Air-operated pump with bladder-controlled inlet structure useful in floating-layer separation applications

Information

  • Patent Grant
  • 6632073
  • Patent Number
    6,632,073
  • Date Filed
    Tuesday, October 23, 2001
    23 years ago
  • Date Issued
    Tuesday, October 14, 2003
    21 years ago
  • Inventors
  • Examiners
    • Freay; Charles G.
    • Belena; John F
    Agents
    • Gifford, Krass, Groh, Sprinkle, Anderson & Citkowski, PC
Abstract
An air-operated, submersible pump features a bladder-controlled inlet applicable to water pumping or fluid separation, including the recovery of viscous hydrocarbon products. The inlet area fluidly penetrates through a portion of the wall of the pump, and the bladder, disposed within the pump body, is supported in overlying registration therewith. A pressure-operated valve in fluid communication with the discharge port facilitates a refill mode of operation, wherein fluid surrounding the pump flows into the pump body through the inlet area, and a discharge mode of operation wherein the air inlet is pressurized, causing the bladder to inflate and seat against and seal off the inlet area, and fluid which flowed into the pump body to be discharged through the discharge port. In the preferred embodiment, the inlet area comprises a plurality of apertures formed through the wall of the pump body arranged as one or more linear arrays lengthwise along the pump. When deployed to separate and recover a layer of fluid floating on water, a pump according to the invention pump further includes a water outlet and a water-outlet seal. During the refill mode of operation, water including the floating layer of fluid flows into the pump body through the inlet area, and in the discharge mode of operation, the pressurization further causes water which flowed into the pump body to be discharged through the water outlet until the outlet is sealed, after which the fluid which flowed into the pump body is discharged through the discharge port.
Description




FIELD OF THE INVENTION




This invention relates to fluid pumping apparatus and, more particularly, to a submersible pump that may be used to separate and recover an underground layer of floating fluid, including hydrocarbons.




BACKGROUND OF THE INVENTION




It is often desirable, and sometimes required, to decontaminate groundwater by pumping contaminants from a well. This is possible if the contaminant is a separate or floating layer on or within the groundwater. If the contaminant is a hydrocarbon, an added benefit is that the fluid may be recycled for reuse. Pumps used to remove a floating liquid layer to an elevated location are disclosed in U.S. Pat. Nos. 6,220,823; 5,147,184; 3,669,275; 4,243,529; 4,273,650; 4,663,037; 4,872,994; and 4,998,585.




A problem with existing designs is that they often require numerous component parts, including moving parts, and therefore tend to be complex. Such products often use stationary inlets in conjunction with hydrophobic screens, floating inlets attached to coils, or more complex inlet structures used in conjunction with sensors and pneumatic cylinders. Stationary inlets may be mispositioned out of the product when the water level drops, or they can be completely submerged under the water if the level raises to an unacceptably high degree Hydrophobic screens can be easily fouled and plugged, and floating inlets can hang up for various reasons. Coils may also be plugged by discharged hydrocarbons, such as spent motor oil and other thicker fluids.




In my U.S. Pat. No. 6,220,823, I describe an air-operated, submersible pump having a simplified inlet design, resulting in an economical and reliable apparatus that many be used for water pumping of fluid separation, including the recovery of viscous hydrocarbon products. The pump includes a pump body having a length, a wall, an air inlet, and a discharge port. The inlet area fluidly penetrates through a portion of the wall, and a flexible seal, disposed within the pump body, is supported in overlying registration with the fluid inlet. A pressure-operated valve in fluid communication with the discharge port facilitates a refill mode of operation, wherein fluid surrounding the pump flows into the pump body through the inlet area; and a discharge mode of operation wherein the air inlet is pressurized, causing the seal to seat against and seal off the inlet area, and fluid which flowed into the pump body to be discharged through the discharge port. The inlet area preferably comprises a plurality of apertures formed through the wall of the pump body arranged as one or more linear arrays lengthwise along the pump. The apertures may include a raised rim where they protrude into the pump body thereby helping the seal to seat thereagainst. Alternatively, the inlet area may incorporate slots, a mesh or screen panel, or a porous member, including a hydrophobic screen.




When deployed to separate and recover a layer of fluid floating on water, a pump according to the invention pump further includes a water outlet and a water-outlet seal. During the refill mode of operation, water including the floating layer of fluid flows into the pump body through the inlet area, and in the discharge mode of operation, the pressurization further causes water which flowed into the pump body to be discharged through the water outlet until the outlet is sealed, after which the fluid which flowed into the pump body is discharged through the discharge port. In implementing this design, I have found that relatively high pressure, on the order of 40 p.s.i., is required to satisfactorily seal the flap to the inlet region. At lower pressures, of 30 p.s.i. and less, for example, the integrity of the seal could be compromised, causing back flow and potential turbulence, potentially upsetting the product/water interface.




SUMMARY OF THE INVENTION




This invention resides in an improved, air-operated, submersible pump having a bladder-controlled inlet design resulting in an economical and reliable apparatus that may be used for water pumping of fluid separation, including the recovery of viscous hydrocarbon products.




The pump includes a pump body having a length, a wall with a fluid inlet area, exhaust line, an air inlet, discharge port and a bladder air-supply line. The inlet area fluidly penetrates through a portion of the wall, and an air-operated bladder, disposed within the pump body, is supported in overlying registration with the fluid inlet. A set of pressure-operated valves facilitate a refill mode of operation, wherein fluid surrounding the pump flows into the pump body through the inlet area, and a discharge mode of operation wherein the bladder is pressurized to seat against and seal off the bladder inlet area, following fluid which flowed into the pump body to be discharged through the discharge port.




In the preferred embodiment, the inlet area comprises a plurality of apertures formed through the wall of the pump body arranged as one or more linear arrays lengthwise along the pump. The apertures may include a raised rim where they protrude into the pump body thereby helping the bladder to seat thereagainst. Alternatively, the inlet area may incorporate slots, a mesh or screen panel, or a porous member, including a hydrophobic screen.




When deployed to separate and recover a layer of fluid floating on water, a pump according to the invention pump further includes a water outlet and a water-outlet seal. The water-outlet seal preferably comprises a check ball seat, and a density-less-than-water check ball which engages with the seat in the presence of fluid from the floating layer.




The separate bladder air-supply line and air-supply/exhaust lines include pressure-operated valves that sequence in alternating fashion as the pump cycles between refill and discharge states. During refill, a low flow is permitted out of the bladder air-supply line, so that the bladder can move away from the fluid inlet area. An exhaust valve in the air-supply/exhaust line allows the volume of the pump body to be discharged rapidly, enabling a quick refill of fluid into the pump body. To discharge, a high flow into the bladder air-supply line inflates the bladder, causing it to seal off the fluid inlet area, while a relatively low flow enters into the air-supply/exhaust line, to push the water out the water-outlet until it seals off, after which time the fluid of interest is pumped out the discharge line, and the cycle repeats.




The valve configuration, which may be located above-ground or on the pump body, permits a conventional above-ground controller to be used to operate the pump. During the refill mode of operation, water including the floating layer of fluid flows into the pump body through the inlet area, and in the discharge mode of operation, the pressurization further causes water which flowed into the pump body to be discharged through the water outlet until the outlet is sealed, after which the fluid which flowed into the pump body is discharged through the discharge port.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1A

is a drawing, in partial cross-section, of a submersible pump according to the invention utilizing an inflatable/deflatable bladder disposed within the body of the pump;





FIG. 1B

is a section of the pump of

FIG. 1A

taken along line A—A;





FIG. 1C

is a side-view drawing of a support channel used to hold the bladder in place relative to the fluid inlet area;





FIG. 1D

is a drawing of the pump of

FIG. 1A

, having completed a refill cycle;





FIG. 1E

is a drawing of the pump of

FIG. 1A

, having completed a discharge cycle;





FIG. 1F

is a detailed drawing of the valves used in conjunction with the refill mode of operation;





FIG. 1G

depicts the valves of

FIG. 1F

during a discharge mode of operation.





FIG. 2A

shows an embodiment of the invention having an adjustable discharge tube which allows for fine adjusting of the discharge inlet; and





FIG. 2B

illustrates the addition of an external lighter-than-water back flow check ball with a notch on the valve seat.











DETAILED DESCRIPTION OF THE INVENTION




Reference will now be made to the drawings, which will help to understand the refill and discharge modes of operation. In addition, the following numerical references will be used throughout:






102


Body






103


Perforations






104


Air supply and exhaust line






105


Bladder






106


Discharge line






107


Bladder air supply line






108


Discharge check valve






110


Check ball






111


Air supply check valve with orifice






112


Discharge check spring






113


Bladder air supply check valve with orifice






115


Air check spring






116


Discharge inlet point






117


Poppet with orifice






119


Quick exhaust valve






120


Water outlet passage






122


Valve seat






124


Floating ball






130


Lighter than product/water fluid






132


Aquifer water






140


Small volume of water






142


Product/water interface






150


Bladder support channel






151


O-ring






152


Bladder stem






160


Adjustable discharge tube






161


O-ring






162


Floating back flow checkball






163


Cage






164


Slot for adjustment






165


Back flow notch





FIG. 1A

is a drawing which illustrates a preferred pump configuration according to the invention. The body


102


is preferably an elongated cylinder constructed of a corrosion-resistant material such as stainless steel. Other materials and geometries may be used, however, with the length of the body being adjustable from a few inches to several feet, depending upon the application. To address a wide range of needs, a preferred design is configured to fit within a two-inch diameter well or larger.




The air supply and exhaust line


104


is interconnected to an above-ground pneumatic controller, which may be a commercially available unit or one of the types described in U.S. Pat. Nos. 6,206,657 and 6,224,343, the contents of both of which are incorporated herein by reference. The discharge line


106


interconnects directly to a discharge check assembly


108


having a spring


112


operative to urge a check ball


110


against a lower seat until a predetermined pressure within line


106


is reached.




Along the body


102


of the pump, there is disposed a series of apertures or perforations


103


, which penetrate through the way of a body


102


and into the interior of the pump. In the preferred embodiment, at least one row of such apertures are disposed longitudinally along the body of the pump, though, additional rows having a varying spacing may alternatively be used. In addition, and in all configurations of the invention, as opposed to a plurality of apertures, the inlet area may be made with slots, mesh, screen, a porous member and/or a hydrophobic screen.




According to the invention, immediately behind the apertures


103


there is disposed an inflatable bladder


105


, which presses against the perforations from the inside to seal them off during the discharge mode of operation described with reference to

FIGS. 1E and 1G

. Materials such as neoprene, synthetic rubber, Teflon and other materials may be used to construct the bladder


105


. As shown in the cross-section A—A of FIG.


1


B and

FIG. 1C

, a bladder support panel


150


constructed of stainless steel or other non-corrosive material is used to contain the bladder


105


so that it will not be dislocated as pressure is exerted against the perforations forming the fluid inlet. The support panel


150


is preferably tack-welded to the inner wall of the pump body


102


.




The bladder


105


preferably includes a stem


152


and O-ring


151


, facilitating maintenance for replacement. The bladder


105


is inflated and deflated through a separate bladder air-supply line


107


, which includes a separate check valve


113


including a poppet with orifice


117


urged against a seat using an air-check spring


115


.





FIGS. 1D and 1F

show the pump in a refill mode, wherein fluid is entering the perforations


103


and into the pump body, with the bladder


105


deflating away from the apertures


103


to permit fluid to flow to enter into the pump body. Although the perforations


103


may be made through the wall of the pump body without any raised areas, in the preferred embodiment, the perforations


103


include dimples facing inwardly of the body, such that when the bladder inflates thereagainst, a tighter seal is realized.




As best seen in

FIG. 1F

, during the refill mode, a high flow of trapped air is exhausted through the opening of air supply check valve with orifice


111


and through quick exhaust valve


119


. The device


119


permits a flow of air through the valve from the air supply during the discharge mode of operation, while, with the air supply turned off, allowing a rapid exhaust through the side port. In concert with the high flow of trapped air through valves


111


and


119


, although valve


113


is closed, the orifice through the poppet


117


permits a low flow of air therethrough, which enables the bladder to sufficiently deflate and move away from the fluid inlet.




At the lower end


118


of the pump, there is disposed a water outlet passage


120


featuring a valve seat


122


. The floating ball


124


is shown floating on top of a water layer


132


. The bottom extent of the discharge line is shown at point


116


. Pumps according to the invention may be used for different purposes, including the pumping of a singular fluid, such as water. Alternatively, the pumps of this invention may be used for fluid separation purposes, for example, to recover hydrocarbons found floating on a layer


130


above an aquifer


132


. In such a case, the float


124


is composed of a material which will float on water, but which will sink in the layer of hydrocarbon


130


, which may be gasoline, or other types of petroleum distillates and fuels.





FIGS. 1E and 1G

show the pump during a discharge cycle, wherein the fluid layer


130


is forced out of the pump body. To begin this process, the surface controller supplies a surge of compressed air to valves


111


and


113


along line


104


. The spring


112


has sufficient strength to hold the check ball


110


against the seat and discharge line


106


, at least until pressure within the body of the pump proceeds to a predetermined level. As such, valve


113


opens, allowing a high flow of air into the pump body through line


107


. This inflates the bladder


105


against the openings


103


, sealing them off. At the same time, although valve


111


is closed, the orifice through the poppet member allows a relatively low flow therepast, through valve


119


and into the pump body through line


104


. The increasing pressurization causes the floating ball


124


to move downwardly toward the distal end of the pump, forcing the water back out through the water outlet


120


. This continues until the floating ball


124


, as shown in

FIG. 1E. A

small volume of water


140


remains in the pump, but the body of the pump is now otherwise sealed from discharges other than discharge line


106


.




Pressure continues to build within the body of the pump to a level beyond that just required to push the check ball


110


away from the seat. This causes the lighter-than-water fluid


130


to be forced up through the discharge line, past the check ball for above-ground recovery. The bladder


105


remains urged against the openings


103


until the pressurization delivered through line


104


ceases. At this point, line


104


returns to atmosphere, and becomes an exhaust line, allowing the bladder


105


to deflate and move away from the inlets, as described above, allowing a new charge to enter into the pump body, thus commencing the next full cycle.




Although valves


111


and


113


are depicted as independent items, they may, in fact, be integrated into a single block which may also include the valve


119


. In addition, although it is assumed that valves


111


,


113


and


119


are disposed above ground, they may be situated proximate to the pump body, allowing a single line from the controller to extend from the surface down to the submerged pump, thereby obviating the need for a lengthly air-supply line for the bladder.




It should further be noted that the timing of the cycles, as well as the pressures to which the valves are set, the size of the various tubes and orifices, may be adjusted in accordance with known engineering principles to achieve a desired level of operation in accordance with tradeoffs regarding throughput, pump depth, and other factors. For example, the pump may be pressurized to a level on the order of 50 psi to expel the fluid collected during the refill mode, but again, this value is variable in accordance with valve oepration, pump depth, and so forth.





FIG. 2A

illustrates the addition of an adjustable discharge tube


160


which allows for fine adjusting of the discharge inlet


116


. The lower end of the discharge tube is threaded and is sealed by O-ring


161


. The differences between light and heavy weight floating product layers, in conjunction with differences between the aquifers salt/mineral contain, or temperature could affect the location of the interface


142


, at the instant the floating ball


124


seals off the water outlet passage


120


. If the floating ball


124


is floating too high at the interface


142


, excess product


130


could be left after each cycle. If the floating ball


124


is floating too low, unwanted water


132


could be forced up the discharge tube. Even the specific gravity of the floats will vary from pump-to-pump, due to tolerances allowed in their manufacturing.




The provision of an adjustable discharge inlet allows for the ability to raise or lower the discharge inlet to the best location depending on the actual specific gravity of the aquifer and/or the product being pumped. This modification is particularly valuable during production testing to ensure the discharge inlet


116


is properly positioned to ensure minimal pumping of water


132


. The discharge tube


160


could be adjusted by means of a wide variety of driver methods, such as internal hex


164


, external hex, stnadard slot, Philips' slot, Torx slot, square head, finger tip adjustment (knurled knob), etc.





FIG. 2B

illustrates the addition of an external lighter-than-water back flow check ball


162


, with a notch


165


on the valve seat


122


. This design allows a metered amount of water back into the pump, up through the water outlet passage


120


.




It is desirable to reduce the flow of the water


132


back into the pump through the water outlet passage


120


to eliminate turbulence inside the pump chamber. Turbulence can cause emulsification of the floating product layer


130


and the water


132


, which can result in water being pumped to the surface.




However, if a water back flow checkball


162


is added, and it has a near perfect seal, a lock between the floating ball


124


and its mating valve seat


122


can occur. This is more likely to occur when pumping extremely viscous or sticking products. The notch


165


allows hydraulic back pressure to build on the bottom side of the floating ball


124


force it off of its seat


122


. The amount of back pressure available is dependent on the well's water level. The notch


165


will be sized to allow a free flow water into the pump while minimizing turbulence inside the pump. The back flow checkball


162


will be contained in a cage


163


.



Claims
  • 1. An air-operated, submersible pump, comprising:a pump body having a length, an outer wall, an air inlet, and a discharge port; a fluid inlet area penetrating through at least a portion of the outer wall of the pump body; an inflatable/deflatable bladder disposed within die pump body, the bladder being aligned in overlying registration with the fluid inlet area; and a pressure-operated valve in fluid communication with the discharge port, the plump having a refill mode of operation, wherein fluid surrounding the pump flows into the pump body through the inlet area and past the bladder, and a discharge mode of operation wherein the air inlet is pressurized, causing: a) the bladder to inflate and seat against and seal off the fluid inlet area, and b) fluid which flowed into the pump body to be discharged through the discharge port.
  • 2. The pump of claim 1, wherein the fluid inlet area comprises a plurality of apertures formed through the outer wall of the pump body.
  • 3. The pump of claim 2, wherein the apertures are arranged as one or more linear arrays along the length of the pump body.
  • 4. The pump of claim 2, wherein the apertures include a raised rim where they protrude into the pump body thereby helping the bladder to seat thereagainst.
  • 5. The pump of claim 1, wherein the inlet area comprises one or more slots formed through the outer wall of the pump body.
  • 6. The pump of claim 1, wherein the inlet area comprises a mesh, screen or porous member.
  • 7. The pump of claim 6, wherein the inlet area comprises a hydrophobic screen.
  • 8. The pump of claim 1, being adapted to separate and recover a layer of fluid floating on water, the pump further comprising:a water outlet; and a water-outlet seal; wherein, during the refill mode of operation, water including the floating layer of fluid flows into the pump body through the inlet area, and in the discharge mode of operation, the pressurization further causes water which flowed into the pump body to be discharged through the water outlet until the outlet is sealed, after which the fluid which flowed into the pump body is discharged through the discharge port.
  • 9. The pump of claim 8, wherein the water-outlet seal further comprises:a check ball seat; and a density-less-than-water check ball which engages with the seat in the presence of fluid from the floating layer.
  • 10. The pump of claim 8, wherein the water-outlet seal further comprises:a valve seat; and a water float having a valve stem which engages with the valve seat when the level of water within the pump body falls to a predetermined level.
  • 11. An air-operated, submersible pump, comprising:an elongated pump body having an inlet chamber with an outer wall, an air inlet, and a discharge port; a plurality of apertures formed through the outer wall and into the inlet chamber, the apertures being spaced apart along the body of the pump; an elongated bladder disposed within the inlet chamber in overlying registration with the apertures; and a pressure-operated valve in fluid communication with the discharge port, the pump having a refill mode of operation, wherein fluid surrounding the pump flows into the pump body through the apertures and past the bladder, and a discharge mode of operation wherein the air inlet is pressurized, causing: a) the bladder to close off the apertures, and b) fluid which flowed into the pump body to be discharged through the discharge port.
  • 12. The pump of claim 11, wherein the apertures are substantially round holes.
  • 13. The pump of claim 11, wherein the apertures are elongated slots.
  • 14. The pump of claim 11, wherein the apertures include a raised rim where they protrude into the pump body thereby helping the seal to seat thereagainst.
  • 15. The pump of claim 11, being adapted to separate and recover a layer of fluid floating on water, the pump further comprising:a water outlet; and a water-outlet seal; wherein, during the refill mode of operation, water including the floating layer of fluid flows into the pump body through the apertures, and in the discharge mode of operation, the pressurization further causes water which flowed into the pump body to be discharged through the water outlet until the outlet is sealed, after which the fluid which flowed into the pump body is discharged through the discharge port.
  • 16. The pump of claim 8, wherein the water-outlet seal further comprises:a check ball seat; and a density-less-than-water check ball which engages with the seat in the presence of fluid from the floating layer.
  • 17. The pump of claim 8, wherein the water-outlet seal further comprises:a valve seat; and a water float having a valve stem which engages with the valve seat when the level of water within the pump body falls to a predetermined level.
US Referenced Citations (13)
Number Name Date Kind
3669275 Downs Jun 1972 A
4243529 Strauss Jan 1981 A
4273650 Solomon Jun 1981 A
4580952 Eberle Apr 1986 A
4663037 Breslin May 1987 A
4872994 Jakob Oct 1989 A
4886432 Kimberlin Dec 1989 A
4936383 Towner et al. Jun 1990 A
4998585 Newcomer et al. Mar 1991 A
5058669 Wells Oct 1991 A
5147184 Newcomer et al. Sep 1992 A
6220823 Newcomer Apr 2001 B1
6224343 Newcomer May 2001 B1