The invention relates to wind turbine generators. The invention may include shaping of structural parts of the wind turbine generator stator and rotor for enhancing cooling of the generator. The invention is applicable to both offshore and onshore applications.
It is known to position wind turbines both offshore (at sea) and onshore (on land) for the purpose of converting wind energy into other forms of energy, such as electrical energy.
The invention provides a wind turbine generator as set out in the accompanying claims.
The invention may include shaping of structural parts of the wind turbine generator stator and rotor for enhancing cooling of the generator.
The invention is particularly applicable to wind turbine axial flux generators. An axial flux generator is a generator in which lines of magnetic flux between magnets, through the electrical coils, are directed generally in an axial direction, that is generally parallel with the axis of rotation of the generator rotor.
Embodiments of the invention will now be described, by way of example only, with reference to the accompanying drawings.
The main components of the wind turbine rotor 1 are a blade rotor 2, and a generator comprising a generator rotor 4 and a stator 8. The blade rotor 2 comprises three blades 5 which are each supported by a blade support 12 as will be described below.
The blade rotor 2 comprises three blades 5 (shown in
Each blade support 12 is provided with a pitch bearing 16 which allows a blade 5 attached to the blade support 12 to be rotated by a pitch motor 18. This allows the pitch of each blade 5 to be adjusted to suit the current wind speed and power requirements. In alternative embodiments the pitch bearing 16 can be omitted, and the blades 5 could for example be integrally formed with the blade supports 12.
The generator rotor 4 is supported by a number of supporting members 20, which are arranged as a number of A-frames, and which are rotatably mounted on said shaft 6. The generator rotor 4 carries permanent magnets around its circumference. The stator 8 is provided with electrical windings which are positioned within the magnets of the generator rotor 4. Relative movement between the magnets of the generator rotor 4 and the electrical coils of the stator 8 generates electricity. The electrical coils may or may not have an iron core.
We first consider the components which make up the stator 8. The stator 8 comprises the stator spokes 10 which support a stator support rim 30, which in turn supports a windings housing 32 which contains the electrical windings 34 of the stator 8. The windings housing 32 has a cross-sectional shape, as shown in
We next describe features of
On the up-wind (wind-facing) side of the generator an inner wind guide 50 is fixed to the inner edge of the magnets 48, or alternatively to the magnet support structure 46, adjacent the inner rim section 40 of the windings housing 32. Also on the wind-facing side of the generator, an outer wind guide 52 is fixed to the outer edge of the magnets 48, or alternatively to the magnet support structure 46, adjacent the outer rim section 38 of the windings housing 32. During operation the inner wind guide 50 directs a fast flow of air into the air gap between the magnets 48 and the windings housing 32 on the wind-facing side of the generator. The outer wind guide 52 protects the outer rim section 38 of the windings housing from the oncoming wind, and thus creates a lower pressure, ie. suction, which allows the flow of air through the air gap and out of the air gap around the outer rim section 38 of the windings housing 32, as shown by the air flow arrows in
On the down-wind side of the generator, a downstream wind guide 54 is fixed to the stator support rim 30 and curves out around the inner rim section 40 of the windings housing 32, so as to direct air which has flowed through the gaps 44 into the air gap between the windings housing 32 and the magnets 48 on the downstream side of the generator, as shown by the air flow arrows in
An alternative embodiment is shown in
Although the embodiments of
We comment here on the size of the wind guides. Preferably, in a cross-sectional view taken in a plane which contains said axis, any one or more of said wind guides has a length which is at least 15 percent of the radial length of the air gap between the stator and magnets.
We comment here on the speed of air flowing through the air gap during use. Preferably, for a wind speed of at least 14 m/s, the wind guide or guides cause air to flow through the air gap(s) at a speed of at least 15 m/s.
Various variations are possible. For example, the inner wind guide 50 could be fixed to the stator 8, for example to the stator support rim 30, instead of to the generator rotor 4, so as to direct wind into the upstream air gap.
Although the preferred embodiment uses magnets on the generator rotor and electrical windings on the stator, it is possible to reverse these and use electrical windings on the generator rotor and magnets on the stator. This option is generally less preferred as it would require slip rings on the generator rotor to conduct the generated electricity away from the generator rotor. An example of such an alternative embodiment, the embodiment of
The shapes of the wind guides 50, 52, 54, 58 in the embodiments of
Number | Date | Country | Kind |
---|---|---|---|
1116546.1 | Sep 2011 | GB | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2012/068925 | 9/26/2012 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/045473 | 4/4/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2050129 | Scholes | Aug 1936 | A |
20080292467 | Borgen | Nov 2008 | A1 |
20100133838 | Borgen | Jun 2010 | A1 |
20110193349 | Borgen et al. | Aug 2011 | A1 |
Number | Date | Country |
---|---|---|
58791 | Sep 1982 | EP |
2494925 | Mar 2013 | GB |
Number | Date | Country | |
---|---|---|---|
20140217744 A1 | Aug 2014 | US |