Air distillation and electricity generation plant and corresponding process

Abstract
A plant (1) includes, an air distillation apparatus (4) having at least one outlet (25) for a nitrogen-rich fluid and an outlet (32) for a product to be delivered in the liquid state and a gas turbine unit (3) having a combustion chamber (17) and an electricity-generating turbine (18), the intake of which is connected to an outlet of the combustion chamber. An expander (13) for expanding a nitrogen-rich fluid in order to generate refrigerating power allowing the liquid product to be delivered, the air distillation apparatus being connected in parallel to the expander (13) and to the intake of an electricity-delivering turbine in order to feed them with at least one nitrogen-rich fluid. Control elements (41,42) are provided for controlling the flow rates of the nitrogen-rich fluid streams sent to the expander (13) and to the electricity-generating turbine (18), respectively, and determination elements (40) for determining the electrical power to be generated by the electricity-generating turbine (18).
Description




BACKGROUND OF THE INVENTION




The present invention relates to a plant for distilling air and for generating electricity, of the type comprising, on the one hand, an air distillation apparatus having at least one outlet for a nitrogen-rich fluid and an outlet for a product to be delivered in the liquid state and, on the other hand, a gas turbine unit comprising a combustion chamber and an electricity-generating turbine, the intake of which is connected to an outlet of the combustion chamber, the plant furthermore comprising means for expanding a nitrogen-rich fluid in order to generate refrigerating power allowing the said liquid product to be delivered, the air distillation apparatus being connected in parallel to these expansion means and to the intake of the electricity-delivering turbine in order to feed them with at least one nitrogen-rich fluid.




It is frequent on industrial sites for a gas turbine unit to be alongside an air distillation apparatus. The gas turbine unit and the air distillation apparatus generally operate independently.




The gas turbine unit contributes, for example, to the supply of an electrical distribution network.




The air distillation apparatus delivers products coming from the air distillation, typically a nitrogen-rich fluid and an oxygen-rich fluid. At least one of these products is usually delivered in the liquid state, making it easier to store it.




The maximum instantaneous electrical power that a gas turbine unit can deliver is generally limited by the characteristics of the compressor that such a unit usually has upstream of its combustion chamber.




A plant of the aforementioned type is also known from EP-A-0 465 193. In this plant, the stream of nitrogen-rich fluid sent to the electricity-generating turbine is used to increase the maximum power delivered by the gas turbine unit above the limit imposed by the characteristics of the compressor of this unit. Thus, it is possible, by virtue of this characteristic, to modify a plant for distilling air and for generating electricity in order to meet a permanent increase in the requirements of consumers of the electrical distribution network.




However, the plant described in that document does not allow it to be adapted to the seasonal variations in the requirements of the consumers of such a network.




SUMMARY OF THE INVENTION




It is one of the objects of the invention to solve this problem by providing a plant of the aforementioned type allowing it to be easily adapted to the temporary variations in the electricity requirements of the consumers of a distribution network supplied by this plant.




For this purpose, the subject of the invention is a plant of the aforementioned type, characterized in that it comprises control means for controlling the flow rates of the nitrogen-rich fluid streams sent to the expansion means and to the electricity-generating turbine, respectively, and determination means for determining the electrical power to be generated by the electricity-generating turbine.




Depending on the particular embodiments, the plant may comprise one or more of the following characteristics, taken separately or in any technically possible combinations:




the expansion means comprise a turbine;




the plant includes a heat exchanger for cooling the liquid product to be delivered, connected to the outlet of the expansion means;




the plant includes a heat exchanger for cooling the air to be distilled, connected to an outlet of the expansion means;




the plant includes means for compressing a nitrogen-rich fluid, these being placed between the air distillation apparatus and the intake of the electricity-generating turbine;




the plant includes means for warming a nitrogen-rich fluid, these being placed between the air distillation apparatus and the intake of the electricity-generating turbine;




the air distillation apparatus is connected in parallel to the expansion means and to the electricity-generating turbine via the same nitrogen-rich fluid outlet;




the plant includes a control unit for controlling the flow rate means, which unit is designed to increase the flow rate of the nitrogen-rich fluid stream feeding the electricity-generating turbine when the electrical power to be generated increases; and




the control unit is designed to decrease the flow rate of the nitrogen-rich fluid stream feeding the electricity-generating turbine when the electrical power to be generated decreases.




The subject of the invention is also a process for generating electricity and for distilling air by means of a plant as defined above, characterized in that the flow rate of the nitrogen-rich fluid stream feeding the electricity-generating turbine is increased when the electrical power to be generated increase.




According to a variant, the flow rate of the nitrogen-rich fluid stream feeding the electricity-generating turbine is decreased when the electrical power to be generated decreases.











BRIEF DESCRIPTION OF THE DRAWINGS




The invention will be more clearly understood on reading the description which follows, given solely by way of example and with reference to the appended figures in which:





FIG. 1

is a schematic view of a plant according to the invention and





FIG. 2

is a schematic view of a variant of the plant of FIG.


1


.











DESCRIPTION OF THE PREFERRED EMBODIMENTS





FIG. 1

shows a plant


1


for distilling air and for delivering electricity, which comprises an air distillation unit


2


and a gas turbine unit


3


.




The air distillation unit


2


essentially comprises:




an air distillation apparatus in the form of a double column


4


comprising a medium-pressure column


5


, a low-pressure column


6


and a reboiler-condenser


7


;




a main heat-exchange line


8


;




two auxiliary heat exchangers


9


and


10


;




an air compressor


11


;




an adsorption-type purification apparatus


12


;




a turbine


13


; and




a liquid-oxygen storage tank


14


.




The gas turbine unit


3


essentially comprises:




an air compressor


16


;




a combustion chamber


17


;




a turbine


18


;




an alternator


19


driven by a shaft


20


common to the compressor


16


and to the turbine


18


; and




a compressor


21


.




The overall operation of the air distillation unit


2


is as follows.




The air to be distilled, precompressed by the compressor


11


and purified by the apparatus


12


, is cooled by the main heat-exchange line


8


down to near its dew point and then introduced into the bottom of the medium-pressure column


5


.




The reboiler-condenser


7


boils off liquid oxygen, generally having a purity greater than 90% and typically 99.5%, at the bottom of the low-pressure column


6


by condensation of the nitrogen


7


at the top of the medium-pressure column


5


.




“Rich liquid” LR (air enriched with oxygen), withdrawn from the bottom of the medium-pressure column


5


, is subcooled on passing through the auxiliary heat exchanger


10


, then expanded in an expansion valve


22


and finally injected at an intermediate level into the low-pressure column


6


.




“Lean liquid” LP (more or less pure nitrogen), withdrawn from the top of the medium-pressure column


5


, is subcooled on passing through the auxiliary heat exchanger


10


, then expanded in an expansion valve


23


and finally injected into the top of the low-pressure column


6


.




Impure or “waste” nitrogen NR, withdrawn from the top of the low-pressure column


6


via an outlet


25


, is warmed on passing through the auxiliary heat exchanger


10


and then sent through a series of passages


26


in the main heat-exchange line


8


.




The waste nitrogen passes through these passages


26


, cooling the air to be distilled. This waste nitrogen is divided, within the passages


26


, into two streams, the first of which passes through the passages


26


over their entire length and is then sent to the gas turbine unit


3


via a line


27


, as described below.




The second stream passes through only an upstream portion of the passages


26


and is then sent via an intermediate outlet


28


and a line


29


to the turbine


13


. This second waste nitrogen stream is expanded therein, and therefore cooled, and then passes through the auxiliary heat exchanger


9


where it is warmed before being sent to the main heat-exchange line


8


so as again to help to cool the air to be distilled in a series of passages separate from the passages


26


.




Gaseous oxygen, withdrawn from the bottom of the low-pressure column


6


via an outlet


30


, is warmed on passing through the main heat-exchange line


8


and delivered via a production line


31


.




Liquid oxygen is withdrawn from the bottom of the low-pressure column


6


via an outlet


32


and then sent to the auxiliary heat exchanger


9


where it is subcooled by the second waste nitrogen stream. Next, this liquid oxygen is expanded in an expansion valve


33


, to a pressure slightly above atmospheric pressure, before feeding the tank


14


.




The overall operation of the gas turbine unit


3


is as follows. Air is compressed by the compressor


16


and then sent to the combustion chamber


17


into which a pressurised fuel such as natural gas is introduced via a line


35


.




The gases produced by the combustion in the chamber


17


are sent to the intake of the turbine


18


where they expand, driving the compressor


16


and the alternator


19


. The alternator


19


supplies, for example, an electrical distribution network.




The first waste nitrogen stream flowing in the line


27


is compressed in the compressor


21


, where it reaches approximately the pressure of the gases produced by the chamber


17


, and is then sent to the intake of the turbine


18


, where it expands with the gases produced by the combustion chamber


17


.




The waste nitrogen outlet


25


of the low-pressure column


6


is therefore connected in parallel to the turbine


18


, downstream of the combustion chamber


17


, and to the turbine


13


.




Thus, the waste nitrogen can be used to increase the electrical power delivered by the gas turbine unit


3


, by increasing the flow rate of the flow through the turbine


18


, but also to deliver liquid oxygen by virtue of its expansion in the turbine


13


which produces the necessary refrigerating power.




In order to assign the waste nitrogen to electricity generation or to the liquid oxygen production, the plant


1


furthermore includes:




determination means


40


for determining the instantaneous electrical power delivered by the alternator


19


;




a control valve


41


for controlling the flow rate of the first waste nitrogen stream, placed in the line


27


;




a control valve


42


for controlling the flow rate of the second waste nitrogen stream, placed in the line


29


;




an electronic control unit


43


electrically connected to the determination means


40


and to the control valves


41


and


42


; and




determination means


44


for determining the instantaneous electrical power to be delivered.




The electronic control unit


43


typically comprises a microprocessor suitably programmed to control the flow rates of waste nitrogen flowing in the lines


27


and


29


, as described below.




The unit


43


compares the values delivered by the determination means


40


and


44


. When the electrical power to be delivered is greater than that delivered by the alternator


19


, that is to say when the electrical requirements of the network supplied by the alternator


19


increase, the control unit


43


then operates the valves


41


and


42


in order to increase the flow rate of the first waste nitrogen stream and decrease the flow rate of the second waste nitrogen stream.




Thus, the flow rate of the gases expanded in the turbine


18


increases and the alternator


19


can deliver the additional electrical power demanded. The maximum electrical power that can be delivered is therefore not limited by the characteristics of the compressor


16


, but by those of the turbine


18


.




Since the flow rate of the second waste nitrogen stream has been decreased, the air distillation unit


2


delivers a lesser amount of liquid oxygen. This is not a problem, even if the liquid oxygen demand by consumers increases, since it is possible to use all of the liquid oxygen stored in the tank


14


to meet their demand.




In a variant (not shown) of the plant of

FIG. 1

, the control valve


42


may, if necessary, be completely closed, all of the waste nitrogen then being sent to the gas turbine unit


3


. In this case, the refrigeration of the distillation column


4


is, for example, maintained by sending liquid oxygen from the tank


14


back into the main heat-exchange line


8


or by any other means, such as a turbine for blowing the air to be distilled into the low-pressure column.




Conversely, when the electrical power to be delivered is less than the electrical power delivered, that is to say when the requirements of the network supplied by the alternator decrease, the control unit


43


causes the flow rate of the second stream to increase and the flow rate of the first stream to decrease.




If necessary, the control valve


41


may be completely closed, all of the waste nitrogen then being sent to the turbine


13


in order to feed the tank


14


with liquid oxygen.




It is then possible to increase the amount of liquid oxygen stored in the tank


14


for a new period in which the electrical power to be delivered will be high.




Thus, the plant of

FIG. 1

allows simple tailoring of the electrical power delivered by the gas turbine unit


3


to the electricity requirements without being limited by the characteristics of the compressor


16


.




More generally, the structure of the gas turbine unit


3


may be different, the combustion chamber


17


possibly being fed with a pressurised oxidiser, such a air, by various means.




The first waste nitrogen stream may also be warmed before being sent to the turbine


18


.




Likewise, the above principles are not limited to a unit


2


comprising a double distillation column. Thus, any type of air distillation apparatus, having an air inlet and outlets for nitrogen-rich and oxygen-rich fluids, may be used. The or an outlet for the nitrogen-rich fluid is then connected in parallel to the turbines


13


and


18


.




The valves


41


and


42


can be incorporated in the compressor


21


and the turbine


23


, respectively, for example in the form of nozzle guide vanes.




It should also be noted that the second waste nitrogen stream may be expanded by various means so as to allow production of a product, such as oxygen, nitrogen or even argon, in the liquid state. It is not necessary for this second expanded stream and the product to be delivered in the liquid state to pass through the same heat exchanger.




Thus, in the variant shown in

FIG. 2

, the second waste nitrogen stream, after its expansion in the turbine


13


, is sent directly to the heat-exchange line


8


, the auxiliary heat exchanger


9


and the expansion valve


33


having been omitted.




The liquid oxygen is then stored, to within the head losses, at the operation pressure of the low-pressure column, which may be well above atmospheric pressure.




It is not then necessary to subcool the liquid oxygen withdrawn via the outlet


25


.




In a variant (not shown), the turbine


18


may be a turbine of which one upstream stage is mechanically connected by a first shaft to the compressor


16


in order to drive it and of which a downstream stage is mechanically connected by a separate second shaft to the alternator


19


in order to drive it.




According to yet another variant (not shown), the waste nitrogen coming from the outlet


25


may be divided into two streams upstream of the auxiliary heat exchanger


10


and therefore upstream of the main heat-exchange line


8


.




The first stream is then compressed, then warmed on passing through the main heat-exchange line


8


and finally fed into the turbine


18


. The second stream passes through the auxiliary heat exchanger


10


and then the upstream portion of the passages


26


of the main heat-exchange line


8


. Thereafter, the second stream follows the path in the embodiment shown in FIG.


1


.




According to other variants (not shown), the turbines


13


and


18


may be connected to two separate nitrogen-rich fluid outlets. Thus, the turbine


13


may be connected to the outlet


25


as shown in

FIG. 1

, whereas a portion of the lean liquid LP is sent to a pump and then into the main heat-exchange line


8


before being fed into the turbine


18


.



Claims
  • 1. A plant (1) for distilling air and for generating electricity, comprising,an air distillation apparatus (4) having at least one outlet (25) for a nitrogen-rich fluid and an outlet (32) for a product to be delivered in the liquid state, a gas turbine unit (3) comprising a combustion chamber (17) and an electricity-generating turbine (18), an intake of which is connected to an outlet of the combustion chamber, means (13) for expanding the nitrogen-rich fluid in order to generate refrigerating power cooling the liquid product to be delivered, the air distillation apparatus being connected to the means (13) for expanding and to the intake of the electricity-delivering turbine (18) in order to feed them with the nitrogen-rich fluid, control means (41,42) for controlling flow rates of the nitrogen-rich fluid streams sent to the means (13) for expanding and to the electricity-generating turbine (18), respectively, and determination means (40) for determining the electrical power to be generated by the electricity-generating turbine (18).
  • 2. The plant according to claim 1, wherein the expansion means comprise a turbine (13).
  • 3. The plant according to claim 1, further comprising a heat exchanger (9) for cooling the liquid product to be delivered, connected to an outlet of the expansion means (13).
  • 4. The plant according to claim 1, further comprising a heat exchanger (8) for cooling the air to be distilled, connected to an outlet of the expansion means (13).
  • 5. The plant according to claim 1, further comprising means (21) for compressing a nitrogen-rich fluid, these being placed between the air distillation apparatus (4) and the intake of the electricity-generating turbine (18).
  • 6. The plant according to claim 1, further comprising means for warming a nitrogen-rich fluid, these being placed between the air distillation apparatus (4) and the intake of the electricity-generating turbine (18).
  • 7. The plant according to claim 1, wherein the air distillation apparatus is connected to the expansion means (13) and to the electricity-generating turbine (18) via the same nitrogen-rich fluid outlet (26).
  • 8. The plant according to claim 7, further comprising a control unit (43) for controlling the flow-rate control means (41,42), which unit is designed to increase the flow rate of the nitrogen-rich fluid stream feeding the electricity-generating turbine (18) when the electrical power to be generated increases.
  • 9. The plant according to claim 8, wherein the control unit is designed to decrease the flow rate of the nitrogen-rich fluid stream feeding the electricity-generating turbine (18) when the electrical power to be generated decreases.
  • 10. A process for generating electricity and distilling air by means of the plant according to claim 1, wherein the flow rate of the nitrogen-rich fluid stream feeding the electricity-generating turbine (18) is increased when the electrical power to be generated increases.
  • 11. The process according to claim 10, wherein the flow rate of the nitrogen-rich fluid stream feeding the electricity-generating turbine (18) is decreased when the electrical power to be generated decreases.
  • 12. A plant for distilling air and for generating electricity, comprising:an air distillation apparatus having a first outlet for a first nitrogen-rich product and a second outlet for a second product that is to be delivered as a liquid; a gas turbine unit with a combustion chamber and a first electricity-generating turbine with an intake connected to an outlet of the combustion chamber; a second turbine for expanding the first nitrogen-rich product to generate refrigerating power for cooling the second product; a first valve connecting the first outlet for the first nitrogen-rich product to the second turbine; a second valve connecting the first outlet for the first nitrogen-rich product to the intake of the first electricity-delivering turbine; a first device that determines an amount of electrical power generated by the electricity-generating turbine; a second device that determines a demand for electrical power; and a control unit responsive to the first and second devices that controls the first and second valves so that the amount of electrical power generated by the electricity-generating turbine corresponds to the demand.
Priority Claims (1)
Number Date Country Kind
00 09100 Jul 2000 FR
US Referenced Citations (7)
Number Name Date Kind
4178763 Stern et al. Dec 1979 A
4372764 Theobald Feb 1983 A
5060480 Saulnier Oct 1991 A
5410869 Muller May 1995 A
5666825 Darredeau et al. Sep 1997 A
6281601 Edelman et al. Aug 2001 B1
6393821 Prabhu May 2002 B1
Foreign Referenced Citations (4)
Number Date Country
3908505 Sep 1989 DE
0 357 299 Mar 1990 EP
0 519 688 Dec 1992 EP
0465193 Jan 1992 GB