The present invention relates to an air intake duct for an internal combustion engine that is capable of dissipating pressure waves in an intake duct for reducing the noise created by the induction of air.
The air induction passageway of an internal combustion engine (ICE) will create a significant amount of noise as the air is drawn into the intake of the induction passageway and conveyed to the inlet of the engine. A typical induction passageway generally includes an air inlet, an air filter or cleaner and passageways or ducts that serve to connect the inlet, and the air cleaner with the intake of the internal combustion engine. The noise generated by an internal combustion engine when installed in a passenger vehicle is a very undesirable attribute. A consumer's comfort and driving experience is often a determinative factor when it comes to the purchase of an automobile or any other type of vehicle. Several attempts have been made to mute or negate these unwanted sounds emanating from the engine compartment of a motor vehicle. Several attempts have included sound attenuating devices incorporated into the air induction system, such as a resonator or muffler. The space within a vehicle's engine compartment is somewhat limited and must be utilized in a judicious manner. Many of these devices by their very nature consume large quantities of precious space that can result in the redesign or removal of other critical components typically located within the engine compartment.
U.S. Pat. No. 6,517,595, to Kino et al, discloses an intake duct for introducing outside air into an air cleaner of an internal combustion engine. It includes a hollow duct body with an opening and a piece of non-woven fabric formed in a flat shape, and is joined to the duct body to close the opening. The duct body includes a circumferential wall formed of a resin, and the opening is formed along a plane extending through a portion of the circumferential wall. The piece of non-woven fabric is fixed to the duct body so that some of the resin of the duct body penetrates into the non-woven fabric.
U.S. Pat. No. 6,553,953, to Fujihara discloses at least a part of a duct wall of a suction duct that is formed out of a molded body of non-woven fabric. The non-woven fabric contains a thermoplastic resin binder.
U.S. Pat. No. 6,622,680, to Kino et al, discloses an opening formed in a longitudinal direction in a duct wall. The entire opening is covered with non-woven fabric, and the lateral width of the opening is set to be not shorter than 1/20 of the circumferential length of the duct wall. Alternatively, a porous member is thermally welded with the head of an opening of a small cylindrical portion projecting from the duct wall of a duct body, while the duct body is prevented from deformation. In a method for manufacturing the air intake duct, a high-melting molded piece is brought into contact with a hot plate so as to be heated. A low-melting molded piece is disposed at a distance from the hot plate so as to be heated by radiation heat from the hot plate.
U.S. Pat. No. 6,877,472, to Lepoutre, discloses an intake duct for taking air into an internal combustion engine, notably the engine of an automobile. The duct includes a first wall made of a porous material, wherein a film is implemented which is sufficiently thin thereby avoiding any incidence upon the acoustical characteristics. It has a surface mass of less than 100 grams per square meter. The film is fixed onto the porous wall such that at least 50% of the surface of the film facing the porous wall is not fixed thereto.
U.S. Pat. No. 6,959,678, to Kino et al, discloses a method for making an air intake apparatus. The method includes a holding-portion forming step, a temporary fixing step, and a joining step. In the holding-portion forming step, a holding portion is formed. In the temporarily fixing step, the porous member is held by the holding portion. In the joining step, the holding portion and the porous member are joined together. In the air intake apparatus manufactured by this manufacturing method, a peripheral portion of the porous member is doubly sealed with the holding portion that is an outer edge part of the opening. Consequently, the opening is reliably covered with the porous member so that intake noise is reliably reduced.
U.S. Pat. No. 7,107,959, to Kino et al, discloses an air intake apparatus for suppressing noise. An opening is provided at a part of the intake walls corresponding to an antinode region of resonance mode of standing wave in a full length of the intake path, or at a part of noise pressure level being high in the intake path. The opening is closed with a permeable member and a noise insulating wall is disposed outside the permeable member for suppressing emission of transmitting noise passing through the permeable member. Alternatively, a vibration control member for suppressing face-vibration of the permeable member and reducing radiant noise from the permeable member is provided instead of the noise insulating wall.
U.S. Pat. No. 7,086,365, to Teeter, discloses a composite air intake manifold having a header and runners with communicating passages. The composite intake manifold is fashioned from carbon fiber cloth which is preferably impregnated with resin and cured between a meltable core mold and a split outside mold. The carbon fiber cloth is oriented throughout the manifold to give the manifold maximum pressure resisting capability with minimum thickness and weight. Because virtually any shape may be adopted for the interior passages of the header and the runners, the interior passages of the header and runners may be shaped to enhance air flow through the manifold.
U.S. Pat. No. 7,191,750, to Daly et al, discloses an intake manifold assembly including an inner shell that is inserted into an outer shell, and a cover that seals the open end of the outer shell. The inner shell includes dividers that form air passages. A laser device is traversed along the outer surface of the outer shell along a path which corresponds with the inner shell to form a laser weld joint. The intake manifold assembly of this invention includes features and methods of assembly that improve the laser weld joints utilized to assemble the plastic intake manifold assembly.
U.S. Pat. No. 7,207,307, to Ino et al, discloses an intermediate resin molded body that is put between two outer resin molded bodies, and a molten resin is injected substantially simultaneously into a first interface between one outer resin molded body of the two outer resin molded bodies and the intermediate resin molded body and a second interface between the other outer resin molded body and the intermediate resin body, so that the two outer resin molded bodies and the intermediate resin molded body are welded together.
U.S. Pat. No. 7,322,381, to Kino et al, discloses a duct main body which is formed into a hollow tubular shape having in an interior thereof an intake passageway for introducing outside air into an internal combustion engine by connecting integrally a plurality of divided bodies such as a first divided body and a second divided body which are formed of a thermoplastic resin and has, in a duct wall of the second divided body, an opening which establishes a communication between the inside and outside of the intake passageway. An air-permeable member is insert molded in the second divided body in such a manner as to cover the opening. The air-permeable member has, on an outer edge thereof, a joining portion which is impregnated with the thermoplastic resin. The second divided body has, in at least part of an inner peripheral edge of the opening, a vertical wall portion which protrudes outwards from the duct wall of the second divided body along an inner edge of the opening, and at least part of the joining portion of the air-permeable member is embedded in the vertical wall portion in such a manner as to be held therein in a thickness direction.
U.S. Pat. No. 7,475,664, to Jones et al, discloses an engine intake manifold assembly, including a first component having a first mating surface and a second molded plastic component having a second mating surface. The second molded plastic component is adhesively bonded to the first component with an adhesive. The adhesive bond strength exceeds the strength of the second molded plastic component.
U.S. Pat. No. 7,543,683, to Lewis et al, discloses a vehicle resonator structure including a resonator chamber that has a first intake tube and a first exhaust or outlet tube attached thereto. At least one of the tubes includes a projection that can be molded (e.g., via flash molding after the tube itself is blow molded) onto the tube. The resonator chamber can include upper and lower tube mount structures that can be hot plate welded and sandwiched onto the projection in the tube. Thus, the tube(s) is/are positively retained in position with respect to the resonator chamber such that the tuning of the resonator does not change due to fluctuations in geometry of the tube(s) and resonator chamber structure, and such that there is little or no vibration noise and/or possible damage that might result if the tube(s) were free to move with respect to the resonator chamber.
U.S. Publication No. 2004/0226531, to Kino et al, discloses an air intake apparatus including an air intake duct provided with an inlet through which intake air is introduced, an air cleaner disposed on the downstream side of the air intake duct for filtering the intake air, and an air cleaner hose disposed on the downstream side of the air cleaner and for supplying the filtered intake air to a combustion chamber of an engine, wherein an intake air passageway is laid out between the inlet and the combustion chamber. A passageway wall surrounding an antinode of a lower resonance mode corresponding to the whole passageway length of the intake air passageway, a valve for opening a communicating path allowing the inside of the intake air passageway to communicate with the outside thereof, at least when the lower resonance mode occurs, and an air-permeable member disposed to block the communicating path are disposed.
U.S. Publication No. 2004/0226772, to Hirose et al, discloses a permeable port constituted by an aperture and a porous member for covering an aperture that is provided in a part of an intake air passageway portion of an air intake apparatus. The permeable port is disposed in at least a part of a region between the central position of the whole length of an air intake duct and the central position of the whole length of the intake air passageway portion.
U.S. Publication No. 2004/0231628, to Jones et al, discloses an engine intake manifold assembly, including a first component having a first mating surface and a second molded plastic component having a second mating surface. The second molded plastic component is adhesively bonded to the first component with an adhesive. The adhesive bond strength exceeds the strength of the second molded plastic component.
The present invention is directed to an air intake duct for an internal combustion engine that is capable of suppressing the noise created by the induction of air. The air induction passageway includes an intake duct having an inlet and an outlet as well as an opening in a side wall located between the inlet and outlet. Mounted within this opening is a membrane formed from a woven acoustic material. The acoustic membrane reduces inlet snorkel noise by dissipating pressure waves in the duct. The acoustic membrane is formed from a woven material that allows sufficient air flow into the air intake duct and also resists water penetration into the air intake duct. The air intake silencing device is compact in design, easy to install and maintain, efficient in performance, and economical to manufacture.
Accordingly, it is an objective of the instant invention to provide an intake silencer that utilizes a woven fabric material that is effective in reducing the noise generated by the induction passageway of an internal combustion engine.
It is a further objective of the instant invention to provide an intake silencer that utilizes a woven fabric that is effective in reducing intake noise and is also resistant to water penetration.
It is yet another objective of the instant invention to provide an intake silencer for an internal combustion engine that is small in size thereby minimizing engine compartment utilization.
It is a still further objective of the invention to provide an engine intake silencer that is effective, durable, and cost effective to manufacture, install, and maintain.
Other objects and advantages of this invention will become apparent from the following description taken in conjunction with any accompanying drawings wherein are set forth, by way of illustration and example, certain embodiments of this invention. Any drawings contained herein constitute a part of this specification and include exemplary embodiments of the present invention and illustrate various objects and features thereof.
The present invention will now be described more fully hereinafter with references to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
Acoustic membrane 1 is formed from a woven material such as that made by SaatiTech® under the trademark Saatifil Acoustex™. This material is precisely woven with mono filament fibers to produce uniform mesh openings, thereby creating consistent acoustical resistance. The fibers can be made from polyester, metalester or any other suitable synthetic material. The woven material forming the acoustic membrane 1 within the air intake duct has a pore size than falls within the range of 38 um to 18 um and the thickness falls within the range of 40 um to 125 um. The material of the acoustic membrane 1 is finished with a coating that enables the membrane to repel water.
The acoustic membrane has the physical properties needed to reduce the noise generated within the intake passageway by dissipating pressure waves in the duct. It will also provide the required airflow resistance to allow for the proper balance of air entering the intake passageway through the membrane, and it must also be resistant to the intrusion of water into the intake system. The following tests have been conducted concerning the aforementioned criteria.
To measure airflow resistance, a test sample of the material was mounted on an airflow tunnel and various levels of airflow from a calibrated source were introduced. The pressure drop across the sample was measured at various flow rates. The graph in
To measure the loss of noise transmission, a test conduit with a portion of the side wall removed was covered with an acoustic membrane and one end of the conduit was mounted on a speaker box. A four pole transmission loss test was conducted with a pair of microphones mounted on the conduit upstream of the acoustic membrane and the other pair located downstream of the membrane. White noise was introduced into the conduit at the speaker and the noise reduction downstream of the membrane was recorded as a function of frequency. The graph in
To measure the resistance to water intrusion, a U shaped test conduit was constructed. A portion of the upper wall of the horizontal leg of the U shaped test conduit was removed and covered with a water resistant acoustic material. The U shaped conduit was then submerged in a water tank such that the sample was exposed to a 100 mm column of water for thirty seconds; the upper end of each vertical leg of the U shaped conduits being located above the water line. The quantity of water that passed through the membrane was recorded for each of the four examples whose physical properties as shown in the chart of
All patents and publications mentioned in this specification are indicative of the levels of those skilled in the art to which the invention pertains. All patents and publications are herein incorporated by reference to the same extent as if each individual publication was specifically and individually indicated to be incorporated by reference.
It is to be understood that while a certain form of the invention is illustrated, it is not to be limited to the specific form or arrangement herein described and shown. It will be apparent to those skilled in the art that various changes may be made without departing from the scope of the invention and the invention is not to be considered limited to what is shown and described in the specification and any drawings/figures included herein.
One skilled in the art will readily appreciate that the present invention is well adapted to carry out the objectives and obtain the ends and advantages mentioned, as well as those inherent therein. The embodiments, methods, procedures and techniques described herein are presently representative of the preferred embodiments, are intended to be exemplary and are not intended as limitations on the scope. Changes therein and other uses will occur to those skilled in the art which are encompassed within the spirit of the invention and are defined by the scope of the appended claims. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in the art are intended to be within the scope of the following claims.
The present application claims the benefit of U.S. Provisional Patent Application No. 61/260,171, entitled Air Intake Apparatus, filed on Nov. 11, 2009, the entire contents of which is hereby expressly incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
3360005 | Sopher et al. | Dec 1967 | A |
5722357 | Choi | Mar 1998 | A |
6216661 | Pickens et al. | Apr 2001 | B1 |
6267093 | Lohr | Jul 2001 | B1 |
6517595 | Kino et al. | Feb 2003 | B2 |
6553953 | Fujihara et al. | Apr 2003 | B1 |
6622680 | Kino et al. | Sep 2003 | B2 |
6877472 | Lepoutre | Apr 2005 | B2 |
6959678 | Kino et al. | Nov 2005 | B2 |
7086365 | Teeter | Aug 2006 | B1 |
7107959 | Kino et al. | Sep 2006 | B2 |
7191750 | Daly et al. | Mar 2007 | B2 |
7207307 | Ino et al. | Apr 2007 | B2 |
7322381 | Kino et al. | Jan 2008 | B2 |
7475664 | Jones et al. | Jan 2009 | B2 |
7543683 | Lewis et al. | Jun 2009 | B2 |
7621372 | Yamaura et al. | Nov 2009 | B2 |
20010011448 | Kino et al. | Aug 2001 | A1 |
20020020383 | Nakano et al. | Feb 2002 | A1 |
20020129711 | Oda et al. | Sep 2002 | A1 |
20040226531 | Kino et al. | Nov 2004 | A1 |
20040226772 | Hirose et al. | Nov 2004 | A1 |
20040231628 | Jones et al. | Nov 2004 | A1 |
20040256310 | Cheng | Dec 2004 | A1 |
20070277768 | Takeuchi et al. | Dec 2007 | A1 |
20090293832 | Matsumoto et al. | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
10304028 | Oct 2003 | DE |
10200401431 | Oct 2005 | DE |
2914958 | Oct 2008 | FR |
2000064918 | Mar 2000 | JP |
Entry |
---|
Saatitech, “Saatifil Acoustex, Precision Fabrics for Acoustical Applications, Bring Sound to Life”, www.saatitech.com, (Apr. 2006). |
Number | Date | Country | |
---|---|---|---|
20110107994 A1 | May 2011 | US |
Number | Date | Country | |
---|---|---|---|
61260171 | Nov 2009 | US |