Air conditioner

Abstract
In an air conditioner having a refrigerant circuit in which a compressor, a four-way switching valve, an outdoor-side heat exchanger, an expansion valve, and an indoor-side heat exchanger are connected in succession via pipes, the interior of an enclosed vessel of a compressor, which contains a refrigerant compressing section and an electric motor, is divided airtightly into a refrigerant discharge chamber and an electric motor chamber, two refrigerant flow path pipes are provided on the electric motor chamber side, and these refrigerant flow path pipes are appropriately switched to the refrigerant discharge side and the refrigerant suction side of the compressor via the four-way switching valve, whereby one compressor can be used as an internal high pressure type or an internal low pressure type.
Description




TECHNICAL FIELD




The present invention relates to an air conditioner and, more particularly, to a compressor used for reversible refrigerant circuit (reversible refrigeration cycle) capable of performing the switching between cooling operation and heating operation.




BACKGROUND ART




An air conditioner has a refrigerant circuit in which an outdoor-side heat exchanger, an expansion valve, and an indoor-side heat exchanger are connected with a compressor in a loop form by refrigerant pipes via a four-way switching valve. In the air conditioner, by switching the flow direction of a refrigerant by means of the four-way switching valve, either of cooling operation and heating operation is set.




A compressor used for this refrigerant circuit is broadly classified into an internal high pressure type and an internal low pressure type.

FIG. 20

shows a refrigerant circuit using an internal high pressure type compressor


1


A, and

FIG. 21

shows a refrigerant circuit using an internal low pressure type compressor


1


B.




The basic configurations of the compressors


1


A and


1


B are the same. The compressor of either type has a cylindrical enclosed vessel


2


, and the enclosed vessel


2


contains a refrigerant compressing section


3


and an electric motor


4


. Although not shown in detail, the refrigerant compressing section


3


, being of a scroll type, has a compression chamber formed by engaging a fixed scroll having a spiral wrap on an end plate with an orbiting scroll driven by the electric motor


4


.




The interior of the enclosed vessel


2


is divided into two chambers by the end plate on the side of the fixed scroll in the refrigerant compressing section


3


. One of these two chambers is a refrigerant discharge chamber


5


provided on the side of a discharge port


3




a


of the refrigerant compressing section


3


. The other is an electric motor chamber


6


in which the electric motor


4


is contained. Also, the electric motor chamber


6


is provided with a bearer plate


7


which pivotally supports a driving shaft


4




a


of the electric motor


4


. A subsidiary electric motor chamber


6




a


is formed on the side opposite to the refrigerant discharge chamber


5


of the electric motor chamber


6


by the bearer plate


7


. The bearer plate


7


is formed with an arbitrary number of refrigerant flowing holes


7




a.






Either of the compressors


1


A and


1


B is connected, via a four-way switching valve


8


, with a heat exchanging circuit in which an outdoor-side heat exchanger


9


, an expansion valve (or a capillary tube)


10


, and an indoor-side heat exchanger


11


are connected in a loop form by refrigerant pipes.




The configurations of the internal high pressure type compressor


1


A and the internal low pressure type compressor


1


B differ in the following respects: That is, in the internal high pressure type compressor


1


A shown in

FIG. 20

, the refrigerant discharge chamber


5


communicates with the electric motor chamber


6


via a communicating path


12


, and a suction pipe


13


for low-pressure refrigerant drawn from the four-way switching valve


8


is directly connected to a suction port


3




b


of the refrigerant compressing section


3


.




Contrarily, in the internal low pressure type compressor


1


B shown in

FIG. 21

, the refrigerant discharge chamber


5


and the electric motor chamber


6


are independent of each other. The suction port


3




b


of the refrigerant compressing section


3


is opened on the side of the electric motor chamber


6


, and the suction pipe


13


drawn from the four-way switching valve


8


is connected to the electric motor chamber


6


.




The following is a description of the operations of the compressors


1


A and


1


B.

FIG. 20

shows a state at the time of cooling operation using the internal high pressure type compressor


1


A. A low-pressure refrigerant from the indoor-side heat exchanger


11


is sucked into the refrigerant compressing section


3


through the suction. pipe


13


. After being compressed, the refrigerant is discharged into the refrigerant discharge chamber


5


as a high-temperature high-pressure refrigerant gas. This high-temperature high-pressure refrigerant gas is supplied to the outdoor-side heat exchanger


9


through a discharge pipe


14


for high-pressure refrigerant and the four-way switching valve


8


. Also, some of the high-temperature high-pressure refrigerant gas flows into the electric motor chamber


6


through the communication path


12


. Thereby, the compressor


1


A is classified as the internal high pressure type.




For the internal high pressure type, the discharge pipe


14


for high-pressure refrigerant is connected to the side of the subsidiary electric motor chamber


6




a


, not to the refrigerant discharge chamber


5


, as indicated by the chain line in

FIG. 20

so that a high-pressure refrigerant is introduced from the subsidiary electric motor chamber


6




a


to the four-way switching valve


8


.




At the time of heating operation, the four-way switching valve


8


is turned 90 degrees from the state shown in

FIG. 20

, so that the discharge pipe


14


for high-pressure refrigerant is connected to the indoor-side heat exchanger


11


, and the suction pipe


13


for low-pressure refrigerant is connected to the outdoor-side heat exchanger


9


.





FIG. 21

shows a state at the time of heating operation using the internal low pressure type compressor


1


B. The low-pressure refrigerant from the outdoor-side heat exchanger


9


flows into the electric motor chamber


6


through the suction pipe


13


, so that the interior thereof becomes low in pressure. The low-pressure refrigerant is sucked into the refrigerant compressing section


3


through the suction port


3




b


. After being compressed, the refrigerant is discharged into the refrigerant discharge chamber


5


as a high-temperature high-pressure refrigerant gas, and is supplied to the indoor-side heat exchanger


11


through the discharge pipe


14


and the four-way switching valve


8


. At the time of cooling operation, the four-way switching valve


8


is turned 90 degrees from the state shown in

FIG. 21

, so that the discharge pipe


14


for high-pressure refrigerant is connected to the outdoor-side heat exchanger


9


, and the suction pipe


13


for low-pressure refrigerant is connected to the indoor-side heat exchanger


11


.




In either of the internal high pressure type and the internal low pressure type, an object of introducing the refrigerant into the electric motor chamber is to prevent overheat of the electric motor, and these two types have advantages and disadvantages as described below.




In case of the internal high pressure type, since a lubricating oil can be separated from the refrigerant gas in the electric motor chamber, the lubricating oil is positively supplied into the compressor, by which good sealing can be provided between rubbing portions of the fixed scroll and the orbiting scroll in the refrigerant compressing section. Also, by making the interior of the electric motor chamber high in pressure, a thrust force applied to the orbiting scroll can be controlled easily, and the load on the electric motor can be decreased. Accordingly, the power consumption can be lowered.




Also, in case of the internal high pressure type, since the temperature of the enclosed vessel is higher than the ambient temperature at the time of cooling operation, the heat dissipation amount is increased, so that the cooling capacity can be increased. However, the internal high pressure type is disadvantageous in terms of heating capacity because the amount of heat dissipating from the enclosed vessel is large.




On the other hand, in case of the internal low pressure type, since the temperature of the enclosed vessel is approximately equal to the ambient temperature at the time of heating operation, the amount of heat dissipating from the enclosed vessel is small, so that the heating capacity is high. In particular, comparing with the internal high pressure type in which the high-pressure refrigerant is discharged from the subsidiary electric motor chamber through the electric motor chamber, the internal low pressure type has a high rising property at the start time of heating operation.




Specifically, the refrigerant, which has been accumulated in the compressing section at the time of stoppage, is compressed simultaneously with the start, and the high-temperature high-pressure refrigerant gas is directly supplied to the indoor-side heat exchanger, not being caused to pass through the electric motor chamber, unlike the internal high pressure type. Therefore, a sufficient refrigerant circulating amount is secured from the start, so that the temperature is increased properly.




However, in the case of the internal low pressure type, the lubricating oil supplied to the compressor is not separated from the refrigerant gas, and is discharged to the heat exchanging circuit. Therefore, not only the heat exchange capacity is decreased, but also the rubbing portions of the scroll may be seized by the shortage in the lubricating oil in the compressor.




Also, the internal low pressure type is liable to cause decreased performance because the sucked refrigerant gas is caused to pass through the electric motor chamber and is overheated by the heat in the electric motor chamber, whereby the density of the refrigerant gas is made low.




SUMMARY OF THE INVENTION




Accordingly, a first object of the present invention is to provide an air conditioner having high operation efficiency in which one compressor can be switched appropriately to an internal high pressure type and an internal low pressure type.




Also, a second object of the present invention is to provide an air conditioner in which at the time of heating operation, a compressor is operated as an internal low pressure type at the start time, and it is operated as an internal high pressure type at the time of subsequent steady operation.




To attain the above first object, a first invention provides an air conditioner having a refrigerant circuit comprising a compressor, a four-way switching valve, an outdoor-side heat exchanger and an indoor-side heat exchanger which are selectively switched and connected to the high-pressure refrigerant discharge side and the low-pressure refrigerant suction side of the compressor via the four-way switching valve, and an expansion valve connected between the outdoor-side heat exchanger and the indoor-side heat exchanger, characterized in that the compressor has an enclosed vessel, the enclosed vessel contains a refrigerant compressing section having a suction port and a discharge port and an electric motor for driving the refrigerant compressing section, and the interior of the enclosed vessel is divided airtightly into two chambers, an electric motor chamber containing the electric motor and a refrigerant discharge chamber on the side of the discharge port of the refrigerant compressing section, by the refrigerant compressing section serving as partitioning means; the suction port of the refrigerant compressing section is connected with a low-pressure refrigerant suction pipe and the refrigerant discharge chamber is connected with a high-pressure refrigerant discharge pipe, and the electric motor chamber is connected with a first refrigerant flow path pipe and a second refrigerant flow path pipe at different positions of the electric motor chamber; of four switching ports of the four-way switching valve, a first switching port is connected with the low-pressure refrigerant suction pipe of the suction port, a second switching port is connected with the high-pressure refrigerant discharge pipe of the refrigerant discharge chamber, a third switching port is connected with the first refrigerant flow path pipe of the electric motor chamber, and a fourth switching port is connected with the indoor-side heat exchanger, and also the second refrigerant flow path pipe of the electric motor chamber is connected to the side of the outdoor-side heat exchanger; at the time of cooling operation, the four-way switching valve is switched so that the first switching port and the fourth switching port communicate with each other and at the same time the second switching port and the third switching port communicate with each other, whereby the compressor is operated as an internal high pressure type; and at the time of heating operation, the four-way switching valve is switched so that the first switching port and the third switching port communicate with each other and at the same time the second switching port and the fourth switching port communicate with each other, whereby the compressor is operated as an internal low pressure type.




Some preferred modes of the first invention will be described below. It is preferable that a subsidiary electric motor chamber capable of communicating with the electric motor chamber be formed by a bearer plate pivotally supporting one end of a driving shaft of the electric motor on the side opposite to the refrigerant discharge chamber of the electric motor chamber, and the second refrigerant flow path pipe be connected to the subsidiary electric motor chamber.




Also, the low-pressure refrigerant suction pipe, the first refrigerant flow path pipe, and the high-pressure refrigerant discharge pipe are drawn from the end face on the refrigerant discharge chamber side of the enclosed vessel, and the second refrigerant flow path pipe is drawn from the end face on the electric motor chamber side of the enclosed vessel, by which pipes are eliminated from the shell periphery (peripheral surface) of the enclosed vessel. Therefore, the installation space for the compressor can be decreased, and the enclosed vessel can be assembled accurately without distortion.




Also, on the side opposite to the refrigerant discharge chamber of the electric motor chamber, the first refrigerant flow path pipe and the second refrigerant flow path pipe are installed symmetrically with respect to an imaginary vertical plane comprising the axis of the enclosed vessel and at an angle such as to point at the axis, and an oil separating plate for separating oil from a refrigerant gas is provided along the imaginary vertical plane in the electric motor chamber. Therefore, the lubricating oil can be separated from the refrigerant gas securely.




Also, the first invention includes a mode in which the enclosed vessel is placed vertically with the axis thereof being substantially vertical. In this case, the configuration may be such that the refrigerant compressing section and the electric motor are contained in the enclosed vessel in such a manner that the former is positioned above and the latter is below, and the interior of the enclosed vessel is divided airtightly into two chambers, the refrigerant discharge chamber on the side of the discharge port of the refrigerant compressing section and the electric motor chamber containing the electric motor, by the refrigerant compressing section serving as partitioning means; the suction port of the refrigerant compressing section is connected with the low-pressure refrigerant suction pipe from the side face of the enclosed vessel, and the refrigerant discharge chamber is connected with the high-pressure refrigerant discharge pipe from the side face of the opposing side of the low-pressure refrigerant suction pipe; and the first refrigerant flow path pipe is connected to the electric motor chamber from the same side face as that of the high-pressure refrigerant discharge pipe, and the second refrigerant flow path pipe is connected from the same side face as that of the low-pressure refrigerant suction pipe.




A second invention provides an air conditioner having a refrigerant circuit comprising a compressor, a four-way switching valve, an outdoor-side heat exchanger and an indoor-side heat exchanger which are selectively switched and connected to the high-pressure refrigerant discharge side and the low-pressure refrigerant suction side of the compressor via the four-way switching valve, and an expansion valve connected between the outdoor-side heat exchanger and the indoor-side heat exchanger, characterized in that the compressor has an enclosed vessel, the enclosed vessel contains a refrigerant compressing section having a suction port and a discharge port and an electric motor for driving the refrigerant compressing section, and the interior of the enclosed vessel is divided airtightly into two chambers, an electric motor chamber containing the electric motor and a refrigerant discharge chamber on the side of the discharge port of the refrigerant compressing section, by the refrigerant compressing section serving as partitioning means, and a subsidiary electric motor chamber is formed by a bearer plate pivotally supporting a driving shaft of the electric motor on the side opposite to the refrigerant discharge chamber of the electric motor chamber, a low-pressure refrigerant suction pipe drawn from a first switching port on the low-pressure refrigerant discharge side of the four-way switching valve branches into two pipes, one branch pipe is connected to the suction port of the refrigerant compressing section as a first low-pressure refrigerant suction pipe having a first opening/closing valve, and the other branch pipe is connected to the electric motor chamber as a second low-pressure refrigerant suction pipe having a second opening/closing valve; a high-pressure refrigerant discharge pipe connected to a second switching port on the high-pressure refrigerant introduction side of the four-way switching valve branches into two pipes, one branch pipe is connected to the subsidiary electric motor chamber as a first high-pressure refrigerant discharge pipe having a third opening/closing valve, and the other branch pipe is connected to the refrigerant discharge chamber as a second high-pressure refrigerant discharge pipe having a fourth opening/closing valve; further, a first bypass pipe having the fifth opening/closing valve and reaching the subsidiary electric motor chamber branches off from the downstream side of the first opening/closing valve of the first low-pressure refrigerant suction pipe, and a second bypass pipe having a sixth opening/closing valve is provided between the electric motor chamber and the refrigerant discharge chamber; a third switching port of the four-way switching valve is connected with the outdoor-side heat exchanger, and a fourth switching port of the four-way switching valve is connected with the indoor-side heat exchanger; at the time of cooling operation, the second switching port and the third switching port are caused to communicate with each other and the first switching port and the fourth switching port are caused to communicate with each other by the four-way switching valve, and the first opening/closing valve, the third opening/closing valve, and the sixth opening/closing valve are opened, and the second opening/closing valve, the fourth opening/closing valve, and the fifth opening/closing valve are closed, whereby the compressor is operated as an internal high pressure type; and at the time of heating operation, the second switching port and the fourth switching port are caused to communicate with each other and the first switching port and the third switching port are caused to communicate with each other by the four-way switching valve, and the second opening/closing valve, the fourth opening/closing valve, and the fifth opening/closing valve are opened, and the first opening/closing valve, the third opening/closing valve, and the sixth opening/closing valve are closed, whereby the compressor is operated as an internal low pressure type. This second invention also achieves the above first object.




In the second invention, after a predetermined time has passed from the start of heating operation, while the second switching port and the fourth switching port still communicate with each other and the first switching port and the third switching port still communicate with each other, the first opening/closing valve, the third opening/closing valve, and the sixth opening/closing valve are opened, and the second opening/closing valve, the fourth opening/closing valve, and the fifth opening/closing valve are closed, whereby the compressor is operated as the internal high pressure type. Thereby, the above second object is achieved.




Also, the second invention may have a mode such that a low-pressure refrigerant suction pipe drawn from a first switching port on the low-pressure refrigerant discharge side of the four-way switching valve branches into two pipes, one branch pipe is connected to the suction port of the refrigerant compressing section as a first low-pressure refrigerant suction pipe having a first opening/closing valve, the other branch pipe is connected to the electric motor chamber as a second low-pressure refrigerant suction pipe having a second opening/closing valve, a first check valve for checking a reverse flow from the electric motor chamber side is provided at the pipe end of the second low-pressure refrigerant suction pipe, and further a first bypass pipe having a second opening/closing valve is provided between the downstream side of the first opening/closing valve of the first low-pressure refrigerant suction pipe and the electric motor chamber; a second switching port on the high-pressure refrigerant introduction side of the four-way switching valve and the subsidiary electric motor chamber are connected to each other by a high-pressure refrigerant discharge pipe, the refrigerant discharge chamber and the electric motor chamber are connected to each other via a second bypass pipe having a third opening/closing valve, and further a third bypass pipe having a fourth opening/closing valve is provided between the upstream side of the third opening/closing valve of the second bypass pipe and the subsidiary electric motor chamber; the bearer plate partitioning into the electric motor chamber and the subsidiary electric motor chamber is provided with a second check valve for checking a reverse flow from the subsidiary electric motor chamber side to the electric motor chamber side; a third switching port of the four-way switching valve is connected with the outdoor-side heat exchanger, and a fourth switching port of the four-way switching valve is connected with the indoor-side heat exchanger; at the time of cooling operation, the second switching port and the third switching port are caused to communicate with each other and the first switching port and the fourth switching port are caused to communicate with each other by the four-way switching valve, and the first opening/closing valve and the third opening/closing valve are opened, and the second opening/closing valve and the fourth opening/closing valve are closed, whereby the compressor is operated as an internal high pressure type; and at the time of heating operation, the second switching port and the fourth switching port are caused to communicate with each other and the first switching port and the third switching port are caused to communicate with each other by the four-way switching valve, and the second opening/closing valve and the fourth opening/closing valve are opened, and the first opening/closing valve and the third opening/closing valve are closed, whereby the compressor is operated as an internal low pressure type.




In this case as well, after a predetermined time has passed from the start of heating operation, while the second switching port and the fourth switching port still communicate with each other and the first switching port and the third switching port still communicate with each other, the first opening/closing valve and the third opening/closing valve are opened, and the second opening/closing valve and the fourth opening/closing valve are closed, whereby the compressor is operated as the internal high pressure type. Thereby, the above second object is achieved.




A third invention provides an air conditioner having a refrigerant circuit comprising a compressor, a four-way switching valve, an outdoor-side heat exchanger and an indoor-side heat exchanger which are selectively switched and connected to the high-pressure refrigerant discharge side and the low-pressure refrigerant suction side of the compressor via the four-way switching valve, and an expansion valve connected between the outdoor-side heat exchanger and the indoor-side heat exchanger, characterized in that the compressor has an enclosed vessel, the enclosed vessel contains a refrigerant compressing section having a suction port and a discharge port and an electric motor for driving the refrigerant compressing section, and the interior of the enclosed vessel is divided airtightly into two chambers, an electric motor chamber containing the electric motor and a refrigerant discharge chamber on the side of the discharge port of the refrigerant compressing section, by the refrigerant compressing section serving as partitioning means; the refrigerant compressing section is provided with a refrigerant inflow port reaching the suction port from the side of the electric motor chamber separately from the suction port, the suction port is connected with a low-pressure refrigerant suction pipe drawn from a first switching port on the low-pressure refrigerant discharge side of the four-way switching valve, and the refrigerant inflow port is provided with a first opening/closing valve; the electric motor chamber and a second switching port on the high-pressure refrigerant introduction side of the four-way switching valve are connected to each other by a high-pressure refrigerant discharge pipe having a second opening/closing valve, the refrigerant discharge chamber and the downstream side of the second opening/closing valve of the high-pressure refrigerant discharge pipe are connected to each other by a first bypass pipe having a third opening/closing valve, and further a second bypass pipe having a fourth opening/closing valve is provided between the upstream side of the third opening/closing valve of the first bypass pipe and the electric motor chamber; a third switching port of the four-way switching valve is connected with the outdoor-side heat exchanger, and a fourth switching port of the four-way switching valve is connected with the indoor-side heat exchanger; at the time of cooling operation, the second switching port and the third switching port are caused to communicate with each other and the first switching port and the fourth switching port are caused to communicate with each other by the four-way switching valve, and the second opening/closing valve and the fourth opening/closing valve are opened, and the first opening/closing valve and the third opening/closing valve are closed, whereby the compressor is operated as an internal high pressure type; and at the time of heating operation, the second switching port and the fourth switching port are caused to communicate with each other and the first switching port and the third switching port are caused to communicate with each other by the four-way switching valve, and the first opening/closing valve and the third opening/closing valve are opened, and the second opening/closing valve and the fourth opening/closing valve are closed, whereby the compressor is operated as an internal low pressure type. This third invention also achieves the above first object.




In the third invention as well, after a predetermined time has passed from the start of heating operation, while the second switching port and the fourth switching port still communicate with each other and the first switching port and the third switching port still communicate with each other, the second opening/closing valve and the fourth opening/closing valve are opened, and the first opening/closing valve and the third opening/closing valve are closed, whereby the compressor is operated as the internal high pressure type. Thereby, the above second object is achieved.




A fourth invention provides an air conditioner having a refrigerant circuit comprising a compressor, a four-way switching valve, an outdoor-side heat exchanger and an indoor-side heat exchanger which are selectively switched and connected to the high-pressure refrigerant discharge side and the low-pressure refrigerant suction side of the compressor via the four-way switching valve, and an expansion valve connected between the outdoor-side heat exchanger and the indoor-side heat exchanger, characterized in that the compressor has an enclosed vessel, the enclosed vessel contains a refrigerant compressing section having a suction port and a discharge port and an electric motor for driving the refrigerant compressing section, and the interior of the enclosed vessel is divided airtightly into two chambers, an electric motor chamber containing the electric motor and a refrigerant discharge chamber on the side of the discharge port of the refrigerant compressing section, by the refrigerant compressing section serving as partitioning means; a second four-way switching valve for switching the flow direction of a high-pressure refrigerant discharged from the refrigerant discharge chamber is provided separately from a first four-way switching valve for switching the flow direction of a refrigerant with respect to the outdoor-side heat exchanger and indoor-side heat exchanger; the suction port of the refrigerant compressing section is connected with a low-pressure refrigerant suction pipe drawn from a first switching port on the low-pressure refrigerant discharge side of the second four-way switching valve, the refrigerant discharge chamber is connected with a high-pressure refrigerant discharge pipe reaching a second switching port on the high-pressure refrigerant introduction side of the second four-way switching valve, and the electric motor chamber is connected with a first refrigerant flow path pipe and a second refrigerant flow path pipe at different positions of the electric motor chamber; the first refrigerant flow path pipe is connected to a third switching port of the second four-way switching valve, and the second refrigerant flow path pipe, a fourth switching port of the second four-way switching valve, the outdoor-side heat exchanger, and the indoor-side heat exchanger each are connected to a predetermined switching port of the first four-way switching valve; at the time of cooling operation, the first switching port and the fourth switching port of the second four-way switching valve are caused to communicate with each other and at the same time the second switching port and the third switching port of the second four-way switching valve are caused to communicate with each other, and also the second refrigerant flow path pipe and the outdoor-side heat exchanger are caused to communicate with each other and at the same time the fourth switching port of the second four-way switching valve and the indoor-side heat exchanger are caused to communicate with each other by the first four-way switching valve, whereby the compressor is operated as an internal high pressure type; and at the time of heating operation, the second switching port and the fourth switching port of the second four-way switching valve are caused to communicate with each other and at the same time the first switching port and the third switching port of the second four-way switching valve are caused to communicate with each other, and also the second refrigerant flow path pipe and the outdoor-side heat exchanger are caused to communicate with each other and at the same time the fourth switching port of the second four-way switching valve and the indoor-side heat exchanger are caused to communicate with each other by the first four-way switching valve, whereby the compressor is operated, as an internal low pressure type. This fourth invention also achieves the above first object.




In the fourth invention as well, after a predetermined time has passed from the start of heating operation, the first switching port and the fourth switching port of the second four-way switching valve are caused to communicate with each other and at the same time the second switching port and the third switching port of the second four-way switching valve are caused to communicate with each other, and also the second refrigerant flow path pipe and the indoor-side heat exchanger are caused to communicate with each other and at the same time the fourth switching port of the second four-way switching valve and the outdoor-side heat exchanger are caused to communicate with each other by the first four-way switching valve, whereby the compressor is operated as the internal high pressure type. Thereby, the above second object is achieved.




As a modification of the fourth invention, there may be provided a mode such that the second refrigerant flow path pipe branches into two pipes, one first branch pipe is connected to a first switching port of the first four-way switching valve via a first opening/closing valve, and the other second branch pipe is connected to a second switching port of the first four-way switching valve via a second opening/closing valve; a connecting pipe drawn from the fourth switching port of the second four-way switching valve also branches into two pipes, one third branch pipe is connected to the second switching port of the first four-way switching valve via a third opening/closing valve, and the other fourth branch pipe is connected to the first switching port of the first four-way switching valve via a fourth opening/closing valve; a third switching port of the first four-way switching valve is connected with the outdoor-side heat exchanger, and a fourth switching port thereof is connected with the indoor-side heat exchanger; at the time of cooling operation, both of the first and second four-way switching valves are switched so that the first switching port and the fourth switching port communicate with each other and at the same time the second switching port and the third switching port communicate with each other, the second opening/closing valve and the fourth opening/closing valve are opened, and the first opening/closing valve and the third opening/closing valve are closed, whereby the compressor is operated as an internal high pressure type; and at the time of heating operation, both of the first and second four-way switching valves are switched so that the second switching port and the fourth switching port communicate with each other and at the same time the first switching port and the third switching port communicate with each other, the first opening/closing valve and the third opening/closing valve are opened, and the second opening/closing valve and the fourth opening/closing valve are closed, whereby the compressor is operated as an internal low pressure type.




In this case as well, after a predetermined time has passed from the start of heating operation, the first four-way switching valve still being in the switching state at the time of heating operation, the second four-way switching valve is switched to the cooling operation state, the second opening/closing valve and the fourth opening/closing valve are opened, and the first opening/closing valve and the third opening/closing valve are closed, whereby the compressor is preferably operated as the internal high pressure type.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1



a


is a schematic view showing a refrigerant circuit at the time of cooling operation using a compressor in accordance with an embodiment of a first invention as an internal high pressure type;





FIG. 1



b


is a schematic view showing a refrigerant circuit at the time of heating operation using a compressor in accordance with an embodiment of the first invention as an internal low pressure type;





FIGS. 2



a


and


2




b


are schematic views showing a first modification of a compressor of the first invention;





FIG. 3

is an enlarged sectional view showing a second modification of a compressor of the first invention;





FIG. 4

is an enlarged sectional view showing a third modification of a compressor of the first invention;





FIG. 5

is an enlarged sectional view showing a fourth modification of a compressor of the first invention;





FIG. 6



a


is an enlarged sectional view showing a fifth modification of a compressor of the first invention;





FIG. 6



b


is a sectional view taken along the line VIb—VIb of

FIG. 6



a;







FIG. 7

is an enlarged sectional view showing a sixth modification of a compressor of the first invention;





FIG. 8

is an enlarged sectional view showing a seventh modification of a compressor of the first invention;





FIG. 9

is an enlarged sectional view showing an eighth modification of a compressor of the first invention;





FIG. 10

is an enlarged sectional view showing a ninth modification of a compressor of the first invention;





FIG. 11

is an enlarged sectional view showing a tenth modification of a compressor of the first invention;





FIG. 12

is an enlarged sectional view showing an eleventh modification of a compressor of the first invention;





FIG. 13

is an enlarged sectional view showing a twelfth modification of a compressor of the first invention;





FIG. 14



a


is a schematic view showing a refrigerant circuit at the time of cooling operation using a compressor in accordance with an embodiment of a second invention as an internal high pressure type;





FIG. 14



b


is a schematic view showing a refrigerant circuit at the time of start when heating operation is performed using a compressor in accordance with an embodiment of the second invention as an internal low pressure type;





FIG. 14



c


is a schematic view showing a refrigerant circuit at the time of steady heating operation using a compressor in accordance with an embodiment of the second invention as an internal high pressure type;





FIG. 15

is an enlarged sectional view showing another embodiment of a compressor applied to the second invention;





FIG. 16



a


is a schematic view showing a refrigerant circuit at the time of cooling operation using a compressor in accordance with an embodiment of a third invention as an internal high pressure type;





FIG. 16



b


is a schematic view showing a refrigerant circuit at the time of start when heating operation is performed using a compressor in accordance with an embodiment of the third invention as an internal low pressure type;





FIG. 16



c


is a schematic view showing a refrigerant circuit at the time of steady heating operation using a compressor in accordance with an embodiment of the third invention as an internal high pressure type;





FIG. 17

is an enlarged sectional view of a compressor applied to the third invention;





FIG. 18



a


is a schematic view showing a refrigerant circuit at the time of cooling operation using a compressor in accordance with an embodiment of a fourth invention as an internal high pressure type;





FIG. 18



b


is a schematic view showing a refrigerant circuit at the time of start when heating operation is performed using a compressor in accordance with an embodiment of the fourth invention as an internal low pressure type;





FIG. 18



c


is a schematic view showing a refrigerant circuit at the time of steady heating operation using a compressor in accordance with an embodiment of the fourth invention as an internal high pressure type;





FIG. 19



a


is a schematic view showing a refrigerant circuit at the time of cooling operation using a compressor in accordance with a modification of the fourth invention as an internal high pressure type;





FIG. 19



b


is a schematic view showing a refrigerant circuit at the time of start when heating operation is performed using a compressor in accordance with a modification of the fourth invention as an internal low pressure type;





FIG. 19



c


is a schematic view showing a refrigerant circuit at the time of steady heating operation using a compressor in accordance with a modification of the fourth invention as an internal high pressure type;





FIG. 20

is a schematic view showing a refrigerant circuit of a first prior art using an internal high pressure type compressor; and





FIG. 21

is a schematic view showing a refrigerant circuit of a second prior art using an internal low pressure type compressor.











DETAILED DESCRIPTION




First, an embodiment of a first invention will be described with reference to

FIGS. 1



a


and


1




b


. In embodiments of the inventions described below, a heat exchanging circuit comprising a four-way switching valve, an outdoor-side heat exchanger, an expansion valve (or a capillary tube), and an indoor-side heat exchanger is essentially the same as that of the prior art described with reference to

FIGS. 20 and 21

, so that the same reference numerals are applied.




An air conditioner in accordance with the first invention has a refrigerant circuit comprising a compressor


100


, a four-way switching valve


8


, an outdoor-side heat exchanger


9


and an indoor-side heat exchanger


11


which are selectively switched and connected to the high-pressure refrigerant discharge side and the low-pressure refrigerant suction side of the compressor


100


via the four-way switching valve


8


, and an expansion valve


10


between the outdoor-side heat exchanger


9


and the indoor-side heat exchanger


11


. The expansion valve


10


may be a capillary tube.




The compressor


100


has a cylindrical enclosed vessel


101


, and the enclosed vessel


101


contains a refrigerant compressing section


110


having a suction port


111


and a discharge port


112


, and an electric motor


120


for driving the refrigerant compressing section


110


. In this embodiment, the enclosed vessel


101


is horizontally disposed on a base frame, not shown, with the axis thereof being substantially horizontal.




Although not shown in detail, the refrigerant compressing section


110


, being of a scroll type, has a compression chamber formed by engaging a fixed scroll having a spiral wrap on an end plate with an orbiting scroll driven by the electric motor


120


.




The interior of the enclosed vessel


101


is airtightly divided into two chambers, a refrigerant discharge chamber


102


on the side of the discharge port


112


and an electric motor chamber


103


containing the electric motor


120


, by the end plate on the side of the fixed scroll in the refrigerant compressing section


110


. Also, the electric motor chamber


103


is provided with a bearer plate


122


which pivotally supports a driving shaft


121


of the electric motor


120


. A subsidiary electric motor chamber


104


is formed on the side opposite to the refrigerant discharge chamber


102


of the electric motor chamber


103


by the bearer plate


122


. The bearer plate


122


is formed with an arbitrary number of refrigerant flowing holes


123


.




The suction port


111


of the refrigerant compressing section


110


is connected with a refrigerant suction pipe


130


for sucking a low-pressure refrigerant from a first switching port


8




a


, which is on the low-pressure refrigerant introduction side of the four-way switching valve


8


. The refrigerant discharge chamber


102


is connected with a refrigerant discharge pipe


140


for supplying a high-pressure refrigerant produced in the refrigerant compressing section


110


to a second switching port


8




b


, which is on the high-pressure refrigerant discharge side of the four-way switching valve


8


.




The electric motor chamber


103


is connected to one end of a first refrigerant flow path pipe


150


, and the other end of the first refrigerant flow path pipe


150


is connected to a third switching port


8




c


of the four-way switching valve


8


. The subsidiary electric motor chamber


104


is connected with one end of a second refrigerant flow path pipe


160


, and the other end of the second refrigerant flow path pipe


160


is connected to the outdoor-side heat exchanger


9


. A remaining one switching port


8




d


of the four-way switching valve


8


is connected with the indoor-side heat exchanger


11


.




At the time of cooling operation, the four-way switching valve


8


is switched as shown in

FIG. 1



a


so that the first switching port


8




a


and the fourth switching port


8




d


are in a communicating state, and the second switching port


8




b


and the third switching port


8




c


are in a communicating state.




Thereupon, a high-temperature high-pressure refrigerant gas produced in the refrigerant compressing section


110


flows into the electric motor chamber


103


from the refrigerant discharge chamber


102


through the refrigerant discharge pipe


140


, the second switching port


8




b


, the third switching port


8




c


, and the first refrigerant flow path pipe


150


, increasing the pressure in the compressor


100


, and is supplied to the outdoor-side heat exchanger


9


through the second refrigerant flow path pipe


160


.




The high-temperature high-pressure refrigerant gas is heat exchanged with the outdoor air in the outdoor-side heat exchanger


9


, and is condensed and liquefied by discharging heat to the outside of the room. This liquid refrigerant is decompressed by the expansion valve


10


, becoming in a low-temperature low-pressure gas-liquid two-phase state, and is sent to the indoor-side heat exchanger


11


.




While flowing in the indoor-side heat exchanger


11


, the refrigerant is evaporated by taking heat away from the indoor air, becoming a low-temperature low-pressure refrigerant gas, and is returned to the refrigerant compressing section


110


through the fourth switching port


8




d


and the first switching port


8




a


of the four-way switching valve


8


, the refrigerant suction pipe


130


, and the suction port


111


.




At the time of heating operation, the four-way switching valve


8


is switched as shown in

FIG. 1



b


so that the second switching port


8




b


and the fourth switching port


8




d


are in a communicating state, and the first switching port


8




a


and the third switching port


8




c


are in a communicating state.




Thereupon, the high-temperature high-pressure refrigerant gas produced in the refrigerant compressing section


110


is supplied from the refrigerant discharge chamber


102


to the side of the indoor-side heat exchanger


11


through the refrigerant discharge pipe


140


, the second switching port


8




b


, and the fourth switching port


8




d


, by which heating of the room is performed. The low-pressure refrigerant gas passing through the expansion valve


10


and the outdoor-side heat exchanger


9


flows into the electric motor chamber


103


from the side of the subsidiary electric motor chamber


104


through the second refrigerant flow path pipe


160


, decreasing the pressure in the compressor


100


, and is returned to the refrigerant compressing section


110


through the first refrigerant flow path pipe


150


, the third switching port


8




c


, the first switching port


8




a


, the refrigerant suction pipe


130


, and the suction port


111


.




Thus, according to the first invention, merely by switching the four-way switching valve


8


, the compressor


100


can be made the internal high pressure type at the time of cooling operation, and the compressor


100


can be made the internal low pressure type at the time of heating operation.




Therefore, at the time of cooling operation, since the temperature of the enclosed vessel


101


is higher than the outdoor air temperature, the heat dissipation amount is increased, so that the cooling capacity is enhanced.




Contrarily, at the time of heating operation, the refrigerant, which has been accumulated in the compression chamber at the time of stoppage, is compressed simultaneously with the start, and the high-temperature high-pressure refrigerant gas is directly supplied to the indoor-side heat exchanger, not being caused to pass through the electric motor chamber, unlike the internal high pressure type. Therefore, a sufficient refrigerant circulating amount is secured from the start, so that the temperature can be increased properly.




Next, modifications of the first invention will be explained. First, as shown in

FIGS. 2



a


and


2




b


as a first modification, the four-way switching valve


8


may be installed integrally with the compressor


100


.

FIG. 2



a


shows a state in which the four-way switching valve


8


is switched to the internal high pressure type, and

FIG. 2



b


shows a state in which the four-way switching valve


8


is switched to the internal low pressure type.




In this case, the low-pressure refrigerant suction pipe


130


and the first refrigerant flow path pipe


150


are not laid on the outside of the enclosed vessel


101


as in the case of the above-described embodiment, but should preferably be attached to an end face


101




a


on the side of the refrigerant discharge chamber


102


of the enclosed vessel


101


.




Specifically, the low-pressure refrigerant suction pipe


130


is caused to pass through the refrigerant discharge chamber


102


and is connected to the suction port


111


of the refrigerant compressing section


110


, and the first refrigerant flow path pipe


150


is caused to pass through the refrigerant discharge chamber


102


and the refrigerant compressing section


110


and is drawn into the electric motor chamber


103


, by which the installation space for the low-pressure refrigerant suction pipe


130


and the first refrigerant flow path pipe


150


need not be provided on the peripheral surface (shell periphery) side of the enclosed vessel


101


. Also, in a similar sense, the second refrigerant flow path pipe


160


should also preferably be connected to an end face


101




b


on the side of the subsidiary electric motor chamber


104


of the enclosed vessel


101


.




Also, as shown in

FIG. 3

as a second modification, the first and second refrigerant flow path pipes


150


and


160


are laid so as to be opposed to coils


124


,


124


exposed at both ends of the electric motor


120


so that the refrigerant gas is blown to the coils


124


,


124


. Thereby, a lubricating oil is separated from the gas efficiently, so that especially at the time of heating operation, the oil surface level H in the electric motor chamber


103


and the subsidiary electric motor chamber


104


can be secured.




As indicated by a chain line in

FIG. 3

, the low-pressure refrigerant suction pipe


130


may be drawn into the refrigerant discharge chamber


102


from the end face


101




a


on the side of the refrigerant discharge chamber


102


of the enclosed vessel


101


, and may be connected to the suction port


111


of the refrigerant compressing section


110


. Also, of the first and second refrigerant flow path pipes


150


and


160


, for example, the second refrigerant flow path pipe


160


may be laid at a corner portion above the subsidiary electric motor chamber


104


or on the end face


101




b


on the side of the subsidiary electric motor chamber


104


.




Also, as shown in

FIG. 4

as a third modification, the low-pressure refrigerant suction pipe


130


, the first refrigerant flow path pipe


150


, and the high-pressure refrigerant discharge pipe


140


are installed on the side of one end face


101




a


of the enclosed vessel


101


, and the second refrigerant flow path pipe


160


is installed on the side of the other end face


101




b


of the enclosed vessel


101


.




According to this configuration, a pipe need not be laid at the shell periphery


101




c


of the enclosed vessel


101


. Therefore, when a heat insulating material is installed around the compressor


100


, the work is made easy. Also, the enclosed vessel


101


can be assembled accurately without distortion.




In this third modification, the low-pressure refrigerant suction pipe


130


passes through the refrigerant discharge chamber


102


and is connected to the suction port


111


of the refrigerant compressing section


110


, and the first refrigerant flow path pipe


150


passes through the refrigerant discharge chamber


102


and the refrigerant compressing section


10


and is drawn into the electric motor chamber


103


.




As shown in

FIG. 5

as a fourth modification, the first refrigerant flow path pipe


150


is laid on the coil


124


close to the subsidiary electric motor chamber


104


of the electric motor


120


, and the second refrigerant flow path pipe


160


is installed at the upper part of the subsidiary electric motor chamber


104


or on the end face


101




b


on the side of the subsidiary electric motor chamber


104


as indicated by the chain line in the figure. According to this configuration, the heating of the refrigerant gas due to the electric motor


120


is less, so that the compression performance at the time of heating operation is increased. Also, the pressure difference between the electric motor chamber


103


on the side of the refrigerant compressing section


110


and the subsidiary electric motor chamber


104


decreases, so that the decrease in the oil surface level H in the subsidiary electric motor chamber


104


can be minimized.




Also, as shown in

FIGS. 6



a


and


6




b


as a fifth modification, both of the first refrigerant flow path pipe


150


and the second refrigerant flow path pipe


160


are installed at the upper part of the subsidiary electric motor chamber


104


. In this case, both of the refrigerant flow path pipes


150


and


160


are preferably installed symmetrically with respect to the axis of the enclosed vessel


101


, that is, with respect to an imaginary vertical plane comprising the axis of the driving shaft


121


, and at an angle such as to point at the axis, and also a oil separating plate


125


is provided therebetween. According to this configuration, the lubricating oil can be separated from the refrigerant gas efficiently. Also, like the above-described fourth modification, the heating of the refrigerant gas due to the electric motor


120


is less, so that the compression performance at the time of heating operation is increased.




As shown in

FIG. 7

as a sixth modification, the first refrigerant flow path pipe


150


is provided at a position opposing to the upper center of the electric motor


120


, and the second refrigerant flow path pipe


160


is provided on the side of the subsidiary electric motor chamber


104


. Thereby, the oil surface levels H on both sides of the electric motor


120


can be kept approximately equal. Also, as in case of the fourth modification, the heating of the refrigerant gas due to the electric motor


120


is less, so that the compression performance at the time of heating operation is increased. In the sixth modification, as indicated by a chain line in

FIG. 7

, the second refrigerant flow path pipe


160


may be provided at a position opposing to the coil


124


on the side of the subsidiary electric motor chamber


104


of the electric motor


120


.




Also, as shown in

FIG. 8

as a seventh modification, both of the first refrigerant flow path pipe


150


and the second refrigerant flow path pipe


160


are arranged at positions opposing to the upper center of the electric motor


120


so as to be shifted at a predetermined interval along the peripheral direction of the enclosed vessel


101


, and the refrigerant gas is blown to the electric motor


120


from either one of the refrigerant flow path pipes. Thereby, the lubricating oil can be separated from the refrigerant gas efficiently. Also, the oil surface levels H on both sides of the electric motor


120


can be kept approximately equal.




Unlike the above-described seventh modification, as shown in

FIG. 9

as an eighth modification, both of the first refrigerant flow path pipe


150


and the second refrigerant flow path pipe


160


may be arranged at positions between the electric motor


120


and the refrigerant compressing section


110


so as to be shifted at a predetermined interval along the peripheral direction of the enclosed vessel


101


. In this configuration as well, the oil surface levels H on both sides of the electric motor


120


can be kept approximately equal. Also, the heating of the refrigerant gas due to the electric motor


120


is less, so that the compression performance at the time of heating operation is increased.




In the above-described second to eighth modifications, the low-pressure refrigerant suction pipe


130


and the high-pressure refrigerant discharge pipe


140


are installed on the end face


101




a


on the side of the refrigerant discharge chamber


102


of the enclosed vessel


101


. However, as shown in

FIG. 10

as a ninth modification, both of the first refrigerant flow path pipe


150


and the second refrigerant flow path pipe


160


may also be arranged on the end face


101




b


on the side of the subsidiary electric motor chamber


104


. According to this configuration, like the above-described third modification, a pipe need not be laid at the shell periphery


101




c


of the enclosed vessel


101


. Therefore, when a heat insulating material is installed around the compressor


100


, the work is made easy.




Also, not only the enclosed vessel


101


can be assembled accurately without distortion, but also the oil surface levels H on both sides of the electric motor


120


can be kept approximately equal. Also, the heating of the refrigerant gas due to the electric motor


120


is less, so that the compression performance at the time of heating operation can be increased.





FIG. 11

shows a tenth modification. This figure shows a case where the compressor


100


is used as a so-called vertical type. In this modification, when the enclosed vessel


101


is placed on the base frame, not shown, with the axis thereof being substantially vertical, the refrigerant compressing section


110


and the electric motor


120


serving as driving means therefor are contained in the enclosed vessel


101


in such a manner that the former is positioned above and the latter is below. Therefore, in the enclosed vessel


101


, the refrigerant discharge chamber


102


, the electric motor chamber


103


, and the subsidiary electric motor chamber


104


are arranged in that order from the upside.




In case of the vertical type, it is preferable that the high-pressure refrigerant discharge pipe


140


connected to the refrigerant discharge chamber


102


and the first refrigerant flow path pipe


150


connected to the electric motor chamber


103


be arranged at the side on, for example, the right of the enclosed vessel


101


in

FIG. 11

, and the low-pressure refrigerant suction pipe


130


connected to the suction port


111


and the second refrigerant flow path pipe


160


connected to the electric motor chamber


103


be arranged at the side on, for example, the left of the enclosed vessel


101


. According to this configuration, a pipe need not be laid on the side of the end faces


101




a


and


101




b


of the enclosed vessel


101


. Accordingly, of the installation space of the compressor


100


, the space in the height direction can be decreased.




Also, since the first and second refrigerant flow path pipes


150


and


160


are arranged at a part of the upper coil


124


of the electric motor


120


, the separation efficiency of the refrigerant gas and lubricating oil can be increased. Also, the heating of the refrigerant gas due to the electric motor


120


is less, so that the compression performance at the time of heating operation can be increased.





FIG. 12

shows an eleventh modification. This figure shows a case where the compressor


100


is of a so-called horizontal type, and is exclusively used as an internal low pressure type. In this modification, the low-pressure refrigerant suction pipe


130


is disposed so as to be opposed to the coil


124


on the side of the refrigerant compressing section


110


of the electric motor


120


in the electric motor chamber


103


, and a bypass pipe


170


is drawn from a portion corresponding to the coil


124


on the side of the subsidiary electric motor chamber


104


of the electric motor


120


, and is connected to the suction port


111


of the refrigerant compressing section


110


.




In this case, the low-pressure refrigerant suction pipe


130


is connected to the first switching port


8




a


of the four-way switching valve


8


, and the high-pressure refrigerant discharge pipe


140


of the refrigerant discharge chamber


102


is connected to the second switching port


8




b


of the four-way switching valve


8


. Also, the third switching port


8




c


of the four-way switching valve


8


is connected with, for example, the outdoor-side heat exchanger


9


, and the remaining fourth switching port


8




d


is connected with, for example, the indoor-side heat exchanger


11


.




According to this eleventh modification, at the time of either of cooling operation and heating operation, the low-pressure refrigerant gas from the low-pressure refrigerant suction pipe


130


always passes through the electric motor chamber


103


and is returned to the refrigerant compressing section


110


. For the internal low pressure type of this construction, the oil surface level H in the subsidiary electric motor chamber


104


can be kept high.





FIG. 13

shows a twelfth modification. This figure shows the case where the compressor


100


is of a so-called horizontal type, and is exclusively used as an internal high pressure type. This modification is based on the second modification shown in FIG.


3


. In this modification, the low-pressure refrigerant suction pipe


130


is directly connected to the suction port


111


of the refrigerant compressing section


110


. Also, the second refrigerant flow path pipe


160


is drawn from a portion corresponding to the coil


124


on the side of the subsidiary electric motor chamber


104


of the electric motor


102


. A bypass pipe


171


is drawn from a portion corresponding to the coil


124


on the side of the refrigerant compressing section


110


of the electric motor


102


, and the bypass pipe


171


is connected to the refrigerant discharge chamber


102


.




In this case, the low-pressure refrigerant suction pipe


130


is connected to the first switching port


8




a


of the four-way switching valve


8


, and the second refrigerant flow path pipe


160


is connected to the second switching port


8




b


of the four-way switching valve


8


. Also, the third switching port


8




c


of the four-way switching valve


8


is connected with, for example, the outdoor-side heat exchanger


9


, and the remaining fourth switching port


8




d


is connected with, for example, the indoor-side heat exchanger


11


.




In case of this twelfth modification, at the time of either of cooling operation and heating operation, the high-temperature high-pressure refrigerant gas from the refrigerant discharge chamber


102


always passes through the electric motor chamber


103


and is discharged through the second refrigerant flow path pipe


160


. For the internal high pressure type of this construction as well, like the above-described eleventh modification, the oil surface level H in the subsidiary electric motor chamber


104


can be kept high.




Next, a second invention will be described with reference to an embodiment shown in

FIGS. 14



a


to


14




c


. According to this second invention, cooling operation by means of the internal high pressure type (

FIG. 14



a


), heating operation by means of the internal low pressure type (

FIG. 14



b


), and further heating operation by means of the internal high pressure type (

FIG. 14



c


) can be performed by using one compressor.




In this second invention, the compressor, which is denoted by reference numeral


200


, has the same basic configuration as that of the compressor


100


used for the first invention. Therefore, reference numerals for the compressor


100


are applied to the configuring elements of the compressor


200


which are the same or regarded as the same. For the details, the above-described first invention should be referred to.




That is, like the above-described compressor


100


, this compressor


200


also has a horizontal-type cylindrical enclosed vessel


101


, and the enclosed vessel


101


contains the refrigerant compressing section


110


having the suction port


111


and the discharge port


112


, and the electric motor


120


for driving the refrigerant compressing section


110


.




The interior of the enclosed vessel


101


is divided airtightly into two chambers, the refrigerant discharge chamber


102


on the side of the discharge port of the refrigerant compressing section and the electric motor chamber


103


containing the electric motor


120


, by the refrigerant compressing section


110


serving as partitioning means.




On the side opposite to the refrigerant discharge chamber


102


of the electric motor chamber


103


, the subsidiary electric motor chamber


104


is formed by the bearer plate


122


which pivotally supports the driving shaft


121


of the electric motor


120


. The bearer plate


122


is formed with an arbitrary number of refrigerant flowing holes, so that the electric motor chamber


103


and the subsidiary electric motor chamber


104


communicate with each other.




In this second invention, the low-pressure refrigerant suction pipe


130


which is drawn from the first switching port


8




a


on the low-pressure refrigerant discharge side of the four-way switching valve


8


branches into two pipes at an intermediate position. A first branch suction pipe


131


, one of the branch pipes, is connected directly to the suction port


111


of the refrigerant compressing section


110


. This first branch suction pipe


131


is provided with a first opening/closing valve


210


. A second branch suction pipe


132


, the other of the branch pipes, is connected to the electric motor chamber


103


, and this second branch suction pipe


132


is provided with a second opening/closing valve


211


.




Also, the high-pressure refrigerant discharge pipe


140


connected to the second switching port


8




b


on the high-pressure refrigerant introduction side of the four-way switching valve


8


also branches into two pipes at an intermediate position. A first branch discharge pipe


141


, one of the branch pipes, is connected to the subsidiary electric motor chamber


104


. This first branch discharge pipe


141


is provided with a third opening/closing valve


212


. A second branch discharge pipe


142


, the other of the branch pipes, is connected to the refrigerant discharge chamber


102


. This second branch discharge pipe


142


is provided with a fourth opening/closing valve


213


.




Further, a first bypass pipe


133


reaching the subsidiary electric motor chamber


104


branches off from the downstream side of the first opening/closing valve


210


of the first branch suction pipe


131


. This first bypass pipe


133


is provided with a fifth opening/closing valve


214


. Also, a second bypass pipe


143


is provided between the electric motor chamber


103


and the refrigerant discharge chamber


102


. This second bypass pipe


143


is provided with a sixth opening/closing valve


215


. The second bypass pipe


143


may be laid between the upstream side of the fourth opening/closing valve of the second branch discharge pipe


142


and the electric motor chamber


103


.




In this embodiment, the third switching port


8




c


of the four-way switching valve


8


is connected with the outdoor-side heat exchanger


9


, and the fourth switching port


8




d


of the four-way switching valve


8


is connected with the indoor-side heat exchanger


11


.




At the time of cooling operation, as shown in

FIG. 14



a


, the second switching port


8




b


and the third switching port


8




c


are made in a communicating state, and the first switching port


8




a


and the fourth switching port


8




d


are made in a communicating state by the four-way switching valve


8


. Also, the first opening/closing valve


210


, the third opening/closing valve


212


, and the sixth opening/closing valve


215


are opened, and the second opening/closing valve


211


, the fourth opening/closing valve


213


, and the fifth opening/closing valve


214


are closed.




Thereby, the low-pressure refrigerant gas is sucked into the refrigerant compressing section


110


through the low-pressure refrigerant suction pipe


130


and the first branch suction pipe


131


, and the high-temperature high-pressure refrigerant gas produced in the refrigerant compressing section


110


is supplied to the side of the outdoor-side heat exchanger


9


through the refrigerant discharge chamber


102


, the second bypass pipe


143


, the electric motor chamber


103


, the subsidiary electric motor chamber


104


, the first branch discharge pipe


141


, the high-pressure refrigerant discharge pipe


140


, and the four-way switching valve


8


.




Thus, at the time of cooling operation, the compressor


200


is used as the internal high pressure type, so that a high-performance steady operation is performed as compared with the internal low pressure type.




On the other hand, at the time of heating operation, as shown in

FIG. 14



b


, the second switching port


8




b


and the fourth switching port


8




d


are made in a communicating state, and the first switching port


8




a


and the third switching port


8




c


are made in a communicating state by the four-way switching valve


8


. Also, the second opening/closing valve


211


, the fourth opening/closing valve


213


, and the fifth opening/closing valve


214


are opened, and the first opening/closing valve


210


, the third opening/closing valve


212


, and the sixth opening/closing valve


215


are closed.




Thereby, the low-pressure refrigerant gas enters the electric motor chamber


103


through the low pressure refrigerant suction pipe


130


and the second branch suction pipe


132


, and is sucked into the suction port


111


of the refrigerant compressing section


110


from the subsidiary electric motor chamber


104


through the first bypass pipe


133


. The high-temperature high-pressure refrigerant gas produced in the refrigerant compressing section


110


is supplied to the side of the indoor-side heat exchanger


11


through the refrigerant discharge chamber


102


, the second branch discharge pipe


142


, the high-pressure refrigerant discharge pipe


140


, and the four-way switching valve


8


.




Thus, at the time of heating operation, the compressor


200


is used as the internal low pressure type, so that warm air can be blown out from the indoor-side heat exchanger


11


in a short period of time from the start by preventing the high-temperature high-pressure refrigerant gas from passing through the electric motor chamber


103


. For example, when heating operation is performed by means of a compressor of internal high pressure type, the required time from the start to the warm air blowout is about 3 minutes. Contrarily, according to this invention, the required time can be shortened to about 1 minute.




After a predetermined time has passed from the start of heating operation, in the state in which the second switching port


8




b


and the fourth switching port


8




d


communicate with each other and the first switching port


8




a


and the third switching port


8




c


communicate with each other, the first opening/closing valve


210


, the third opening/closing valve


212


, and the sixth opening/closing valve


215


are opened, and contrarily the second opening/closing vale


211


, the fourth opening/closing valve


213


, and the fifth opening/closing valve


214


are closed. Thereby, the compressor


200


is switched to the internal high pressure type. The flow of refrigerant at this time is shown in

FIG. 14



c


. According to this embodiment, as in the case of cooling operation, a high-performance heating operation can be performed.




In the above-described embodiment, by using solenoid valves for the first opening/closing valve


210


, the third opening/closing valve


212


, the fourth opening/closing valve


213


, the fifth opening/closing valve


214


, and the sixth opening/closing valve


215


, the switching control of the refrigerant circuit can be carried out exactly. The second opening/closing valve


211


may be a check valve. Also, the third opening/closing valve


212


may be a check valve.




Next, a modification of the second invention will be described with reference to FIG.


15


. According to this modification, the compressor


200


has pipes and switching valves as described below.




The low-pressure refrigerant suction pipe


130


drawn from the first switching port


8




a


on the low-pressure refrigerant discharge side of the four-way switching valve


8


branches into two pipes at an intermediate position. A first branch suction pipe


135


, one of the branch pipes, is connected directly to the suction port


111


of the refrigerant compressing section


110


. This first branch suction pipe


135


is provided with a first opening/closing valve


220


.




A second branch suction pipe


136


, the other of the branch pipes, is connected to the electric motor chamber


103


. In this case, at the pipe end of the second branch suction pipe


136


, there is provided a first check valve


230


for checking a reverse flow from the side of the electric motor chamber


103


.




Also, a first bypass pipe


137


is provided between the downstream side of the first opening/closing valve


220


of the first branch suction pipe


135


and the electric motor chamber


103


. This first bypass pipe


137


is provided with a second opening/closing valve


221


.




The second switching port


8




b


(for example, see

FIG. 14



a


) on the high-pressure refrigerant introduction side of the four-way switching valve


8


and the subsidiary electric motor chamber


104


are connected to each other by the high-pressure refrigerant discharge pipe


140


.




Also, the refrigerant discharge chamber


102


and the electric motor chamber


103


are connected to each other via a second bypass pipe


145


. This second bypass pipe


145


is provided with a third opening/closing valve


222


. Taking the refrigerant flow direction in the second bypass pipe


145


as the direction from the refrigerant discharge chamber


102


toward the electric motor chamber


103


, a third bypass pipe


146


having a fourth opening/closing valve


223


is provided between the upstream side of the third opening/closing valve


222


of the second bypass pipe


145


and the subsidiary electric motor chamber


104


.




In this modification, a partition


126


having a communicating hole


127


is provided between the electric motor chamber


103


and the subsidiary electric motor chamber


104


separately from the bearer plate


122


. The communicating hole


127


in this partition


126


is provided with a second check valve


231


for checking a reverse flow from the side of the subsidiary electric motor chamber


104


to the side of the electric motor chamber


103


. The second check valve


231


may be provided at the communicating hole in the bearer plate


122


. In this case, the partition


126


need not be provided especially.




Although not shown in

FIG. 15

, like the above-described embodiment, the third switching port


8




c


of the four-way switching valve


8


is connected with the outdoor-side heat exchanger


9


, and the fourth switching port


8




d


of the four-way switching valve


8


is connected with the indoor-side heat exchanger


11


.




In this modification, at the time of cooling operation, the high-pressure refrigerant discharge pipe


140


of the second switching port


8




b


and the outdoor-side heat exchanger


9


of the third switching port


8




c


are caused to communicate with each other and the low-pressure refrigerant suction pipe


130


of the first switching port


8




a


and the indoor-side heat exchanger


11


of the fourth switching port


8




d


are caused to communicate with each other by the four-way switching valve


8


. Also, the first opening/closing valve


220


and the third opening/closing valve


222


are opened, and the second opening/closing valve


221


and the fourth opening/closing valve


223


are closed. Thereby, the compressor


200


is operated as the internal high pressure type.




Specifically, the low-pressure refrigerant from the indoor-side heat exchanger


11


is sucked into the refrigerant compressing section


110


from the suction port


111


through the low-pressure refrigerant suction pipe


130


and the first branch suction pipe


135


. The high-temperature high-pressure refrigerant gas produced in the refrigerant compressing section


110


is supplied to the electric motor chamber


103


through the second bypass pipe


145


. Thereby, the first check valve


230


is closed. Thereafter, the high-temperature high-pressure refrigerant gas pushes to open the second check valve


231


and flows into the subsidiary electric motor chamber


104


, and then is supplied to the outdoor-side heat exchanger


9


through the high-pressure refrigerant discharge pipe


140


and the four-way switching valve


8


.




On the other hand, at the time of heating operation, the high-pressure refrigerant discharge pipe


140


of the second switching port


8




b


and the indoor-side heat exchanger


11


of the fourth switching port


8




d


are caused to communicate with each other and the low-pressure refrigerant suction pipe


130


of the first switching port


8




a


and the outdoor-side heat exchanger


9


of the third switching port


8




c


are caused to communicate with each other by the four-way switching valve


8


. Also, the second opening/closing valve


221


and the fourth opening/closing valve


223


are opened, and the first opening/closing valve


220


and the third opening/closing valve


222


are closed. Thereby, the compressor


200


is operated as the internal low pressure type.




Specifically, in this case, the low-pressure refrigerant from the outdoor-side heat exchanger


9


flows into the electric motor chamber


103


through the low-pressure refrigerant suction pipe


130


and the second branch suction pipe


136


, decreasing the pressure in the compressor, and then is sucked into the refrigerant compressing section


110


from the suction port


111


through the first bypass pipe


137


. Then, the high-temperature high-pressure refrigerant gas produced in the refrigerant compressing section


110


is supplied from the refrigerant discharge chamber


102


to the subsidiary electric motor chamber


104


through the second bypass pipe


146


. Thereby, the second check valve


231


is closed. Thereafter, the high-temperature high-pressure refrigerant gas is supplied to the indoor-side heat exchanger


11


through the high-pressure refrigerant discharge pipe


140


and the four-way switching valve


8


.




After a predetermined time has passed from the start of heating operation, the four-way switching valve


8


being as it is, the first opening/closing valve


220


and the third opening/closing valve


222


are opened, and the second opening/closing valve


221


and the fourth opening/closing valve


223


are closed. Thereby, the compressor


200


is operated as the internal high pressure type.




In this modification, the first opening/closing valve


220


and the second opening/closing valve


221


should preferably be interlocking valves, in which when either one of the valves is opened, the other valve is closed, from the viewpoint of the valve switching control. Similarly, the third opening/closing valve


222


and the fourth opening/closing valve


223


should preferably be interlocking valves, in which when either one of the valves is opened, the other valve is closed.




Next, a third invention will be described with reference to an embodiment shown in

FIGS. 16



a


to


16




c


. In this third invention as well, cooling operation by means of the internal high pressure type (

FIG. 16



a


), heating operation by means of the internal low pressure type (

FIG. 16



b


), and further heating operation by means of the internal high pressure type (

FIG. 16



c


) can be performed by using one compressor.




In this third invention, the compressor, which is denoted by reference numeral


300


, has the same basic configuration as that of the compressor


100


used for the first invention. Therefore, reference numerals for the compressor


100


are applied to the elements of the compressor


300


which are the same or regarded as the same. For the details, the above-described first invention should be referred to.




Specifically, like the above-described compressor


100


, this compressor


300


also has a horizontal-type cylindrical enclosed vessel


101


, and the enclosed vessel


101


contains the refrigerant compressing section


110


having the suction port


111


and the discharge port


112


, and the electric motor


120


for driving the refrigerant compressing section


110


.




The interior of the enclosed vessel


101


is divided airtightly into two chambers, the refrigerant discharge chamber


102


on the side of the discharge port of the refrigerant compressing section and the electric motor chamber


103


containing the electric motor


120


, by the refrigerant compressing section


110


serving as partitioning means.




On the side opposite to the refrigerant discharge chamber


102


of the electric motor chamber


103


, the subsidiary electric motor chamber


104


is formed by the bearer plate


122


which pivotally supports the driving shaft


121


of the electric motor


120


. The bearer plate


122


is formed with an arbitrary number of refrigerant flowing holes, so that the electric motor chamber


103


and the subsidiary electric motor chamber


104


communicate with each other. Therefore, these two chambers may be regarded substantially as one chamber.




According to the third invention, as shown enlargedly in

FIG. 17

, the refrigerant compressing section


110


has a refrigerant inflow port


113


reaching the suction port


111


from the side of the electric motor chamber


103


, separately from the suction port


111


.




The suction port


111


is connected with the low-pressure refrigerant suction pipe


130


drawn from the first switching port


8




a


on the low-pressure refrigerant discharge side of the four-way switching valve


8


. The refrigerant inflow port


113


is provided with a first opening/closing valve


310


. In this case, the first opening/closing valve


310


is urged by spring means


311


in the direction such that the inflow port is always opened. The spring urging force is regulated so that when the pressure in the electric motor chamber


103


reaches a predetermined value, the refrigerant inflow port


113


is closed.




The subsidiary electric motor chamber


104


and the second switching port


8




b


on the high-pressure refrigerant introduction side of the four-way switching valve


8


are connected to each other by the high-pressure refrigerant discharge pipe


140


. This high-pressure refrigerant discharge pipe


140


is provided with a second opening/closing valve


320


. In this embodiment, the second opening/closing valve


320


, comprising a check valve for checking a reverse flow from the side of high-pressure refrigerant discharge pipe


140


to the side of the subsidiary electric motor chamber


104


, is disposed at a connecting portion of the subsidiary electric motor chamber


104


and the high-pressure refrigerant discharge pipe


140


.




The downstream side of the second opening/closing valve


320


of the high-pressure refrigerant discharge pipe


140


and the refrigerant discharge chamber


102


are connected to each other by a first bypass pipe


172


. This first bypass pipe


172


is provided with a third opening/closing valve


330


.




Also, taking the refrigerant flow direction in the first bypass pipe


172


as the direction from the refrigerant discharge chamber


102


toward the high-pressure refrigerant discharge pipe


140


, a second bypass pipe


173


having a fourth opening/closing valve


340


is provided between the upstream side of the third opening/closing valve


330


of the first bypass pipe


172


and the electric motor chamber


103


. The interlocking valves, in which when either one of the valves is opened, the other valve is closed, are used for the third opening/closing valve


330


and the fourth opening/closing valve


340


.




In this embodiment as well, the third switching port


8




c


of the four-way switching valve


8


is connected with the outdoor-side heat exchanger


9


, and the fourth switching port


8




d


of the four-way switching valve


8


is connected with the indoor-side heat exchanger


11


.




At the time of cooling operation, as shown in

FIG. 16



a


, the high-pressure refrigerant discharge pipe


140


of the second switching port


8




b


and the outdoor-side heat exchanger


9


of the third switching port


8




c


are caused to communicate with each other and the low-pressure refrigerant suction pipe


130


of the first switching port


8




a


and the indoor-side heat exchanger


11


of the fourth switching port


8




d


are caused to communicate with each other by the four-way switching valve


8


. Also, the fourth opening/closing valve


340


is opened, and the third opening/closing valve


330


is closed. Thereby, the compressor


300


is operated as the internal high pressure type.




That is, the low-pressure refrigerant gas from the side of the indoor-side heat exchanger


11


is sucked into the refrigerant compressing section


110


from the suction port


111


through the low-pressure refrigerant suction pipe


130


, and the high-temperature high-pressure refrigerant gas produced in the refrigerant compressing section


110


is supplied from the refrigerant discharge chamber


102


to the electric motor chamber


103


through the second bypass pipe


173


. Thereby, the pressure in the electric motor chamber


103


is made high, and the refrigerant inflow port


113


is closed by the first opening/closing valve


310


. Thereafter, the high-temperature high-pressure refrigerant gas is supplied to the side of the outdoor-side heat exchanger


9


through the subsidiary electric motor chamber


104


, the second opening/closing valve


320


, the high-pressure refrigerant discharge pipe


140


, and the four-way switching valve


8


.




At the time of heating operation, as shown in

FIG. 16



b


, the high-pressure refrigerant discharge pipe


140


of the second switching port


8




b


and the indoor-side heat exchanger


11


of the fourth switching port


8




d


are caused to communicate with each other and the low-pressure refrigerant suction pipe


130


of the first switching port


8




a


and the outdoor-side heat exchanger


9


of the third switching port


8




c


are caused to communicate with each other by the four-way switching valve


8


. Also, the third opening/closing valve


330


is opened, and the second opening/closing valve


320


is closed. Thereby, the compressor


300


is operated as the internal low pressure type.




That is, at the time of heating operation, the low-pressure refrigerant gas from the side of the outdoor-side heat exchanger


9


is sucked into the refrigerant compressing section


110


from the suction port


111


through the low-pressure refrigerant suction pipe


130


. The high-temperature high-pressure refrigerant gas produced in the refrigerant compressing section


110


reaches the high-pressure refrigerant discharge pipe


140


from the first bypass pipe


172


without flowing in the electric motor chamber


103


from the refrigerant discharge chamber


102


, and is supplied to the indoor-side heat exchanger


11


through the four-way switching valve


8


. Thus, since the high-temperature high-pressure refrigerant gas is not supplied to the electric motor chamber


103


, the first opening/closing valve


310


is opened, and therefore the pressure in the electric motor chamber


103


is kept low.




After a predetermined time has passed from the start of heating operation, the four-way switching valve


8


being as it is, the fourth opening/closing valve


340


is opened, and the third opening/closing valve


330


is closed. Thereby, heating operation is continued with the compressor


300


being operated as the internal high pressure type.




Next, a fourth invention will be described with reference to an embodiment shown in

FIGS. 18



a


to


18




c


. In this fourth invention as well, cooling operation by means of the internal high pressure type (

FIG. 18



a


), heating operation by means of the internal low pressure type (

FIG. 18



b


), and further heating operation by means of the internal high pressure type (

FIG. 18



c


) can be performed by using one compressor.




In this fourth invention, the compressor, which is denoted by reference numeral


400


, has the same basic configuration as that of the compressor


100


used for the first invention. Therefore, reference numerals for the compressor


100


are applied to the elements of the compressor


400


which are the same or regarded as the same, and the explanation of these elements is omitted.




In this fourth invention, taking the four-way switching valve


8


used in the first invention as a first four-way switching valve, a second four-way switching valve


81


is provided separately from the first four-way switching valve


8


.




The suction port


111


of the refrigerant compressing section


110


is connected with the low-pressure refrigerant suction pipe


130


drawn from a first switching port


81




a


on the low-pressure refrigerant discharge side of the second four-way switching valve


81


. Also, the refrigerant discharge chamber


102


is connected with the high-pressure refrigerant discharge pipe


140


reaching a second switching port


81




b


on the high-pressure refrigerant introduction side of the second four-way switching valve


81


.




The electric motor chamber


103


is connected with one end of the first refrigerant flow path pipe


150


, and the other end of the first refrigerant flow path pipe


150


is connected to a third switching port


81




c


of the second four-way switching valve


81


. The subsidiary electric motor chamber


104


is connected with one end of the second refrigerant flow path pipe


160


.




The other end side of the second refrigerant flow path pipe


160


branches into two pipes. One branch pipe


161


is connected to the first switching port


8




a


of the first four-way switching valve


8


via a first opening/closing valve


410


. The other branch pipe


162


is connected to the second switching port


8




b


of the first four-way switching valve


8


via a second opening/closing valve


420


.




Also, a fourth switching port


81




d


of the second four-way switching valve


81


is connected to the first four-way switching valve


8


via a pipe


180


. This pipe


180


also branches into two pipes. One branch pipe


181


is connected to the second switching port


8




b


of the first four-way switching valve


8


via a third opening/closing valve


430


, and the other branch pipe


182


is connected to the first switching port


8




a


of the first four-way switching valve


8


via a fourth opening/closing valve


440


. The third switching port


8




c


of the first four-way switching valve


8


is connected with the outdoor-side heat exchanger


9


, and the fourth switching port


8




d


thereof is connected with the indoor-side heat exchanger


11


.




In this embodiment, the first refrigerant flow path pipe


150


is connected to the electric motor chamber


103


, and the second refrigerant flow path pipe


160


is connected to the subsidiary electric motor chamber


104


. The electric motor chamber


103


and the subsidiary electric motor chamber


104


are caused to communicate with each other by the refrigerant communicating hole


123


in the bearer plate


122


, so that these two chambers may be regarded substantially as one chamber. Therefore, both of the first refrigerant flow path pipe


150


and the second refrigerant flow path pipe


160


may be connected to the electric motor chamber


103


or the subsidiary electric motor chamber


104


.




At the time of cooling operation, as shown in

FIG. 18



a


, both of the first and second four-way switching valves


8


and


81


are switched so that the first switching port


8




a


,


81




a


thereof communicates with the fourth switching port


8




d


,


81




d


, and at the same time the second switching port


8




b


,


81




b


communicates with the third switching port


8




c


,


81




c


. Also, the second opening/closing valve


420


and the fourth opening/closing valve


440


are opened, and the first opening/closing valve


410


and the third opening/closing valve


430


are closed.




Thereby, the low-pressure refrigerant gas from the indoor-side heat exchanger


11


is sucked into the refrigerant compressing section


110


through the switching ports


8




d


and


8




a


of the first four-way switching valve


8


, the fourth opening/closing valve


440


, the switching ports


81




d


and


81




a


of the second four-way switching valve


81


, and the low-pressure refrigerant suction pipe


130


. The high-temperature high-pressure refrigerant gas produced in the refrigerant compressing section


110


is supplied to the electric motor chamber


103


through the high-pressure refrigerant discharge pipe


140


, the switching ports


81




b


and


81




c


of the second four-way switching valve


81


, and the first refrigerant flow path pipe


150


, and is supplied from the subsidiary electric motor chamber


104


to the outdoor-side heat exchanger


9


through the second refrigerant flow path pipe


160


, the second opening/closing valve


420


, and the switching ports


8




b


and


8




c


of the first four-way switching valve


8


. Thus, at the time of cooling operation, the compressor


400


is operated as the internal high pressure type.




Contrarily, at the time of heating operation, as shown in

FIG. 18



b


, both of the first and second four-way switching valves


8


and


81


are switched so that the second switching port


8




b


,


81




b


thereof communicates with the fourth switching port


8




d


,


81




d


, and at the same time the first switching port


8




a


,


81




a


communicates with the third switching port


8




c


,


81




c


. Also, the first opening/closing valve


410


and the third opening/closing valve


430


are opened, and the second opening/closing valve


420


and the fourth opening/closing valve


440


are closed.




Thereby, the low-pressure refrigerant gas from the outdoor-side heat exchanger


9


flows to the side of the subsidiary electric motor chamber


104


through the switching ports


8




c


and


8




a


of the first four-way switching valve


8


, the first opening/closing valve


410


, and the second refrigerant flow path pipe


160


, and is sucked into the refrigerant compressing section


110


from the electric motor chamber


103


through the first refrigerant flow path pipe


150


, the switching ports


81




c


and


81




a


of the second four-way switching valve


81


, and the low-pressure refrigerant suction pipe


130


. The high-temperature high-pressure refrigerant gas produced in the refrigerant compressing section


110


is supplied to the indoor-side heat exchanger


11


through the high-pressure refrigerant discharge pipe


140


, the switching ports


81




b


and


81




d


of the second four-way switching valve


81


, the third opening/closing valve


430


, and the switching ports


8




b


and


8




d


of the first four-way switching valve


8


. Thus, at the time of heating operation, the compressor


400


is operated as the internal low pressure type.




After a predetermined time has passed from the start of heating operation, as shown in

FIG. 18



c


, the first four-way switching valve


8


still being in the switching state at the time of heating operation, the second four-way switching valve


81


is switched to the state of cooling operation. Specifically, the switching ports


81




a


and


81




d


are caused to communicate with each other, and the switching ports


81




b


and


81




c


are caused to communicate with each other. Thereby, the compressor


400


can be operated as the internal high pressure type.




Each opening/closing valve may be a solenoid valve, but it should preferably be a check valve because the check valve does not require electrical valve control.




At this time, a check valve in which the direction from the side of the first four-way switching valve


8


toward the electric motor chamber


103


is the forward direction is used as the first opening/closing valve


410


, a check valve in which the direction from the side of the electric motor chamber


103


toward the first four-way switching valve


8


is the forward direction is used as the second opening/closing valve


420


, a check valve in which the direction from the side of the second four-way switching valve


81


toward the first four-way switching valve


8


is the forward direction is used as the third opening/closing valve


430


, and a check valve in which the direction from the side of the first four-way switching valve


8


toward the second four-way switching valve


81


is the forward direction is used as the fourth opening/closing valve


440


.




The fourth invention can be modified as shown in

FIGS. 19



a


to


19




c


. In this modification as well, cooling operation by means of the internal high pressure type (

FIG. 19



a


), heating operation by means of the internal low pressure type (

FIG. 19



b


), and further heating operation by means of the internal high pressure type (

FIG. 19



c


) can be performed by using one compressor


400


.




In this modification, unlike the above-described embodiment, the second refrigerant flow path pipe


160


and the pipe


180


do not branch, and the opening/closing valves are not used. The second refrigerant flow path pipe


160


is connected directly to the second switching port


8




b


of the first four-way switching valve


8


, and the pipe


180


is also connected directly to the first switching port


8




a


of the first four-way switching valve


8


.




At the time of cooling operation, as shown in

FIG. 19



a


, the low-pressure refrigerant suction pipe


130


and the pipe


180


are caused to communicate with each other and the high-pressure refrigerant discharge pipe


140


and the first refrigerant flow path pipe


150


are caused to communicate with each other by the second four-way switching valve


81


. Also, the second refrigerant flow path pipe


160


and the outdoor-side heat exchanger


9


are caused to communicate with each other and the pipe


180


and the indoor-side heat exchanger


11


are caused to communicate with each other by the first four-way switching valve


8


. Thereby, the compressor


400


is operated as the internal high pressure type.




At the time of heating operation, as shown in

FIG. 19



b


, only the second four-way switching valve


81


is switched so that the high-pressure refrigerant discharge pipe


140


and the pipe


180


communicate with each other and the first refrigerant flow path pipe


150


and the low-pressure refrigerant suction pipe


130


communicate with each other. The first four-way switching valve


8


remains in the state of cooling operation. Thereby, the compressor


400


is operated as the internal low pressure type.




After a predetermined time has passed from the start of heating operation, as shown in

FIG. 19



c


, the second four-way switching valve


81


is switched so that the low-pressure refrigerant suction pipe


130


and the pipe


180


communicate with each other and the high-pressure refrigerant discharge pipe


140


and the first refrigerant flow path pipe


150


communicate with each other. Also, the first four-way switching valve


8


is switched so that the second refrigerant flow path pipe


160


and the indoor-side heat exchanger


11


communicate with each other and the outdoor-side heat exchanger


9


and the pipe


180


communicate with each other. Thereby, the heating operation can be continued with the compressor


400


being operated as the internal high pressure type.




The invention has been described above in detail with reference to some embodiments. Those skilled in the art who have understood the details of the present invention will easily think out the modifications, changes, and equivalence. Therefore, the scope of the present invention should be the accompanying claims and the equivalent scope thereof.



Claims
  • 1. An air conditioner having a refrigerant circuit comprising:a compressor; a four-way switching valve; an outdoor-side heat exchanger and an indoor-side heat exchanger which are selectively switched and connected to the high-pressure refrigerant discharge side and the low-pressure refrigerant suction side of said compressor via said four-way switching valve; and an expansion valve connected between said outdoor-side heat exchanger and said indoor-side heat exchanger, characterized in that said compressor has an enclosed vessel, said enclosed vessel contains a refrigerant compressing section having a suction port and a discharge port and an electric motor for driving said refrigerant compressing section, and the interior of said enclosed vessel is divided airtightly into two chambers, an electric motor chamber containing said electric motor and a refrigerant discharge chamber on the side of the discharge port of said refrigerant compressing section, by said refrigerant compressing section serving as partitioning means, and a subsidiary electric motor chamber is formed by a bearer plate pivotally supporting a driving shaft of said electric motor on the side opposite to the refrigerant discharge chamber of said electric motor chamber; a low-pressure refrigerant suction pipe drawn from a first switching port on the low-pressure refrigerant discharge side of said four-way switching valve branches into two pipes, one branch pipe is connected to the suction port of said refrigerant compressing section as a first low-pressure refrigerant suction pipe having a first opening/closing valve, and the other branch pipe is connected to said electric motor chamber as a second low-pressure refrigerant suction pipe having a second opening/closing valve; a high-pressure refrigerant discharge pipe connected to a second switching port on the high-pressure refrigerant introduction side of said four-way switching valve branches into two pipes, one branch pipe is connected to said subsidiary electric motor chamber as a first high-pressure refrigerant discharge pipe having a third opening/closing valve, and the other branch pipe is connected to said refrigerant discharge chamber as a second high-pressure refrigerant discharge pipe having a fourth opening/closing valve; further, a first bypass pipe having a fifth opening/closing valve and reaching said subsidiary electric motor chamber branches off from the downstream side of said first opening/closing valve of said first low-pressure refrigerant suction pipe, and a second bypass pipe having a sixth opening/closing valve is provided between said electric motor chamber and said refrigerant discharge chamber; a third switching port of said four-way switching valve is connected with said outdoor-side heat exchanger, and a fourth switching port of said four-way switching valve is connected with said indoor-side heat exchanger; at the time of cooling operation, said second switching port and said third switching port are caused to communicate with each other and said first switching port and said fourth switching port are caused to communicate with each other by said four-way switching valve, and said first opening/closing valve, said third opening/closing valve, and said sixth opening/closing valve are opened, and said second opening/closing valve, said fourth opening/closing valve, and said fifth opening/closing valve are closed, whereby said compressor is operated as an internal high pressure type; and at the time of heating operation, said second switching port and said fourth switching port are caused to communicate with each other and said first switching port and said third switching port are caused to communicate with each other by said four-way switching valve, and said second opening/closing valve, said fourth opening/closing valve, and said fifth opening/closing valve are opened, and said first opening/closing valve, said third opening/closing valve, and said sixth opening/closing valve are closed, whereby said compressor is operated as an internal low pressure type.
  • 2. The air conditioner according to claim 1, characterized in that after a predetermined time has passed from the start of heating operation, while said second switching port and said fourth switching port still communicate with each other and said first switching port and said third switching port still communicate with each other, said first opening/closing valve, said third opening/closing valve, and said sixth opening/closing valve are opened, and said second opening/closing valve, said fourth opening/closing valve, and said fifth opening/closing valve are closed, whereby said compressor is operated as the internal high pressure type.
  • 3. The air conditioner according to claim 1, characterized in that each of said first opening/closing valve and/or said third opening/closing valve, said fourth opening/closing valve, said fifth opening/closing valve, and said sixth opening/closing valve is a solenoid valve.
  • 4. The air conditioner according to claim 1, characterized in that said second opening/closing valve and/or said third opening/closing valve is a check valve.
  • 5. An air conditioner having a refrigerant circuit comprising:a compressor; a four-way switching valve; an outdoor-side heat exchanger and an indoor-side heat exchanger which are selectively switched and connected to the high-pressure refrigerant discharge side and the low-pressure refrigerant suction side of said compressor via said four-way switching valve; and an expansion valve connected between said outdoor-side heat exchanger and said indoor-side heat exchanger, characterized in that said compressor has an enclosed vessel, said enclosed vessel contains a refrigerant compressing section having a suction port and a discharge port and an electric motor for driving said refrigerant compressing section, and the interior of said enclosed vessel is divided airtightly into two chambers, an electric motor chamber containing said electric motor and a refrigerant discharge chamber on the side of the discharge port of said refrigerant compressing section, by said refrigerant compressing section serving as partitioning means, and a subsidiary electric motor chamber is formed by a bearer plate pivotally supporting a driving shaft of said electric motor on the side opposite to the refrigerant discharge chamber of said electric motor chamber; a low-pressure refrigerant suction pipe drawn from a first switching port on the low-pressure refrigerant discharge side of said four-way switching valve branches into two pipes, one branch pipe is connected to the suction port of said refrigerant compressing section as a first low-pressure refrigerant suction pipe having a first opening/closing valve, the other branch pipe is connected to said electric motor chamber as a second low-pressure refrigerant suction pipe having a second opening/closing valve, a first check valve for checking a reverse flow from said electric motor chamber side is provided at the pipe end of said second low-pressure refrigerant suction pipe, and further a first bypass pipe having a second opening/closing valve is provided between the downstream side of said first opening/closing valve of said first low-pressure refrigerant suction pipe and said electric motor chamber; a second switching port on the high-pressure refrigerant introduction side of said four-way switching valve and said subsidiary electric motor chamber are connected to each other by a high-pressure refrigerant discharge pipe, said refrigerant discharge chamber and said electric motor chamber are connected to each other via a second bypass pipe having a third opening/closing valve, and further a third bypass pipe having a fourth opening/closing valve is provided between the upstream side of said third opening/closing valve of said second bypass pipe and said subsidiary electric motor chamber, said bearer plate partitioning into said electric motor chamber and said subsidiary electric motor chamber is provided with a second check valve for checking a reverse flow from the subsidiary electric motor chamber side to the electric motor chamber side; a third switching port of said four-way switching valve is connected with said outdoor-side heat exchanger, and a fourth switching port of said four-way switching valve is connected with said indoor-side heat exchanger; at the time of cooling operation, said second switching port and said third switching port are caused to communicate with each other and said first switching port and said fourth switching port are caused to communicate with each other by said four-way switching valve, and said first opening/closing valve and said third opening/closing valve are opened, and said second opening/closing valve and said fourth opening/closing valve are closed, whereby said compressor is operated as an internal high pressure type; and at the time of heating operation, said second switching port and said fourth switching port are caused to communicate with each other and said first switching port and said third switching port are caused to communicate with each other by said four-way switching valve, and said second opening/closing valve and said fourth opening/closing valve are opened, and said first opening/closing valve and said third opening/closing valve are closed, whereby said compressor is operated as an internal low pressure type.
  • 6. The air conditioner according to claim 5, characterized in that after a predetermined time has passed from the start of heating operation, while said second switching port and said fourth switching port still communicate with each other and said first switching port and said third switching port still communicate with each other, said first opening/closing valve and said third opening/closing valve are opened, and said second opening/closing valve and said fourth opening/closing valve are closed, whereby said compressor is operated as the internal high pressure type.
  • 7. The air conditioner according to claim 5, characterized in that said first opening/closing valve and said second opening/closing valve are interlocking valves in which when either one of the valves is opened, the other valve is closed.
  • 8. The air conditioner according to claim 5, characterized in that said third opening/closing valve and said fourth opening/closing valve are interlocking valves in which when either one of the valves is opened, the other valve is closed.
  • 9. An air conditioner having a refrigerant circuit comprising:a compressor; a four-way switching valve; an outdoor-side heat exchanger and an indoor-side heat exchanger which are selectively switched and connected to the high-pressure refrigerant discharge side and the low-pressure refrigerant suction side of said compressor via said four-way switching valve; and an expansion valve connected between said outdoor-side heat exchanger and said indoor-side heat exchanger, characterized in that said compressor has an enclosed vessel, said enclosed vessel contains a refrigerant compressing section having a suction port and a discharge port and an electric motor for driving said refrigerant compressing section, and the interior of said enclosed vessel is divided airtightly into two chambers, an electric motor chamber containing said electric motor and a refrigerant discharge chamber on the side of the discharge port of said refrigerant compressing section, by said refrigerant compressing section serving as partitioning means; said refrigerant compressing section is provided with a refrigerant inflow port reaching said suction port from the side of the electric motor chamber separately from said suction port, said suction port is connected with a low-pressure refrigerant suction pipe drawn from a first switching port on the low-pressure refrigerant discharge side of said four-way switching valve, and said refrigerant inflow port is provided with a first opening/closing valve; said electric motor chamber and a second switching port on the high-pressure refrigerant introduction side of said four-way switching valve are connected to each other by a high-pressure refrigerant discharge pipe having a second opening/closing valve, said refrigerant discharge chamber and the downstream side of said second opening/closing valve of said high-pressure refrigerant discharge pipe are connected to each other by a first bypass pipe having a third opening/closing valve, and further a second bypass pipe having a fourth opening/closing valve is provided between the upstream side of said third opening/closing valve of said first bypass pipe and said electric motor chamber; a third switching port of said four-way switching valve is connected with said outdoor-side heat exchanger, and a fourth switching port of said four-way switching valve is connected with said indoor-side heat exchanger; at the time of cooling operation, said second switching port and said third switching port are caused to communicate with each other and said first switching port and said fourth switching port are caused to communicate with each other by said four-way switching valve, and said second opening/closing valve and said fourth opening/closing valve are opened, and said first opening/closing valve and said third opening/closing valve are closed, whereby said compressor is operated as an internal high pressure type; and at the time of heating operation, said second switching port and said fourth switching port are caused to communicate with each other and said first switching port and said third switching port are caused to communicate with each other by said four-way switching valve, and said first opening/closing valve and said third opening/closing valve are opened, and said second opening/closing valve and said fourth opening/closing valve are closed, whereby said compressor is operated as an internal low pressure type.
  • 10. The air conditioner according to claim 9, characterized in that after a predetermined time has passed from the start of heating operation, while said second switching port and said fourth switching port still communicate with each other and said first switching port and said third switching port still communicate with each other, said second opening/closing valve and said fourth opening/closing valve are opened, and said first opening/closing valve and said third opening/closing valve are closed, whereby said compressor is operated as the internal high pressure type.
  • 11. The air conditioner according to claim 9, characterized in that both of said third opening/closing valve and said fourth opening/closing valve are solenoid valves.
  • 12. The air conditioner according to claim 11, characterized in that said third opening/closing valve and said fourth opening/closing valve are interlocking valves in which when either one of the valves is opened, the other valve is closed.
  • 13. The air conditioner according to claim 9, characterized in that both of said first opening/closing valve and said second opening/closing valve are check valves.
  • 14. An air conditioner having a refrigerant circuit comprising:a compressor; a four-way switching valve; an outdoor-side heat exchanger and an indoor-side heat exchanger which are selectively switched and connected to the high-pressure refrigerant discharge side and the low-pressure refrigerant suction side of said compressor via said four-way switching valve; and an expansion valve connected between said outdoor-side heat exchanger and said indoor-side heat exchanger, characterized in that said compressor has an enclosed vessel, said enclosed vessel contains a refrigerant compressing section having a suction port and a discharge port and an electric motor for driving said refrigerant compressing section, and the interior of said enclosed vessel is divided airtightly into two chambers, an electric motor chamber containing said electric motor and a refrigerant discharge chamber on the side of the discharge port of said refrigerant compressing section, by said refrigerant compressing section serving as partitioning means; a second four-way switching valve for switching the flow direction of a high-pressure refrigerant discharged from said refrigerant discharge chamber is provided separately from a first four-way switching valve for switching the flow direction of a refrigerant with respect to said outdoor-side heat exchanger and indoor-side heat exchanger; the suction port of said refrigerant compressing section is connected with a low-pressure refrigerant suction pipe drawn from a first switching port on the low-pressure refrigerant discharge side of said second four-way switching valve, said refrigerant discharge chamber is connected with a high-pressure refrigerant discharge pipe reaching a second switching port on the high-pressure refrigerant introduction side of said second four-way switching valve, and said electric motor chamber is connected with a first refrigerant flow path pipe and a second refrigerant flow path pipe at different positions of said electric motor chamber; said first refrigerant flow path pipe is connected to a third switching port of said second four-way switching valve, and said second refrigerant flow path pipe, a fourth switching port of said second four-way switching valve, said outdoor-side heat exchanger, and said indoor-side heat exchanger each are connected to a predetermined switching port of said first four-way switching valve; at the time of cooling operation, said first switching port and said fourth switching port of said second four-way switching valve are caused to communicate with each other and at the same time said second switching port and said third switching port of said second four-way switching valve are caused to communicate with each other, and also said second refrigerant flow path pipe and said outdoor-side heat exchanger are caused to communicate with each other and at the same time the fourth switching port of said second four-way switching valve and said indoor-side heat exchanger are caused to communicate with each other by said first four-way switching valve, whereby said compressor is operated as an internal high pressure type; and at the time of heating operation, said second switching port and said fourth switching port of said second four-way switching valve are caused to communicate with each other and at the same time said first switching port and said third switching port of said second four-way switching valve are caused to communicate with each other, and also said second refrigerant flow path pipe and said outdoor-side heat exchanger are caused to communicate with each other and at the same time the fourth switching port of said second four-way switching valve and said indoor-side heat exchanger are caused to communicate with each other by said first four-way switching valve, whereby said compressor is operated as an internal low pressure type.
  • 15. The air conditioner according to claim 14, characterized in that after a predetermined time has passed from the start of heating operation, said first switching port and said fourth switching port of said second four-way switching valve are caused to communicate with each other and at the same time said second switching port and said third switching port of said second four-way switching valve are caused to communicate with each other, and also said second refrigerant flow path pipe and said indoor-side heat exchanger are caused to communicate with each other and at the same time the fourth switching port of said second four-way switching valve and said outdoor-side heat exchanger are caused to communicate with each other by said first four-way switching valve, whereby said compressor is operated as the internal high pressure type.
  • 16. The air conditioner according to claim 14, characterized in that said second refrigerant flow path pipe branches into two pipes, one first branch pipe is connected to a first switching port of said first four-way switching valve via a first opening/closing valve, and the other second branch pipe is connected to a second switching port of said first four-way switching valve via a second opening/closing valve;a connecting pipe drawn from the fourth switching port of said second four-way switching valve also branches into two pipes, one third branch pipe is connected to the second switching port of said first four-way switching valve via a third opening/closing valve, and the other fourth branch pipe is connected to the first switching port of said first four-way switching valve via a fourth opening/closing valve; a third switching port of said first four-way switching valve is connected with said outdoor-side heat exchanger, and a fourth switching port thereof is connected with said indoor-side heat exchanger; at the time of cooling operation, both of said first and second four-way switching valves are switched so that said first switching port and said fourth switching port communicate with each other and at the same time said second switching port and said third switching port communicate with each other, said second opening/closing valve and said fourth opening/closing valve are opened, and said first opening/closing valve and said third opening/closing valve are closed, whereby said compressor is operated as an internal high pressure type; and at the time of heating operation, both of said first and second four-way switching valves are switched so that said second switching port and said fourth switching port communicate with each other and at the same time said first switching port and said third switching port communicate with each other, said first opening/closing valve and said third opening/closing valve are opened, and said second opening/closing valve and said fourth opening/closing valve are closed, whereby said compressor is operated as an internal low pressure type.
  • 17. The air conditioner according to claim 16, characterized in that after a predetermined time has passed from the start of heating operation, said first four-way switching valve still being in the switching state at the time of heating operation, said second four-way switching valve is switched to the cooling operation state, said second opening/closing valve and said fourth opening/closing valve are opened, and said first opening/closing valve and said third opening/closing valve are closed, whereby said compressor is operated as the internal high pressure type.
  • 18. The air conditioner according to claim 16, characterized in that said first opening/closing valve is a check valve in which the direction from the side of said first four-way switching valve toward the side of said electric motor chamber is the forward direction, said second opening/closing valve is a check valve in which the direction from the side of said electric motor chamber toward the side of said first four-way switching valve is the forward direction, said third opening/closing valve is a check valve in which the direction from the side of said second four-way switching valve toward the side of said first four-way switching valve is the forward direction, and said fourth opening/closing valve is a check valve in which the direction from the side of said first four-way switching valve toward the side of said second four-way switching valve is the forward direction.
  • 19. An air conditioner having a refrigerant circuit comprising:a compressor; a four-way switching valve; an outdoor-side heat exchanger and an indoor-side heat exchanger which are selectively switched and connected to a high-pressure refrigerant discharge side and a low-pressure refrigerant suction side of said compressor through said four-way switching valve; and an expansion valve connected between said outdoor-side heat exchanger and said indoor-side heat exchanger, said compressor having an enclosed vessel, said enclosed vessel containing a refrigerant compressing section having a suction port and a discharge port and an electric motor for driving said refrigerant compressing section, an interior of said enclosed vessel being divided airtightly into an electric motor chamber containing said electric motor and a refrigerant discharge chamber on a side of the discharge port of said refrigerant compressing section by said refrigerant compressing section serving as partitioning means, said air, conditioner being able to suitably select one o:E following three refrigerant flow paths: a first refrigerant flow path wherein a high-temperature high-pressure refrigerant gas produced at said refrigerant compressing section is passed through said electric motor chamber and then supplied on a side of said outdoor-side heat exchanger through said four-way switching valve, and at the same time, a low-pressure refrigerant gas returned from a side of said indoor-side heat exchanger through said four-way switching valve is introduced into the suction port of the refrigerant compressing section to carry out a cooling operation with the compressor as an internal high pressure, a second refrigerant flow path wherein the high-temperature high-pressure refrigerant gas produced at said refrigerant compressing section is supplied on a side of said indoor-side heat exchanger through said four-way switching valve, and at the same time, the low-pressure refrigerant gas returned from a side of said outdoor-side heat exchanger through said four-way switching valve is passed through the electric motor chamber and then introduced into the suction port of the refrigerant compressing section to carry out a heating operation with the compressor as an internal low pressure, and a third refrigerant flow path wherein the high-temperature high-pressure refrigerant gas produced at said refrigerant compressing section is passed through said electric motor chamber and then supplied on the side of said indoor-side heat exchanger through said four-way switching valve, and at the same time, the low-pressure refrigerant gas returned from the side of said outdoor-side heat exchanger through said four-way switching valve is introduced into the suction port of the refrigerant compressing section to carry out the heating operation with the compressor as an internal high pressure.
Priority Claims (5)
Number Date Country Kind
10-279441 Sep 1998 JP
10-279442 Sep 1998 JP
10-278888 Sep 1998 JP
10-278889 Sep 1998 JP
10-348082 Dec 1998 JP
CROSS REFERENCE TO RELATED APPLICATION

This is a divisional application of Ser. No. 09/394,714 filed on Sep. 13, 1999, now U.S. Pat. No. 6,202,428.

US Referenced Citations (8)
Number Name Date Kind
2978881 Alsing Apr 1961
2979917 Meagher Apr 1961
3006163 Kooiker Oct 1961
3006164 McMillan Oct 1961
4484454 Sugiyama Nov 1984
5674053 Paul et al. Oct 1997
5716197 Paul et al. Feb 1998
5769610 Paul et al. Jun 1998