The present invention relates to an air conditioner using a heat exchanger having heat transfer tubes with grooves inside the tubes.
A heat-pump type air conditioner using a fin tube type heat exchanger constituted by fins arranged at certain intervals, between which a gas (air) flows, and heat transfer tubes which have spiral grooves on their inner faces, perpendicularly pierce each of the fins and a refrigerant flows inside, is known.
The air conditioner is generally provided with an evaporator for evaporating the refrigerant and cooling air, water and the like by evaporation heat at that time; a compressor for compressing the refrigerant discharged from the evaporator, raising its temperature and supplying it to a condenser; the condenser for heating the air, and water and the like by heat of the refrigerant; an expansion valve for expanding the refrigerant discharged from the condenser, lowering its temperature and supplying it to the evaporator, and a four-way valve for switching between a heating operation and a cooling operation by switching a direction in which the refrigerant in a refrigerating cycle flows. In addition, the heat transfer tube is incorporated in the condenser and the evaporator so that the refrigerant containing refrigerating machine oil flows inside thereof (See Patent Document 1, for example).
[Patent Document 1] Japanese Patent Laid-Open No. H6-147532 (FIGS. 1 and 13)
In the above-mentioned air conditioner, the number of paths in an outdoor heat exchanger is set to be larger than the number of paths in an indoor heat exchanger so that a pressure loss inside the tubes of the outdoor heat exchanger in a heating operation is reduced. However, in such an air conditioner as above in which heat transfer tubes with a lead angle of spiral grooves larger than that of the heat transfer tubes of the indoor heat exchanger are used for the outdoor heat exchanger, there is a disadvantage that the pressure loss inside the tubes in the outdoor heat exchanger is increased according to increase of a heat transfer rate inside the tubes of the outdoor heat exchanger, and a coefficient of performance (COP) is lowered. And recently, improvement in heating performance largely contributing to an annual performance factor (APF) is in demand.
The present invention was made in view of the above problems and an object thereof is to provide an air conditioner that can increase heat exchange capacity of an indoor heat exchanger without increasing a pressure loss inside tubes of an outdoor-heat exchanger.
An air conditioner according to the present invention comprises an indoor machine equipped with an indoor heat exchanger constituted by a plurality of heat transfer tubes which have spiral grooves formed with a predetermined lead angle on the faces inside the tubes and which pierce a plurality of fins, and an outdoor machine equipped with an outdoor heat exchanger constituted by a plurality of heat transfer tubes which have spiral grooves formed with a lead angle smaller than that of the heat transfer tubes used for said indoor heat exchanger and which pierce a plurality of fins.
According to the air conditioner of the present invention, since the lead angle of the spiral grooves on the inner faces of the heat transfer tubes of the outdoor heat exchanger is set to be smaller than the lead angle of the spiral grooves on the inner faces of the heat transfer tubes of the indoor heat exchanger, a flow that would surmount the spiral grooves of the heat transfer tubes of the outdoor heat exchanger is hardly generated. Therefore a pressure loss inside the tubes is not increased, and the heat exchange rate can be improved. As a result, since the lead angle of the spiral grooves on the inner faces of the heat transfer tubes of the indoor heat exchanger is increased so that a liquid film generated between the spiral grooves of the heat transfer tubes of the indoor heat exchanger becomes thin, the heat exchange rate can be improved and an air conditioner with high efficiency can be obtained.
The present invention will be described below referring to an illustrated embodiment.
In the air conditioner of this embodiment, as shown in
In order to reduce a pressure loss of the heat exchanger, a better effect can be expected from an effect achieved by adjusting the lead angles Ra, Rb of the spiral grooves 13A, 23A of tube inner faces than an effect achieved by increasing the number of paths. Then, the air conditioner is constituted by an indoor machine equipped with the indoor heat exchanger 10 using the heat transfer tube 12A having the spiral grooves 13A with the lead angle Ra of 35 to 45 degrees on the tube inner face, and an outdoor machine equipped with the outdoor heat exchanger 20 using the heat transfer tube 22A with the spiral grooves 23A with the lead angle Rb smaller (25 to 35 degrees) than that of the heat transfer tube 12A is mounted.
In the air conditioner of this embodiment, the lead angle Rb of the spiral groove 23A of the heat transfer tube 22A of the outdoor heat exchanger 20 is set to be in a range of 25 to 35 degrees because if a lower limit of the lead angle Rb of the spiral grooves 23A is set at 25 degrees or below, a drop of the heat exchange rate becomes marked and if an upper limit of the lead angle Rb of the spiral grooves 23A is set at 35 degrees or above, the pressure loss inside the tubes is increased. As a result, a flow that would surmount the spiral grooves 23A is hardly generated, the heat exchange rate can be improved without an increase in the pressure loss inside the tubes, and an air conditioner with high efficiency can be obtained.
On the other hand, the lower limit of the lead angle of the spiral groove 13A of the heat transfer tube 12A in the indoor heat exchanger 10 is set at 35 degrees in order to further improve the heat transfer performance inside the tubes, while the upper limit of the lead angle Ra of the spiral groove 13A is set at 45 degrees because if it is set to more than that, the increase in the pressure loss inside the tubes would become marked. As a result, the heat transfer performance inside the tubes of the indoor heat exchanger 10 can be further improved, and a heat exchanger with high efficiency can be obtained.
As mentioned above, in the air conditioner of this embodiment, since the lead angle Ra of the spiral grooves 13A on the inner face of the heat transfer tube 12A in the indoor heat exchanger 10 is increased so that the liquid film generated between the spiral grooves 13A is made thin, the heat exchange rate can be improved, and an air conditioner with high efficiency can be obtained.
And the heat exchanger of this embodiment is used as the evaporator or the condenser in a refrigerating cycle in which a compressor, a condenser, a throttling device, and an evaporator are connected in series by piping, and a refrigerant is used as a working fluid, so as to contribute to improvement in the coefficient of performance (COP). Also, as the refrigerant, any of an HC single refrigerant or a mixed refrigerant containing HC, R32, R410A, R407C, and carbon dioxide may be used, and the efficiency of heat exchange between these refrigerants and air is improved.
In the air conditioner of this embodiment, too, heat transfer tubes 12B, 22B are made of a metal material such as copper or copper alloy, aluminum or aluminum alloy or the like with favorable heat transfer property as in the above-mentioned embodiment 1 and used as heat transfer tubes for a condenser or a evaporator of a heat exchanger using a refrigerant containing refrigerating machine oil.
When this is explained in further detail, on the inner faces of the heat transfer tube 12B of the indoor heat exchanger and the heat transfer tube 22B of the outdoor heat exchanger, spiral grooves 13B, 23B are formed, respectively, and a depth Hb of the spiral grooves 23B of the heat transfer tube 22B in the outdoor heat exchanger (
In the air conditioner of this embodiment, the depth Hb of the spiral grooves 23B of the outdoor heat exchanger is preferably 0.1 to 0.25 mm. Thereby, the pressure loss inside the tubes is not increased and the heat transfer performance can be further improved. However, if the groove depth is set at 0.25 mm or more, the pressure loss inside the tubes is increased.
On the other hand, the depth Ha of the spiral grooves 23B of the heat transfer tube 12B in the indoor heat exchanger is preferably 0.08 to 0.2 mm. Thereby, the pressure loss inside the tubes can be reduced.
As mentioned above, by setting the depth Hb of the spiral grooves 23B of the outdoor heat exchanger larger than the depth Ha of the spiral grooves 23B of the heat transfer tube 12B in the indoor heat exchanger, the heat transfer property inside the tubes of the outdoor heat exchanger can be further improved, and an air conditioner with high efficiency can be obtained.
Incidentally, the constitution of the spiral grooves 13B, 23B of this embodiment can be applied to the above-mentioned embodiment 1 as they are. In that case, since a synergetic effect of the effect realized by the lead angle adjustment of the spiral grooves in the above-mentioned embodiment 1 and the effect realized by the depth adjustment of the spiral grooves of this embodiment can be obtained, degree of design freedom is expanded.
In the air conditioner of this embodiment, too, the heat transfer tubes 12C, 22C are made of a metal material such as copper or copper alloy, aluminum or aluminum alloy or the like with favorable heat transfer property similarly to the above-mentioned embodiment 1 and is used as a heat transfer tubes for a condenser or an evaporator of a heat exchanger using a refrigerant containing refrigerating machine oil.
When this is explained in further detail, on the inner faces of the heat transfer tube 12C of the indoor heat exchanger and the heat transfer tube 22C of the outdoor heat exchanger, spiral grooves 13C, 23C are formed, respectively, and it is set so that the number of threads of the spiral grooves 23C in the heat transfer tube 22C of the outdoor heat exchanger is larger than the number of threads of the spiral grooves 13C in the heat transfer tube 12C of the indoor heat exchanger.
In the air conditioner of this embodiment, the number of threads of the spiral grooves 23C in the heat transfer tube 22C of the outdoor heat exchanger is preferably 60 to 80. Thereby, the pressure loss inside the tubes is not increased and the heat transfer performance can be improved. However, if the number of threads is 80 or more, the pressure loss inside the tubes is increased.
On the other hand, the number of threads of the spiral grooves 13C in the heat transfer tube 12C of the indoor heat exchanger is preferably 40 to 60. Thereby, the pressure loss inside the tubes can be reduced.
As mentioned above, by setting the number of threads of the spiral grooves 23C in the heat transfer Lube 22C of the outdoor heat exchanger larger than the number of threads of the spiral grooves 13C in the heat transfer tube 12C of the indoor heat exchanger, the heat transfer performance inside the tubes of the outdoor heat exchanger can be further improved, and an air conditioner with high efficiency can be obtained.
The constitution of the spiral grooves 13C, 23C of this embodiment can be applied to the above-mentioned embodiments 1 and 2 as they are. In that case, since a triple effect of the effect realized by the lead angle adjustment of the spiral grooves in the above-mentioned embodiment 1, the effect realized by the depth adjustment of the spiral grooves of the embodiment 2, and the effect realized by the thread number adjustment of the spiral grooves of this embodiment can be obtained, degree of design freedom is further expanded.
In the air conditioner of this embodiment, the heat exchanger is manufactured by the procedure as shown in
As mentioned above, in the air conditioner of this embodiment, only by expanding the hairpin tube as a constituent member of the heat exchanger using the mechanical tube expansion method or hydraulic pressure tube expansion method, a large number of fins 11 and the hairpin tubes (heat transfer tubes 12D) are joined together, which facilitates manufacture of the heat exchanger.
In the above-mentioned embodiment 4, the fin 11 and the hairpin tube (heat transfer tube 12D) are joined only by tube expansion of the hairpin tube, but if a tube expansion rate is not specified, there will be fluctuation in products. Therefore, in this embodiment 5, the tube expansion rate of the heat transfer tube in the indoor heat exchanger is specified.
That is, in this embodiment, the tube expansion rate at the time when the hairpin tube is expanded by the mechanical tube expansion method or hydraulic pressure tube expansion method is set at 105.5 to 106.5% for the heat transfer tube of the indoor heat exchanger. Thereby, a property of close contact between the heat transfer tube and the fins of the indoor heat exchanger is improved, and an air conditioner with high efficiency can be obtained. However, if the tube expansion rate of the heat transfer tube in the indoor heat exchanger exceeds 106.5%, since the number of threads of the spiral grooves of the heat transfer tube in the indoor heat exchanger is smaller than the number of threads of the spiral grooves of the heat transfer tube in the outdoor heat exchanger as mentioned above, a crush might be caused at top portions of the spiral grooves, so that the property of close contact between the heat transfer tube and the fins is deteriorated.
In the above-mentioned embodiment 4, the fins 11 and the hairpin tube (heat transfer tube 12D) are joined only by tube expansion of the hairpin tube, but if a tube expansion rate is not specified, there will be fluctuation in products. Therefore, in this embodiment 6, the tube expansion rate of the heat transfer tube in the outdoor heat exchanger is specified.
That is, in this embodiment, the tube expansion rate at the time when the hairpin tube is expanded by the mechanical tube expansion method or hydraulic pressure tube expansion method is set at 106 to 107.5% for the heat transfer tube of the outdoor heat exchanger. Thereby, the property of close contact between the heat transfer tube and the fins of the outdoor heat exchanger is improved, and an air conditioner with high efficiency can be obtained. At this time, since the number of threads of the spiral grooves of the heat transfer tube in the outdoor heat exchanger is larger than the number of threads of the spiral grooves of the heat transfer tube in the indoor heat exchanger as mentioned above and thus, a crush does not occur at the top portions of the spiral grooves. Also, with an increase in the tube expansion rate in the heat transfer tube of the outdoor heat exchanger, an inner diameter of the heat transfer tube is increased, and the pressure loss inside the tubes is reduced.
In the above-mentioned embodiments 4 to 6, the fins 11 and the hairpin tube (heat transfer tube 12D) are joined only by tube expansion of the heat transfer tube, but the heat transfer tube 12D and the fins 11 may be completely joined further by brazing after the joining of the fins 11 and the hairpin tube (heat transfer tube 12D) by tube expansion, by which reliability can be further improved.
Examples of the present invention will be described below in comparison with comparative examples outside of the scope of the present invention. First, heat exchangers in the examples 1 and 2 respectively having a lead angle of the spiral grooves of the heat transfer tube in the indoor heat exchanger (hereinafter referred to as an “indoor lead angle”) of 45 degrees and a lead angle of the spiral grooves of the heat transfer tube in the outdoor heat exchanger (hereinafter referred to as an “outdoor lead angle”) of 35 degrees, and the indoor lead angle of 35 degrees and the outdoor lead angle of 25 degrees are manufactured. Also, as comparative examples, the heat exchangers in comparative examples 1 to 3 respectively having the indoor lead angle of 45 degrees and the outdoor lead angle of 45 degrees, the indoor lead angle of 35 degrees and the outdoor lead angles of 35 degrees, and the indoor lead angle of 25 degrees and the outdoor lead angle of 25 degrees are manufactured. The coefficients of performance (COP=heat exchanger capacity/compressor input) of heating performance and cooling performance in a refrigerating cycle using the heat exchangers in the examples 1 and 2 and the comparative examples 1 to 3 are shown in Table 1 below:
As obvious from Table 1, the heat exchangers in the example 1 and the example 2 both have higher coefficients of performance (COP) than those of the comparative examples 1 to 3, and the heat transfer performance inside the tubes is improved.
Subsequently, heat exchangers of an example 3 and an example 4 respectively having a depth of the spiral grooves in the heat transfer tube of the indoor heat exchanger (hereinafter referred to as an “indoor groove depth) of 0.08 mm and a depth of the spiral grooves in the heat transfer tube of the outdoor heat exchanger (hereinafter referred to as an “outdoor groove depth”) of 0.1 mm, and the indoor groove depth of 0.2 mm and the outdoor groove depth of 0.25 mm are manufactured. Also, as comparative examples, the heat exchangers in comparative examples 4 to 6 respectively having the indoor groove depth of 0.08 mm and the outdoor groove depth of 0.08 mm, the indoor groove depth of 0.2 mm and the outdoor groove depth of 0.2 mm, and the indoor groove depth of 0.25 mm and the outdoor groove depth of 0.25 mm are manufactured. The coefficients of performance (COP=heat exchanger capacity/compressor input) of heating performance and cooling performance in a refrigerating cycle using the heat exchangers in the examples 3 and 4 and the comparative examples 4 to 6 are shown in Table 2 below:
As obvious from Table 2, the heat exchangers in the example 3 and the example 4 both have higher coefficients of performance (COP) than those of the comparative examples 4 to 6, and the heat transfer performance inside the tubes is improved.
Subsequently, the heat exchangers in an example 5 and an example 6 respectively having the number of threads of the spiral grooves in the heat transfer tube in the indoor heat exchanger (hereinafter referred to as the “number of indoor groove threads”) of 40 and the number of threads of the spiral grooves in the heat transfer tube in the outdoor heat exchanger (hereinafter referred to as the “number of outdoor groove threads”) of 60, and the number of indoor groove threads of 60 and the number of outdoor groove threads of 80 are manufactured. Also, as comparative examples, the heat exchangers in comparative examples 7 to 9 respectively having the number of indoor groove threads of 40 and the number of outdoor groove threads of 40, the number of indoor groove threads of 60 and the number of outdoor groove threads of 60, and the number of indoor groove threads of 80 and the number of outdoor groove threads of 80 are manufactured. The coefficients of performance (COP=heat exchanger capacity/compressor input) of heating performance and cooling performance in a refrigerating cycle using the heat exchangers in the examples 5 and 6 and the comparative examples 7 to 9 are shown in Table 3 below:
As obvious from Table 3, the heat exchangers in the example 5 and the example 6 both have higher coefficients of performance (COP) than those of the comparative examples 7 to 9, and the heat transfer performance inside the tubes is improved.
Number | Date | Country | Kind |
---|---|---|---|
2007-307483 | Nov 2007 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4480684 | Onishi et al. | Nov 1984 | A |
5597039 | Rieger | Jan 1997 | A |
5791405 | Takiura et al. | Aug 1998 | A |
5803165 | Shikazono | Sep 1998 | A |
6001216 | Lee | Dec 1999 | A |
6082132 | Numoto et al. | Jul 2000 | A |
6173763 | Sano et al. | Jan 2001 | B1 |
6298909 | Fukatami et al. | Oct 2001 | B1 |
6336501 | Ishikawa et al. | Jan 2002 | B1 |
6672100 | Taira | Jan 2004 | B1 |
7048043 | Leterrible | May 2006 | B2 |
20020178745 | Kampf | Dec 2002 | A1 |
20030019614 | Iwamoto et al. | Jan 2003 | A1 |
20060234082 | Minami et al. | Oct 2006 | A1 |
20070089868 | Houfuku | Apr 2007 | A1 |
20070131396 | Yu et al. | Jun 2007 | A1 |
20070199684 | Sasaki et al. | Aug 2007 | A1 |
Number | Date | Country |
---|---|---|
0148609 | Jul 1985 | EP |
06-147532 | May 1994 | JP |
07-012483 | Jan 1995 | JP |
08-14786 | Jan 1996 | JP |
10-206062 | Jul 1998 | JP |
1126430 | Jan 1999 | JP |
11264630 | Sep 1999 | JP |
2001-33185 | Feb 2001 | JP |
3309778 | Jul 2002 | JP |
3430909 | Jul 2003 | JP |
2004-279025 | Oct 2004 | JP |
Entry |
---|
Altman et al., Modern Refrigeration and Air Conditioning, The Goodheart-Wilcox Company, Inc., 18th Edition, p. 336, Figure 9.1. |
Chinese Office Action (Reason for Refusal) dated Jun. 9, 2014, issued by the Chinese Patent Office in corresponding Chinese Patent Application No. 200880113654.8, and English language translation of Office Action. (17 pages). |
Office Action (Notification of Reason(s) for Refusal) dated Aug. 3, 2010, issued in Japanese Patent Application No. 2007-307483, and an English Translation thereof. (3 pages). |
Office Action (First Office Action) dated May 10, 2012, issued in Chinese Patent Application No. 200880113654.8, and an English Translation thereof. (4 pages). |
Office Action (Second Office Action) dated Dec. 14, 2012, issued in Chinese Patent Application No. 200880113654.8, and an English Translation thereof. (14 pages). |
Office Action issued by the U.S. Appl. No. 12/680,602, mailed Nov. 26, 2012, U.S. Patent and Trademark Office, Alexandria, VA. (19 pages). |
Office Action (Notification of the Fourth Office Action) issued on Jan. 14, 2014, by the Chinese Patent Office in corresponding Chinese Patent Application No. 200880113654.8, and an English Translation of the Office Action. (11 Pages). |
Extended European Search Report dated Dec. 6, 2013, issued by European Patent Office in corresponding European Patent Application No. 08853797.2 (6 pgs). |
Office Action dated Jun. 20, 2013, issued by the Chinese Patent Office in the corresponding Chinese Patent Application No. 200880113654.8 and an English translation thereof. (8 pages). |
Office Action issued on Apr. 5, 2016, by the U.S. Patent and Trademark Office in co-pending U.S. Appl. No. 13/839,869. |
Office Action issued on Sep. 20, 2016, by the U.S. Patent and Trademark Office in co-pending U.S. Appl. No. 13/839,869. |
Office Action issued on Nov. 17, 2015, by the U.S. Patent and Trademark Office in co-pending U.S. Appl. No. 13/839,981. |
Office Action issued on May 20, 2016, by the U.S. Patent and Trademark Office in co-pending U.S. Appl. No. 13/839,981. |
Office Action issued on Oct. 18, 2016, by the U.S. Patent and Trademark Office in co-pending U.S. Appl. No. 13/839,981. |
Office Action issued on Oct. 21, 2016, by the U.S. Patent and Trademark Office in co-pending U.S. Appl. No. 13/840,083. |
Office Action issued on Sep. 15, 2016, by the U.S. Patent and Trademark Office in co-pending U.S. Appl. No. 13/840,083. |
Office Action dated Apr. 23, 2013, by the U.S. Patent and Trademark Office in co-pending U.S. Appl. No. 12/680,602. |
Office Action dated Feb. 25, 2014, by the U.S. Patent and Trademark Office in co-pending U.S. Appl. No. 12/680,602. |
Office Action dated Jun. 18, 2014, by the U.S. Patent and Trademark Office in co-pending U.S. Appl. No. 12/680,602. |
Office Action dated Mar. 26, 2015, by the U.S. Patent and Trademark Office in co-pending U.S. Appl. No. 13/839,869. |
Office Action dated Aug. 27, 2015, by the U.S. Patent and Trademark Office in co-pending U.S. Appl. No. 13/839,869. |
First Office Action dated May 19, 2017 in corresponding Chinese Patent Application No. 201510407897.4, and an English translation thereof (13 pages). |
Number | Date | Country | |
---|---|---|---|
20130199766 A1 | Aug 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12680602 | US | |
Child | 13840271 | US |