to the valves for opening and closing the valves. The valves are preferably self-latching valves, such as magnetic latching valves, that remain in an open or closed position until moved to the other position in response to a signal from the controller. Alternatively, the valves may be non-latching valves that are spring-biased toward their closed positions. A pair of energy storage devices, such as accumulators, may be coupled to the cylinder on opposite sides of the ram. A pressure transducer is preferably coupled to the cylinder on one side of the ram. A pair of check valves may couple the cylinder to the energy storage device and to the controllable valves.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a vertical longitudinal section through a portion of an agricultural planter that includes a gauge wheel and an opener device.



FIG. 2 is an enlargement of the left side of FIG. 1.



FIG. 3 is a bottom perspective of the control portion of the equipment shown in FIG. 1.



FIG. 4 is an enlarged side elevation of the equipment shown in FIG. 3.



FIG. 5 is an enlarged top plan view of the equipment shown in FIG. 3.



FIG. 6 is an enlarged vertical longitudinal section through the equipment shown in FIG. 3.



FIG. 7 is a plan view of a gauge wheel transducer system for an agricultural planter that includes a gauge wheel and an opener device.



FIG. 8 is a side elevation of the transducer system shown in FIG. 7.



FIG. 9 is a sectional view taken along line A-A in FIG. 7.



FIG. 10 is a side elevation, partially in section, of the transducer system of FIGS. 7-9 mounted on a gauge wheel and its supporting structure.



FIG. 11 is a perspective view of portions of the devices shown in FIG. 10.



FIG. 12 is a plan view similar to FIG. 7 but with portions removed to show the equalizer arm.



FIG. 13 is a plan view of a modified transducer system.



FIG. 14 is a longitudinal section taken along line 14-14 in FIG. 13.



FIG. 15A is a side elevation of a modified sensing system for detecting the pressure exerted on a pair of gauge wheels.



FIG. 15B is an end elevation of the system shown in FIG. 15A.



FIG. 16 is a schematic diagram of a hydraulic and electrical control system for controlling a down pressure actuator.



FIG. 17 is a schematic diagram of a first modified hydraulic and electrical control system for controlling a down pressure actuator.



FIG. 18 is a schematic diagram of a second modified hydraulic and electrical control system for controlling a down pressure actuator.



FIG. 19 is a schematic diagram of a third modified hydraulic and electrical control system for controlling a down pressure actuator.



FIG. 20 is a perspective view of a planting row unit adapted to be attached to a towing frame.



FIG. 21 is an enlarged perspective view of the down-pressure control assembly in the row unit of FIG. 20;



FIG. 22 is the same perspective view shown in FIG. 16, rotated 90 degrees in a clockwise direction;



FIG. 23 is an enlarged side elevation of the control assembly shown in FIGS. 21 and 22, from the left side of the assembly as shown in FIG. 21.



FIG. 24 is a section taken along line 19-19 in FIG. 23.



FIG. 25 is a side elevation of the right side of the control assembly shown in FIG. 23.



FIG. 26 is a side elevation of the right side of the control assembly shown in FIG. 25.



FIG. 27 is a section taken along line 22-22 in FIG. 25.



FIG. 28 is a section taken along line 23-23 in FIG. 25.



FIG. 29 is an enlarged exploded perspective of the central portion of the left side of the control assembly shown in FIG. 21.



FIG. 30 is a horizontal section taken through the two ports shown in FIG. 29, with all the parts assembled.



FIG. 31 is a vertical section taken through the middle of the control assembly shown in FIG. 7, with the rod of the hydraulic cylinder in its fully extended position.



FIG. 32 is the same vertical section shown in FIG. 21, with the rod of the hydraulic cylinder in an intermediate position.



FIG. 33 is the same vertical section shown in FIG. 21, with the rod of the hydraulic cylinder in its fully retracted position.



FIG. 34A is a schematic diagram of a hydraulic and electrical control system for use in the device of FIGS. 20-33 to provide rebound damping.



FIG. 34B is a schematic diagram of a modified hydraulic and electrical control system for use in the device of FIGS. 20-33 to provide both rebound and compression damping.



FIG. 35A is a schematic diagram of a modified hydraulic and electrical control system for use in the device of FIGS. 14-33 to provide rebound damping.



FIG. 35B is a schematic diagram of another modified hydraulic and electrical control system for use in the device of FIGS. 14-33 to provide both rebound and compression damping.



FIG. 36 is a waveform diagram illustrating different modes of operation provided by a PWM control system for the hydraulic valves in the system of FIG. 34B.





DETAILED DESCRIPTION

An agricultural planter typically includes a number of individual row units, each of which includes its own row cleaner device, row opener device and row closing device. The down pressure is typically controlled separately for each row unit or each of several groups of row units, and is preferably controlled separately for one or more of the individual devices in each row unit, as described in more detail in pending U.S. application Ser. No. 14/146,822 filed Jan. 3, 2014, which is incorporated by reference herein in its entirety.



FIGS. 1-6 illustrate an improved gauge wheel load sensor that takes the upward force from a pivoting planter gauge wheel support, such as the pivoting support arms 10 in the row unit equipment shown in FIGS. 1 and 2, and translates that force into a fluid pressure in a fluid chamber 11. The gauge wheel support arms push against an equalizer support 12, which is connected via a pivot 13 with a rocker/cam 14. The force on the gauge wheel due to the weight of the row unit and applied down force causes the rocker/cam 14 to pivot around a pivot bolt 15 and push against a hydraulic ram 16. This force on the ram 16 causes the fluid in the chamber 11 to pressurize. The pressure is proportional to the amount of gauge wheel load. A pressure transducer 18 reads the amount of pressure and sends a signal to a row unit down pressure controller via signal line 19. This signal allows the planter row unit down pressure to be controlled to a desired level.


Depth adjustment is accomplished in the conventional sense by pivoting the assembly around a pivot 20, and locking a handle 21 into the desired position with a mechanism 22. With this design it is imperative that that there is no air trapped in the fluid chamber 11. For this reason the mechanism includes a bleed valve 23. The process for removal of air is to extend the ram to the maximum extent with calibration/travel limiter plates 24 (FIG. 4) removed. The system is then filled completely with fluid with the bleed valve 23 closed. Then the bleed valve 23 is opened, and the rocker arm 14 is pushed against the ram 16 to move the ram to the exact place where the calibration/travel limit plates 24 allow a calibration plate retaining screw 25 to fit into a hole. This ensures that each assembly is set the same so all the row units of the planter are at the same depth. At this point the bleed valve 23 is closed. With all air removed, the mechanical/fluid system will act as a rigid member against forces in compression. The travel limiter plate 24 keeps a cam pivot weldment 27 from falling down when the planter is lifted off the ground.


Standard industry practice is to use a strain gauge to directly measure the planter gauge wheel load. The design shown in FIGS. 1-6 is an improvement over the state of the art because it allows the sensor to measure only the down force on the gauge wheels. In typical designs using strain gauge type sensors, the mechanical linkage that allows the gauge wheels to oscillate causes the measured wheel force to have substantial noise due to changes in the force being applied. For this reason it can be difficult to determine which parts of the signal correspond to actual changes in down force on the gauge wheels, versus signal changes that are due to movement of components of the gauge wheel support mechanism. The reason for this is that strain gauge sensors will only measure the force that is being applied in a single plane. Because of the linkage and pivot assembly that is used on typical planters, the force being applied to the strain gauge type designs can change based on the depth setting or whether the planter gauge wheels are oscillating over terrain. In this way they will tend to falsely register changes in gauge wheel down force and make it difficult to have a closed loop down pressure response remain consistent.


Additionally, the fluid seal of the pressure sensor creates friction in the system which has the effect of damping out high frequency noise. Agricultural fields have very small scale variations in the surface which causes noise to be produced in the typical down force sensor apparatus. By using fluid pressure this invention decouples the sensor from the mechanical linkage and allows the true gauge wheel force to be more accurately measured. Lowering the amount of systematic noise in the gauge wheel load output sensor makes it easier to produce an automatic control system that accurately responds to true changes in the hardness of the soil as opposed to perceived changes in soil hardness due to noise induced on the sensor.



FIGS. 7-12 illustrate a modified gauge wheel load sensor that includes an integrated accumulator 125. The purpose of the accumulator 125 is to damp pressure spikes in the sensor when the planter is operating at low gauge wheel loads. When the forces that the gauge wheel support arms 110 are exerting on the hydraulic ram 117 are near zero, it is more common for the surface of the soil or plant residue to create pressure spikes that are large in relation to the desired system sensor pressure. As the target gauge wheel down force increases, and consequently the pressure in the fluid chamber 111 and the transducer output voltage from sensor 118, the small spikes of pressure due to variation in the soil surface or plant residue decreases proportionally.


In the present system, rather than have a perfectly rigid fluid coupling between the ram 117 and the pressure transducer 118, as load increases on the ram 117, the fluid first pushes against an accumulator 122 that is threaded into a side cavity 123 in the same housing that forms the main cavity for the ram 117, compressing an accumulator spring 126 until the piston 125 rests fully against a shoulder on the interior wall of the accumulator housing 127, thus limiting the retracting movement of the accumulator piston 125. At this point, the system becomes perfectly rigid. The amount of motion permitted for the accumulator piston 125 must be very small so that it does not allow the depth of the gauge wheel setting to fluctuate substantially. The piston accumulator (or other energy storage device) allows the amount of high frequency noise in the system to be reduced at low gauge-wheel loads. Ideally an automatic down pressure control system for an agricultural planter should maintain a down pressure that is as low as possible to avoid over compaction of soil around the area of the seed, which can inhibit plant growth. However, the performance of most systems degrades as the gauge wheel load becomes close to zero, because the amount of latent noise produced from variation in the field surface is large in relation to the desired gauge wheel load.


Planter row units typically have a gauge wheel equalizer arm 130 that is a single unitary piece. It has been observed that the friction between the equalizer arm 130 and the gauge wheel support arms 110, as the gauge wheel 115 oscillates up and down, can generate a substantial amount of noise in the sensor. At different adjustment positions, the edges of the equalizer arm 130 contact the support arms 10 at different orientations and can bite into the surface and prevent forces from being smoothly transferred as they increase and decrease. When the equalizer arm 130 is a single unitary piece, there is necessarily a high amount of friction that manifests itself as signal noise in the sensor. This signal noise makes it difficult to control the down pressure system, especially at low levels of gauge wheel load.


To alleviate this situation, the equalizer arm 130 illustrated in FIG. 13 has a pair of contact rollers 131 and 132 are mounted on opposite ends of the equalizer arm. These rollers 131 and 132 become the interface between the equalizer arm and the support arms 110, allowing forces to be smoothly transferred between the support arms 110 and the equalizer arm 130. The roller system allows the gauge wheel support arms 110 to oscillate relative to each other without producing any sliding friction between the support arms 110 and the equalizer arm 130. This significantly reduces the friction that manifests itself as signal noise in the sensor output, which makes it difficult to control the down pressure control system, especially at low levels of gauge wheel load.



FIG. 14 is a longitudinal section through the device of FIG. 13, with the addition of a rocker arm 150 that engages a ram 151 that controls the fluid pressure within a cylinder 152. A fluid chamber 1531 adjacent the inner end of the ram 151 opens into a lateral cavity that contains a pressure transducer 154 that produces an electrical output signal representing the magnitude of the fluid pressure in the fluid chamber 153. The opposite end of the cylinder 152 includes an accumulator 155 similar to the accumulator 125 included in the device of FIG. 9 described above. Between the fluid chamber 153 and the accumulator 155, a pair of valves 156 and 157 are provided in parallel passages 158 and 159 extending between the chamber 153 and the accumulator 155. The valve 156 is a relief valve that allows the pressurized fluid to flow from the chamber 153 to the accumulator 155 when the ram 151 advances farther into the chamber 153. The valve 157 is a check valve that allows pressurized fluid to flow from the accumulator 155 to the chamber 153 when the ram 151 moves outwardly to enlarge the chamber 153. The valves 156 and 157 provide overload protection (e.g., when one of the gauge wheels hits a rock) and to ensure that the gauge wheels retain their elevation setting.



FIGS. 15A and 15B illustrate a modified sensor arrangement for a pair of gauge wheels 160 and 161 rolling on opposite sides of a furrow 162. The two gauge wheels are independently mounted on support arms 163 and 164 connected to respective rams 165 and 166 that control the fluid pressure in a pair of cylinders 167 and 168. A hydraulic hose 169 connects the fluid chambers of the respective cylinders 167 and 168 to each other and to a common pressure transducer 170, which produces an electrical output signal corresponding to the fluid pressure in the hose 169. The output signal is supplied to an electrical controller that uses that signal to control the down forces applied to the two gauge wheels 160 and 161. It will be noted that the two gauge wheels can move up and down independently of each other, so the fluid pressure sensed by the transducer 170 will be changed by vertical movement of either or both of the gauge wheels 160 and 161.



FIGS. 16-19 illustrate electrical/hydraulic control systems that can be used to control a down-pressure actuator 180 in response to the electrical signal provided to a controller 181 by a pressure transducer 182. In each system the transducer 182 produces an output signal that changes in proportion to changes in the fluid pressure in a cylinder 183 as the position of a ram 184 changes inside the cylinder 183. In FIG. 16, the pressurized fluid chamber in the cylinder 183 is coupled to an accumulator 185 by a relief valve 186 to allow pressurized fluid to flow to the accumulator, and by a check valve 187 to allow return flow of pressurized fluid from the accumulator to the cylinder 183. In FIG. 17, the accumulator 185 is replaced with a pressurized fluid source 188 connected to the check valve 187, and a sump 189 connected to the relief valve 186. In FIG. 18, the accumulator 185 is connected directly to the pressurized fluid chamber in the cylinder 183, without any intervening valves. In the system of FIG. 19, the pressure sensor 182 is connected directly to the pressurized fluid chamber in the cylinder 183.



FIG. 20 illustrates a planting row unit 210 that includes a furrow-opening device 211 for the purpose of planting seed or injecting fertilizer into the soil. A conventional elongated hollow towing frame (typically hitched to a tractor by a draw bar) is rigidly attached to the front frame 212 of a conventional four-bar linkage assembly 213 that is part of the row unit 210. The four-bar (sometimes referred to as “parallel-bar”) linkage assembly 213 is a conventional and well known linkage used in agricultural implements to permit the raising and lowering of tools attached thereto.


As the planting row unit 210 is advanced by the tractor, the opening device 211 penetrates the soil to form a furrow or seed slot. Other portions of the row unit 210 then deposit seed in the seed slot and fertilizer adjacent to the seed slot, and close the seed slot by distributing loosened soil into the seed slot with a pair of closing wheels. A gauge wheel 214 determines the planting depth for the seed and the height of introduction of fertilizer, etc. Bins 215 on the row unit carry the chemicals and seed which are directed into the soil. The planting row unit 210 is urged downwardly against the soil by its own weight, and, in addition, a hydraulic cylinder 216 is coupled between the front frame 212 and the linkage assembly 213 to urge the row unit 210 downwardly with a controllable force that can be adjusted for different soil conditions. The hydraulic cylinder 216 may also be used to lift the row unit off the ground for transport by a heavier, stronger, fixed-height frame that is also used to transport large quantities of fertilizer for application via multiple row units.


The hydraulic cylinder 216 is shown in more detail in FIGS. 21-33. Pressurized hydraulic fluid from the tractor is supplied by a hose 301 to a port 304 that leads into a matching port of a unitary housing 223 that forms a cavity 224 of a hydraulic cylinder containing a hollow rod 225. The housing 223 also forms a side port 226 that leads into a second cavity 227 that contains hydraulic fluid that can be used to control the down pressure on the row unit, as described in more detail below.


The hydraulic control system includes a pair of controllable 2-way hydraulic lines 301 and 302 leading to the hydraulic cylinder in the unitary housing 223, which includes an integrated electronic controller 303. The hydraulic lines 301 and 302 are coupled to a pressure/inlet valve and a return outlet valve which are controlled by signals from the controller 303. The controller 303 receives input signals from a pressure transducer 304 that senses the pressure in the cavity 224, and a gauge wheel sensor that monitors the elevation of a tool relative to the elevation of the gauge wheel.


Slidably mounted within the hollow interior of the rod 225 is a down-pressure accumulator piston 230, which forms one end of a sealed chamber 231 containing pressurized gas that is part of the down-pressure accumulator. The lower end of the chamber 231 is sealed by a rod end cap 232 that contains a valve 233 for use in filling the chamber 231 with pressurized gas. Thus, the down-pressure accumulator is formed entirely within the hollow rod 225.


The hydraulic pressure exerted by the hydraulic fluid on the end surface of the rod 225 and the accumulator piston 230 urges the rod 225 downwardly, with a force determined by the pressure of the hydraulic fluid and the area of the exposed end surfaces of the rod 225 and the piston 230. The hydraulic fluid thus urges the rod 225, and thus the row unit, in a downward direction, toward the soil.


When an upward force is exerted on the rod 225, such as when a rock or increased soil hardness is encountered, the rod 225 is moved upwardly within the cavity 224, as depicted in FIGS. 32 and 33. Because the cavity 224 is filled with pressurized hydraulic fluid in the cavity 224, the accumulator piston 230 does not move upwardly with the rod 225, as depicted in FIGS. 32 and 33. Thus, the pressurized gas between the accumulator piston 230 and the cap 232 at the lower end of the rod 225 is further compressed. This process continues as the rod 25 moves upwardly within the cavity 224, until the upper end of the rod engages the housing 216, as depicted in FIG. 33. In this fully retracted position of the rod 225, the accumulator piston 230 engages the end cap 232 on the lower end of the rod 225.


During upward movement of the rod 225 and downward movement of the accumulator piston 230, hydraulic fluid flows from the second cavity 227 through the conduit 226 into the space between the outer surface of the rod 225 and the wall of the cavity 224. The hydraulic fluid if urged in this direction by a second accumulator formed by a piston 240 and a charge of pressurized gas between the piston 240 and an end cap 241 that seals the top of the cavity 227. As can be seen in FIGS. 32 and 33, the compressed gas urges the piston 240 downwardly as the rod 225 moves upwardly, thus forcing hydraulic fluid from the cavity 227 through a check valve 228 into the increasing space between the outer surface of the rod 225 and the wall of the cavity 224. In FIG. 33, the rod 225 has been withdrawn to its most retracted position, and the accumulator piston 240 has moved to its lowermost position where it engages the bottom end wall of the cavity 227. At this point, the row unit is in its uppermost position.


The process is reversed when the rod 225 returns to its extended position, with the accumulators providing dynamic “rebound” damping during this return movement. As the rod 225 moves downwardly, hydraulic fluid is returned to the cavity 227 through a restriction 229 to damp the downward movement of the rod. The restriction 229 can be adjusted by turning the screw formed by the outer end portion of the tapered pin 229a that forms the restriction 229. The return flow rate of the hydraulic fluid is also affected by the pressure of the gas in the space above the accumulator piston 240, which must be overcome by the returning hydraulic fluid to move the piston 40 upwardly.


It will be appreciated that the system described above does not require any hydraulic fluid to flow into or out of the housing 223 during advancing and retracting movement of the rod 225 that controls the vertical position of the row unit relative to the soil. Thus, there is no need to open or close any valves to control the flow of hydraulic fluid in and out of the tractor reservoir of hydraulic fluid. This is not only more efficient than moving hydraulic fluid to and from the main reservoir, but also makes the operation of the row unit much smoother, which in turn improves the delivery of seed and/or fertilizer to the desired locations in the soil. The actuator assembly is normally closed with no fluid entering or leaving the actuator/accumulator assembly unless one or more valves are opened. There is also an advantage in using two valves because a 2-position, 1-way valve can be made fast-acting more readily that a 3-position, 2-way valve. Moreover, the computer controller can be directly integrated into the actuator assembly. The single double-acting actuator with two accumulators, one acting in the downward direction and one acting in the upward direction, can be mounted in the same location as previous actuators used on row units.


The present system has an accumulator on both sides of the actuator, with valves that control flow, not pressure, so that the actuator can become a totally closed system with no oil entering or leaving. The compensator design is linear because the piston accumulator is packaged within the inner diameter of the ram of a larger cylinder, which reduces the number of parts as well as the size of the actuator unit. The linear compensator design allows perfectly open and unrestricted flow of oil in the compression direction, which is advantageous because of the need to rapidly absorb energy when the row unit hits a rock or obstacle.


When the valves have a “latching” feature, the spools of the valves can be rapidly magnetized and demagnetized. This allows the valve to latch magnetically in either the open or closed condition so that the valve does not consume power continuously, as a typical proportional coil valve does. Moreover, the latching valve design takes advantage of the ability of the accumulators to allow the planter linkage to float up and down without requiring any gain or loss of fluid. Rather, the down pressure on the planter may be changed by holding either the pressure or return valve open for varying pulse width modulated durations to achieve a rise or drop in down pressure. These valves may have a very fast rate of change between open and closed conditions. If the valve changes state very quickly, typically less than 10 milliseconds, and requires no power to remain either open or closed, it is possible to achieve negligible power consumption system because the probability that any two valves will be in the process of opening or closing at the exact same time is very low.


Planter row units have varying unsprung weights (the portion of the planter row unit weight that is carried by the gauge wheels and not the frame). In some tillage and soil conditions which are very soft or prone to compaction, it can be advantageous to suspend some or all of this weight by pushing upward against it.


By pressurizing the uplift accumulator by filling gas through the gas valve, the gas pressure increases, pushing the piston accumulator against the fluid which is connected to the main cylinder by a fluid passageway. This pressure exerts an upward force on the smaller cross sectional area of the rod side of the main piston seals, and the gas pressure can be adjusted to change the amount of uplift force. It is also possible to have a gas pressure system that allows remote adjustment of the gas pressure. The fluid in the uplift circuit forms a closed system, and a manual or automatic flow control valve can be added between the main cylinder and the uplift accumulator to restrict flow, causing damping of the rebound cycle of the suspension cylinder.


Fluid is introduced into the cylinder by opening the pressure valve for some duration of time, allowing high-pressure fluid from the tractor to flow into the fluid chamber. This high-pressure fluid pushes against the linear compensator accumulator piston, which in turn compresses the gas to equalize the pressures on opposite sides of the piston. The accumulator piston will move back and forth inside the hollow rod when the down pressure is changing, even if the rod is not moving up and down. The length of time the pressure valve remains open corresponds to the size of the adjustment needed. Control is being accomplished in a closed loop fashion based on the planter gauge wheel load. Once the required pressure is achieved, the valve closes so that the actuator is a closed system again. The actuator can then allow the row unit to float up and down, compressing and decompressing the gas in the down-pressure and up-pressure accumulators. This will generate heat in the process—the heat is energy that is being damped from the system. To facilitate the removal of this heat from the system, the portion of the housing 223 that forms the cavity 227 forms multiple cooling fins 242 around its exterior surface.



FIG. 34A is a schematic diagram of a hydraulic control system that uses a single hydraulic cylinder 1601, two two-position control valves 1602, 1603 and a pair of accumulators 1604, 1605. The valves are both latching type valves with a single actuator 1602a or 1603a for each valve, for moving the valve to either the open or closed position when the valve is unlatched. When valve 1602 is in the open position, it connects a source 1606 of pressurized hydraulic fluid to the hydraulic cylinder 1601 via pump 1607. When valve 1603 is open, it connects cylinder 1601 to a sump 1607. Electrical signals for energizing the actuators 1602a and 1603a are supplied to the respective actuators via lines 1607 and 1608 from a controller 1609, which in turn may be controlled by a central processor, if desired. The controller 1609 receives input signals from a pressure transducer 1610 coupled to the hydraulic cylinder 1601 via line 1611. The accumulator 1604 is coupled to the hydraulic cylinder 1601 through a valve 1612, as described in more detail below.



FIG. 34B is a schematic diagram of a modified version of the system of FIG. 34A to provide both rebound damping and compression damping. The only difference is that the system of FIG. 34B includes a valve 1613 between the accumulator 1603 and the compression side of the hydraulic cylinder 1601, so that the accumulator 1603 provides compression damping when the rod of the cylinder 1601 is moved from right to left in FIG. 34A.



FIGS. 35A and 35B illustrate systems that are identical to those of FIGS. 34A and 15B, except that the latching valves are replaced with non-latching valves 1702 and 1703. Elements 1701, 1704, 1705, 1706, 1707, 1708, 1709, 1710, 1711, 1712, and 1715 are similar to corresponding elements 1601, 1604, 1605, 1606, 1608, 1609, 1610, 1611, 1612, and 1615 of FIG. 34A. Referring back to FIG. 35B, the non-latching valves 1702 and 1703 are biased toward their closed positions by respective springs 102a and 1703a, and can be moved to their open positions by energizing their respective actuators 1702b and 1703b.


In the control system of FIG. 34B, a PWM control system may be used to supply short-duration pulses P to the actuators 1602a or 1603a of the control valves 1602 or 1603 to move the selected valve to its open position for short intervals corresponding to the widths of the PWM pulses. This significantly reduces the energy required to increase or decrease the pressure in the hydraulic cylinder 1601 for adjusting the down pressure on the soil-engaging implement. As depicted in FIG. 36, pulses P1-P3, having a voltage level V1, are supplied to the actuator 1602a when it is desired to increase the hydraulic pressure supplied to the hydraulic cylinder 1601. The first pulse P1 has a width T1 which is shorter than the width of pulses P2 and P3, so that the pressure increase is smaller than the increase that would be produced if P1 had the same width as pulses P2 and P3. Pulses P4-P6, which have a voltage level V2, are supplied to the actuator 1602a when it is desired to decrease the hydraulic pressure supplied to the hydraulic cylinder 1601. The first pulse P4 has a width that is shorter than the width T2 of pulses P2 and P3, so that the pressure decrease is smaller than the decrease that would be produced if P4 had the same width as pulses P5 and P6. When no pulses are supplied to either of the two actuators 1602a and 1603a, as in the “no change” interval in FIG. 36, the hydraulic pressure remains substantially constant in the hydraulic cylinder 1601.


While particular embodiments and applications of the present invention have been illustrated and described, it is to be understood that the invention is not limited to the precise construction and compositions disclosed herein and that various modifications, changes, and variations can be apparent from the foregoing descriptions without departing from the spirit and scope of the invention as defined in the appended claims.

Claims
  • 1. A hydraulic control system for controlling the down force on an agricultural implement, comprising a hydraulic cylinder containing a ram,a source of pressurized fluid coupled to said hydraulic cylinder on a first side of said ram by a first controllable valve,a fluid sump coupled to said hydraulic cylinder on said first side of said ram by a second controllable valve,an electrical controller coupled to said first and second controllable valves for opening and closing said first and second controllable valves,a pair of energy storage devices coupled to said hydraulic cylinder on opposite sides of said ram, anda check valve coupling said hydraulic cylinder to at least one of said pair of energy storage devices.
  • 2. The hydraulic control system of claim 1 which includes a second check valve coupling said hydraulic cylinder to said first and second controllable valves.
  • 3. A hydraulic control system for controlling the down force on an agricultural implement, comprising a hydraulic cylinder containing a ram,a source of pressurized fluid coupled to said hydraulic cylinder on a first side of said ram by a first controllable valve,a fluid sump coupled to said hydraulic cylinder on said first side of said ram by a second controllable valve, andan electrical controller coupled to said first and second controllable valves for opening and closing said first and second controllable valves,a pressure transducer coupled to said hydraulic cylinder on one side of said ram,a down pressure controller for controlling the down pressure on at least a portion of the implement, anda load sensor comprising a mechanical element mounted for movement in response to the downward force applied to the implement,a fluid-containing device containing a element coupled to said mechanical element for changing the fluid pressure in response to the movement of said mechanical element, anda transducer coupled to said fluid-containing device for producing an output signal in response to changes in said fluid pressure.
  • 4. The hydraulic control system of claim 3 which includes an energy storage device coupled to said fluid-containing device for receiving a limited amount of fluid in response to changes in said fluid pressure to damp pressure spikes in the output signal of said transducer.
  • 5. The hydraulic control system of claim 4 in which said energy storage device is an accumulator receiving pressurized fluid from said fluid-containing device, said accumulator containing a element responsive to the pressure of the fluid received from said fluid-containing device.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation and claims priority to U.S. patent application Ser. No. 14/858,171, filed Sep. 18, 2015, now allowed, which is a continuation-in-part of and claims priority to U.S. patent application Ser. No. 14/593,492, filed Jan. 9, 2015, now U.S. Pat. No. 9,681,601, U.S. Provisional Application No. 62/085,334, filed Nov. 28, 2014; and U.S. Provisional Application No. 62/076,767, filed Nov. 7, 2014, each of which is hereby incorporated by reference herein in its entirety.

US Referenced Citations (456)
Number Name Date Kind
114002 Godfrey Apr 1871 A
123966 Wing Feb 1872 A
321906 McCormick Jul 1885 A
353491 Wells Feb 1886 A
523508 Bauer Jul 1894 A
736369 Dynes Aug 1903 A
803088 Barker Oct 1905 A
1069264 Keller Aug 1913 A
1134462 Kendrick Apr 1915 A
1158023 Beaver Oct 1915 A
1247744 Trimble Nov 1917 A
1260752 Casaday Mar 1918 A
1321040 Hoffman Nov 1919 A
1391593 Sweeting Sep 1921 A
1398668 Bordsen Nov 1921 A
1481981 Boye Jan 1924 A
1791462 Bermel Feb 1931 A
1844255 Kaupke Feb 1932 A
1901299 Johnson Mar 1933 A
1901778 Schlag Mar 1933 A
1938132 Broemmelsick Dec 1933 A
2014334 Johnson Sep 1935 A
2058539 Welty Oct 1936 A
2249637 Rietz Jul 1941 A
2269051 Cahoy Jan 1942 A
2285932 Leavitt Jun 1942 A
2298539 Mott Oct 1942 A
2341143 Herr Feb 1944 A
2505276 Boroski Apr 1950 A
2561763 Waters Jul 1951 A
2593176 Patterson Apr 1952 A
2596527 Bushong May 1952 A
2611306 Strehlow Sep 1952 A
2612827 Baggette Oct 1952 A
2664040 Beard Dec 1953 A
2691353 Secondo Oct 1954 A
2692544 Jessup Oct 1954 A
2715286 Saveson Aug 1955 A
2754622 Rohnert Jul 1956 A
2771044 Putifer Nov 1956 A
2773343 Oppel Dec 1956 A
2777373 Pursche Jan 1957 A
2799234 Chancey Jul 1957 A
2805574 Jackson, Jr. Sep 1957 A
2925872 Darnell Feb 1960 A
2960358 Christison Nov 1960 A
3010744 Hollis Nov 1961 A
3014547 Van der Lely Dec 1961 A
3038424 Johnson Jun 1962 A
3042121 Broetzman Jul 1962 A
3057092 Curlett Oct 1962 A
3058243 McGee Oct 1962 A
3065879 Jennings Nov 1962 A
3080004 McNair Mar 1963 A
3103993 Gies Sep 1963 A
3110973 Reynolds Nov 1963 A
3122901 Thompson Mar 1964 A
3123152 Biskis Mar 1964 A
3188989 Johnston Jun 1965 A
3213514 Evans Oct 1965 A
3250109 Spyridakis May 1966 A
3256942 Van Sickle Jun 1966 A
3314278 Bergman Apr 1967 A
3319589 Moran May 1967 A
3351139 Schmitz Nov 1967 A
3355930 Fedorov Dec 1967 A
3368788 Padula Feb 1968 A
3368789 Martin Feb 1968 A
3370450 Scheucher Feb 1968 A
3397933 Hatcher Aug 1968 A
3420273 Greer Jan 1969 A
3433474 Piret Mar 1969 A
3447495 Miller Jun 1969 A
3500937 Erickson Mar 1970 A
3507233 Greig Apr 1970 A
3539020 Andersson Nov 1970 A
3543603 Gley Dec 1970 A
3561541 Woelfel Feb 1971 A
3576098 Brewer Apr 1971 A
3581685 Taylor Jun 1971 A
3593720 Botterill Jul 1971 A
D221461 Hagenstad Aug 1971 S
3606745 Girodat Sep 1971 A
3635495 Orendorff Jan 1972 A
3650334 Hagenstad Mar 1972 A
3653446 Kalmon Apr 1972 A
3701327 Krumholz Oct 1972 A
3708019 Ryan Jan 1973 A
3711974 Webb Jan 1973 A
3718191 Williams Feb 1973 A
3749035 Cayton Jul 1973 A
3753341 Berg, Jr. Aug 1973 A
3766988 Whitesides Oct 1973 A
3774446 Diehl Nov 1973 A
3795291 Naito Mar 1974 A
3906814 Magnussen Sep 1975 A
3939846 Drozhzhin Feb 1976 A
3945532 Marks Mar 1976 A
3975890 Rodger Aug 1976 A
3986464 Uppiano Oct 1976 A
4009668 Brass Mar 1977 A
4018101 Mihalic Apr 1977 A
4044697 Swanson Aug 1977 A
4055126 Brown Oct 1977 A
4058171 Van Der Lely Nov 1977 A
4063597 Day Dec 1977 A
4069029 Hudson Jan 1978 A
4096730 Martin Jun 1978 A
4099576 Jilani Jul 1978 A
4122715 Yokoyama Oct 1978 A
4129082 Betulius Dec 1978 A
4141200 Johnson Feb 1979 A
4141302 Morrison, Jr. Feb 1979 A
4141676 Jannen Feb 1979 A
4142589 Schlagenhauf Mar 1979 A
4147305 Hunt Apr 1979 A
4149475 Bailey Apr 1979 A
4157661 Schindel Jun 1979 A
4161090 Watts, Jr. Jul 1979 A
4173259 Heckenkamp Nov 1979 A
4182099 Davis Jan 1980 A
4187916 Harden Feb 1980 A
4191262 Sylvester Mar 1980 A
4194575 Whalen Mar 1980 A
4196567 Davis Apr 1980 A
4196917 Oakes Apr 1980 A
4206817 Bowerman Jun 1980 A
4208974 Dreyer Jun 1980 A
4213408 West Jul 1980 A
4225191 Knoski Sep 1980 A
4233803 Davis Nov 1980 A
4241674 Mellinger Dec 1980 A
4249613 Scribner Feb 1981 A
4280419 Fischer Jul 1981 A
4295532 Williams Oct 1981 A
4301870 Carre Nov 1981 A
4307674 Jennings Dec 1981 A
4311104 Steilen Jan 1982 A
4317355 Hatsuno Mar 1982 A
4359101 Gagnon Nov 1982 A
4375837 Van Der Lely Mar 1983 A
4377979 Peterson Mar 1983 A
4391335 Birkenbach Jul 1983 A
4398608 Boetto Aug 1983 A
4407371 Hohl Oct 1983 A
4407660 Nevens Oct 1983 A
4413685 Gremelspacher Nov 1983 A
4430952 Murray Feb 1984 A
4433568 Kondo Feb 1984 A
4438710 Paladino Mar 1984 A
4445445 Sterrett May 1984 A
4461355 Peterson Jul 1984 A
4481830 Smith Nov 1984 A
4499775 Lasoen Feb 1985 A
4506610 Neal Mar 1985 A
4508178 Cowell Apr 1985 A
4528920 Neumeyer Jul 1985 A
4530405 White Jul 1985 A
4537262 van der Lely Aug 1985 A
4538688 Szucs Sep 1985 A
4550122 David Oct 1985 A
4553607 Behn Nov 1985 A
4580506 Fleischer Apr 1986 A
4596200 Gafford Jun 1986 A
4598654 Robertson Jul 1986 A
4603746 Swales Aug 1986 A
4604906 Scarpa Aug 1986 A
4619329 Gorbett Oct 1986 A
4630773 Ortlip Dec 1986 A
4643043 Furuta Feb 1987 A
4646620 Buchl Mar 1987 A
4646850 Brown Mar 1987 A
4648466 Baker Mar 1987 A
4650005 Tebben Mar 1987 A
4669550 Sittre Jun 1987 A
4671193 States Jun 1987 A
4674578 Bexten Jun 1987 A
4682550 Joy Jul 1987 A
4703809 Van den Ende Nov 1987 A
4726304 Dreyer Feb 1988 A
RE32644 Brundage Apr 1988 E
4738461 Stephenson Apr 1988 A
4744316 Lienemann May 1988 A
4762075 Halford Aug 1988 A
4765190 Strubbe Aug 1988 A
4768387 Kemp Sep 1988 A
4776404 Rogers Oct 1988 A
4779684 Schultz Oct 1988 A
4785890 Martin Nov 1988 A
4825957 White May 1989 A
4825959 Wilhelm May 1989 A
4920901 Pounds May 1990 A
4926767 Thomas May 1990 A
4930431 Alexander Jun 1990 A
4986367 Kinzenbaw Jan 1991 A
4987841 Rawson Jan 1991 A
4998488 Hansson Mar 1991 A
5015997 Strubbe May 1991 A
5022333 McClure Jun 1991 A
5027525 Haukaas Jul 1991 A
5033397 Colburn, Jr. Jul 1991 A
5065632 Reuter Nov 1991 A
5074227 Schwitters Dec 1991 A
5076180 Schneider Dec 1991 A
5092255 Long Mar 1992 A
5113957 Tamai May 1992 A
5129282 Bassett Jul 1992 A
5136934 Darby, Jr. Aug 1992 A
5190112 Johnston Mar 1993 A
5224553 Heintzman Jul 1993 A
5234060 Carter Aug 1993 A
5240080 Bassett Aug 1993 A
5255617 Williams Oct 1993 A
5269237 Baker Dec 1993 A
5282389 Faivre Feb 1994 A
5285854 Thacker Feb 1994 A
5333694 Roggenbuck Aug 1994 A
5337832 Bassett Aug 1994 A
5341754 Winterton Aug 1994 A
5346019 Kinzenbaw Sep 1994 A
5346020 Bassett Sep 1994 A
5349911 Holst Sep 1994 A
5351635 Hulicsko Oct 1994 A
5379847 Snyder Jan 1995 A
5394946 Clifton Mar 1995 A
5398771 Hornung Mar 1995 A
5419402 Heintzman May 1995 A
5427192 Stephenson Jun 1995 A
5443023 Carroll Aug 1995 A
5443125 Clark Aug 1995 A
5461995 Winterton Oct 1995 A
5462124 Rawson Oct 1995 A
5473999 Rawson Dec 1995 A
5474135 Schlagel Dec 1995 A
5477682 Tobiasz Dec 1995 A
5477792 Bassett Dec 1995 A
5479868 Bassett Jan 1996 A
5479992 Bassett Jan 1996 A
5485796 Bassett Jan 1996 A
5485886 Bassett Jan 1996 A
5497717 Martin Mar 1996 A
5497837 Kehrney Mar 1996 A
5499042 Yanagawa Mar 1996 A
5499683 Bassett Mar 1996 A
5499685 Downing, Jr. Mar 1996 A
5517932 Ott May 1996 A
5524525 Nikkel Jun 1996 A
5531171 Whitesel Jul 1996 A
5542362 Bassett Aug 1996 A
5544709 Lowe Aug 1996 A
5562165 Janelle Oct 1996 A
5590611 Smith Jan 1997 A
5603269 Bassett Feb 1997 A
5623997 Rawson Apr 1997 A
5640914 Rawson Jun 1997 A
5657707 Dresher Aug 1997 A
5660126 Freed Aug 1997 A
5685245 Bassett Nov 1997 A
5704430 Smith Jan 1998 A
5709271 Bassett Jan 1998 A
5725057 Taylor Mar 1998 A
5727638 Wodrich Mar 1998 A
5730074 Peter Mar 1998 A
5809757 McLean Sep 1998 A
5852982 Peter Dec 1998 A
5868207 Langbakk Feb 1999 A
5878678 Stephens Mar 1999 A
RE36243 Rawson Jul 1999 E
5953895 Hobbs Sep 1999 A
5970891 Schlagel Oct 1999 A
5970892 Wendling Oct 1999 A
5988293 Brueggen Nov 1999 A
6067918 Kirby May 2000 A
6068061 Smith May 2000 A
6079340 Flamme Jun 2000 A
6082274 Peter Jul 2000 A
6085501 Walch Jul 2000 A
6091997 Flamme Jul 2000 A
6164385 Buchl Dec 2000 A
6176334 Lorenzen Jan 2001 B1
6223663 Wendling May 2001 B1
6223828 Paulson May 2001 B1
6237696 Mayerle May 2001 B1
6253692 Wendling Jul 2001 B1
6289829 Fish Sep 2001 B1
6295939 Emms Oct 2001 B1
6314897 Hagny Nov 2001 B1
6325156 Barry Dec 2001 B1
6330922 King Dec 2001 B1
6331142 Bischoff Dec 2001 B1
6343661 Thomspon Feb 2002 B1
6347594 Wendling Feb 2002 B1
6382326 Goins May 2002 B1
6389999 Duello May 2002 B1
6453832 Schaffert Sep 2002 B1
6454019 Prairie Sep 2002 B1
6460623 Knussman Oct 2002 B1
6516595 Rhody Feb 2003 B2
6530334 Hagny Mar 2003 B2
6575104 Brummelhuis Jun 2003 B2
6622468 Lucand Sep 2003 B2
6644224 Bassett Nov 2003 B1
6681868 Kovach Jan 2004 B2
6701856 Zoke Mar 2004 B1
6701857 Jensen Mar 2004 B1
6715433 Friestad Apr 2004 B1
6763773 Schaffert Jul 2004 B2
6786130 Steinlage Sep 2004 B2
6827029 Wendte Dec 2004 B1
6834598 Jüptner Dec 2004 B2
6840853 Foth Jan 2005 B2
6886650 Bremmer May 2005 B2
6889943 Dinh May 2005 B2
6892656 Schneider May 2005 B2
6907833 Thompson Jun 2005 B2
6912963 Bassett Jul 2005 B2
6968907 Raper Nov 2005 B1
6986313 Halford Jan 2006 B2
6997400 Hanna Feb 2006 B1
7004090 Swanson Feb 2006 B2
7044070 Kaster May 2006 B2
7063167 Staszak Jun 2006 B1
7159523 Bourgault Jan 2007 B2
7163227 Burns Jan 2007 B1
7222575 Bassett May 2007 B2
7290491 Summach Nov 2007 B2
7325756 Giorgis Feb 2008 B1
7360494 Martin Apr 2008 B2
7360495 Martin Apr 2008 B1
7438006 Mariman Oct 2008 B2
7451712 Bassett Nov 2008 B2
7497174 Sauder Mar 2009 B2
7523709 Kiest Apr 2009 B1
7540333 Bettin Jun 2009 B2
7575066 Bauer Aug 2009 B2
7584707 Sauder Sep 2009 B2
7665539 Bassett Feb 2010 B2
7673570 Bassett Mar 2010 B1
7743718 Bassett Jun 2010 B2
7870827 Bassett Jan 2011 B2
7918285 Graham Apr 2011 B1
7938074 Liu May 2011 B2
7944210 Fischer May 2011 B2
7946231 Martin May 2011 B2
7975629 Martin Jul 2011 B1
8146519 Bassett Apr 2012 B2
8151717 Bassett Apr 2012 B2
8171707 Kitchel May 2012 B2
D663326 Allensworth Jul 2012 S
8327780 Bassett Dec 2012 B2
8359988 Bassett Jan 2013 B2
8380356 Zielke Feb 2013 B1
8386137 Sauder Feb 2013 B2
8393407 Freed Mar 2013 B2
8408149 Rylander Apr 2013 B2
8544397 Bassett Oct 2013 B2
8544398 Bassett Oct 2013 B2
8550020 Sauder Oct 2013 B2
8573319 Casper Nov 2013 B1
8634992 Sauder Jan 2014 B2
8636077 Bassett Jan 2014 B2
8649930 Reeve Feb 2014 B2
8746661 Runkel Jun 2014 B2
8763713 Bassett Jul 2014 B2
8770308 Bassett Jul 2014 B2
8776702 Bassett Jul 2014 B2
RE45091 Bassett Aug 2014 E
8863857 Bassett Oct 2014 B2
8910581 Bassett Dec 2014 B2
8939095 Freed Jan 2015 B2
8985232 Bassett Mar 2015 B2
9003982 Elizalde Apr 2015 B1
9003983 Roth Apr 2015 B2
9055712 Bassett Jun 2015 B2
9107337 Bassett Aug 2015 B2
9107338 Bassett Aug 2015 B2
9113589 Bassett Aug 2015 B2
9144187 Bassett Sep 2015 B2
9148989 Van Buskirk Oct 2015 B2
9167740 Bassett Oct 2015 B2
9192088 Bruce Nov 2015 B2
9192089 Bassett Nov 2015 B2
9192091 Bassett Nov 2015 B2
9215838 Bassett Dec 2015 B2
9215839 Bassett Dec 2015 B2
9226440 Bassett Jan 2016 B2
9232687 Bassett Jan 2016 B2
9241438 Bassett Jan 2016 B2
9271437 Martin Mar 2016 B2
9307690 Bassett Apr 2016 B2
9504195 Bassett Nov 2016 B2
9615497 Bassett Apr 2017 B2
9668398 Bassett Jun 2017 B2
9681601 Bassett Jun 2017 B2
9723778 Bassett Aug 2017 B2
9788472 Bassett Oct 2017 B2
9848522 Bassett Dec 2017 B2
9861022 Bassett Jan 2018 B2
20020162492 Juptner Nov 2002 A1
20030141086 Kovach Jul 2003 A1
20040005929 Piasecki Jan 2004 A1
20050045080 Halford Mar 2005 A1
20050199842 Parsons Sep 2005 A1
20060102058 Swanson May 2006 A1
20060191695 Walker et al. Aug 2006 A1
20060213566 Johnson Sep 2006 A1
20060237203 Miskin Oct 2006 A1
20070044694 Martin Mar 2007 A1
20070272134 Baker Nov 2007 A1
20080093093 Sheppard Apr 2008 A1
20080173220 Wuertz Jul 2008 A1
20080236461 Sauder Oct 2008 A1
20080256916 Vaske Oct 2008 A1
20090260902 Holman Oct 2009 A1
20100019471 Ruckle Jan 2010 A1
20100108336 Thomson May 2010 A1
20100180695 Sauder Jul 2010 A1
20100198529 Sauder Aug 2010 A1
20100282480 Breker Nov 2010 A1
20110147148 Ripa Jun 2011 A1
20110247537 Freed Oct 2011 A1
20110313575 Kowalchuk Dec 2011 A1
20120167809 Bassett Jul 2012 A1
20120186216 Vaske Jul 2012 A1
20120216731 Schilling Aug 2012 A1
20120232691 Green Sep 2012 A1
20120255475 Mariman Oct 2012 A1
20130032363 Curry Feb 2013 A1
20130112121 Achen May 2013 A1
20130112124 Bergen May 2013 A1
20130213676 Bassett Aug 2013 A1
20130325267 Adams Dec 2013 A1
20130333599 Bassett Dec 2013 A1
20140000448 Franklin, III Jan 2014 A1
20140026748 Stoller Jan 2014 A1
20140034339 Sauder Feb 2014 A1
20140034343 Sauder Feb 2014 A1
20140034344 Bassett Feb 2014 A1
20140165527 Oehler Jun 2014 A1
20140190712 Bassett Jul 2014 A1
20140197249 Roth Jul 2014 A1
20140224513 Van Buskirk Aug 2014 A1
20140224843 Rollenhagen Aug 2014 A1
20140278696 Anderson Sep 2014 A1
20150216108 Roth Aug 2015 A1
20160100517 Bassett Apr 2016 A1
20160270285 Hennes Sep 2016 A1
20160309641 Taunton Oct 2016 A1
20170034985 Martin Feb 2017 A1
20170164548 Bassett Jun 2017 A1
20170181373 Bassett Jun 2017 A1
20170231145 Bassett Aug 2017 A1
20170300072 Bassett Oct 2017 A1
20170359940 Bassett Dec 2017 A1
20180000001 Bassett Jan 2018 A1
20180000002 Bassett Jan 2018 A1
Foreign Referenced Citations (24)
Number Date Country
551372 Oct 1956 BE
530673 Sep 1956 CA
335464 Sep 1921 DE
1108971 Jun 1961 DE
24 02 411 Jul 1975 DE
2 196 337 Jun 2010 EP
2 497 348 Sep 2012 EP
1 574 412 Sep 1980 GB
2 056 238 Oct 1982 GB
2 160 401 Dec 1985 GB
54-57726 May 1979 JP
392897 Aug 1973 SU
436778 Jul 1974 SU
611201 Jun 1978 SU
625648 Sep 1978 SU
1410884 Jul 1988 SU
1466674 Mar 1989 SU
WO 2009145381 Dec 2009 WO
WO 2011161140 Dec 2011 WO
WO 2012149367 Jan 2012 WO
WO 2012149415 Jan 2012 WO
WO 2012167244 Dec 2012 WO
WO 2013025898 Feb 2013 WO
WO 2016073964 May 2016 WO
Non-Patent Literature Citations (26)
Entry
Case Corporation Brochure, Planters 900 Series Units/Modules Product Information, Aug. 1986 (4 pages).
Buffalo Farm Equipment All Flex Cultivator Operator Manual, Apr. 1990 (7 pages).
Shivvers, Moisture Trac 3000 Brochure, Aug. 21, 1990 (5 pages).
The New Farm, “New Efficiencies in Nitrogen Application,” Feb. 1991, p. 6 (1 page).
Hiniker Company, Flow & Acreage Continuous Tracking System Monitor Demonstration Manuel, date estimated as early as Feb. 1991 (7 pages).
Russnogle, John, “Sky Spy: Gulf War Technology Pinpoints Field and Yields,” Top Producer, A Farm Journal Publication, Nov. 1991, pp. 12-14 (4 pages).
Borgelt, Steven C., “Sensor Technologies and Control Strategies for Managing Variability,” University of Missouri, Apr. 14-16, 1992 (15 pages).
Buffalo Farm Equipment Catalog on Models 4600, 4630, 4640, and 4620, date estimated as early as Feb. 1992 (4 pages).
Hiniker 5000 Cultivator Brochure, date estimated as early as Feb. 1992 (4 pages).
Hiniker Series 5000 Row Cultivator Rigid and Folding Toolbar Operator's Manual, date estimated as early as Feb. 1992 (5 pages).
Orthman Manufacturing, Inc., Rowcrop Cultivator Booklet, date estimated as early as Feb. 1992 (4 pages).
Yetter Catalog, date estimated as early as Feb. 1992 (4 pages).
Exner, Rick, “Sustainable Agriculture: Practical Farmers of Iowa Reducing Weed Pressure in Ridge-Till,” Iowa State University University Extension, http://www.extension.iastate.edu/Publications/SA2.pdf, Jul. 1992, Reviewed Jul. 2009, retrieved Nov. 2, 2012 (4 pages).
Finck, Charlene, “Listen to Your Soil,” Farm Journal Article, Jan. 1993, pp. 14-15 (2 pages).
Acu-Grain, “Combine Yield Monitor 99% Accurate? ‘You Bet Your Bushels!!’” date estimated as early as Feb. 1993 (2 pages).
John Deere, New 4435 Hydro Row-Crop and Small-Grain Combine, date estimated as early as Feb. 1993 (8 pages).
Vansichen, R. et al., “Continuous Wheat Yield Measurement on a Combine,” date estimated as early as Feb. 1993 (5 pages).
Yetter 2010 Product Catalog, date estimated as early as Jan. 2010 (2 pages).
Yetter Cut and Move Manual, Sep. 2010 (28 pages).
Yetter Screw Adjust Residue Manager Operator's Manual, labeled “2565-729_REV_D” and dated Sep. 2010 on p. 36, retrieved Mar. 10, 2014 from the internet, available online Jul. 13, 2011, at https://web.archive.org/web/20110713162510/http://www.yetterco.com/help/manuals/Screw_Adjust_Residue_Manager2.pdf.
John Deere, Seat Catalog, date estimated as early Sep. 2011 (19 pages).
Martin Industries, LLC Paired 13″ Spading Closing Wheels Brochure, date estimated as early as Jun. 6, 2012, pp. 18-25 (8 pages).
Vogt, Willie, “Revisiting Robotics,” http://m.farmindustrynews.com/farm-equipment/revisiting-robotics, Dec. 19, 2013 (3 pages).
John Deere, New Semi-Active Sea Suspension, http://www.deere.com/en_US/parts/agparts/semiactiveseat.html, date estimated as early as Jan. 2014, retrieved Feb. 6, 2014 (2 pages).
International Search Report for PCT Application No. PCT/US2015/059633 dated Mar. 2, 2016 (4 pages).
Written Opinion for PCT Application No. PCT/US2015/059633 dated Mar. 2, 2016 (5 pages).
Related Publications (1)
Number Date Country
20170318741 A1 Nov 2017 US
Provisional Applications (2)
Number Date Country
62085334 Nov 2014 US
62076767 Nov 2014 US
Continuations (1)
Number Date Country
Parent 14858171 Sep 2015 US
Child 15659290 US
Continuation in Parts (1)
Number Date Country
Parent 14593492 Jan 2015 US
Child 14858171 US